
Filipe José de Oliveira Campos

June 2016

U
M

in
ho

|2
01

6

Fault Tolerant Service Integration

Fa
u

lt
 T

o
le

ra
n

t 
S

e
rv

ic
e

 I
n

te
g

ra
ti

o
n

Fi
lip

e 
Jo

sé
 d

e 
O

liv
ei

ra
 C

am
po

s

Universidade do Minho

Escola de Engenharia

 

 

 

 

 

The MAP-i Doctoral Programme in Informatics, of
the Universities of Minho, Aveiro and Porto

Universidade do Minho

universidade de aveiro

O trabalho apresentado nesta dissertação foi suportado pela Fundação para a
Ciência e Tecnologia (FCT) através das Bolsas de Doutoramento com referência
SFRH/BDE/33300/2008 e SFRH/BD/66242/2009

Governo da República 
Portuguesa Fundo Social Europeu



June 2016

supervisor:

Prof. José Orlando Pereira

Filipe José de Oliveira Campos

Fault Tolerant Service Integration

Universidade do Minho

Escola de Engenharia

 

 

 

 

 

The MAP-i Doctoral Programme in Informatics, of
the Universities of Minho, Aveiro and Porto

Universidade do Minho

universidade de aveiro







Agradecimentos

Foi uma caminhada mais longa que o esperado, mas contudo terminou.
Nunca só nem mal acompanhado, foi da forma que me senti neste percurso,
mesmo nos momentos mais dif́ıceis, e por tal tenho que agradecer a todas as
pessoas que de uma forma ou de outra me ajudaram.

Em primeiro lugar tenho que agradecer à minha querida esposa Ana por
me ter sempre apoiado e ajudado a manter o nosso lar equilibrado, com os
nossos filhos João e Tomás sempre a alegrar-me de forma a continuar até ao
destino definido. Aos meus pais Ana e Francisco, e aos meus sogros Isabel e
Claude, que sempre me auxiliaram, fazendo com que as dificuldades sentidas
neste percurso fossem ultrapassadas mais facilmente.

Agradeço ao Professor José Orlando Pereira pela paciência, disponibili-
dade e acompanhamento dedicados neste percurso.

Agradeço ao Professor Rui Oliveira por tudo o que fez para nos propor-
cionar as melhores condições de trabalho posśıveis.

I would like to thank Professor Karl Göschka for his valuable help and
insight on the research work.

Quero agradecer a todos os que passaram pelo laboratório de Sistemas
Distribúıdos e pelo grupo OsSemEstatuto, e sem nenhuma ordem em particu-
lar: Ana Nunes, André Ferreira, Francisco Maia, Francisco Cruz, João Paulo,
Miguel Matos, Ricardo Vilaça, Paulo Jesus, Jácome Cunha, Nuno Carvalho,
Fábio Coelho, Nelson Gonçalves, Pedro Gomes, Ricardo Gonçalves, Nuno
Castro.

Deixo um agradecimento especial aos meus amigos, Ańıbal Pinto, César
Freitas, Hélder Gomes, João Salgueirinho, Francisco Fernandes, João Vaz,
Vı́tor Pinheiro, Lúıs Fernandes e Rómulo Gonçalves, por me apoiarem sem-
pre, apesar da distância f́ısica de alguns deles.

Agradeço também a todo o HASLab (High Assurance Software Labora-
tory) e em particular ao GSD (Grupo de Sistemas Distribúıdos) pelo am-
biente fantástico criado entre todos. Um agradecimento especial ao David
Rua da USE (Unidade de Sistemas de Energia) do INESC TEC (Instituto de
Engenharia de Sistemas e Computadores, Tecnologia e Ciência) pelo aux́ılio

v



vi

na ambientação às Smart Grids e respectivo funcionamento. Por fim, deixo
também os meus agradecimentos a Francisco Lobo, Iĺıdio Martins, Adélio
Fernandes e Śılvia Rocha, e a todos os que me apoiaram na Qimonda Portu-
gal, S.A. no ińıcio deste percurso.

Ficam também os agradecimentos às instituições que apoiaram a execução
do trabalho de investigação apresentada nesta dissertação. À Fundação para
a Ciência e Tecnologia (FCT) que apoiou este trabalho através da bolsas
de doutoramento (SFRH/BDE/33300/2008 e SFRH/BD/66242/2009). Este
trabalho foi também apoiado pelo Projecto BEST CASE (NORTE-07-0124-
FEDER-000056), financiado pelo Programa Operacional Regional do Norte
(ON.2 – O Novo Norte) e pelo Quadro de Referência Estratégica Nacional
(QREN) através do Fundo Europeu de Desenvolvimento Regional (FEDER),
e por Fundos Nacionais através da Fundação para a Ciência e a Tecnologia
(FCT). Ao INESC TEC e ao HASLab que apoiaram este trabalho através
da bolsa de investigação inserida no projecto europeu ‘CoherentPaaS: A Co-
herent and Rich PaaS with a Common Programming Model (FP7-611068)’,
oferecendo-me, juntamente com o Departamento de Informática da Univer-
sidade do Minho, as condições necessárias para o desenvolvimento deste tra-
balho.



Fault Tolerant Service
Integration

Service Oriented Architectures (SOA) are a mainstay of enterprise comput-

ing and there is now a growing interest in services for systems of connected

devices in a variety of environments, ranging from industrial manufacturing

equipment to home automation, and other highly heterogeneous environ-

ments. In fact, the current trend in connected devices is expected to accel-

erate as the vision for the Internet-of-Things (IoT) becomes a reality. The

IoT embodies the seamless discovery, configuration, and interoperability of

networked devices in various settings, and in a sense, it has extended the ap-

plication range of Enterprise Application Integration (EAI) to non enterprise

environments. For instance, EAI in manufacturing environments with highly

demanding dependability and timeliness requirements, must leverage closed

proprietary middleware solutions that incorporate some fault tolerance tech-

niques to fulfill such requirements, since transactional processing does not

satisfy those requirements completely.

But as non enterprise applications become increasingly critical, the mid-

dleware coping with Machine-to-Machine (M2M) communication and coor-

dination, such as the Devices Profile for Web Services (DPWS), has to deal

with fault tolerance and increasing complexity, while still abiding to resource

constraints of target devices. Fault tolerant service integration in such sce-

narios can then be broken down into reliable communication and service

correctness. These two features can be provided by gossip protocols, to en-

sure reliable message exchanges in different communication patterns, and

consensus protocols, to ensure the normal behavior of intervening services.

In this dissertation, we address these challenges by proposing a DPWS-

based framework containing a gossip service and a consensus service, and

evaluate its effectiveness on providing fault tolerance capabilities to existing

services.

vii



viii



Integração de Serviços com
Tolerância a Faltas

As Arquiteturas Orientadas a Serviços (SOA) são um dos pilares da com-

putação empresarial e há atualmente um interesse crescente na utilização

de serviços para sistemas com dispositivos ligados numa variedade de ambi-

entes, que vão desde a produção industrial à domótica, até outros ambientes

altamente heterogéneos. De facto, a atual tendência em dispositivos ligados

deverá acelerar à medida que a visão da Internet das Coisas se torne uma real-

idade. A Internet das Coisas incorpora descoberta automática, configuração

e interoperabilidade dos dispositivos ligados em rede em vários ambientes,

e em certo sentido, ampliou o alcance de aplicação de Enterprise Applica-

tion Integration (EAI ) até ambientes não empresariais. Por exemplo, EAI

em ambientes de produção com exigências de fiabilidade e pontualidade al-

tamente exigentes, deve alavancar soluções de middleware proprietário que

incorporem algumas técnicas de tolerância a faltas para cumprir esses requi-

sitos, uma vez que o processamento com recurso a transações não os preenche

completamente.

À medida que aplicações não empresariais se tornam cada vez mais cŕıticas,

o middleware que lida com a comunicação e coordenação Máquina-a-Máquina,

como Devices Profile for Web Services (DPWS ), tem de lidar com a tolerância

a faltas e o aumento da complexidade, respeitando simultaneamente as limita-

ções de recursos dos dispositivos alvo. A integração de serviços com tolerância

a faltas em tais situações pode, então, ser dividida em comunicação confiável

e correção dos serviços. Estas duas caracteŕısticas podem ser fornecidas por

protocolos epidémicos, de forma a garantir a troca fiável de mensagens uti-

lizando diferentes padrões de comunicação, e por protocolos de consenso,

para garantir o normal funcionamento dos serviços intervenientes.

Nesta dissertação, estes desafios foram abordados com uma infraestrutura

baseada em DPWS que inclui um serviço epidémico e um serviço de consenso,

tendo sido avaliada a sua eficácia a assegurar tolerância a faltas nos serviços

existentes.

ix



x



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Objectives and results . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8 Availability of code . . . . . . . . . . . . . . . . . . . . . . . . 7

2 State-of-the-Art 9
2.1 Devices Profile for Web Services . . . . . . . . . . . . . . . . . 9

2.1.1 Limitations of DPWS . . . . . . . . . . . . . . . . . . . 11

2.1.2 WS-Eventing in detail . . . . . . . . . . . . . . . . . . 11

2.2 Service coordination . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Types of service coordination . . . . . . . . . . . . . . 14

2.2.3 Types of protocols . . . . . . . . . . . . . . . . . . . . 15

2.3 Web Services for fault tolerance . . . . . . . . . . . . . . . . . 23

2.3.1 Reliable communication . . . . . . . . . . . . . . . . . 24

2.3.2 Service replication . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Membership management . . . . . . . . . . . . . . . . 30

2.4 Gossip protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Epidemic algorithms . . . . . . . . . . . . . . . . . . . 32

2.4.3 Membership management . . . . . . . . . . . . . . . . 37

2.4.4 Overlay networks . . . . . . . . . . . . . . . . . . . . . 37

2.5 Consensus algorithms . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.1 Services based on consensus . . . . . . . . . . . . . . . 40

2.5.2 Consensus based on services . . . . . . . . . . . . . . . 42

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xi



xii CONTENTS

3 Services 61
3.1 Gossip dissemination services . . . . . . . . . . . . . . . . . . 61

3.1.1 Gossip service . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.2 Peer service . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Consensus service . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.1 Raft service . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Results 77
4.1 Gossip results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Experimental settings . . . . . . . . . . . . . . . . . . . 77
4.1.2 Results and discussion . . . . . . . . . . . . . . . . . . 79

4.2 Consensus results . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.1 Experimental settings . . . . . . . . . . . . . . . . . . . 87
4.2.2 Results and discussion . . . . . . . . . . . . . . . . . . 89

5 Case study 95
5.1 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Application scenarios . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Propagation of simple information . . . . . . . . . . . . 99
5.2.2 Retrieval of distributed metrics . . . . . . . . . . . . . 100
5.2.3 Propagation of important configurations . . . . . . . . 102

5.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusions 107
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography 111



List of Figures

2.1 Overview of DPWS architecture. . . . . . . . . . . . . . . . . 10

2.2 WS-Eventing components. . . . . . . . . . . . . . . . . . . . . 12

2.3 Reliability of gossip (250 participants, 10 dissemination runs,

variable fanout). . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Prefixes of typical executions (1ms). Figure extracted from [Pereira

and Oliveira, 2004]. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Overview of WS-Gossip architecture. . . . . . . . . . . . . . . 62

3.2 Gossip dissemination using the Shadow Service. . . . . . . . . 64

3.3 Gossip dissemination using the Gossip Service. . . . . . . . . . 64

3.4 Overview of peer management. . . . . . . . . . . . . . . . . . 67

3.5 Overview of Raft4WS architecture. . . . . . . . . . . . . . . . 69

3.6 Overview of the leader election on Raft4WS. . . . . . . . . . . 70

3.7 Overview of the insertion of a new command on Raft4WS. . . 71

4.1 WS-E vs. WS-G (latency). . . . . . . . . . . . . . . . . . . . . 80

4.2 Average hops to delivery in WS-G. . . . . . . . . . . . . . . . 81

4.3 WS-RM vs. WS-G (latency). . . . . . . . . . . . . . . . . . . 82

4.4 WS-RM (latency). . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Push (WS-G) vs. Aggregation Push (AggWS-G) (latency). . . 83

4.6 Multicast (latency). . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Multicast (message delivery rate). . . . . . . . . . . . . . . . . 84

4.8 Raft4WS vs. ZooKeeper (Latency). . . . . . . . . . . . . . . . 88

4.9 Raft4WS vs. ZooKeeper (Throughput). . . . . . . . . . . . . . 88

4.10 Raft4WS vs. ZooKeeper with 3 servers and a failure at 500

ms (Latency). . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 Raft4WS vs. ZooKeeper with 3 servers and a failure at 500

ms (Throughput). . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.12 Raft4WS vs. ZooKeeper with 5 servers and two failures at 500

and 1000 ms (Latency). . . . . . . . . . . . . . . . . . . . . . . 91

xiii



xiv LIST OF FIGURES

4.13 Raft4WS vs. ZooKeeper with 5 servers and two failures at 500

and 1000 ms (Throughput). . . . . . . . . . . . . . . . . . . . 92

5.1 Overview of a simplified Smart Grid architecture. . . . . . . . 97

5.2 Overview of message dissemination using the proposed frame-

work in a simplified Smart Grid architecture. . . . . . . . . . . 99

5.3 Overview of message aggregation using the proposed frame-

work in a simplified Smart Grid architecture. . . . . . . . . . . 101

5.4 Overview of command replication using the proposed frame-

work in a simplified Smart Grid architecture. . . . . . . . . . . 102



Chapter 1

Introduction

1.1 Motivation

The growing interest in Service-Oriented Computing (SOC) and Enterprise

Application Integration (EAI) in a diversity of environments has translated

into a number of widely accepted standards ranging from data formats and

the messaging infrastructure to a standard services portfolio.

A particularly interesting area of research and development is the coordi-

nation and composition of multiple services, or multiple instances of services,

to achieve complex behaviors or provide additional guarantees. For instance,

service coordination using the ubiquitous transaction processing paradigm

has been addressed by WS-AtomicTransaction and WS-BusinessActivity,

which build upon the WS-Coordination specification in order to coordinate

Web Services. WS-AtomicTransaction provides the type of coordination of

atomic transactions used in applications that require consistent agreement on

the outcome of short-lived distributed activities that have the all-or-nothing

property. WS-BusinessActivity provides the coordination type for business

activities that require consistent agreement on the outcome of long-running

distributed activities. WS-Coordination specifies an extensible coordina-

tion framework for Web Services, which features some interesting properties

that allow them to achieve reliable interactions. The remaining standards

for Web Services that are specially focused on fault tolerance include WS-

ReliableMessaging and WS-Reliability, which provide reliable communication

only between two points, hence not enabling a multicast-typed communica-

tion.

On the other hand, there are several protocols that provide other fault

tolerance mechanisms for Web Services, but since they are not standardized,

the inclusion of fault tolerant techniques in building a dependable and in-

1



2 CHAPTER 1. INTRODUCTION

teroperable architecture for service integration might be limited to reliable
point-to-point communication and transactions, due to the specific nature of
different services.

However, service integration is needed in a variety of scenarios with widely
diverse requirements. For instance, production floor and healthcare environ-
ments, as well as smart grids, have stringent dependability and timeliness
requirements that are not entirely satisfied by, or even compatible with trans-
actional processing. On the other hand, a smart house environment, where
a wide range of increasingly intelligent devices coexist, has normally lax
requirements, which transactional processing can possibly match, but the
inherent consumption of resources can overwhelm the capabilities of such
devices.

A few attempts to address this gap exist [He, 2004; Osrael et al., 2007b;
Salas et al., 2006], but only cover a very small subset of fault tolerance
techniques and fall short as a general interoperability solution. The main
challenges arise from the complexity of many fault-tolerant solutions, such as
a view synchronous group communication protocol, but also from the subtle
impact of service decomposition on the assumptions of such algorithms.

In fact, one can even consider decomposing the major building blocks
of group communication themselves, namely, gossip-based dissemination and
consensus protocols. Gossip and consensus protocols have interesting prop-
erties, like scalability and agreement, which can prove to be useful to improve
the fault tolerance capabilities of Web Services, more concretely in service
coordination scenarios.

A gossip-based communication protocol is inspired by the form of gossip
in social networks, and also in the way viruses spread in a biological commu-
nity, hence also being known as epidemic protocols. This kind of protocols
provides a way to spread messages to a whole system and also to process
acknowledgments in a distributed fashion, in order to avoid network conges-
tion and nodes to be flooded with acknowledgments, or even to totally avoid
this processing due to its inherent all or nothing message delivery guarantees
which enable its usage for reliable multicast, specially adequate in settings
comprising a large amount of nodes that must communicate. At a lower level,
gossip can be used by a consensus protocol to provide communication among
all the nodes involved in the decision. And at an higher level, it can be used
to implement, for instance, a membership service [Vogels and Re, 2003].

The consensus problem can be defined as the agreement on a set of pro-
cesses to decide on a common value even if each of them starts with a different
value. It corresponds to an abstraction of the problem of all processes in a
fault-tolerant distributed system agreeing on the same value despite having
started with different opinions [Pereira and Oliveira, 2004]. A generic con-



1.2. PROBLEM STATEMENT 3

sensus service [Guerraoui and Schiper, 2001] would be extremely useful for

building fault-tolerant agreement protocols which could be used in a Web

Services environment according to its resources and capabilities, and the re-

quired usage for a consensus mechanism.

Being consensus the basic problem involved in fault tolerance, since it

involves defining whether a process or node is up or down, and since gossip

protocols are used to achieve reliable multicast, they can be combined to

build a large variety of distributed systems.

1.2 Problem statement

Service integration is needed in a variety of scenarios with widely diverse re-

quirements, from smart grids, with very strict requirements, to smart houses,

where a wide range of heterogeneous devices coexist. The Devices Profile for

Web Services (DPWS) defines a set of protocols that resource constrained

devices should implement in order to achieve seamless networking and inter-

operability through Web Services, enabling the interaction between devices

from such disparate environments. Since DPWS does not provide any fault

tolerance mechanism, operations are susceptible to both communication and

service faults and cannot be restarted or recovered if stopped. This is partic-

ularly worrisome as notifications and configuration updates may correspond

to critical alerts and urgent commands.

Thus, scalable lightweight coordination and replication protocols that

ensure service dependability, while fitting the general DPWS assumptions,

are necessary. At the same time, the application of these protocols must

not affect the modularity and interoperability of the existing services, while

proving their usefulness in needing scenarios.

1.3 Approach

In an increasingly Service Oriented Technological World, standards must be

defined in order to achieve interoperability among the various heterogeneous

systems in existence. To that end, new advances should try to take advantage

of the existing standards, and aim at producing effectively useful protocols

that attract the interest of companies, and, consequently, of standardizing

consortiums or entities.

Our approach to solve this problem is to extend existing Service Oriented

Architectures with services that provide fault tolerance and reliability guar-

antees to the existing services in a transparent way. In that sense, we first



4 CHAPTER 1. INTRODUCTION

aim at gossip and consensus protocols composed with basic services that, in
some way, correspond to the building blocks of those types of protocols and
do not provide any fault tolerance guarantee by themselves. The structure
of these basic services, should provide the required functionality of the rep-
resented feature that allows the several variations of these protocols to be
produced, through some changes in configuration or parameterization.

Building more complex services, that somehow rely on gossip or consensus
protocols to obtain some fault tolerance guarantee, with the resulting services
will then be possible. It is expected that this higher level services will be
able to provide the desired fault tolerance guarantees.

As the standard technology used to implement Service Oriented Archi-
tectures, Web Services contribute greatly to better perceive the composition
and integration of services. However, this technology may not be suitable for
a production environment, mostly due to the timeliness requirements of the
systems in existence in this kind of scenarios. To produce an adequate solu-
tion, a new system can be developed, integrating the lessons learned during
this research project.

1.4 Case study

The Smart Grid vision embodies the future power grid, which aims to in-
creasingly integrate renewables as well as promoting the generalized partic-
ipation of different entities, to achieve better operation reliability, by toler-
ating power failures, and efficiency, through the reduction of carbon emis-
sions and fuel costs, transmission losses, and deferral of investments, among
others. To fulfill this vision, some important challenges in interoperabil-
ity, reliability, and scalability need to be addressed. As the sheer scale of
the electric grid and the criticality of the communication among its subsys-
tems for proper management, demands a scalable and reliable communica-
tion framework able to work in an heterogeneous and dynamic environment.
Moreover, the need to provide full interoperability between diverse current
and future energy and non-energy systems, along with seamless discovery
and configuration of a large variety of networked devices, ranging from the
resource constrained sensing devices to servers in data centers, requires an
implementation-agnostic Service Oriented Architecture.

To overcome these challenges, the usage of the proposed framework, that
reconciles the reliability and scalability of Peer-to-Peer systems, with the in-
dustrial standard interoperability of Web Services, adding also data aggrega-
tion capabilities, was illustrated in three specific scenarios. The first scenario
shows how the framework can replace the existing mechanisms of alert and



1.5. OBJECTIVES AND RESULTS 5

event propagation in the Automated Metering Infrastructure (AMI) for en-

vironments with a high rate of messages and a large number of targets. The

second scenario demonstrates the ability of the proposed framework to collect

metrics from different points of the Smart Grid in order to plan power pro-

duction according to the announced energy requirements. The third scenario

illustrates how critical configurations can be performed in various instances

of a service, while ensuring its availability in multiple points of the Smart

Grid.

1.5 Objectives and results

The goal of this project is to advance the state of art in service integration in

large-scale distributed and heterogeneous systems with strict dependability

requirements by:

• Leveraging existing fault-tolerant protocols in a Service Oriented Com-

puting context. This requires:

– Matching theoretical assumptions to actual environments;

– Assessing the feasibility and adequacy of known protocols;

– Decomposing them into interoperable services.

• Addressing the impairments to fault tolerance arising from Service Ori-

ented Computing, namely, from composition strategies and very large

number of components. This requires precise characterization of prob-

lems, and proposal of novel protocols to address them.

Specifically, the expected result of this project is a framework of Web

Services that provides transparently fault tolerance and dependability guar-

antees to existing services.

1.6 Contributions

The main contribution of this research is to increase the reliability of light-

weight middleware architectures, namely Web Services which have become

available on resource constrained devices, through the Devices Profile for Web

Services (DPWS). This contribution can be broken down into two specific

features:

• WS-Gossip enables reliable communication using gossip protocols on

Web Services, while providing useful message exchange patterns such



6 CHAPTER 1. INTRODUCTION

as many-to-one or one-to-may on heterogeneous environments, where

Web Services reliable messaging standards are limited to point-to-point

communication and show interoperability issues.

• Raft4WS enables the usage of the Raft consensus protocol on Web

Services, more precisely on DPWS, allowing the usage of fail-crash

resilient replicated services in such lightweight scenarios.

1.7 Publications

• An experimental evaluation of machine-to-machine coordination mid-

dleware.

Filipe Campos and José Pereira.

In the 30th Annual ACM Symposium on Applied Computing (SAC).

ACM, 2015.

• An experimental evaluation of machine-to-machine coordination mid-

dleware: Extended version.

Filipe Campos and José Pereira.

arXiv, cs.DC, Dec 2014. 24 pages, Technical Report.

• A peer-to-peer service architecture for the Smart Grid.

Filipe Campos, Miguel Matos, José Pereira and David Rua.

In IEEE Fourteenth International Conference on Peer-to-Peer Comput-

ing (P2P). IEEE, 2014.

• Coordenação de Serviços Web heterogéneos com tolerância a faltas.

Filipe Campos, Miguel Matos and José Pereira.

In INForum 2014 - Atas do 6o Simpósio de Informática. FEUP Edições,

2014.

• Improving the Scalability of DPWS-Based Networked Infrastructures.

Filipe Campos and José Pereira.

arXiv, cs.DC, July 2014. 28 pages, Technical Report.

• Experimental Evaluation of Distributed Middleware with a Virtualized

Java Environment.

Nuno Carvalho, João Bordalo, Filipe Campos and José Pereira.

In MW4SOC’ 11: Proceedings of the 6th workshop on Middleware for

Service Oriented Computing. ACM, 2011.



1.8. AVAILABILITY OF CODE 7

• Achieving eventual leader election in WS-Discovery.

Filipe Campos, José Pereira and Rui Oliveira.

In Proceedings of 5th Latin-American Symposium on Dependable Com-

puting (LADC). INPE, 2011.

• Gossip-based service coordination for scalability and resilience.

Filipe Campos and José Pereira.

In MW4SOC ’08: Proceedings of the 3rd Workshop on Middleware for

Service Oriented Computing. ACM, 2008.

• WS-Gossip: Middleware for scalable service coordination.

Filipe Campos and José Pereira.

In Proceedings of the ACM/IFIP/USENIX Middleware ’08 Conference

Companion. ACM, 2008.

1.8 Availability of code

The source code developed and used for all the experiments in this thesis is

available as open source, allowing the experiments to be reproduced.

Our implementation of WS-Gossip on the WS4D stack is available at

https://github.com/filipecampos/ws_gossip, and the code used in the

WS-E, WS-RM and Multicast scenarios, as well as for setting up and control-

ling all the experiments, is available at https://github.com/filipecampos/
ws_gossip_tests.

Our implementation of Raft on the WS4D stack, that can be used to build

applications, is available at https://github.com/filipecampos/raft4ws.
The code used for setting up and controlling the experiments is available at

https://github.com/filipecampos/raft_tests.

https://github.com/filipecampos/ws_gossip
https://github.com/filipecampos/ws_gossip_tests
https://github.com/filipecampos/ws_gossip_tests
https://github.com/filipecampos/raft4ws
https://github.com/filipecampos/raft_tests


8 CHAPTER 1. INTRODUCTION



Chapter 2

State-of-the-Art

2.1 Devices Profile for Web Services

The Devices Profile for Web Services (DPWS) [DPWS] defines a set of proto-
cols that resource constrained devices should implement in order to achieve
seamless networking and interoperability through Web Services. It assumes
that each device behaves as a standard hosting service, providing basal func-
tionality, and exposing one or more hosted services that offer device spe-
cific functionality. Besides basic SOAP, WSDL, the HTTP binding, WS-
Addressing, and WS-Security, that are at the core of Web Services capa-
bilities and interoperability, the DPWS protocol stack covers the following
areas:

• SOAP-over-UDP [SOAP-over-UDP] binding provides a lightweight pro-
tocol for network interactions that don’t need the flexibility of the full
HTTP stack, namely, regarding the amount of data that can be trans-
ferred, and support network level multicast, thus paving the way for
dynamic discovery.

• Dynamic discovery is supported by combining WS-Discovery [WS-DD],
WS-MetadataExchange [WS-ME] and WS-Policy [WS-P]. Together,
they allow a client: to discover devices in the network, according to
their identification or exported services; to list resources contained
within the scope of a discovered device; and to learn about their char-
acteristics and non-functional requirements.

• Simple publish/subscribe communication through WS-Eventing [WS-
E], for instance, allowing services to notify interested clients on changes
to monitored resources.

9



10 CHAPTER 2. STATE-OF-THE-ART

!"#$%&'(%)*+%

,-.&%('.%#)*+%.

,-.&*/$'.%#)*+%

,-.&%('.%#)*+%.

01*%/&
(%)*+%

(*.+-)%#23'444

-5%#"&*-/.

6%&"("&"3
.%#)*+%'&25%

789:

Figure 2.1: Overview of DPWS architecture.

Consider the following example of a typical DPWS deployment scenario,

depicted in Figure 2.1. White boxes denote custom components, while gray

boxes denote infrastructure components provided by the selected DPWS

toolkit. An interaction starts when a client probes for a device or service,

or when a device, upon connection, advertises its presence. This is achieved

through WS-Discovery by using multicast SOAP-over-UDP messages. If a

device that supports the Discovery Proxy role, defined in WS-Discovery, is

present in the network, it keeps a registry of all available devices and allows

most multicast messages to be suppressed.

Upon discovery, the client obtains a description of the resources available

in the device, kept as an internal reference to hosted services (shown as a red

dotted arrow). The client can then invoke hosted services directly, with no

wrapping or indirection, or manipulate resources directly by requesting and

transferring their XML representations. Moreover, the client can subscribe

to notifications from services that expose such functionality, thus being able

to avoid polling for changes, since it receives asynchronous notifications.

There are multiple implementations of the DPWS in various programming

languages. Namely, the Web Services for Devices (WS4D) project [WS4D]

provides both C and Java implementations. In particular, the WS4D Java

Multi Edition DPWS Stack (JMEDS) supports a wide range of devices as it is

compatible with both the Standard and Micro Editions of the Java platform.

Modern operating systems, such as Windows Vista, Windows Embedded CE,

and Windows 7 are shipped with a built-in DPWS framework, thus rendering

this specification available in most personal computers and in many devices

such as set-top boxes.



2.1. DEVICES PROFILE FOR WEB SERVICES 11

2.1.1 Limitations of DPWS

Although DPWS provides an adequate infrastructure for small scale sys-
tems, such as home automation, it is becoming increasingly interesting when
managing large number of components. DPWS has however some scale lim-
itations. First, using notifications based on WS-Eventing [WS-E] imposes a
burden on the device that is being observed, that has to issue notifications
to all observers. Moreover, when a resource exposed by many devices has
to be updated, e.g. to change a configuration variable, the initiator device
has to contact all destinations one by one. Finally, as there is no support
for transactional coordination mechanisms, such lengthy operations involv-
ing large numbers of destinations are susceptible to faults and cannot be
restarted or recovered if stopped. This is particularly worrisome as such no-
tifications and configuration updates may correspond to critical alerts and
urgent commands.

Note that it does not make sense to resort to heavyweight coordination
protocols such as WS-Coordination [WS-C] and WS-AtomicTransaction [WS-
AT] or even to a hierarchical structure comprised of ‘superpeers’, which would
introduce a dependability on some special, and most certainly more powerful,
machines that might not be available in most scenarios. Even if devices could
support their requirements, for instance, in terms of stable storage, these
protocols would also not scale to hundreds of participants. Thus, a scalable
lightweight coordination protocol, that fits the general DPWS assumptions,
is necessary.

2.1.2 WS-Eventing in detail

The WS-Eventing specification supports simple publisher-subscriber interac-
tion, by defining how Web Services can subscribe to or accept subscriptions
for event notification messages [WS-E].

This specification defines the four following roles:

Event Source Sends notifications on triggered events, and accepts requests
for creating subscriptions.

Subscription Manager Manages event subscriptions. It notifies Subscrib-
ers when their subscriptions are terminated unexpectedly, and replies
to their subscription management enquiries, such as subscription’s sta-
tus retrieval, renewal or deletion.

Event Sink Receives event notification messages.



12 CHAPTER 2. STATE-OF-THE-ART

Subscription 
Manager Event SinkSubscriberEvent Source

SubscriptionEnd

event notification message

GetStatus, Renew, Unsubscribe

Subscribe

Figure 2.2: WS-Eventing components.

Subscriber Contacts an Event Source to create a subscription to manifest
the interest of its associated Event Sink to be notified on the occurrence
of some event. It is also responsible for issuing subscription manage-
ment requests to the Subscription Manager.

In the simplest scenario, with only two intervening Web Services, a pub-
lisher will comprise both the Event Source and the Subscription Manager
roles, whereas a subscriber will accumulate both the Subscriber and Event
Sink roles.

WS-Eventing defines the concept of Delivery Mode, in order to better
adapt the general publish-subscribe pattern to scenarios with different event
delivery requirements. The default delivery mode of this specification is the
single delivery asynchronous Push mode. But, for instance, situations with
slow event consumers where they poll for event messages may be preferred,
in order to control the rate of message arrival and to avoid overwhelming
them if the rate of generation and transmission of event messages is far
superior to their processing rate. The Subscribe request message defines the
specific delivery mode to be used in notifying the identified Event Sink, and
new delivery modes can be freely used, if both publishers and subscribers
support them. In the event that a Subscriber requests a delivery mode that
is not supported by the Event Source, it will respond signaling this situation,
and it may convey a list of the supported delivery modes. This specification
also allows notifications to be wrapped in a standard message, instead of the
default unwrapped mode where each notification is transmitted as a message
typed according to the event’s action.

Although it lacks explicit support for brokered dissemination, it embodies
a flexible filtering mechanism in the base specification, favoring lightweight



2.2. SERVICE COORDINATION 13

implementations and many-to-one dissemination scenarios. And since it was
backed by major vendors, such as IBM, Microsoft or TIBCO, it has there-
fore been the preferred choice for connected devices, namely, within WS-
Management and DPWS. The alternative family of standards embodied in
OASIS WS-Notification, which besides providing simple notification and sub-
scription mechanisms, also provides extensible topic definition and brokered
dissemination.

2.2 Service coordination

Ever since the first use of transaction processing, there have been a vari-
ety of transaction protocol standards, such as X/Open and the OTS, and
vendor-specific protocols, with many corresponding implementations. Inter-
operability between these incompatible protocols has always proved prob-
lematic and there has been limited success, but Web Services offer a solution
to this problem [Little and Freund, 2003].

However, there is a paradox associated with Web Services, since they pro-
vide a service oriented, loosely coupled, and potentially asynchronous means
of propagating information between parties, while the underlying services use
traditional transaction processing infrastructures.

A transaction provides a mechanism for grouping multiple Web Services
operations into a larger unit of work whose results can be coordinated to
achieve overall success or failure. A variety of transaction protocols are
available for use with different types of applications, ranging from tightly to
loosely coupled, and from short-term interactions to long-running business
process executions. Choosing the right protocol for the application helps
ensure that composite Web Services applications can achieve consistent, pre-
dictable, and reliable results.

2.2.1 Definition

Service coordination has been defined as ‘how services work together to fulfill
a business process’ [Margolis and Sharpe, 2007]. A business process models
a business flow that may span through several phases, departments, and
may include several business tasks. Migrating the actual business processes
of an organization to a Service Oriented Architecture (SOA) infrastructure,
implies that several applications inside the organization are automated, for
the provided services to be used by the processes [Juric et al., 2007]. A
business process defines which services must interact, specifying the necessary
conditions and inputs for the operations and the timings when they should



14 CHAPTER 2. STATE-OF-THE-ART

be invoked, to embody a certain business function. Hence, the organization
of such workflows can be achieved by using coordination protocols.

Coordination protocols are used to support a number of applications,
usually those that need to reach consistent agreement on the outcome of
distributed activities, such as reaching consensus on a decision like a dis-
tributed transaction, or providing the guarantee that all participants obtain
a specific message in a reliable multicast environment. The distributed ac-
tivities normally require central coordination and housekeeping, and could
have different purposes such as transaction coordination, audit logging, etc.

Statelessness is a key service-orientation principle, which coordination
protocols reinforce by assuming responsibility for the management of context
information, alleviating the need for services to retain state.

Service coordination encloses an important feature, transaction control
which can be viewed as the way services handle the changes resulting from
their activities. These changes can be committed, ensuring that they become
permanent, or rolled back, erasing the current modifications, or even com-
pensated by some service responsible for reversing the effects of the changes
in some way.

2.2.2 Types of service coordination

Service coordination can take two different forms: orchestration or chore-
ography [Margolis and Sharpe, 2007]. Orchestration is a form of processing
where there is a service that behaves just like a maestro in an orchestra,
coordinating the actions of all the services, which can be viewed as instru-
mental groups using the same musical orchestra analogy, according to the
received messages. It is often viewed as the coordination of services within
a company. Choreography is a more decentralized form of processing where
there is no central point of coordination and the interaction of the services
is based on rules known to the services, that can be specific to each one of
them. This mechanism is often viewed as the coordination of the activities
of trading partners. These two types of service coordination are often used
interchangeably by some analysts which leads to some confusion.

The well-known 2 Phase Commit (2PC) mechanism does not suffice for
the Web Services context due to its cross-enterprise nature and to the lack
of trust between parties when interactions occur across enterprise bound-
aries [Alonso et al., 2004]. Using a 2PC Protocol that unlocks resources only
at the end of its entire duration is not an appropriate solution for long-
running business transactions among different trust domains.

To maintain a persistent activity in a Web Services environment differs
from the traditional distributed environments due to its loosely coupled na-



2.2. SERVICE COORDINATION 15

ture. In this case, to preserve the integrity of an activity, a context manage-
ment service is needed. In addition to this service, structured protocols are
required to define behavioral characteristics of the services involved in the
activity.

To standardize the context management service and protocols, some spec-
ifications for coordination of Web Services were developed. These specifica-
tions can be considered to define some form of orchestration, where there can
be one or more central entities that control the interaction of the services.

One concept that will be used throughout this document, whose meaning
should be well defined is the concept of activity. An activity is defined as
a computational unit composed of a number of tasks, for which transaction
coordination is required, carried out across one or more Web Services.

2.2.3 Types of protocols

There are two different kinds of coordination protocols: vertical and hori-
zontal. Vertical protocols define more than just coordination-related proto-
cols, for instance communication, and are specific to an industry or business
area, reason why they are also called business protocols. They usually spec-
ify in more detail, than horizontal protocols, the way transactions should
be performed, as well as the documents, their formats, semantics, contents
and operations [Alonso et al., 2004]. Many of them have been extended to
support XML and Web Services, as they precede the appearance of these
technologies.

Horizontal protocols are generally useful and applicable in many business
scenarios, like Web Services that are not specific to any particular sector
or industry, and usually provide middleware features and properties, and
therefore they may also be called middleware protocols.

The Electronic Business using eXtensible Markup Language (ebXML) [Wiki
ebXML] is an horizontal standard specially aimed at Business-to-Business
(B2B) interactions, and it provides a set of specifications common to the
entire e-business sector.

Contrarily to ebXML, RosettaNet is a vertical standard, since it focuses
on the business area of supply chain automation and optimization of a specific
industry, electronic components manufacturers. There have been efforts for
the convergence of these two standards, as well as others, which has resulted
in the duplication of features [Badakhchani, 2004].

Another B2B standard that is worth mentioning is XML Common Busi-
ness Library (xCBL) [Wiki xCBL], which defines the roles and documents
involved in the order management protocols, as well as their use in the trans-
actions. The approach of xCBL is to focus and standardize the most impor-



16 CHAPTER 2. STATE-OF-THE-ART

tant and used exchanges, such as order management, package and transport,
and invoicing, among others [Alonso et al., 2004].

As these standards are not completely compatible with regular Web Ser-
vices, more emphasis will be put on other standards that build upon Web
Services.

OASIS Business Transactions Protocol (BTP)

The Business Transaction Protocol (BTP) was the first standard for XML
transactions in loosely coupled domains such as Web Services. It was first
developed by a consortium of companies such as Hewlett-Packard, Oracle and
BEA, and then handed over to the OASIS Business Transactions Technical
Committee, which approved and published the first and only existing version,
1.0 [BTP], in June 2002. From that moment on, a draft for version 1.1 was
proposed in November 2004, but never ratified, which seems to have sealed
the fate of this standard, as well as the closure of the committee on February
7, 2006 due to inactivity.

BTP supports applications which are disparate in time, location, and ad-
ministration and, thus, require transactional support beyond classical ACID
transactions. This protocol has two fundamental units:

Atom Uses a two-phase protocol, but without any guarantee of atomicity
using strict two-phase locking. Ensures the same outcome for all par-
ticipants.

Cohesion Has more relaxed atomicity and participants may get different
outcomes according to business logic. Allows the transaction as a whole
to make forward progress even in the event of failures.

The fact that both the WS-Coordination and WS-CAF specifications
surpassed BTP, is explained recurring to several technical reasons, such
as [McGovern et al., 2006]:

• the complexity of the protocol;

• the freedom given to implementors of the standard, leading to largely
disparate behaviors;

• the fact that it was not designed solely for Web Services;

• the lack of immediate interoperability with existing transaction pro-
cessing infrastructures.

Albeit all this reasons, it is very likely that it was mainly the lack of support
from major vendors that lead to its fall.



2.2. SERVICE COORDINATION 17

WS-Coordination

The WS-Transaction family of specifications was developed by BEA, IBM,

and Microsoft and released originally in conjunction with WS-BPEL in Au-

gust 2002. These specifications were updated in September 2003 when WS-

BusinessActivity was broken out into its own specification. The original

WS-Transaction specification was also renamed WS-AtomicTransaction at

that time.

The OASIS WS-Transaction Technical Committee is now responsible for

defining both of these transaction protocols, as well as the basilar WS-

Coordination standard. The latest version of all of these OASIS standards,

1.2, was published on February 2, 2009.

WS-Coordination [WS-C] specifies an extensible framework for context
management, which provides coordination for the actions of distributed ap-

plications. This coordination is achieved through provided protocols that

support distributed applications, for instance, those that need to reach con-

sistent agreement on the outcome of distributed transactions.

An application service can create a context needed to propagate coordina-

tion information to other services involved in an activity. These services will

then need to register as participants for the activity. For this purpose, the

application must include the created coordination context in the messages

that it sends to the referred services.

A coordination context can be transmitted using application-specific mech-

anisms, such as a header element of a SOAP application message. This kind

of conveyance is commonly referred to as flowing the context.
The structure of a context and the requirements to propagate it between

cooperating services are also defined in WS-Coordination, and can depend

on the type of coordination that is used. A coordination context contains

information on:

• how to access a coordination registration service;

• the coordination type;

• relevant extensions.

This framework also enables existing transaction processing, workflow,

and other systems for coordination to hide their proprietary protocols and

to operate in an heterogeneous environment.

This specification is not enough to coordinate Web Services, since it pro-

vides only a coordination framework, leaving the concrete protocol and tar-

geted coordination type undefined. Two separate standards, WS-Atomic-

Transaction and WS-BusinessActivity, implement the WS-Coordination



18 CHAPTER 2. STATE-OF-THE-ART

framework, by defining their own coordination type: short-term atomic trans-

actions, and long-running business activities, respectively.

When using WS-Coordination, a service, that is usually the starter of the

interaction, interacts with a coordinator, that corresponds to the maestro in

an orchestra. The coordinator hosts the following services:

Activation service creates and returns a coordination context when in-

voked. A context contains information, like the identification of the

transaction and coordinator, that must be available to any service that

participates in a coordination protocol. The exact semantics are defined

in the specification that defines the coordination type. The context also

defines the runtime existence of the activity and establishes a level of

control on how the task in execution can be processed. After the cre-

ation of a context, the requester receives it from the activation service,

and sends it enclosed in the invocations to other services so they can

register for the coordinated activity.

Registration service allows a service that holds a context to register for

a particular activity, hence becoming a participant in a coordination

protocol. This participant becomes aware of the Registration Endpoint
Reference, when it receives the coordination context enclosed in an ap-

plication message. This service also allows an interposed coordinator to

register for an activity in the name of an application. One effect of the

registration is to provide the access details for one or more coordination-

protocol services. After receiving a register message from a participant,

that includes its protocol service Endpoint Reference as a parameter,

the coordinator sends a response including its corresponding protocol

service Endpoint Reference. After this step, both sides can exchange

protocol messages, because they can target each other. A Registration
service is not required to detect duplicate register requests and may

reckon each of them as an attempt to register a distinct participant. If

a participant sends multiple register requests for the same activity, it

must handle correctly duplicate protocol messages from the coordina-
tor. The manner in which the participant handles duplicate protocol

messages depends on the specific coordination type and coordination

protocol.

The coordination protocols and types are defined in other standards such

as WS-AtomicTransaction, WS-BusinessActivity, or even WS-BPEL.

WS-AtomicTransaction (WS-AT) The WS-AT specification [WS-AT]

defines a protocol that can be plugged into WS-Coordination to provide an



2.2. SERVICE COORDINATION 19

adaptation for Web Services of the classic 2PC [Newcomer and Lomow, 2004]

mechanism. However, it is often said that this mechanism does not adapt well

to Web Services [Newcomer and Lomow, 2004]. Nonetheless, it is adequate

for interoperability across short-lived, co-located services that need to ensure

consistent, all-or-nothing results for a transaction.

The purpose of WS-AT is to handle a 2PC process to make the changes,

resulting from the activity of some service, persistent. A 2PC process consists

on a poll conducted by the coordinator that will lead it to send two alternative

directives to all the resource managers involved in the transaction:

• commit, if all of the registered services have responded indicating that

the changes were successful;

• rollback, if at least one of the registered service fails to respond or

responds indicating a failure.

A service that participates in an atomic transaction can register for more

than one of the different types of coordination protocols, as defined in the

WS-AT specification:

Completion initiates commit processing when an application tells the coor-
dinator to either try to commit or abort an atomic transaction. Based

on the registered participants for each protocol, the coordinator begins

with Volatile 2PC and then proceeds through Durable 2PC. After the

transaction has completed, a status is returned to the application and

the final result to the service that initiates the transaction (initiator),

if it has registered for this protocol.

Two-Phase Commit coordinates registered participants to reach a com-

mit or abort decision, and ensures that all participants are informed of

the final result. It has two variants:

Volatile 2PC where participants manage volatile resources such as a

cache register or a window manager. Upon receiving a Commit
notification in the Completion protocol, the root coordinator be-

gins the Prepare phase of all participants registered for the Volatile

2PC protocol. All participants registered for this protocol must

respond before a Prepare is issued to a participant registered for

Durable 2PC. Further participants may register with the coordina-
tor until it issues a Prepare to any durable participant. A volatile

recipient is not guaranteed to receive a notification of the outcome

of the transaction [Newcomer and Lomow, 2004].



20 CHAPTER 2. STATE-OF-THE-ART

Durable 2PC where participants manage durable resources such as

a database register or a file. Upon successfully completing the

Prepare phase for Volatile 2PC participants, the root coordina-

tor begins the Prepare phase for Durable 2PC participants. All

participants registered for this protocol must respond Prepared or

ReadOnly before a Commit notification is issued to a participant

registered for either protocol.

WS-BusinessActivity (WS-BA) The purpose of WS-BA [WS-BA] is to

handle a relatively complex business interaction having, very often, a long

time span, opposed to the direct nature and short duration of atomic trans-

actions. The underlying transactional model for this specification is the

so-called open nested transaction as mentioned in [Cabrera and Kurt, 2005].

WS-BA allows context information to be preserved for long-running trans-

actions, albeit resources are not locked, emphasizing the difference to the

way atomic transactions are performed and also how coordinators of both

types deal with activity failures. The business activity coordinator supplies

a compensation process that is executed when failures occur in the original

activity. A compensation is different from an exception handling routine, as

it can generate a process activity of its own, which, by itself, may require

separate exception handling.

Contrarily to atomic transactions, where resources involved in an activity

remain locked, typically for a short period of time, until the transaction

finishes, a business activity can take a long period of time to run which could

starve a system if its resources were locked.

The WS-BA specification provides the definition of two business activity

coordination types:

AtomicOutcome Coordinators must direct all participants either to close

or to compensate.

MixedOutcome Coordinators must direct all participants to an outcome

but may direct each individual participant to close or compensate.

All business activity coordinators must implement the AtomicOutcome co-

ordination type but it is not mandatory for them to implement the Mixed-

Outcome coordination type.

This specification also defines two specific business activity agreement

coordination protocols:

BusinessAgreementWithParticipantCompletion A participant regis-

ters for this protocol with its coordinator, and knows when it has com-

pleted all work for a business activity.



2.2. SERVICE COORDINATION 21

BusinessAgreementWithCoordinatorCompletion A participant regis-

ters for this protocol with its coordinator, and relies on it to be informed

when all the requests to perform work within the business activity have

been received.

These protocols ensure consistent agreement on the outcome of long-

running distributed activities, and they may be combined with either business

activity coordination types.

In the case of the BusinessAgreementWithParticipantCompletion proto-

col, all the participants know when each of them has completed all work for a

business activity and so they all trigger the coordination process, contrarily

to the BusinessAgreementWithCoordinatorCompletion protocol where the

coordinator tells the participants when the business activity is complete.

One major difference between this kind of protocols and those that deal

with atomic transactions, is the fact that participating services are not re-

quired to remain participants for the duration of the activity. Because there

is no tight control over the changes performed by services, they may leave

the business activity after completing their individual contributions. When

doing so, participants enter an exit state by issuing an exit notification mes-

sage to the business activity coordinator. This feature ensures that service

autonomy and statelessness are preserved since services are obliged to par-

ticipate within an activity for only the duration they are absolutely required

to.

WS-Composite Application Framework (WS-CAF)

Alternatively to the previously described specifications, WS-Composite Ap-

plication Framework (WS-CAF) [Cover Pages WS-CAF; Wiki WS-CAF] is

another specification for service coordination, which was firstly defined by a

committee composed by Arjuna Technologies, Fujitsu Software, IONA, Or-

acle and Sun Microsystems, and then transferred to an OASIS Technical

Committee.

WS-CAF shares the same goals with WS-Coordination and former WS-

Transaction, having both an architecture and operation similar to WS-Coordi-

nation, comprising three distinct specifications:

WS-Context (WS-CTX) which defines a lightweight framework for sim-

ple context management that eases the share of a common context and

propagation of a common outcome among all the Web Services in-

volved in an activity. It is quite similar to the Activation Service of

WS-Coordination but defines additional message exchanges that allow

to query the content of a context or the state of coordination.



22 CHAPTER 2. STATE-OF-THE-ART

WS-Coordination Framework (WS-CF) is very similar to WS-Coordi-
nation without the Activation Service, as it provides a framework to
spread the common context and results to all the Web Services that
intervene in an activity.

WS-Transaction Management (WS-TXM) supports multiple transac-
tion models to help enable participants to negotiate outcomes with each
other and make a common decision about how to behave, specially in
the event of a failure, whether the execution environment is CORBA,
Enterprise JavaBeans (EJB), .NET, Java Message Service (JMS), or
some combination of technologies. The WS-TXM encompasses three
distinct, interoperable transaction protocols that can be used across
multiple transaction managers:

ACID Transaction (TX-ACID) defines an activity that is bound
to the scope of the transaction, so that its end triggers the termi-
nation of the associated transaction. It is compatible with existing
transaction processing systems. Corresponds to the Atom trans-
action type in BTP and to WS-AT in the WS-Transaction family.

Long Running Activity (TX-LRA) defines activities that are long
in duration, as well as the conditions and triggers for compensa-
tion actions to be activated if the activity is not successful. Al-
lows to combine in the same activity both compensable and non-
compensable services. Corresponds to the Cohesion transaction
type in BTP and to WS-BA in the WS-Transaction family.

Business Process (TX-BP) has no direct correspondence both in
BTP as well as in the WS-Transaction family due to its completely
different nature. Its objective is to link or tie heterogeneous trans-
action domains into a B2B transaction. Each domain can use a
different transaction model and can also save checkpoints to roll
back any transient changes when failures occur.

These specifications were accepted as input by the WS-CAF Technical
Committee, in the same state they were published by the referred multi-
company committee on July 28, 2003. There is some parallelism among
the three latterly described OASIS standards for coordination of services,
both in the number and roles of the entities, and in the supported types
of transactions. However, the standards, with the exception of WS-CTX
whose specification for version 1.0 was published in April 2007 by OASIS, are
nowhere to be found, having disappeared almost every referencing websites.



2.3. WEB SERVICES FOR FAULT TOLERANCE 23

2.3 Web Services for fault tolerance

Reliability is a critical issue for service orientation [Khoshafian, 2007], as

all the involved entities must be assured that all the message exchanges

are reliable, and it may very well be the most important requirement of

the Quality of Service (QoS ). For instance, service security, transactional

exchanges as well as business process management need reliable message

exchanges.

Since the early 1990s, Reliable Messaging has been seen as a solution

for such scenarios by the IT community, and thus, several message queueing

technologies have been used, such as IBM’s WebSphereMQ and Microsoft’s

MSMQ, in addition to reliable publish/subscribe technologies, such as Tibco

Rendezvous. In an effort to bridge all these different technologies, the Java

Message Service (JMS) was developed by the Java Community Process. Some

of these technologies were adapted to Web Services but, due to the exploita-

tion of proprietary protocols, interoperability can only be achieved recurring

to gateways that mediate specific pairs of environments.

With the emergence of Web services as the preferred integration solution

for distributed systems, it is now realistic to think about the possibility of a

unified interoperability standard for Reliable Messaging [Weerawarana et al.,

2005].

QoS includes advanced aspects of runtime processing such as reliabil-

ity guarantees or service coordination among others [Margolis and Sharpe,

2007; Weerawarana et al., 2005]. Therefore, fault tolerance in Web Services

may be included in the layer of protocols related to QoS, and it can be

promoted through Reliable Messaging and transactions [Osrael et al., 2007a;

Weerawarana et al., 2005]. There are many specifications for Web Services,

but only few of them address the dependability of services.

When it comes to Reliable Messaging, there are two competing Web Ser-

vices standards: WS-Reliability and WS-ReliableMessaging. WS-Reliability

is older than WS-ReliableMessaging, but both provide message and sequence

delivery assurances [Osrael et al., 2007a].

A Web Service can also support reliability through mirroring or replica-

tion where there are several entities to handle client requests to a certain

service even in the event that some of these entities fail [Salas et al., 2006].

This scenario transposes the use of replication to service-oriented architec-

tures. There have been many Web Services replication framework proposals,

from active replication [Salas et al., 2006], to passive replication [Jayasinghe,

2005; Liang et al., 2003; Osrael et al., 2007b], passing by the Byzantine Fault

Tolerance (BFT) [Lamport et al., 1982] technique [Li et al., 2005; Merideth

et al., 2005; Pallemulle and Goldman, 2008; Zhao, 2007] and the N-Version



24 CHAPTER 2. STATE-OF-THE-ART

model [Looker et al., 2005]. However none has been standardized or widely
used, as well as no replication standard has emerged. One of the reasons
for this situation is the difficulty to apply replication across heterogeneous
entities and domains [Osrael et al., 2007a].

Albeit the benefits they can bring in large scale and heterogeneous service
oriented environments [Osrael et al., 2007a], standards for Web Services that
provide other types of dependability mechanisms, such as failure detection,
membership monitoring, or Reliable Multicast, still have not been proposed.

2.3.1 Reliable communication

Some Reliable Messaging standards for Web Services were defined in order
to harmonize the use of already known techniques from operating and mid-
dleware systems to achieve that kind of reliability [Ferguson et al., 2003].
Reliable Messaging, simply put, means that a message that is sent must be
delivered. But it can also include some other communication features:

• non-duplicate message delivery assurance;

• message sequencing assurance;

• non-repudiation help through sufficient bookkeeping.

Focus should be upon Reliable Messaging, since services are all about
message exchanges over platforms and servers, which should achieve end-to-
end reliability for the services to be usable.

However, there is another kind of reliable communication that should
be object of further research, which is Reliable Multicast. Since many dis-
tributed algorithms for fault tolerance depend on Reliable Multicast, the stan-
dardization of multicast protocols for Web Services would be highly benefi-
cial [Osrael et al., 2007a]. One recently proposed protocol is the SOAP-based
WS-Multicast toolkit, that exposes its operations via WSDL [Salas et al.,
2006].

WS-ReliableMessaging

WS-ReliableMessaging is an OASIS standard and its latest version, 1.2 [WS-
RM], was approved on February 2, 2009, and it defines a protocol that allows
messages to be delivered reliably between distributed applications in the
presence of software component, system and network failures.

Several proprietary message-oriented middleware solutions that reliably
route and distribute messages are used in the industry. WS-ReliableMessaging



2.3. WEB SERVICES FOR FAULT TOLERANCE 25

allows to bridge two different infrastructures, such as different operating and
middleware systems, into an end-to-end model where messages are exchanged
reliably [Ferguson et al., 2003]. So, this standard ensures the interoperability
of services in what comes to Reliable Messaging, which also simplifies the de-
velopment of services, since they must implement the protocols, minimizing
the number of errors in business logic [Ferguson et al., 2003].

The WS-ReliableMessaging specification distinguishes all the parts in-
volved in an interaction, as well as the various meanings of the terms send,
transmit, receive and deliver, as they relate to different components. In that
sense, the basic model of WS-ReliableMessaging includes four distinct enti-
ties:

Application source Service or application logic that sends the message to
the RM source;

RM source Physical processor or node that performs the actual wire trans-
mission;

RM destination Target processor or node that receives the message and
then delivers it to the application destination;

Application destination Target service of the message.

These nodes are endpoints, which according to the WS-ReliableMessaging
standard, represent addressable entities that send and receive Web services
messages.

To simplify, the basic mechanism of the standard works as follows: the
source node sends a Web Service message containing a WS-ReliableMessaging
header, which is received by the destination node that then replies by sending
an acknowledgment message to the source node.

There are several types of assurances defined in the WS-ReliableMessaging
standard, when it comes to message delivery:

AtMostOnce A message is delivered at most once, but it may not be de-
livered at all;

AtLeastOnce A message is delivered at least once, but it can be delivered
more times;

ExactlyOnce This type is a combination of the previous two. A message
is delivered only once;

InOrder When there are several ordered messages, they are delivered in the
same order as they were sent.



26 CHAPTER 2. STATE-OF-THE-ART

WS-ReliableMessaging is a suitable standard to ensure point-to-point re-
liable message delivery. However, it would be very inefficient and introduce
a heavy burden on the message sender in terms of processing power, if there
are lots of message recipients or if many errors occur.

WS-ReliableMessaging can be used in conjunction with other WS-* stan-
dards, such as WS-AtomicTransaction, WS-BusinessActivity, WS-Coordina-
tion, WS-Addressing, WS-Security and WS-Policy. The WS-Security speci-
fication can be used to protect the sequences of messages that are governed
by WS-ReliableMessaging. The WS-Policy framework can specify delivery
assurances for sequences of messages defined by WS-ReliableMessaging, and
it also enables a source and a destination of a Reliable Messaging interaction
to describe their requirements [Erl, 2004, 2005; Juric et al., 2007].

WS-Addressing provides a mechanism to identify the address of a generic
Web Service that is meant to receive replies or fault responses in the event
of some problem occurring while using WS-ReliableMessaging [Juric et al.,
2007]. WS-Addressing was modified to accommodate some needs of the
WS-ReliableMessaging specification, like the reuse of a message ID when re-
transmitting identical messages to counter communication errors [Erl, 2005].

Although the WS-ReliableMessaging specification allows to condition ser-
vice activities, it is different from WS-AtomicTransaction or WS-BusinessAc-
tivity, in the sense that a coordinating entity is not needed to inspect the
progress of the activities, being the reliability rules conveyed as SOAP head-
ers in the exchanged messages [Erl, 2005]. However, in order that WS-
ReliableMessaging guarantees atomic delivery to all targets, it would have
to rely on WS-AtomicTransaction, or a similar coordination protocol, which
would increase the consumption of the sender’s processing and communica-
tion resources, due to the additional message traffic. Hence, WS-Reliable-
Messaging, by itself, is not capable of dealing with failures in a cluster that
provides a replicated service.

WS-Reliability

WS-Reliability is an alternative standard to WS-ReliableMessaging to pro-
vide the guaranteed delivery of messages on Web Services. Version 1.1 [WS-R]
of WS-Reliability was declared an OASIS standard on November 15, 2004,
and it provides the schema that can be used for conforming messages in re-
liability header blocks, and also an HTTP binding specification and fault
handling messages. Just like in WS-ReliableMessaging, the basic model of
WS-Reliability comprises two similar steps:

1. the source node sends a message with a WS-Reliability header block;



2.3. WEB SERVICES FOR FAULT TOLERANCE 27

2. the destination node receives this message and then sends an acknowl-
edgment message to the source node.

The SOAP header of the reliable message specifies its source, destination, ID,
timestamp and a request for acknowledgment. The acknowledgment message
will indicate the reliable message ID, timestamp, source and destination.

WS-Reliability also supports QoS message exchange patterns, such as
duplicate elimination or guaranteed delivery, where reliable delivery of se-
quences of messages can also be included, just as WS-ReliableMessaging
does.

2.3.2 Service replication

Replication is one of the primary fault tolerance techniques that has matured
in some traditional fields such as databases. However, its use in service
oriented environments is taking the first steps in terms of proven effectiveness
and usefulness to achieve really dependable solutions [Osrael et al., 2007b].

In Service-Oriented Architectures, we can think of replication of two dif-
ferent layers of the architecture: the data layer (e.g. database back end) and
the service layer (e.g. Web Services front end) on top of it. Replication can
be applied to just one of this layers, or to both of them. On the data layer,
it can be achieved through traditional database replication techniques pro-
vided by commercial or open source database management systems. If the
Web Services on the front-end are stateful, which goes against the principle
of statelessness, and the state information is stored completely on the data
layer, replication still can be made through traditional database replication
mechanisms. On the other hand, if the state is maintained in a data store
where replication is impossible, state synchronization must be provided by
some other means.

Few middleware solutions for Web Services were presented until now,
and only some of them can be considered fault-tolerant and state-of-the-art
in terms of the used Web Services technology, such as, WS-Replication [Salas
et al., 2006].

The use of replication in critical scenarios is an intra-enterprise concern
despite the intrinsic inter-enterprise nature of Web Services. So a replica-
tion middleware platform can be optimized for the technology used in each
organization [Osrael et al., 2007a].

Service replication middleware can reuse many of the concepts used in
distributed objects or replicated databases systems. However, the differences
in the essence of the referred systems and Web Services, for instance their



28 CHAPTER 2. STATE-OF-THE-ART

coarse grained nature, allow for some optimizations in the service replication
middleware.

The future of replication in ultra-large scale systems will include addi-
tional research to enable replication in a truly service-oriented way, regarding
the heterogeneity of the building blocks of the systems [Osrael et al., 2007b].

A replication middleware for Web Services built upon the Java-based
Axis2 SOAP engine is presented in [Osrael et al., 2007b]. The replication
model of this middleware is a variant of the primary/backup, or passive,
approach but also allows for behavior modifications through plugins with
other replication protocols. Being more specific, this middleware forwards
the client invocations to the backups, which have to process them, just like
in active replication. This results in coherent state among all replicas if
no non-deterministic operation is to be executed. However, this variant is
different from active replication because it requires a multicast primitive
(FIFO ordering) that is weaker than Total Order Multicast. The failover
mechanism for this replication middleware resorts to consensus to determine
the new master, or even to define the ordering of received invocations. This
replication middleware assumes failures in nodes, which may crash and stop,
and in network links, which may fail by losing messages only, not considering
duplicate or corrupt messages.

Passive replication is also used in FAWS [Jayasinghe, 2005] and FT-SOAP
[Liang et al., 2003], but without the modularity of the previous frame-
work [Osrael et al., 2007b], which enables the usage of coordinator-cohort
replication, for instance.

WS-Replication [Salas et al., 2006] offers transparent active replication
and it relies on Reliable Multicast, supplied by WS-Multicast, which enables
SOAP-based group communication and node failure detection via a SOAP-
based ping mechanism.

WS-Multicast can also be used as a standalone component to enable Re-

liable Multicast in a Web Service environment. The proposed framework
allows the deployment of a Web Service in a set of sites to increase its avail-
ability, and transparently forwards a normal web service invocation to its
replicas using multicast. The reply to this invocation is sent back to the
client when the service receives the configured number of responses, which
could be one, a majority or all.

Byzantine Fault Tolerance (BFT) [Lamport et al., 1982] is a replication
technique designed to protect against arbitrary problems like crash faults,
software bugs or security violations and requires a higher degree of replication
than crash faults tolerant techniques [Merideth et al., 2005]. The usage of a
Byzantine-fault-tolerant service in Web Service applications implies that it
must be able to attend non-replicated clients and interact with non-replicated



2.3. WEB SERVICES FOR FAULT TOLERANCE 29

Web Services. The libraries included in the system deal with the underlying
complexity of the BFT protocol and bridge communication with standard
SOAP engines.

Thema [Merideth et al., 2005] provides a structured way to build Byz-
antine-fault-tolerant and survivable Web Services that are externally visible
and accessible as standard Web Services. Thema incorporates the Castro-
Liskov Practical Byzantine Fault Tolerance (CLBFT) [Castro and Liskov,
1999] protocol, in order to achieve a reliable and secure transport layer with-
out any synchrony assumptions for safety. This middleware system provides
SOAP and WSDL support for BFT, as well as adding multi-tier support to
BFT, while working in a mixed-fault model.

BFT-WS [Zhao, 2007] is a BFT middleware framework for Web Ser-
vices, and, like Thema, it is based on CLBFT. However, it builds upon
WS-ReliableMessaging to achieve reliable control communication, using the
regular SOAP/HTTP transport, in contrast with Thema which uses a wrap-
per to interface with a BFT protocol that relies on IP multicast, possibly
introducing interoperability problems.

Perpetual-WS [Pallemulle and Goldman, 2008] also builds upon CLBFT
and it attempts to address some of the shortcomings of Thema and BFT-
WS, for instance, the support of replicated clients, or when a replicated
Web Service has been compromised, i.e., it has more than f faulty instances.
Perpetual-WS supports long-running operations, as well as non-deterministic
operations, such as local clock queries, pseudo-random numbers and times-
tamps, as the replicated Web Service will reach a consensus on the response
to send back to the clients. Albeit these advantages, the latency introduced
by this middleware almost doubles, as the BFT algorithm is both run on the
Web Service replicas as well as on the replicated clients, to reach consensus on
the received responses, in order to avoid that different responses are accepted
by them. However, if the responding Web Service has been compromised, all
the clients might receive the same malicious answer and still agree to accept
it, which really seems not to solve the indicated problem, contrarily to what
was promised in [Pallemulle and Goldman, 2008].

Similarly to Perpetual-WS, SWS [Li et al., 2005] also enables the inter-
action between Web Services with different degrees of replication, and it
additionally supports dynamic discovery by adding the replicas endpoints
information to the service’s WSDL, to allow UDDI registries to store and
serve information on Web Services and their replicas. However, it shares
some of the shortcomings of Thema and BFT-WS.

A BFT algorithm that requires message ordering per source only, instead
of total ordering, thus reducing inter-replica communication, was proposed
in [Chai et al., 2013] to achieve trustworthy coordination of WS-BusinessAc-



30 CHAPTER 2. STATE-OF-THE-ART

tivity, allowing activities to tolerate the faulty behavior of the intervening
parties. Albeit having better performance than other BFT protocols, this
algorithm has limited application since it has been customized specially for
WS-BusinessActivity, depending very closely on its state model.

WS-FTM [Looker et al., 2005] applies the N-Version model to Web Ser-
vices in order to increase the dependability of a service, allowing it to tolerate
both Byzantine and physical failures. It uses a simple-majority voting scheme
for achieving consensus on the response to a client’s invocation, by analyz-
ing the replies sent by the equivalent N-Version services in response to the
replicated invocation.

The Web Service Management System (WSMS) [He, 2004] is a compre-
hensive platform for the development, management and execution of Web
Services, and it reacts flexibly to failures in order to ensure the correct and
reliable functioning of services. It is capable of recovering from Fail-stop

crashes, leaving Byzantine failures out of the equation, by using a heart-
beat mechanism to detect failed services, and by replacing them by their
corresponding backups.

2.3.3 Membership management

Membership management is one of the building blocks of fault tolerant dis-
tributed systems, as it allows to keep track of the components comprising such
systems and their current state, enabling the detection of failed components.
WS-Membership, which was built on top of WS-Coordination, proposed a
framework that provides cooperating Web Services and activity monitors
with a unified approach for tracking registered Web Services and for supply-
ing membership updates to monitors [Vogels and Re, 2003]. However, it was
not standardized and seems to have ceased to exist as little information can
be found on the internet. This protocol was developed in the context of the
Obduro Project, which aimed to apply the results of scalability and reliabil-
ity research to global scalable Service-Oriented Architectures, and also seems
to have been terminated. In WS-Membership there are five different roles
defined:

Coordination Service Receives activation and registration requests, which
are then routed to the Membership Service.

Membership Service Provides failure detection of registered Web Services
and propagates membership information.

Member Service Registers with a Membership Service, or through a Mem-
bership Proxy, for failure detection.



2.4. GOSSIP PROTOCOLS 31

Membership Proxy Software component interposed between a Member
Service and the Membership Service for reasons of efficiency or accu-
racy.

Membership Monitor Registers with Membership Service its interest in
receiving membership state updates.

The Membership Service is based on epidemic techniques which are ade-
quate to achieve loosely coupled, asynchronous, autonomous and distributed
components. Since gossip-style communication is used, the exchange of mem-
bership information is highly robust and occurs asynchronously. These re-
liability and scalability properties, among others, enable this protocol to
be used in large federated environments. Albeit the disadvantages of using
epidemic failure detection, like inefficiency when the size of messages grows
proportionally with the number of participants and bad behavior with mas-
sive concurrent participant failures, the detection of failed Member Services
is very accurate.

A standard for failure detection and membership monitoring would be
highly beneficial due to the heterogeneity of the systems used in Web Services
based environments. Failure detection can also be used as the building block
to simplify the implementation of other essential distributed systems services
such as consensus [Vogels and Re, 2003].

2.4 Gossip protocols

In peer-to-peer computer networking, gossiping describes the process where
a participant that intends to disseminate some information randomly chooses
a small subset of other participants and forwards that information to them.
Each of these destinations, upon receiving the information, repeats the same
procedure, hence, the gossip moniker. This also mimics how epidemics spread
in populations, justifying the alternative denomination of epidemic proto-
cols [Eugster et al., 2004], but instead of spreading a virus, information is
transmitted from one node of the network to other randomly chosen nodes.

Epidemic algorithms have received much attention recently, mostly due to
their intrinsic robustness, simplicity and scalability [Eugster et al., 2004; Karp
et al., 2000; Kermarrec and van Steen, 2007a] among many other reasons,
such as speed and persistence of dissemination, ease of deploy and fault-
tolerance.

This section reports the origins and basics of epidemic algorithms, fol-
lowed by their application to communications as gossip protocols, and ending
with the relationship between the latter and overlay networks.



32 CHAPTER 2. STATE-OF-THE-ART

2.4.1 Background

The first known use of epidemic algorithms was for the update and synchro-
nization of data among the many sites of a replicated database [Demers et al.,
1987], by using two different epidemic strategies:

Anti-entropy Each site randomly selects another site, at regular intervals,
to synchronize their states by exchanging the whole database.

Rumor mongering Upon reception of a new update, a site randomly se-
lects another site and sends the update to it, until some termination
criterium is fulfilled.

Anti-entropy is extremely reliable whilst producing a large overhead on
communications, reason why it should not be used very frequently. Rumor
mongering generates significantly less overhead on communications because
only recent updates are exchanged. The best combination of these two strate-
gies would be to use rumor mongering frequently whilst anti-entropy should
be used very rarely [Karp et al., 2000].

Rumor mongering comprehends two different kinds of transmission: push
and pull [Demers et al., 1987]. Push transmission was the original idea for
rumor spreading and many termination mechanisms, which determine when
a node should stop transmitting an update, were investigated. Pull trans-
mission specifies that the targeted node will send the rumor to the calling
node. This strategy has proved to be more performant than the previous one,
since the number of rumor-ignorant nodes decreases much faster than when
using push transmission, and should be used when updates occur frequently.

More recently, gossip has been used for building a bimodal multicast pro-
tocol [Birman et al., 1999], whose model addresses failures of processes and
communication, contrarily to previous work, which just considered commu-
nication failures.

2.4.2 Epidemic algorithms

In an epidemic algorithm, all the processes that make part of a system are po-
tential disseminators of messages. Every time a node receives a new message
it becomes a sender, except in the case of duplicate messages, as happens
with an infected person that can not be infected again.

Parameters

To define the behavior of the processes there are several dissemination pa-
rameters that can be defined:



2.4. GOSSIP PROTOCOLS 33

Buffer capacity (b) Maximum number of messages that a process buffers

and then resends;

Rounds (r) Number of times that a message is going to be forwarded by

some process;

Fanout of the dissemination (f ) Size of a set of randomly selected pro-

cesses that will receive the message forwarded by the current process.

There are many variants of epidemic dissemination algorithms that can be

distinguished by different values attributed to the latter parameters [Eugster

et al., 2004]. An additional parameter is n that corresponds to the number

of processes in the system. The reliability of the message delivery depends

on the values of all these parameters.

The reliability of these algorithms is based on a proactive mechanism

where redundancy and randomization are used to avoid potential process

and network link failures. In this mechanism, every process chooses ran-

domly a subset of size f of the remaining processes to which the message is

then forwarded. Each of these processes behaves exactly in the same way

when it receives a message, so there is no reactive mechanism to deal with

failures. However, processes that fail permanently have to be removed from

the system.

Issues

The implementation of epidemic dissemination algorithms raises several ques-

tions. Some solutions [Eugster et al., 2004] have been defined for the following

identified issues:

Membership The way processes know a necessary minimum amount of

their neighbors;

Network awareness How processes become aware of the current network

topology in order to avoid broken links;

Buffer management The algorithm that decides which message or mes-

sages should be dropped when the buffer of a process fills up;

Message filtering How to reflect the interest of processes in some informa-

tion so the probability that they receive and store information of no

interest to them is decreased.



34 CHAPTER 2. STATE-OF-THE-ART

Studies of natural epidemics can provide useful information regarding
these issues. However, since their primary target is to terminate the con-
tagion, a different approach should be pursued to study how to ease the
information dissemination.

Variants

There are several variants of gossiping [Karp et al., 2000; Pereira et al., 2006],
which provide different message exchange patterns and performance trade-
offs, and should be used according to several conditions, such as message size
and network bandwidth.

The two main gossip variants, as mentioned previously, are:

Push A node that knows of new information, conveys it to another node.
This process is repeated for a specified number of times. This variant is
adequate for one-to-many dissemination of small messages and events.

Pull Instead of gossiping upon arrival of new information, a node periodi-
cally selects a number of peers and asks them for new information, and
receives a response if that situation is true.

It has been shown that combining push and pull gossip results in dis-
semination being achieved in a lower number of steps [Karp et al., 2000] and
provides a generic framework for gossiping that can be tailored for multiple
purposes by parameterizing it with different aggregation functions [Jelasity
et al., 2003]. In addition, lazily deferring the transmission of payload im-
proves performance in heterogeneous networks, allowing gossip protocols to
approximate ideal resource usage efficiency [Pereira et al., 2006]. The follow-
ing variants are the lazy versions of both push and pull variants:

Lazy push A node that knows of some new data sends only the correspond-
ing information topic. An interested receiving node contacts another
node and, by sending the information topic, identifies the desired data.
If the contacted node already has it, it just passes it through to the
interested node. Otherwise, it forwards the request that eventually
reaches the originator of that data, that will then complete the infor-
mation transmission.

Two-phase pull Very similar to pull but where the target node sends only
the recent information topic which must be asked for, explicitly by an
interested node.



2.4. GOSSIP PROTOCOLS 35

Both these lazy variants are useful when the data payload is very large, but

lazy push is also useful when it is very likely that the data is already known

throughout the network.

Another variant of gossiping, Hybrid Push Gossip, which combines the

two push strategies in an epidemic multicast protocol to achieve better per-

formance in heterogeneous networks is presented in [Pereira et al., 2006]. In

this variant, eager or lazy push is selected independently for each target to

whom the message will be sent at each round.

Two different models of gossip, which differ in the behavior of the infected

nodes when dealing with duplicate messages, are referred in [Eugster et al.,

2004]. In the infect-and-die model, a node that is infected, i.e. receives a

message, takes only one round to send the received message to other nodes,

and then never sends it again, becoming dead in the analogy with nature.

In the infect-forever model, also known as ‘Balls and Bins’ [Koldehofe, 2002],

a node does not die, which means it can send a received message multiple

times, possibly until r rounds are reached or some other stoppage criterium

is satisfied. This last alternative has the advantage of requiring no state at

participants to recall recently relayed messages. On the other hand, it usually

requires more network resources as the relay limit has to be set conservatively.

Reliability

Epidemic multicast protocols disseminate data efficiently among a large num-

ber of nodes while providing a probabilistic guarantee of delivery, through-

put stability as well as high resilience in the event of node or network fail-

ures [Pereira et al., 2003].

Gossip configuration parameters and fault probability determine the math-

ematical formulas that characterize the reliability of epidemic information

dissemination and allow the algorithm to achieve high reliability even if pro-

cesses crash or disconnect, packets are lost or even if the network topology

is highly dynamic [Eugster et al., 2004].

The lazy variants are more prone to network faults, due to the additional

round-trip, which also increases latency [Pereira et al., 2006].

Most interestingly, gossip protocols do not need a reactive mechanism

to deal with failures, namely, buffering, acknowledgement, retransmission,

and garbage collection, which account for most of the complexity in com-

mon communication protocols. Instead, reliability is proactively achieved by

the protocol’s inherent redundancy and randomization, that cope with both

process and network link failures.

The expected probability for a message being delivered to each destina-

tion and to all destinations as a whole can be derived directly from protocol



36 CHAPTER 2. STATE-OF-THE-ART

0 2 4 6 8 10 12

0

50

100

Fanout (f)

(%
) Average Receivers

Atomic Runs

Figure 2.3: Reliability of gossip (250 participants, 10 dissemination runs,
variable fanout).

parameters f , the number of targets that are locally selected by each pro-
cess for gossiping, and r, maximum number of times a message is relayed
before being ignored. Figure 2.3 illustrates the impact of these parameters
by showing simulation results of disseminating 10 messages to 250 receivers,
with r = 5 and a variable f . Notice that with f > 4 each destination gets
each message with a very high probability. With f > 7, each message is
atomically received by all destinations also with a very high probability.

By adjusting r and f parameters according to system size and expected
faults, gossip can be configured such that any desired average number of re-
ceivers successfully get the message. Better yet, parameters can be set such
that the message is atomically delivered to all the receivers with high proba-
bility leading to guaranteed atomic delivery [Eugster et al., 2004]. The key to
scalability is that the required fanout configuration is at worst logarithmically
proportional to system size.

Performance

Message dissemination speed increases exponentially and the probability
that all the nodes in a network have received it, can be very close to 1,
through tuning of configuration parameters, however without ever reaching
that value [Eugster et al., 2004].

The lazy variants of gossip are useful because the probability of sending a
message several times to a node is decreased, thus saving network bandwidth



2.4. GOSSIP PROTOCOLS 37

and processing power of the nodes [Pereira et al., 2006]. In the first rounds,

the lazy push variant is not so performant since only a small part of the nodes

has received the message and its transmission will certainly be requested.

Eager variants are not so performant in the last rounds as they introduce a

large overhead. This is due to the fact that nodes start receiving multiple

copies of a message, since a large amount of the nodes have already received

it.

To get the best out of the various types of gossip, it is advised to switch

from eager to lazy gossiping based on the round number [Pereira et al., 2006],

as exploited in the pbcast protocol [Birman et al., 1999], or to use an eager
push strategy initially and then switch to a pull mechanism [Karp et al.,

2000].

2.4.3 Membership management

A key component of a gossip protocol is the ability to obtain random subsets

of participants to direct messages at in each gossip operation. This compo-

nent has to provide an uniform random sample and, as much as possible,

drawn from a current view of operational participants [Jelasity et al., 2004].

The first option is to share the full list of participants, allowing each of them

to locally draw subsets as desired [Birman et al., 1999]. This is adequate

when the list does not change frequently, to avoid taxing the network with

constant updates, and is small enough to fit each participant’s memory.

If these conditions are not met, it has also been shown that sufficiently

good random samples can be obtained by having each participant keep a

small partial view of the system, which is itself maintained using a gossip

protocol [Eugster et al., 2003, 2004]. A particularly simple but effective ap-

proach [Voulgaris et al., 2005] is allowing a node to exchange some elements

in its local list with the same number of elements from some other node. This

progressively shuffles the list of each participant and leads to the desired uni-

form random sample. By adding a time-based lease and renewal mechanism,

it also deals with participants entering and leaving the system.

2.4.4 Overlay networks

Overlay networks correspond to a type of computer networks that build upon

other networks. They can be seen as logical networks, built on physical

networks, which provide communication links that allow communication to

take place among the nodes of those networks [Wiki Overlay network].

The membership issue of gossip protocols is directly related to overlay

networks maintenance, since a node must, somehow, obtain updated infor-



38 CHAPTER 2. STATE-OF-THE-ART

mation on its neighbors for message exchanges to be performed. Turning

this relationship the other way around, the construction and maintenance

of overlay networks can be performed resorting to gossip protocols [Jelasity

et al., 2004].

A peer sampling service can be used to provide every node with the list

of the peers that were selected for it to exchange information with. The

invocation of this service, at each iteration, by a node using a gossip protocol

to communicate, would allow it to disseminate some information, or a request

for it, to the nodes in the list provided by the peer sampling service [Jelasity

et al., 2004].

Analytical studies have shown that gossip-based protocols can be highly

reliable and efficient, but under the assumption that the used peer sampling

service provides a list of peers selected uniformly at random from the entire

set of peers. A more scalable and efficient implementation of such a ser-

vice would be to gossip membership information in order to construct and

maintain dynamic unstructured overlays [Jelasity et al., 2004].

A generic framework to implement peer sampling services using the lat-

terly described strategy was presented in [Jelasity et al., 2004]. It allows

to reproduce the behavior of existing approaches as well as new ones, and

allowed to show that none of the different services performs an uniformly ran-

dom selection of peers, which renders the traditional theoretical approaches

invalid [Jelasity et al., 2004]. Instead, the different resulting topologies can

be considered to belong to the family of small-world graphs, which are char-

acterized by small diameter and large clustering.

Other conclusion withdrawn from the performed experiments with this

generic framework is that from the different parameter settings result very

different properties, which can be exploited to better fulfill the needs of the

used application. For instance, a strong self-healing topology may not be

suitable for scenarios where frequent network partitions occur. Possibly, the

best combination can rely on the usage of a second view for gossiping mem-

bership information, and of several concurrently running protocols [Jelasity

et al., 2004].

2.5 Consensus algorithms

Consensus is used when a set of processes need to agree upon the outcome

of an operation. The consensus problem can be defined as the agreement

on a set of processes to decide on a common value even if each of them

starts with a different value, and regardless of the occurrence of faults. It

corresponds to an abstraction of the problem of all processes in a fault-



2.5. CONSENSUS ALGORITHMS 39

tolerant distributed system agreeing on the same value despite having started

with different opinions [Pereira and Oliveira, 2004]. The uniform version of

consensus is defined by the following three properties [Guerraoui and Raynal,

2003; Guerraoui and Schiper, 2001]:

Uniform Agreement Every process decides on the same value.

Termination Every correct process eventually decides.

Uniform Validity If a process decides on a certain value, then it must be

the initial value of some process.

The fact that there is no deterministic solution for the consensus problem,

in an asynchronous system, even if a single process crashes, has been captured

in [Fischer et al., 1985], and it is known as the FLP impossibility. Various

solutions to this issue have been proposed, such as the usage of random or

failure detector oracles [Chandra and Toueg, 1996; Chandra et al., 1996].

Many consensus protocols require knowledge regarding the processes in-

volved in the execution of a protocol to establish a notion of majority, quo-

rums, etc. Even though some protocols, such as Paxos, do not use failure

detectors in their specification, agreement protocols usually rely on them or

some similar functionality [Vogels and Re, 2003; Wiesmann et al., 2003]. In

the case of Paxos, the Ω oracle is used to elect a new leader when needed. The

Ω oracle is the weakest that can elect a new leader and the ♦S oracle is the

weakest that allows to solve consensus [Chandra and Toueg, 1996; Chandra

et al., 1996]. It has been shown that Ω and ♦S have the same computational

power [Chandra et al., 1996].

Failure detection is usually done through the use of heartbeat or are-you-
alive messages, but more advanced techniques exist [Wiesmann et al., 2003]

such as the timeless failure detector proposed in [Mostefaoui et al., 2004].

Consensus protocols can be centralized or decentralized in the way the

votes are collected [Pereira and Oliveira, 2004]. In a centralized protocol, a

round coordinator collects the estimates from the previous round and broad-

casts a selected estimate. Then, it collects all the votes and, finally, broad-

casts the choice of the majority. This implies three communication steps to

reach a decision. In a decentralized protocol, all the votes are broadcast to

all the participants, allowing each of them to reach a decision by gathering a

majority of the votes. This way, only two communication steps are required

to reach a decision, but there is additional load put on the network.



40 CHAPTER 2. STATE-OF-THE-ART

2.5.1 Services based on consensus

Group communication system

The importance and usability of consensus protocols can be shown by its use
as one of the basic components, or services, for the design of group commu-
nication systems [Wiesmann et al., 2003]. The implementation of these basic
services should achieve four design goals in order to obtain a modular and
structured architecture. The referred design goals should be:

Easy Substitution Easy exchange of the implementation of a service, that
should provide the same functionality.

Autonomy When used separately, the service should retain its meaning and
functionality.

Self-Containment Existing implementations of a service are easily inte-
grated into a system.

Standard Services implement standard interfaces and protocols to provide
some functionality.

Generic consensus service

Fault-tolerant agreement protocols can be built recurring to a generic consen-
sus service [Guerraoui and Schiper, 2001]. To solve each different agreement
problems, a different version is derived from a generic consensus filter in
order to obtain an adequate protocol. Various agreement problems were re-
duced systematically to consensus, hence obtaining simple and original solu-
tions [Guerraoui and Schiper, 2001]. The architecture of the proposed system
can be divided into three layers:

Communication and Failure Detection Basilar layer of the system that
allows processes to communication and to detect failures, which can be
subdivided into:

• An asynchronous communication model, where channels are even-
tually reliable. Two communication primitives are used: reliable
multicast (Rmulticast), which is stronger than multisend, because
the latter can lead to partial reception of a message.

• A distributed oracle that can be accessed by processes via a local
failure detector module. The failure detector satisfies the strong
completeness property.



2.5. CONSENSUS ALGORITHMS 41

Generic Consensus Service Two different approaches were used for con-

sensus implementation: a centralized one, where a coordinator takes

the consensus decision; and a decentralized one, that does not use a

coordinator.

Agreement Protocols Protocols used to solve problems related with dis-

tributed systems, such as non-blocking atomic commitment, group

membership, view synchronous communication or total order multi-

cast.

The framework presented in [Guerraoui and Schiper, 2001] has three dif-

ferent process roles:

Initiator The process that starts an agreement problem;

Client One of the processes that have to solve an agreement problem;

Server One of the processes that solve consensus.

These process roles can overlap completely, i.e. a process may be the

Initiator of some agreement problem, and also Client and Server in the same

problem, which might just be the typical scenario [Guerraoui and Schiper,

2001].

The interaction between Initiator, Clients and Servers relies on the Rmul-
ticast and multisend communication primitives. The most basic interaction,

corresponding to an agreement, as perceived by a Client, comprises three

steps:

1. The Initiator multicasts a message to the Clients using Rmulticast.

2. Clients invoke the consensus service, i.e. contact the Servers, using the

multisend primitive.

3. The consensus service sends the decision back to the Clients, also using

the multisend primitive.

A consensus filter is attached to every Server process and contains a

predicate CallInitValue that defines the necessary condition to activate the

function InitValue, that also belongs to the filter. This function starts the

consensus protocol.

The centralized approach uses the consensus algorithm presented in [Chan-

dra and Toueg, 1996], which is identified as ♦S-consensus, and requires a

majority of correct processes and a failure detector of class ♦S. An opti-

mization for this algorithm was proposed in [Guerraoui and Schiper, 2001],



42 CHAPTER 2. STATE-OF-THE-ART

and states that it is sufficient the existence of one correct Server with an
initial value when the consensus service is invoked, for the algorithm to work
properly. This means Clients can send their messages to only one consensus
Server but they must not suspect that it may have crashed.

The distributed approach has no coordinating process and takes advan-
tage of the validity process of consensus. That is the same to say that, if all
the consensus Servers start with the same initial value, it will be the con-
sensual value. This scheme may take only three steps or message exchanges
while the centralized scheme takes at least five steps. Another advantage
of this scheme, compared to the centralized one, specifically in a network
that allows broadcast communication, is that sending a message to various
processes costs the same as sending the message to a single process.

To examine the benefits of using the proposed framework, the perfor-
mance of the Non-Blocking Commit (NB-AC) protocol, built with the frame-
work, and of the Three Phase Commit (3PC) protocols, proposed in [Skeen,
1981], were compared.

NB-AC has the advantage of higher modularity that allows to trade the
number of exchanged messages against the communication resiliency and
both the centralized and the decentralized schemes require less messages than
3PC and D3PC respectively. This confirms that the proposed consensus-
based NB-AC protocol is more efficient than a 3PC protocol.

This framework can help to build practical systems that use different
paradigms, and in that context, consensus is useful, not only as a theoretical
concept, but also as a service for the clean development of reliable distributed
systems.

2.5.2 Consensus based on services

Indulgent consensus

A generic framework for indulgent consensus [Guerraoui and Raynal, 2003]
highlights the commonality in the design of various consensus protocols, and
specifies the properties that oracles have to satisfy for the consensus protocols
to terminate. This makes the framework modular, by requiring that only the
used oracles satisfy the required properties, and also by allowing new oracles
to be designed specifically for the environment of the systems where they
are inserted. The fact that, in this framework, consensus is indulgent means
that the resulting protocol never violates its safety properties even when the
underlying oracle behaves arbitrarily and does not meet its specification.

The computational model defined in [Guerraoui and Raynal, 2003] con-
sists on a finite set of processes, where they behave correctly until, possibly,



2.5. CONSENSUS ALGORITHMS 43

they crash due to some failure. The majority of the processes is correct, i.e.,
they do not crash. Communication is established between processes through
a reliable channel that conveys messages. The system is asynchronous be-
cause there is no assumption about the relative speed of processes or com-
munication.

As a consensus protocol should match all known consensus lower and
upper bounds, [Guerraoui and Raynal, 2003] focus on:

Power of the underlying oracle Has to be as weak as possible. The un-
reliable failure detector ♦S [Chandra and Toueg, 1996; Chandra et al.,
1996] is the weakest that allows to solve consensus.

Resiliency Has to be the highest possible and corresponds to the upper
bound on the number of processes that can fail. Has to be less than
half the number of processes for all indulgent protocols.

Latency in well-behaved runs Corresponds to the number of communi-
cation steps required to decide in a well-behaved run. A well-behaved
run is one where there is no faulty process and the oracle behaves per-
fectly. Two communication steps is the minimal latency that can be
achieved.

Zero degradation When the decision does not require more communica-
tion steps in stable runs than in well-behaved runs. A stable run is one
where there are only initial crashes, as failures, and the oracle behaves
perfectly.

Same initial values When this happens for all processes, no underlying
oracle is needed to obtain a decision. In this case, a decision should be
obtained on the minimal communication latency, that is two commu-
nication steps.

The protocol uses a Reliable Broadcast primitive to send messages reli-
ably to the processes. The main concerns of this framework were generality,
simplicity and also efficiency, so it should match all known consensus lower
bounds.

The protocol framework proceeds by asynchronous consecutive rounds,
which are composed of two phases each. On the first phase, it tries that all
the processes have the same value, so it is possible to take advantage of the
consensus termination property. The aim of the second phase is to guarantee
that the consensus agreement property is not violated.

The use of the oracles encapsulated in the function oracle, has several
advantages:



44 CHAPTER 2. STATE-OF-THE-ART

Modularity of the proofs For any instantiation of the function, it has to
be proved that the required properties for the general protocol are
satisfied.

Communication cost of a protocol instance The cost of the first phase
depends on the used oracles. When using ♦S or Ω [Chandra et al.,
1996], it is one communication step, which provides optimal latency.
When the Ω oracle is used, the resulting protocol enjoys the zero degra-
dation property.

The oracle function must satisfy the same properties shown by the cor-
responding oracle that would allow consensus to be achieved. This oracle
is, then, formally characterized by the following features: validity, quasi-
agreement, fixed point, termination and eventual convergence. Modules cor-
respond to implementations of the oracle function for the various types of
oracle. It is also possible to combine modules in any way, provided the re-
sulting combination still satisfies the same properties defined for the oracle
function.

Three different types of oracles are considered:

Leader Oracle Must satisfy the Eventual Leadership property, which
states that after some instant of time, every invocation to the oracle by
correct processes will always return the same correct process that was
defined as the leader.

Failure Detector Oracle Provides every process with a set of processes
that are suspected to have crashed. It belongs to the ♦S class if it
satisfies the following properties:

Strong Completeness Eventually, every process that has crashed is
permanently suspected by every correct process.

Eventual Weak Accuracy There is a time after which some correct
process is never suspected by the correct processes.

Random Oracle Returns a randomly chosen value to the processes. For
simplicity, only binary consensus was considered in this type of oracle.

A process starts a consensus execution by invoking the function Con-
sensus passing the value it proposes as a parameter. The two phases that
constitute each round of the execution of the algorithm, implement a ‘two-
phase commit’ scheme: during the first phase, the processes try to select the
same value, whereas, on the second phase, they try to decide, which occurs
when they all have the same value at the end of the previous phase.



2.5. CONSENSUS ALGORITHMS 45

There are some optimizations for this framework [Guerraoui and Raynal,

2003], such as specific configurations where the decision can be obtained in

one communication step. But to maintain the interest on the practicality of

the framework, the used configurations should not condition the behavior in

the presence of different initial settings.

Failures are rare in practice and the assumption that less than a third of

the processes can crash allows to eliminate the need to use reliable broadcast
and decide for a value if it receives more than twice the number of failed

processes with that value.

Mutable consensus

A consensus protocol that can modify its behavior by balancing latency with

the number of transmitted messages was proposed in [Pereira and Oliveira,

2004]. The selection of the behavior depends on the available computing

power for processing messages, and network resources, where the cost of

sending and transmitting messages is weighed.

The performed benchmarks on the new consensus protocol based on stub-
born channels show that its performance is not appealing, but allows to ex-

tract an interesting property: as messages can be lost by stubborn channels, it

is possible that only a small fraction of the messages sent by the protocol are

actually transmitted through the underlying network [Pereira and Oliveira,

2004].

To explore this property, an implementation which maximizes the like-

lihood of desirable runs that exchange a small amount of messages at the

network level, by introducing finite delays in a naive implementation of stub-
born channels was developed [Pereira and Oliveira, 2004]. The correctness of

the protocol, which assumes an asynchronous system model where processes

only fail by crashing, is not compromised as the delays are finite.

Very good performance can be achieved in practice when only desir-

able runs occur, as a result of carefully chosen delays. These delays avoid

the actual transmission of a message m, possibly due to two different rea-

sons [Pereira and Oliveira, 2004]:

1. They increase the likelihood of a more recent message being sent in the

meantime, which discards all the previously sent messages.

2. If a decision can be reached by all processes before the delay expires,

the transmission of m is avoided.

The various classes of desirable runs that are analyzed in the article result

from different configurations of delays. Some of them resemble the message



46 CHAPTER 2. STATE-OF-THE-ART

exchange pattern of well known protocols, while others produce groundbreak-
ing message exchange patterns with great performance features [Pereira and
Oliveira, 2004]. For this reason, the protocol was named mutable consensus,
and each combination of it with an implementation of stubborn channels is
a protocol mutation.

(a) Early (b) Centralized

(c) Ring (d) Perm. gossip (F=2)

Figure 2.4: Prefixes of typical executions (1ms). Figure extracted
from [Pereira and Oliveira, 2004].

Four different mutations, whose message exchange patterns can be ob-
served on Figure 2.4, are studied in [Pereira and Oliveira, 2004]:

Early Simplest mutation which aims at a message exchange pattern where
every process multicasts its vote to all the others every round. This
pattern is similar to that of early consensus [Schiper, 1997] and allows
the occurrence of decisions after two communication steps.

Centralized Has a message exchange pattern similar to the centralized al-
gorithm of [Chandra and Toueg, 1996]. Compared to the previous mu-
tation, it does not reproduce exactly the original protocol because the
coordinator does not gather estimates when entering a round. It is
very close to the early mutation, because it differs only by avoiding the
direct transmission of votes among participants, which are then relayed
by the coordinator.



2.5. CONSENSUS ALGORITHMS 47

Ring A ring structure is formed among the processes, where each of them

communicates only with its successor.

Permutation Gossip Uses a gossip-style message exchange pattern with

deterministic safety and liveness. Each process randomly generates a

sequence of process identifiers, which is used as a circular list for the

transmission of messages. A process sends a message to the first F
processes on that list and the pointer is incremented by F. This value

corresponds to the fanout value. Differently from the other mutations,

the message delays vary according to each destination and they are

computed using the same rule and regardless of the content of the

message. The way a message is delayed ensures that, in at most n/F
periods, it will have been transmitted to all processes.

The approach to obtain a mutable protocol, that allows reconfiguration

to mimic protocols with different message exchange patterns is done in three

steps [Pereira and Oliveira, 2004]:

• Build an algorithm that is correct in an asynchronous system model.

• Modify the algorithm to use stubborn channels, with the guarantee that

it can skip messages that could have been discarded or duplicated.

• Ensure that the resulting algorithm provides a large number of different

message exchange patterns.

Due to the unreliable nature of the communication channels, the reception

of all messages by the processes is not ensured, which may lead to the ex-

clusion of processes during some rounds. When a process receives a message

from a larger round, it jumps directly to it.

A general impression on the behavior of each mutation can be extracted

from Figure 2.4, but, by analyzing the charts in [Pereira and Oliveira, 2004],

a better and deeper understanding can be achieved.

Both the early and centralized mutations do not scale regarding network

and CPU usage. In the event that the latency of the communications is not

critical, the ring mutation would be an excellent choice due to its extremely

frugal usage of resources. The permutation gossip mutation is scalable to

a large number of processes and still achieves low latency and resiliency to

crashes and network failures.

Apart the results of these four mutations, there was another analyzed

alternative, random mix, that corresponds to the situation where each process

randomly selects which of these mutations to use in a consensus instance.



48 CHAPTER 2. STATE-OF-THE-ART

This use of the protocol demonstrates its correctness because there were no

blocked processes, but also shows that the overall performance is poor.

There are two contributions in [Pereira and Oliveira, 2004]:

• A mutable consensus protocol which can be customized to use a certain

message exchange pattern through a simple technique that preserves

correctness and can be applied in run-time and without any coordina-

tion.

• The permutation gossip mutation allows the implementation of an ef-

ficient and scalable consensus protocol.

The proposed mutable consensus protocol is interesting due to the ex-

tracted abstract nature that is common to various consensus protocols. Since

the performance tuning only affects the time domain, the correctness of the

protocol, that assumes an asynchronous system model, is ensured. This tun-

ing consists on the modification of the strategies used to compute the message

delays. This selection of strategy can be done individually by each process,

and is based on the semantics of the messages, as in [Pereira and Oliveira,

2004], or, for instance, network conditions or even other factors from the

environment.

The permutation gossip mutation performs very well, outdoing other mu-

tations in terms of scalability. It was also shown that the amount of messages

to be handled by each process is more important performance-wise than the

number of communication steps required for a decision, when the system has

a large number of processes and limited resources. This fact proves the util-

ity of being able to mutate the protocol according to the conditions of the

system.

Protocol mutation is possible because it assumes lossy channels and, also,

the received messages are always relayed. One proposition for future work

was to develop mutable protocols for other distributed programming prob-

lems.

Paxos

The Paxos algorithm [Lamport, 1998] results from the application of consen-

sus to the state machine approach. Consensus protocols are the basis for the

state machine approach to distributed computing, as proposed in [Schneider,

1990]. This technique allows the conversion of an algorithm into a fault-

tolerant and distributed implementation, through the ordering of all the ac-

tions involved. This ordering mechanism depends on the synchronization

of the actions among all the processes or nodes involved in the distributed



2.5. CONSENSUS ALGORITHMS 49

system. To achieve consistent order in all the nodes, a consensus protocol is

essential. This approach also handles safely all cases of failure, since failure

can only be perceived in the context of physical time, by a user or a process

if a supposedly failed process is taking too long to respond.

The Paxos designation defines a family of protocols to solve consensus in

a network of unreliable processors, and it includes a spectrum of tradeoffs

between the number of processors, number of message delays before learning

the agreed value, the activity level of individual participants, number of

messages sent and types of failures. The common property to all of them is

their safety from inconsistency.

In [Lamport, 2001], an asynchronous and non-Byzantine model is as-

sumed, where processes, that operate at an arbitrary speed and may fail

by stopping and then restart, communicate through the exchange of mes-

sages that are not corrupted, but may take long to be delivered, duplicated

or lost.

There are five different roles in the Paxos protocol [Wiki Paxos], and a

single processor may perform one or more roles at the same time. All of the

roles are described next:

Client Issues a request to the distributed system, and waits for a response.

Acceptor Acceptors are grouped into Quorums, that correspond to a simple

majority set of the existing acceptors in the system. Every message

that is sent to an acceptor must be sent to a Quorum. Any message

received from an acceptor is ignored unless copies are received from all

the acceptors in a Quorum.

Proposer A proposer advocates the request of a client, for the acceptors
to agree on it, and acts as a coordinator to ensure the progress of

the protocol when conflicts arise. A proposer can also make multiple

proposals, as long as it follows the algorithm for each one, and can

abandon a proposal at any time.

Learner A process with the role of learner aims to know about values that

are chosen. Once the request of a client has been agreed on by the

acceptors, the learner may perform the corresponding action. A special

learner role is determined, the distinguished learner, that receives the

acceptances of the acceptors. In order to augment reliability, this role

should be performed by several processes, which then inform other

learners. Because of message loss, a learner may never know about a

chosen value, and the best way to avoid this, is for it to have a proposer
to issue a proposal of that value.



50 CHAPTER 2. STATE-OF-THE-ART

Leader In Paxos, a leader is selected to perform the roles of distinguished
learner, and possibly also of distinguished proposer. In the event that
various processes believe to be leaders, one of them must be chosen
eventually for the protocol to progress. The safety properties are pre-
served even if the protocol stalls due to the existence of two concurrent
leaders.

Additionally to these roles, there are two more concepts in Paxos worth
describing:

Quorum Expresses the safety properties of Paxos by ensuring that some
surviving processor retains knowledge of the results. Corresponds to
any majority of participating acceptors.

Choice Sometimes, the leader has to choose among conflicting values, and
the selection is not determined by the protocol. So, the choice must
be one of the values from the most recent round, and, typically, the
majority value from the highest round is chosen. Whatever the choice
may be, correctness is guaranteed.

A proposer sends a value to a set of acceptors, and consensus is said
to occur when a majority of the acceptors have accepted it. This scheme
works if an acceptor accepts at most one value, because any two majorities
of acceptors have at least one common element which should not change its
accepted value.

Acceptors can always respond to prepare requests and accept a proposal
numbered n if it has not responded to another prepare request numbered
higher than n. But an acceptor can ignore any prepare or accept requests
without compromising safety. An acceptor can ignore a received prepare re-
quest numbered n, if it has already responded to a prepare request numbered
with the same value n or greater than n. This way, an acceptor can only
remember the highest-numbered proposal it accepted and the number of the
highest-numbered prepare request it has responded to.

If a sufficient part of the system is working properly, only a distinguished
proposer must be elected, to guarantee liveness [Lamport, 2001]. A reliable
algorithm for election must use either randomness or real time [Fischer et al.,
1985].

The mechanism used to ensure that no two proposals are issued with the
same number is that different proposers choose their numbers from disjoint
sets of numbers, and a proposer begins phase 1 every time with a higher
proposal number than any it has already used [Lamport, 2001], since it re-
members the highest-numbered proposal it tried to issue, which is stored
safely.



2.5. CONSENSUS ALGORITHMS 51

Basic Paxos operates over several rounds, where each round has the fol-

lowing two phases [Lamport, 2001]:

1. Phase 1

Prepare A proposer selects a proposal number n and sends a prepare
request with that same number to a majority of acceptors.

Promise If an acceptor receives a prepare request with number n
greater than that of any prepare request to which it has already

responded, then it responds to the request with a promise not to

accept any more proposals numbered less than n and with the

highest-numbered proposal (if any) that it has accepted.

2. Phase 2

Accept If the proposer receives a response to its prepare requests

(numbered n) from a majority of acceptors, then it sends an ac-
cept request to each of those acceptors for a proposal numbered

n with a value v, which is the value of the highest-numbered pro-

posal among the responses or any value if the responses reported

no proposals.

Accepted If an acceptor receives an accept request for a proposal num-

bered n, it accepts the proposal unless it has already responded

to a prepare request number higher than n.

Since the progress of the algorithm can be compromised if, for instance,

two proposers keep issuing a sequence of proposals with increasing numbers,

a distinguished proposer must be selected as the only one to try issuing

proposals and, eventually, it will choose a high enough proposal number to

be accepted. However, this situation can arise when a leader or distinguished

proposer fails and then recovers after the election of a new leader. The Ω

oracle is used to perform the leader election and to ensure the liveness of the

algorithm.

Typical deployments of Paxos require a continuous stream of agreed val-

ues acting as commands to a distributed state machine. There is a large

overhead if a single instance of Basic Paxos is used to determine a single

command.

Multi-Paxos is the most common deployment of the Paxos family. The

optimization that leads to this variant is that Phase 1 of the basic protocol

may be ignored, and comes from the assumption that the leader is relatively



52 CHAPTER 2. STATE-OF-THE-ART

stable, which renders its execution unnecessary when the leader remains the

same. This is achieved by including the instance number with each value.

In this variant, the failure-free interval from the proposal to learning, is 2

message delays compared to the 4 on Basic Paxos.

Cheap Paxos extends Basic Paxos to tolerate f failures by using f +1 main

processors and f auxiliary processors and by reconfiguring the system after

each failure. However, liveness is sacrificed against the reduction of the num-

ber of processors, because the rapid failure of several main processors implies

the stoppage of the system until the auxiliary processors can reconfigure the

system. This is the sole purpose of the auxiliary processors, as they do not

intervene in the protocol.

Fast Paxos extends Basic Paxos to reduce end-to-end message delivery

latency. Whereas in Basic Paxos, the interval between the request of a client

and the learning of the result is 3 message delays, Fast Paxos allows for only

2 message delays. This improvement is achieved if the leader has no value to

propose and the client sends an Accept! message to the acceptors directly.

Then, they would respond as in Basic Paxos, with Accepted messages sent to

the leader and every learner. If the leader detects a collision, it sends Accept!
messages for a new round and the algorithm proceeds as usual. In this case,

the referred latency situation will comprise 4 message delays. There is an

optimization that allows the acceptors to perform the collision recovery by

themselves, if a recovery technique has been specified by the leader.

Generalized Paxos explores the relationship between the operations of a

distributed state machine and the consensus protocol used to maintain the

consistency of that system. When conflicting proposals could be applied to

the state machine in any order, i.e. the operations contained in the con-

flicting proposals are commutative operations of the state machine, both can

be accepted, avoiding the need for resolving conflicts and re-proposing the

rejected operation.

This concept is used to generalize sets of commutative operations, that

are tracked by the protocol to ensure that all the proposed commutative

operations of one set are stabilized before allowing the stabilization of a non-

commuting operation [Wiki Paxos].

The performance of Generalized Paxos is compared with that of Fast

Paxos [Wiki Paxos]. So, to achieve the agreement on seven values, Gener-

alized Paxos takes 10 messages delays whereas Fast Paxos takes from 15 to

17.



2.5. CONSENSUS ALGORITHMS 53

Byzantine Paxos extends Paxos to support Byzantine Fault Tolerance

(BFT), which refers to, for instance, faults caused by participants lying,

fabricating messages or colluding with other participants. To tolerate such

type of failures, this protocol uses an additional message, called Verify, which

is exchanged among acceptors to distribute their knowledge and verify the

actions of one another. This step introduces an extra message delay, which

is removed by the Fast Byzantine Paxos protocol, where the client sends

commands directly to the acceptors [Wiki Paxos].

Paxos is not only a theoretical exercise but has been implemented in several

production systems [Wiki Paxos]:

Chubby Lock Service keeps consistency of replicas in the event of a fail-

ure. Google’s BigTable is built with Chubby, among other systems,

and is used in such systems as Google Maps, YouTube, Blogger.com,

etc.

Autopilot is the automatic data center management infrastructure devel-

oped within Microsoft over the last few years, which is responsible for

automating software provisioning and deployment, system monitoring

and carrying out repair actions to deal with faulty software and hard-

ware.

IBM SAN Volume Controller (SVC) is a block storage virtualization

appliance.

Raft

Raft [Ongaro and Ousterhout, 2013] is a consensus algorithm that adopts the

replicated state machine approach. It decouples key elements of consensus,

like leader election, log replication and safety, while enforcing a stronger

degree of coherency to reduce the number of possible states. Raft is similar

to other consensus algorithms, such as Viewstamped Replication [Liskov and

Cowling, 2012; Oki and Liskov, 1988], but it stands out due to its strong

leadership, as the leader concentrates as much functionality as possible, and

its election is used as the first of two phases of consensus. Another key

feature of Raft is its mechanism to support cluster membership changes,

where the majorities of two different configurations overlap, allowing the

cluster to operate normally during such transitions.

There are two different entities in the Raft protocol, servers and clients.

A server is always in one of three following states:



54 CHAPTER 2. STATE-OF-THE-ART

Leader Serves requests from clients and controls their application to the

replicated log and state machine, while issuing periodic heartbeats to

signal its liveness.

Candidate Corresponds to the transient state from follower to leader, dur-

ing which the server starts an election trying to be elected as the new

leader, by receiving a majority of votes.

Follower All servers start up in this state, which is passive, meaning that

it awaits the contact of the leader or a candidate for a period of time

equivalent to the election timeout, simply responding to those requests.

If a server has not received any valid invocations from a leader or a

candidate, during that period of time, it becomes a candidate. It will

then increase its term value and reset the election timeout, assigning it

a randomly selected value to help prevent split votes, and it will finally

issue RequestVote RPCs in parallel to all known servers, starting a new

leader election.

A Raft cluster is composed by several servers, being five a typical setup,

allowing the system to tolerate two failures. In normal operation, there is a

single leader on the cluster, being the remaining servers followers.
In the normal interaction of a client with a Raft cluster, it randomly

selects a server and sends it a request. If that server is the leader, the

request will be processed and the corresponding response returned to the

client. Otherwise, the server sends the address of the most recent leader
that it knows back to the client, which can then use it to contact the leader
directly. In the event that the leader crashes, the client’s request will time

out and it will randomly select another server to interact with.

Raft uses the notion of term as an arbitrary period of time that starts

with an election, where one or more candidates try to become the leader, but

where at most one can take that role. If a candidate succeeds and becomes

the new leader, it will keep that role until a new term is started. If there is no

winner, a new election will be started, consequently on a new term. Terms

are numbered with consecutive positive integers and are used as a logical

clock [Lamport, 1978], allowing servers to detect obsolete information. Each

server stores its current term number, which increases monotonically over

time. This number is exchanged by communicating servers, allowing servers

to update to the most recent value. If a server receives a request with an

older term number, it is rejected, and its own current term number is sent

back to the contacting server. If a candidate or a leader receives such a

response, it immediately reverts to the follower state.



2.5. CONSENSUS ALGORITHMS 55

Raft uses the leader election as the first of two phases of consensus, using
a heartbeat mechanism to trigger it.

1. When the election timeout of a follower elapses, because it has not
received any valid invocation from a leader or a candidate, the server,
assuming there is no valid leader on the cluster, becomes a candidate.

2. It will then increase its term value, reset the election timeout, by as-
signing a randomly selected value to help prevent split votes, and issue
RequestVote RPCs in parallel to all known servers, starting a new leader
election.

3. This candidate will be elected as the new leader after receiving a ma-
jority of votes from the servers comprising the cluster.

A leader uses this very same election timeout to trigger periodic heartbeats,
that correspond to issuing AppendEntries RPCs that contain no log entries
to all of its followers, in order to keep its authority. If a leader fails or
becomes disconnected a new one is elected. All servers start up as followers,
and wait to be contacted by the leader or a candidate for a period of time
equivalent to the election timeout, which can take some initially configured
value, or randomly selected when the server becomes a candidate, in order
to prevent split votes.

When elected, the leader assumes full responsibility for managing the
replicated log.

1. The leader accepts client requests, that contain some command to be
executed by the replicated state machine, which is converted into an
entry and added to its log.

2. Afterwards, it issues AppendEntries RPCs in parallel to its known fol-
lowers, in order to replicate the entry.

3. When the new entry has been safely replicated, i.e. received a number
of responses that is equal to the majority of the elements of the cluster,
the leader applies the entry to its state machine and returns the result
of that execution to the client.

4. The leader will then inform the replicas to commit that entry to their
state machines in subsequent AppendEntries invocations.

The Raft algorithm ensures the replicated state machine safety property,
which states that if any server has applied a particular log entry to its state



56 CHAPTER 2. STATE-OF-THE-ART

machine, no other server may apply a different command for the same log
index.

The failure of a follower or a candidate is easily dealt by the Raft protocol,
as any RequestVote or AppendEntries RPCs sent to it will fail. But when
the server restarts as a follower, the RPCs will be delivered and processed
correctly.

The authors of the Raft consider it an easier protocol to understand than
Paxos [Lamport, 1998], fact supported by a user study where the majority
of the enquired subjects found Raft easier than Paxos to implement and to
explain [Ongaro and Ousterhout, 2013]. Another drawback of Paxos is the
lack of a reference algorithm for multi-Paxos, as most descriptions fall on
single-decree Paxos, or leave too many details to the implementer [Ongaro
and Ousterhout, 2013]. Compared to Apache ZooKeeper, which is also
leader-based, Raft is also a simpler protocol as it requires the implemen-
tation of fewer distinct operations and it also minimizes the functionality in
non-leaders. For instance, in Raft, the log entries flow in a single direction,
from leader to its replicas, whereas in ZooKeeper, entries flow both to and
from the leader.

2.6 Discussion

Service-Oriented Computing has proven to be a very adaptable programming
paradigm, even to an environment with scarce resources such as Wireless Sen-
sor Networks [Mohamed and Al-Jaroodi, 2011], where Service-Oriented Mid-
dleware should fulfill some stringent requirements. The Devices Profile for
Web Services (DPWS), as a standard specially targeted to enable the usage
of Web Services by resource constrained devices, already provides several of
the required features, such as dynamic, adaptive and auto-configurable archi-
tectures. Therefore, DPWS is a key standard for the implementation of the
Internet-of-Things paradigm, and it has, for instance, become the enabler
of the Smart Grid [Karnouskos, 2012], by allowing the interaction of enti-
ties with largely heterogeneous processing power, namely, smart meters and
utilities back-end energy management systems [Karnouskos and Izmaylova,
2009], albeit indirectly through an hierarchical architecture. However, for
a large amount of devices, in the region of some thousands, an hierarchi-
cally structured communication does not cope well with the generated traf-
fic [Karnouskos et al., 2011]. This limitation, alongside with the targeted
fault tolerance issues, proves that the traditional two-phase commit (2PC)
mechanism does not suffice, as a failure in a system could stop the ongoing
activity with numerous devices involved.



2.6. DISCUSSION 57

As transactional processing can be deemed heavy for the majority of the
scenarios with resource constrained devices, the existing transactional stan-
dards for Web Services, such as WS-AtomicTransaction [WS-AT] and WS-
BusinessActivity [WS-BA], both based on WS-Coordination [WS-C], can not
be regarded as a solution to the problem. Other transactional protocols and
standards, from which experience can be withdrawn and lessons learned, were
also analyzed, such as RosettaNet [Alonso et al., 2004; Badakhchani, 2004],
ebXML [Alonso et al., 2004], Business Transaction Protocol (BTP) [McGovern
et al., 2006] and WS-Composite Application Framework (WS-CAF) [Little
and Webber, 2003; Monsieur et al., 2007]. RosettaNet and ebXML can be
considered vertical protocols as they focus on a business area and specify not
only the transactional interaction, but also other aspects, like communica-
tion, for instance, where they predate some transversal standards for Web
Services, such as SOAP, UDDI and WSDL [Alonso et al., 2004]. The other
enumerated standards, BTP and WS-CAF, can be considered relatives of
WS-Coordination, but were not as widely adopted.

Apparently, the way into the future could be an evolution of the WS-
Coordination, WS-AtomicTransaction and WS-BusinessActivity standards,
as they specify horizontal protocols built on top of SOAP, UDDI and WSDL,
which could be enhanced by incorporating some of the lessons learned both
with ebXML and RosettaNet. All in all, adversary trends of standards should
harmonize to produce a global and coherent set of standards that would then
be both simpler and easier to adopt [Alonso et al., 2004].

The interest associated with service coordination, provided by WS-Coordi-
nation, lies on the possibility of developing complex and composite services
that ensure fault tolerance guarantees, using basic and simple services, that
can not provide such assurances per se.

Transactional standards aside, the remaining standards for Web Services
that are specially focused on fault tolerance include WS-ReliableMessag-
ing [WS-RM], and WS-Reliability [WS-R], which can be considered the fore-
father of WS-ReliableMessaging, as many of its features were withdrawn from
the experience with WS-Reliability. However these standards provide reli-
able communication only between two points, hence not enabling a multicast-
typed communication.

Regarding this message exchange pattern, an extension for the usage of
UDP Multicast with WS-Eventing [Gregorczyk, 2011] could help reduce the
amount of traffic in scenarios where a single publisher must inform various
subscribers on the occurrence of periodic events. However, the assurance
of reliable delivery of events using a positive acknowledgment system would



58 CHAPTER 2. STATE-OF-THE-ART

cause an acknowledgment explosion in the publisher. And even in the case
of well-known periodic events, where the usage of notification retransmission
requests would be suitable, it could lead to a similar scenario if various sub-
scribers do not receive the same event, since each will trigger a retransmission
request which will ultimately accumulate on the publisher’s side.

Besides the previously cited standards, there are several protocols that
provide fault tolerance mechanisms for Web Services. However, there is a
complete lack of standardization in this area, except for reliable communi-
cation and transactions as described before, which are not the only fault
tolerance techniques that should be used to build a dependable architecture.

WS-Membership [Vogels and Re, 2003] proposed a framework that pro-
vides cooperating Web Services and activity monitors with a unified approach
for tracking registered Web Services and for supplying membership updates
to monitors using gossip-style communication, hence, promoting an highly
robust and asynchronous membership information propagation mechanism
with good reliability and scalability capabilities. However, it was not stan-
dardized and seems to have ceased to exist as little information can be found
on the internet. Albeit the disadvantages of using epidemic failure detection,
such as inefficiency when the size of messages grows proportionally with the
number of participants, and bad behavior with massive concurrent partici-
pant failures, the detection of failed Member Services is very accurate. This
framework is a good starting point for a future and improved membership
service, which could be developed as the coordination of several basic services.

Service replication has already been attempted and used [Osrael et al.,
2007b; Salas et al., 2006], but it is not suitable to ensure all the desired fault
tolerance guarantees simultaneously with hard or even soft real-time require-
ments. In the event of a failure, the desired behavior for the system is to
resume its normal operation as quickly as possible. Thus, failure recovery
is another important issue that should be addressed in this project. An in-
frastructure that implements such capability for Web Services was presented
in [He, 2004], but it does not address other types of failures apart from the
basic fail-stop. Further research on this subject should focus on the effec-
tiveness of this framework when dealing with other types of failures. It is
clear that more emphasis should be put on standardization efforts for replica-
tion protocols, group membership services, group communication protocols,
just to cite a few, in order to achieve more dependability of service-oriented
systems [Osrael et al., 2007a]. The level of genericness and usefulness of a
protocol are deemed essential for its standardization. For instance, the de-
velopment of horizontal protocols like WS-Coordination, should be preferred



2.6. DISCUSSION 59

due to their generic nature.

Being consensus the basic problem involved in fault tolerance, since it

depicts the issue of defining whether a process or node is up or down, and

since gossip protocols are used to achieve reliable multicast, they can be con-

sidered as the building blocks for a large variety of distributed systems. So,

they should be perceived in depth to fully apprehend their potential useful-

ness for the projected research. A generic consensus service [Guerraoui and

Schiper, 2001] is extremely useful in achieving a simple methodology to build

distributed systems with some complexity using simple and generic blocks

that provide some basic service. Its applicability and usage in a Web Ser-

vices environment would vary according to the intended use for a consensus

mechanism. As Paxos [Lamport, 2001] is a family of diverse consensus pro-

tocols, it is interesting to verify the existence of any common blocks that

allow the implementation of a generic Paxos service, that would provide,

through some configuration, the most adequate Paxos variant for a certain

scenario. Raft [Ongaro and Ousterhout, 2013] is similar to Viewstamped

Replication [Liskov and Cowling, 2012; Oki and Liskov, 1988], but it stands

out due to its strong leadership, as the leader concentrates as much function-

ality as possible, and it also supports cluster membership changes, allowing

the cluster to operate normally during such transitions. The simplicity of

the Raft protocol, when compared to Paxos, can increase its adoption in real

systems, albeit its performance limitations due to the fact that all the opera-

tions must be checked and performed by the leader before being propagated

to the replicas.

Gossip protocols are a very cost-effective means of achieving reliable mul-

ticast and, hence, very adequate to implement some services that need com-

munication throughout a network, specially if it comprises a large number

of nodes. At the moment, gossip-based algorithms are sufficiently mature to

be used in the implementation of distributed systems although several chal-

lenges in this area remain unsurpassed [Kermarrec and van Steen, 2007a]. As

stated in [Eugster et al., 2004], research on epidemic algorithms should be

broadened beyond information dissemination to other areas such as content

search, content-based publish/subscribe and also file sharing [Eugster et al.,

2004]. With this intent, and being aware of the good performance of this

type of algorithms, they would be an useful instrument for our future re-

search focused on Web Services. More concretely, gossip protocols could be

useful for implementing consensus, whether to reach a decision or to dissem-

inate it also through a network, and various fault tolerance techniques, such

as membership management that could resort to gossip in order to propa-



60 CHAPTER 2. STATE-OF-THE-ART

gate membership information and also to provide liveness schemes. There
are other applications for gossip-based dissemination, like data aggregation
and systems management [Kermarrec and van Steen, 2007a]. Furthermore,
the conjugation of gossip protocols with service coordination could lead to
communication models that would be innovative in the area of Web Services.



Chapter 3

Services

3.1 Gossip dissemination services

In this section, we present a service-oriented architecture for information dis-
semination based on existing standards and distributed gossiping. Gossiping
is a lightweight approach for information dissemination that has inherent
scalability and atomicity guarantees, while being simple, resilient, and fru-
gal on resources. Our Web Services Gossip (WS-Gossip) framework provides
operations that can be combined to architect a variety of gossip-style in-
teractions, such as the push vs. pull, eager vs. lazy, and infect-and-die
vs. balls-and-bins gossip variants, to address multiple applications and en-
vironments, and furthermore, can be integrated with different membership
management strategies, through the included Peer Service that can be con-
figured according to the scale and dynamics of each system. WS-Gossip also
enables the usage of gossip by participants and their clients, while at the
same time minimizing the impact on existing producers and consumers due
to its adaptability.

3.1.1 Gossip service

Our proposal to address the scalability and reliability challenges of large
DPWS deployments is to use a gossip-based dissemination protocol [Ker-
marrec and van Steen, 2007b]. Gossiping is inherently scalable, as it spreads
the load across participants. Moreover, it is also inherently robust, toler-
ating message loss and participant crashes. This should have the increased
advantage of allowing the usage of SOAP-over-UDP even if reliable delivery
is desired, which is much less resource consuming than a full fledged HTTP
binding over TCP. Moreover, by assuming the Web Services infrastructure,
we take advantage of each gossiped unit of data being a SOAP envelope,

61



62 CHAPTER 3. SERVICES

of the self-documenting nature of services through WSDL, and of further
standards such as WS-Addressing and WS-Policy.

Providing comprehensive support for gossip-based information dissemi-
nation in Web Services, in a way that integrates with existing DPWS de-
ployments, thus reduces to the following challenges:

• How to enable the usage of gossip by devices and clients, while at
the same time minimizing the impact on producers and consumers of
events, namely, regarding required middleware?

• How to support different peer discovery strategies, fit for different sys-
tem scales and dynamics?

Client

Gossip Device

Peer Service

Gossip Service

Shadow Service S1 

Hosted Service S1

discovery

Gossip Operation

S1 Operation

S1 Operation

Figure 3.1: Overview of WS-Gossip architecture.

We address these challenges with a set of specifications of service port
types, SOAP headers, and policy assertions that can be used to compose a
variety of solutions. The general architecture of the proposed gossip dissem-
ination framework is outlined in Figure 3.1 and works as follows. A manu-
facturer that intends to provide gossip dissemination in its devices can use a
DPWS stack with gossiping support, by including the WS-Gossip framework,
and annotate every service supporting gossip through WS-Policy assertions.
As a consequence, a Shadow Service is created for each service where gos-
sip is enabled. A single Gossip Service will also be hosted in such a device.
Moreover, a Peer Service can be setup to provide an entry point to the set
of target peers. Multiple Shadow and Gossip services can be attached to the
same Peer Service, which might be hosted in a different device.

Both the original hosted service and its Shadow Service are advertised
to clients that can use each of them independently. A gossip-aware client



3.1. GOSSIP DISSEMINATION SERVICES 63

can examine policy annotations in both these services and determine their
relationship. A client may still address the original hosted service, thus
maintaining compatibility with existing clients that are unaware of gossiping.

Assume for now a one-way or notification operation (i.e. input or out-
put only) and push gossip [Karp et al., 2000]. Gossip dissemination can be
performed using the Shadow Service or the regular Gossip Service.

In the case of the Shadow Service, gossiping is started when a client sends
a SOAP message to a port of that service. Note that this service exports the
same port type as the original hosted service, which means that a legacy client
can still be used, simply by invoking the endpoint of the new service. Upon
reception of this message, it is inspected to determine if it contains a WS-
Gossip header. If not, default gossiping parameters are obtained, including
gossip variant, fanout, peer scope (according to WS-Discovery), and target
binding (HTTP or UDP). Gossiping is then initiated by adding the gossip
information to the message header and relaying it to a number of peers and
to the local hosted service, as outlined in Figure 3.2. When a gossip message
is received, the gossiping interaction is continued by decrementing its hop
count and by forwarding it to the selected peers. Note that such a message
can be generated by a target device, as depicted in Figure 3.2, but it can
also be generated directly by a gossiping-aware client. This allows a client
to initiate gossiping in a custom scope or with custom parameters to achieve
its own reliability and scalability trade-offs.

Such a gossiping-aware client can also use the regular Gossip Service
for gossiping, by invoking an operation of that service directly, such as the
Push operation, as depicted in Figure 3.3, which will include the message
to disseminate as well as the desired parameter for the gossip dissemination.
The targeted Gossip Service will then relay the included message to its known
peers, through invocation of their Push operations, and pass the contained
operation invocation to the adequate local service, if present in the same
device.

The remainder of this section explains in detail the information contained
in SOAP headers, how the Shadow and Gossip Services support multiple
gossiping and SOAP operation styles, and how the target set of peers is
discovered and managed.

Header information

As previously stated, the unit of information being gossiped is the SOAP
envelope. Messages in a gossip interaction contain an entry in the SOAP
header section of the SOAP envelope describing how to relay such messages.
These are initialized by the initiator device, either within a Shadow Service



64 CHAPTER 3. SERVICES

Gossip Device (D1)

Peer Service

Gossip Service

Shadow Service S1 

Hosted Service S1

Gossip Device (D3)

Peer Service

Gossip Service

Shadow Service S1 

Hosted Service S1

Gossip Device (D2)

Peer Service

Gossip Service

Shadow Service S1 

Hosted Service S1

he
ad

er 
+ o

pe
rat

ion

header + operation

header + operation

header + operation

operation

op

op

op

Figure 3.2: Gossip dissemination using the Shadow Service.

Gossip Device (D1)

Peer Service

Gossip Service

Shadow Service S1 

Hosted Service S1

Gossip Device (D3)

Peer Service

Gossip Service

Shadow Service S1 

Hosted Service S1

Gossip Device (D2)

Peer Service

Gossip Service

Shadow Service S1 

Hosted Service S1
Pus

h<
op

era
tio

n>

Push<operation>

Push<operation>

Push<operation>

op

op

Push<operation>

op

Figure 3.3: Gossip dissemination using the Gossip Service.



3.1. GOSSIP DISSEMINATION SERVICES 65

or by a gossip-aware client. Moreover, there is also the assumption of WS-

Addressing providing a unique identifier for each message and support for

asynchronous replies. Briefly, it contains the following information:

Scope/Type As defined by WS-Discovery, it implicitly describes the set

of targets. Devices can be configured to relay messages only within a

specific scope and type.

Fanout The number of peers to target in each interaction.

Hops The remaining number of hops. This must be decremented by each

device that relays the message, and it is discarded when it reaches zero.

IdTTL The time that each device should buffer the message identifier for

duplicate detection. If this is set to zero, the protocol degenerates to

the balls-and-bins variant [Koldehofe, 2003].

DataTTL The time that each device should buffer the message itself for

retransmission in lazy gossip variants. If this is set to zero, the protocol

will never issue advertisements and will always use an eager variant.

Filter An optional item, specifying a rule to filter replies. Valid rules are

configured by the deployer and advertised as policies by the Shadow

Service.

Operation styles

SOAP and WSDL support several operation styles, like the typical client-

server interaction (i.e. request-response), but it is also possible to have input-

only operations (i.e. one-way), output-only operations (i.e. notification),

and call-back operations (i.e. solicit-response). It is also possible that a two-
way operation leads to multiple replies. These different operation styles allow

WS-Gossip to support different gossip variants in addition to the previously

described eager push-style, such as the lazy and the pull variants.

Gossiping in one-way and notification operations is handled as described

previously: Upon reception of a message, it is propagated and no reply is

expected. In request-reply and solicit-response operations, the message is

propagated and then all replies received are propagated back to the initiator.

This requires the initiator’s address to be stored alongside with the message

identifier used for duplicate detection during the specified IdTTL. Consider

the following example: A request-response to query available disk space of

servers in a data center. A client invokes the operation on the Shadow Service,

which eventually reaches all targets. All responses then travel back along the



66 CHAPTER 3. SERVICES

same tree implicitly created by the request message and will eventually reach
the initiator.

An alternative is to make use of a filter, which can omit or aggregate
replies according to a rule specified when gossiping is initiated. Consider the
following example: The same request-response operation is used to determine
which server has the most available disk space in a data center. This requires
that upon deployment, devices are configured to support the maximum filter
on the disk space query operation. A client invokes the operation on the
Shadow Service, which eventually reaches all targets. Responses then travel
back along the same tree implicitly created by the request message, but they
are buffered and filtered such that only the maximum discovered downstream
is returned by each peer. Each peer’s reply is sent as soon as all its targets
have replied, with a value or with a fault, or when a timeout expires.

Gossip styles

In addition to eager push-style gossip described so far, lazy and pull variants
are supported as follows. Besides offering the same port type as the hosted
service, the Shadow Service provides the same gossip port as the Gossip
Service, which contains the following operations:

Push Alternative to directly using the interface. This allows a set of mes-
sages to be submitted in a single interaction.

PushIds Informs the target that a number of messages are locally available.
These should then be requested using the Fetch operation.

Pull Returns currently buffered messages during a time interval specified as
a parameter.

PullIds Variant of the previous operation, which requests identifiers instead
of the actual messages. These can then be requested using the Fetch
operation.

Fetch Returns currently buffered messages, as specified by a list of identifiers
provided as a parameter.

Gossip variants can be achieved through the composition of the previous
operations. Namely, lazy push is obtained by using PushIds instead of Push
and then waiting for Fetch to be used later on selected identifiers. Eager pull
is obtained by periodically invoking Pull. Finally, lazy pull is obtained by
periodically invoking PullIds and then using Fetch on the resulting identifiers
that are unknown.



3.1. GOSSIP DISSEMINATION SERVICES 67

The gossip variant chosen for each operation depends on configuration by

the service deployer. In particular, the optimum configuration for push gossip

is to use the eager variant for early rounds and then lazy. For pull gossip,

the lazy variant is interesting for very large payloads. The combination of

both push and pull is known to ensure rapid and robust dissemination of

information [Birman et al., 1999; Karp et al., 2000].

3.1.2 Peer service

Gossip Device (D1)

Peer Service

Gossip Service

Shadow Service S1 

Hosted Service S1

Gossip Device (D3)

Peer Service

Gossip Service

Shadow Service S1 

Hosted Service S1

Gossip Device (D2)

Peer Service

Gossip Service

Shadow Service S1 

Hosted Service S1

ex
ch

an
ge

exchange

discovery

DiscoveryProxy

discovery

Figure 3.4: Overview of peer management.

By default, the usage of the WS-Gossip framework does not require an

explicit peer management service. Instead, each gossip interaction is config-

ured with a scope and a service type that can be used to discover the full set

of reachable peers through WS-Discovery. This is most useful in scenarios

where a discovery proxy device exists: In this case, when a set of peers is

required for gossiping, it can be obtained efficiently by querying the proxy.



68 CHAPTER 3. SERVICES

This leads to a configuration with centralized peer information while infor-

mation dissemination is distributed, which is adequate for scenarios with low

churn and relatively high messaging rate.

If such a proxy is not available, the usage of WS-Discovery in Ad-Hoc

mode would lead to a large number of multicast messages that would most

likely defeat the purpose of gossip. Instead, our proposal includes the Peer

Service, which allows that information on discovered peers to be cached lo-

cally and exchanged with other Peer Service instances to implicitly create

an overlay network using the Newscast protocol [Jelasity et al., 2003]. The

structure of the stored peer information comprises a list where each service

instance is represented by an entry that contains the following elements:

Address Corresponds to the service endpoint address.

Type Identifies the type of the service.

DeviceId Identifies the device where the service is hosted. This field is not

applicable to services that are not associated with any device.

Heartbeat Counter that is incremented as messages, such as the invocation

of the Exchange operation, are issued by the peer.

This information is exchanged among different devices and updated through

the examination of WS-Discovery multicast messages issued by target ser-

vices entering or leaving the network. Periodically, if a Peer Service instance

has not received a request for exchanging its membership information during

a certain time frame, it selects another instance to which it sends such a

request containing the list of the known endpoints, through the invocation

of the Exchange operation. Upon reception of such a message, the contacted

instance returns to the requester its own list of known endpoints, and merges

it with the received one.

The heartbeat counter of a service instance that never sends a new mes-

sage, or eventually sends but without reaching a Peer Service instance, re-

mains unchanged, implying that it will move towards the end of the member-

ship list as the counter of other services is being updated and new services

are discovered. That service instance will eventually be discarded when the

cache of the Peer Service reaches the maximum configured size.

3.2 Consensus service

As we seek to provide the functionality of a coordination service, such as

ZooKeeper, on the Devices Profile for Web Services (DPWS), this section



3.2. CONSENSUS SERVICE 69

Client

discovery

Raft4WS Operation

Raft Device

Raft4WS

Figure 3.5: Overview of Raft4WS architecture.

describes the proposal of a Consensus Service, based on the Raft [Ongaro and

Ousterhout, 2013] protocol, which enables the deployment of replicated Web

Services that are able to tolerate both network and server failures. This pro-

posal leverages existing DPWS components such as WS-Discovery for cluster

membership maintenance and can easily be combined with WS-Eventing for

event notification.

3.2.1 Raft service

Our proposal maps the Raft protocol to the DPWS environment, and there-

fore, we have implemented Raft for Web Services (Raft4WS), a Raft Service,

on top of the Web Services for Devices (WS4D) Java Multi Edition DPWS

Stack (JMEDS), which will be described throughout this section. According

to the Raft protocol, our proposal considers two different entities: servers,

which host an instance of the Raft Service, and clients, which invoke those

instances. Figure 3.5 illustrates the possible interactions between a client and

a server, hence a client must discover a server to contact, whether through

configuration or dynamic discovery, and then it can invoke the operations

available for clients.

Raft uses the leader election as the first of two phases of consensus, using a

heartbeat mechanism to trigger it. Figure 3.6 illustrates all the steps involved

in the leader election, which are described next. All servers start up as

followers, and await the contact of a leader or a candidate for a period of

time equivalent to the election timeout. When this election timeout elapses,

because it has not received any valid invocations from a leader or a candidate,

the server, assuming there is no leader on the cluster, becomes a candidate

(Step 1). It will then increase its term value, reset the election timeout, by

assigning a randomly selected value to help prevent split votes, and issue

RequestVote RPCs in parallel to all known servers, starting a new leader

election (Step 2). This candidate will be elected as the new leader after

receiving a majority of votes from the servers comprising the cluster (Steps

3 and 4).



70 CHAPTER 3. SERVICES

Raft Device (S1)

Raft4WS
(Follower)

Raft Device (S2)

Raft4WS
(Follower)

Raft Device (S3)

Raft4WS
(Follower)

1. Timeout
(Candidate)

2. RequestVote

2. RequestVote

3. VoteGranted

3. VoteGranted
4. Majority Reached

(Leader)

Figure 3.6: Overview of the leader election on Raft4WS.

A leader uses the very same timer, used to detect election timeout, to
trigger periodic heartbeats, that correspond to issuing AppendEntries RPCs,
without any log entries, to all of its followers, in order to keep its authority.
If a leader fails or becomes disconnected, a new one is elected using the
previously described leader election protocol.

When elected, the leader assumes full responsibility for managing the
replicated log and attending client requests, as portrayed in Figure 3.7. Hence,
it accepts a client request that contains a command to be executed by the
replicated state machine which is converted into an entry added to its log
(Step 1). Afterwards, the leader issues AppendEntries RPCs in parallel to its
known followers, in order to replicate the entry (Step 2). When it has been
safely replicated, i.e. received a number of responses sent by the followers
(Step 3) that is equal to the majority of the elements of the cluster, it applies
the entry to its state machine and returns the result of that execution to the
client (Steps 4 and 5). The leader will inform the replicas to commit that
entry to their state machines in subsequent AppendEntries invocations (Step
6).

Server

Using the DPWS terminology, a Server is a device with the type Raft De-
vice, and so, the terms Raft Device and Server will be used interchangeably
throughout this section. The Server class contains five different entities, Log,
Raft Service, ServerClient, TimeoutTask and the current state task. It also
stores Raft specific parameters, such as the current term (currentTerm), the
Server it has voted for (votedFor), the Server that is the current leader (cur-
rentLeader), the next index (nextIndex ) and the match index (matchIndex )



3.2. CONSENSUS SERVICE 71

2. AppendEntries<cmd>

Raft Device (S1)

Raft4WS
(Leader)

Raft Device (S2)

Raft4WS
(Follower)

Raft Device (S3)

Raft4WS
(Follower)

3. success

3. success

Client

1. InsertCommand<cmd>

4. success 5. Commit <cmd>

6. AppendEntries<Commit<cmd>>

7. Commit <cmd>

7. Commit <cmd>

6. AppendEntries<Commit<cmd>>

Figure 3.7: Overview of the insertion of a new command on Raft4WS.

for each replica or follower.

Essential for the replicated state machine approach, the Log keeps a list

with all the entries, each represented by a LogEntry object, resultant of the

commands inserted by clients, as well as the StateMachine and some vari-

ables, like commitIndex and lastApplied, which correspond to the highest

log entry known to be committed or applied to the StateMachine, respec-

tively. Each Server periodically runs a task to compare the values of these

two variables. If commitIndex is bigger, lastApplied is incremented, and

Log[lastApplied ], i.e. the LogEntry with an index equal to lastApplied, is

committed, by applying it to the StateMachine. The StateMachine provides

operations for its initialization, termination, and for the insertion of a LogEn-

try returning a boolean value to convey the success of the insertion. Before

describing the operations provided by Raft4WS, the structure of the LogEn-

try will be explained in more detail. Each new LogEntry is created by the

leader and it stores the following parameters:

index Unique index assigned by the leader to be the size of Log (henceforth

identified by lastLogIndex ) incremented by one unit, which corresponds

to the successor of the index of the last log entry, as the index of the

first entry is 1.

term currentTerm of the leader.

uid Unique identifier extracted from the client’s request.

command Operation to be executed on the StateMachine.

parameters Parameters for the operation defined by the command argu-

ment.



72 CHAPTER 3. SERVICES

result Result of the execution of the LogEntry’s command.

success Success of the execution of the LogEntry’s command.

Besides these parameters, each LogEntry object also stores the number of

follower responses needed to achieve the majority, according to the current

size of the Raft cluster, and the respective lock, which just unlocks when

the majority is reached. These responses are added to a LogEntry upon

the reception of successful follower responses to the invocation of the Appen-
dEntries operation containing LogEntry. After unlocking, the answer is sent

back to the client that issued the request originally.

Raft4WS provides 3 different operations, which match very closely Raft’s

RPCs, and are available on every instance:

InsertCommand Invoked by clients to insert new commands in the clus-

ter’s replicated log. A request to this operation takes the following

arguments:

uid Unique identifier generated by the invoking client to identify its

request.

command Operation to be executed on the replicated state machine.

parameters Parameters for the operation defined in command.

The response of this operation comprises the arguments:

success Indicator of the success of the command execution by the

leader, or always false if the Server is not the current leader.

result Result of applying the command if the Server is the current

leader.

leaderAddress Conveys the contacted Server’s currentLeader if it is

a follower.

Upon receiving a request, the leader verifies if there is a LogEntry identified

by uid, on which case its result will be sent right back to the client indi-

cating a successful execution. Otherwise, the leader’s Log creates the new

LogEntry and sets the number of responses necessary to unlock its result, and

the TimeoutTask is notified in order to trigger the invocation of the Appen-

dEntries operation in order to propagate LogEntry to the followers. When

LogEntry is unlocked, the response is sent back to the client, containing the

success and the result arguments which convey the outcome of creating

and committing LogEntry. If the Server is not the current leader of the Raft

cluster, it responds right away to the client with success equal to false, and

leaderAddress equal to currentLeader.



3.2. CONSENSUS SERVICE 73

AppendEntries Invoked by the leader as an heartbeat, when there are no
new entries, or to replicate new log entries on its followers. A request
to this operation takes the following arguments:

term The currentTerm of the leader.

leaderId The address of the Raft Service of the leader.

prevLogIndex The index of the log entry that precedes the new ones.

prevLogTerm The term of the log entry identified by prevLogIn-
dex.

entries The list of log entries to store, which will be empty in case the
message is an heartbeat. Each entry is defined through its index,
term, uid, command and parameters arguments.

leaderCommit Leader’s commitIndex.

The response of this operation comprises the arguments:

term currentTerm of the targeted Server, for the leader to update
itself.

success Boolean value indicating if the Log of the targeted Server
contains the entry matching the values of prevLogIndex and
prevLogTerm.

Independently of the success of this operation, the targeted Server returns
its currentTerm on the reply. It starts by extracting the received term, and
comparing it to currentTerm. If it is smaller, the Server will immediately
send back a response with success as false. Otherwise, it checks if its Log
contains a LogEntry with an index equal to prevLogIndex, and the term
equal to prevLogTerm. If such a LogEntry does not exist, the success
argument will be false and no further processing of the request takes place.
However, if it does, the success argument of the response is set to true and
the address of the leader, leaderId, will be copied to currentLeader if it is
different from the previous value of currentLeader. The Server will notify its
current state task by invoking its heartbeat method and will extract the en-
tries from the request, reconstructing each LogEntry from its index, term,
uid, command and parameters arguments, which will then be sent to the
Log so they are appended to the existing entries. During this process, if
there is any LogEntry in the Log that conflicts with a new one, by having
the same index but different terms, it will be deleted as well as of all the
subsequent existing ones. Any new LogEntry not in the Log is inserted in
the corresponding index. Before returning its response to the leader, and if



74 CHAPTER 3. SERVICES

the request processing has been successful so far, the Server compares the

value of the leaderCommit argument to its commitIndex. If its commitIn-
dex is inferior, it takes the minimum value between leaderCommit and its

lastLogIndex. Finally, the response is sent back to the leader conveying the

Server’s currentTerm on term, and the success of the request.

RequestVote Invoked by candidates to gather votes from other Servers on

the cluster. A request to this operation takes the following arguments:

term Candidate’s currentTerm.

candidateId The address of the Raft Service of the candidate.

lastLogIndex The index of the last log entry of the candidate or last-
LogIndex.

lastLogTerm The term of the last log entry of the candidate.

The response of this operation comprises the arguments:

term currentTerm of the targeted Server.

voteGranted Boolean value indicating if the Server has voted, or not,

for this candidate to become the new leader.

The targeted Server compares term with its currentTerm. If it is smaller,

the Server will immediately send back a response with currentTerm on the

term argument, and the false value on the voteGranted argument. Oth-

erwise, it compares candidateId with the Server’s votedFor. If they are

equal or if votedFor is null, the Server extracts and analyzes the remaining

request arguments. It verifies if the candidate’s Log is as up-to-date or more

advanced than its own Log, by checking if the values of the lastLogIndex
and lastLogTerm are greater than or equal to its corresponding parameters,

lastLogIndex and the term of Log[lastLogIndex ], respectively. If this condi-

tions are confirmed, the Server sets its votedFor variable to candidateId,

granting it the vote. After these verifications, the reply to the candidate

conveys the Server’s currentTerm value on term, and voteGranted will

indicate if the Server has granted or not its vote to the candidate.

In the AppendEntries and RequestVote operations, the involved Servers

always compare the value of the received term argument with its current-
Term. If the received value is higher, the Server sets its currentTerm to term
and converts to the follower state, if it wasn’t in that state previously.

After describing the Raft4WS Service and its operations, the remaining

components of a Server are described, starting by its associated ServerClient



3.2. CONSENSUS SERVICE 75

which can be used to detect other Servers, by listening to WS-Discovery mul-

ticast messages or issuing Probe messages to find other Raft Devices. All the

detected Raft Devices will be queried to retrieve the AppendEntries and the

RequestVote operation stubs, which are stored alongside with the matching

Raft Service address, in case the current Server receives an invocation to its

InsertCommand operation while it is not the leader and it is necessary to

return the leader’s Raft Service address to the client. This information is

stored and indexed by the endpoint reference of the device. The detection of

multicast Bye messages sent by a known Raft Device, makes the ServerClient

remove the corresponding information on that device. Besides this function

of maintaining the information on the cluster’s elements, the ServerClient

is the Server’s component used to invoke operations on other Servers, such

as RequestVote, when it becomes a candidate and starts a new election, or

AppendEntries, when it is a leader and must signal its liveness, using heart-

beats, or must replicate log entries on its followers. Such invocations are

performed in parallel, by using a thread for invoking an operation on each

known Server, following the guidelines of the Raft algorithm.

Each Server has a TimeoutTask thread that runs throughout its entire life,

using a loop that is stopped when the Server shuts down. On each cycle, the

TimeoutTask starts by checking if the state of the Server should be altered

and performs the transition, if necessary. Afterwards, this task waits for a

period of time corresponding to the configured election timeout value. When

this time interval elapses, the TimeoutTask invokes the timeout method of

the current state’s task object. The timer will be interrupted, avoiding the

mentioned invocation, by received invocations to the AppendEntries opera-

tion in both follower and candidate states, or to the RequestVote operation,

in case the follower grants its vote, or when a majority of votes is received

by the current Server while being a candidate.

According to the Raft protocol, a server can be in one of three different

states, follower, candidate or leader, and it always starts its lifecycle as a

follower. These states are represented by the FollowerTask, CandidateTask

and LeaderTask classes which extend the ServerTask abstract class, making

them share a basic interface with operations that are common to all the

states, such as the reception of an invocation to the AppendEntries operation,

the elapsing of the election timeout, or the termination of the current state.

The signaling of the reception of an invocation to the AppendEntries is made

through the heartbeat method. In the case of the FollowerTask the heartbeat

method notifies the TimeoutTask to interrupt the currently waiting timer and

skip to the next cycle, hence restarting the timer. The heartbeat methods

of both the CandidateTask and the LeaderTask behave similarly, merely

setting the Server’s next state as follower, before notifying the TimeoutTask.



76 CHAPTER 3. SERVICES

The invocation of the timeout method on the LeaderTask will cause the
invocation of the AppendEntries operation on the known replicas. These
invocations will convey any new entries received from the last invocation, or
none if the leader’s log has not been modified. The timeout method of the
FollowerTask informs the TimeoutTask to make the Server transition to the
candidate state. On the CandidateTask, the timeout method leads to the
execution of a new election.

Client

The normal execution of a simple client for Raft4WS is to detect Raft De-
vices, whether by registering to listen to multicast WS-Discovery Hello mes-
sages from such devices, or to actively search for devices with such a type
by issuing a multicast Probe message. If any Raft Devices are in the same
network, they will respond to the client with a ProbeMatch message.

All the detected Raft Devices, whichever the used discovery mechanism,
will be queried to retrieve the InsertCommand operation stub, which is stored
with the matching device endpoint reference. The first detected Raft Device
will be considered as the leader by the client, which will then become the
target for its invocations of the InsertCommand operation.

Let us look into such an invocation in detail. A client prepares the invoca-
tion of the InsertCommand operation through the previously retrieved leader
stub. It requests the creation of a Universally Unique Identifier (UUID) to
the IDGenerator class provided by the WS4D JMEDS. This UUID, as well
as the desired command and parameters are inserted in the request message
that is then sent to the leader’s InsertCommand operation. If the client’s
selected target is the current leader of the Raft cluster, the response will
convey whether the creation and application of the corresponding LogEntry
to the leader’s StateMachine was successful and its result. Otherwise, i.e. if
the targeted InsertCommand operation belongs to a Raft Device or Server
that is currently a follower, the response will convey the false value as well as
the address of the Raft4WS instance of the current leader. In this case, the
client can then extract this address to reissue the invocation to the correct
cluster leader, in order for it to become effective, as well as to send it further
invocations.



Chapter 4

Results

This chapter presents the evaluation of the proposed framework, which com-

prises WS-Gossip and Raft4WS. Each of these services was evaluated using

micro-benchmarks with settings as realistic as possible, according to each

service’s nature. WS-Gossip was tested in a simulator due to the large scale

requirements of gossip protocols, which were impossible to replicate using the

existing physical, or even virtual, machines. On the other hand, Raft4WS

was tested using real physical machines, due to the reduced number of used

replicas needed for the Raft protocol.

4.1 Gossip results

To evaluate the performance of the proposed approach, WS-Gossip was im-

plemented, alongside with other evaluated protocols, using version 2 beta 3a

of Java Multi Edition DPWS Stack (JMEDS), part of the Web Services for

Devices (WS4D) project [WS4D]. The components of WS-Gossip, like the

Gossip Service, the Shadow Service and the Peer Service, were implemented

as regular hosted services, being able to coexist in the same device. For test-

ing, we have also implemented a simple service that exports a simple one-way
operation to set the value of a float variable, mimicking the propagation of

temperature values. By minimizing the payload, we highlight the overhead

of the protocol.

4.1.1 Experimental settings

Experimental evaluation is done using the Minha middleware test platform

[Carvalho et al., 2011; Minha], which virtualizes multiple devices within a

single JVM while simulating the performance characteristics of a real system.

77



78 CHAPTER 4. RESULTS

It also allowed us to inject network faults to better assess the reliability of the
various scenarios. Each test corresponds to the simulation of the run-time
of a given number of devices collocated in the same LAN, in a single host
with the following configuration: 64-bit Ubuntu Server 10.04.4 Linux, two
12-core AMD OpteronTM Processor 6172, 2.1GHz, 128 GB RAM, 64-bit Sun
Microsystems Java SE 1.6.0 26.

The evaluation consists in executing a periodic event dissemination where
a new value is propagated from a single producer device to a given number
of consumer devices. A centralized managing device was used to control peer
management and the execution of the test.

The following communication protocols/scenarios were analyzed:

WS-E A publish/subscribe communication protocol was selected as it is
one of the most used event dissemination patterns. Hence, the WS-
Eventing standard, as provided by the WS4D JMEDS framework, was
evaluated using HTTP/TCP communication.

Multicast To assess multicast event dissemination, we resort to the SOAP-
over-UDP protocol to use UDP Multicast.

WS-RM A simplified version of WS-ReliableMessaging, solely providing the
AtLeastOnce message delivery assurance, was implemented and com-
bined with SOAP-over-UDP, to avoid the overhead of TCP commu-
nication and to exploit its inherent reliable nature over UDP. In the
execution of this scenario, each received message is acknowledged imme-
diately after reception, and the producer waits for an acknowledgment
during 50 milliseconds before resending the message. This value cor-
responds to the smallest time interval defined in SOAP-over-UDP for
UDP retransmission.

WS-G In this scenario, the push gossip variant provided by WS-Gossip,
using SOAP-over-UDP as transport, was evaluated.

AggWS-G This scenario extends WS-G with message aggregation capa-
bility. Hence, it enables each device to modify and resend a received
message by processing the contained value and its own value, using the
contained XSLT, which in this case contains the average function.

The execution procedure of each test comprised the following steps:

1. The manager and the producer devices are started.

2. The consumer devices are then started. In WS-E, they subscribe with
the producer as soon as they are started. In WS-G and AggWS-G,



4.1. GOSSIP RESULTS 79

the manager informs each consumer of its neighbors, according to the
configured fanout value, so they can convey new messages to them. In
WS-RM, the manager informs the producer on the addresses of all the
consumers so it is able to contact each one individually, in order to
create a reliable message exchange sequence for each consumer. For all
the scenarios, the manager verifies if all the devices started correctly
before signaling the producer to start the dissemination.

3. The producer begins disseminating events periodically, which are prop-
agated across the network.

4. The producer terminates and notifies the manager. In WS-RM, the
producer closes the sequences that were used to communicate reliably
with each consumer.

5. The manager informs, sequentially, all the devices about the file they
should write their run statistics to.

The tests for each scenario consisted in 5 runs for each given number of
devices, where 120 events were periodically emitted with an interval of 5
seconds. For all the scenarios, except WS-E, the tests were also run with
communication losses, ranging from 0 to 20%, to compare the achieved reli-
ability and latency degradation.

The interval between the initial emission of a message and its reception by
a consumer was measured in nanoseconds since Minha enables the execution
of all the intervening devices inside a single JVM on a single host. The
sampling of the instant of emission was performed right before the producer
sends a message, and the reception time measurement was done in the first
operation of the method invoked to deal with a new message at a consumer.

In WS-G and AggWS-G, the used values for the fanout parameter were
computed according to [Eugster et al., 2004], taking into account the number
of devices, as well as an expected error rate (e) of 5% and a delivery assurance
(p) of 99%, ranging from a value of 8 for 10 devices to 11 for 250 devices.
In these very same scenarios, the publisher is randomly selected from all the
nodes, contrarily to the other scenarios where the publisher is the first device.

4.1.2 Results and discussion

Results presented in Figures 4.1 to 4.7 are the average of all 5 runs for each
setting. For latency measurements, the first and the last 10 iterations were
discarded in order to minimize the effect of Java JIT compilation, although
it also masks the delay of TCP connection establishment in WS-E.



80 CHAPTER 4. RESULTS

0 50 100 150 200 250

0

50

100

150

devices

m
s WS-E

WS-G

Figure 4.1: WS-E vs. WS-G (latency).

In Figure 4.1, the message delivery latency of the WS-E grows linearly
with the number of targets, from 10 to 125 milliseconds, whereas that of WS-
G is very small and grows very slowly, from just under 3 to 10 milliseconds.
This is justified by scattering the load of propagating a message through
an entire network, by the devices on that network, instead of overloading a
single device, such as the publisher in other scenarios. Figure 4.2 presents the
logarithmic growth of the average number of hops a message goes through
from emission to reception in WS-G, confirming that the gossip protocol
scales logarithmically with system size.

Figure 4.3 compares WS-RM and WS-G, with both none and 10% com-
munication losses. It can be seen that when there are no losses, the two
protocols start with a similar performance in terms of latency, but as the
number of targets increases the latency of WS-RM starts detaching from
WS-G and grows linearly from 6 to 130 milliseconds, whereas the latency of
WS-G remains under 10 milliseconds at all times. With 10% communication
losses, WS-G seems to be slightly affected as it suffers a negligible latency
increase of around 0.1 milliseconds throughout the entire series, whereas in
WS-RM latency also seems to increase linearly, but faster than without losses,
between 55 and 218 milliseconds, probably due to the occurrence of losses
and the increasingly overall impact of retransmission delays.

The effects of message losses on the latency of WS-RM are shown in
Figure 4.4. WS-RM (1% loss) and WS-RM (5% loss) are very close to the
baseline, suffering an increase in latency from around 0.3 to 3 milliseconds,
for WS-RM (1% loss), and between 15 and 27 milliseconds, for WS-RM (5%



4.1. GOSSIP RESULTS 81

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

devices

h
o
p
s

Figure 4.2: Average hops to delivery in WS-G.

loss). As mentioned previously for Figure 4.3, the latency of WS-RM (10%

loss) is largely increased compared to the baseline. WS-RM (20% loss) should

be stressed as an extreme case, where latency starts at 290 milliseconds for 10

devices, finishing at 450 milliseconds for 250 devices. This really shows the

limitations of WS-RM when dealing with a large amount of communication

failures.

The latency of the both gossiping scenarios can be seen in Figure 4.5, and

portrays the overhead introduced by the usage of aggregation. Comparing

both baseline scenarios, the increase in latency goes from 2 milliseconds for

10 devices, to 13 milliseconds for 250 devices, which can be considered as

a small price to pay to obtain aggregation capabilities in such a lightweight

protocol. For both gossiping scenarios the latency increases ever so slightly

throughout the series with the increase of communication losses, ranging

between 0.5 to 1.5 milliseconds, from WS-G (0% loss) to WS-G (20% loss),

and between 2.5 to 3.5 milliseconds, from AggWS-G (0% loss) to AggWS-G

(20% loss).

The latency on the various Multicast scenarios is depicted in Figure 4.6,

showing very small values which do not seem to be largely affected by the

increase on the number of devices on the network. However, the latency for

Multicast (0% loss), which remains around 0.7 milliseconds, is higher than

that of Multicast (1% loss), which remains around 0.6 milliseconds. The

series for the other scenarios diverge a little bit in behavior, but all seem

to indicate a trend for the latency to remain under the millisecond barrier,

which could be verified with further experiments.



82 CHAPTER 4. RESULTS

0 50 100 150 200 250

0

50

100

150

200

250

devices

m
s

WS-RM (0% loss)
WS-RM (10% loss)

WS-G (0% loss)
WS-G (10% loss)

Figure 4.3: WS-RM vs. WS-G (latency).

Figure 4.7 presents the message delivery rate for the Multicast scenario,
where, as predicted, the scenario without any communication losses achieves
100%, and the message delivery rate decreases as the communication error
rate increases. These values are, in average, 97%, for Multicast (1% loss),
89% for Multicast (5% loss), 80% for Multicast (10% loss) and 63% for Mul-
ticast (20% loss). The message delivery rate of the other scenarios is not
presented graphically since it is 100% both in WS-E and in WS-RM, and
in WS-G and AggWS-G, it is greater than 99,9% in all runs, and most fre-
quently 100%, even with 10% of communication losses, which corresponds to
the double of the expected 5% value, which was used to compute the fanout
parameter for these scenarios.

The presented results show the limitations of WS-Eventing when dealing
with multiple devices. As a publisher is obliged to maintain, or restart, a TCP
connection with each subscriber, this proves to be very resource consuming
as the latency increases very clearly with the number of subscribers. Another
evidence of these results, is the limitation of the applicability of Multicast to
faulty scenarios, as it cannot cope with and recover from any communication
error, albeit its high speed of delivery which can be essential in some cases.
Our intention to use WS-ReliableMessaging on top of UDP was to tolerate
communication failures, and expectations were that it would perform well.
However, the results show a different behavior: for small error rates, between
1% and 5%, or even 10%, the overhead introduced by resending the lost
messages in order to assure they are delivered to their destination, can be



4.1. GOSSIP RESULTS 83

0 50 100 150 200 250

0

100

200

300

400

500

devices

m
s

WS-RM (0% loss)
WS-RM (1% loss)
WS-RM (5% loss)
WS-RM (10% loss)
WS-RM (20% loss)

Figure 4.4: WS-RM (latency).

0 50 100 150 200 250

5

10

15

20

25

30

devices

m
s

WS-G (0% loss)
WS-G (1% loss)
WS-G (5% loss)
WS-G (10% loss)
WS-G (20% loss)

AggWS-G (0% loss)
AggWS-G (1% loss)
AggWS-G (5% loss)
AggWS-G (10% loss)
AggWS-G (20% loss)

Figure 4.5: Push (WS-G) vs. Aggregation Push (AggWS-G) (latency).



84 CHAPTER 4. RESULTS

0 50 100 150 200 250

0.6

0.8

1

1.2

devices

m
s

Multicast (0% loss)
Multicast (1% loss)
Multicast (5% loss)
Multicast (10% loss)
Multicast (20% loss)

Figure 4.6: Multicast (latency).

0 50 100 150 200 250

60

70

80

90

100

devices

%

Multicast (0% loss)
Multicast (1% loss)
Multicast (5% loss)
Multicast (10% loss)
Multicast (20% loss)

Figure 4.7: Multicast (message delivery rate).



4.2. CONSENSUS RESULTS 85

considered acceptable. However, for a 20% communication error rate, this

overhead is very large, varying between 284 and 320 milliseconds throughout

the series. From the comparison of WS-G with other scenarios, it becomes

clear that the performance of gossip protocols is not too much affected by

the increase on the number of destinations, demonstrating how well they

can scale. The results also show clear evidence of the intrinsic reliability

capabilities of gossip protocols, as their performance remains pretty much

the same, even in scenarios with a large amount of failures.

To conclude the analysis of the results, consider an environment with

n devices. Scenarios such as WS-E or WS-RM, where a single producer

is responsible for contacting all the devices, it will always have to send n
messages for each event, whereas gossip peers will send a number of messages

equal to its fanout, thus spreading the load throughout the network, which

results in a lower load on the producer for cases where n > f.

4.2 Consensus results

To evaluate the performance of Raft4WS, which was implemented using ver-

sion 2 beta 10 of the Web Services for Devices (WS4D) [WS4D] Java Multi

Edition DPWS Stack (JMEDS), we compared it with ZooKeeper in similar

scenarios with a single server, and three or five servers, to process the re-

quests of 1, 5, 10 or 25 clients. Five runs were executed for each scenario and

the average of their results is presented.

We have leveraged WS-Discovery’s inclusion on DPWS by having a test

manager listen to multicast announcements of clients and servers entering the

network, to determine if all the intervening components were up and running

in order to start the execution of test. Hence, the execution procedure of

each Raft test comprised the following steps:

1. The manager and the clients are started on the same machine.

2. Each server is then started on its own machine.

3. The manager waits until detecting that all the expected clients and

servers, for the current test, have been started. The manager will

then select the leader server and contact each client to inform about

it and also on the number of iterations to execute. The manager will

also inform each server about its state, if it is a leader or a follower,

its neighboring servers, and the value of the election timeout, which

is randomly selected from 150 to 300 milliseconds. After conveying

all the relevant parameters, the manager requests all servers to start



86 CHAPTER 4. RESULTS

running and waits for twice the value of the election timeout, before
subscribing to the event signaling the end of the workload on all the
clients. Afterwards, it requests the start of the workload on all clients.

4. The clients start running the specified iterations where they invoke the
InsertCommand operation on the leader server.

5. The clients terminate and notify the manager, which waits until all the
clients have notified it.

6. The manager informs all the clients and servers on the name of the file
they should write their run statistics to.

7. All clients and servers terminate after writing the statistics.

The effects of failing servers were also evaluated, until the maximum
number of tolerated failures, as the service should become unavailable in order
to guarantee its correctness. For this purpose, the manager was configured
to cause a failure at 500 milliseconds after the start of the workload, which
could be a follower or the leader in the scenarios with 3 servers. These
two scenarios will be hence forth identified by 1 Follower (1F) and 1 Leader
(1L), respectively. In the failure scenarios with 5 servers, a follower failure
is introduced at the same instant of time, i.e. 500 milliseconds, followed
by another failure, after another 500 milliseconds, which can be another
follower or the leader. These will be henceforth identified by 2 Followers
(2F) and 1 Follower 1 Leader (1F1L), respectively. The baseline scenarios,
when compared with the ones with failures, will be identified by 0 Errors
(0E) to better distinguish them.

In order to better compare the behavior of a client reconnecting to the
cluster after losing its current connection, we have mimicked the behavior of
the ClientCnxn class as provided in ZooKeeper. When a loss of connection
is detected, it waits during a period of time, whose dimension is randomly
generated until a maximum of 1 second, before attempting to connect to
another server.

We compared Raft4WS with version 3.4.5 of Apache ZooKeeper. The
configuration parameters used for all the settings were the following: a tick-
Time of 2000 milliseconds, which corresponds to ZooKeeper’s basic time unit
or heartbeat interval; an initLimit of 5, which means ZooKeeper servers have
5 ticks to connect to a leader; and a syncLimit of 2 ticks, which is the max-
imum delay of the state of a ZooKeeper server compared to the quorum’s
leader. The procedure for each ZooKeeper test was exactly the same as de-
scribed for the Raft4WS tests, with the exception of the interactions between



4.2. CONSENSUS RESULTS 87

the manager and the servers, since we did not want to modify the code of the
ZooKeeper servers. Hence, each ZooKeeper server was initialized through
the supplied zkServer bash script, and the test manager and the clients were
initialized after waiting for the time corresponding to the initLimit parame-
ter.

4.2.1 Experimental settings

The experimental evaluation of our implementation of the Raft protocol com-
pared to the Apache ZooKeeper was performed on six identical hosts con-
nected to the same LAN, with the following configuration: 64-bit Ubuntu
12.04.4 Linux, IntelR CoreTM i3-2100, 3.10GHz, 8GB RAM, 64-bit JavaTM

SE 1.6.0 27. One machine was exclusively used to run the manager and all
the clients, whereas each of the remaining machines was used to run a single
Raft4WS or Zookeeper server, in sets of 1, 3 or 5 servers according to the
tests’ settings.

Each client executed 120 iterations without any interval, where each it-
eration consists on invoking the insertion of a new command on the leader
server in the case of Raft4WS, or a randomly selected server in the case
of ZooKeeper, as it is the default behavior of the ZooKeeper client. Each
command contains a unique identifier, defined by each invoking client, as
well as the actual command and the corresponding parameters. The leader,
after receiving such a request, creates the corresponding entry on its log and
invokes the AppendEntries operation of Raft4WS on its known replicas, to
propagate the new entry. The leader will only respond to the client when
the majority of its replicas has replied successfully to this invocation. For
the execution of the Raft4WS tests, the selected state machine was the one
built using Berkeley DB.

In the case of ZooKeeper, the insertion of a command corresponds to the
creation of a file with the unique identifier as its name, with the command
and the parameters as its contents. The ZooKeeper server replies with the
full file path to the client. Before each run, all the created files were deleted,
in order to start with an empty file-system. For latency measurements, the
first and the last 10 iterations were discarded in order to minimize the effect
of Java JIT compilation, although it also masks the delay of TCP connection
establishment, whereas throughput takes into account all the 120 iterations,
where clients issued requests, and the time it took servers to process all of
them and to reply back.



88 CHAPTER 4. RESULTS

0 5 10 15 20 25

0

20

40

60

80

100

120

clients

m
s

R4WS(1S) ZK(1S)
R4WS(3S) ZK(3S)
R4WS(5S) ZK(5S)

Figure 4.8: Raft4WS vs. ZooKeeper (Latency).

0 5 10 15 20 25

200

400

600

800

clients

O
p
s
/
s R4WS(1S) ZK(1S)

R4WS(3S) ZK(3S)
R4WS(5S) ZK(5S)

Figure 4.9: Raft4WS vs. ZooKeeper (Throughput).



4.2. CONSENSUS RESULTS 89

4.2.2 Results and discussion

In Figure 4.8, the latency of all the scenarios grows linearly with the number

of clients, with the exception of Raft4WS with 5 servers, where latency seems

to increase exponentially from 10 to 25 clients, possibly, showing signs of

saturation of the cluster’s resources. The latency of the baseline scenario, i.e.
Raft4WS with a single server which corresponds to the non-replicated service,

is, as expected, noticeably inferior to the remaining scenarios, independently

of the number of clients. It is important to notice that the latency of the

various ZooKeeper scenarios, decreases as the number of servers increases.

Another important fact is that the latency of the Raft4WS scenarios with

both 3 or 5 servers is very similar and inferior to the corresponding ZooKeeper

scenario, with the exception of the case mentioned before, i.e., Raft4WS with

5 servers and 25 clients, which reaches an average of around 103 milliseconds.

Figure 4.9 shows the throughput in operations per second that the servers can

fulfill in the various scenarios, which is closely related with the latency values

depicted in Figure 4.8. Regarding the ZooKeeper scenarios, one can see that

the throughput increases with the number of servers, which supports the

known parallelism and high-availability capabilities of ZooKeeper, as clients

can be handled by any server of the cluster. On the other hand, as the

Raft protocol only allows the leader to satisfy client requests, which consist

in the insertion of commands in these tests, the scalability of this protocol

suffers from this limitation, as the leader can easily become overloaded since

it processes all the updates to the state machine, by propagating them to the

followers, and needs to respond to the connected clients.

The effects of a failed server, at 500 milliseconds, in a cluster with 3 servers

can be observed in Figure 4.10 and Figure 4.11. The average latency of the

ZooKeeper scenarios is always higher than in the corresponding Raft4WS

scenario, and, in all of them, it increases linearly with the number of clients.

In terms of throughput, it seems to increase linearly in the ZooKeeper scenar-

ios opposed to the Raft4WS ones, where a peak is reached in the runs with

10 clients, with the throughput decreasing slightly or stabilizing afterwards,

which seems to show that the plateau of the processing capabilities of the

leader has been reached.

The failure of a ZooKeeper server, always increases latency, reducing

throughput consequently. Whereas the failure of a follower only deteriorates

the performance slightly, from 2 to 5 milliseconds in latency and from 10 to

30 operations per second in throughput, the failure of the leader introduces

a penalty of 20 to 30 milliseconds in latency and of 70 to 120 operations per

second in throughput.

The effects of a failed Raft4WS server vary. Scenarios with a failed fol-



90 CHAPTER 4. RESULTS

0 5 10 15 20 25

20

40

60

80

clients

m
s

R4WS(0E) ZK(0E)
R4WS(1F) ZK(1F)
R4WS(1L) ZK(1L)

Figure 4.10: Raft4WS vs. ZooKeeper with 3 servers and a failure at 500 ms

(Latency).

0 5 10 15 20 25

0

200

400

600

clients

O
p
s
/
s R4WS(0E) ZK(0E)

R4WS(1F) ZK(1F)
R4WS(1L) ZK(1L)

Figure 4.11: Raft4WS vs. ZooKeeper with 3 servers and a failure at 500 ms

(Throughput).



4.2. CONSENSUS RESULTS 91

lower have better performance than the baseline, with latency decreasing
between 1 and 5 milliseconds, and increasing throughput between 5 and 90
operations per second, except for 5 clients, where it is slightly worse. This
can be explained by the smaller number of messages that the leader needs
to send, as it only needs to contact a single follower, instead of two as in the
baseline. The scenario with the failed leader implies that all clients connect
to the newly elected leader, to fulfill its requests, having worse performance,
as occurs more distinctively for 1 and 5 clients, and in a smaller degree for
10 clients. For 25 clients, its performance is better than the baseline, which
can be explained with the same phenomenon caused by a failed follower, i.e.,
as the leader is killed, a follower will eventually be elected as the new leader,
which will need to contact the single follower remaining in the cluster, hence
issuing a smaller number of messages. This will certainly counterbalance
the penalty introduced by the failure of the leader, which causes clients to
connect to the new leader.

0 5 10 15 20 25
0

20

40

60

80

100

clients

m
s R4WS(0E) ZK(0E)

R4WS(2F) ZK(2F)
R4WS(1F1L) ZK(1F1L)

Figure 4.12: Raft4WS vs. ZooKeeper with 5 servers and two failures at 500
and 1000 ms (Latency).

Figure 4.12 and Figure 4.13 portray the influence of 2 failed servers, a fol-
lower at 500 milliseconds, and another follower or the leader at 1000 millisec-
onds, in a cluster with 5 servers, reaching the maximum number of tolerated
failures. As in the cluster of 3 servers, the average latency of the ZooKeeper
scenarios is always higher than the corresponding Raft4WS scenario, which
increases linearly with the number of clients in all the scenarios. The only
exception, as mentioned previously in the comments to Figure 4.8 and Fig-
ure 4.9, was the baseline Raft4WS scenario with 25 clients.



92 CHAPTER 4. RESULTS

0 5 10 15 20 25
0

100

200

300

400

500

clients

O
p
s/

s R4WS(0E) ZK(0E)
R4WS(2F) ZK(2F)

R4WS(1F1L) ZK(1F1L)

Figure 4.13: Raft4WS vs. ZooKeeper with 5 servers and two failures at 500
and 1000 ms (Throughput).

Failed ZooKeeper servers always introduce a performance penalty, due to
the need of clients, that were connected to the failing server, to reconnect
to a different one in order to invoke their requests, in both failure scenarios.
Latency increases between 4 and 17 milliseconds, and throughput decreases
between 9 and 31 operations per second, in the 2F scenario. The 1F1L sce-
nario introduces an aggravated penalty, as latency is around 30 milliseconds
higher and the throughput decreases between 20 and 130 operations per sec-
ond compared to the baseline.

The effects of failed servers in a Raft4WS cluster with 5 servers vary in
a similar way to what was observed for 3 servers. The failure of 2 follow-
ers improves the performance, by reducing ever so slightly the latency, and
increasing the throughput between 2 to 40 operations per second, with the
exception of 25 clients, where the cluster is clearly saturated in the baseline,
which worsens its overall performance dramatically. This same setting for the
baseline is the only one where the 1F1L scenario has a better performance
than the baseline. On the rest of the settings, the 1F1L introduces an over-
head varying from 9 to 16 milliseconds in terms of latency and a reduction
of around 50 to 180 operations per second in throughput.

To sum it all up, the performance of Raft4WS is always better than that of
ZooKeeper in similar settings, with the exception of Raft4WS with 5 servers,
which shows signs of resources saturation. However, Figure 4.9 shows a trend
where the throughput of ZooKeeper is still increasing, which could continue
past the maximum tested 25 clients, whereas the throughput of Raft4WS



4.2. CONSENSUS RESULTS 93

clusters seems to have stagnated around 430 operations per second. Albeit

allowing clients to connect to followers, hence sharing the load of processing

their requests, by propagating them to the quorum and answering back to

clients, ZooKeeper suffers more from failed followers, as the clients connected

to a failed follower will need to connect to another server in the quorum to

invoke subsequent requests. On the contrary, the performance of Raft4WS

increases in a similar failure scenario, as the leader needs to contact a smaller

number of followers and the clients will only need to reconnect when the

leader fails. The failure of the leader causes an additional aggravation of the

performance, as in Raft4WS it leads to clients reconnecting to the new leader,

and in ZooKeeper, the service becomes unavailable until the new leader has

been elected, and only then the clients will be able to reconnect to a server

in the cluster.



94 CHAPTER 4. RESULTS



Chapter 5

Case study

Smart Grids (SG) have been introducing a paradigm change in electric power
system with the objective of enhancing the integration of renewables and
promoting the generalized participation of different entities. Unprecedented
research initiatives have been established with the purpose of addressing
the architectural and technological aspects of power, information and com-
munications systems [IEEE Guide for SG Interoperability, 2011; NIST SG
Interoperability Standards, 2010], but important challenges in interoperabil-
ity, reliability, and scalability need to be addressed before the Smart Grid
vision can be fulfilled. The sheer scale of the electric grid and the criti-
cality of the communication among its subsystems for proper management,
demands a scalable and reliable coordination framework able to work in an
heterogeneous and dynamic environment. The SG concept includes different
visions and strategies that allow the modernization of the electric industry
in order to ensure high levels of adaptability, scalability, security, economy,
self-healing, robustness and protection in highly dynamic systems [Ipakchi
and Albuyeh, 2009].

SG embody the future of the power grid because of the associated benefits,
such as the reduction of carbon emissions and fuel costs, transmission losses,
increased reliability to power failures, and deferral of investments, among
others. Distributed Energy Resources (DER) are becoming widespread in
power grids, in different segments of the power system, and require monitor-
ing and control schemes to allow their enhanced participation in both market
and system services.

The role of Information and Communication Technologies (ICT) in SG is
gaining importance since it represents the underlying support infrastructure
that allows the necessary information exchange towards the integration of
different participants while supporting a diversified set of applications and
services. As such, the need to provide full interoperability between diverse

95



96 CHAPTER 5. CASE STUDY

current and future energy and non-energy systems, along with seamless dis-
covery and configuration of a large variety of networked devices, ranging from
the resource constrained sensing devices to servers in data centers, requires
a suitable ICT system, which an implementation-agnostic Service Oriented
Architecture. To achieve the complete integration of the various systems
that compose the SG, a general ICT solution will need, among others, to:
achieve the necessary interoperability between largely disparate devices; be
scalable, in order to cope with the continuously increasing number of devices
on the grid; and be highly reliable to support the operational requirements
introduced by the SG.

Peer-to-peer communication and coordination protocols based on gossip-
ing have been proposed to address scalability and reliability issues in SG,
namely for secondary and tertiary control on a microgrid [De Brabandere
et al., 2007], or for disseminating load shedding notification or aggregating
metering data using the Automated Metering Infrastructure (AMI) [Krkoleva
et al., 2011a]. However, reconciling such protocols with existing systems and
paving the way for their long term maintenance and evolution is an open
problem. On the other hand, Web Services in general, and the Devices Pro-
file for Web Services (DPWS) [DPWS] in particular, can have an important
role in SG [Karnouskos, 2012], as it provides several of the required features
for an Energy SOA, by supporting dynamic, adaptive and auto-configurable
architectures, and by embracing the heterogeneity on this environment, thus
achieving full interoperability with energy systems based on the main stan-
dards and models [Schmutzler et al., 2011], as well as with other systems.
However, the DPWS stack has only very limited support for peer-to-peer
communication, assuming central coordination components. We thus pro-
pose to use a framework that provides gossip based dissemination and co-
ordination as well as service replication built on top of Web Services, more
precisely on DPWS, within the SG context, as it reconciles the reliability
and scalability of Peer-to-Peer systems, with the industrial standard inter-
operability of Web Services. This framework allows taking full advantage
of existing standards, including current devices, while paving the way for
evolving to a decentralized peer-to-peer service architecture with replication
capabilities that can be tuned according to each scenario’s requirements.

5.1 Proposal

In order to evaluate qualitatively both services that comprise the proposed
framework, we consider a simplified architecture of a Smart Grid (SG) fo-
cusing on the communications infrastructure depicted in Fig. 5.1. Briefly,



5.1. PROPOSAL 97

IS

SSC

WAN

FAN

SSC SSC

FAN FAN

SM SM SM SM SM

HAN
IED

IED IED

IED

IED

IS - Information Systems
SSC - Secondary Substation Controller
SM - Smart Meter
IED - Intelligent Electronic Device
WAN - Wide Area Network
FAN - Field Area Network
HAN - Home Area Network

Figure 5.1: Overview of a simplified Smart Grid architecture.

the Information Systems (IS) of the utility are the main point for controlling
and monitoring the entire grid, by retrieving data and issuing commands to
other devices in the grid, such as Secondary Substation Controllers (SSC),
normally connected to a Wide Area Network (WAN). SSC are installed in
electric distribution transformers, and are equipped with sensors and actua-
tors for monitoring the grid’s conditions while enabling remote control. As
previously mentioned, SSC interact with the IS, normally to report metrics
or anomalies on the grid, and with Smart Meters (SM), connected to the
same Field Area Network (FAN), to notify them on tariff changes or ser-
vice perturbations. Smart Meters interface with customers, as well as with
their appliances or Intelligent Electronic Devices (IED) through the Home
Area Network (HAN), to convey relevant information such as metering and
maintenance warnings.

Different types of data and scenarios inside a SG have different require-
ments, namely in terms of maximum allowed communications latency, and
service availability. Protective relaying, status monitoring, and substation
SCADA communications endure latency values as high as a few milliseconds
to seconds or even minutes, but the loss of messages of these types is not
tolerated due to their criticality to the SG operation [Li et al., 2012; Rua



98 CHAPTER 5. CASE STUDY

et al., 2011]. Gossip protocols can be of particular importance in such set-
tings, which are stricter in terms of message delivery assurance compared to
message latency, as the message delivery assurance of these protocols largely
outweighs the overhead of the additional traffic. Consensus protocols allow
the usage of replication to allow services that are essential to the functioning
of the SG to remain available, even in the case that some of its instances fail.

Our proposal to address the scalability and reliability challenges raised by
the heterogeneity of the components of the SG, and its complex nature, is to
use a Web Services framework for gossip-based dissemination and consensus-
based fault tolerance. The inherent scalability and reliability of gossip proto-
cols allows the usage of SOAP-over-UDP even if reliable delivery is desired,
since it is much less resource consuming than a full-fledged HTTP binding
over TCP. Moreover, by assuming the Web Services infrastructure based on
the Devices Profile for Web Services (DPWS), we take advantage of each
gossiped unit of data being a SOAP envelope, of the self-documenting na-
ture of services through WSDL, and of useful base protocols and standards
such as WS-Discovery and WS-Policy. Since DPWS does not offer any fault
tolerance capability, it is necessary to resort to consensus protocols to ensure
service availability and correctness. Hence, the proposed framework builds
upon DPWS to promote interoperability among largely heterogeneous de-
vices, from top of the range mainframes to small IED running completely
different operating systems, and it is composed by three services, gossip,
peer and consensus. The Gossip Service relies on gossip for disseminating
messages, whereas the Peer Service provides information on the services and
devices that are currently on the network. This information can then be used
to build and enforce logical overlays on top of the SG’s components, in order
to guarantee communication among all of them. Gossip Service instances
rely on this service to obtain the list of targets for disseminating messages.
The Consensus Service is based on the Raft protocol, which incorporates the
distributed state machine approach allowing the replication of commands to
several instances of a service, in order to increase its availability.

5.2 Application scenarios

The usage of the proposed framework is illustrated in three specific scenar-
ios: propagation of simple information, retrieval of distributed metrics, and
propagation of important configurations. The first scenario focuses on the
scalable dissemination capabilities of the framework, whereas the second one
demonstrates its data aggregation capabilities, and the third focuses on the
replication capabilities of the framework.



5.2. APPLICATION SCENARIOS 99

IS

SSC

WAN

FAN

SSC SSC

FAN FAN

SM SM SM SM SM

HAN
IED

IED IED

IED

IED

IS - Information Systems
SSC - Secondary Substation Controller
SM - Smart Meter
IED - Intelligent Electronic Device
WAN - Wide Area Network
FAN - Field Area Network
HAN - Home Area Network
GS - Gossip Service
PS - Peer Service

GS PSGS PSGS PS

GS PS

GS PSGS PSGS PS GS PS GS PS

GS

Figure 5.2: Overview of message dissemination using the proposed framework

in a simplified Smart Grid architecture.

5.2.1 Propagation of simple information

On the first scenario, portrayed in Figure 5.2, assuming a dynamic tariff,

where energy overproduction can lead to significant reduction of prices, these

variations must be advertised to all the clients in order to adapt energy

consumption accordingly, thus stabilizing the network by better matching

the demand to the supply of energy.

The usage of dynamic price tariff schemes through AMI systems allows

utilities to take advantage of operational scenarios to shape the participation

of customers, by setting more, or less, attractive tariffs to them, while guar-

anteeing a stable and normal operation of the power system [Morgan et al.,

2009]. The AMI comprises two-way communication between the utility’s

systems and SM, allowing the conveyance of information in both directions.

These tariff modifications will then flow from the utility’s IS to all the cus-

tomers through their own SM or even through some other IED. We will

focus on how these communications can occur using our framework in such

a scenario.



100 CHAPTER 5. CASE STUDY

When a utility decides to set lower price tariff through its IS, this infor-
mation is then encapsulated in a push gossip message which is disseminated
to the target SSC retrieved from the Peer Service deployed at the IS node.
The Gossip Service instance of the targets, upon reception of the message,
decrements the value of rounds r and retransmits the message to the target
nodes that its Peer Service instance proposes, which could be other SSC,
reachable through the WAN, or SM, reachable through the FAN to which
the sending SSC is connected. When a SM receives the message, the Gos-
sip Service instance behaves in a similar fashion to the one in the SSC, i.e.,
it retransmits it to targets provided by the Peer Service instance. This in-
stance can be located at the Smart Meter or at any other reachable node.
The targets can vary from other SM, connected to the same FAN, to IED
connected to the same HAN, that can range from controllable appliances to
Renewable Energy Sources (RES). IED can then adapt their operating mode
according to the received information of the tariff scheme. For instance, by
analyzing the price reduction and the corresponding period, HVAC can in-
crease its consumption to better suit the consumer’s temperature preferences,
while dishwashers and washing machines can anticipate their washing cycles,
among other possibilities. In parallel with the retransmission of the message
to the designated targets, the Gossip Service instance of the SM can present
the notification on tariffs reduction in a local display or forward it to some
other device, as configured by the customer, like a smartphone or a tablet.

5.2.2 Retrieval of distributed metrics

On the second scenario, in order to achieve better future power production
planning, each consumer’s SM can announce the energy requirements of the
connected IED for a specific time frame, and this information will then be
aggregated from level to level until reaching the utility’s IS, as depicted in
Figure 5.3.

The proposed framework is then used to collect metrics from different
points of the SG in order to plan power production according to the an-
nounced energy requirements. For instance, charging of electric vehicles, and
the usage of high power consumption appliances, such as dishwashers, are
configured to occur during nighttime, when tariffs are usually lower. Period-
ically, the central IS invokes the Pull Aggregation operation on SSC, which,
in their turn, invoke the same operation on the target SM designated by
their Peer Service. A SM, upon reception of such a request, propagates the
same request to the IED pointed by the Peer Service in the HAN. Each of
these IED, if configured to perform some scheduled task, will respond with
the energy requirements to execute these tasks, their duration, and the time



5.2. APPLICATION SCENARIOS 101

IS

SSC1

WAN

FAN

SSC2 SSC3

FAN FAN

SM SM1 SM2 SM3 SM

HAN
IED1

IED2 IED3

IED5

IED4

IS - Information Systems
SSC - Secondary Substation Controller
SM - Smart Meter
IED - Intelligent Electronic Device
WAN - Wide Area Network
FAN - Field Area Network
HAN - Home Area Network
GS - Gossip Service
PS - Peer Service

GS PSGS PSGS PS

GS PS

GS PSGS PSGS PS GS PS GS PS

GS

Agg
(SM1:SM3)

Agg
(SSC1:SSC3)

Agg
(IED1:IED5)

Figure 5.3: Overview of message aggregation using the proposed framework

in a simplified Smart Grid architecture.

by which they should be finished. The SM will then aggregate this informa-

tion for the entire household, after waiting for responses from IED until a

certain number of responses arrives or a certain timeout elapses, according

to configured preferences. The aggregated information will combine all the

power requirements pointed by the IED for the three 8 hour time periods

which divide the day. For simplification purposes, we will consider that all

the energy needs for each of these periods will be simply added in order

to produce the aggregate information at the SM. Each SSC will then receive

the aggregate responses from the previously contacted SM, and again, having

waited according to configured preferences, will aggregate those responses in

a single message sent back to the IS. The IS will then process this message

and assess what are the announced energy requirements and plan the energy

generation according to the demand for the next periods.



102 CHAPTER 5. CASE STUDY

IS

SSC

WAN

FAN

SSC SSC

FAN FAN

SM SM SM SM SM

HAN
IED

IED IED

IED

IED

IS - Information Systems
SSC - Secondary Substation Controller
SM - Smart Meter
IED - Intelligent Electronic Device
WAN - Wide Area Network
FAN - Field Area Network
HAN - Home Area Network
GS - Gossip Service
PS - Peer Service
CS - Consensus Service

GS CSGS CSGS CS

GS CS

GS PSGS PSGS PS GS PS GS PS

GS

Figure 5.4: Overview of command replication using the proposed framework

in a simplified Smart Grid architecture.

5.2.3 Propagation of important configurations

The third scenario, illustrated in Figure 5.4, assuming that the IS sets a new

value for the grid’s operating voltage, which must be replicated to all the

SSC in order to stabilize the operation of the SG.

This scenario exercises the service correctness abilities of the proposed

framework, through the usage of the Consensus Service to ensure that all

its instances apply the same command, which in this case is the setting of

a new value for the operating voltage of the SG, which could be necessary,

for instance, to compensate some disturbance probably due to a generator

malfunction or failure. When this parameter is modified in the Consensus

Service instance of the IS, which can be considered as the leader for simpli-

fication purposes, the corresponding command is processed, by appending it

to the log, and then forwarded to its known followers, namely the instances

of the Consensus Service hosted by the SSC. According to the used Consen-

sus Protocol, the followers process the command and respond to the leader

with the status of that processing. When the leader receives a majority of



5.3. RELATED WORK 103

successful responses from the followers, the new command is applied to the
state machine and this fact is conveyed to the followers, so they can replicate
this modification, in order to achieve service consistency. In this way, all the
correct Consensus Service instances ensure the configuration of a new value
for the voltage parameter through the described communications which are
illustrated in Figure 5.4.

5.3 Related work

The smart metering infrastructure typically is a hierarchical architecture
composed by three layers [Karnouskos, 2012], which are, from the base to
the top of the hierarchy: the meter layer that corresponds to the actual me-
ters or to Intelligent Electronic Devices (IED) with similar capabilities, i.e.
can measure the amount of energy that is consumed or produced; the con-
centrator layer, where concentrators aggregate measurements from IED on
the meter layer and send it to the metering data system (MDS); the metering
data management layer, where the analysis and management of the gathered
metering data is performed, for instance for billing, forecasting and other
purposes.

Various approaches on smart metering target a 15 minute resolution,
which can be considered a metering of high density [Karnouskos, 2012], while
others are more ambitious and assume that every electric meter generates a
message every second and transmits it to the connected feeder or distribution
substation [Aggarwal et al., 2010]. This level of detailed information and
interaction allows better monitoring of all the online assets and better control
of power generation, as it can be adjusted to better suit the demand.

It has also been shown that DPWS is suitable for smart meters communi-
cation [Karnouskos and Izmaylova, 2009], but for a large amount of devices,
in the region of some thousands, an hierarchically structured communication
does not cope well with the generated traffic [Karnouskos et al., 2011]. Ei-
ther way, a DPWS-enabled smart meter device would prove its usefulness
by rendering its functionalities accessible through Web Services, which can
be dynamically discovered by interested client applications or devices. This
allows heterogeneous devices, mostly still to be deployed in the future, to
interact with the smart meter to better adapt their energy consumption and
integrate the future smart grid without major impacts in terms of software
maintenance.

Another approach to Smart Grid’s problems based on Web Services is
WS-SCADA [Chen et al., 2006], which addresses integration needs of clients,
applications, utilities and market participants, by accommodating all their



104 CHAPTER 5. CASE STUDY

information needs of all participants and adapting to dynamic changes at

both system and business level. The proposed open, flexible and scalable in-

frastructure for information integration includes two Web Services protocol

stacks, for a control center and a substation, and both share with DPWS

a lot of similarities in their composition, as well as its Achilles’ heel, com-

munication disruption due to network and service failures. For instance,

the WS-Discovery protocol provides Plug-and-Play features for IED allow-

ing substations to locate them and their services. WS-Eventing can be used

by substations to receive notifications from IED, and by control centers to

notify substations on control messages or to be notified on status informa-

tion and real–time operation data of substations, such as voltage, current,

breaker status, and phasor measurements.

Gossip protocols can be used to disseminate important information in the

Smart Grid (SG), for instance, load shedding notifications, or metering data

aggregation [Krkoleva et al., 2011a,b]. However, limiting epidemic dissemi-

nation to a single pairwise interaction per node in each cycle leads to large

dissemination times. The more traditional approach, where each gossiping

node contacts various of its neighbors in parallel would prove to be useful in

the majority of the SG scenarios.

Gossip protocols can also be used to implement secondary and tertiary

control in microgrids, with the aim of improving power quality and optimizing

generation costs [De Brabandere et al., 2007; Vanthournout et al., 2005]. A

gossip aggregation protocol can be used to calculate the average of voltage

and frequency deviations measured at Distributed Energy Resources (DER)

units, which can then be added to the reference active and reactive power

in order to stabilize the network, by decreasing the deviations. To optimize

distributed generation costs, each DER unit periodically contacts a random

neighbor in order to harmonize their marginal cost functions. Such scenarios

could benefit from more advanced aggregation strategies, in order to decrease

the number of communication interactions between the DER units.

5.4 Summary

The implementation of Smart Grids is highly supported by Information and

Communication Technologies, integrating different computing and network-

ing elements which are present in the multitude of systems composing current

and future power grids.

In this chapter, we have shown how this challenge can be addressed by in-

stantiating the proposed flexible service framework. In short, it builds first on

gossip based communication variants providing probabilistic message delivery



5.4. SUMMARY 105

guarantees as well as proactive reliability, and improves service availability
and correctness through consensus-based fault-tolerance. Secondly, we lever-
age the Devices Profile for Web Services, which allows communications based
on Web Services between resource constrained devices and mainframes, au-
tomatic detection of the devices present on the network and easy integration
of new devices.

The main contribution of our work is showing how simple peer-to-peer
primitives, for gossiping and membership management, when properly inte-
grated in a service framework, are a powerful foundation for different commu-
nication and coordination applications. The same goes with the integration
of a generic consensus protocol in the same service framework, which further
increases the achieved reliability, beyond communications, into the service
execution. This flexibility is key in infrastructures such as Smart Grids,
whose current deployments are expected to last for a long period of time
and to evolve as new technologies are integrated and new requirements are
addressed.



106 CHAPTER 5. CASE STUDY



Chapter 6

Conclusions

The Devices Profile for Web Services (DPWS) specification has enabled re-
source constrained devices to interact through Web Services, but does not
provide any built-in fault tolerance mechanism. While using this specifica-
tion, the occurrence of a stoppage in lengthy operations with many inter-
veners, namely due to communication or service faults, means they cannot
be resumed. This type of events can be catastrophical if critical steps, such
as urgent alerts or commands, are interrupted. To prevent its occurrence,
scalable lightweight coordination and replication protocols were built upon
DPWS, in order to ensure service dependability. However, the usage of these
protocols must ensure that the modularity and interoperability of the existing
services is not modified in any way. Thus, the expansion of Service-Oriented
Computing to largely heterogeneous environments, namely comprising less
powerful devices, introduced some issues in terms of service integration, such
as reliable communication and service correctness. Information dissemina-
tion in the context of Service-Oriented Architectures involving large numbers
of connected devices poses a set of challenges that are not adequately met
with traditional approaches.

To address them, we propose the usage of gossiping at an architectural
level instead of either relegating the information dissemination problem to
black box middleware or coping with the limitations of heavyweight coordi-
nation protocols and their assumptions of buffering and transactional logs
for reliability. Gossiping has several advantages in this context, as a variety
of protocols can be achieved with minimal complexity and provide strong
guarantees of reliable and atomic dissemination. These include both one-to-
many and many-to-many dissemination, as well as many-to-one aggregation
queries. In contrast to previous approaches [Renesse et al., 2003], our pro-
posal integrates seamlessly in a DPWS environment, being compatible with
existing devices. By implementing the proposed architecture on the WS4D

107



108 CHAPTER 6. CONCLUSIONS

JMEDS stack, we show that the performance of a one-to-many operation
using gossip improves on bare SOAP-over-UDP, included in DPWS, both on
latency and fault tolerance, while offering additional flexibility and resilience.

With the aim of increasing the reliability of lightweight middleware ar-
chitectures based on DPWS, a Web Services framework was proposed, which
comprises WS-Gossip, to enable efficient and reliable message dissemina-
tion, and Raft4WS, a consensus service that guarantees fault tolerance at
the service level. This framework was evaluated quantitatively with micro-
benchmarks and qualitatively with a case study in order to illustrate its
utility. WS-Gossip has proved to be very resource efficient and reliable, even
in the presence of communication faults, when compared with other commu-
nication protocols, achieving in most scenarios a smaller time for dissemi-
nating messages, and it additionally provides aggregation capabilities which
reduces the number of exchanged messages. WS-Gossip also provides useful
message exchange patterns such as many-to-one or one-to-may on heteroge-
neous environments, where Web Services specifications for reliable messaging
are limited to point-to-point communication and show interoperability issues.

From the presented results, we can conclude that Raft4WS is suitable
for small scale Web Services scenarios, with a limited number of clients
and servers, performing better than Apache ZooKeeper on these settings
by achieving better throughput and lower latency. Moreover, the usage of
DPWS provides a confident basis for the adoption of such a system to provide
consensus in scenarios with largely heterogeneous devices, where churn could
be overcome by the Ad-Hoc mode of WS-Discovery. In scenarios with more
concurrency, i.e. more clients and requests, Apache ZooKeeper clusters have
the upper hand, expressed in the superior throughput which increases with
the size of the cluster and seems to have not yet reached the saturation point,
contrarily to Raft4WS. Furthermore, it is possible to conclude that the over-
head introduced by the usage of the proposed framework, when compared to
existing middleware platforms, is reasonable and this impact is made up by
the improvements arising from the usage of Service-Oriented Architectures,
namely in terms of modularity.

In comparison to WS-PushGossip and WS-Membership, which build upon
the WS-Coordination standard, the proposed services are better suited for
devices and their inherent limitations, due to their scarce resource consump-
tion and their ability to leverage standards included in DPWS. While WS-
PushGossip only provides eager push dissemination, the proposed frame-
work can provide additional variants of gossip dissemination. Moreover, WS-
Membership implies that specific monitoring agents are capable of assessing
the availability of services with specific mechanisms, whereas the presented
framework relies on WS-Discovery for the same purpose.



6.1. FUTURE WORK 109

6.1 Future work

In the future of the proposed framework stand some prospects regarding its

usefulness, namely in the increasing adoption of the Internet of Things in

several environments, from houses to enterprises and industries, which has

been enabled by the Devices Profile for Web Services (DPWS). To integrate

heterogeneous devices in houses, the usage of DPWS has already been ex-

emplified in the Smart Grid [Karnouskos, 2012; Karnouskos and Izmaylova,

2009], and the proposed framework can leverage that experience to provide

reliable services and communication, as proposed in the case study. The

integration of devices in enterprise and manufacturing systems introduces a

greater level of automation and cost reduction, as communication becomes

more transparent and direct without the need of translation between differ-

ent system layers, as previously provided by third party solutions and device

drivers, which now have become obsolete [Karnouskos et al., 2009; Spiess

et al., 2009].

This research has not focused on the security aspects of the proposed

framework in any way. Hence, a complete analysis to the security from

both the service and communication perspectives of the framework should be

performed to eliminate any safety issues regarding its usage in real scenarios.

Further developments on both WS-Gossip and Raft4WS can be made, for

instance, by using the Efficient XML Interchange (EXI) format, which can

improve the performance of this framework, through the reduction of both

the size of the exchanged messages, consequently decreasing used bandwidth,

and the time expended to process messages [Jammes et al., 2011].



110 CHAPTER 6. CONCLUSIONS



Bibliography

IEEE Standards Coordinating Committee 21. IEEE Guide for Smart Grid
Interoperability of Energy Technology and Information Technology Oper-
ation with the Electric Power System (EPS), End-Use Applications, and
Loads. IEEE Std 2030-2011, pages 1–126, Sept 2011. (Cited on page 95.)

Amit Aggarwal, Swathi Kunta, and Pramode K. Verma. A Proposed Com-
munications Infrastructure for the Smart Grid. In Proceedings of the
first IEEE PES Conference on Innovative Smart Grid Technologies (ISGT
2010), pages 1–5, Jan 2010. (Cited on page 103.)

Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web
Services: Concepts, Architectures and Applications. Springer-Verlag Berlin
Heidelberg, 2004. (Cited on pages 14, 15, 16, and 57.)

Hussein Badakhchani. Introduction to RosettaNet. http://web.archive.
org/web/20070807130129/http://dev2dev.bea.com/pub/a/2004/12/
RosettaNet.html, 6 December 2004. (Cited on pages 15 and 57.)

Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu,
and Yaron Minsky. Bimodal Multicast. ACM Transactions on Computer
Systems, 17(2):41–88, May 1999. (Cited on pages 32, 37, and 67.)

BTP. OASIS Business Transaction Protocol (BTP) Committee Specifi-
cation 1.0. http://www.oasis-open.org/committees/download.php/
1184/2002-06-03.BTP_cttee_spec_1.0.pdf, 3 June 2002. (Cited on
page 16.)

Luis Felipe Cabrera and Chris Kurt. Web Services Architecture and Its Speci-
fications: Essentials for Understanding WS-*. Microsoft Press, Richmond,
USA, 9 February 2005. (Cited on page 20.)

Nuno A. Carvalho, João Bordalo, Filipe Campos, and José Pereira. Ex-
perimental Evaluation of Distributed Middleware with a Virtualized Java
Environment. Proceedings of the 6th Workshop on Middleware for Service

111

http://web.archive.org/web/20070807130129/http://dev2dev.bea.com/pub/a/2004/12/RosettaNet.html
http://web.archive.org/web/20070807130129/http://dev2dev.bea.com/pub/a/2004/12/RosettaNet.html
http://web.archive.org/web/20070807130129/http://dev2dev.bea.com/pub/a/2004/12/RosettaNet.html
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf


112 BIBLIOGRAPHY

Oriented Computing (MW4SOC 2011), pages 1–7, Oct 2011. (Cited on
page 77.)

Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance.
In Proceedings of the Third Symposium on Operating Systems Design and

Implementation (OSDI ’99), pages 173–186, February 1999. (Cited on
page 29.)

Hua Chai, Honglei Zhang, Wenbing Zhao, P. Michael Melliar-Smith, and
Louise E. Moser. Toward Trustworthy Coordination of Web Services Busi-
ness Activities. IEEE Transactions on Services Computing, 6(2):276–288,
April 2013. (Cited on page 29.)

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–267, March
1996. (Cited on pages 39, 41, 43, and 46.)

Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The Weakest
Failure Detector for Solving Consensus. Journal of the ACM, 43(4):685–
722, July 1996. (Cited on pages 39, 43, and 44.)

Qizhi Chen, Hamada Ghenniwa, and Weiming Shen. Web-Services Infras-
tructure for Information Integration in Power Systems. In IEEE Power En-

gineering Society (PES) General Meeting, 2006, 2006. (Cited on page 103.)

Cover Pages WS-CAF. Web Services Composite Application Framework
(WS-CAF) for Transaction Coordination. http://xml.coverpages.org/
ni2003-07-29-a.html, 29 July 2003. (Cited on page 21.)

Karel De Brabandere, Koen Vanthournout, Johan Driesen, Geert Deconinck,
and Ronnie Belmans. Control of Microgrids. In IEEE Power Engineering

Society (PES) General Meeting, 2007, pages 1–7. IEEE, June 2007. (Cited
on pages 96 and 104.)

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic
algorithms for replicated database maintenance. In Proceedings of the

6th Annual ACM Symposium on Principles of Distributed Computing

(PODC’87), pages 1–12. ACM, 1987. (Cited on page 32.)

DPWS. Devices Profile for Web Services (DPWS) 1.1 OASIS Standard.
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.
1-spec-os.html, 01 July 2009. (Cited on pages 9 and 96.)

http://xml.coverpages.org/ni2003-07-29-a.html
http://xml.coverpages.org/ni2003-07-29-a.html
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html


BIBLIOGRAPHY 113

Thomas Erl. Service-Oriented Architecture: A Field Guide to Integrating

XML and Web Services. Prentice Hall/PearsonPTR, 2004. (Cited on
page 26.)

Thomas Erl. Service-Oriented Architecture: Concepts, Technology and De-

sign. Prentice Hall/PearsonPTR, August 2005. (Cited on page 26.)

Patrick T. Eugster, Rachid Guerraoui, Sidath B. Handurukande, Petr
Kouznetsov, and Anne-Marie Kermarrec. Lightweight Probabilistic Broad-
cast. ACM Transactions on Computer Systems, 21(4):341–374, November
2003. (Cited on page 37.)

Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent
Massoulié. Epidemic Information Dissemination in Distributed Systems.
IEEE Computer, 37(5):60–67, May 2004. (Cited on pages 31, 33, 35, 36,
37, 59, and 79.)

Donald F. Ferguson, Tony Storey, Brad Lovering, and John Shewchuk.
Secure, Reliable, Transacted Web Services:Architecture and Compo-
sition. https://msdn.microsoft.com/en-us/library/ms996535.aspx,
September 2003. (Cited on pages 24 and 25.)

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility
of distributed consensus with One Faulty Process. Journal of the Asso-

ciation for Computing Machinery, 32(2):374–382, April 1985. (Cited on
pages 39 and 50.)

David Gregorczyk. WS-Eventing SOAP-over-UDP Multicast Extension. Pro-

ceedings of the 9th IEEE International Conference on Web Services (ICWS

2011), pages 660 – 665, July 2011. (Cited on page 57.)

Rachid Guerraoui and Michel Raynal. A Generic Framework for Indul-
gent Consensus. Proceedings of the 23rd International Conference on Dis-

tributed Computing Systems (ICDCS 2003), pages 88–95, May 2003. (Cited
on pages 39, 42, 43, and 45.)

Rachid Guerraoui and André Schiper. The Generic Consensus Service. IEEE

Transactions on Software Engineering, 27(1):29–41, Jan 2001. (Cited on
pages 3, 39, 40, 41, and 59.)

Weiping He. Recovery in Web Service Applications. Proceedings of the

2004 IEEE International Conference on e-Technology, e-Commerce and

e-Service (EEE’04), pages 25–28, March 2004. (Cited on pages 2, 30,
and 58.)

https://msdn.microsoft.com/en-us/library/ms996535.aspx


114 BIBLIOGRAPHY

Ali Ipakchi and Farrokh Albuyeh. Grid of the Future. IEEE Power and

Energy Magazine, 7(2):52–62, 2009. (Cited on page 95.)

François Jammes, Antoine Mensch, and Harm Smit. Real-time performance
Web Services using EXI. Proceedings of the 37th Annual Conference

on IEEE Industrial Electronics Society (IECON 2011), November 2011.
(Cited on page 109.)

Deepal Jayasinghe. FAWS for SOAP-based web services. http://www.ibm.
com/developerworks/webservices/library/ws-faws/, 31 Jan 2005.
(Cited on pages 23 and 28.)

Márk Jelasity, Wojtek Kowalczyk, and Maarten van Steen. Newscast Com-
puting. Technical Report IR-CS-006, Vrije Universiteit Amsterdam, De-
partment of Computer Science, Amsterdam, The Netherlands, November
2003. (Cited on pages 34 and 68.)

Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten van
Steen. The Peer Sampling Service: Experimental Evaluation of Unstruc-
tured Gossip-Based Implementations. In Proceedings of the 5th ACM/I-

FIP/USENIX International Conference on Middleware (Middleware ’04),
pages 79–98, October 2004. (Cited on pages 37 and 38.)

Matjaz B. Juric, Ramesh Loganathan, Poornachandra Sarang, and Frank
Jennings. SOA Approach to Integration - XML, Web services, ESB, and

BPEL in real-world SOA projects. Packt Publishing, November 2007.
(Cited on pages 13 and 26.)

Stamatis Karnouskos. Asset monitoring in the service-oriented internet of
things empowered smartgrid. Service Oriented Computing and Applica-

tions, 6(3):207–214, 2012. (Cited on pages 56, 96, 103, and 109.)

Stamatis Karnouskos and Anastasia Izmaylova. Simulation of Web Service
Enabled Smart Meters in an Event-based Infrastructure. Proceedings of

the 7th IEEE International Conference on Industrial Informatics (INDIN

2009), pages 125 – 130, June 2009. (Cited on pages 56, 103, and 109.)

Stamatis Karnouskos, Thomas Bangemann, and Christian Diedrich. Integra-
tion of Legacy Devices in the Future SOA-based Factory. Proceedings of the

13th IFAC Symposium on Information Control Problems in Manufacturing

(INCOM’2009), June 2009. (Cited on page 109.)

Stamatis Karnouskos, Per Goncalves da Silva, and Dejan Ilic. Assessment
of High-performance Smart Metering for the Web Service Enabled Smart

http://www.ibm.com/developerworks/webservices/library/ws-faws/
http://www.ibm.com/developerworks/webservices/library/ws-faws/


BIBLIOGRAPHY 115

Grid. Proceedings of the 2nd ACM/SPEC International Conference on

Performance Engineering (ICPE’11), pages 133–144, August 2011. (Cited
on pages 56 and 103.)

Richard M. Karp, Christian Schindelhauer, Scott J. Shenker, and Berthold
Vöcking. Randomized Rumor Spreading. In Proceedings of the 41st Annual

Symposium on Foundations of Computer Science, pages 565–574. IEEE,
2000. (Cited on pages 31, 32, 34, 37, 63, and 67.)

Anne-Marie Kermarrec and Maarten van Steen. Gossiping in Distributed
Systems. ACM SIGOPS Operating Systems Review, 41(5):2–7, 2007a.
(Cited on pages 31, 59, and 60.)

Anne-Marie Kermarrec and Maarten van Steen. Gossip-Based Computer
Networking. ACM SIGOPS Operating Systems Review, 41(5), October
2007b. (Cited on page 61.)

Setrag Khoshafian. Service Oriented Enterprises. Auerbach Publications,
2007. (Cited on page 23.)

Boris Koldehofe. Simple gossiping with balls and bins. In Proceedings

of the 6th International Conference on Principles of Distributed Systems

(OPODIS’02), pages 109–118, December 2002. (Cited on page 35.)

Boris Koldehofe. Buffer management in probabilistic peer-to-peer communi-
cation protocols. In Proceedings of the 22nd Symposium on Reliable and

Distributed Systems (SRDS 2003). IEEE, IEEE, October 2003. (Cited on
page 65.)

Aleksandra Krkoleva, Vesna Borozan, Aris L. Dimeas, and Nikos D. Hatziar-
gyriou. Requirements for Implementing Gossip Based Schemes for Infor-
mation Dissemination in Future Power Systems. In Proceedings of the 2nd

IEEE PES International Conference and Exhibition on Innovative Smart

Grid Technologies (ISGT Europe 2011), pages 1–7. IEEE, 2011a. (Cited
on pages 96 and 104.)

Aleksandra Krkoleva, Vesna Borozan, Aris L. Dimeas, and Nikos D. Hatziar-
gyriou. Gossip Based Message Dissemination Schemes in Future Power
Systems. In Proceedings of the 16th International Conference on Intelli-

gent System Application to Power Systems (ISAP’11), pages 1–6. IEEE,
2011b. (Cited on page 104.)



116 BIBLIOGRAPHY

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978. (Cited
on page 54.)

Leslie Lamport. The Part-Time Parliament. ACM Transactions on Computer

Systems, 16(2):133–169, May 1998. (Cited on pages 48 and 56.)

Leslie Lamport. Paxos Made Simple. ACM SIGACT News (Distributed

Computing Column), 32(4):51–58, 1 Nov. 2001. (Cited on pages 49, 50,
51, and 59.)

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Gener-
als Problem. ACM Transactions on Programming Languages and Systems

(TOPLAS), 4(3):382–401, July 1982. (Cited on pages 23 and 28.)

Depeng Li, Zeyar Aung, John R Williams, and Abel Sanchez. Efficient Au-
thentication Scheme for Data Aggregation in Smart Grid with Fault Tol-
erance and Fault Diagnosis. In Proceedings of the third IEEE PES Con-

ference on Innovative Smart Grid Technologies (ISGT 2012), pages 1–8.
IEEE, Jan 2012. (Cited on page 97.)

Wei Li, Jiang He, Qingkai Ma, I-Ling Yen, Farokh Bastani, and Raymond
Paul. A Framework to Support Survivable Web Services. Proceedings of the

19th International Parallel and Distributed Processing Symposium (IPDPS

2005), Jan 2005. (Cited on pages 23 and 29.)

Deron Liang, Chen-Liang Fang, Chyouhwa Chen, and Fengyi Lin. Fault
tolerant web service. Proceedings of the Tenth Asia-Pacific Software En-

gineering Conference (APSEC’03), pages 310–319, Dec. 2003. (Cited on
pages 23 and 28.)

Barbara H. Liskov and James Cowling. Viewstamped replication revis-
ited. http://18.7.29.232/handle/1721.1/71763, Jan 2012. (Cited on
pages 53 and 59.)

Mark Little and Thomas Freund. A comparison of Web services trans-
action protocols. http://www.ibm.com/developerworks/webservices/
library/ws-comproto/, 7 October 2003. (Cited on page 13.)

Mark Little and Jim Webber. Introducing WS-CAF - More than just transac-
tions. http://webservices.sys-con.com/read/39936.htm, 1 December
2003. (Cited on page 57.)

http://18.7.29.232/handle/1721.1/71763
http://www.ibm.com/developerworks/webservices/library/ws-comproto/
http://www.ibm.com/developerworks/webservices/library/ws-comproto/
http://webservices.sys-con.com/read/39936.htm


BIBLIOGRAPHY 117

Nik Looker, Malcolm Munro, and Jie Xu. Increasing Web Service Depend-

ability Through Consensus Voting. Proceedings of the 29th Annual In-

ternational Computer Software and Applications Conference (COMPSAC

2005), Jan 2005. (Cited on pages 24 and 30.)

Ben Margolis and Joseph Sharpe. SOA for the Business Developer: Concepts,

BPEL, and SCA. MC Press, Lewisville, USA, 15 May 2007. (Cited on

pages 13, 14, and 23.)

James McGovern, Oliver Sims, Ashish Jain, and Mark Little. Enterprise

Service Oriented Architectures: Concepts, Challenges, Recommendations.

Springer, Berlin, Germany, 1st edition, 28 April 2006. (Cited on pages 16

and 57.)

Michael G. Merideth, Arun Iyengar, Thomas Mikalsen, Stefan Tai, Isabelle

Rouvellou, and Priya Narasimhan. Thema: Byzantine-Fault-Tolerant Mid-

dleware for Web-Service Applications. Proceedings of the 24th IEEE Sym-

posium on Reliable Distributed Systems (SRDS 2005), pages 131–140, 26-

28 Oct. 2005. (Cited on pages 23, 28, and 29.)

Minha. Minha: Middleware Testing Platform. http://www.minha.pt/.
(Cited on page 77.)

Nader Mohamed and Jameela Al-Jaroodi. A survey on service-oriented mid-

dleware for wireless sensor networks. Service Oriented Computing and

Applications, 5(2):71–85, Jan 2011. (Cited on page 56.)

Geert Monsieur, Monique Snoeck, and Wilfried Lemahieu. Coordinated Web

Services Orchestration. Proceedings of the IEEE International Confer-

ence on Web Services (ICWS 2007), pages 775–783, July 2007. (Cited on

page 57.)

M. Granger Morgan, Jay Apt, Lester Lave, Marija D. Ilic, Marvin A.

Sirbu, and Jon M. Peha. The many meanings of ”Smart Grid”. repos-

itory.cmu.edu, Jan 2009. (Cited on page 99.)

Achour Mostefaoui, Michel Raynal, and Corentin Travers. Crash-resilient

Time-free Eventual Leadership. Proceedings of the 23rd IEEE Interna-

tional Symposium on Reliable Distributed Systems (SRDS 2004), pages

208–217, Oct. 2004. (Cited on page 39.)

National Institute of Standards and Technology. NIST Framework

and Roadmap for Smart Grid Interoperability Standards, Release

http://www.minha.pt/


118 BIBLIOGRAPHY

1.0, 2010. http://www.nist.gov/public_affairs/releases/upload/
smartgrid_interoperability_final.pdf. (Cited on page 95.)

Eric Newcomer and Greg Lomow. Understanding SOA with Web Services.
Addison Wesley Professional, 14 December 2004. (Cited on page 19.)

Brian M. Oki and Barbara H. Liskov. Viewstamped Replication: A New Pri-
mary Copy Method to Support Highly-Available Distributed Systems. Pro-

ceedings of the 7th annual ACM Symposium on Principles of Distributed

Computing (PODC ’88), Jan 1988. (Cited on pages 53 and 59.)

Diego Ongaro and John Ousterhout. In Search of an Understandable Con-
sensus Algorithm. ramcloud.stanford.edu, 2013. (Cited on pages 53, 56,
59, and 69.)

Johannes Osrael, Lorenz Froihofer, and Karl M. Göschka. On the Need
for Dependability Research on Service Oriented Systems. Fast Abstract

Proceedings of the 37th International Conference on Dependable Systems

and Networks (DSN’07), 25-28 June 2007a. (Cited on pages 23, 24, 27,
and 58.)

Johannes Osrael, Lorenz Froihofer, Martin Weghofer, and Karl M. Göschka.
Axis2-based Replication Middleware for Web Services. Proceedings of the

IEEE International Conference on Web Services (ICWS 2007), pages 591–
598, July 2007b. (Cited on pages 2, 23, 27, 28, and 58.)

Sajeeva L. Pallemulle and Kenneth J. Goldman. Byzantine Fault-Tolerant
Web Services for n-Tier and Service Oriented Architectures. In Proceedings

of the 28th International Conference on Distributed Computing Systems

(ICDCS ’08), pages 260–268, June 2008. (Cited on pages 23 and 29.)

José Pereira and Rui Oliveira. The Mutable Consensus Protocol. Proceedings

of the 23rd IEEE International Symposium on Reliable Distributed Systems

(SRDS 2004), pages 218–227, 18-20 Oct. 2004. (Cited on pages xiii, 2, 39,
45, 46, 47, and 48.)

José Pereira, Lúıs Rodrigues, Maria José Monteiro, Rui Oliveira, and Anne-
Marie Kermarrec. Neem: network-friendly epidemic multicast. Proceed-

ings of the 22nd International Symposium on Reliable Distributed Systems

(SRDS 2003), pages 15–24, 6-18 Oct. 2003. (Cited on page 35.)

José Pereira, Rui Oliveira, and Lúıs Rodrigues. Efficient Epidemic Multicast
in Heterogeneous Networks. In On the Move to Meaningful Internet Sys-

tems 2006: OTM 2006 Workshops, volume 4278/2006, pages 1520–1529,
October 2006. (Cited on pages 34, 35, and 37.)

http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf
http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf


BIBLIOGRAPHY 119

Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe:
A Robust and Scalable Technology for Distributed System Monitoring,
Management, and Data Mining. ACM Transactions on Computer Systems,
21(2):164–206, May 2003. (Cited on page 107.)

David Rua, L. F. Moura Pereira, Nuno Gil, and João Abel Peças Lopes.
Impact of multi-Microgrid Communication systems in islanded operation.
In 2nd IEEE PES Internatinal Conference and Exhibition on Innovative

Smart Grid Technologies (ISGT Europe),, pages 1–6. IEEE, 2011. (Cited
on page 97.)

Jorge Salas, Francisco Pérez-Sorrosal, Marta Patiño-Mart́ınez, and Ricardo
Jiménez-Peris. WS-Replication: A Framework for Highly Available Web
Services. In Proceedings of the 15th International Conference on World

Wide Web (WWW ’06), pages 357–366. ACM, 23-26 May 2006. (Cited on
pages 2, 23, 24, 27, 28, and 58.)

André Schiper. Early consensus in an asynchronous system with a weak
failure detector. Distributed Computing, 10:149–157, March 1997. (Cited
on page 46.)

Jens Schmutzler, Sven Gröning, and Christian Wietfeld. Management of
distributed energy resources in IEC 61850 using web services on devices.
In Proceedings of the second IEEE International Conference on Smart

Grid Communications (SmartGridComm’11), pages 315–320. IEEE, 2011.
(Cited on page 96.)

Fred B. Schneider. Implementing fault-tolerant services using the state ma-
chine approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):
299–319, 1990. (Cited on page 48.)

Dale Skeen. Nonblocking commit protocols. In SIGMOD ’81: Proceedings

of the 1981 ACM SIGMOD International Conference on Management of

Data, pages 133–142. ACM, 1981. (Cited on page 42.)

SOAP-over-UDP. SOAP-over-UDP Version 1.1 OASIS Stan-
dard. http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/
wsdd-soapoverudp-1.1-spec-os.html, 01 July 2009. (Cited on page 9.)

Patrik Spiess, Stamatis Karnouskos, Dominique Guinard, Domnic Savio,
Oliver Baecker, Luciana Moreira Sá de Souza, and Vlad Trifa. SOA-Based
Integration of the Internet of Things in Enterprise Services. Proceedings

of the 7th IEEE International Conference on Web Services (ICWS 2009),
pages 968 – 975, July 2009. (Cited on page 109.)

http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html


120 BIBLIOGRAPHY

Koen Vanthournout, Karel De Brabandere, Edwin Haesen, Jeroen Van den
Keybus, Geert Deconinck, and Ronnie Belmans. Agora: Distributed Ter-
tiary Control of Distributed Resources. In Proceedings of the 15th Power

Systems Computation Conference (PSCC-15), page 7, 2005. (Cited on
page 104.)

Werner Vogels and Chris Re. WS-Membership - Failure Management in a
Web-Services World. International World Wide Web Conference (WWW)

Alternate Paper Tracks, Jan 2003. (Cited on pages 2, 30, 31, 39, and 58.)

Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. Cyclon: Inex-
pensive Membership Management for Unstructured P2P Overlays. Jour-

nal of Network and Systems Management, 13(2):197–217, 2005. (Cited on
page 37.)

Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey,
and Donald F. Ferguson. Web Services Platform Architecture: SOAP,

WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-ReliableMessaging,

and More. Prentice Hall PTR, March 2005. (Cited on page 23.)

Matthias Wiesmann, Xavier Défago, and André Schiper. Group communica-
tion based on standard interfaces. Second IEEE International Symposium

on Network Computing and Applications (NCA 2003), pages 140–147, 16-
18 April 2003. (Cited on pages 39 and 40.)

Wiki ebXML. Wikipedia - ebXML. http://en.wikipedia.org/wiki/

Ebxml. (Cited on page 15.)

Wiki Overlay network. Wikipedia - Overlay network. http://en.

wikipedia.org/wiki/Overlay_network. (Cited on page 37.)

Wiki Paxos. Wikipedia - Paxos algorithm. http://en.wikipedia.org/

wiki/Paxos_algorithm. (Cited on pages 49, 52, and 53.)

Wiki WS-CAF. Wikipedia - WS-CAF. http://en.wikipedia.org/wiki/

WS-CAF. (Cited on page 21.)

Wiki xCBL. Wikipedia - xCBL. http://en.wikipedia.org/wiki/Xcbl.
(Cited on page 15.)

WS-AT. Web Services Atomic Transaction (WS-AtomicTransaction)
Version 1.2 OASIS Standard. http://docs.oasis-open.org/ws-tx/

wstx-wsat-1.2-spec-os.pdf, 2 February 2009. (Cited on pages 11, 18,
and 57.)

http://en.wikipedia.org/wiki/Ebxml
http://en.wikipedia.org/wiki/Ebxml
http://en.wikipedia.org/wiki/Overlay_network
http://en.wikipedia.org/wiki/Overlay_network
http://en.wikipedia.org/wiki/Paxos_algorithm
http://en.wikipedia.org/wiki/Paxos_algorithm
http://en.wikipedia.org/wiki/WS-CAF
http://en.wikipedia.org/wiki/WS-CAF
http://en.wikipedia.org/wiki/Xcbl
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os.pdf


BIBLIOGRAPHY 121

WS-BA. Web Services Business Activity (WS-BusinessActivity) Version 1.2

OASIS Standard. http://docs.oasis-open.org/ws-tx/wstx-wsba-1.
2-spec-os.pdf, 2 February 2009. (Cited on pages 20 and 57.)

WS-C. Web Services Coordination (WS-Coordination) Version 1.2 OA-

SIS Standard. http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.
2-spec-os.pdf, 2 February 2009. (Cited on pages 11, 17, and 57.)

WS-DD. Web Services Dynamic Discovery (WS-Discovery) 1.1 OASIS

Standard. http://docs.oasis-open.org/ws-dd/discovery/1.1/os/
wsdd-discovery-1.1-spec-os.html, 01 July 2009. (Cited on page 9.)

WS-E. Web Services Eventing (WS-Eventing) W3C Member Submission.

http://www.w3.org/Submission/WS-Eventing/, 15 March 2006. (Cited

on pages 9 and 11.)

WS-ME. Web Services Metadata Exchange 1.1 (WS-MetadataExchange)

W3C Member Submission. http://www.w3.org/Submission/2008/
SUBM-WS-MetadataExchange-20080813/, 13 August 2008. (Cited on

page 9.)

WS-P. Web Services Policy (WS-Policy) 1.5 - Framework W3C Recommen-

dation. http://www.w3.org/TR/ws-policy/, 04 September 2007. (Cited

on page 9.)

WS-R. Web Services Reliability (WS-Reliability) 1.1 OASIS Stan-

dard. http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/
wsrm-ws_reliability-1.1-spec-os.pdf, 15 November 2004. (Cited on

pages 26 and 57.)

WS-RM. Web Services Reliable Messaging (WS-ReliableMessaging) Ver-

sion 1.2 OASIS Standard. http://docs.oasis-open.org/ws-rx/wsrm/
200702/wsrm-1.2-spec-os.pdf, 2 February 2009. (Cited on pages 24

and 57.)

WS4D. Web Services for Devices (WS4D). http://www.ws4d.org/. (Cited

on pages 10, 77, and 85.)

Wenbing Zhao. BFT-WS: A Byzantine Fault Tolerance Framework for Web

Services. In Proceedings of the 11th International IEEE Enterprise Dis-

tributed Object Computing Conference (EDOC 2007) Workshop, pages 89–

96, Oct 2007. (Cited on pages 23 and 29.)

http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/Submission/2008/SUBM-WS-MetadataExchange-20080813/
http://www.w3.org/Submission/2008/SUBM-WS-MetadataExchange-20080813/
http://www.w3.org/TR/ws-policy/
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://www.ws4d.org/

	Página 1
	Página 2
	Página 3
	Página 4
	Filipe José de Oliveira Campos_ versao de impressao.pdf
	Página 1
	Página 2
	Página 3
	Página 4
	thesis.pdf
	Introduction
	Motivation
	Problem statement
	Case Study
	Approach
	Objectives and Results
	Contributions
	Publications
	Availability of Code

	Web Services Background
	Devices Profile for Web Services
	Limitations of DPWS
	WS-Eventing in detail

	Service Coordination
	What is service coordination
	Types of service coordination
	Types of Protocols

	Web Services for Fault Tolerance
	Reliable Communication
	Service Replication
	Failure Recovery
	Membership Management
	Conclusions


	Fault Tolerance Protocols
	Gossip Protocols
	Consensus
	Services based on Consensus
	Consensus based on Services
	Conclusions

	Progress beyond State-of-the-Art

	Services
	Gossip Services - WS-Gossip
	Gossip Service

	Consensus Services
	Raft Service


	Results
	Gossip Results
	Results and discussion
	Conclusion

	Consensus Results
	Experimental settings
	Results and Discussion
	Conclusion


	Case Study
	Proposal
	Application Scenarios

	Related Work
	Summary

	Concluding Remarks
	Bibliography





