
MODELLING A REAL-TIME SYSTEM USING OBJECT-ORIENTED
TECHNIQUES*

SÉRGIO F. LOPES

e-mail: sergio.lopes@dei.uminho.pt
Departamento de Electrónica Industrial

Escola de Engenharia - Universidade do Minho
Campus de Azurém

4800-058 Guimarães - PORTUGAL

JOÃO L. MONTEIRO

e-mail: joao.monteiro@dei.uminho.pt
Departamento de Electrónica Industrial

Escola de Engenharia - Universidade do Minho
Campus de Azurém

4800-058 Guimarães - PORTUGAL

* This work is supported by the Fundação para a Ciência e a Tecnologia PRAXIS XXI program of the Ministério da Ciência e Tecnologia of the Portuguese
Government.

ABSTRACT

Real-time systems have higher complexity and impose
tougher constrains in the development process due to the
different hardware support, the often distributed topology
and time requirements. The development of these systems
demand high quality and increasing economic constrains.
These requirements point to the use of standardised
specification techniques, based on hierarchical and
graphical modelling. This approach have the advantage of
reducing costs, time-to-market and increase of reuse of
software components. Therefore the use of an integrated
specification methodology has a major importance.

In the development of the present work, we have
applied the Object-Oriented Real-Time Techniques
(OORT) method, which is oriented towards the
specification of distributed real-time systems. It is based
on formal notations which are international standards. This
paper, describes the method and discuss its most important
aspects by applying it to the specification of the Multiple
Lift System.

Keywords: Distributed Systems Specification, Real-
Time Computer Control, Software Engineering, Object-
Oriented.

1 INTRODUCTION

Real-time systems are very complex because they are
often distributed, run in different platforms, have temporal
constraints, etc. The development of these systems
demand high quality and increasing economic constraints,
therefore it is necessary to minimise their errors and its
maintenance costs, and deliver them in short deadlines.

To achieve these goals it is necessary to verify a few
conditions: decrease the complexity of the systems
through hierarchical and graphical modelling for high

flexibility in the maintenance; protect the investments with
the application of international standards in the
development; to apply early verification and validation
techniques to reduce the errors; and, reduce the delivery
times by automating code generation and increasing the
level of reusability. Finally, its necessary to have a tool
that provides these conditions. The present work was
developed with the ObjectGEODEi toolset, that supports
the OORT method.

The OORT method [13] is organised according to the
diagram of figure 1 and applies the Unified Modelling
Language (UML), Message Sequence Chart (MSC) and
Specification and Description Language (SDL). The UML
language is a de jure standard (see [12] for details) and it
is defined in [10]. The MSC was defined [6] as
complement to SDL, both international standards by ITU-
T. [11] provides an introduction to MSC. SDL is defined
by [4], [5] and [7], however [9] is a more comprehensive
reference, while [3] is a handy summary of the language.
The use of both languages together is guided by [8].

Requirements Analysis

Scenario and MSC Diagrams
Use Case Modelling

Object Analysis
UML Class Diagrams

Architectural Design
SDL Hierarchical and

Interconnection Diagrams

Architectural Design Test Design

MSC Diagrams
Test Design

Detailed Design

Behavioural Design
SDL Process Diagrams

Data Modelling
UML Class Diagrams

TestImplementation

Figure 1 - The OORT method.

521

M. HAMZA

M. HAMZA

In this work we have applied the OORT method to the
modelling of a case study – the Multiple Lift System
(MLS). A description of a MLS architecture using UML is
presented in [2]. The analysis model uses UML to model
the system’s environment, and MSC to specify the
behaviour of the system. The system’s architecture is
defined in SDL. The detailed design uses SDL for the
concurrent objects specification and UML for the passive
components description. The MSC language supports the
test design activity. Each of this steps in the systems
engineering process is described in the following sections.

2 REQUIREMENTS ANALYSIS

In the requirements analysis phase, the system
environment is modelled and the user requirements are
described. The analyst must concentrate on what the
system should do. The environment where the system will
operate is described by means of UML class diagrams –
object modelling. The functional behaviour of the system
is specified by MSCs organised in a hierarchy of scenarios
- use case modelling.

The system is viewed from the exterior as a black box
with which external entities (system actors) interact. Both
the object model and use case model must be independent
of the solutions chosen to implement the system.

2.1 OBJECT ANALYSIS

In the description of the system environment the class
diagrams are used to express the application and services
domains. This is done by identifying the relevant entities
of the application domain (physical and logical), their
attributes, and the relationships between them. It is also
necessary, for the sake of simplicity and expressiveness, to
group entities and their relationships in different modules
that reflect different perspectives of the system, as is
supported by [16]. Generally speaking there is one module
for each of the actors that interact with the system, one for
some basic system composition and other to express
certain environment relationships.

In the figure 2 we present a general view of the system,
where the system main actors are identified, in this case
Passenger, Potential Passenger and
Operator.

The generic system architecture is modelled in figure
3. In order to keep simple modules, each of the component
classes are refined in different diagrams.

2.2 USE CASE MODELLING

The use case model is composed by the scenario
hierarchy and MSC diagrams. The scenario hierarchy
should contain all the different expected scenarios of
interaction between the system and its environment. The

goal it is to model the functional and dynamic
requirements of the system. First, the main scenarios are
identified, and then they are individually refined in
subsequent more detailed scenarios until the terminal
scenarios can be easily described by a chronological
sequence of interactions between the system and its
environment.

MonitoringAndControl
Transportation

Floor

Number : FloorType

Operator
User

BlockDoor()

PotentialPassenger

PushCallButton(Direction : DirectionType)

Passenger

PushDestinationButton(Floor : FloorType)
PushDoorButton(Comand : DoorComandType)

Supervisor

SaveAlarm(Info : Alarme)
ReceivedDestination(Dest : Destination)
ServedDestination(Dest : Destination)
ScheduledCall(Ca : Call)
ReceivedCall(Ca : Call)
ServedCall(Ca : Call)
LiftState(State : LiftState)
StopSystem()

Lift

Number : ElevatorType
Floor : FloorType
Direction : DirectionType
State : StateType

ServeDestination(Floor : FloorType)
ServeCall(Ca : Call)
EndOperation()

{1 <= Floor <= NF}

FloorAccess

Number : FloorType

MLS

Building

Address : string
Telephone : string

1

NF NF

1 1

1 Lodges

*

1

1

1

*

NL

1..*
1

1

1

1

Figure 2 – Building Module UML Class Diagram.

Supervisor

SaveAlarm(Info : Alarme)
ReceivedDestination(Dest : Destination)
ServedDestination(Dest : Destination)
ScheduledCall(Ca : Call)
ReceivedCall(Ca : Call)
ServedCall(Ca : Call)
LiftState(State : LiftState)
StopSystem()

FloorAccess

Number : FloorType

Lift

Number : ElevatorType
Floor : FloorType
Direction : DirectionType
State : StateType

ServeDestination(Floor : FloorType)
ServeCall(Ca : Call)
EndOperation()

{1 <= Floor <= NF}

LiftShaft

MLS

1

NL

NLNF

1

Figure 3 – System Architecture UML Class
Diagram.

One problem of this approach is the scenario
explosion. To deal with that difficulty we apply
composition operators that combine hierarchically the
several scenarios. Nevertheless, the problem is only
diminished but not completely solved. It is still necessary
to choose well the scenarios, namely to chose those which
are the most representative of the system behaviour.

The system operation is divided in phases that are
organised by composition operators, and each phase is a
branch in the scenario hierarchy. Figure 4 shows the Trip
phase scenario hierarchy, in which we have a Floor
Crossing terminal scenario which is illustrated in figure
5.

A constant concern must be the coherence between the
use case and the object models. See [13] for more details.

522

3 ARCHITECTURAL DESIGN

In this phase the system designers specify a logical
architecture of the system (as opposed to the physical
architecture). The SDL language covers all aspects of the
architecture design.

Trips

Trip

CrossesFloor

CrossFloor

Arrival WithOpenDoor

DoorOpened

KeepDoorOpened

CloseAndOpen CloseAndBlock

PassengerBlocks PotentialPassengerBlocks

DoorClosingInterrupted DoorClosingBlocked

PassengerBlocks PotentialPassengerBlocks

ExcessiveLoad CloseDoorWithFreeLift

StaysFreeOrGoesOnBusy

Figure 4 – Scenario Hierarchy for the Trip Sub
Scenario.

CrossFloor

ShowFloor (2)

NewFloor (2)

ShowFloor (2)

LiftState ((. 2,Up,Moving .))

IE_Lift_1

LiftStateIndicator

MLS_1

MLS

IE_Floor_1_Lift_1

LiftStateIndicator

SP_Lift_1

FloorSensor

Antonio

Operator

Figure 5 – Abstract MSC for the Floor Crossing
Scenario.

The system is composed of concurrent objects (those
which have an execution thread) and passive objects
(those which implement a set of functions invoked by
concurrent objects). In the architecture design phase, the
concurrent objects that compose the system are identified
and organised hierarchically. This is accomplished by a
combination of refinement and composition. The
refinement is a top-down process in which higher level
objects are divided in smaller and more detailed objects,
always trying to keep a good modularity. The composition
is a bottom-up process in which designers try to group
objects in such a way that favours reutilization and that
maintains a good encapsulation of the architectural
objects. Figure 6 illustrates the SDL object’s hierarchy of
the MLS.

MLS

FloorAccess

(1,1) (1,1)(1,1)
FloorDoor

(1,NL) (1,1)
CallPanel

Lift

Lift(1,1) DestinationPanel CableMonitor LiftDoor(1,1)

Central

Supervisor Gnome(1,1)

(NF):Floor
Floors Lifts(NL):Lift

Figure 6 – MLS SDL Hierarchy Diagram.

In the architectural design, the real characteristics of
the environment where the system will operate should be
considered, as well as the efficiency aspects. On the other
hand, the SDL model should be independent of the real
object distribution on the final platform.

At the first level, the system actors are considered
through their interfaces, and modelled as channels
between the system top level objects and the outside
world. Figure 7 shows the top level of the MLS
architecture.

system MLS Operador

StopSystem

MonitoringAndControl

EndOperation

ReceivedDestination ,
ServedDestination ,
ScheduledCall ,
SaveAlarm

FloorSensor

NewFloor

StressSensor

StressChangedDoorSinchronisation

Blocked ,
AckOpen,
AckClose

Open,Close

Calls

ScheduleCall ,
IdPC, IdPP

ServedCall,
AckScheduleCall ,
IniOk, PIdPE

Scheduling

ServeCall ,
IniOk, PIdPP

LiftState ,
AckServeCall ,
IdE, IdPE

CallButton

Pushed

BlockingSensors

Blocked

ButtonsAndBlockingSensors

Pushed

DestinationButton

Pushed

FloorAlarms

SaveAlarm

FloorAccess

Lift

Central

Floors(NF)
:FloorAccess

GCSPGOP

GBC GEGA

Lifts(NL)
:Lift

GE

GCSP
GOCP GBD

GST

GSC GSP

Figure 7 – SDL Interconnection Diagram of the
Top Level of the MLS Hierarchy.

Some passive objects are also defined, such as signals
with complex arguments, Abstract Data Types (ADTs)
associated with internal signal processing, and operators to
implement the I/O communication with the outside world
(instead of signals).

The use of SDL assures the portability of the system
architecture, since the communication service is
independent of the real object distribution, the
communication channels are dynamic, and the objects can
be parameterised.

4 DETAILED DESIGN

The description of concurrent and passive objects that
constitute the system architecture is done in the detailed
design phase. In other words, it is described how the
system implements the expected services, and it should be
independent of the final platform where the system will
run.

4.1 CONCURRENT OBJECTS DESIGN

The concurrent objects are the terminal objects of the
SDL hierarchy. They are SDL processes and are a kind of
Finite State Machine (FSM), with its states and state
transitions, called process diagrams. The process
diagrams are built by analysing the input signals of each
process defined in the architecture model and how the
answer to those signals depends on the previous states.
The SDL has a set of mechanisms to describe the
transitions that allow a complete specification of the
process behaviour. In the figure 8 is shown a process
diagram.

The reuse of external concurrent objects is supported
by the SDL encapsulation and inheritance mechanisms.

523

process FloorDoor
(1,NL)

SIGNALSET
 LiftFloorNum;

DCL
 MyFN FloorType,
 MyLN LiftType,
 LiftDoor PID,
 void VoidType;

TIMER NoAck := DoorComandTime;

Init

EXPORTED Open

EXPORTED Close

Init

Closed

Opening

Opened

RESET
(NoAck)

AckOpen
TO LiftDoor

Opened

NoAck

SaveAlarm
((. FDDoesNotOpen,

MyLN,MyFN .))

-

Closed,
Closing

PROCEDURE
Open

SET (NoAck)

Opening

Opened

PROCEDURE
Close

SET (NoAck)

Closing

Closing

Closed

RESET
(NoAck)

AckClose
TO LiftDoor

Closed

NoAck

SaveAlarm
((. FDDoesNotClose,

MyLN,MyFN .))

-

Blocked

Blocked
TO LiftDoor

void := Open()

SET (NoAck)

Opening

Figure 8 – SDL Process Diagram of the Floor
Door Process.

4.2 PASSIVE OBJECTS DESIGN

Some passive objects are identified during the analysis
phase. Generally they model data used or produced by the
system, and they are included in the detailed design to
provide services to concurrent objects. There are also
passive objects that result from design options, such as
data management, user interface or equipment interface
and inclusion of other design techniques.

Although the SDL ADTs provide a way to define
passive objects they are better defined by UML classes. So
the ADTs from the SDL detailed design model are
translated to UML classes and organised in detailed design
class diagrams.

The reuse of external passive objects is facilitated by
the UML encapsulation and inheritance mechanisms.
These characteristics of UML, and also SDL, allow for the
use of other techniques of design in certain systems. For
instance, in the case of embedded systems, it can be useful
to use VHDL to design some physical parts.

4.3 PORTABILITY

The multi-tasking, the communication and the time
management are implemented by the SDL virtual machine,
and therefore are independent of the physical platform and
RTOS on which the system will run. The system
maintenance is kept at the SDL specification level, thus it
is easier to correct and change the system. However, the
portability depends largely on the language chosen to
implement the passive objects.

5 TEST DESIGN

In this phase, the communication between all the
elements of the system architecture is specified by
applying detailed MSCs to describe the sequences of

messages exchanged between them, in all the scenarios
that compose the use case model. This is done by refining
the abstract MSC of each terminal scenario from the
analysis according to the SDL architecture model.
Consequently, the test design activity can be done in
parallel with the architecture design and serve as
requirements to the detailed design phase.

In the intermediate architecture levels, the detailed
MSCs represent integration tests between the concurrent
objects. The last step of refinement correspond to unit
tests that describe the behaviour of processes (the terminal
SDL architecture level). The figure 9 illustrates this.

The process level detailed MSCs can be further
enriched by including in each process behaviour detailed
graphical elements such as states, procedures and timers.

Abstract
MSCs

System

System

S2

S4

S1

S3 S5

Hierarchy
Scenario

m1
m2

m3

m3
m5

m4
m2

m1

Block1 Block2

m2
m7

m4
m6

Process1 Process2 Process3

m8
m5

Detailed
MSCs

Figure 9 – Test Design in OORT.

Figure 10 shows a integration test corresponding to
figure 5 abstract MSC, and figures 11 represents the
respective unit test for one of the blocks.

This phase can be a very long and resource consuming,
thus substantially increasing the system development cost.
However, it is decisive to the system success.

The use case model reflects the user perspective of the
system. The test design should be spread to cover aspects
related to the architecture, such as performance,
robustness, security, flexibility, etc.

524

CrossFloor

LiftState ((. 3,Down,Moving .))

NewFloor

Central

block
/MLS/Central

'Window := UpdateState
(Window,1,(. 3,Down,Moving.))'

Lifts_1

block
/MLS/Lifts_1

'NewFloor ()'

'ShowFloor (Floor)'

Figure 10 –Detailed MSC with Floor Arrival
Integration Test.

Central

LiftState ((. 3,Down,Moving .))
LiftState ((. 3,Down,Moving .))

Supervisor_1

process
/MLS/Central/Supervisor

'Window := UpdateState
(Window,1,(. 3,Down,Moving .))'

Gnome_1

process
/MLS/Central/Gnome

Figure 11 – Detailed MSC with Floor Arrival Unit
Test of Block Piso.

6 CONCLUSION

The combined application of the languages UML,
MSC and SDL here presented permits to confirm the
individual, and as a whole, validity of the languages for
the implementation of real-time distributed systems,
because they are object-oriented and therefore they can be
combined in a consistent way and simplify the reuse.

The UML class diagrams are concise and simple. The
MSC and SDL are mature and well defined: they provide
the essential constructions and left out mechanisms not so
useful or generic. Furthermore, they are standards that are
continuously being improved.

Because SDL is a formal language it can be used to
define rules in the partition and synthesis of a system
specification into hardware and software, as is the case of
a methodology presented in [1]. Furthermore, the
implementation can be automatic, thus limiting the manual
coding to the non real-time operations. The generated
application is scalable, because the logical architecture is
independent of the physical architecture. The mapping
between objects and hardware is define in the
implementation phase only.

The adoption of a graphical specification methodology
forces the designer to think the whole application in an
organised and consistent way. Besides, formal languages
permit the automatic simulation of the system [14], to
make early validations and the automatic code generation.

Therefore, comparing to the non formalised development,
the applications are better in terms of efficiency, less
errors, flexibility and easy of maintenance.

7 REFERENCES
[1] J.M. Daveau, G.F. Marchioro, T. Ben-Ismail and

A.A. Jerraya, “Cosmos: An SDL Based
Hardware/Software Codesign Environment”, in:
Hardware/Software Co-design and Co-
Verification, eds. Bergé, J-M, Levia, O. and
Rouillard, J., Kluwer Academic Publishers, 1997,
59-87.

[2] B.P. Douglass, Real-Time UML: Developing
Efficient Objects for Embedded Systems (Addison-
Wesley, 1998).

[3] O. Faergemand and A. Olsen, Introduction to SDL-
92, Computer Networks and ISDN Systems, 26(9),
1994.

[4] ITU-T Recommendation Z.100, Specification and
Description Languge (SDL), March 1993.

[5] ITU-T Recommendation Z.100 Appendix 1, SDL
Methodology Guidelines, March 1994.

[6] ITU-T Recommendation Z.120, Message Sequence
Chart (MSC), ITU, October 1996.

[7] ITU-T Recommendation Z.100 Addendum 1,
Specification and Description Languge (SDL)
Addendum 1, October 1996.

[8] ITU-T Recommendation Z.100 Supplement 1, SDL
+ Methodology: Use of MSC and SDL (with
ASN.1), May 1997.

[9] A. Olsen, O. Faergemand, B. Moller-Pedersen, R.
Reed, J.R.W. Smith, Systems Engineering Using
SDL-92 (North Holland, 1994).

[10] OMG Unified Modeling Language Specification,
Version 1.3, June 1999.

[11] E. Rudolph, P. Graubmann, J. Grabowski, Tutorial
on Message Sequence Charts, Computer Networks
and ISDN Systems, 28(12), 1996.

[12] Cris Kobryn, UML 2001: A Standardization
Odyssey, Communications of the ACM, 42 (10),
1991, 29-37.

[13] Verilog, ObjectGEODE Method Guidelines
(Verilog SA, 1996).

[14] Verilog, ObjectGEODE SDL Simulator Reference
Manual (Verilog SA, 1996).

[15] Vincent Encontre, How to Use Modeling to
Implement Verifiable, Scalable, and Efficient Real-
Time Application Programs, Real-Time
Engineering, Fall 1997.

[16] Yourdon E., Object-Oriented Systems Design: An
Integrated Aproach (Prentice Hall, 1994).

i ObjectGEODE is a registered trademark by Verilog.

525

