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Abstract A penalty framework for globally solving mixed-integer nonlinear programming problems is pre-
sented. Both integrality constraints and nonlinear constraints are handled separately by hyperbolic
tangent penalty functions. The preliminary numerical experiments show that the proposed penalty
approach is effective and the hyperbolic tangent penalties compete with other popular penalties.
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1. Introduction

A penalty approach for globally solving mixed-integer nonlinear programming (MINLP) prob-
lems is presented. A continuous relaxation of the MINLP problem is carried out by converting
it to a finite sequence of bound constrained nonlinear programming (BCNLP) problems with
only continuous variables. The MINLP problem is addressed in the form:

o, f(@)

subjectto gj(z) <0,j=1,...,p
hi(z)=0,l=1,....,m 1)
ri€Rforiel, CI={1,...,n}
:IZjGZfOI‘jEIng

where f,g;,h; : R® — R are continuous possibly nonlinear functions in a compact sub-
set of R”, herein defined as X = {z : —o0 < Ib; < z; < ub; < o0, = 1,...,n} and
I.N1; = Vand I. U I; = I. Let C be the following subset of R", C' = {z € X : g;(z) <
0,7 =1,...,p, ly(z) = 0,1 = 1,...,m} (that we assume to be compact) and let W C C be
the nonempty feasible region of the problem (1) W = {x € C CR":z; € Zforj e I; C I}.
A penalty continuous formulation of the MINLP problem is used. First, a continuous relax-
ation of the MINLP problem (1) is obtained by relaxing the integrality conditions from z; € Z,
j€ljtox; € R, j € Iy, and by adding a penalty term to the objective function that aims to
penalize integrality constraint violation (see [2, 5]). Second, the resulting nonlinear program-
ming (NLP) penalty problem is formulated as a BCNLP problem with an objective penalty
function that is related to the objective function of the continuous relaxation of the MINLP
and the nonlinear constraints violation.

Thus, our contribution in this article is directed to the combination of two penalty terms
aiming to penalize integrality violation and nonlinear inequality and equality constraints vi-
olation separately. The penalty term for the integrality constraints is based on the hyperbolic
tangent function [2] and the inequality and equality constraints violation is dealt with penal-
ties that also rely on the hyperbolic tangent function. The solution of the BCNLP penalty prob-
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lem are then obtained using the DIRECT algorithm [4], a deterministic algorithm for finding
global solutions inside hyperrectangles. We illustrate the performance of the proposed exact
penalty approach on three well-known test problems.

2. Penalty functions for MINLP

A penalty approach that can be extended to solve MINLP problems is investigated. In this
context, a penalty function selected from a class of penalty functions for solving general inte-
ger problems [2, 5, 6] is used. Problem (1) is equivalent to the following continuous reformu-
lation (in the sense that they have the same global minimizers), which comes out by relaxing
the integer constraints on the variables and adding a particular penalty term to the objective
function, as follows:

min  ¢(x;e) = f(z) + P(x;¢)

zeC (2)
subjectto x; €eR,i=1,...,n,

where ¢ € RT is a penalty parameter, and

1
P(z;¢e) = Z Z lbjgdigj)?/\diez tanh (|z; — d;|+e) 3)
jela
is the penalty term based on the hyperbolic tangent function, which is differentiable and
strictly increasing on the set X [2]. The resulting penalty function in the NLP problem (2)
is termed exact since 3¢ € R such that for all € € (0, ], problems (1) and (2) have the same
global minimizers (see Theorem 2.1 in [5]). Assuming that the set C' is compact, the proof of
Theorem 2.1 in [5] is based on specific assumptions on the objective function f and on the
penalty term P(z;¢). The particular case in (3) satisfies those assumptions (see Property 2.5
in [2]).
Furthermore, combining this idea with a penalty-based strategy for the nonlinear inequality
and equality constraints, the BCNLP problem arises in the form

zeX

p m

min U(z;e,pu) = d(x;e) + p Ztanh(max{gj(ar),O}) + Ztanh(\hl(x)]) @)
j=1 =1

subjectto z; €R,i=1,...,n,

where we have extended the use of the “tanh(-)” to the general constraints violation and p > 0
is the penalty parameter. ¥ is a non-differentiable penalty function, although continuously
differentiable at infeasible points, if f and the constraint functions are differentiable. An issue
that remains to be established is the exactness property of the penalty function ¥(x;¢, 1) in
the context of using problem (4) to find an optimal solution to (2).

Algorithm 1 describes the proposed penalty framework aiming to find a global minimizer
of the MINLP problem (1) by computing a global minimizer of the BCNLP problem formu-
lated in (4), where 2* € X, zé? € Z,j € I, results from rounding :cf to the nearest integer and
zf = xf,i e l..

Besides forcing the integer variables to take integer values, another important issue is to
reduce the overall nonlinear constraint violation, which is measured in terms of the maximum
violation by n(z*) = max;j_1__pi=1,.m {max{g;(z¥),0}, |h(z¥)|}. Although more complex
rules may be selected to control the reduction of parameters like ¢,7,§ and the growth of
parameter p, we use simple schemes for these preliminary experiments.

To solve the BCNLP problems formulated in (4), a deterministic algorithm that uses only
function evaluations, DIRECT [4] is used. DIRECT is efficient, in the sense that a few function
evaluations are required, to find just an approximation to the solution, although the num-
ber of evaluations grows faster when a high quality solution is required. The problem to
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Input: (z*, f*) (global solution), 2%, 1, u!, nt, 6*
Setk =1;
while |21 — 2*||> 1E -3 or n@* ) >1E -4 or f*1> f*+1FE—-3do
Compute x* such that W(z*; ¥, u¥) < W(z;e¥, k) + 6%, forall z € X;
if ||[2F — 2F||> 1E — 3 and ¢(aF;e¥) — p(2F;e¥) < ¥||z% — 2%|| then
bt — .1k, pht1 = pk, ght1 — ok,
else
if n(2*) < n* then
| = pk; P = max{0.19%, 1E — 4}; ¥ = 0.16%;
else
| kL = 2kl = gEL = 6k
if [|[2* — 2*||> 1E — 1 then
L ghtl = (.9¢k;

| Seth=k+1;

Algorithm 1: Penalty-based algorithm

be addressed by DIRECT has the following form: for fixed ¥, ¥, 6%, find 2% € X such that
W(zh; ek, 1k) < W(a; ek, y¥) + 6% for all x € X, assuming that the objective function ¥(z;-) is
Lipschitz continuous on X.

DIRECT is designed to completely explore the search space and is mainly characterized by
sequentially dividing the space X into hyperrectangles and evaluating ¥ at their centers. To
perform a balance between global and local search, the algorithm makes use of two important
concepts: potentially optimal hyperrectangle and grouping according to size. The center c;,
the objective function value, ¥(c;;-), and the size d; - originally given by the distance from
the center to a corner - of the hyperrectangle i are used to define the groups of hyperrectan-
gles, to select the potentially optimal hyperrectangles and divide them into smaller ones, until
typically a maximum number of function evaluations is reached.

3. Numerical results

To make a preliminary evaluation of the practical behavior of the proposed penalty frame-
work, based on the penalty presented in (4), we use three well-known MINLP problems (see
[7]) which have two solutions, one global and one local:

. _ (P2) min f(x) = 3529¢ + 3529° (P3) min f(z) = 2x1 + 2
(P1) rsnin 5(2) - ;‘?0* T2 st. 600z1 — 5025 — 2173 + 5000 = 0 st. 125—22—2,<0
- 01<2$1 <1 60022 + 50z — 15000 = 0 1 +22—1.6<0
o {0—”.’ 6) 0<z1<34,0< a2, <17, 0< 21 < 1.6,
f*:—é.66é6667 x5 € {100, ...,300} x2 € {0,1}
f* =189.311627 fr=2

In the context of the proposed penalty algorithm, we have also tested the three most popular
general constraint penalties yielding the final penalty function:

p m
U(x;e,u) = ¢p(x;e) + p Z (max{g;(z),0})? + Z |hi(x)])? | for ¢ =1/2,1,2. (5)
j=1 =1

The penalty algorithm is coded in MATLAB programming language (Matlab Version 8.1.0.604
(R2013a)), the MATLAB code ‘DIRECT.m’ [3] is invoked, and the numerical experiments were
carried out on a PC Intel Core 2 Duo Processor E7500 with 2.9GHz and 4Gb of memory.
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Table 1 contains the results obtained by the present study with the penalty presented in
(4) and with the penalty functions in (5) for comparison, where f is the computed solution,
‘C.viol.” and ‘I.viol.” are the general constraint and the integrality violations, respectively,
N foval is the number of function evaluations, It is the number of iterations and T is the CPU
time (in seconds). For comparison, the results of a hybrid stochastic algorithm [1] and of an
exact branch-and-reduce algorithm [7] are also shown. The herein listed results inside paren-
theses mean that the condition of the stopping rule of the algorithm related to that quantity
is not satisfied. Our penalty algorithm always converges to the global solution and is able
to reach good approximate solutions in a reasonable time. The practical performance of the
penalty presented in (4) is comparable to the penalty in (5) with ¢ = 1 and these two are supe-
rior to the other two penalties in comparison. It can be concluded that the proposed penalty
approach for MINLP is effective and deserves further developments.

Table 1. Numerical results based on ¢! = 1, u* = 100, ' = 0.1, §* = 1 and a maximum of 18 iterations.

Problem  Method f C.viol. Lviol. N feval It T

(P1) this study with (4) -6.666661E+00 0.00E+00 5.65E-06 17643 1 3.9E+00
penalty (5) and ¢ = 1/2 -6.666661E+00 0.00E+00 5.65E-06 17717 1 4.0E+00
penalty (5)and ¢ =1 -6.666661E+00 0.00E+00 5.65E-06 17643 1 3.7E+00
penalty (5) and g = 2 -6.666661E+00 0.00E+00 5.65E-06 147756 8 3.1E+01
in [1]¢ -6.666657E+00 0.00E+00 - 11513 3.3E+01
in [7]° -6.666667E+00 - - - - 7.0E-01°¢

(P2) this study with (4) (1.893756E+02) 3.53E-05 9.31E-04 170026 18 7.3E+01
penalty 5)and ¢ = 1/2  (2.016560E+02) ~ 3.82E-07  (2.04E+00) 116382 18  5.5E+01
penalty (5)and g =1 (1.893756E+02) 3.66E-05 9.31E-04 175662 18 7.5E+01
penalty (5) and ¢ = 2 (1.893240E+02)  (1.41E-04)  (3.52E-03) 250082 18  1.0E+02
in[1]¢ 1.892946E+02 0.00E+00 - 13109 1.1E+02
in [7]° 1.893116E+02 - - - ~  7.0E-01°

(P3) this study with (4) 2.000417E+00 0.00E+00 4.16E-04 13901 1 3.0E+00
penalty (5)and ¢ = 1/2  (2.027163E+00)  0.00E+00  (L36E-02) 351368 18  7.3E+01
penalty (5)and g =1 2.000417E+00 0.00E+00 4.16E-04 13901 1 3.0E+00
penalty (5) and ¢ = 2 2.000395E+00 2.13E-05 4.37E-04 177651 11 3.7E+01
in [1]° 2.000000E+00 0.00E+00 - 4199 3.6E+01
in [7]° 2.000000E+00 - - - - 7.0E-01°

@ A multistart based Hooke-and-Jeeves filter method (best solution). ® A branch-and-bound algorithm that relies on a domain
reduction methodology. ¢ CPU time in seconds on a Sun SPARC station 2.
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