Des Autom Embed Syst (2015) 19:345-366 @ CroseMark
DOI 10.1007/510617-015-9164-y

Cyber-physical systems design: transition from
functional to architectural models

Rosane Fitima Passarini! - Jean-Marie Farines? -

Jodo M. Fernandes®® - Leandro Buss Becker?

Received: 28 February 2014 / Accepted: 15 April 2015 / Published online: 30 May 2015
© Springer Science+Business Media New York 2015

Abstract Normally, the design process of Cyber-Physical Systems (CPSs) starts with the
creation of functional models that are used for simulation purposes. However, most of the
time such models are not directly reused for the design of the architecture of the target CPS.
As a consequence, more efforts than strictly necessary are spent during the CPS architecture
design phase. This paper presents an approach called Assisted Transformation of Models
(AST), which aims at transforming functional (simulation) models designed in the Simulink
environment into architectural models represented in the Architecture Analysis and Design
Language. Using AST, designers can perform a smooth transition between these two design
phases, with an additional advantage of assuring the coupling between functional and archi-
tectural models. The use and benefits of AST are exemplified in the paper in a study devoted
to for the design of a typical CPS: an Unmanned Aerial Vehicle.

Keywords Model Transformation - Functional models - Software architecture - Simulink -
AADL

B Rosane Fitima Passarini
rosane @utfpr.edu.br

Jean-Marie Farines
j-m.farines @ufsc.br

Jo@o M. Fernandes
jmf@di.uminho.pt

Leandro Buss Becker
leandro.becker @ufsc.br

1" Universidade Tecnolégica Federal do Parand (UTFPR), Rua Cristo Rei, 19, Toledo, PR 85902-490,
Brazil

2 Universidade Federal de Santa Catarina (UFSC), DAS/CTC/UFSC, PO Box 476, Florianépolis,
SC 88040-900, Brazil

Department of Informética / Centro ALGORITMI, Escola de Engenharia, Universidade do Minho,
4710-057 Braga, Portugal

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10617-015-9164-y&domain=pdf
http://orcid.org/0000-0003-1174-1966
http://orcid.org/0000-0003-1872-4771

346 R. F. Passarini et al.

1 Introduction

The denomination Cyber-Physical System (CPS) [13] is commonly used to represent an
electromechanical device being controlled by a computer-based system. Examples of CPSs
include robots, aircrafts, smart grids, and others (this paper presents the design of an
Unmanned Aerial Vehicle (UAV), which is a typical CPS). Given the multidisciplinary nature
of CPSs, they must be designed using different kinds of models to represent their mechanical
and electrical structure plus the computational (“cyber”) part.

The design of the CPS architecture normally starts in the latter phases of the development
process. Prior to that, designers carefully model the system kinematics and the control algo-
rithms that will be adopted to rule the CPS behavior. Typically, simulations are performed to
properly adjust the behavior of the control algorithms. For instance, the mathematical model
that represents the kinematics of the UAV under design in a related project and a suitable
algorithm for controlling such UAV is presented in [5].

The Simulink tool [14] is usually adopted for modeling and simulating CPS, addressing
the design of the physical system kinematic and the control algorithms. Even though this tool
offers the possibility of code generation, it has a weak support for expressing and generating
the CPS architecture, as discussed in [8]. When considering a CPS design, generically, the
same features and drawbacks related to Simulink also apply to other CPS-related simulation
tools such as LabVIEW, Scade, Scilab, Ptolemy, and others.

On the other hand, architecture description languages like the Architecture Analysis and
Design Language (AADL) [6] are very appropriate to represent the CPS architecture. Those
languages allow the specification of the software architecture in detail, also providing means
to express the hardware platform and its association with the software components. According
to [6], functional models (from Simulink, Scade, etc) can be used to complement AADL
components characterization by providing their functionalities, that is, the algorithms that
characterize the system behavior.

The problem under investigation in the present work is how to properly address the design
of the CPS architecture using the functional model as a starting point. Traditionally, this has
been viewed as a deployment problem that addresses how to allocate a certain functional
model into a model representing the CPS architecture and its embedded platform. This
requires two models to be designed separately and then combined. For instance, a similar
philosophy is behind UML and its MARTE profile [19].

In this paper we address how to generate in an automated way the architectural model
taking as input the functional model. This kind of approach avoids creating possible decou-
pled functional and architectural models [16]. Besides, it promotes a truly “model-driven”
design approach, as the former model is mapped into the latter one using a transformation
tool. More specifically, the present work suggests how to relate elements of a Simulink model
with elements of an AADL model. While the elements of the Simulink model target func-
tionalities, the elements of the AADL model represent a suitable structure and target platform
for incorporating those functionalities.

Since both models adopt different semantics, we consider important to have some kind of
user intervention in the transformation process. Therefore the proposed approach is called
ASsisted Transformation of models (AST). It consists of metamodels for the source and target
languages, a set of marks (similar to stereotypes), and mapping rules. Besides, it also provides
a tool support to automate the model transformations.

The AST approach is part of what we consider to be an adequate model-based design
method for CPSs. An overview of such a method is presented in Sect. 2. Section 3 presents

@ Springer

CPSs design: transition from functional to architectural models 347

some related works and compares them with AST. Section 4 provides an overview of AST
and Sect. 5 is devoted for detailing its transformation engine. Section 6 presents a case study
that shows the application of AST, highlighting its benefits and limitations. Finally, Sect. 7
presents our conclusions and addresses the future works.

2 Overview of the adopted development method

This section provides an overview of the model-based development method for CPS design
followed in this work. Such method is based on a previous work from some of the present
authors (see [3]). It has evolved along the last years, specially addressing the transformation
of functional to architectural specification, which is the focus of the present paper. Due
to space constraints, this section is restricted to an overview of such a method and its four
suggested design steps, which are: (i) system requirements definition; (ii) preliminary design;
(iii) detailed design, and (iv) implementation. Figure 1 depicts the four steps, including the
resulting actions (inside the blocks) and the provided outputs.

An important aspect to be highlighted is that this method suggests adopting different mod-
eling languages to represent systems functionalities and architecture. The reason therefore
is related with the tools currently available to perform simulations of the system function-
alities. CPS designers normally prefer using tools that support mathematical modeling and
that include simulation capacity, like for example Simulink, LabVIEW, Scilab, and Ptolemy.
However, as discussed in [8], such tools are not appropriate to represent the system architec-
ture. For this reason, the adopted development method suggests using a different modeling
language to represent the system architecture.

2.1 Definition of the system requirements

The first step of the method is eliciting the system requirements from the sources (typically
the stakeholders). This is a non-trivial step to be conducted, since it implies discovering
and unveiling the needs of the users with respect to the system being built. There are many
techniques that can be used in this step, like interviews, task analysis, domain analysis, intro-
spection, brainstorming, observation, personas. A good survey about elicitation techniques
can be found at [22]. As usual in these situations, there are no hard rules to decide which
techniques to use. The techniques to be used depend on the judicious evaluation made by
the engineer. The end result of this step is a specification of the user requirements, both
functional and non-functional, written in natural language (e.g., English). This specification
serves mainly as a communication medium between the users and the project members.

When the requirements are considered to be completed, the development team can produce
a use case diagram. By constructing this diagram, the development team needs to define two
main issues:

1. The actors that the systems interacts with. i.e., the environment or context of the system.
2. The use cases provided by the system, i.e., the main functionalities available to its users.

Fig. 1 Main activities and artifacts of our method to develop CPSs

define requirem-+ create Simulink create AADL ¢ CH++
. spec enerate code
system use cases,l executable model detailed P g 4
requirements specification design code

@ Springer

348 R. F. Passarini et al.

2.2 Preliminary design

The next step is to create a preliminary design for the CPS, focusing on obtaining a simulatable
specification. For that purpose, it is proposed that the development team makes use of a
modeling language that allows the model to be simulated — both the controller and the cyber
environment. An additional interesting feature would be to allow structuring the CPS in terms
of components and subsystems. Moreover, the language could also aid the design team to
model the possible operation modes of the CPS under design.

To support this design step, we rely on the Simulink tool, which provides a block-diagram
language to structure the system being modeled. Functional specification can be represented
using block diagrams (using blocks either from a library or user-defined), pieces of Matlab or
C source code (used to fulfill user-defined blocks), and state machines. Although not explored
within the present work, other tools (and languages) could be used throughout this design
step.

2.3 Detailed design

Creating a detailed design is mandatory in any engineering project, and it is not different
while designing a CPS. At this step, the design team must decide about the allocation of the
functionalities into processes and threads, and also reason about the deployment of such tasks
into a target platform, which by the way must also be defined in this design step. Moreover,
the different constraints related with the system implementation must be taken into account,
like for instance timing and energy consumption restrictions.

The use of different modeling languages in the previous and this design steps should
allow the development team to gradually change the system representation written in one
(more abstract, more informal) language into another (more concrete, more rigorous) repre-
sentation. The resulting model should have enough details to make it suitable for the code
generation phase. Additionally, such model should also be suitable for model-based analysis,
so that possible design mistakes could be detected and properly corrected before the code is
generated.

AADL was chosen by the present work to be used in this step because it allows expressing
in detail the software organization and its target platform. Besides, AADL contains adequate
tool support to perform various types of model-based analysis and a proper abstraction level
to allow its implementation in a given programming language.

2.4 Implementation

For the implementation phase to be properly conducted, the model resulting from the previous
design step should have enough details so that generating code from it becomes straightfor-
ward, i.e., that programmers or code generation software might be able to interpret it and
generate the respective program code in a given target language. For instance, the Ocarina
tool [11] can perform automatic code generation from an AADL model to C/C++ or ADA
languages. Finally, although this design step could cover hardware/software co-design, this
topic is left for a future work.

3 Related works

This section presents some works related with the design of embedded systems and CPSs
that use AADL and Simulink and that also suggest performing model transformations.

@ Springer

CPSs design: transition from functional to architectural models 349

Raghav et al. [16] show how to obtain a preliminary AADL model using information
extracted from a Simulink functional model. Such approach requires the use of the System
Description and Analysis Language (SADL) as an intermediate language. The observed
problem is that the mapping from SADL to AADL has some limitations, for instance, it
does not properly map ports and data. It also lacks support for the mapping of other hardware
components besides the processor, making it difficult to design a detailed architectural model
that is close to the final system. Furthermore, SADL does not support behavior specification
using state machines [2], making it hard to map Simulink models that use stateflow diagrams.

The approach presented in [4] suggests the manual integration of functional components
designed with Simulink and SCADE tools with the system components represented in an
AADL architectural model. Its main goal is the generation of the complete source code of the
application from the models. As this approach does not apply model transformation, Simulink
or SCADE models must be manually integrated with the AADL architecture model. In any
case, the overall results from this work served as inspiration for the Simulink-to-AADL
mappings proposed by the present work.

The Polychrony tool presented in [9] was integrated by [21] into the Reference Technology
Platform (RTP) of the project named CESAR (Cost-efficient methods and processes for
safety relevant embedded systems) [20], serving as a cooperative framework for architecture
modeling and exploration. It allows importing high-level Simulink (functional) models and
AADL (architectural) specifications. The importing feature is currently implemented for two
different transformations, namely Simulink-to-Signal and Signal-to-AADL. Signal [12] is
a language for specification and programming of embedded real-time critical applications.
Interfaces are required and need to be manually implemented. The composition of Simulink
and AADL models depends, therefore, on the system designers to implement such Signal
interfaces, making it difficult to maintain and to validate the resulting model.

As far as we are aware of, there is no definitive solution for the problem of mapping
Simulink models into AADL models. Most related works provide “links” between them, not
mapping (in the sense of a model transformation). None of the works that cover mapping
[16,21] deals with behavior. With respect to the structural mappings, the analyzed works
make use of intermediate languages, which somehow limits the proposed mappings.

Recently a new initiative from the Software Engineering Institute (SEI), with similar
ideas as our approach, was presented. They are developing plugins for OSATE2 that aims
at importing models generated in Simulink or Scade to generate the skeleton of an AADL
model. Such plugins are being developed under the project SAVI (System Architecture Virtual
Integration Program) [1]. However, there is no information available about such plugins
besides their preliminary source code,! making it difficult for us to judge on their pros
and cons. Nevertheless, it was possible to observe in the importer.simulink plugin source
code that it focuses on the identification of architectural problems related with data sharing.
Besides, such plugin does not support the mapping of operation modes, which is tackled in
our proposal.

4 Assisted transformation of models

This section presents the proposed Assisted Transformation of models (AST). It aims at
transforming Simulink models into AADL models, which allows performing the transition
from functional to architectural modeling. This proposal contributes to the model-based

! https://github.com/osate/osate2-plugins.

@ Springer

https://github.com/osate/osate2-plugins

350 R. F. Passarini et al.

I |
I |
| Metamodel SOURCE: Metamodel TARGET: |
: Simulink - AADL I
i Transformation :
i 4 <<orients>>_ Rules + |
: } : Simulink2AADL { :
| | i 7y I |
l <<acc IrdIn BS54 : I l l
| rine | | |
i i I<<apply::-> 1 |
| —— e i R ———— |

| |

' %

SOURCE model: <L USeS I
<<accprding>>
|

&
<<hased pn=

|
I
I
I
Simulink :
|
|
I
|

|
|
|
|

SOURCE MODEL [---+-+ '
: <<input=» - <<outppt TARGET model:
MARKED: [Z2"1-=""a] Plugin AS2T _____lP_, mode
Simulink | | AADL
L e e e A

Fig. 2 Process structure of the assisted transformation of models

development method for CPS presented in Sect. 2. More specifically, it allows the transition
from the second phase (preliminary design) to the third phase (detailed design).

Figure 2 provides an overview of the artifacts used in our proposal. It basically consists of
a transformation engine that receives as input (source) a Simulink model (an .md! file) and
outputs an AADL model (an .aadl file). The core of AST is the correlation between Simulink
and AADL models. This core was developed along this work and gave origin to the so-called
transformation rules. Such rules are used in the transformation engine named AS2T plugin
that was developed in this work. Metamodels for the input and output languages also created
in this work are used to support the proposed transformation. AST can be classified as an
approach that performs Model-to-Model (M2M) transformations [15].

4.1 AST metamodels

Metamodels are very important elements in the model transformation process, since they
define the structure, syntax, and restrictions related to a family of models. They are typically
represented as UML class diagrams.

As there is no official version of the Simulink metamodel, and the metamodels available in
the related works lack information required by AST, we created a new Simulink metamodel.
It provides a compact description of the structural aspects of a Simulink model.

An overview of the proposed Simulink metamodel is presented in Fig. 3. As it can be
observed, every Simulink model has a Model component, serving as the model root. This
Model component is composed of a unique System type component, which encapsulates a
Simulink model and serves as a container for the block diagram. The System component is
composed of one or more Block and Line components. The Block component represents a
functional component, which can be of types Subsystem, Primitive, Reference or S-Function.
A Subsystem block groups some functional control blocks, being composed of a unique Sys-

@ Springer

CPSs design: transition from functional to architectural models 351

| Model |

T [system lo_"

Lk

1
Block | 1.7
1.7 0.7

| Port I I Line p—ol‘ Branch |

AN o~

1 I |]

*

Syhsystem | Primitive | I Reference | | S-Function
AN
lD = g:F 0.*

I | |

[
—1.*
|C°"‘P'JS"e | Stateflow | IMATLABFunclion 01 4 Simplel
o [|4 |U.,1 0+ 1? 0.+

17 1
1

1 -
Chart 0. Transition
1 ;

Tr itionAction

Fig. 3 Simulink metamodel

tem component. This mechanism allows the hierarchical representation of a complex system.
According to the Simulink metamodel, a Subsystem block can be of the following types: Com-
posite, Stateflow, MATLAB Function, or Simple. A Subsystem block of the Composite type
may be formed by one or several Stateflow, MATLAB Function, Simple, and/or Composite
subsystem blocks. A Stateflow subsystem block stores the dynamic behavior of a system or
component through a Stateflow diagram. A Simple subsystem block may be formed by any
block types but not a block of the Composite type.

An important detail regarding the proposed Simulink metamodel is that the Primitive
block represents all available pre-defined blocks in Simulink libraries. The Reference block
represents a type of functional block created by the user and that can be reused in different
Simulink models. The S-Function block represents those types of blocks that are capable of
storing system functionalities written in programming languages such as Matlab, C, C++,
or Fortran. Finally, the Machine component represents the hierarchy root component of the
Stateflow diagram associated with the Stateflow subsystem block. There can be a maximum
of one Machine component per Simulink model, formed by Event, Data and different Chart
components. The Chart component represents the graphical view of the finite state machine,

@ Springer

352 R. F. Passarini et al.

inDataPort 0 0u(Da1aP0n
. i |
EvertPor I_‘l Comnectons H OmEvemPurl

0r 1 g :
InEventDataPort 0. OutEventDataPort fransition

ComponentType A BehaviorAnnex L[ﬁ

‘ ‘ VR ’ X 12

X i 07 0

E}F/Mem & Pmcessl@ﬂe‘lhreadﬁmup)og tdata |Suhpmuram||ne\dce‘ |Variahle‘ W Transiion
A

f 1T 00 0r |0 ! ﬂ{ Conditon
11: Thread Complete

Fig. 4 Simplified version of the AADL metamodel

and is composed of State and Transition components. The State component can be of the
BasicState or the SuperState types, and can be associated to the Action and Transition com-
ponents. A Transition component must be associated with a State component, and can be
associated to the Event and Condition components.

Regarding the AADL metamodel, its official version published by SAE [17] is too com-
plex for the needs of the present work. It has more than 100 entities and is subdivided into
several ECORE files. As also noticed by other researchers, such complexity makes its use
very difficult. Therefore, in order to ease the AADL metamodel analysis by AST, a sim-
plified metamodel was created, as presented in Fig. 4. The part of the metamodel related
with the model behavior (BehaviorAnnex component) was created using as reference the
metamodel presented in [10], including additional behavioral elements extracted from the
AADL Behavior Annex [18].

Observing the AADL metamodel in Fig. 4 one can say that the ComponentType represents
the base for all AADL components: System, Process, ThreadGroup, Thread, Data, Subpro-
gram, and Device. AADL models must necessarily include a System component, which
must be composed of one or more Process, Data, and/or Device components - and even by
other System components. Process represents a program organization with its own protected
address space. It can contain ThreadGroup, Thread, and Data components. The ThreadGroup
component represents a composition unit for the organization of the Threads, which repre-
sent a schedulable unit containing a concurrent function of the system. The Data component
represents the data types and the static data of the source code. It can be composed of other
Data components. Subprogram represents an executable code that can be invoked within
a thread. Device represents components that make interface with the external environment,
such as sensors, actuators, HMI, etc. They interact with the system by sending/receiving data
and events. Like Subprogram, the Device component does not support any subcomponent.

The ComponentType represents all AADL components previously discussed. It can be
associated with the BehaviorAnnex component, which constitutes the AADL behavioral
annex. It provides an extension of the AADL language to allow a behavioral specification

@ Springer

CPSs design: transition from functional to architectural models 353

Functional Model Simulink

| SubsystemBlock |
N

Architecture Model AADL

| Subsystem Block }-
N

| Subsystem Block }-
A

| source code }- Subprogram |

Fig. 5 Correlation between Simulink and AADL models

to be attached to the components of an AADL model. The purpose of the behavioral annex
is to allow the description of the component behavior through a state transition system with
guards and actions [18]. Besides, the ComponentType can also be associated with modes of
operation, that is, the designer can establish in which conditions the modes of operation of
the system will be activated.

4.2 Correlation between Simulink and AADL metamodels

The functional and architectural models engineered during the development of a CPS can
be considered complementary. As previously introduced, models from simulation tools can
be used to characterize AADL components by providing their functionalities (see [6]). Such
functionalities are modeled in AADL as Subprograms, which are considered as black-box
artifacts typically associated with (invoked by) Threads. In fact, these artifacts are portions
of source code implementing algorithms of interest to control the CPS.

The functions of a given system are often represented by block diagrams encapsulated
in a Subsystem block. In a Simulink model, subsystem blocks normally group blocks that
compose the control algorithm responsible for the operation of a particular function of the
system. It was also observed that a subsystem block may be allocated hierarchically within
another block subsystem, and so on. It is precisely this ability to hierarchical structuring that
allows the identification of structural features in a Simulink functional model.

Figure 5 illustrates the correlation between the hierarchical structure of a Simulink func-
tional model and the hierarchical structure of an AADL architectural model. In order to
simplify the representation, the figure suggests a one-to-one relationship between Simulink
subsystem blocks and AADL components. However, according to the metamodels presented
in the previous section, a composite subsystem block (from Simulink) may contain of one or
several subsystem blocks. Also, a process component (from AADL) can have one or more
threads subcomponents.

The observed correlations only apply when considering hierarchical Simulink models.
Obviously, if a flat Simulink model is created it is not possible to establish such correlations.
Therefore, in order for designers to properly use AST, they should work with hierarchi-
cal Simulink models. In other words, this means that the Simulink blocks responsible for
functions and/or sub-functions should be grouped into Subsystem blocks. Besides, it is very
important that all Subsystem ports are properly defined (signal name, port number or port
number and signal name), including the events and/or data (int, double, boolean, etc.) for-
warded through them.

@ Springer

354 R. F. Passarini et al.

Set of Marks

<<system=> First hierarchical Level |

<<process>> Second hierarchical Level |

<<thread>> Third hierarchical Level |

<<device>> Any hierarchical Level |

<<process/thread>> H Any hierarchical Level |

"

1

"F

<<modes>> Second hierarchical Level ‘

<<thread/ behavior>> |—{Third hierarchical Level \

Stateflow

11

<<process /thread>> H First or Second hierarchical Level |

<<thread>> Third hierarchical Level |

<<device>> Any hierarchical Level |

j

1

<<process /thread>> H First or Second hierarchical Level ‘
| MatlabFunction }— <<thread>> Third hierarchical Level ‘

;

<<device>> Any hierarchical Level |

Fig. 6 Set of marks that can be used to characterize the Simulink functional model

In AADL, devices represent external elements that interact with the system, like for
example sensors, actuators, HMI, or the entire block representing the plant of the system
under control. Such kind of elements normally exist in the Simulink model, but must be
properly identified by the designer, as discussed in the next section.

The Stateflow Simulink block can be mapped to AADL either as modes of operation or as
a thread behavior specification. It represents an operation mode when it is located in a higher
hierarchical level of the Simulink model. It represents the thread behavior when in the lowest
hierarchical levels.

4.3 Set of marks used in the transformation process

The marks represent AADL concepts that are used to characterize the Subsystem blocks in the
functional model, and they indicate design decisions. Figure 6 presents the set of marks that
can be used by the designer to mark (characterize) the elements of the Simulink functional
model, so that it can go through a model transformation. The first column indicates the types
of Subystem blocks that can be marked on Simulink functional models, the second column
shows the marks that these blocks can receive, and the third column shows the hierarchical
position that the Subsystem block should occupy within the Simulink functional model to
receive the respective mark.

To understand the role of marks in the AST model transformation process, i.e., the AADL
code generated from the “marked components”, the following situations are possible:

@ Springer

CPSs design: transition from functional to architectural models 355

— When the modes mark is inserted into a Subsystem block of type Stateflow (normally
positioned at the second hierarchical level of the Simulink model), a modes section is
generated in the AADL component that contains (from the hierarchical perspective) the
Stateflow block that received such mark.

— When the process/thread mark is inserted into a Subsystem block of type Simple (nor-
mally positioned in the first two hierarchical levels of the Simulink model), an AADL
component of type process is generated, which includes a thread subcomponent that calls
a subprogram subcomponent.

— When the thread/behavior mark is inserted into a Subsystem block of type Stateflow
(normally positioned in the third level of the Simulink model), a thread component
containing behavior specification is generated.

According to the proposed model transformation philosophy, a Simulink functional model
can be marked either manually or automatically. To add the marks manually in a Subsystem
block, the designer can use the feature of the Simulink tool to insert annotations and write
the mark name there. The automatic marking of the model can be performed by the AS2T
plugin, which was implemented in the scope of this work to automate the application of AST
transformation rules.

When manually-marked, a Simulink functional model can be imported by the AS2T plugin,
the markings are preserved by the transformation engine. When a non-marked model is
imported by the AS2T plugin, the plugin automatically inserts suggested marks in Subsystem
blocks according to their hierarchical position. The device mark is the only one that is not
inserted by AS2T and, therefore, must be entered manually. While manual marking can
potentially create different variations of the mapping for the same Simulink functional model,
automatic marking always inserts the same marks in the same position for a given Simulink
model.

S The transformation engine

Due to mapping variations identified while structuring the proposed transformation engine,
it was necessary to provide some kind of user interaction during the models transformation
process. The user interaction can be performed by adding annotations in the Simulink model.
Once the designer finishes annotating the Simulink model, the transformation engine can
then generate the AADL source code.

AST deals with both the transformation of instances and the transformation of types. The
transformation of types is straightforward, i.e., a certain element type from the source model
is always mapped into the same way into the target model - the transformation is predefined.
In the transformation of instances, an element from the source model can be mapped to
different elements of the target model.

The user interacts with the transformation of instances by inserting annotations in the
Simulink source model. Annotations are inserted into the model by using predefined names
(marks) in the component annotation field. The most important mark is named Device,
representing the external elements that interact with the system under design.

AST transformations rules are unidirectional, i.e., they are valid to transform a Simulink
model into an AADL one—and not the other way around. Such transformation rules are
classified into three categories: structural mapping, operation modes mapping, and behavioral

mapping.

@ Springer

356 R. F. Passarini et al.

5.1 Structural mapping

The structural mapping constitutes the core of the proposed transformation approach, working
with Subsystem blocks of types Composite and Simple. From such elements, the mapping
generates the skeleton of an AADL specification. The set of transformations performed at
this point are the following:

— Composite-to-System the first Subsystem block of type Composite is mapped to the System
component in AADL.

— Composite-to-Process refining the System, the first Subsystem block of type Composite
is mapped to the Process component in AADL when this block is further refined.

— Composite-to-Process/Thread when the block within the refined System is not further
refined, it is mapped to an Process component in AADL that encapsulates a Thread that
calls a Subprogram - so three AADL components are generated.

— Composite-to-Device a Subsystem block of type Composite with the device mark is
mapped to the Device component in AADL.

— Simple-to-Device a Subsystem block of type Simple with the device mark is mapped to
an AADL Device component.

— Simple-to-Thread if within a Process, a Subsystem block of type Simple is mapped to a
Thread that calls a Subprogram - so two AADL components are generated.

— Simple-to-Process/Thread if not within a Process, a Subsystem block of type Simple
is mapped to an Process component in AADL that encapsulates a Thread that calls a
Subprogram - so three AADL components are generated here.

The structural mapping also defines that Simulink ports of types signal name, port number,
and port number/signal name are respectively mapped to AADL as ports of the types event
port, data port, and event data port. Data types forwarded through the ports of a Subsystem
block are mapped as the data types in ports of types data port and event data port of the
respective AADL component. By the end of the structural mapping, a data package with
the data types that circulate through the ports should be generated. It should be highlighted
that the connections of the Subsystem blocks from the Simulink model are preserved when
mapped to AADL, which is done by means of adding connections to the generated AADL
components.

5.2 Operation modes mapping

As the name suggests, the idea here is to obtain information about possible operation modes of
the Simulink functional model and map them to the AADL architectural model. Therefore it is
necessary to use information from the Subsystem blocks of type Stateflow, which can express
state machines - named in Simulink as Stateflow Diagram. In AADL, the operation modes
are associated with components and are represented by a modal state machine, according to
the following transformations:

— Stateflow-to-Operation Mode a Subsystem block of type Stateflow in the same hierarchical
level of the Process affects its father block (the block on the immediate higher hierarchical
level). The corresponding AADL model (generated according to the structural mapping)
receives modes of operation. The Stateflow transitions represent the transitions among
modes and its actions represent the generation of the events that trigger the activation of
the related AADL processes.

@ Springer

CPSs design: transition from functional to architectural models 357

5.3 Behavioral mapping

Behavioral mapping is performed to extract behavioral information from the Simulink func-
tional model and to map it to the AADL model. Similarly to the mapping of operation
modes, it also manipulates Stateflow blocks. However here, for a matter of organization, in
the Simulink model the Stateflow must be positioned within a block that can generate an
AADL Thread.

In AADL, the specification of the internal behavior of a component is represented by
a kind of state machine with guarded conditions and actions, which is properly described
in the AADL Behavior Annex [18]. It should be part of the code section annex behav-
ior_specification located within the thread, consisting of states and transitions. This mapping
should comply with the following transformation:

— Stateflow-to-behavior a Subsystem block of type Stateflow representing the behavior
that directly affects the Thread component further related with its containing block (the
block on the immediate superior hierarchical level). Such Thread incorporates a code
section called annex behavior_specification, which corresponds to akind of state machine
specification. It includes states, transitions, guards, and actions. The actions represent
user-defined operations that are executed when the target state is reached.

5.4 Preliminary analysis

It is our claim that the AADL model generated by AST is preliminary, given that there is
some additional work to complete the model. For instance, designers must manually specify
how the generated model should be deployed in a proper execution platform (which must
also be specified). After that, designers must decorate the AADL model (its components)
with temporal properties, so that it can get ready for analysis and verifications.

Analyzing AST, one can say that it influences positively the automatic generation of the
source code from the full system (functionalities and architecture), since it ensures that the
models are consistent among them, establishing a clear correlation between the AADL model
components and the respective Simulink model associated with it.

Regarding source code generation for the final application, currently the set of tools from
OCARINA [11] can be used to generate source code in C or ADA given an AADL model as
input.

6 Using AST within an UAV project

In this section we present a case study that shows how AST can be used during a project
that aims at designing an Unmanned Aerial Vehicle (UAV). It is our understanding that such
project represents many of the most relevant challenges related with the design of a complex
CPS. Besides, given that the project was conducted within our research group, it was possible
to have access to all project details and also to make use of the development method presented
in Sect. 2. This allowed us to transform the Simulink model created for simulation purposes
into an AADL model that represents the software architecture for the UAV system.

The UAV under consideration is detailed in [5,7]. It consists of a birotor with a tiltrotor
configuration, i.e., an aircraft with two rotors that can be rotated individually by a dedicated
servo. This allows the vehicle to perform vertical takeoff and landing (VTOL) like a helicopter,
and also tilt the rotors horizontally to perform flights like a plane. The UAV under design

@ Springer

358 R. F. Passarini et al.

]

I I

i UAV_system \level 1

b b ‘ ___________________ |

e = ST

: Wireless Estabilization vAv :

: Module Control Stateflow I

I | level2

| Data Trajectory Control System i

1| Processing Control Mission | Dynamics

| [P T A 1

I S S S D N DISINISISISS SIS S S ':

! Trajectory Control I

! Algorithms level 3
1

Fig. 7 Hierarchical view of the UAV Simulink model

is autonomous, i.e., it can perform flights without pilot in accordance with a user-defined
trajectory. A base station (BS) is used to specify the UAV mission (trajectory) and to perform
data telemetry along the flight.

The Fig. 7 presents the hierarquical structure the UAV Simulink model used in this study
as input for generating an AADL model that will represent the UAV embedded system
architecture, as further discussed throughout this section.

6.1 Applying AST model transformation

To make use of AST, the first step is to check if the Simulink model (source model) is
organized as a hierarchical structure. If this holds, the next step is to add the marks into the
model, as described in Sect. 4.3. At least the Device mark should be added, as it is done
those representing external devices or the physical model of the CPS under design. Once the
Simulink model is marked, it is possible to perform the model transformation process.

A top-down presentation of the Simulink model is used to describe the model transforma-
tion process. The highest hierarchical level is shown in Fig. 8. It consists of three Subsystem
blocks, one representing the UAV itself, another representing the Base Station (BS), and a
third one representing the Remote Control (RC). Given that this case study focuses in the
UAV and not in the BS nor the RC, only the former is marked as system, while the other two
blocks are marked as Devices, as one can observe at the bottom of the respective blocks in
Fig. 8.

To transform the UAV block we followed the composite-to-system mapping. The corre-
sponding AADL code is shown in Fig. 9. It is possible to observe that this model contains a
root system component called architecture_uav which has two subcomponents of the devices
type called d_remotecontrol and d_basestation (lines 3 and 4) and a system component called
s_uavsystem (line 5). Besides the subcomponents, the root system also has all connections,
which were suppressed from Fig. 9 for a matter of simplification.

The next step is the decomposition of the UAV block (second hierarchical level), which
is depicted in Fig. 10. Again, the selected mark for each block is presented below the block
name. Those blocks with marks process or process/thread should be further detailed. The
AADL code that represents this level is shown in Fig. 11. The five Simulink blocks of interest
are mapped into subcomponents of the system component called s_uavsystem (lines 2 to 14).

@ Springer

CPSs design: transition from functional to architectural models

359

L,

failSignal

raw Telmetry

uavStatus

LandingFinished

beginAmode

beginRCmode

finishedRCmode ———»| in_finis

abort

beginMmode

finishedMmode

in_finis

mission

startMis sion

escs_w ritevalu

sensor_w ritevalue

activeTransmission

¥

BaseStation

in_activeTelemetry Transmission

LRCSignal

in_beginAMode

in_beginRCMode

hedRCMode

in_abort

in_beginMmode

hedMmode

in_mission
in_startMission
in_escs_w ritevalue

in_sevos_w ritevValue

LandingFinished

Raw Telemetry

UAV Status

out

faisignal

device

RCsignal

RemoteControl

Fig. 8 Simulink model of the 1st (highest) hierarchical level

UAV
system

1
2
3
4
5
6

SYSTEM IMPLEMENTATION architecture_uav.impl

subcomponents

d_remotecontrol: device d_remotecontrol.impl;

d_basestation :

device d_basestation.impl;

s_uavsystem: system s_uavsystem.impl;

connections

..A11 connections are declared here.

25 END architecture_uav.impl;

..(lines 7 to

24)

Fig. 9 AADL code for the first Simulink subsystem block

:

erje}ess_Signul_O ut

——D

wireless_Signal_Out

—

[

input

events 0 wireless oduDJ

beginAMod D TrajectoryCont
begi\RCModeé
,—’ abilizationCont
finishedRCMod t
Wireless_Signal_in beginht Mod 1 pua
wireless_Signal_In
AR finsinedM Mod ¥
abort UAV Stateflow
e made
startMission v
mission| e 1
\—‘ startMission Trajetory
Wireless_Module M ission
processithread ControMission
process
| | :
T - - - T - Trajectory n
enoAngle gle Position_E stimated Position_E stimated Velocly_ReErence-—-l
Ser e Velocity_Refel
=% RotorSpeed L plroto S peed _)) Position_Regrencef—) b
Heading L yp—b|LinearVelcly Position_Reference
| LslHeading Roif— |
ESCsReNelocity ~ Attude | Atitude_E stimated|—{Alttude . sl
Altitude Pitch
Yuw-—L _Ln Pitch ESCsR
UAV_Dinamycs Yaw g1 ity | AngularVelocity Yaw]
device —— \—'Yaw
Data_Processing Slabr'gigs'g:;z’;“‘ Trajectory_Control
processithread p process/thread

Fig. 10 Simulink model (2nd hierarchical level): Refinement of block UAV

@ Springer

360 R. F. Passarini et al.

1 SYSTEM IMPLEMENTATION uav_system.impl

2 SUBCOMPONENTS

3 p_wirelessmodule : PROCESS p_wirelessmodule.impl in modes

4 (m_neutral, m_automatic_mode, m_radiocontroled_mode, m_maintenance_mode);
5 p_dataprocessing : PROCESS p_dataprocessing.impl in modes;

6 (m_automatic_mode, m_radiocontroled_mode, m_maintenance_mode,

7 m_emergencylanding_mode, m_returntohome_mode);

8 d_uavdinamycs : DEVICE d_uavdinamycs.impl;

9 p_stabilizationcontrol : PROCESS p_stabilizationcontrol.impl in modes
10 (m_automatic_mode, m_emergencylanding_mode, m_returntohome_mode) ;

11 p_trajectorycontrol : PROCESS p_trajectorycontrol.impl in modes

12 (m_automatic_mode, m_emergencylanding mode, m_returntohome_mode);

13 p_controlmission : PROCESS p_controlmission.impl in modes

14 (m_automatic_mode, m_emergencylanding_mode, m_returntohome_mode) ;

16 CONNECTIONS
17 cl : PORT p_trajectorycontrol.servosrefangles -> d_uavdinamycs.servorefangles;

18 c2 : PORT p_trajectorycontrol.escsrefvelocity -> d_uavdinamycs.escsvelocity;

. All connections are declared here...

34 modes

35 m_neutral: initial mode;

36 m_automatic_mode: mode;

37 m_radiocontroled_mode: mode;

38 m_maintenance_mode: mode;

39 m_emergencylanding_mode: mode;

40 m_returtohome_mode: mode;

41

42 m_neutral -[p_wirelessmodule.beginamode]-> m_automatic_mode;

43 m_automatic_mode -[p_wirelessmodule.landingfinished]-> m_neutral;

44 m_automatic_mode -[p_wirelessmodule.beginrcmode,]-> m_radiocontroled_mode;
45 m_automatic_mode -[p_wirelessmodule.failsignall->

46 m_radiocontroled_mode;

47 m_automatic_mode -[p_wirelessmodule.failsignall->

48 m_emergencylanding_mode;

49 m_automatic_mode -[p_wirelessmodule.abort]-> m_returtohome_mode;

50 m_neutral -[p_wirelessmodule.beginrcmode]-> m_radiocontroled_mode;

51 m_radiocontroled_mode -[p_wirelessmodule.finishedrcmode]-> m_neutral;
52 m_radiocontroled_mode -[p_wirelessmodule.abort]—> m_returtohome_mode;
53 m_radiocontroled_mode -[p_wirelessmodule.failsignal]->

54 m_emergencylanding_mode;

55 m_neutral -[p_wirelessmodule.beginmmode]-> m_maintenance_mode;

56 m_maintenance_mode -[p_wirelessmodule.finishedmmode]-> m_neutral;

57 m_returtohome_mode -[p_wirelessmodule.failsignal]l->

58 m_emergencylanding_mode;

59 m_returtohome_mode -[p_wirelessmodule.landingfinished]->

60 m_neutral;

61 m_emergencylanding_mode -[p_wirelessmodule.landingfinished]->

62 m_neutral;

63 END s_uavsystem.impl;

Fig. 11 AADL corresponding to the refinement of block UAV

For simplification, connections are suppressed (lines 19 to 33). Lines 34 to 62 are devoted
for the modes, as further discussed.

According to the transformation criteria presented in the previous section, the Stateflow
block present in Fig. 10 (UAVStateflow) is considered to represent operation modes. Figure 12
details such block, which is formed by six basic states that represent the operation modes of
the system: Neutral, Automatic_Mode, RadioControled_Mode, Maintenance_Mode, Emer-

@ Springer

CPSs design: transition from functional to architectural models 361
start
(Neutral
du:WirelessModule
LandingFinished _—
LandingFinished begi ode
finishedMMode
beginRCMode beginMMode
’Automatic_Mode o, | 2 finishedRCMode |
beginRCMode (RacioControled_Mode /r.\am(u\ancej.\ode
duWirelessModule
du: DataProcessing duWirelessModule; du ' WirelessModule:
du StabilizationControl +|du: DataProcessing du:DataProcessing
du TrajectoryControl
LandingFinished

failSignal

failSignal

EmergencyLanding_Mode

du: DataProcessing
du StabilizationControl
du TrajectoryControl

abort

~(RetumToHome_Mode

du: DataProcessing
+| du:StabilizationControl
du:TrajectoryControl

failSignal

Fig. 12 Stateflow diagram of the block Mode Of Operation

gencyLanding_Mode, and ReturnToHome_Mode. It also has a set of state transitions that are
activated exclusively by events. The actions associated with the states are of type During, i.e.,
they are performed just after the new operation mode is triggered. Its transformation results
in the AADL code also shown in Fig. 11—see lines 34 to 62, related to the s_uavsystem
component. Lines 34 to 40 contain the operation modes and lines 42 to 62 represent the
transitions among the operation modes. In AADL, the command in modes is used to specify
the mode of operation of each process of the system component called s_uavsystem, and the
operational mapping of AST extracts this information from the actions of the state of the
Stateflow block that received the modes mark in the Simulink model.

Figure 13 shows the AADL code generated for the Trajectory_Control component. Since
it is marked as process/thread, the code contains a process, a thread, and a subprogram call.

Finally we discuss the behavioral mapping. In order to show how the present work
addresses the behavioral mapping, we changed the specification of the subsystem block
identified as ControlMission in Fig. 10, providing to it a discrete behavior specification.
Figure 14 illustrate such discrete behavior (stateflow diagram), which is positioned hierar-
chically within the ControlMission block — therefore it is in the third hierarchical level of the
Simulink functional model. This diagram is intended to specify the expected behavior for
controlling the execution of the mission received by the UAV. For transformation purposes,
this stateflow block received the thread/behavior mark.

The transformation of the Stateflow in Fig. 14 results in the AADL code presented in
Fig. 15. It has a thread with a code section named annex behavior_specification, containing
the behavior specification.

6.2 Overview of the AADL model validation

In this section we present a few possible model analysis that can be performed with AADL
models in general, such as response time and schedulability analysis. Besides, it we also
address particularities of the AADL model that is automatically generated by the proposed
AST.

In order to be able to perform model analysis with AADL models, its software compo-
nents must be decorated with temporal information (periods and deadlines) and must also be

@ Springer

R. F. Passarini et al.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

PROCESS p_trajectorycontrol
FEATURES

trajectory : IN EVENT DATA PORT Base_Types_Simulink::integer ;
velocity_reference : IN EVENT DATA PORT Base_Types_Simulink::integer;
position_reference : IN EVENT DATA PORT Base_Types_Simulink::integer;
roll : IN EVENT DATA PORT Base_Types_Simulink::integer;

pitch : IN EVENT DATA PORT Base_Types_Simulink::integer ;

yaw : IN EVENT DATA PORT ;

servosrefangles : OUT EVENT DATA PORT Base_Types_Simulink::integer;
escsrefvelocity : OUT EVENT DATA PORT Base_Types_Simulink::integer ;
END p_trajectorycontrol;

PROCESS IMPLEMENTATION p_trajectorycontrol.impl
SUBCOMPONENTS
t_trajectorycontrol : THREAD t_trajectorycontrol.impl;
CONNECTIONS
cl : PORT trajectory -> t_trajectorycontrol.trajectory;
c2 : PORT velocity_reference -> t_trajectorycontrol.velocity_reference;
c3 : PORT position_reference -> t_trajectorycontrol.position_reference;
c4 : PORT roll -> t_trajectorycontrol.roll;
c5 : PORT pitch -> t_trajectorycontrol.pitch;
c6 : PORT yaw -> t_trajectorycontrol.yaw;
c7 : PORT t_trajectorycontrol.servosrefangles -> servosrefangles;
c8 : PORT t_trajectorycontrol.escsrefvelocity -> escsrefvelocity;
END p_trajectorycontrol.impl;

THREAD t_trajectorycontrol
FEATURES
trajectory : IN EVENT DATA PORT Base_Types_Simulink::integer;
velocity_reference : IN EVENT DATA PORT Base_Types_Simulink::integer;
position_reference : IN EVENT DATA PORT Base_Types_Simulink::integer;
roll : IN EVENT DATA PORT Base_Types_Simulink::integer ;
pitch : IN EVENT DATA PORT Base_Types_Simulink::integer;
yaw : IN EVENT DATA PORT Base_Types_Simulink::integer;
servosrefangles : OUT EVENT DATA PORT Base_Types_Simulink::integer;
escsrefvelocity : OUT EVENT DATA PORT Base_Types_Simulink::integer;
END t_trajectorycontrol;

THREAD IMPLEMENTATION t_trajectorycontrol.impl
calls
Mycalls: {
P_Spg : subprogram programs_simulink::trajectorycontrol;
};
END t_trajectorycontrol.impl;

Fig. 13 AADL code for the TrajectoryControl block

properly bound to a target processor. The processors’ frequency and their related scheduling
protocol should also be defined after the proposed model transformation takes place. In the
UAV study, its target platform (hardware) consists of two processors connected by a serial
bus. Each processor has its own memory and both use the same scheduling protocol.

The AADL model of the UAV generated by AST was also subject to response time analysis.
That is, we have analyzed the time required for an input signal to travel from an interface to
the control system and for this to return a response. To perform this analysis, it was necessary

@ Springer

CPSs design: transition from functional to architectural models

363

mission
Loading_Mission finished
— finished
startmission
Taking_Off Return_to_Home
abort
finished, ‘ finished

Executing_Mission

finished |Landing

fail (Emergency_Landin

Fig. 14 Diagram Stateflow of the ControlMission block

1 THREAD IMPLEMENTATION t_control_mission.impl
2 annex behavior_specification{**

3 states

4 s_idle: initial complete state;

5 s_loading_mission: complete state;

6 s_taking_off: complete state;

7 s_execution_mission:complete state;
8 s_return_to_home: complete state;

9 s_landing: complete state;

10 s_emergency_landing: complete state;
11 transitions

22 END t_control_mission.impl;

12 s_idle -[mission]-> s_loading_mission;

13 s_loading_mission -[startmission]-> s_taking_off;

14 s_taking_off[on dispatch -[finished]-> s_execution_mission;
15 s_execution_mission -[finished]-> s_landing;

16 s_execution_mission -[abort]-> s_return_to_home;

17 s_execution_mission -[fail]l-> s_emergency_landing;

18 s_landing -[finished]-> s_idle;

19 s_return_to_home -[finished]-> s_idle;

20 s_emergency_landing -[finished]-> s_idle;

21 **};

Fig. 15 AADL Model Level 3—thread ControlMission

@ Springer

364 R. F. Passarini et al.

to add flow specifications in the individual components of the system (processes and threads)
and to specify an end-to-end flow in the system root of the AADL model. With the execution
of the schedulability analysis of the AADL model of the UAV, it was possible to analyze the
percentage of use of both processors in each operation mode of the system.

AADL models can also be subject to model checking whenever the Topcased tool chain
presented in [3] is used. In the AADL model of the UAYV, for instance, three simple checks
were performed to verify the behavior of the ControlMission thread. The first check verified
the absence of deadlocks and the second one verified the absence of temporal divergence.
Finally, the third check verified if any state could cause the thread to block. The properties to
be verified need to be described apart from the AADL model, using the LTL temporal logic.

6.3 Final discussion

The development of this study showed that by using AST one can create an AADL model to
represent the architecture of a CPS using as input a Simulink functional model. Either in the
performed study or in additional tests, most of the times the resulting AADL models were
considered syntactically correct and semantically consistent by the OSATE AADL editor,
which is the most widely used AADL editor. The few cases where this did not hold come
from using flat Simulink models (with only one hierarchical level).

Assessing the readability of the the AADL models is also important, since AADL is
primarily a textual language to be read by humans. Therefore we have compared the code
generated by AST with the code generated by ADELE tool from a graphical AADL model
that was equivalent to the one generated by AST. It was observed that the AADL code
generated by AST is both more complete and readable. It is more complete because the
respective AADL model can be instantiated directly since it has a root system, which does
not happen with the textual AADL model generated by ADELE. Additionally, differently
from the code generated by ADELE, the AST code for event data port and data port already
includes data-type specifications. AST transformation engine generates a package with the
data types transmitted through the ports of the Subsystem blocks. Furthermore, ADELE
adds several fuzzy characters (mostly numbers) after the name of each component from the
generated textual AADL model, which makes it difficult to be understood and maintained.
However, we must recognize that even though the readability of the AADL model generated
by ADELE is quite low, the fact that it has a graphical counterpart is a nice feature. Besides,
the resulting AADL model could be transformed by AST, if they are applied manually.

As discussed in the previous section, AADL models can be formally verified, which
contributes to increasing the correctness of the model under design. However, additional
information should be added into the AADL components generated by AST, like timing and
deployment information. In our point of view, this cannot be considered a limitation of AST,
given that such information is not available in the functional model. Besides, adding such
information is a common task to be performed during the detailed design.

7 Conclusions

The present paper addresses the problem of how to properly approach the design of the
architectural model of a CPS. Differently from the most common design practice, where the
architectural model is designed separately and then linked with the functional model (in the
so-called deployment phase), the proposed approach suggests that the architectural model
could be automatically generated from the functional model. This kind of approach avoids

@ Springer

CPSs design: transition from functional to architectural models 365

creating possible decoupled functional and architectural models and also promotes a truly
“model-driven” design approach.

Given that functional and architectural models aim to represent different views of the
system, the proposed mapping between both models can only be performed with some kind of
user intervention. Therefore the proposed approach is designated as Assisted Transformation
of Models (AST). It was created to transform Simulink models developed for simulation
purposes into AADL models representing the system architecture. Essentially, AST consists
of metamodels for the source and target languages, a set of marks (similar to stereotypes), and
mapping rules. It also provides a tool support to automate the proposed model transformation.

AST promotes advances when compared to related works, as it covers the mapping of
both structural and behavioral constructions. It is possible to argue that AST speeds up the
generation of the architectural model because it avoids possible design mistakes in the defin-
ition of connections between ports of the software components and ensures data consistency
between the ports involved in these connections. Additionally, due to the fact that AADL is
being used a wider range of tests and checks are available when compared with the types
analysis and verification mechanisms available for Simulink. As limitations of the overall
approach, one can say that: (i) as AADL was essentially designed to represent structure, it
is not possible to make use of the complete expressiveness power of the Stateflow diagrams;
(i) the designer still needs to specify additional information in the AADL model generated
by AST so that it can be completed and submitted to specific analysis.

Using the TopCased verification chain, it was possible to perform successive transfor-
mations in the AADL model and to generate an equivalent automaton model that could be
verified. In the future, AST could extend the existing transformation chain and thereby facil-
itate the integration of Simulink models with the TopCased environment. This should be
better explored in the next steps of this work.

Acknowledgments Authors would like to thank the Brazilian funding agency CAPES for their support for
the development of this work.

References

—_

(AVSI), A.V.S.I. (2010) The system architecture virtual integration program. http://savi.avsi.aero

2. Chkouri M, Bozga M (2009) Prototyping of distributed embedded systems using AADL. In: Baelen
SV, Weigert T, Ober I, Espinoza H (eds) 2nd international workshop on model based architecting and
construction of embedded systems (ACES-MB 2009), CEUR workshop proceedings, vol 507, pp 65-79

3. Correa T, Becker LB, Farines JM, Bodeveix JP, Filali M, Vernadat F (2010) A model-based design
methodology for cyber-physical systems. In: 6th embedded real time software and systems conference
(ETRS? 2010)

4. Delange], Pautet L, Hugues J, De Niz D (2010) An MDE-based process for the design, implementation and
validation of safety-critical systems. In: 15th IEEE international conference on engineering of complex
computer systems (ICECCS 2010), pp 319-324. doi:10.1109/ICECCS.2010.12

5. Donadel R, Raffo G, Becker L (2014) Modeling and control of a tiltrotor UAV for path tracking. In: 19th
IFAC World Congress, pp 3839-3844. IFAC. doi:10.3182/20140824-6-ZA-1003.01735

6. Feiler PH, Gluch DP (2012) Model-based engineering with AADL: an introduction to the SAE architecture
analysis & design language. Addison-Wesley, New York

7. Gongalves F, Bodanese J, Donadel R, Raffo G, Normey-Rico J, Becker L (2013) Small scale UAV with
birotor configuration. In: IEEE international conference on unmanned aircraft systems (ICUAS 2013),
pp 761-768

8. Gongalves F, Donadel R, Raffo G, Becker L (2013) Assessing the use of Simulink on the development
process of an unmanned aerial vehicle. In: 3rd workshop on cyber-physical systems (CyPhy 2013)

9. INRIA ESPRESSO Team (2010) Polychrony. http://raweb.inria.fr/rapportsactivite/RA2010/espresso/

uid27.html

@ Springer

http://savi.avsi.aero
http://dx.doi.org/10.1109/ICECCS.2010.12
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01735
http://raweb.inria.fr/rapportsactivite/RA2010/espresso/uid27.html
http://raweb.inria.fr/rapportsactivite/RA2010/espresso/uid27.html

366

R. F. Passarini et al.

10.

20.

21.

22.

Lasnier G, Pautet L, Hugues J, Wrage L (2011) An implementation of the Behavior Annex in the
AADL-toolset Osate2. In: Perseil I, Breitman K, Sterritt R (eds) 16th IEEE international conference
on engineering of complex computer systems (ICECCS 2011). IEEE Computer Society, pp 332-337.
doi:10.1109/ICECCS.2011.39

. Lasnier G, Zalila B, Pautet L, Hugues J (2009) Ocarina: an environment for AADL models analysis and

automatic code generation for high integrity applications. In: 14th Ada-Europe international conference
on reliable software technologies (Ada-Europe 2009). Springer, New York, pp 237-250. doi:10.1007/
978-3-642-01924-1_17

Le Guernic P, Gautier T, Le Borgne M, Le Maire C (1991) Programming real-time applications with
SIGNAL. Proc IEEE 79(9):1321-1336

Lee E (2008) Cyber physical systems: design challenges. In: 11th IEEE international symposium on
object oriented real-time distributed computing (ISORC 2008), IEEE Computer Society, pp 363-369.
doi:10.1109/ISORC.2008.25

Mathworks T (2011) Using Simulink. http://www.mathworks.com/access/helpdesk/help/pdf_doc/
simulink/sl_using

. Miller J, Mukerji J (2000) MDA Guide Version 1.0.1. Technical Report, Document omg/2003-06-01,

Object Management Group

Raghav G, Gopalswamy S, Radhakrishnan K, Delange J, Hugues J (2009) Architecture driven generation
of distributed embedded software from functional models. In: Ground vehicle systems engineering and
technology symposium (GVSETS 2009)

SAE (2006) SAE AADL meta model and XML/XMI. http://www.aadl.info/aadl/currentsite/tool/
metamod.html

SAE (2011) SAE Architecture Analysis and Design Language (AADL); Annex vol 2: Annex B: Data
Modeling Annex, Annex D: Behavior Model Annex, and Annex F: ARINC653 Annex. http://standards.
sae.org/as5506/2

Selic B, Gérard S (2014) Modeling and analysis of real-time and embedded systems with UML and
MARTE. Morgan Kaufmann, Burlington

The CESAR Project (2010) Cost-eficient methods and processes for safety relevant embedded systems.
http://www.cesarproject.eu

Yu H, Ma Y, Glouche Y, Talpin JP, Besnard L, Gautier T, Guernic PL, Toom A, Laurent O (2011)
System-level co-simulation of integrated avionics using Polychrony. In: 2011 ACM Symposium on applied
computing (SAC 2011). ACM, New York, pp. 354-359. doi:10.1145/1982185.1982263

Zowghi D, Coulin C (2005) Requirements elicitation: a survey of techniques, approaches, and tools. In:
Aurum A, Wohlin C (eds) Engineering and managing software requirements. Springer, Berlin, pp. 19-46.
doi:10.1007/3-540-28244-0_2

@ Springer

http://dx.doi.org/10.1109/ICECCS.2011.39
http://dx.doi.org/10.1007/978-3-642-01924-1_17
http://dx.doi.org/10.1007/978-3-642-01924-1_17
http://dx.doi.org/10.1109/ISORC.2008.25
http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/sl_using
http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/sl_using
http://www.aadl.info/aadl/currentsite/tool/metamod.html
http://www.aadl.info/aadl/currentsite/tool/metamod.html
http://standards.sae.org/as5506/2
http://standards.sae.org/as5506/2
http://www.cesarproject.eu
http://dx.doi.org/10.1145/1982185.1982263
http://dx.doi.org/10.1007/3-540-28244-0_2

	Cyber-physical systems design: transition from functional to architectural models
	Abstract
	1 Introduction
	2 Overview of the adopted development method
	2.1 Definition of the system requirements
	2.2 Preliminary design
	2.3 Detailed design
	2.4 Implementation

	3 Related works
	4 Assisted transformation of models
	4.1 AST metamodels
	4.2 Correlation between Simulink and AADL metamodels
	4.3 Set of marks used in the transformation process

	5 The transformation engine
	5.1 Structural mapping
	5.2 Operation modes mapping
	5.3 Behavioral mapping
	5.4 Preliminary analysis

	6 Using AST within an UAV project
	6.1 Applying AST model transformation
	6.2 Overview of the AADL model validation
	6.3 Final discussion

	7 Conclusions
	Acknowledgments
	References

