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Abstract. In this work, a general and comprehensive methodology for the modeling and analysis of 

spatial multibody systems with revolute clearance joints is presented. The proposed formulation con-

siders the journal and the bearing elements as two cylindrical colliding bodies. All the potential contact 

scenarios and their kinematics are determined from the relative positions of two cylinders and from the 

kinematics of the multibody systems. It must be highlighted that both radial and axial clearances are 

modeled under the new proposed approach. The methodology presented here is demonstrated by using 

a spatial slider-crank mechanism that incorporates a spatial revolute clearance joint. The results show 

that the system’s response is considerably influenced by the existence of a clearance joint. 
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1 Introduction 

Over the last decades, several works have addressed the problem of modeling 

clearance joints, either for spherical, revolute, and translational joints [1]. Alt-

hough the majority of mechanisms presents spatial motions, most of these studies 

focuses on planar motion, which can hardly be extrapolated to spatial multibody 

systems [2]. The implementation of spatial formulation typically involves a large 

number of contact scenarios and a more complex methodology in what concerns 

to contact detection. Some authors also include the effects of lubrication and bod-

ies’ flexibility, just to mention a few [3]. 

The purpose of this work is to present a new methodology to model multibody 

systems with dry spatial revolute clearance joints. A revolute joint is constituted 

by two mechanical components, namely the bearing and the journal. These two el-

ements are considered to be rigid bodies, which collide, because they have differ-

ent dimensions due to the presence of clearance. This formulation takes into ac-

count the existence of both radial and axial clearance, being the latter often 

neglected in most of the available studies. In this work, it is considered a pseudo 

penetration during the collision of the two bodies, therefore, the determination of 
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the potential contact points highly affects the evaluation of the forces generated 

during the contact. In order to correctly evaluate the influence of the clearance in 

the mechanism’s motion, an accurate and efficient methodology must be imple-

mented. The remaining of this paper is organized as follows. Section 2 describes 

the formulation for the geometry description and contact detection. A spatial slider 

crank mechanism is used in Section 3 as numerical example of application. Final-

ly, in Section 4 the main conclusion are drawn. 

2 Formulation of Revolute Clearance Joints 

The modeling of a revolute joint with clearance involves the correct definition of 

the geometry of the contacting bodies. A general revolute joint consists in two cy-

lindrical elements with an inner and outer surfaces of potential contact, respective-

ly, the bearing and journal, as represented in Fig. 1. These two elements belong to 

different bodies and can be completely defined by the radii, the lengths and their 

location and orientation on each body which are characterized by a point P in the 

center of the cylinder’s axis and a unit vector a with its orientation. The clearance 

size can be calculated using the dimensions of the journal and bearing as follows 

 r i jc R R     2a i jc L L   (1) 

where cr and ca denote the radial and axial clearance, respectively, R represents the 

radius of the element, and L is the length. From now on, the subscripts i and j refer 

to the bearing and journal, respectively. 

By considering two cylindrical elements, each one contains one cylindrical sur-

face (lateral) and two plane surfaces in the extremities. The combination of differ-

ent contact types results in a total of thirteen contact scenarios [4]: no contact, 3 

aligned configurations, and 9 misaligned scenarios. It is worth to mention that 

some of these configurations might be impractical due to the clearances’ size. 

In order to promote an easier contact detection, auxiliary points are considered 

in the center of each extremity of both elements, as shown in Fig. 1. Thus, the two 

ends are distinguished between A and B. The coordinates of these points can be 

determined by the following expressions 
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As it was previously mentioned, the contact scenarios can be mainly divided in-

to aligned and misaligned types. The joint is considered to be aligned if the two 

unit vector remain parallel, therefore, the following condition must be fulfilled 

 
i j a a 0  (4) 



3D Formulation for Revolute Clearance Joints   3 

where a  denotes the skew-symmetric matrix associated with the vector a. Taking 

into account the aligned case, and a configuration where axial and radial contact 

occur, superficial and linear contact zones are established, respectively. The con-

tact points are denoted by C, with the subscripts i and j stand for bearing and jour-

nal, respectively, while the superscripts a and r denote axial and radial contact. 

Moreover, the superscript includes information of the extremity where it occurs. 

For instance, Ci
B,a is the contact point of the bearing for axial contact in end B. 

 

Fig. 1 General configuration of a spatial revolute joint with clearance 

Regarding the radial contact, the center point of the contact line is at half of the 

length of the journal. Moreover, the normal unit vector can be defined as follows 
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Thus, the contact points can be determined by the following expressions 
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In what concerns to the axial contact, the contact area is a circle and the center 

point coincides with the center of the base of the journal. Therefore, considering a 

contact in the end B, the coordinates of the contact points are given by 
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,B a

j jC B
r r  (9) 

When the alignment of the joint does not exist, the contact detection is a more 

complex task. Each extremity of the journal can collide with the lateral and top 

walls of the bearing. A misaligned joint with axial and radial contact is represent-

ed in Fig. 2, and it is here considered as an example to apply the methodology. 

 
Fig. 2 Configuration of a spatial revolute joint misaligned with axial and radial contact 

Regarding the axial contact, it can be defined as the intersection of a circumfer-

ence (base of the journal) and a plane (base of the bearing), analytically given by 
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 iBT T
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where x represents the coordinates of a point belonging to each element. Both Eq. 

(10) and Eq. (11) can be solved together in order to find the intersection points an-

alytically. The solution can hold the empty set, one or two solutions, respectively, 

no contact, tangent contact or penetration. If the solution is given by two points, I1 

and I2, their middle point and the center of the base of the journal form a vector 

that defines the direction of the contact point, as 
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Thus, the contact point in the journal can be given as 
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,

d
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where the correct sign returns a point outside the bearing. Hence, the contact point 

in the bearing is calculated with the following expression 

  
, ,, B a B aB a
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In the case of radial contact, the problem can be converted into the intersection 

of a circumference (base of the journal) and a cylindrical surface (lateral wall of 

the bearing) which can be defined, respectively, as 
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Contrary to the previous case, this nonlinear system cannot be solved analyti-

cally, therefore, the intersection points are obtained by an iterative procedure. The 

number of solutions can vary from zero to four, although, considering a small an-

gle between the bearing and the journal, the maximum number of solutions reduc-

es to two. Similarly to the axial contact detection, when penetration occurs, an 

auxiliary vector is calculated using an expression identical to Eq. (12). Thus, the 

contact point in the journal can be obtained, in an analogous manner, as 
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The normal unit vector to the contact can be expressed as 
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Hence, the contact point in the bearing can be given as follows 
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It should be noted that the contact points were determined according to the ex-

ample of Fig. 2. For the remaining contacts, analogous expressions must be em-

ployed. At this point, the contact kinematics for each collision can be character-

ized through the contact points in the bearing and journal, respectively, Ci and Cj. 

The normal unit vector of the contact was already defined for some cases, but it 

can be, generically, given as 

    v
j ji i

C CC C
  n r r r r  (20) 
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The penetration depth, δ, can be expressed by 

  j i
C C  r r  (21) 

Moreover, the penetration velocity,  , can be determined as follows 

   v
j i

T
C C  r r n  (22) 

where iC
r  and jC

r  are the linear velocities of the bearing and journal in the con-

tact points. Finally, the relative tangential velocity can be obtained recurring to the 

following expression 

    T v v
j ji i

T
C CC C

   v r r r r n n  (23) 

The intra-joint contact forces developed in the revolute joint with clearance is 

calculated using adequate normal and tangential contact models, respectively, an 

elastic Hertzian model [5, 6] and a Coulomb-based approach [7]. 

3 Numerical Example 

In order to validate this methodology, a spatial slider-crank mechanism is consid-

ered as an example of application, as depicted in Fig. 3a. The geometric and iner-

tial properties of each body are listed in Table 1. The initial conditions of the 

mechanism consider the crank in a vertical position and moving with an angular 

velocity of 2π rad/s. Since it has only one degree of freedom, the remaining coor-

dinates and velocities are determined such the kinematic constraints of an ideal 

mechanism are fulfilled. During the simulation, the system is only under the actua-

tion of gravitational and inertial forces, with no input torque applied. 

In what concerns to the revolute joint with clearance, it is located at the connec-

tion between the crank and the ground. The bearing is placed in the crank, while 

the journal belongs to the ground. The joint’s properties are displayed in Table 2. 

Table 1. Dimensional and inertia properties of each body 

Body Length [m] Mass [kg] 
Principal Moments of Inertia [kg m2] 

Iξξ Iηη Iζζ 

Crank 0.10 0.12 0.0001 0.0001 0.00001 

Rod 0.29 0.5 0.004 0.0004 0.004 

Slider - 0.5 0.0001 0.0001 0.0001 

The impact of modeling a clearance joint is examined through the motion of the 

slider, since it represents the kinematic output of this mechanical system. There-

fore, the position, velocity and acceleration of the slider are displayed in Fig. 3b-d, 

and compared to the ideal case. The impacts of the clearance joint highly affects 

the motion of the mechanism, as reported in Fig. 3d with the peaks of acceleration. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 3 (a) Representation of slider-crank mechanism. Comparison of the motion of the slider:   

(b) position, (c) velocity, (d) acceleration, and phase portraits of (e) pos-vel and (f) vel-acc 

Table 2. Parameters for simulation with the revolute clearance joint 

Parameter Value Parameter Value 

Bearing Radius, Ri 10.0x10-3 m Bearing Length, Li 20.0x10-3 m 

Journal Radius, Rj 9.5x10-3 m Journal Length, Lj 19.9x10-3 m 

Radial Clearance, cr 5x10-4 m Axial Clearance, ca 5x10-5 m 

Contact Stiffness, K 6.71x1010 N/m3/2 Integration Algorithm ode45 

Coefficient of Restitution, ce 0.9 Reporting Time Step 1x10-5 s 

Coefficient of Friction, μ 0.1 Simulation Time 1 s 

z

yx
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The contact-impact phenomenon also produces energy losses, which results in the 

reduction of the amplitude of the slider’s position and in the decrease of velocity, 

as depicted in Fig. 3b-c. The phase portraits of position-velocity and velocity-

acceleration presented in Fig. 3e-f demonstrate that the system’s motion is nonlin-

ear. This aspect is more evident in the latter due to the dense overlapping lines. 

4 Concluding Remarks 

A methodology for modeling spatial revolute joints with axial and radial clearance 

has been described in this work. The different contact scenarios were identified 

and the procedure for the evaluation of the contact points was defined. This for-

mulation mainly consists on the geometric definition of the contacting bodies 

through analytical expressions, and on their utilization to evaluate the contact kin-

ematics. A spatial slider-crank mechanism was employed to validate this formula-

tion, and the results were compared to an ideal joint scenario. 
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