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Abstract 

 

Conformational Propert ies of  Unnatural  Amino Acids in Pept idomimetics/Foldamers:  

A Molecular Model l ing Study 

 

Non-canonical (unnatural) amino acids are molecules that enhance specific secondary structures 

and/or biological activity of peptides. Contrary to the well-known encoded (natural) amino acids, the 

structure and function of these residues is far for being fully understood. Nowadays, non-canonical 

amino acids are used to generate peptidomimetics with improved biostability and bioavailability. In this 

sense, we performed simulation studies of non-canonical amino acids able to induce constrained 

secondary structures in order to optimize peptides biological function. 

Molecular Dynamics simulations were performed systematically to validate and incorporate new 

classes of unnatural amino acids in novel and experimentally found peptides with desirable biological 

function. To do this, the Gromos 54a7 Force Field was augmented with a new set of parameters based 

on canonical, proteinogenic amino acids, needed to model the new residues. 

We study several classes of non-canonical amino acids, namely: symmetrical α,α -dialkyl glycines, 

asymmetrical α,α -dialkyl glycines, proline analogues, Cα to Cα cyclized amino acids and α,β-

dehydroamino acids. These classes were chosen because very few amino acids of each class have 

been studied in detail. In addition, these amino acids are important examples of residues with good 

conformation inducer properties and/or medical applicability. 

The symmetrical and asymmetrical α,α -dialkyl glycines were studied in four well-known antibiotic 

peptaibols. Dhg (α,α -dihexyl glycine) and Ac6c (1-aminocyclohexane-1carboxylic acid or α,α -cyclohexyl 

glycine), symmetrical glycines, proved to be helical inducers in Alamethicin and Peptaibolin peptides. 

Also, these two examples promoted pre-organization in water, which was found to help insertion in 

membranes. On the other hand, the asymmetrical α,α -dialkyl glycines, like Iva (isovaline), were 

studied in Antiamoebin and Zervamicin peptaibols. In these studies, two amino acids analogs of Iva 

were found to induce improved helical secondary structure, namely α-methyl-D-leucine (MDL) and α-

methyl-D-phenylalanine (MDP), which may be linked to the antibiotic properties of these peptaibols. In 

addition, proline analogs were also studied in Antiamoebin and Zervamicin peptaibols, which naturally 

contain Hyp (Hydroxyproline). Despite the known effect of prolines, which induce bends in helical 

secondary structures, the analog cis-3-amino-L-proline (ALP) proved to induce improved helical content 

in both peptaibols. 
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Simulation of α,β-dehydroamino acids revealed a wide range of applicability for these systems, 

from self-assembly peptides for drug delivery to induction of different and specific secondary structures 

such as β and γ turns. 

Summing up, our simulation studies reveal that the incorporation of non-canonical amino acids in 

peptides is able to generate a large range of peptidomimetics with different structures and potential 

applications. Our findings show that the rational selection of unnatural residues increases membrane 

permeability through pre-organization in aqueous medium, stabilizes the content of desired types of 

secondary structure and, more generally, improves enzymatic and thermodynamic stability. This work 

showcases how molecular modeling can be applied to address a number of issues of interest for 

medicinal chemistry.  
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Resumo 
 

Os aminoácidos não-canónicos (ou não-naturais) são moléculas capazes de otimizar a estrutura 

secundária e/ou a atividade biológica de péptidos. A estrutura e função destas moléculas ainda não é 

bem conhecida, por oposição aos já bem estudados aminoácidos codificados por ADN (ou canónicos). 

Atualmente, os aminoácidos não-canónicos são utilizados para gerar péptidos miméticos com uma 

melhor bioestabilidade e biodisponibilidade. Devido a estas propriedades, decidimos investigar uma 

série de aminoácidos não-canónicos, através de simulações moleculares, para desenvolver estruturas 

secundárias mais constrangidas (estruturalmente estáveis) e, por consequência, otimizar a função 

biológica de determinados péptidos. 

Simulações de Dinâmica Molecular foram realizadas sistematicamente para validar novas classes 

de aminoácidos não naturais, e proceder à incorporação destas moléculas em novos péptidos ou em 

péptidos experimentalmente obtidos. Para alcançar este objetivo, o campo de forças Gromos 54a7 foi 

escolhido, e foram adicionadas parametrizações baseadas nos aminoácidos canónicos, necessárias à 

modelação desses novos resíduos. 

Estudamos, assim, diversas classes de aminoácidos não canónicos, nomeadamente: α,α-

dialquilglicinas simétricas, α,α-dialquilglicinas assimétricas, análogos de prolina, aminoácidos 

ciclizados de Cα a Cα e α,β-desidroamino ácidos. Estas classes foram escolhidas porque poucos 

representantes de cada classe foram estudados em detalhe, e os que foram, apresentaram 

aplicabilidade em medicina e no design de péptidos estruturalmente constrangidos.  

As α,α-dialquilglicinas simétricas e assimétricas foram estudadas em quatro péptidos antibióticos 

amplamente estudados e conhecidos. Dhg (α,α-dihexilglicina) e Ac6c (ácido 1-aminociclo-

hexanocarboxílico), ambos simétricos, demonstraram ser indutores de estruturas helicoidais nos 

peptaibols Alameticina e Peptaibolin. Além disso, estes dois exemplos promovem pré-organização em 

água, fator que está relacionado com a inserção em membranas. Por outro lado, a assimétrica 

Isovalina (Iva), foi estudada nos peptaibols Antiamoebina e Zervamicina. Nesses estudos, dois 

aminoácidos análogos à Iva revelaram uma melhor capacidade de induzir estruturas secundarias 

helicoidais (hélices do tipo alfa ou 310), e uma melhor estruturação pode traduzir-se em melhorias na 

função antibiótica. Também nos estudos envolvendo os péptidos Antiamoebina e Zervamicina, 

avaliamos os análogos da prolina, um aminoácido conhecido por gerar regiões de elevada curvatura 

em péptidos. No entanto, o análogo ALP (cis-3-amino-L-proline) demonstrou aumentar o número de 

resíduos em helice nos dois péptidos. 
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As simulações envolvendo α,β-desidroamino ácidos revelaram que estes resíduos tem uma vasta 

aplicabilidade, pois os péptidos nos quais estão incorporados podem agregar-se formando géis 

capazes de transportar medicamentos, ou então, induzir estruturas secundárias menos comuns, como 

alfa e gama turns. 

Resumindo, nossos estudos de simulação molecular revelaram que a incorporação de aminoácidos 

não-canónicos em péptidos é capaz de gerar um grande número de péptidos miméticos com 

diferentes preferências estruturais e diferentes aplicabilidades. Nossas descobertas mostraram que a 

correta escolha de aminoácidos não-naturais otimizam diversas características, dentro das quais se 

destacam: a permeabilidade em membrana, a pre-organização em meio aquoso, a estabilização de 

tipos específicos de estruturas secundarias e a resistência enzimática. Este trabalho destaca como a 

Modelação Molecular pode ser aplicada para uma melhor compreensão de um grande número de 

temas de interesse na Química medicinal. 
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CGC (Critical Gelation Concentrations) 

COX-2 (cyclooxygenase-2) 

CPP (Cell Penetrating Peptide) 

Cys or C (Cysteine) 

 

D 

dAAs ( a,a-disubstituted amino acids) 

Dbzg (α,α-dibenzyl glycine) 

Deg (α,α-diethyl glycine) 

DHPC (dihexanoylphosphatidylcholine) 

Dibg (α,α-di-isobutyl glycine) 

DMAP (4-dimethylaminopyridine) 

Dmg (α,α-dihydroxymethyl glycine) 

DMPC (dimyristoylphosphatidylcholine)  

DMSO (dimethylsulfoxide) 

DNA (deoxyribonucleic acid) 

DOPC (dioleoylphosphatidylcholine) 

Dpg (α,α-dipropyl glycine) 

DSSP (Dictionary of Secondary Structure in 

Proteins 

Dɸg (α,α-diphenyl glycine) 

 

E 

ECM (Extracellular Matrix) 

 

F 

FEP (Free Energy Pertubation) 



 

   xx 

FF (Force Field) 

fs (fento seconds) 

 

G 

Gln or Q (Glutamine) 

Glu or E (Glutamic Acid) 

Gly or G (Glycine) 

HMBC (Heteronuclear Multiple Bond 

Correlation) 

HMQC (Heteronuclear Multiple Quantum 

Correlation) 

Hyp (hydroxyproline) 

 

I  

Ile or I (Isoleucine) 

Ind (aminoindane carboxylic acid) 

Iva (isovaline or isovaleric acid) 

 

K 

K (Kelvin) 

 

L 

Leu or L (Leucine) 

 

M 

MD (Molecuar Dynamics) 

MM (Molecular Modeling) 

 

N 

Nle (norleucine) 

NMR (Nuclear Magnetic Ressonance) 

NOE (Nuclear Overhauser) 

Npx (Naproxen) 

NSAID (nonsteroidal anti-inflammatory drug) 

ns (nano seconds) 

Nva (norvaline) 

 

P 

PBC (Periodic Boundary Conditions) 

PCA (Principal Component Analysis) 

PD (Parallel Displaced) 

PDB (Protein Data Bank) 

Phe (Phenylalanine) 

PME (Particle Mesh Ewald 

Pro or P (Proline) 

 

R 

RGE (arginine – glycine - glutamic acid) 

RGD (arginine – glycine - aspartic acid) 

RMSD (Root Mean Square Deviation) 

RMSF (Root Mean Square Fluctuation) 

RNA (Ribonucleic acid) 

 

S 

S (entropy, kJ/mol/K) 

SAAs (Sugar Amino Acids) 

SD (Steepest Descent) 

Ser or S (Serine) 

SS (Secondary Structure) 

SPC (Simple Point Charge) 

 



 

   xxi 

T 

TEM (Transmission Electron Microscopy) 

TFA (trifluoroacetic acid) 

TFE (2,2,2-trifluoroethanol) 

TI (Thermodynamic Integration) 

Tic (1,2,3,4-tetrahydroisoquinolone) 

Tle (tert-leucine or tert-butylglycine) 

TMG (N,N,N’,N’-tetramethylguanidine) 

Tmt (β-methyl-2',6'-dimethyltyrosine) 

Thr or T (Threonine)  

Trp or W (Tryptophan)  

Tyr or Y (Tyrosine) 

 

V 

Val or V (Valine) 

vdW (van der Waals) 

 

Others 

2D (two-dimensional) 

3D (three-dimensional) 

ΔEAbu (E-dehydroaminobutyric acid or 

dehydrobutyrine) 

ΔZAbu (Z-dehydroaminobutyric acid or 

dehydrobutyrine) 

ΔAla (dehydroalanine) 

ΔELeu (E-dehydroleucine) 

ΔZLeu (Z-dehydroleucine) 

ΔEPhe (E-dehydrophenylalanine) 

ΔZPhe (Z-dehydrophenylalanine) 

ΔETrp (E-dehydrotryptophan) 

ΔZTrp (Z-dehydrotryptophan) 

ΔVal (dehydrovaline) 
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Structure and Contents 

This thesis consists of the compilation of published and submitted papers in international 

peer-reviewed journals and is organized in five sections, including ten chapters. 

Sect ion I  corresponds to the Introduct ion, starting with a brief overview of the topic and 

the main objectives. There, a review paper, to be adapted for further submission (Chapter I ) 

shows the most investigated classes of non-canonical amino acids, their occurrence and 

applications, primarily in the design of peptidomimetics. 

Chapter I   

Tarsi la G. Castro, João C. Marcos, Nuno M. Micaêlo and Manuel Melle-Franco. Non-

Canonical Amino Acids as Building Blocks for Peptidomimetics: Structure Features Through 

Molecular Dynamics Simulations. 

 

The Sect ion I I  - Methods complements the given information present in each Chapter of 

Results and Discussion Section. Chapter II – Molecular Dynamics Methods 

Sect ion I I I  -  Resul ts and Discussion is divided in six Chapters and corresponds to 

the most important results achieved during the PhD work. Chapters I I I  and IV show the 

α,α-dialkylglycine class incorporated in Peptaibols of different sizes, the Alamethicin and the 

Peptaibolin. Chapter V also refers to Peptaibols, but the classes investigated are proline 

analogs and D-amino acids, incorporated on Zervamicin and Antiamoebin. The Chapter VI  

and VI I  address the α,β-dehydro amino acids through different approaches. 

Chapter I I I  

Tarsi la G. Castro and Nuno M. Micaêlo. Modeling of Peptaibol Analogues Incorporating 

Nonpolar α,α- Dialkyl Glycines Shows Improved α‐Helical Preorganization and Spontaneous 

Membrane Permeation. dx.doi.org/10.1021/jp4074587 | J. Phys. Chem. B 2014, 118, 

649−658. 

Chapter IV 

Tarsi la G. Castro and Nuno M. Micaêlo. Conformational and Thermodynamic Properties of 

Non-Canonical α,α-Dialkyl Glycines in the Peptaibol Alamethicin: Molecular Dynamics Studies. 

dx.doi.org/10.1021/jp505400q | J. Phys. Chem. B 2014, 118, 9861−9870. 
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Chapter V  

Tarsi la G. Castro, Nuno M. Micaêlo and Manuel Melle-Franco. The Secondary Structure of 

Antiamoebin I and Zervamicin II Peptaibols Incorporating D-Amino Acids and Proline 

Analogues. A Modeling Study, 2015, submitted. 

Chapter VI  

H. Vilaça, G. Pereira, T. G. Castro, B. F. Hermenegildo, J. Shi, T. Q. Faria, N. Micaêlo, R. M. 

M. Brito, B. Xu, E. M. S. Castanheira, J. A. Martins and P. M. T. Ferreira. New self-assembled 

supramolecular hydrogels based on dehydropeptides, J. Mater. Chem. B, 2015, 3, 6355 (DOI: 

10.1039/c5tb00501a). 

Chapter VI I  

Helena Vilaça, Tarsi la G.Castro, Loly Torres Pérez, Ashkan Dehsorkhi, Cristóvão F. Lima, 

Catarina Gonçalves, Manuel Melle-Franco, Loic Hilliou, Miguel Gama, Ian W. Hamley, José A. 

Martins, Paula M. T. Ferreira. Self-healing RGD dehydropeptide hydrogel, 2015, submitted. 

 

The Sect ion IV -  Conclusions includes Chapter IX, which summarizes the most 

important findings about the non-canonical amino acids under investigation, through Molecular 

Modeling Studies, presented in the previous sections. Also, the possibilities for further research 

and practical applications are discussed. 

 

Finally, the Sect ion V consists of an Appendix section, where the new topologies 

parameters of Chapters III to VII are shown. For the published articles each appendix 

containing the supplementary material/supporting information. 

We also add as Appendix, one paper in progress that requires future simulations and 

analysis to better understand the results obtained to date: Tarsi la G. Castro, Nuno M. 

Micaêlo and Manuel Melle-Franco; Conformational Properties of the Non-canonical Cyclic Acnc 

Amino Acids:  A Molecular Modeling Study, 2015).  
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Overview 

 

Peptidomimetics are molecules that mimic the three-dimensional structure of a natural 

peptide and retain the capacity to interact with biological targets and generate the same 

biological effect. Peptidomimetics are designed to circumvent some of the problems associated 

with natural peptides, like stability against proteolysis and poor bioavailability. Nowadays, 

academic research labs and small biotech companies are emerging with rational design 

strategies to discover novel therapeutic peptides such as: antibiotics, anticancer, 

neuromodulator, opioid, hormones, vaccines, radiolabeled peptides and self-assembled 

peptides for bioengineering. 

Usually, peptidomimetics are composed by non-canonical (unnatural) amino acids that 

enhance specific secondary structures and/or its biological activity. Contrary to the well-known 

encoded (natural) amino acids, the structure and function of these residues is far for being fully 

understood, limiting our capacity in the rational design of novel peptidomimetics. 

The rational design of new peptidomimetics is highly dependent on our knowledge about 

the structure-function relation properties of the non-canonical amino acids. Relative few 

theoretical and structural studies that elucidate the conformational properties of 

peptidomimetics are found in literature and NMR/X-ray structures of these molecules are 

almost absent from the protein data bank (PDB).  

In this sense, our intention for these four years of PhD, was to fill the gap regarding the 

knowledge of the structure-function properties of new non-canonical amino acids. This was 

accomplished using molecular modelling methodologies. The outcome of this research is going 

to enable a more rational understanding of the conformational preference of peptidomimetics 

and model peptides bearing unnatural AA and, will make possible the future development of 

more effective peptidomimetics and the design of novel foldamers. From a molecular 

modelling perspective, this study provides the scientific community a ready-to-use large library 

of validated new unnatural AA parameterizations for the GROMOS biomolecular force field.  
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Objectives 

The main objective of this work was to create a library of non-canonical amino acids and 

their incorporation into a force field, so that the simulation of these molecules would be readily 

available to the scientific community.  

It was intended to model and parameterize several classes of non-canonical amino acids 

following a common criteria and nomenclature and to validate the proposed structures of these 

molecules with molecular dynamics simulations in different media (individually, inserted into 

peptides, in aqueous medium, in a membrane, in organic solvents, etc.). 

The simulations conducted aimed at classifying different unnatural amino acids according 

to their structural and functional characteristics. It is expected to bring together amino acids 

that induce α-helices, β-turns, β-hairpin and β-sheets, and that these properties will improve 

biological function.  

Also, we aimed to explain the structural and functional differences resulting from the 

insertion of non-canonical amino acids in peptides with well-known activity and/or that have 

been already synthesized and characterized experimentally. Ultimately, the results obtained, 

make possible to generalize structural restrictions and suggest foldamers, which is relevant for 

the design of peptidomimetics. 

Structurally, we expected to confirm the general type of secondary structure that each non- 

canonical amino acid promotes. Some articles in the literature already indicate predominant 

conformational features for some of the amino acids under study. However, we thought 

necessary to confirm these characteristics in a broader context. In this sense, analytical 

techniques such as Root Mean Square Deviation (RMSD) Root Mean Square Fluctuation 

(RMSF), Ramachandran Plots, Secondary Structure (SS) and Hydrogen Bond were 

implemented to analyze the different possible secondary structures and the level of 

conformational restriction that these amino acids induce to the peptides in which they are 

inserted. Some of these analysis tools have to be modified or adapted to be applicable to 

amino acid changes in the main chain, since most programs were developed to recognize only 

peptide bonds and typical torsion angles. 

Finally, after individual validation and in case studies, the non-canonical amino acids will be 

incorporated into peptides composed of natural amino acids in order to propose new 

foldamers (peptides that have a tendency to adopt a specific compact conformation). 
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1.  Introduct ion 

This review focuses on the major differences between encoded and non-canonical amino 

acids, which give to the latter the ability to be successfully incorporated into peptides, 

generating peptidomimetics for medical use. Most of the findings about non-canonical amino 

acids to date are based on experimental studies. Driven by this fact, we gather here results for 

some classes of residues, concerning the structure and function of these molecules, from 

experiments and/or molecular simulations. 

Peptides and proteins have been exhaustively studied in the past decades, especially 

peptides, due to its great potential as drugs. These entities play important functions, as 

hormones, neurotransmitters, inhibitors, etc., which are essential for human life.1-7 However, 

the use of peptides as drugs has major drawbacks with bioavailability and biostability.2, 8-10  

The degradation by proteases and problems concerning nonselective molecular receptors 

due the high inherent flexibility are some of the disadvantages of natural peptides. In adittion, 

pharmacokinetics, the relation on how the human body impacts petides is also a process that 

does not favor the use of these molecules as drugs. The pharmacokinetic process consists of 

different stages, namely: absorption, distribution, metabolization and excretion. In these 

phases peptides have common problems like poor oral availability, poor transport properties 

(through cell membranes) and rapid excretion through the liver and kidneys. The enzymatic 

stability of a peptide is related to several factors as amino acids composition, secondary 

structure, flexibility, lipophilicity, among others.8-10  

To overcome the problems mentioned above, protein-like sequences, called 

peptidomimetics have been designed and tested.2, 4-5, 11-13 The most common way to generate 

peptidomimetics is through modifications of the native/encoded amino acids, so that the new 

peptide has a similar secondary structure and maintains or improves biological function. For 

instance, the hydrolysis of peptide bonds by proteases can be obstructed through the 

introduction of atypical moieties, as D-amino acids, non-canonical amino acids or by 

introducing a N-alkyl group.9, 14-16  

The rational design of new peptidomimetics is highly dependent on our knowledge about 

the structure-function relation properties of non-canonical amino acids. Only few theoretical 

and structural studies about the conformational properties of unnatural amino acids and 

peptidomimetics are available to date. In this sense, our work tries to create a new non-
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canonical amino acid library, suggesting alternatives with better characteristics as foldamers 

and its possible applicability.  

1.1.   Amino Acids and Pept ides 

Encoded amino acids are organic molecules presenting a carboxylic (COOH) and an amine 

(NH2) groups linked to a chiral carbon atom, named Cα. They are the fundamental building 

units of peptides and proteins, i.e, when two or more amino acids are linked through amide 

bonds (peptide bond). Two amino acids link through a condensation reaction releasing a water 

molecule. There are 20 natural amino acids encoded by DNA, which constitute most known 

proteins and enzymes. 

 

F igure 1. The 20 encoded amino acids in the human genetic code. The chart key helps to illustrate the different 
fundamental properties. Essential amino acids must be obtained from the diet while the non-essential ones can 
be synthesized in the human body. A most general classification divides the amino acids as nonpolar (Gly, Ala, 
Leu, Ile, Val, Cys, Met, Pro, Phe, Trp), polar uncharged (Ser, Thr, Tyr, Asn, Gln), acidic charged (Asp, Glu) and 
basic charged (Lys, Arg, His).17 

 

Exceptions to the 20 canonical amino acids were reported.18 For example, Hydroxyproline 

(Hyp) and Hydroxylysine occur on protein collagen. They are produced by hydroxylation of the 

amino acids proline and lysine, respectively, by the correspondent hydroxylase enzyme, as a 

post-translational modification.19-21 The α-aminoadipic acid present on corn proteins is another 

example and it is an intermediate in the lysine metabolism.22 The penicilamine is an α-amino 

acid metabolite of penicillin, similar to Cysteine, and it is used to treat arthritis.23 Ornithine 

participates in the urea cycle, as one of the products of the action of the enzyme arginase on L-

A GUIDE TO THE TWENTY COMMON AMINO ACIDS
AMINO ACIDS ARE THE BUILDING BLOCKS OF PROTEINS IN LIVING ORGANISMS. THERE ARE OVER 500 AMINO ACIDS FOUND IN NATURE - HOWEVER, THE HUMAN GENETIC CODE 

ONLY DIRECTLY ENCODES 20. ‘ESSENTIAL’ AMINO ACIDS MUST BE OBTAINED FROM THE DIET, WHILST NON-ESSENTIAL AMINO ACIDS CAN BE SYNTHESISED IN THE BODY.

BY NC ND
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arginine.24 Citrulline, naturally found in watermelon, is an amino acid derived from arginine.25 

The structures of these amino acids are shown in Figure 2. 

Importantly, although by definition there are 20 amino acids encoded by DNA, there are two 

other residues that are proteinogenic: selenocysteine (Sec)26 and pyrrolisine.27 Both amino 

acids appear in proteins of Archea organisms 28 However Sec is a naturally found residue in all 

kingdoms of life as the building block of selenoproteins. Sec is considered the 21st amino acid 

and has been found in 25 human selenoproteins and selenoenzymes.29 Sec is encoded by a 

UGA codon, which is normally a stop codon, but acts by performing a translational recoding.30 

Pyrrolysine is incorporated during translation by the genetic code, just like standard amino 

acids. It is encoded in mRNA by the UAG codon, which in most organisms is a stop codon, 

similar to UGA. 

 

F igure 2.  Two-dimensional structures of some non-canonical amino acids naturally found in nature or in post-
translational processes. (A) hydroxyproline, (B) hydroxylysine, (C) α-aminoadipic acid, (D) penicilamine, (E) L-
ornithine, (F) citrulline, (G) selenocysteine and (H) pyrrolysine. 

Peptides are amino acids polymers, which when short are classified as oligopeptides and 

when larger, are polypeptides. The exact terminology, in accordance with the length, is quite 

variable.31 Some sources consider oligopeptides sequences of 2-10 amino acids, other 2-20 

and yet, 2-40 residues are also reported.32 Oligopeptides may also be classified based on 

molecular structure, for instance: aeruginosins, cyanopeptolins, microcystins, microviridins, 
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microginins, anabaenopeptins and cyclamides.33-35 Polypeptides are peptides that contain 

longer, continuous, and linear peptide chains. All proteins are polypeptides, but the reverse is 

not true since a protein has a specific sequence generated by a gene. Peptides are the building 

blocks of proteins, which have a fundamental biological function; they make up the living 

organisms. However, small naturally occurring peptides, may present, alone, important 

biological functions.36-37 Some vertebrate hormones such as insulin, glucagon, and 

corticotropin comprise less than 50 amino acid residues. Examples of small naturally occurring 

peptides are the hormones oxytocin,38 thyrotropin39 and enkephalin.40 Also, certain fungi are 

highly toxic and contain peptides, as amanitin, with important uses in medicine.41 

1.2.   Encoded Amino Acids Propert ies 

Any substance that contains a carbon atom with four different substituents occurs in the 

form of two optical isomers, i.e. present optical activity to rotate the polarization plane of light 

to the right (clockwise) or leftwards (counter clockwise). Nineteen of the amino acids are chiral 

and found in the configuration L. The only exception is Gly, which does not have any carbon 

atoms with different substituents; it is an achiral molecule. L and D configurations refer to L 

and D configurations of glyceraldehyde. Nine of the nineteen chiral L-amino acids commonly 

found in proteins are dextrorotatory.42-43 

 

F igure 3.  Fischer projection of L and D glyceraldehyde, and L and D Alanine. 

The R/S nomenclature system is a more general method for denoting enantiomers. This 

classification method does not involve a reference molecule such as glyceraldehyde, instead, it 

labels each chiral center as R or S according to a system, which assigns a priority based on 

atomic number to each substituent. In the case of amino acids, if the center is oriented so that 

the H atom is pointed away from a viewer, the viewer will then see two possibilities: the 
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decreasing priority of the remaining three substituents in a clockwise direction, is labeled R (for 

Rectus, Latin for right). However, if it decreases in a counter-clockwise direction, it is S (for 

Sinister, Latin for left).  

For most amino acids, the L form corresponds to an S absolute stereochemistry. Only L-

cysteine is (R)-cysteine, but this only reflects the fact that the sulfur atom has a higher priority 

than a carbon atom, and does not reflect a real difference in 3D structure. 

The geometry characteristics of the encoded amino acids residues are normally obtained 

from crystal structures of related molecules. Bond lengths and bond angles are essentially 

invariant among the 20 amino acids.44-45 Only the backbone N—Cα—C angle, τ, varies and 

causes variation on the angle of the tetrahedral center. In other words, despite the Cα being 

tetrahedral, which would give 110°, τ can sometimes stretch to larger values in order to 

accommodate other strains in the structure.46-47 

 

F igure 4.  Standard peptide representation, with indication of angle t (N—Cα—C), and dihedrals, ω (C-N), φ (N-
Cα) and ψ (Cα-C).48 

The peptide bond (C-N) restricts the dihedral angle ω to values very close to 180°, 

generating the typical trans configuration. In peptides containing proline the cis form can be 

found, with ω = 0°. The distance between the Cα atoms in the trans and cis isomers is 

approximately 3.8 and 2.9 Å, respectively. The proline (Pro) ring is not completely flat and also 

induces stronger stereochemical constraints due to the lack of the flexible backbone NH, 

necessary for the formation of hydrogen bonds. These unique properties of Pro disrupts helical 

secondary structure (SS) and promotes turn SS in peptide chains.49 
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Another encoded amino acid with unique characteristics is glycine (Gly). Due to its small 

size and flexibility, Gly can assume conformations normally forbidden by close contacts of the 

β-carbon on other residues. Also, the lack of chirality allows that this amino acid adopts both 

right-handed and left-handed conformations. 

The parameters φ and ψ are the most important for amino acids structure, and 

consequently, for peptide conformation. They are the backbone dihedrals, and in theory, the 

average φ and ψ values for α-helices and β-sheets are predicted to be between -57, -47 and -

80, +150, respectively. However, for experimental structures these values were found to be 

different.50-51 

Another important characteristic of natural amino acids is that they are amphoteric 

molecules (can behave as acids, as well as bases) and zwitterionic varying with the pH. They 

are neutral molecules at physiological pH (≈7.4), yet carry a positive and a negative electrical 

charge. Figure 5 shows the intramolecular proton transfer that generates a zwitterion. This 

form exists in the solid state52 and in water solution. In rare cases the zwitterion form is also 

stable in the gas phase, like for the residue Arginine.53 

 

F igure 5.  Graphical representation of amino acid isomers. The isomer on the right is a zwitterion. 

The zwitterionic form is pH dependent. At physiological pH a carboxylate group and a 

protonated amine occur simultaneously. At low pH values, an acidic medium, a hydrogen ion 

is added to the carboxylate group, resulting in a global net charge of +1 (still present on the 

amine). On the other hand, at high pH values, a basic medium, a hydrogen ion is removed 

from the amine group, by the excess base, turning the global net charge to -1. 

 

F igure 6.  Representative scheme of the change of zwitterion form to positively or negatively charge amino acids 
according to the pH. 
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The amino acids arginine, lysine and histidine are positively charged at physiological pH, 

while aspartate and glutamate are negatively charged in the same conditions. Due to the 

characteristic of presenting a third pKa, they are named triprotic, with the third value 

associated with the ionizable functional group on the side chain. Amino acid backbone 

modifications or alterations on amine and carboxylic acid termini may change the zwitterionic 

nature of encoded amino acids. 

1.3.   Pept ide Prof i le and Biological  Funct ion 

Peptides SS and other properties, such as hydrophobicity or polar profile are directly related 

with their function. Cell-penetrating peptides (CPP) and antimicrobial peptides (AMP), both 

membrane active peptides are examples where the amino acid content, and the resulting 

peptide properties, relates directly with their function. The CPPs present great potential as drug 

delivery peptides and the AMP of antibiotic candidates.54-55 

Penetratin is a well studied CPP, which acts as antifungal and adopts a helical SS in an 

environment of low polarity (interior of cell membranes).56 Penetratin analogues should 

conserve the SS to achieve the same or optimized function.57  

Temporin A is a small, highly hydrophobic AMP, found in the skin of the European red frog. 

This peptide proved to be active against both Gram-positive and Gram-negative bacteria, with 

the advantage of not being toxic to human red blood cells at the concentrations required to kill 

bacteria.58 Wade and co-workers reported the insertion of D-amino acids to generate an 

antibiotic analogue that would resist enzymatic proteolysis.58 

Peptaibols belong to the class of AMPs and are peptides rich in the non-canonical amino 

acid Aib (α-amino isobutyric acid). Many peptaibols interact with cell membranes through a 

barrel-stave channel model. They are mostly helical entities, which allow the optimal channel 

formation necessary for biological function. We reported the structural properties of a series of 

non-coded amino acids inserted in two different peptaibols, Peptaibolin and Alamethicin,59-60 

obtaining improvements on peptide conformation stability and function. 

We also worked, recently, on peptide hydrogelators carrying α,β-dehydroamino acids.61 

These peptides can be used for drug delivery, due their capability to self-assemble as a 

hydrogel. We proved that the aggregation process occurs due to the non-canonical ΔPhe, 

which interacts with the Npx (naproxen) group also present in our model peptides, through 

π−π interactions.61  
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The peptides mentioned above are only a few examples where biological function is directly 

connected to the SS or to amino acids content, or even, to the type of inter and intramolecular 

interactions which these residues can perform. 

2.  Pept idomimetics Design 

2.1.   Structural  Propert ies of  Non-Canonical  Amino Acids 

Non-canonical amino acids are organic molecules also containing an amine and a 

carboxylic acid group but are not directly encoded by the DNA. However, as mentioned before, 

some residues are found in nature. In addition, a large array of non-canonical amino acids can 

be synthesized.62 

The incorporation of non-canonical amino acids into peptides is one of the approaches to 

generate peptidomimetics that overcome the problems previously mentioned concerning the 

pharmacokinetics and enzymatic stability of natural peptides as drugs. In fact, the replacement 

of natural amino acids often results in higher activity and increased biological stability.4, 63-64 

Figure 7 summarizes the most common natural and artificial modifications applied to 

encoded amino acids, used to generate peptidomimetics. 

 

F igure 7.  (A) and (B) are 2D representations of the basic structure of an encoded amino acid. (C) is a 
symmetrical α,α-dialkyl glycine, (D) is an asymmetrical α,α-dialkyl glycine, (E) is a β-substituted amino acid, (F) 
is a α,β-dehydroamino acid, (G) represents a N-cyclization, (H) represents a N-alkylation, (I) represents proline 
analogues and (J) represents cyclized amino acids (known as Acnc). 

2.1.1.  Symmetr ical  α,α -d ia lky l  g lycines  

The most widely studied class of non-canonical amino acids is probably the class of α,α-

dialkyl glycines (Figure 8). This type of residue is found in many natural occurring peptides, 

especially, in antimicrobial peptides.65-67 The Aib (α-aminoisobutyric acid) is the prototype of 

this class, and known to restrict the dihedral angles to generate α-helical conformations.68-70 



 Chapter I  

 

 Tarsila G. Castro, João C. Marcos, Nuno M. Micaêlo and Manuel Melle-Franco, 2015.  
39 

Aib was successfully incorporated in peptides as enkephalin, bradykinin and angiotensin 

II,71 generating active and constrained peptidomimetics.  Also, Ac6c (1-aminocyclohexane-1-

carboxylic acid) has been tested on enkephalin and endomorphin peptides, to achieve 

peptidomimetics with large activity in vivo.72-73 Ac6c is both an α,α-dialkyl glycine (because it is 

alkyl disubstituted at Cα) and a residue of Acnc residues, where the chains attached to the Cα 

are involved in a Cα to Cα cyclization. 

Our studies regarding the incorporation of α,α-dialkyl glycines suggest that some residues 

of this class are more capable of inducing α-helical conformations and promoting spontaneous 

membrane permeation than the native Aib in peptaibolin or helical structures in Alamethicin. 

The best results were obtained for Dhg (α,α-dihexyl glycine) and Ac6c (α,α-cyclohexyl 

glycine).59-60 

 

F igure 8.  Two-dimensional structures of α,α-dialkyl glycines: α-amino isobutyric acid (Aib), α,α-diethyl glycine 
(Deg), α,α-dipropyl glycine (Dpg), α,α-di-isobutyl glycine (Dibg), α,α-dihexyl glycine (Dhg), α,α-diphenyl glycine 
(DΦg), α,α-dibenzyl glycine (Dbzg), α,α-cyclohexyl glycine (Ac6c), and α,α-dihydroxymethyl glycine (Dmg).  

2.1.2.  Asymmetr ical  D-α,α-d ia lky l  g lycines 

The disubstituted amino acids can also be asymmetrical molecules, where the substituents 

attached to the Cα are different. The presence of two different alkyl groups makes the carbon 

chiral, and consequently L or D. The best-known amino acid of this class is Iva (isovaline), and 

it is typically found in peptaibols on D arrangement.74-76   
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Ross and co-workers77 reported in 1993 the synthesis of a-amino acids, including three 

asymmetrical α,α-dialkyl glycines. Mendel and co-workers78 reported the protein biosynthesis 

with conformational restricted residues, addressing different classes of amino acids, which 

included Iva and other asymmetrical disubstituted amino acids This approach successfully 

generated peptides with well-defined secondary structures. 

 

F igure 9.  Two-dimensional structures of D-Iva (top of left column) and known asymmetric α,α-dialkyl glycines. 

2.1.3.  Cα to Cα cycl ized amino acids -  Acnc residues 

Cyclized Acnc residues have been widely studied over the past decades through 

experimental and theoretical methods.79-87 The conformational preferences of these residues 

vary according to the cycle. Previous experimental and theoretical results indicate that the Acnc 

with cycles with more than 3 atoms (n = 4‒12) explore, mostly, a main chain geometry similar 

to Aib (φ,ψ ≈ ±60º, ±30º) which is typical of 310-helix or α-helix SS 79, 87-93. The residues Ac5c 

(1-aminocyclopentane-1-carboxylic acid) and Ac6c (1-aminocyclohexane-1-carboxylic acid) have 

been found to originate γ-turn conformations in small peptides 81, 94. On the other hand, Ac3c 

(1-aminocyclopropane-1-carboxylic acid) is the only member of Acnc family that prefers 
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molecular geometries in the bridge region (φ,ψ ≈ ±90º, 0º) and this particularity 81, 95-98 has 

been the subject of experimental and theoretical studies over the past decades.84, 88, 95, 99-101 

 

F igure 10. Two-dimensional structures of non-canonical Acnc (1-aminocycloalkane-1-carboxylic acids) residues, 
where n refers to the size of the cycle: Ac3c, Ac4c, Ac5c, Ac6c, Ac7c, (S,S)-Ac5c

dOM and (R,R)-Ac5c
dOM . 

 

2.1.4.  Prol ine Analogues 

Proline analogues represent a class with unique conformational features, since the natural 

Pro residue is known to disrupt or prevent α-helix SS and favors the formation of  

β-turn structures. Amino acids analogs of proline have been studied experimentally and 

theoretically, to understand structure preference and applications.49, 102-105 Pro derivatives have 

been found in proteins of microbial and marine species.9  

 

F igure 11. Two-dimensional structures of the encoded amino acid Pro and proline analogues. From left to right: 
L-Pro, 4-hydroxy-L-proline (Hyp), cis-4-methyl-L-proline, cis-3-amino-L-proline, trans-3-hydroxy-L-proline and 2,4-
methyl-proline. 

 

2.1.5.  β -subst i tuted and planar amino acids 

β-substituted amino acids have been used to generate more potent peptidomimetics of 

naturally occurring peptide hormones, as opioid peptides, angiotensin or somatostatin.9, 106 
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Natural amino acids as Phe, Trp and Tyr are found in the pharmacophore of many peptide 

hormones. The addition of alkyl groups on the β position has been proved to be a powerful 

strategy to rigidify the residue and optimize the activity.4, 107-110  

 

F igure 12.  Structures of selected examples of non-canonical β-substituted amino acids. From left to right, and 
top to bottom: β-MePhe, β-MeTyr, β-MeTrp, Tmt (β-methyl-2',6'-dimethyltyrosine), β-methyl-2',6'-dimethyl-
4’metoxytyrosine, Tic (1,2,3,4-tetrahydroisoquinoline). 

 

2.1.6.  α ,β -dehydroamino acids 

α,β-Dehydroamino acids are non-canonical amino acids naturally found in peptides.111-113 

The lack of asymmetry due to the planar hybridization sp2 of the Cα carbon, separates this 

class of amino acids from the encoded ones. In addition, these residues can present β-

substituents as isomers Z and E, and the possibility of π-electron conjugation. All these 

properties contribute to a very specific constrain which influences the bioactivity and 

applications of the dehydropeptides. 

The conformational properties of peptides carrying α,β-dehydroamino acids have been 

extensively reviewed.111-118 The three residues, dehydroalanine (ΔAla), dehydrobutyrine (ΔAbu) 

and dehydrophenylalanine (ΔPhe) are the most investigated.119-126 
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F igure 13. Two-dimensional structures of non-canonical α,β-dehydroamino acids: dehydroalanine (ΔAla), 
dehydrobutyrine (ΔAbu), dehydroleucine (ΔLeu), dehydrophenylalanine (ΔPhe), dehydrotryptophan (ΔTrp) and 
dehydrovaline (ΔVal). Those who present Z/E forms are: ΔAbu, ΔLeu, ΔPhe and ΔTrp. 

 

This type of residue favors the formation of β-turns. In small peptides, when the 

dehydroamino acid is placed in the second position, especially ΔPhe, β or γ turns are the most 

probable arrangements. In intermediate or long peptides, sequential placement or sequential 

repeats of ΔPhe, induce repeated β-turns that can be accommodated in a 310-helix.127 

2.1.7.  Others Side Chain Modif ied Amino Acids  

The amino acids and applications already mentioned show that non--canonical constrained 

amino acids have acquired considerable importance in the design of bioactive 

peptidomimetics. Figures 14 and 15 show selected examples of non-canonical residues that 

differ from the classes addressed above. 

The amino acids Bin and Bip are reported to combine structural features of both Dbzg and 

Ac7c residues.128-130 In fact, Bip and Bin can be considered turn/helix inducers and due the 

characteristic of being rigid structures diminish physiological vulnerability.128-131 

Daf is another example of a rigid amino acid that imposes geometrical constrains when 

inserted into a peptide. This residue possesses the unique property of also being a ligand that 

can coordinate metal atoms. This fact is very important allowing a broad spectrum of 

applications: metal-binding sites on proteins, peptide-based electronic devices and molecular 

switches.132-133 The expected conformations for Daf would be β-bends and α/310-helix forms, 

since this residue can be classified as a α,α-disubstituted glycine, similar to Aib or Ac7c. 
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However, a C5 conformation (fully extended form) was characterized experimentally, with a 

tendency to form a helical structure.132 

 

 

F igure 14. Selected examples of unnatural amino acids: Bip (2′,1′:1,2;1′′,2′′:3,4-dibenzcyclohepta-1,3-diene-6-
amino-6-carboxylic acid), Bin (1,1′-binaphthyl-substituted α-aminoisobutyric acid), Daf (9-amino-4,5-diazafluorene-
9-carboxylicacid), AHMOD ((2S)-amino-(6R)-hydroxy-(4S)-methyl-8-oxodeca-noic acid) and AMD ((2S)-amino-(4S)-
methyldecanoic acid). 

 

AHMOD and AMD are both naturally found on culicinin peptaibols. Culicinins are peptides 

isolated from the fungus Culicinomyces clavisporus.134 Importantly, culicinin D was found to 

exhibit potent antitumor activity.134-135 The spatial structure of Culicinins is a right-handed helix, 

with a tighter N-terminus, forming a 310-helix conformation.134  

 

F igure 15. Two-dimensional structures of the non-canonical amino acids: Pip (4-aminopiperidine-4-carboxylic 
acid), Ind (aminoindane carboxylic acid), Nva (norvaline or 2-Aminopentanoic acid), Nle (norleucine or (2S)-2-
aminohexanoic acid) and Tle (tert-leucine or tert-butylglycine). 

The non-canonical amino acids norvaline (Nva), norleucine (Nle) and tert-leucine (Tle), are 

hydrophobic residues. Nva and Nle proved to be helical stabilizing amino acids.136-137 Nva and 

Nle are found in small amounts in some bacterial strains.138 Nva Norvaline is known to 

promote tissue regeneration and muscle growth,139 while Nle can act as an isostere of 

methionine.140 In contrast, Tle does not induce the same constrain observed for Nva and Nle, 

varying with the environment and amino acid content of the peptide in which is inserted.141-142 
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Pip is a naturally occurring amino acid found on Efrapeptin peptides, which are produced 

by fungi of the species Tolypocladium.143 This class of peptides has antifungal, insecticidal, and 

mitochondrial ATPase inhibitory activities. The right-handed α-helical structure cannot be 

adopted by Pip-rich peptides. For efrapeptin, for example, the dominant structure is a 310-

helix.143 Pip was also reported to increase water solubility of peptides.141, 144 The non-canonical 

residue Ind has a stabilizing effect towards the formation of α/310-helices.141, 145-146  

A recent review by Rogers and Suga shows that genetic code reprograming can generate 

functional non-proteinogenic amino acids.147 Selected examples are Phe-like residues, Lys-like, 

peptoids, D-stereochemistry, N-Acyl and N-Acetyl. 

 

2.2.   Backbone Modif icat ions 

Peptide backbone plays an important role on peptide stabilization. Modifications on the 

peptide backbone are another approach to generate peptidomimetics more conformationally 

constrained and thus more stable. Many types of backbone modifications have been 

performed and tested.3-4, 9, 11, 63, 148 Basically, a backbone can suffer alteration by isosteric or 

isoelectronic substitutions, resulting in several types of mimetics. The isosteric modification 

consists in maintaining the same number of valence electrons, but can differ in the number of 

atoms and atom types, while a isoelectronic substitution refers to two atoms, ions or molecules 

that have to present the same electronic structure and/or same number of valence electrons, 

but also, the same structure (number of atoms and connectivity).2-3, 9, 12, 148 

Figure 8 exemplifies the most important peptide backbone modifications. We can cite, the 

replacement of Cα, the backbone extension, carbonyl replacement, etc. 

Detailing some types of backbone modifications, we have the azapeptides, where a N atom 

replaces the Cα. The peptides generated through this transformation can be therapeutically 

applied as inhibitors of cysteine proteases.4, 149 

The depsipeptides are also very important, and the result of the replacement of amide to 

ester bond. Two remarkable examples are the depsipeptides extract from marine invertebrates, 

Didemnin B and Plitidepsin (dehydrodidemnin B).150  
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F igure 16. Two-Dimensional structure of a natural peptide (center) surrounded by known types of peptide 
backbone modifications. 

 

Didemnin B has potent biological activity. One example is the strong antiviral effect against 

DNA and RNA viruses such as herpes simplex virus type 1.151 Importantly, this peptide is a 

strong drug candidate to treat small cell lung cancer.152 

 

 

F igure 17. Didemins general structure. Didemin B corresponds to R=Lac-Pro-N-Me-L-Leu. 
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Plitidepsin is a depsipeptide that carries a β-hydroxy-γ-amino acid, another example of a 

non-canonical residue. This peptide presents potent activity against antimyeloma in vitro and in 

vivo.153  

 

F igure 18. Structure of the depsipeptide Plitidepsin (Aplidin). 

2.2.1.  Retro- Inverso Pept idomimetics 

Retro-inverso peptides are generated when the amino acid sequence is reversed, i.e. 

reverse amide peptide bonds, and the α-center chirality of the amino acid subunits is inverted 

as well, for D-amino acids. The use of these peptides is another approach to design 

peptidomimetics more resistant to proteolytic degradation, but not always increase the 

pharmacological potency.4, 154  

 

F igure 19. Structures that show the difference among a normal peptide, a retro-inverso peptide and a retro-
inverso peptide with regular end-groups.  

The retro-inverso peptides with regular terminal groups are more able to link to native 

peptides, generating potent peptidomimetics, or to be embedded in a large normal peptide to 

achieve the same goal. One example of this is the peptide Tuftsin, which in its normal state is 

completely degraded in vivo in about 8 minutes. However, when in retro-inverso peptide form, 

only 2% of hydrolysis is observed after 50 minutes, and with the retention of bioactivity.155 
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2.2.2.  Sugar Amino Acids 

Sugar amino acids (SAAs) are building blocks with applicability as drugs or in peptide 

design.156-157 Chemically they are monosaccharide derivatives containing an amine and a 

carboxylic acid group. Risseeuw, Fleet and co-workers have published two important 

compendiums on this field.158-159 Recently, the synthesis and design of peptidomimetics 

carrying SAAs was explored by Tian and co-workers.160 Other reviews and papers show the use 

of SAAs scaffolds in drug design and peptidomimetics.157, 161 

 

F igure 20. Two-dimensional structures of the types of SAAs according to Fleet’s compendium.  

3.  Conclusions 

This review focused on four important topics: the difference between encoded and non-

proteinogenic amino acids, the relation between peptide secondary structure and biological 

function, the most relevant non-canonical amino acid classes and the most common peptide 

backbone structure modifications. Above all, the non-canonical amino acids were emphasized 

in more detail because it is our main field of research. 

In Table 1, the conformational preferences of the non-canonical amino acids that stand out 

within their class are summarized. 

 

Table 1. Conformational preferences of the non-canonical amino acids adressed in this 
study. 

Non-canonica l  Amino Ac id Class High l ights Conformat iona l  Preferences 

Symmetric α,α-dialkyl glycines 
Aib 310-helix or α-helix 

Dhg α−helix 

Asymmetric α,α-dialkyl glycines (D-amino acids) 

Iva 310-helix or α-helix 

MDL 310-helix or α-helix 

MDP 310-helix or α-helix 

Cα to Cα cyclized amino acids - Acnc 

Ac3c bridge region (φ,ψ ≈ ±90º, 0º) 

Ac6c 310-helix or α-helix 

(R,R) Ac5c
dOM 310-helix or α-helix 

Proline Analogues Hyp β-turn, bend 

α,β- dehydroamino acids ΔzPhe β-turn or γ-turn 
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The incorporation of non-canonical amino acids into known peptides proves that it is 

possible to optimize the characteristics of native peptides and obtain novel molecules with 

improved activity and stability. The selected examples mentioned here illustrate different ways 

to generate peptidomimetics, but in general, this can be done by incorporating non-canonical 

amino acids or by changes in the backbone. Also, we have reported how the application of 

these strategies successfully generates active peptidomimetics. 

We believe that in the future peptidomimetics will manifest a large variety of applications in 

medicinal chemistry, biotechnology and nanotechnology fields. The rational design of these 

molecules will produce new bio devices, biosensors and other biomaterials capable to perform 

specific interactions with physiological environments. 
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1.Molecular Dynamics Simulat ions 

The need to study computationally the structure of matter at the molecular level spurred the 

development of a research area now known as Molecular Modeling (MM). Any molecular system can 

be understood in great depth if we are able to describe in detail their molecular interactions and 

sample the distribution of its conformational states and their energies. In this sense, MM is a set of 

theoretical methods supported by the fundamentals of physics, which are implemented to model, 

visualize and simulate the behavior of molecular systems. 

Biological systems, as the investigated in the present work, should be seen through a dynamic 

perspective. The properties of a system arise from an average of the different conformational states 

explored and this type of average can be obtained recurring to Molecular Dynamics (MD) techniques 

and using a force field (FF) that describes the physical reality of our systems. 

MD simulations had its primordium in 1957 with Alder and Wainwright,1 which studied a system of 

rigid spheres. In this system particles move with constant velocity between perfectly elastic collisions. 

The first application of MD for the study of materials was made by Vineyard et al.2 that investigated the 

damage process in a material by radiation using a short-range repulsive potential and a potential 

responsible for the cohesion of the crystal. Rahman3 was the first to investigate a system under 

continuous potentials, describing liquid argon through MD. It was surprising to observe how a system 

with a reduced number of particles could satisfactorily reproduce the thermodynamic properties of real 

systems. Rahman also performed, in collaboration with Stilinger, the first simulation of a molecular 

liquid: water.4 Many papers and books talk about the history and evolution of this area.5-7 

Recently, Martin Karplus, Michael Levitt and Arieh Warshel, received the 2013 Nobel Prize for The 

development of multiscale models for complex chemical systems. They developed in the 1970s 

powerful programs to understand and predict chemical processes, being the pioneers in biomolecules 

simulation.8-9 

With the increase of computational power, quantum mechanics would raise the molecular 

mechanics to a new level, determining the inter-atomic forces directly through the explicit consideration 

of the relevant electron orbitals. However, molecular mechanics produce satisfactory results even 

disregarding any quantum effects and this is possible due to several factors. A key factor is the 

portability of force fields, that is, parameters derived for small molecules can be translated into similar 

large macromolecules. Another important property of classical molecular mechanics is that the 

potential energy can be defined in terms of the atomic nuclei coordinates, which is only possible thanks 
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to the Born-Oppenheimer approximation.10-11 This approximation is based on the considerable 

difference between the electron mass me and the mass of a proton mp (mp = 1836 me), which means 

that the first can fit almost instantly to the second without influencing it. In other words, as nuclei are 

much heavier than electrons, we can consider nuclei as point particles that follow classical Newtonian 

dynamics. The Born-Oppenheimer approximation is a concept used in quantum chemistry, although, it 

is implicitly used in MD simulations to justify each atom following Newtonian physics. 

MD is a deterministic method (since it follows physical laws and no randomness is involved), by 

which sets of atomic positions are derived in sequence, applying Newton’s equation of motion. The 

atoms motion are described according to Newton’s second law.6 

),()(),( jj tiaimtiF ×=
      

(1.1) 

In Equation (1.1) ),( jtiF  corresponds to the force acting in particle i  at the moment jt , ),( jtia is 

the acceleration and )(im  is the mass of particle i . From this equation the Newton equation of motion 

for a system of N particles is derived: 

)(
),(),(

2

2

im
tiF

t
tir j

j

j =
∂

∂

      
(1.2) 

 

where ),( jtir  is the position of particle i  at the moment jt . The ),( jtiF  on Equations (1.1) e (1.2) 

can be obtained from the gradient of the potential computed with a FF, for each particle i  at the 

moment jt . 
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In practice, for each system of particles containing a total of N atoms, the forces acting on each 

particle are added obtaining a resultant vector force, and hence the instantaneous acceleration from 

which we determine the new position and velocity of the atom in the immediately subsequent time. 

Continuous potential means that each particle will have its force changed with every change in its 

position or its neighbor’s position. This situation demands that the Newtonian equations are integrated 

by using a differential method with finite elements performed by specific integration algorithms. The 

Ni ,...,1=
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continuous potential requires that the equations of motion be integrated by breaking the calculation 

into, very short, time steps (commonly in a range of 1 fs to 10 fs).  

For most MD applications, Verlet-like algorithms are perfectly adequate.12 However, sometimes it is 

convenient to employ a higher-order algorithm.6 For this work we used the leap-frog algorithm6, 13 which 

is an improved implementation of the Verlet algorithm.12 This algorithm is less prone to numerical 

errors and is capable of coupling the system to a thermal bath by scaling the velocities.6, 13 

𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝛿𝑡𝑣(𝑡 + !
!
𝛿𝑡)     (1.5.) 

𝑣 𝑡 + !
!
𝛿𝑡 = 𝑣 𝑡 − !

!
𝛿𝑡 + 𝛿𝑡𝑎(𝑡)     (1.6) 

𝑟 𝑡  it is the position of particle  at the moment 𝑡, 𝑟 𝑡 + 𝛿𝑡  corresponds to the new position of 

atom  at the moment 𝑡 + 𝛿𝑡 , and 𝑣  and 𝑎 are the velocity and acceleration. On this algorithm, the 

velocity is included on the determination of the new atom positions yielding higher numeric precision, 

due to the fact that there is no need to use the 𝛿𝑡! term present on the Verlet algorithm (equations 1.7 

and 1.8). 

𝑟 𝑡 + 𝛿𝑡 =  𝑟 𝑡 + 𝛿𝑡𝑣 𝑡 +  !
!
𝛿𝑡!𝑎 𝑡 +⋯

    
(1.7) 

𝑟 𝑡 − 𝛿𝑡 =  𝑟 𝑡 − 𝛿𝑡𝑣 𝑡 +  !
!
𝛿𝑡!𝑎 𝑡 −⋯    (1.8) 

Adding the equations 1.7 and 1.8 we obtained: 

𝑟 𝑡 + 𝛿𝑡 = 2𝑟 𝑡 − 𝑟 𝑡 − 𝛿𝑡 + 𝛿𝑡!𝑎(𝑡)    (1.9) 

On Verlet algorithms, the position and acceleration at time t, and the position from the previous 

step, 𝑟 𝑡 − 𝛿𝑡  are used to calculate the new atom positions at 𝑡 + 𝛿𝑡 , 𝑟 𝑡 + 𝛿𝑡 . This is an 

algorithm of simple implementation, but there are some drawbacks, like: the position 𝑟 𝑡 + 𝛿𝑡  it is 

only obtained by adding the term 𝛿𝑡!𝑎(𝑡), which causes loss of precision. Other disadvantage is that 

the velocity term is not explicit making hard the determination of velocities until the positions been 

computed at next step. The velocities can be obtained according with equation 1.10: 

𝑣 𝑡 = 𝑟 𝑡 + 𝛿𝑡 − 𝑟 𝑡 − 𝛿𝑡 /2𝛿𝑡      (1.10) 

On the other hand, the leap-frog algorithm uses the velocity explicitly and, in consequence, the 

velocities and new positions are calculated together, simplifying the motion integration. 

Nowadays, MD simulations are essential tools for understanding the physical basis of the structure 

and function of biological macromolecules. Moreover, they can provide great detail relating to the 

dynamic properties of model systems in more detailed manner than most experimental techniques.14 

i

i
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Computer simulations used in this study are the basis for explaining the properties of our case studies 

and to investigate if the biological function of the new non-canonical amino acids/peptides are related 

to their structural features, providing detailed conformations and other properties that determine the 

behavior of systems in time and space.15 

The computational package GROMACS16-18 was the chosen MD program for this work. We used the 

GROMOS 54a7 FF19-20 available on GROMACS for all simulations performed. It is known that this 

program is very suitable for modeling biomolecules such as proteins and lipids. GROMACS is extremely 

fast to calculate the nonbonding interactions, which typically dominate the simulations, and therefore, 

is suitable for the study of biological systems involving large numbers of particles.21 

2.Force Fie ld 

A biomolecular force field (FF) refers to a set of common parameters used to calculate the potential 

energy of a system. These parameters are derived from experimental data and quantum mechanical 

calculations to describe the physical reality of a system of atoms.  

The potential energy calculated with a FF considers the bonded and non-bonded terms present in a 

molecular system. The bonded terms include the energy contribution derived from covalent bonds, 

such as bond, angles and torsions (proper and non-proper dihedrals). The non-bond parameters refer 

to terms that describe the long-range electrostatic and van der Waals (vdW) forces between different 

molecules or among atoms linked to a distance of more than three covalent bonds.12 

The potential energy of a system is described on equation (2.1) and in Figure 1. 

𝑉 = 𝑉!"#$% + 𝑉!"#$%& + 𝑉!"#$%"&$ + 𝑉!"# + 𝑉!"!#$%&'$($)#   (2.1) 

Detailing the above equation, we have the Equation 2.2. Some FF may have additional terms, but 

invariably contains the five components showed in this equation. 
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)( NrV  refers to the potential energy due to the position of the N particles (atoms) of the system. 

Each contribution is also represented on Figure 1. The first two terms (bonds and angles) are modeled 

by a harmonic potential. The third term denotes a torsional potential that models how the energy 

change when a bond rotates. Finally, the fourth term includes the two non-bonded contributions. The 
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electrostatic term is modeled through a Coulomb potential and Lennard-Jones potential is used for van 

der Waals (vdW) forces. The vdW interactions are usually truncated at a particular cut-off distance to 

reduce the number of calculations. 

The constants showed in Equations 2.2, for each term, correspond to the force constants 

representing equilibrium parameters for the different types of physical interactions described. These 

constants are defined in the topology file for each FF, in our case for the FF G54a7 (see in Appendix V). 

Also, the topology file describes all physical parameters of a molecule, such as, atom types, net 

charge, bond distance, angles, dihedrals and exclusions. For this work, it was necessary to define new 

topology parameters for the classes of non-canonical amino acids studied. Since most of the new 

amino acids are similar to natural amino acids, we derive the parameters on the existing topologies in 

FF G54a7, changing the required angles and dihedrals, to fit experimental or theoretical data 

concerning the geometry of these molecules.  

Bonds 

 

Angles 

 

Torsion 

 

Torsion 

 

Electrostat ic 

 

van der Waals 

 

F igure 1.  Schematic representation of the potential energy functions (V) common in molecular force fields. Figure adapted 
from Steinbach.22 
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3. Molecular Dynamics Protocol  

To perform a MD simulation a series of procedures and techniques has to be chosen and applied to 

produce proper sampling. The standard protocol associated to a MD simulation of biomolecules can be 

summarized as follow. 

3.1.   Start ing point 

The spatial coordinates of the starting structure are generally obtained experimentally (from X-ray or 

NMR techniques). We can also use theoretical techniques like homology modeling.  

It is necessary to insert the starting structure into a solvent such as water, ethanol, organic solvents 

or a membrane. This is necessary to reproduce physiological conditions or to observe the system 

behave in solvents commonly used in experimental techniques like Circular Dichroism (CD) or 

spectroscopy techniques. Furthermore, the molecules of the media to be used have to be equilibrated. 

The use of explicit solvent molecules introduces a high degree of realism in the simulation of 

biomolecules.  

From this step, it is important to define Periodic Boundary Conditions (PBC), where the central cell 

is surrounded by replicas of itself.6, 15 This procedure enables a simulation with a small number of 

particles and minimize surface effects that would occur if the system interacts with the void. 

  

F igure 2.  Periodic Boundary Conditions representation in two dimensions showing the primitive cell and where L is the 
size of the box and rc is the cut-off. 
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To apply PBC we have to deal with the non-bonded interactions between the atoms of the central 

cell and the atoms of the surrounding images. It is necessary to use a box size that prevents that a 

particle interacts with its own image.  

3.2.   Energy Minimizat ion 

In this stage, the system geometry is optimized to obtain a structure that corresponds to a lower 

energy state. Typically, energy minimization techniques find a local minimum with respect to the 

starting point. During energy minimization, the geometry is changed so that the energy of the molecule 

is reduced, step-by-step as shown in Figure 3. 

 

 

F igure 3.  Description of energy minimization process, where the Energy reaches a local minimum according to changes in 
the geometry.  
 

 
There are several methods that perform geometry optimization to find the minimum, but the most 

relevant on MD simulations are: the Newton-Raphson, the Steepest Descent and the Conjugate 

Gradient methods. 

 The algorithm that we used this step was the Steepest Descent (SD). SD is a largely used method, 

due to its easy implementation and because it is very efficient for structures that are far from the 

minimum.6, 23 This method searches for a minimum starting in the direction that points to the largest 

decrease. The algorithm stops when the determined number or when a convergence criterion (related 

to the norm of potential gradient) is reached. The SD method is illustrated for a system with two 

geometrical coordinates in Figure 4.  
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Energy Minimization Methods 
 
Knowing the stable conformers of a molecule is important because it allows us to understand properties and 
behavior based upon structural considerations.  When a molecule is built in a computational chemistry software 
package, the initial geometry does not necessarily correspond to one of the stable conformers.  Therefore, energy 
minimization is usually carried out to determine a stable conformer; this same process also is commonly referred to 
as geometry optimization.   
 
Energy minimization is a numerical procedure for finding a minimum on the potential energy surface starting from a 
higher energy initial structure, labeled "1" as illustrated in Figure 1.  During energy minimization, the geometry is 
changed in a stepwise fashion so that the energy of the molecule is reduced, from steps 2 to 3 to 4 as shown in 
Figure 1.  After a number of steps, a local or global minimum on the potential energy surface is reached.  
 

 
 

Figure 1.  The process of energy minimization changes the geometry of the molecule in a 
step-wise fashion until a minimum is reached.  

 
Most energy minimization methods proceed by determining the energy and the slope of the function at point 1.  If 
the slope is positive, it is an indication that the coordinate is too large (as for point 1).  If the slope is negative, then 
the coordinate is too small.  The numerical minimization technique then adjusts the coordinate; if the slope is 
positive, the value of the coordinate is reduced as shown by point 2.  The energy and the slope are again calculated 
for point 2.  If the slope is zero, a minimum has been reached.  If the slope is still positive, then the coordinate is 
reduced further, as shown for point 3, until a minimum is obtained. 
 
There are numerous methods for actually varying the geometry to find the minimum; only a few will be discussed 
here.  Many of the methods used to find a minimum on the potential energy surface of a molecule use an iterative 
formula and proceed in a step-wise fashion.  These are all based on formulas of the type: 
 

        

€ 

xnew  =  xold  +  correction .               (1) 
 
In the equation, 

€ 

xnew  refers to the value of the geometry at the next step (for example, moving from step 1 to 2 in 
the figure), 

€ 

xold  refers to the geometry at the current step, and correction is some adjustment made to the geometry.  
In all these methods, a numerical test is applied to the new geometry (

€ 

xnew ) to decide if a minimum is reached.  For 
example, the slope may be tested to see if it is zero within some numerical tolerance.  If the criterion is not met, then 
the formula is applied again to make another change in the geometry. 

E
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Figure 4.  Graphical representation of the SD method for a system with only two geometrical coordinates. 

 

A more common method for energy minimization is the Conjugate Gradient (CG) method, which 

starts similarly to the SD method: the direction in which the geometry is first minimized is in the 

direction in which the gradient is largest (steepest) from the initial point. Then, the algorithm proceeds 

iteratively along a direction perpendicular or conjugate to the current direction, reaching more rapidly 

the minimum, since it avoids some of the oscillations typically observed in SD. This algorithm 

progresses slowly in the first steps of energy minimization, but when near to the minimum can be more 

efficient than the SD method.  

The Newton-Raphson method is based on a Taylor series expansion of the potential energy surface 

at the current geometry. This procedure is iterated until the parameter values stabilizes. This method is 

more computationally expensive of the previous methods mentioned to perform energy minimization, 

since it needs an estimate of the hessian.  

For all simulations performed in this thesis, we use the Reaction-Field method24 for the long–range 

electrostatic interactions. This method assumes the existence of a continuous environment, beyond a 

certain cutoff radius, typically 1.4 nm. Also, a dielectric constant that describes the solvent used is 

necessary for this algorithm. The van der Waals interactions were also truncated with twin-range cutoffs 

of 0.8 and 1.4 nm. 

Another common method to compute long-range interactions is the Ewald summation. This method 

was originally designed to compute long-range interactions on crystals, because the sum is over an 

infinite number of periodic images. Due to PBC, particle-mesh Ewald (PME) is now widely used in 

biological MD simulations, but only for small systems, since the reciprocal sum increases with the 

number of particles in the system and this is computationally expensive.25 

 2 

Newton-Raphson Method 
The Newton-Raphson method is the most computationally expensive per step of all the methods utilized to perform 
energy minimization.  It is based on a Taylor series expansion of the potential energy surface at the current 
geometry.  The equation for updating the geometry is  
 

       

€ 

xnew  =  xold  −  
# E xold( )
# # E xold( ) .                 (2) 

 
Notice that the correction term depends on both the first derivative (also called the slope or gradient) of the potential 
energy surface at the current geometry and also on the second derivative (otherwise known as the curvature).  It is 
the necessity of calculating these derivatives at each step that makes the method very expensive per step, especially 
for a multidimensional potential energy surface where there are many directions in which to calculate the gradients 
and curvatures.  However, the Newton-Raphson method usually requires the fewest steps to reach the minimum. 
 
Steepest Descent Method 
Rather than requiring the calculation of numerous second derivatives, the steepest descent method relies on an 
approximation.  In this method, the second derivative is assumed to be a constant.  Therefore, the equation to update 
the geometry becomes 
 

       

€ 

xnew  =  xold  −  γ $ E xold( ) ,                (3) 
 
where γ is a constant.  In this method, the gradients at each point still must be calculated, but by not requiring second 
derivatives to be calculated, the method is much faster per step than the Newton-Raphson method.  However, 
because of the approximation, it is not as efficient and so more steps are generally required to find the minimum. 
 
The method is named Steepest Descent because the direction in which the geometry is first minimized is in the 
direction in which the gradient is largest (i.e., steepest) at the initial point. Once a minimum in the first direction is 
reached, a second minimization is carried out starting from that point and moving in the steepest remaining 
direction. This process continues until a minimum has been reached in all directions to within a sufficient tolerance. 
Such a process is illustrated for a system with two geometrical coordinates in Figure 2.   
 

 
Figure 2. Illustration of the steepest descent method for a system with two geometrical coordinates. 

 
Conjugate Gradient Method 
In the Conjugate Gradient method, the first portion of the search takes place in the direction of the largest gradient, 
just as in the Steepest Descent method.  However, to avoid some of the oscillating back and forth that often plagues 
the steepest descent method as it moves toward the minimum, the conjugate gradient method mixes in a little of the 
previous direction in the next search.  This allows the method to move rapidly to the minimum.  The equations for 
the conjugate gradient method in two or more dimensions are more complex than those of the other two methods, so 
they will not be given here. 
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3.3.   In i t ia l iz ing and Equi l ibrat ion 

At this point, we assign initial velocities for the atoms on the system and do the first integration of 

the equations of motion. The initial velocity of each atom it is not known, because of that, it is 

necessary to generate the initial velocities according to the temperature. Initial velocities are random 

but follow a Maxwell-Boltzmann distribution.6 The initial velocities iv  for each atom on the system are: 

Ni
kT
vm

kT
mvp iii

i

3,...,1
2

exp
2

)(
2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

π      (3.3) 

where k  is the Boltzmann constant, T it is the absolute temperature and im is the mass of the atom. 

Once the initial velocities are defined, the potential energy of the system is calculated and it begins to 

integrate the Newton's equations of motion (1.2) for each particle, which will determine the trajectory of 

each atom. 

The integration of the motion of a particle may be achieved using various algorithms. In this work 

we used the leap-frog algorithm13 which is a modification of the Verlet algorithm,12 as mentioned 

before.  

In this stage, the systems should reach an equilibrium, which implies that a set of properties 

become stable. It is possible to monitor the equilibration through analysis like following the root mean 

square deviation.  

The equilibration dynamics performed on this stage can be done using position restraints 

techniques, to impose some restrictions to atoms positions. Only on the studies presented on Chapters 

III, IV and V, we use this method due the peptide length and flexibility. Generally, this procedure should 

follow three steps: in the first one, only all heavy atoms are constrained. In the second, the restrictions 

are imposed to the atoms on the main-chain. On the final step the system is free and the atoms of the 

peptides can interact with the molecules of the environment and accommodate better in the solvation 

layers. These steps are necessary to relax properly the high and lower frequency modes and to avoid 

close contacts. These position restraints can also be applied on the minimization stage. 

We pretend to analyze our systems in the NPT (isobaric-isothermic) ensemble to reproduce solution 

conditions. For this purpose we use, from this stage, the Berendsen thermostat and barostat 

algorithms26 that serve to guarantee that the biomolecule and the solvent are under the same 

temperature and pressure along the simulation.  
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The LINCS algorithm27-28 is a method used to maintain bonds and angle constrained and to 

eliminate the vibrational modes of higher frequency, allowing larger integration time steps. The SETTLE 

algorithm24 fulfills the same function for water molecules.  

3.4.   Product ion Run  

After initializing the system, a MD simulation is performed during the necessary time to guarantee a 

good sampling of the conformational states explored by the system. The total time should be superior 

to the relaxation time of the properties to be analyzed. Along the simulation, the positions of the atoms 

are recorded at fixed time intervals to form the simulation trajectory. In addition, the velocities and 

forces can be registered.  

3.5.   Analysis  

The trajectories obtained are analyzed in order to calculate a variety of useful structural properties, 

such as deviation from an initial structure, number of hydrogen bonds, the area exposed to the solvent, 

the secondary structure type, and other properties. 

 

4. Common Structural  Analysis to evaluate MD Simulat ions 

The most common tools/programs used to analyze MD Simulations performed on this work are: 

RMSD (Root Mean Square Deviation), RMSF (Root Mean Square Fluctuation), Hydrogen Bond analysis, 

Secondary Structure (SS) Analysis, Ramachandran plots and thermodynamic analysis, among others.23 

All the programs necessary to perform these analyses are available on GROMACS package. 

The RMSD is typically used to analyze the structural stability of peptides and proteins, by following 

the changes along the simulation against the experimental starting structure. We also can monitor the 

structural properties or a secondary structure preference using a DSSP (Dictionary of Secondary 

Structure in Proteins) method. This approach can tell us the SSs populated by a system on a MD 

simulation.  

The Hydrogen Bond analysis is also important to characterize our peptides. We can evaluate the 

type of intramolecular hydrogen bonds most common for a system or analyze the intermolecular 

hydrogen bonds with the solvent. 

The Ramachandran plots were very useful on our studies, as a tool capable to analyze each an 

amino acid of interest on the peptide under study, to understand the dihedral preferences of different 

non-canonical amino acids.  
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Abstract 

Antiamoebin I (AAM-I) and Zervamicin II (Zrv-IIB) are peptaibols with antibiotic activity 

that perform their function through insertion/disruption of cell membranes. In this study we 

investigate the folding properties of two classes of non-canonical amino acids inserted in 

these peptaibols: proline analogues and asymmetrical D-α,α-dialkyl glycines. Systematic 

substitution of native Aib, Pro, Hyp and Iva residues were done to understand the folding 

properties of the peptides incorporating non-canonical residues. The peptaibols secondary 

structure is related to their ability to incorporate in membranes and therefore to their function. 

Our findings revealed that native Zrv-IIB suffers considerable unfold in water. The non-

canonical proline analogue, cis-3-amino-L-proline (ALP) and Iva induce helical structures in 

both peptaibols. Asymmetric glycines, such as α-methyl-D-leucine (MDL) and α-methyl-D-

phenylalanine (MDP) are folding inducers for the two peptaibols. This pre-organization in 

water may help to overcome the energy barrier required for peptide insertion into the 

membrane, as well as to facilitate the formation of transmembrane channels. 
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Introduction 

Peptaibols are antibiotic peptides originated by fungi that present Aib (α-aminoisobutyric 

acid) in their composition, an amino alcohol C-terminal and have a length of 5 to 20 

residues.1-2 They are normally organized in amphiphilic helices due the presence of non-

canonical helix-promoting residues like Aib or Iva (isovaline; α-ethylalanine). In this family 

of peptides, Alamethicin has been largely investigated in the past decades.3-4 Antiamoebins 

and Zervamicins are representative examples of the peptaibol family.1, 5-6  

One of the major health problems today is resistance to conventional antibiotics.7-8 That is 

why investigating agents like peptaibols is important, in order to understand the relationship 

between their structure and mechanism of action. Several studies indicate that the interaction 

with cell membranes and the formation of pores/channels correspond to the mechanisms of 

antibiotic activity, and this function is directly related to the structure of the peptides.9-22 

However, for shorter or intermediate Peptaibols, the mechanisms of interaction with the 

membrane are not well understood and seems to vary according to the nature of the 

constituent amino acids as well as with the length of the peptide.1 

We address in this study two 16-amino acid length peptaibols: Antiamoebin I (AAM-I) 

and Zervamicin-IIB (Zrv-IIB). Antiamoebins are produced by fungi of the species 

Emericellopsis poonensis and have this name due to the antiamoebic properties.23 AAM-I is 

one of the most representative members of the Antiamoebins family and has the sequence: 

Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl.6, 24 Zervamicins 

were isolated from cultures of Emericellopsis salmosynnemata.25 Zrv-IIB primary structure 

is: Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-Hyp-Aib-Pro-Phl. This peptide is 

active against Gram-positive bacteria and nontoxic for eukaryotic cells.25  

The primary structures of AAM-I and Zrv-IIB are very similar at the C-terminal segment, 

they share the same amino acids residues at the segments 9-11 and 13-16. (see Figure 1). In 

addition, the position 12 is an asymmetric D-α,α-dialkyl glycine on AAM-I (Iva) and a 

symmetric/achiral α,α-dialkyl glycine on Zrv-IIB (Aib). Both peptaibols present a high 

content of three non-canonical amino acids: Aib, Iva and Hyp. There are 6 and 4 Aib residues 

in AAM-I and in Zrv-IIB respectively. The N-terminal segment in Zrv-IIB is more polar. 

The secondary structure (SS) of AAM-I can be classified as a right-handed helix, but the 

helix has three different secondary structures: α-helix for the residues 1-9, 310-helix for the 

short segment 10-12 and an overlapping series of β-turns for the residues 12-16.6, 24 The entire 
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structure of Zrv-IIB represents an amphiphilic helix with ~26Å of length, 1Å more than 

AAM-I.5-6  

 

Figure 1. (A) X-ray structure of Antiamoebin I monomer (PDB: 1JOH) and (B) NMR structure of Zervamicin 
II-B (PDB: 1IH9) with respective primary structures.  

The N-terminal segment forms an α-helix with residues 1-8, the C-terminal part (residues 9-

16) is organized into a β-ribbon, presenting three i → i+3 (310-helix portion) hydrogen bonds 

and two i → i+4 hydrogen bonds.5 Both peptaibols are bent due the presence of Hyp10, yet 

the bend angle on AAM-I is higher than in Zrv-IIB, contributing for the slightly short length 

of AAM.5-6, 26 

The Zrv-IIB mechanism of action suggests that this peptaibol adopts a helical 

conformation when approaching the bilayer/water interface. Also, experimental data indicates 

that the Barrel Stave (BS) model is the preferable pore organization.5, 19, 21 In contrast, there is 
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evidence that AAM-I uses a different mechanism to promote ion movement, sometimes 

forming a complex with the ions (carrier) and sometimes as BS ion channel. 6, 9, 18, 27 This 

difference is probably related to the bend angles (at Hyp10), shape and folded length of both 

peptides. In addition to the bend angle being lower on Zrv-IIB, the shorter α-helical portion 

in this peptaibol generates a slightly longer peptide, which in turn, enables Zrv-IIB to span 

the entire membrane bilayer.6, 28-29 

Our main goal on this study is to see if new non-canonical amino acids could stabilize 

AAM-I and Zrv-IIB analogs in a helical form (α-helix or 310-helix preferentially), generating 

consequently, longer peptides able to optimize the peptide function as ion-channel forming. 

We evaluate this by inserting two classes of non-canonical amino acids: asymmetrical D-α,α-

dialkyl glycines (similar to the natural D-Iva found on the two peptaibols under study; see 

Figures 2 and 3) and proline analogs. The asymmetrical D-α,α-dialkyl glycines under 

investigation are: MCP (2-amino-2-cyclopentylpropanoic acid), MDC (2-amino-2-(2-

cyclopentenyl)propanoic acid), MDL (α-methyl-D-leucine), MDP (α-methyl-D-

phenylalanine) and MPR (2-amino-2-methyl-4-pentenoic acid). The proline analogs are: ALP 

(cis-3-amino-L-proline), HLP (trans-3-hydroxy-L-proline) and MLP (cis-4-methyl-L-

proline). Note that we have assigned a new three-letter code for the residues that did not 

receive a prior terminology in other works, namely: ALP, HLP, MLP MCP, MDC, MDL, 

MDP and MPR  

In our previous studies we focused on symmetrical α,α-dialkyl glycines inserted on 

Peptaibolin and Alamethicin peptaibols and both works suggest the foldamer potential 

towards α-helical SS of Dhg and Ac6c.30-31 Since AAM-I and Zrv-IIB are peptaibols carrying 

other types of non-canonical amino acids, we chose to study these two new classes 

(asymmetrical D-α,α-dialkyl glycines and proline analogs) to investigate if and how the 

secondary structure differs from natural AAM-I and Zrv-IIB (with D-Iva and Hyp). 

There are a number of experimental studies addressing several of the non-canonical amino 

acids explored in this work. Ross and co-workers32 reported in 1993 the synthesis of 

α−amino acids, including three asymmetrical α,α-dialkyl glycines under investigation: MPR, 

MCP and MDC. Mendel and co-workers33 reported the protein biosynthesis with 

conformational restricted residues, addressing different classes of amino acids, which 

included Aib, Iva, MPR and MDL, and they considered this method a powerful approach to 

generate peptides with well-defined secondary structures. Amino acids analogs to proline 

have been studied more frequently over the years.34-38 However, only few studies address 
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peptide secondary structure.34-35 This study investigates the variation of the structural features 

induced by the following non-canonical amino acids: Aib, Iva, Hyp, ALP, HLP, MLP, MCP, 

MDC, MDL, MDP and MPR, in AAM-I and Zrv-IIB. The objective is to determine which 

amino acids have greater tendency to induce α-helical or 310-helical secondary structures (SS) 

in these antibiotic peptaibols. 

Materials and Methods 

Non-canonical amino acid FF parameters  

The non-canonical amino acids investigated on this work were built with the program 

PyMOL.39 The GROMOS topologies, that include the bonded and non-bonded parameters, 

were based on the similar encoded residues within the GROMOS 54a7 force field (FF).40 The 

new bonded and non-bonded parameters are listed in the Supporting Information (SI) using 

the G54a7 FF syntax (Table 1S). 

System Preparation  

The X-ray structure of AAM-I and the NMR structure of Zrv-IIB used in this study are 

available on the Protein Data Bank, with the codes 1JOH and 1IH9 respectively (see 

Figure1).5-6  

We created several peptides analogs by inserting proline analogs and asymmetrical D-α,α-

dialkyl glycines. First, we replace all Aibs positions in AAM-I and Zrv-IIB for amino acids 

of a different nature, i.e., we exchanged Aib, that is a symmetric α,α-dialkyl glycine, by the 

asymmetric D-α,α-dialkyl glycine, Iva, or by Hyp, naturally found residues in these peptides. 

The second type of modification performed, was replacing all D-Iva positions by analogous 

residues (MCP, MDC, MDL, MDP and MPR). Similarly, we have substituted the positions 

originally occupied by Hyp or Pro by proline analogs (ALP, HLP and MLP). The third type 

of change was similar to the second, but in this case we replaced only one or two possible 

positions, to explore the effect of the insertion of a single residue in the final structure. We 

named the generated peptides using the three letters of the substituting amino acid followed 

by its position in the peptide (see Figure 2 and 3, and Tables 1 and 2). 
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Figure 2. Two-dimensional structures of the non-canonical amino acids naturally found on AAM-I and Zrv-IIB 
peptaibols: Aib (α-amino isobutyric acid), D-Iva (isovaline;	α-ethylalanine) and Hyp (4-hydroxyproline). 

 

 
Figure 3. Two-dimensional structures of the non-canonical amino acids under investigation: proline analogs 
and asymmetrical D-amino acids. The proline analogs are: ALP (cis-3-amino-L-proline), HLP (trans-3-hydroxy-
L-proline) and MLP (cis-4-methyl-L-proline). The asymmetrical D-α,α-dialkyl glycines under investigation are: 
MCP (2-amino-2-cyclopentylpropanoic acid), MDC (2-amino-2-(2-cyclopentenyl)propanoic acid), MDL (α-
methyl-D-leucine), MDP (α-methyl-D-phenylalanine) and MPR (2-amino-2-methyl-4-pentenoic acid). 
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The new AAM-I and Zrv-IIB peptidomimetics were modeled in water with the simple 

point charge (SPC) water model in an octahedral box with a hydration layer of at least 1.5 nm 

between the peptide and the walls. Thus, the AAM-I and analogs systems had about 5200-

5600 water molecules, and the Zrv-IIB system had about 4000-4500 water molecules. In the 

case of analogs carrying the residue ALP, which is protonated at physiological conditions, we 

add Cl- atoms until the box had zero net charge. 

 

Table 1. Sequences generated through the incorporation of the non-canonical amino acids 
under study to the AAM-I peptaibol. 

Residues Peptide Sequence 
native (Aib, Iva, Hyp) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl 
Aib → Iva (2, 3, 4, 8, 9, 14) Ac-Phe-Iva-Iva-Iva-Iva-Gly-Leu-Iva-Iva-Hyp-Gln-Iva-Hyp-Iva-Pro-Phl 
Aib → Hyp (2, 3, 4, 8, 9, 14) Ac-Phe-Hyp-Hyp-Hyp-Iva-Gly-Leu-Hyp-Hyp-Hyp-Gln-Iva-Hyp-Hyp-Pro-Phl 

Hyp/Pro → ALP (10, 13, 15) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-ALP-Gln-Iva-ALP-Aib-ALP-Phl 
Hyp/Pro → HLP (10, 13, 15) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-HLP-Gln-Iva-HLP-Aib-HLP-Phl 
Hyp/Pro → MLP (10, 13, 15) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-MLP-Gln-Iva-MLP-Aib-MLP-Phl 

Iva → MCP (5, 12) Ac-Phe-Aib-Aib-Aib-MCP-Gly-Leu-Aib-Aib-Hyp-Gln-MCP-Hyp-Aib-Pro-Phl 
Iva → MDC (5, 12) Ac-Phe-Aib-Aib-Aib-MDC-Gly-Leu-Aib-Aib-Hyp-Gln-MDC-Hyp-Aib-Pro-Phl 
Iva → MDL (5, 12) Ac-Phe-Aib-Aib-Aib-MDL-Gly-Leu-Aib-Aib-Hyp-Gln-MDL-Hyp-Aib-Pro-Phl 
Iva → MDP (5, 12) Ac-Phe-Aib-Aib-Aib-MDP-Gly-Leu-Aib-Aib-Hyp-Gln-MDP-Hyp-Aib-Pro-Phl 
Iva → MPR (5, 12) Ac-Phe-Aib-Aib-Aib-MPR-Gly-Leu-Aib-Aib-Hyp-Gln-MPR-Hyp-Aib-Pro-Phl 
Aib → Iva (8, 14) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Iva-Aib-Hyp-Gln-Iva-Hyp-Iva-Pro-Phl 
Aib → Iva (9, 14) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Iva-Hyp-Gln-Iva-Hyp-Iva-Pro-Phl 
Aib → Hyp (8, 14) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Hyp-Aib-Hyp-Gln-Iva-Hyp-Hyp-Pro-Phl 
Aib → Hyp (9, 14) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Hyp-Hyp-Gln-Iva-Hyp-Hyp-Pro-Phl 

Hyp/Pro → ALP (10, 15) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-ALP-Gln-Iva-Hyp-Aib-ALP-Phl 
Hyp/Pro → ALP (13, 15) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-Hyp-Gln-Iva-ALP-Aib-ALP-Phl 
Hyp/Pro → HLP (10, 15) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-HLP-Gln-Iva-Hyp-Aib-HLP-Phl 
Hyp/Pro → HLP (13, 15) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-Hyp-Gln-Iva-HLP-Aib-HLP-Phl 
Hyp/Pro → MLP (10, 15) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-MLP-Gln-Iva-Hyp-Aib-MLP-Phl 
Hyp/Pro → MLP  (13, 15) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-Hyp-Gln-Iva-MLP-Aib-MLP-Phl 

Iva → MCP (5) Ac-Phe-Aib-Aib-Aib-MCP-Gly-Leu-Aib-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl 
Iva → MCP (12) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-Hyp-Gln-MCP-Hyp-Aib-Pro-Phl 
Iva → MDC (5) Ac-Phe-Aib-Aib-Aib-MDC-Gly-Leu-Aib-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl 
Iva → MDC (12) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-Hyp-Gln-MDC-Hyp-Aib-Pro-Phl 
Iva → MDL (5) Ac-Phe-Aib-Aib-Aib-MDL-Gly-Leu-Aib-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl 
Iva → MDL (12) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-Hyp-Gln-MDL-Hyp-Aib-Pro-Phl 
Iva → MDP (5) Ac-Phe-Aib-Aib-Aib-MDP-Gly-Leu-Aib-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl 
Iva → MDP (12) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-Hyp-Gln-MDP-Hyp-Aib-Pro-Phl 
Iva → MPR (5) Ac-Phe-Aib-Aib-Aib-MPR-Gly-Leu-Aib-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl 
Iva → MPR (12) Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-Hyp-Gln-MPR-Hyp-Aib-Pro-Phl 
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Table 2. Sequences generated through the incorporation of the non-canonical amino acids 
under study to the Zrv-IIB peptaibol. 

 

Molecular Dynamics Simulations 

All simulations were performed using the GROMACS 4.5.4 version.41-42 For the treatment 

of long-range interactions, we used the Reaction Field method, with a cut-off of 1.4 nm and 

for consistency a dielectric constant of 54 for water.43-44 The van der Waals interactions were 

also truncated with a twin-range cut-off of 0.8 and 1.4nm. The algorithm LINCS45-46 was used 

to constrain the chemical bonds of the peptides and the algorithm SETTLE47 in the case of 

water. The pressure and temperature Berendsen algorithms48 were used to control the 

temperature and pressure at 310K and 1 atm, respectively. We used the following coupling 

constants: τT = 0.10 ps and τP = 1.0 ps. 

 Three steps of energy minimization were performed. In the first two steps, position 

restraints (with force constant of 1000 kJ·mol-1·nm-2) were applied to all heavy atoms of the 

peptide and afterwards on the main chain. In the third step of energy minimization no 

Residues Sequence 

native (Aib, Iva, Hyp) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-Hyp-Aib-Pro-Phl 
Aib → Iva (7, 9, 12, 14) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Iva-Leu-Iva-Hyp-Gln-Iva-Hyp-Iva-Pro-Phl 
Aib → Hyp (7, 9, 12, 14) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Hyp-Leu-Hyp-Hyp-Gln-Hyp-Hyp-Hyp-Pro-Phl 

Hyp/Pro → ALP (10, 13, 15) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-ALP-Gln-Aib-ALP-Aib-ALP-Phl 
Hyp/Pro → HLP (10, 13, 15) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-HLP-Gln-Aib-HLP-Aib-HLP-Phl 
Hyp/Pro → MLP (10, 13, 15) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-MLP-Gln-Aib-MLP-Aib-MLP-Phl 

Iva → MCP (4) Ac-Trp-Ile-Gln-MCP-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-Hyp-Aib-Pro-Phl 
Iva → MDC (4) Ac-Trp-Ile-Gln-MDC-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-Hyp-Aib-Pro-Phl 
Iva → MDL (4) Ac-Trp-Ile-Gln-MDL-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-Hyp-Aib-Pro-Phl 
Iva → MDP (4) Ac-Trp-Ile-Gln-MDP-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-Hyp-Aib-Pro-Phl 
Iva → MPR (4) Ac-Trp-Ile-Gln-MPR-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-Hyp-Aib-Pro-Phl 
Aib → Iva (7, 12) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Iva-Leu-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl 
Aib → Iva (7, 14) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Iva-Leu-Aib-Hyp-Gln-Aib-Hyp-Iva-Pro-Phl 
Aib → Iva (9, 12) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Iva-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl 
Aib → Iva (9, 14) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Iva-Hyp-Gln-Aib-Hyp-Iva-Pro-Phl 
Aib → Iva (12, 14) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Iva-Hyp-Iva-Pro-Phl 
Aib → Hyp (7) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Hyp-Leu-Aib-Hyp-Gln-Aib-Hyp-Aib-Pro-Phl 
Aib → Hyp (9) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Hyp-Hyp-Gln-Aib-Hyp-Aib-Pro-Phl 
Aib → Hyp (12) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Hyp-Hyp-Aib-Pro-Phl 
Aib → Hyp (14) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-Hyp-Hyp-Pro-Phl 

Hyp/Pro → ALP (10, 15) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-ALP-Gln-Aib-Hyp-Aib-ALP-Phl 
Hyp/Pro → ALP (13, 15) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-ALP-Aib-ALP-Phl 
Hyp/Pro → HLP (10, 15) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-HLP-Gln-Aib-Hyp-Aib-HLP-Phl 
Hyp/Pro → HLP (13, 15) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-HLP-Aib-HLP-Phl 
Hyp/Pro → MLP (10, 15) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-MLP-Gln-Aib-Hyp-Aib-MLP-Phl 
Hyp/Pro → MLP (13, 15) Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-MLP-Aib-MLP-Phl 
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position restrains were applied. One molecular dynamics simulation of 100 ps was done with 

position restraints (force constant of 1000 kJ·mol-1·nm-2) on the heavy atoms and afterwards a 

200 ps simulation was done with position restraints (force constant of 1000 kJ·mol-1·nm-2) on 

the main chain. The systems were equilibrated and sampled using 100 ns molecular dynamics 

simulations with an integration interval of 2 fs. To ensure a better sampling of the 

conformational states of these peptides in water, at least three replicates of each system were 

performed.  

Analysis 

Typically, in order to analyze the structural stability of peptides and proteins in a MD 

simulation, the root-mean-square deviation (rmsd) computed against the starting 

experimental structure is monitored with time. However, in order to follow subtle changes in 

secondary structure (specifically in α-helix and 310-helix content), we computed the 

Secondary Structure (SS), by the DSSP (Dictionary of Secondary Structure in Proteins) 

method implemented in GROMACS.41 MD was run for 100 ns, with 40 ns of equilibration 

followed by 60 ns of production in which we selected the replicate with the highest 

percentage of helical secondary structure conformations (α-helix + 310-helix). Tables 3 and 4 

report the percentage of conformations with at least 3 or 4 residues forming a 310-helix or α-

helix, respectively. Also, the average number of residues in α-helix and 310-helix and the 

presence of Intramolecular Hydrogen Bonds were computed. 

Central conformations, shown on Figures 4 and 5, are the ones that minimize the RMSD 

variance when fitted against all other conformations of the trajectory, these conformations 

correspond to the most populated conformation of the simulation. In addition, we also 

calculate the number of residues in different SS, through a DSSP analysis, and the number of 

intramolecular hydrogen bonds, for the most likely conformations. Additionally data from 

DSSP analysis (Figures S2 and S3) is presented as SI.  

 

Results and Discussion 

 

The Maintenance or Formation of Helical Secondary Structure 

All Aib substitutions: changing the amino acid nature 

The 2-dimensional structures of all non-canonical amino acids investigated in this work 

are shown on Figures 2 and 3. Aib, D-Iva and Hyp are the naturally found non-canonical 

residues present in AAM-I and Zrv-IIB (Figure 2). Aib and Iva are symmetrical and 
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asymmetrical derivatives of α,α-dialkyl glycines and Hyp is a proline analog. ALP, HLP and 

MLP are the new proline analogs that we investigated of which ALP is charged at 

physiological pH, HLP residue is polar due to the hydroxyl group, and MLP is apolar. MCP, 

MDC, MDL, MDP and MPR are D-asymmetrical disubstituted glycines. Figure 1 shows the 

primary and secondary structures of AAM-I (panel A) and Zrv-IIB (panel B).  

The initial conformations for MD simulations were generated by replacing the residues of 

interest on the experimental structures for the non-canonical amino acids under study. The SS 

analysis was used to quantify the percentage of conformations presenting helical structure in 

the last 60 ns of the simulation in aqueous medium (Figure 1S on SI shows that after 40ns, 

the peptides reach equilibrium). This can tell us conformational preferences of the peptides 

under study, and indirectly, if these peptides have moved away from the initial structure, 

predominantly helical. 

Table 3 and Table 4 present the percentage of conformations with helical SS for AAM-I 

and Zrv-IIB peptaibols and analogs, respectively. Note that, due to the length of these 

peptides, one configuration might contain α-helix and 310-helix at the same time. 

AAM-I has six Aib residues that are known to be mostly α-helical inducers.49-51 In fact, 

when we simulated AAM-I in water, the percentage of conformations with α-helical and 310-

helix portions are 77% and 20% respectively.  

The replacement of all Aib amino acids for D-Iva or Hyp increases the total percentage of 

conformations with helical SS in comparison with the native AAM-I in water (Table 3), 

suggesting that this is a favorable change for helix formation. Typically, the imino group 

present on Hyp causes the breakdown of α-helical structures, since it is geometrically 

incompatible with the spiral towards the right of the α-helix.5-6 Thus, generally, this group 

inserts a bend on the chain, which interrupts the helical structure. This is not the case here, 

probably due to the presence of the polar six-hydroxyl groups. In fact, although less probable, 

β-turn structures can be accommodated into helical backbones (with a hydrogen pattern i → 

i+3), and this is the preferable SS conformation of Pro and analogues.34 One example of this 

is the structure of collagen, where consecutive Pro and Hyp, generate a helix.52  
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Table 3. Percentage of conformations with helical secondary structure (α-helix and 310-helix 
and) obtained for the wild type AAM-I and each peptide analog under study, considering the 
last 60ns of simulation time. 

Peptides % of conformations with helical SS 
 α-helix 310-helix 

AAM-I 76.7 19.6 

Aib → Iva (2, 3, 4, 8, 9, 14) 93.4 6.6 
Aib → Hyp (2, 3, 4, 8, 9, 14) 99.5 2.3 

Hyp/Pro → ALP (10, 13, 15) 92.6 53.2 
Hyp/Pro → HLP (10, 13, 15) 78.3 45.2 
Hyp/Pro → MLP (10, 13, 15) 24.4 57.1 

Iva → MCP (5, 12) 45.6 47.9 
Iva → MDC (5, 12) 53.2 25.0 
Iva → MDL (5, 12) 84.2 28.1 
Iva → MDP (5, 12) 91.2 34.0 
Iva → MPR (5, 12) 0.2 48.8 

Aib → Iva (8, 14) 23.2 55.0 
Aib → Iva (9, 14) -- 72.8 
Aib → Hyp (8, 14) 3.5 89.7 
Aib → Hyp (9, 14) 26.6 41.9 

Hyp/Pro → ALP (10, 15) 52.1 53.4 
Hyp/Pro → ALP (13, 15) 77.6 49.5 
Hyp/Pro → HLP (10, 15) 53.5 33.6 
Hyp/Pro → HLP (13, 15) 46.3 29.1 
Hyp/Pro → MLP (10, 15) 99.6 0.1 
Hyp/Pro → MLP  (13, 15) 50.7 47.8 

Iva →MCP (5) 30.0 18.3 
Iva → MCP (12) 35.0 40.4 
Iva → MDC (5) -- 49.6 
Iva → MDC (12) 18.3 44.1 
Iva → MDL (5) 69.1 32.2 
Iva → MDL (12) 66.7 35.9 
Iva → MDP (5) 9.6 82.8 
Iva → MDP (12) 70.7 18.6 
Iva → MPR (5) 67.0 41.4 
Iva → MPR (12) 68.0 21.9 

 

Zrv-IIB unfolds considerably when simulated in water, as show by the low percentage of 

conformations with helical SS (Table 4). Note that the experimental structure was obtained 

by NMR in DPC micelles, a membrane-like environment that promotes folding; and in water, 

it is probable that the peptide undergoes a hydrophobic unfolding as the nonpolar residues 

tend to aggregate to protect themselves from water. Furthermore, this peptide contains fewer 

Aib residues than AAM-I, only four, which may not be sufficient to impose the proper 

constraint to the structure. 
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Similarly to the observed for AAM-I, the substitution of all the Aib on Zrv-IIB favors the 

helical content. D-Iva increases the population of α-helical conformations and Hyp induces 

both α-helix and 310-helix SS. 

Table 4. Percentage of conformations with helical secondary structure (α-helix and 310-helix) 
obtained for the wild type Zrv-IIB and each peptide analog under study, considering the last 
60ns of simulation time. 

Peptides % of conformations with helical SS 
 α-helix 310-helix 

Zrv-IIB 20.1 7.6 

Aib → Iva (7, 9, 12, 14) 77.3 11.3 
Aib → Hyp (7, 9, 12, 14) 20.4 55.5 

Hyp/Pro → ALP (10, 13, 15) 66.4 32.6 
Hyp/Pro → HLP (10, 13, 15) 24.2 15.1 
Hyp/Pro → MLP (10, 13, 15) 38.6 27.3 

Iva → MCP (4) 3.3 71.6 
Iva → MDC (4) 1.2 27.9 
Iva → MDL (4) 81.9 8.4 
Iva → MDP (4) 83.1 5.9 
Iva → MPR (4) 32.0 26.0 

Aib → Iva (7, 12) 12.7 46.0 
Aib → Iva (7, 14) 6.8 49.4 
Aib → Iva (9, 12) 46.2 3.7 
Aib → Iva (9, 14) 0.2 15.0 
Aib → Iva (12, 14) 4.4 70.6 
Aib → Hyp (7) 14.5 29.7 
Aib → Hyp (9) 63.2 13.1 
Aib → Hyp (12) 56.9 18.4 
Aib → Hyp (14) 73.9 21.3 

Hyp/Pro → ALP (10, 15) 41.0 41.3 
Hyp/Pro → ALP (13, 15) 72.1 15.4 
Hyp/Pro → HLP (10, 15) 68.8 9.0 
Hyp/Pro → HLP (13, 15) 36.2 28.4 
Hyp/Pro → MLP (10, 15) 71.4 32.7 
Hyp/Pro → MLP (13, 15) 68.3 26.9 

We also analyzed through DSSP, the percentage of conformations presenting turns and 

bend SS. The algorithm written by Kabsch and Sander53 establishes that a turn occurs when 

exists a hydrogen bond between CO(i) to NH(i+n), where n=3, 4 or 5. When the interactions 

are consecutive and according to dihedral preferences, a helix of types 310, α or π, take place. 

In addition, a bend corresponds to a region of high curvature (at least 70°). For both AAM-I 

and Zrv-IIB peptidomimetics the presence of bends was not observed. However, we obtained 

a percentage of conformations presenting turns, from 70% to 99%, for all systems under 

study, indicating that a minimum of one turn is present in most cases.  
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Iva and Hyp/Pro replacements 

The second type of analogs studied corresponds to the substitution of the naturally found 

Iva by asymmetrical D-α,α-dialkyl glycines or the replacement of the naturally found 

Hyp/Pro by proline analogs (in all possible positions). 

In AAM-I peptides carrying D-Iva and analogues (Table 3), only the residues MDL and 

MDP induce more conformations with helical SS than native simulated AAM-I. In the case 

of proline analogs, the change of Hyp and Pro positions for ALP or HLP increases 

significantly the helical SS content. Note that the substituents NH2 and OH on these residues 

are in position 3, while Hyp has an OH on position 4 (Figures 2 and 3). This difference could 

minimize steric hindrance and improve the global number of hydrogen bonds necessary to the 

formation of α-helical structures. 

For Zrv-IIB analogs, on Table 4, we observe many substitutions that favor the 

maintenance/formation of helical conformations. ALP stands out with a large proportion of 

conformations containing α-helices when the substitution occurs in all three possible 

positions (10, 13 and 15). In the class of D-Iva analogues, MDL and MDP present a 

significant number of conformations in α-helix, and MCP presents about 72% of 

conformations with the 310-helix form. Importantly, Zrv-IIB has only one position on its 

sequence with a D-Iva amino acid, so it is remarkable that only one residue substitution is 

able to induce such conformational change in the peptide structure.  

Single and Double Substitutions 

In this section we evaluate if a minimum number of substitutions is able to increase the 

number of helical conformations. To do this, we designed analogues where we change either 

one or two residues combined in different ways. 

For the AAM-I analogs (Table 3), we highlight the peptide containing MLP(10,15) that 

presents 99.6% of conformations with α-helical structure. Remarkably, changing D-Iva for 

MPR only in position 5 we can induce conformations with a good balance of α-helical and 

310-helical SS (67.0% and 41.4%, respectively). 

Considering the peptides based on Zrv-IIB (Table 4), we observe many substitutions that 

increase the percentages of helical SS, since the Zrv-IIB suffers considerable unfold in water. 

The peptides carrying Iva (7,12), Iva (7,14), Iva (9,12) and Iva (12,14) exhibit high percentages of 

helical SS, but the replacement in all four possible positions, Iva (7,9,12,14), induce more 

conformations with helical SS. Similarly, we observe that the analogs containing Hyp(7), 
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Hyp(9), Hyp(12) and Hyp(14) all have more conformations with helical SS than Zrv-IIB, but 

although 3 out of 4 favor α-helix conformations, the combination of four positions, Hyp (7, 9, 

12, 14), favors the 310-helix form.  

Interestingly, the residue MLP (10,15) with a methyl (Me) substituent on position 4, similar 

to Hyp but with an alkyl group, induces a great number of conformations with helical SS with 

the combination of only two positions. This is an indication that the substituent position is 

equally or more relevant than the polarity of the group attached to the proline ring. 

AAM-I and Zrv-IIB peptidomimetics 

We selected the AAM-I and Zrv-IIB analogs with the highest number of helical SS in 

water for a more detailed analysis. In this sense, we analyzed the percentage of 

conformations containing types i → i+3 and i → i+4 of intramolecular hydrogen bonds 

(corresponding to 310-helix, α-helix or turn) and the average number of residues in a specific 

SS. This is relevant because it reveals the peptides that have a natural tendency for helical 

structures in aqueous media, which in turn might translate to better channel formation or 

other forms of membrane disruption. 

On Tables 5 and 6 the percentage of conformations with type i → i+3 and i → i+4 
intramolecular hydrogen bonds show in many peptides suggest that the α-helix, 310-helix and 

turn SS coexist, in agreement with experimental results.5-6 Also, the high values of percentage 

of conformations with type i → i+3 and i → i+4 hydrogen bonds, indicate that there is no 

tendency for a random coil or extended SS. 

 

Table 5. Percentage of conformations presenting intramolecular hydrogen bonds of types  
i → i+3 (310-helix or turn) and i → i+4 (α-helix or turn), obtained for AAM-I and analogs, 
considering the last 60ns of simulation time. 

Peptide 
% of conformations with 
hydrogen bond i → i+3 

% of conformations with 
hydrogen bond i → i+4 

AAM-I 66.0 95.8 
Aib → Iva (2, 3, 4, 8, 9, 14) 81.7 98.2 
Aib → Hyp (2, 3, 4, 8, 9, 14) 41.3 98.9 

Hyp/Pro → ALP (10, 13, 15) 87.0 97.1 
Hyp/Pro → HLP (10, 13, 15) 84.0 98.3 
Hyp/Pro → MLP (10, 15)* 2.2 99.8 

Iva → MDL (5, 12) 69.6 99.3 
Iva → MDP (5, 12) 90.1 96.5 
Iva → MPR (5) 91.6 93.7 

* Hyp/Pro → MLP (10, 15) has 98.6% of  i → i+2 hydrogen bonds. 
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Table 6. Percentage of conformations presenting intramolecular hydrogen bonds of types  
i → i+3 (310-helix or turn) and i → i+4 (α-helix or turn), obtained for Zrv-IIB and analogs, 
considering the last 60ns of simulation time. 

Peptide 
% of conformations with 
hydrogen bond i → i+3 

% of conformations with 
hydrogen bond i → i+4 

Zrv-IIB 99.7 48.2 
Aib → Iva (7, 9, 12, 14) 86.8 99.8 
Aib → Hyp (7, 9, 12, 14) 82.3 25.1 

Hyp/Pro → ALP (10, 13, 15) 81.9 96.0 
Hyp/Pro → HLP (10, 15) 59.2 95.4 
Hyp/Pro → MLP (10, 15) 82.9 94.7 
Hyp/Pro → MLP  (13, 15) 96.2 96.5 

Iva → MCP (4) 99.1 36.7 
Iva → MDL (4) 74.8 97.5 
Iva → MDP (4) 91.1 99.5 

AAM-I and Zrv-IIB analogs present, in most cases, high percentages of both i → i+3 and  

i → i+4 hydrogen bonds. In the case of Zrv-IIB analogs, we observed that the ones carrying 

MLP and MDP are well structured, since the two interactions are highly populated.  

Comparing directly the wild types AAM-I and Zrv-IIB, we see that the percentage of i → 

i+3 hydrogen bonds is higher and dominant on Zrv-IIB. This fact explains why this peptide is 

longer than AAM-I, as observed experimentally. 5-6 Concerning the AAM-I analogs (Table 

5), the peptides carrying, Iva, ALP, HLP, MDP and MPR show a higher number of 

conformations with type i → i+4 hydrogen bond, as well as, a higher number of type i → i+3 

hydrogen bond. This indicates that these peptides have a good portion of their structures 

stabilized on α-helix, 310-helix or turns. In the case of Zrv-IIB analogs (Table 6), the peptides 

containing Iva, ALP, MLP and MDP are those that have the highest numbers of 

conformations with types i → i+3 and i → i+4 of intramolecular hydrogen bonds. 

Tables 7 and 8 present the average number of residues in α-helix and in 310-helix type, for 

the peptaibols and chosen analogs. As a reference, we analyzed the X-ray monomer structure 

of AAM-I and the NMR structure of Zrv-IIB with the same method used to quantify the SS 

of the proposed analogs, and we found that only 50% of AAM-I X-ray structure is in α-helix 

and no 310-helix was present. In the case of Zrv-IIB 75% of helical SS was observed. 

Proportionally, the modeled Zrv-IIB deviates more from experimental structure than AAM-I, 

but this is justified by the fact that the Zrv-IIB structure has been obtained in micelles. 

For AAM-I and analogs (Table 7) we highlight that the peptides carrying Iva, ALP, MDL 

and MPR, have the highest sums of residues in helical SS (9.2, 8.6, 9,2 and 9.2, respectively). 

This indicates that these amino acids are able to stabilize a large portion of the peptide in a 
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helical SS, during the simulation on water. On Table 8 we observe that the peptide carrying 

Iva and ALP are the ones with the highest number of residues in helical SS (9.1 and 9, 

respectively). Iva and ALP share the same tendency to fold a helical SS in both peptaibols. 

Table 7. Average number of residues in α-helical and 310-helical conformations, with 
respective standard deviation obtained for AAM-I and chosen analogs, considering the last 
60ns of simulation time. 

 
Table 8. Average number of residues in α-helical and 310-helical conformations, with 
respective standard deviation obtained for Zrv-IIB and chosen analogs, considering the last 
60ns of simulation time. 

Peptide Average number of 
residues in α-helix 

Standard 
deviation 

Average number of 
residues in 310-helix 

Standard 
deviation 

Zrv-IIB NMR 12 -- -- -- 
Zrv-IIB 5.1 ± 0.9 3.2 ± 0.7 

Aib → Iva (7, 9, 12, 14) 5.6 ± 1.4 3.5 ± 0.9 
Aib → Hyp (7, 9, 12, 14) 4.2 ± 0.6 3.7 ± 1.1 

Hyp/Pro → ALP (10, 13, 15) 5.3 ± 1.8 3.7 ± 1.3 
Hyp/Pro → HLP (10, 15) 5.4 ± 1.3 3.5 ± 0.9 
Hyp/Pro → MLP (10, 15) 4.5 ± 0.8 3.2 ± 0.7 
Hyp/Pro → MLP  (13, 15) 5.2 ± 1.3 3.7 ± 1.0 

Iva → MCP (4) 5.2 ± 1.2 3.7 ± 1.1 
Iva → MDL (4) 4.9 ± 0.9 3.4 ± 0.9 
Iva → MDP (4) 5.2 ± 1.0 3.4 ± 0.9 

 

Figure 4 shows the central conformation obtained for AAM-I and analogs, indicating the 

most representative structure of the simulation. The position 4 in all central conformations 

(Figure 4) participates in the formation of a helical SS, usually as hydrogen bond acceptor. 

Aib or Iva generally occupies this position. Also, for AAM-I and analogs we observed that 

the peptides well structured at the N-terminal are: AAM-I, Iva (2, 3, 4, 8, 9, 14), ALP (10, 13, 15), MDL 

(5, 12) and MPR (5). The peptide with MDL (5, 12) is also well structured at the middle of the 

Peptide Average number of 
residues in α-helix 

Standard 
deviation 

Average number of 
residues in 310-helix 

Standard 
deviation 

AAM-I X-ray 8 -- -- -- 
AAM-I 4.4 ± 0.9 3.6 ± 1.0 

Aib → Iva (2, 3, 4, 8, 9, 14) 5.3 ± 0.8 3.9 ± 1.0 
Aib → Hyp (2, 3, 4, 8, 9, 14) 5.1 ± 1.2 3.2 ± 0.8 

Hyp/Pro → ALP (10, 13, 15) 4.9 ± 1.8 3.7 ± 1.3 
Hyp/Pro → HLP (10, 13, 15) 5.1 ± 1.9 3.3 ±0.8 
Hyp/Pro → MLP (10, 15) 4.1 ± 0.6 4.3 ± 1.9 

Iva → MDL (5, 12) 4.8 ± 1.3 4.4 ± 1.8 
Iva → MDP (5, 12) 4.3 ± 0.9 3.6 ± 1.1 
Iva → MPR (5) 5.0 ± 1.2 4.2 ± 1.6 
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sequence. The peptide carrying MDP (5, 12) is in 310-helix type at N-terminal, and adopts an α-

helix at the middle. 

 

Figure 4. Central structures of AAM-I and analogs carrying Iva(2, 3, 4, 8, 9, 14), ALP(10,13,15), MDL(5,12), MDP(5,12) and 
MPR(5), from the last 60 ns in water. The coloring of the atoms follows the convention: green for carbon, blue 
for nitrogen, red for oxygen, white for hydrogen, green for the cartoon that defines the helical SS and black 
dashed traces to highlight hydrogen bonds. The water molecules were omitted for better visualization. 
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Figure 5. Central structures of Zrv-IIB and analogs carrying Iva(7, 9, 12, 14), ALP(10,13,15), MDP(4), MLP(10,15) and 
MLP(13,15), from the last 60 ns in water. The coloring of the atoms follows the convention described in Figure 4. 

On Figure 5, it is observed that the wild-type Zrv-IIB central conformation does not have  

i → i+4 intramolecular hydrogen bonds (α-helices). The peptides well structured at the N-
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terminal are: Iva (7, 9, 12, 14), MDP (4), MLP (10,15) and MLP (13,15). The peptide carrying ALP (10,13,15) 

is one example of the central conformation is structured at the middle. 

The central conformations shown in Figures 4 and 5 show that not always the non-

canonical residue inserted directly participates in the helix, as hydrogen bond donor or 

receptor, but may be able to modify the geometry of the peptide on another portion of the 

peptide. 

In both peptaibols and analogues Aib frequently participates on the formation of helical SS, 

as hydrogen bond donor or receptor. On the one hand, this agrees with the existing studies on 

the remarkable ability of this residue to induce helical structures, suggesting that this 

mechanism is stronger for the Aib than for D-Iva, Hyp and its analogues. On the other hand, 

we find that the Peptaibols, especially Zrv-IIB, lose much of the original structure when 

simulated in water, and that replacing some Aibs for other residues improve the folding. This 

indicates that a combination of the existing Aibs with non-canonical amino acids in 

substitution of D-Iva or Hyp, should produce better constrained analogs. Examples of this 

effect can be seen in the central structures of the AAM-I analogs with MDL(5,12) and MPR(5), 

wherein the Aib in position 4 participates in hydrogen bonding and also the non-canonical 

residues. In both cases, we see an improved number of hydrogen bonds, 6 in the case of 

MDL(5,12)  and 7 for MPR(5). 

Tables 9 and 10 indicate the number of residues on a specific SS, as well as, the number of 

intramolecular hydrogen bond estimated with PyMOL and GROMACS for the central 

conformations presented on Figures 4 and 5. 

 

Table 9. Number of residues in a specific SS (α-helix, turn or 310-helix) and number of 
intramolecular hydrogen bonds, obtained for the central AAM-I and chosen analogs, 
considering the last 60ns of simulation time. 

 

 

Central Conformation 
 Number of residues in a SS   Number of 

intramolecular 
hydrogen bonds α-helix turn 310-helix 

AAM 4 (25%) 1 (6%) 3 (19%) 4 
Aib → Iva (2, 3, 4, 8, 9, 14) 5 (31%) 4 (25%) - 6 

Hyp/Pro → ALP (10, 13, 15) 4 (25%) - 4 (25%) 4 
Iva → MDL (5, 12) 4 (25%) 8 (50%) - 6 
Iva → MDP (5, 12) 4 (25%) 4 (25%) - 4 
Iva → MPR (5) 6 (38%) 4 (25%) - 7 
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Table 9 shows that the central conformation of native AAM-I simulated in water has 4 

residues in α-helix and 3 residues in 310-helix, agreeing with the previous analysis that 

indicates that this peptide is capable of maintaining a portion of its structure in helical form. 

In contrast, we observed that despite the fact that Zrv-IIB presents a good number of 

hydrogen bonds (Table 10), these interactions do not contribute to the formation of helical 

SS. 

Table 10. Number of residues in a specific SS (α-helix, turn or 310-helix) and number of 
intramolecular hydrogen bonds, obtained for the central Zrv-IIB and chosen analogs, 
considering the last 60ns of simulation time. 

 

The central conformations observed for AAM-I analogs reinforce the fact that new non-

canonical amino acids are capable to induce more structured peptides. Similarly, for Zrv-IIB 

analogues, we also find non-canonical amino acids that induce a greater portion of helical SS 

that native Aib, Iva and Hyp on Zrv-IIB peptaibol. We highlight Iva (7, 9, 12, 14) and ALP (10, 13, 15) 

that have 75% and 63% of their chain, respectively, well structured.  

 

Conclusions 
Our modeling studies concerning the insertion of asymmetrical D-α,α-dialkyl glycines and 

proline analogs suggest that some of the new non-canonical amino acids are more capable of 

inducing helical conformations and pre-organization in water than the native Aib, Iva and 

Hyp in AAM-I and Zrv-IIB. 

Focusing on AAM-I and analogues, the peptides carrying Iva (2, 3, 4, 8, 9, 14), Hyp (2, 3, 4, 8, 9, 14), 

ALP (10, 13, 15), HLP (10, 13, 15), MLP (10, 15), MDL (5, 12), MDP (5, 12) and MPR (5) present a percentage 

of conformations containing helical SS superior that the one observed for the wild type 

AAM-I. Also, these peptides have a preference for type i → i+4 intramolecular hydrogen 

Central Conformation 
 Number of residues in a SS   Number of 

intramolecular 
hydrogen bonds α-helix turn 310-helix 

Zrv-IIB - 8 (50%) - 7 
Aib → Iva (7, 9, 12, 14) 9 (56%) 3 (19%) - 8 

Hyp/Pro → ALP (10, 13, 15) 7 (44%) - 3 (19%) 7 
Hyp/Pro → MLP (10, 15) 4 (25%) 4 (25%) - 6 
Hyp/Pro → MLP  (13, 15) 4 (25%) 5 (31%) - 7 

Iva → MDP (4) 5 (31%) 2 (12%) - 5 
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bond. Analogs carrying Iva, ALP, MDL and MPR, have the largest sums of residues in 

helical SS. This indicates that these amino acids are able to stabilize larger portion of the 

peptide in a helical SS. 

The central conformations for AAM-I and chosen analogs, and data shown on Table 9, 

indicate that the non-canonical amino acids Iva (2, 3, 4, 8, 9, 14), ALP (10, 13, 15), MDL (5, 12), MDP (5, 12) 

and MPR (5) on these positions are the most promising residues, since they induce a good pre-

organization in aqueous medium. 

About Zrv-IIB and analogs, we observed that the peptides carrying Iva (7, 9, 12, 14), Hyp (7, 9, 12, 

14), ALP (10, 13, 15), HLP (10, 15), MLP (10, 15), MLP (13, 15), MCP (4), MDL (4) and MDP (4) are the ones 

with percentage of conformations with helical SS higher than the observed for the native Zrv-

IIB. This peptaibol naturally has only one Iva residue, which makes remarkable that the 

exchange by MCP, MDL or MDP induces so much structure. Analyzing the percentage of 

conformation with hydrogen bonds, we found that this peptide and its analogs show, in 

general, a greater number of i → i+3 interactions than AAM-I and analogs, but also have, in 

most cases a high percentage of conformations with type i → i+4 interaction, which is an 

indication of the presence of two types of SS and more structured analogs. Among these 

chosen analogs, we observed that the peptides carrying Iva and ALP are the ones with the 

highest number of residues in helical SS.  

Detailed analysis on Zrv-IIB (central conformations) and analogs indicates that the non-

canonical residues Iva (7, 9, 12, 14), ALP (10, 13, 15), MLP (10, 15), MLP (13, 15) and MDP (4) are the 

residues more capable to induce well-defined and helical SS on Zrv-IIB peptaibol. 

Comparing both peptaibols, Iva, ALP and MDP show improved foldamer characteristics, 

however, further experiments using different peptides and environments are required to 

propose more general conclusions about their foldamer role. We emphasize that the 

peptaibols incorporating these residues, on the specific positions analyzed, would be the most 

pre-arranged in water and, may show improved insertion into the membrane. 

The modeling of AAM-I, Zrv-IIB and analogues by inserting new asymmetrical α,α-

dialkyl glycines and proline analogs suggest that it is possible to optimize the characteristics 

of native peptaibols and obtain novel peptides that have improved structural stability in 

water, which might translate into improved antibiotic activity. 
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ASSOCIATED CONTENT 

Supporting Information 

The parameterizations for the non-canonical amino acids discussed in this article are 

available as Supporting Information (Table S1). This section also presents a running average 

of the number of residues in α-helix, observed on the total simulation time (Figure S1). More 

detailed DSSP data are shown on Figures S2 and S3. This information is available free of 

charge via the Internet at http://pubs.acs.org/.  
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Conclusions and Final  Remarks 

 

The Molecular Dynamics Simulations performed in the systems addressed in this thesis, answered 

many questions placed as hypotheses at the beginning of this work. Our findings demonstrated that 

only a few representatives of each class of non-canonical amino acids studied correspond to well-

constrained structures able to act as foldamers. 

In this work we focused on five classes of unnatural amino acids, namely: symmetrical α,α-dialkyl 

glycines, asymmetrical α,α-dialkyl glycines, proline analogues, Cα to Cα cyclized amino acids and α,β-

dehydroamino acids. We opted for introducing and following these classes of amino acids in peptides 

with well-known secondary structure and biological function, or by suggesting novel constrained 

peptides with potential applicability in medicine and other fields. 

The symmetrical α,α-dialkyl glycines were studied in two peptaibols, one shorter and one longer, 

with antimicrobial properties: Peptaibolin and Alamethicin. The residues Dhg (α,α-dihexyl glycine) and 

Ac6c (α,α-cyclohexyl glycine) proved to be α-helical inducers in these systems, promoting pre-

organization in water. In the case of Peptaibolin the presence of the new amino acids were found to 

explicitly help the insertion in POPC membranes. 

The asymmetrical α,α-dialkyl glycines such as Iva (isovaline), and the proline analogs like Hyp 

(hydroxyproline) were studied in Antiamoebin and Zervamicin peptaibols. In these studies, two amino 

acid analogs of Iva were found to induce improved helical secondary structure, namely MDL (α-methyl-

D-leucine) and MDP (α-methyl-D-phenylalanine), which may be linked to the antibiotic activity of these 

peptaibols. Regarding proline analogs, the analog ALP (cis-3-amino-L-proline) proved to generate 

improved helical content in both peptaibols, which was unexpected as proline and many proline 

derivatives induce bends in helical secondary structures. 

Simulations on peptides carrying the α,β-dehydroamino acids ΔZPhe and ΔZAbu were performed to 

understand experimental results obtained by co-workers. These peptides self-assemble in hydrogels 

which improves their range of application, for instance, in drug delivery.  

Cα to Cα cyclized amino acids (Acnc residues) can also be considered α,α-dialkyl glycines, due the 

double substitution at the Cα atom. As previously mentioned, the Ac6c amino acid stands as a good 

helical folder. In addition, this residue together with other residues of this class, namely: Ac3c, Ac4c and 

Ac5c, were studied in hexa and nonapeptides in three different solvents. Preliminary results indicate 

that these residues behave very differently according to the environment, yet more simulations are 

necessary to fully confirm this finding (Appendix VI). 
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This thesis addresses systematically how the insertion of one of more unnatural, non-canonical, 

amino acids may affect the structure and, through the structure, the function of peptides relevant for 

medicinal chemistry. The findings obtained show that certain unnatural amino acids stabilize 

conformations with well-defined secondary structure. More generally, this work shows how in-silico 

experiments can be a valuable tool for the rational design of biomolecules with improved properties. 
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Improved α-Hel ical  Pre-Organizat ion and Spontaneous Membrane Permeat ion 

 
Tarsila Gabriel Castro and Nuno Miguel Micaêlo 

 
dx.doi.org/10.1021/jp4074587 | J. Phys. Chem. B 2014, 118, 649−658  

 

This section presents the topologies for the new α,α-dialkylglycines under study. These topologies were 

developed based on the natural amino acids parameterized in de GROMOS 54a7 force field. 

Aib 
Non-bonded parameters 

Atom name Atom type Charge (q)  

 

N N -0.31 
H H 0.31 
CA C 0.00 

CB1 CH3 0.00 
CB2 CH3 0.00 

C C 0.45 
O O -0.45 

Bonded parameters 
Bonds a i  a j  Gromos bond type 

 N H gb_2 
N CA gb_21 
CA CB1 gb_27 
CA CB2 gb_27 
CA C gb_27 
C O gb_5 
C +N gb_10 

Angles a i  a j  ak Gromos angle type 
 -C N H ga_32 

-C N CA ga_31 
H N CA ga_18 
N CA CB1 ga_13 
N CA C ga_19 

CB1 CA C ga_13 
N CA CB2 ga_13 

CB1 CA CB2 ga_13 
CB2 CA C ga_13 
CA C O ga_30 
CA C +N ga_19 
O C +N ga_33 

Propers d ihedra ls  a i  a j  ak a l  Gromos d ihedra l  type 
 -CA -C N CA gd_14 

-C N CA C gd_42 
-C N CA C gd_43 
N CA C +N gd_44 
N CA C +N gd_45 
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Impropers d ihedra ls  a i  a j  ak a l  Gromos improper type 
 N -C CA H gi_1 

CA N C CB1 gi_2 
C CA +N O gi_1 
CA N CB2 C gi_2 
CA N CB1 CB2 gi_2 

Deg 
Non-bonded parameters 

Atom name Atom type Charge (q)  

 

N N -0.31 
H H 0.31 
CA C 0.00 
C1 CH2 0.00 
C2 CH3 0.00 
C3 CH2 0.00 
C4 CH3 0.00 
C C 0.45 
O O -0.45 

Bonded parameters 
Bonds a i  a j  Gromos bond type 

 N H gb_2 
N CA gb_21 
CA C1 gb_27 
CA C3 gb_27 
C1 C2 gb_27 
C3 C4 gb_27 
CA C gb_27 
C O gb_5 
C +N gb_10 

Angles a i  a j  ak Gromos angle type 
 -C N H ga_32 

-C N CA ga_31 
H N CA ga_18 
N CA C1 ga_13 
N CA C ga_19 
N CA C3 ga_13 
C1 CA C ga_13 
C CA C3 ga_13 
CA C1 C2 ga_13 
CA C3 C4 ga_13 
C1 CA C3 ga_13 
CA C O ga_30 
CA C +N ga_19 
O C +N ga_33 

Propers d ihedra ls  a i  a j  ak a l  Gromos d ihedra l  type 
 -CA -C N CA gd_14 

-C N CA C gd_42 
-C N CA C gd_43 
C CA C1 C2 gd_34 
C CA C3 C4 gd_34 
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N CA C +N gd_44 
N CA C +N gd_45 

Impropers d ihedra ls  a i  a j  ak a l  Gromos improper type 
 N -C CA H gi_1 

CA N C C1 gi_2 
C CA +N O gi_1 
CA N C3 C gi_2 
CA N C1 C3 gi_2 

Dpg 
Non-bonded parameters 

Atom name Atom type Charge (q)  

 

N N -0.31 
H H 0.31 
CA C 0.00 
C1 CH2 0.00 
C2 CH2 0.00 
C3 CH3 0.00 
C4 CH2 0.00 
C5 CH2 0.00 
C6 CH3 0.00 
C C 0.45 
O O -0.45 

Bonded parameters 
Bonds a i  a j  Gromos bond type 

 N H gb_2 
N CA gb_21 
CA C1 gb_27 
CA C4 gb_27 
C1 C2 gb_27 
C2 C3 gb_27 
C4 C5 gb_27 
C5 C6 gb_27 
CA C gb_27 
C O gb_5 
C +N gb_10 

Angles a i  a j  ak Gromos angles type 
 -C N H ga_32 

-C N CA ga_31 
H N CA ga_18 
C  CA C4 ga_13 
C CA C1 ga_13 

C1 CA C4 ga_13 
N CA C1 ga_13 
N CA C4 ga_13 
N CA C ga_19 
CA C1 C2 ga_13 
CA C4 C5 ga_13 
C1 C2 C3 ga_13 
C4 C5 C6 ga_13 
CA C O ga_30 
CA C +N ga_19 
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O C +N ga_33 

Propers d ihedra ls  a i  a j  ak a l  Gromos d ihedra l  type 
 -CA -C N CA gd_14 

-C N CA C gd_42 
-C N CA C gd_43 
N CA C +N gd_44 
N CA C +N gd_45 
C CA C1 C2 gd_34 
C CA C4 C5 gd_34 
CA C4 C5 C6 gd_34 
CA C1 C2 C3 gd_34 

Impropers d ihedra ls  a i  a j  ak a l  Gromos improper type 
 N -C CA H gi_1 

CA N C C4 gi_2 
C CA +N O gi_1 
CA N C1 C gi_2 
CA N C4 C1 gi_2 

Dibg 

 
Non-bonded parameters 

Atom name Atom type Charge (q) 
N N -0.31 
H H 0.31 

CA C 0.00 
C1 CH2 0.00 
C2 CH 0.00 
C3 CH3 0.00 
C4 CH3 0.00 
C5 CH2 0.00 
C6 CH 0.00 
C7 CH3 0.00 
C8 CH3 0.00 
C C 0.45 
O O -0.45 

Bonded parameters 
Bonds ai aj Gromos bond type 

 N H gb_2 
N CA gb_21 



 

 177 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

CA C1 gb_27 
CA C5 gb_27 
C1 C2 gb_27 
C2 C3 gb_27 
C2 C4 gb_27 
C5 C6 gb_27 
C6 C7 gb_27 
C6 C8 gb_27 
CA C gb_27 
C O gb_5 
C +N gb_10 

Angles ai aj ak Gromos angle type 
 -C N H ga_32 

-C N CA ga_31 
H N CA ga_18 
N CA C1 ga_13 
C CA C1 ga_13 

CA C1 C2 ga_13 
CA C5 C6 ga_13 
C1 C2 C3 ga_15 
C1 C2 C4 ga_15 
C3 C2 C4 ga_15 
C5 C6 C7 ga_15 
C5 C6 C8 ga_15 
C7 C6 C8 ga_15 
C5 CA C ga_13 
C1 CA C5 ga_13 
N CA C5 ga_13 
N CA C ga_19 

CA C O ga_30 
CA C +N ga_19 
O C +N ga_33 

Propers dihedrals ai aj ak al Gromos dihedral type 
 -CA -C N CA gd_14 

-C N CA C gd_42 
-C N CA C gd_43 
N CA C +N gd_44 
N CA C +N gd_45 
N CA C1 C2 gd_34 
N CA C5 C6 gd_34 

CA C5 C6 C7 gd_34 
CA C1 C2 C3 gd_34 

Impropers dihedrals ai aj ak al Gromos improper type 
 N -C CA H gi_1 

CA N C5 C1 gi_2 
CA N C1 C gi_2 
CA N C C5 gi_2 
C6 C7 C5 C8 gi_2 
C2 C4 C3 C1 gi_2 
C CA +N O gi_1 
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Dhg 

 
Non-bonded parameters 

Atom name Atom type Charge (q) 
N N -0.31 
H H 0.31 

CA C 0.00 
C1 CH2 0.00 
C2 CH2 0.00 
C3 CH2 0.00 
C4 CH2 0.00 
C5 CH2 0.00 
C6 CH3 0.00 
C7 CH2 0.00 
C8 CH2 0.00 
C9 CH2 0.00 

C10 CH2 0.00 
C11 CH2 0.00 
C12 CH3 0.00 

C C 0.45 
O O -0.45 

Bonded parameters 
Bonds ai aj Gromos bond type 

 N H gb_2 
N CA gb_21 

CA C1 gb_27 
CA C7 gb_27 
C1 C2 gb_27 
C2 C3 gb_27 
C3 C4 gb_27 
C4 C5 gb_27 
C5 C6 gb_27 
C7 C8 gb_27 
C8 C9 gb_27 
C9 C10 gb_27 

C10 C11 gb_27 
C11 C12 gb_27 
CA C gb_27 
C O gb_5 
C +N gb_10 

Angles ai aj ak Gromos angle type 
 -C N H ga_32 



 

 179 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-C N CA ga_31 
H N CA ga_18 
C CA C1 ga_13 
C CA C7 ga_13 

C1 CA C7 ga_13 
CA C1 C2 ga_13 
CA C7 C8 ga_13 
C1 C2 C3 ga_13 
C2 C3 C4 ga_13 
C3 C4 C5 ga_13 
C4 C5 C6 ga_13 
C7 C8 C9 ga_13 
C8 C9 C10 ga_13 
C9 C10 C11 ga_13 

C10 C11 C12 ga_13 
N CA C1 ga_13 
N CA C7 ga_13 
N CA C ga_19 

CA C O ga_30 
CA C +N ga_19 
O C +N ga_33 

Propers dihedrals ai aj ak al Gromos dihedral type 
 -CA -C N CA gd_14 

-C N CA C gd_42 
-C N CA C gd_43 
N CA C +N gd_44 
N CA C +N gd_45 
C CA C1 C2 gd_34 
C CA C7 C8 gd_34 

CA C1 C2 C3 gd_34 
C1 C2 C3 C4 gd_34 
C2 C3 C4 C5 gd_34 
C3 C4 C5 C6 gd_34  
CA C7 C8 C9 gd_34 
C7 C8 C9 C10 gd_34 
C8 C9 C10 C11 gd_34 
C9 C10 C11 C12 gd_34 

Impropers dihedrals ai aj ak al Gromos improper type 
 N -C CA H gi_1 

CA N C C7 gi_2 
CA N C7 C1 gi_2 
CA N C1 C gi_2 
C CA +N O gi_1 
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Dɸg 

 
Non-bonded parameters 

Atom name Atom type Charge (q) 
N N -0.31 
H H 0.31 

CA C 0.00 
C1 C 0.00 
C7 C 0.00 
C2 C -0.14 

H22 HC 0.14 
C3 C -0.14 

H23 HC 0.14 
C4 C -0.14 
H4 HC 0.14 
C5 C -0.14 
H5 HC 0.14 
C6 C -0.14 
H6 HC 0.14 
C8 C -0.14 
H7 HC 0.14 
C9 C -0.14 
H8 HC 0.14 
C10 C -0.14 
H9 HC 0.14 
C11 C -0.14 
H11 HC 0.14 
C12 C -0.14 
H10 HC 0.14 

C C 0.45 
O O -0.45 

Bonded parameters 
Bonds ai aj Gromos bond type 

 N H gb_2 
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N CA gb_21 
CA C1 gb_27 
CA C7 gb_27 
CA C gb_27 
C1 C2 gb_16 
C2 C3 gb_16 
C2 H22 gb_3 
C3 C4 gb_16 
C3 H23 gb_3 
C4 C5 gb_16 
C4 H4 gb_3 
C5 C6 gb_16 
C5 H5 gb_3 
C6 C1 gb_16 
C6 H6 gb_3 
C7 C8 gb_16 
C8 C9 gb_16 
C8 H7 gb_3 
C9 C10 gb_16 
C9 H8 gb_3 

C10 C11 gb_16 
C10 H9 gb_3 
C11 C12 gb_16 
C11 H11 gb_3 
C12 C7 gb_16 
C12 H10 gb_3 

C O gb_5 
C +N gb_10 

Exclusions ai aj 
 C1 H23 

C1 H5 
C1 C4 
C2 C5 
C2 H4 
C2 H6 
C3 C6 
C3 H5 
C4 H22 
C4 H6 
C5 H23 
C6 H22 
C6 H4 

H22 H23 
H23 H4 
H4 H5 
H5 H6 
C7 H8 
C7 H11 
C7 C10 
C8 H10 
C8 H9 
C8 C11 
C9 C12 
C9 H11 

C10 H10 
C10 H7 
C11 H8 
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C12 H9 
C12 H7 
H7 H8 
H8 H9 
H9 H11 

H10 H11 
Angles ai aj ak Gromos angle type 

 -C N H ga_32 
-C N CA ga_31 
H N CA ga_18 
N CA C1 ga_13 
N CA C7 ga_13 
N CA C ga_19 
C7 CA C ga_13 
C1 CA C ga_13 
C1 CA C7 ga_13 
CA C7 C8 ga_15 
CA C7 C12 ga_15 
CA C1 C2 ga_15 
CA C1 C6 ga_15 
C1 C2 H22 ga_25 
C1 C6 H6 ga_25 
C1 C2 C3 ga_27 
C1 C6 C5 ga_27 
C2 C1 C6 ga_27 

H22 C2 C3 ga_25 
H6 C6 C5 ga_25 
C2 C3 C4 ga_27 
C2 C3 H23 ga_25 
C6 C5 C4 ga_27 
C6 C5 H5 ga_25 
C3 C4 C5 ga_27 

H23 C3 C4 ga_25 
H5 C5 C4 ga_25 
H4 C4 C5 ga_25 
H4 C4 C3 ga_25 
C7 C8 H7 ga_25 
C7 C12 H10 ga_25 
C7 C6 C9 ga_27 
C7 C12 C11 ga_27 
C7 C8 C9 ga_27 
C8 C7 C12 ga_27 
H7 C8 C9 ga_25 

H10 C12 C11 ga_25 
C8 C9 C10 ga_27 
C8 C9 H8 ga_25 

C12 C11 C10 ga_27 
C12 C11 H11 ga_25 
C9 C10 C11 ga_27 
H8 C9 C10 ga_25 

H11 C11 C10 ga_25 
H9 C10 C9 ga_25 
H9 C10 C11 ga_25 
CA C O ga_30 
CA C +N ga_19 
O C +N ga_33 
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Propers dihedrals ai aj ak al Gromos dihedral type 
 -CA -C N CA gd_14 

-C N CA C gd_42 
-C N CA C gd_43 
N CA C +N gd_44 
N CA C +N gd_45 
C CA C1 C6 gd_34 
C CA C7 C8 gd_34 

CA C1 C2 C3 gd_34 
CA C7 C8 C9 gd_34 
C3 C4 C5 C6 gd_34  
C9 C10 C11 C12 gd_34 

Impropers dihedrals ai aj ak al Gromos improper type 
 N -C CA H gi_1 

CA N C C7 gi_2 
CA N C7 C1 gi_2 
CA N C1 C gi_2 
C1 C2 C6 CA gi_1 
C7 C8 C12 CA gi_1 
C1 C2 C3 C4 gi_1 
C1 C6 C5 C4 gi_1 
C7 C8 C9 C10 gi_1 
C7 C12 C11 C10 gi_1 
C2 C1 C6 C5 gi_1 
C2 C3 C4 C5 gi_1 
C8 C7 C12 C11 gi_1 
C8 C9 C10 C11 gi_1 

H22 C1 C3 C2 gi_1 
H23 C2 C4 C3 gi_1 
H4 C3 C5 C4 gi_1 
H5 C4 C6 C5 gi_1 
H6 C1 C5 C6 gi_1 
H7 C7 C9 C8 gi_1 
H8 C8 C10 C9 gi_1 
H9 C9 C11 C10 gi_1 

H11 C10 C12 C11 gi_1 
H10 C11 C7 C12 gi_1 

C CA +N O gi_1 
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Dbzg 

 
Non-bonded parameters 

Atom name Atom type Charge (q) 
N N -0.31 
H H 0.31 

CA C 0.00 
C2 CH2 0.00 
C9 C 0.00 
C1 CH2 0.00 
C3 C 0.00 
C4 C -0.14 

H22 HC 0.14 
C5 C -0.14 

H23 HC 0.14 
C6 C -0.14 
H4 HC 0.14 
C7 C -0.14 
H5 HC 0.14 
C8 C -0.14 
H6 HC 0.14 
C10 C -0.14 
H8 HC 0.14 
C11 C -0.14 
H7 HC 0.14 
C12 C -0.14 
H10 HC 0.14 
C13 C -0.14 
H9 HC 0.14 
C14 C -0.14 
H11 HC 0.14 

C C 0.45 
O O -0.45 
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Bonded parameters 
Bonds ai aj Gromos bond type 

 N H gb_2 
N CA gb_21 

CA C1 gb_27 
CA C2 gb_27 
CA C gb_27 
C1 C3 gb_27 
C3 C4 gb_16 
C3 C5 gb_16 
C4 H22 gb_3 
C4 C6 gb_16 
C5 H23 gb_3 
C5 C7 gb_16 
C6 H4 gb_3 
C6 C8 gb_16 
C7 H5 gb_3 
C7 C8 gb_16 
C8 H6 gb_3 
C2 C9 gb_27 
C9 C10 gb_16 
C9 C11 gb_16 

C10 H8 gb_3 
C10 C12 gb_16 
C11 H7 gb_3 
C11 C13 gb_16 
C12 H10 gb_3 
C12 C14 gb_16 
C13 H9 gb_3 
C13 C14 gb_16 
C14 H11 gb_3 

C O gb_5 
C +N gb_10 

Exclusions ai aj 
 C1 H22 

C1 H23 
C1 C6 
C1 C7 
C3 C8 
C3 H4 
C3 H5 
C4 C7 
C4 H6 
C4 H23 
C5 C6 
C5 H6 
C5 H22 
C6 H5 
C8 H22 
C8 H23 
C7 H4 
H6 H4 
H6 H5 
H5 H23 
C2 H7 
C2 H8 
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C2 C13 
C2 C12 
C9 C14 
C9 H10 
C9 H9 

C10 C13 
C10 H11 
C10 H7 
C11 C12 
C11 H11 
C11 H8 
C12 H9 
C13 H10 
H10 H8 
H9 H7 
C14 H7 
C14 H8 
H11 H9 
H11 H10 

Angles ai aj ak Gromos angle type 
 -C N H ga_32 

-C N CA ga_31 
H N CA ga_18 
N CA C1 ga_13 
N CA C2 ga_13 
N CA C ga_19 
C2 CA C ga_13 
C1 CA C ga_13 
C1 CA C2 ga_13 
CA C2 C9 ga_15 
CA C1 C3 ga_15 
C2 C9 C11 ga_27 
C2 C9 C10 ga_27 
C1 C3 C4 ga_27 
C1 C3 C5 ga_27 

C11 C9 C10 ga_27 
C4 C3 C5 ga_27 
C3 C5 H23 ga_25 
C9 C11 H7 ga_25 
C3 C5 C7 ga_27 
C9 C11 C13 ga_27 

H23 C5 C7 ga_25 
H7 C11 C13 ga_25 
C3 C4 H22 ga_25 
C9 C10 H8 ga_25 
C3 C4 C6 ga_27 
C9 C10 C12 ga_27 

H22 C4 C6 ga_25 
H8 C10 C12 ga_25 
C5 C7 H5 ga_25 

C11 C13 H9 ga_25 
C5 C7 C8 ga_27 

C11 C13 C14 ga_27 
H5 C7 C8 ga_25 
H9 C13 C14 ga_25 
C4 C6 H4 ga_25 

C10 C12 H10 ga_25 
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C4 C6 C8 ga_27 
C10 C12 C14 ga_27 
H4 C6 C8 ga_25 

H10 C12 C14 ga_25 
C7 C8 C6 ga_27 

C13 C14 C12 ga_27 
C7 C8 H6 ga_25 

C13 C14 H11 ga_25 
C6 C8 H6 ga_25 

C12 C14 H11 ga_25 
CA C O ga_30 
CA C +N ga_19 
O C +N ga_33 

Propers dihedrals ai aj ak al Gromos dihedral type 
 -CA -C N CA gd_14 

-C N CA C gd_42 
-C N CA C gd_43 
N CA C +N gd_44 
N CA C +N gd_45 
C CA C1 C3 gd_34 
C CA C2 C9 gd_34 

CA C1 C3 C5 gd_40 
CA C2 C9 C11 gd_40 

Impropers dihedrals ai aj ak al Gromos improper type 
 N -C CA H gi_1 

CA N C C2 gi_2 
CA N C2 C1 gi_2 
CA N C1 C gi_2 
C3 C4 C5 C1 gi_1 
C9 C11 C10 C2 gi_1 
C3 C5 C7 C8 gi_1 
C9 C11 C13 C14 gi_1 
C3 C5 C6 C8 gi_1 
C9 C11 C12 C14 gi_1 
C5 C3 C4 C6 gi_1 

C11 C9 C10 C12 gi_1 
C5 C3 C7 H23 gi_1 

C11 C9 C13 H7 gi_1 
C5 C7 C8 C6 gi_1 

C11 C13 C14 C12 gi_1 
C4  C3 C5 C7 gi_1 

C10 C9 C11 C13 gi_1 
C4 C3 C6 H22 gi_1 

C10 C9 C12 H8 gi_1 
C4 C6 C8 C7 gi_1 

C10 C12 C14 C13 gi_1 
H5 C5 C8 C7 gi_1 
H9 C11 C14 C13 gi_1 
H4 C4 C8 C6 gi_1 

H10 C10 C14 C12 gi_1 
C8 C7 C6 H6 gi_1 

C14 C13 C12 H11 gi_1 
C CA +N O gi_1 
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Ac6c 
Non-bonded parameters 

Atom name Atom type Charge (q) 

 

N N -0.31 
H H 0.31 

CA C 0.00 
C1 CH2R 0.00 
C2 CH2R 0.00 
C3 CH2R 0.00 
C4 CH2R 0.00 
C5 CH2R 0.00 
C C 0.45 
O O -0.45 

Bonded parameters 
Bonds ai aj Gromos bond type 

 N H gb_2 
N CA gb_21 

CA C1 gb_27 
CA C5 gb_27 
C1 C2 gb_27 
C2 C3 gb_27 
C3 C4 gb_27 
C4 C5 gb_27 
CA C gb_27 
C O gb_5 
C +N gb_10 

Angles ai aj ak Gromos angle type 
 -C N H ga_32 

-C N CA ga_31 
H N CA ga_18 
N CA C1 ga_13 
N CA C5 ga_13 
N CA C ga_13 
C1 CA C ga_13 
C5 CA C ga_13 
C1 CA C5 ga_13 
CA C1 C2 ga_13 
CA C5 C4 ga_13 
C1 C2 C3 ga_13 
C2 C3 C4 ga_13 
C3 C4 C5 ga_13 
CA C O ga_30 
CA C +N ga_19 
O C +N ga_33 

Propers dihedrals ai aj ak al Gromos dihedral type 
 -CA -C N CA gd_14 

-C N CA C gd_42 
-C N CA C gd_43 
N CA C +N gd_44 
N CA C +N gd_45 
N CA C5 C4 gd_34 
N CA C1 C2 gd_34 
H N CA C1 gd_34 
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CA C1 C2 C3 gd_34 
CA C5 C4 C3 gd_34 
C1 C2 C3 C4 gd_34 
C2 C3 C4 C5 gd_34 
CA C1 C2 C3 gd_34 

Impropers dihedrals ai aj ak al Gromos improper type 
 N -C CA H gi_1 

C CA +N O gi_1 
CA N C1 C gi_2 
CA N C5 C1 gi_2 
CA N C C5 gi_2 

Dmg 
Non-bonded parameters 

Atom name Atom type Charge (q) 

 

N N -0.310 
H H 0.310 

CA C 0.000 
CB CH2 0.266 
OB OA -0.674 
HB H 0.408 
CG CH2 0.266 
OG OA -0.674 
HG H 0.408 
C C 0.45 
O O -0.45 

Bonded parameters 
Bonds ai aj Gromos bond type 

 N H gb_2 
N CA gb_21 

CA CB gb_27 
CA CG gb_27 
CA C gb_27 
CB OB gb_18 
CG OG gb_18 
OB HB gb_1 
OG HG gb_1 
C O gb_5 
C +N gb_10 

Angles ai aj ak Gromos angle type 
 -C N H ga_32 

-C N CA ga_31 
H N CA ga_18 
N CA CB ga_13 
N CA CG ga_13 
N CA C ga_13 

CG CA C ga_13 
CB CA C ga_13 
CA CB OB ga_13 
CB OB HB ga_12 
CA CG OG ga_13 
CG OG HG ga_12 
CB CA CG ga_13 
CA C O ga_30 
CA C +N ga_19 
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F igure S1. Central  Structures 
 
Pepta ibo l in  a t  A :  t=0 -10ns,  B:  t=40-50ns,  C:  t=50-60ns and D: t=90-100ns.  

 
Analogue wi th ALA at  A:  t=0-10ns,  B:  t=40-50ns,  C:  t=50-60ns and D: t=90-100ns.  

 
Analogue wi th Dhg at  A:  t=0-10ns,  B:  t=40-50ns,  C:  t=50-60ns and D: t=90-100ns.  
 

 
 

O C +N ga_33 
Propers dihedrals ai aj ak al Gromos dihedral type 

 -CA -C N CA gd_14 
-C N CA C gd_42 
-C N CA C gd_43 
N CA C +N gd_44 
N CA C +N gd_45 
N CA CB OB gd_34 
N CA CG OG gd_34 

CA CB OB HB gd_23 
CA CG OG HG gd_23 

Impropers dihedrals ai aj ak al Gromos improper type 
 N -C CA H gi_1 

CA N C CB gi_2 
C CA +N O gi_1 

CA N C CG gi_2 
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Figure S2. Ramachandran Plots 
This section presents the probability contours (φ and ψ) superimposed on the Ramachandran diagram, 

for the non-canonical amino acids Deg, Dpg, Dibg, Dɸg, Dbzg and Dmg. 
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Conformational and Thermodynamic Propert ies of  Non-Canonical  α,α-Dia lky l  

Glycines in the Peptaibol  Alamethic in:  Molecular Dynamics Studies  
 

Tarsila Gabriel Castro and Nuno Miguel Micaêlo 
 

dx.doi.org/10.1021/jp505400q | J. Phys. Chem. B 2014, 118, 9861−9870  
 

 

Support ing Information 

 

G54A7 FF Parameters 

The Force Field parameters (bonded and non-bonded terms) for the α,α-dialkylglycines under study 

were developed based on the natural amino acids parameterized in de GROMOS 54a7 force field. They 

are the same showed in Appendix I, as these two works used the same residues. 

 

Ramachandran Plots 

This section presents the probability contours (φ and ψ) superimposed on the Ramachandran diagram, 

for the non-canonical amino acids Deg, Dibg, Dɸg, Dbzg, Ac6c and Dmg. 
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Chapter V – Supplementary Mater ia l  and G54a7 FF parameters 
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The Secondary Structure Propert ies of  Ant iamoebin I  and Zervamicin I I  Peptaibols 

Incorporat ing D-Amino Acids and Prol ine Analogues. A Model l ing Study 

 

Tarsila G. Castro, Nuno M. Micaêlo and Manuel Melle-Franco 

 

Support ing Information 

 

Table S1. Gromos 54a7 topologies 

This section presents the topologies for the new asymmetrical α,α-dialkylglycines and proline analogs  

under study. These topologies were developed based on the natural amino acids parameterized in de 

GROMOS 54a7 force field. 

 

Asymmetr ica l  α,α-d ia lky l  g lyc ines 
 
Iva ( isova l ine) :  
 
[  DIV ]  
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB2  CH3     0.00000     1 
   CB1  CH2     0.00000     2    
   CG1  CH3     0.00000     2 
    C     C       0.450     3 
    O     O      -0.450     3 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    CB1   gb_27 
   CA    CB2   gb_27 
   CA     C    gb_27 
  CB1    CG1   gb_27 
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA    CB1    ga_13    
    N    CA     C     ga_19    
   CB1   CA     C     ga_13 
    N    CA    CB2    ga_13 
   CB1   CA    CB2    ga_13 
   CB2   CA     C     ga_13 
   CA   CB1    CG1    ga_13 
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   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    CB2    gi_2     
    C    CA    +N     O     gi_1   
   CA     N    CB1    C     gi_2 
   CA     N    CB2   CB1    gi_2    
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_44 ;backbone dihedral, changed by Ying Xue Sep 29. 2009   
    N    CA     C    +N     gd_45 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    C    CA   CB1   CG1     gd_34 
 
 a lpha-Methy l -D -Leucine 
 
[  MDL ]  
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
  CB2   CH3     0.00000     1 
  CB1   CH2     0.00000     1   
  CG1   CH1     0.00000     2 
  CG2   CH3     0.00000     2 
  CG3   CH3     0.00000     2 
    C     C       0.450     3 
    O     O      -0.450     3 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA   CB1    gb_27 
   CA   CB2    gb_27 
   CA     C    gb_27    
  CB1   CG1    gb_27    
  CG1   CG2    gb_27    
  CG1   CG3    gb_27    
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA   CB1     ga_13 
    N    CA   CB2     ga_13 
    N    CA     C     ga_13    
  CB1    CA     C     ga_13 
  CB2    CA     C     ga_13 
  CB1    CA   CB2     ga_13 
   CA   CB1   CG1     ga_15    
  CB1   CG1   CG2     ga_15    
  CB1   CG1   CG3     ga_15    
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  CG2   CG1   CG3     ga_15 
    C    CA   CG2     ga_13 
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1 
    C    CA    +N     O     gi_1 
   CA     N     C    CB2    gi_2   
   CA     N    CB1    C     gi_2 
   CA     N    CB2   CB1    gi_2  
  CG1   CB1    CG2   CG3    gi_2   
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA   CB1   CG1     gd_34    
    N    CA     C    +N     gd_44 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_45 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA   CB1   CG1   CG2     gd_34 
 
a lpha-Methy l -D -pheny la lan ine 
 
[  MDP ]  
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA   CH1     0.00000     1 
  CB1   CH2     0.00000     1 
  CB2   CH3     0.00000     1 
   CG     C     0.00000     1 
  CD1     C    -0.14000     2 
  HD1    HC     0.14000     2 
  CD2     C    -0.14000     3 
  HD2    HC     0.14000     3 
  CE1     C    -0.14000     4 
  HE1    HC     0.14000     4 
  CE2     C    -0.14000     5 
  HE2    HC     0.14000     5 
   CZ     C    -0.14000     6 
   HZ    HC     0.14000     6 
    C     C       0.450     7 
    O     O      -0.450     7 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21 
   CA   CB1    gb_27 
   CA   CB2    gb_27    
   CA     C    gb_27    
  CB1    CG    gb_27    
   CG   CD1    gb_16    
   CG   CD2    gb_16    
  CD1   HD1    gb_3     
  CD1   CE1    gb_16    
  CD2   HD2    gb_3     
  CD2   CE2    gb_16    
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  CE1   HE1    gb_3     
  CE1    CZ    gb_16    
  CE2   HE2    gb_3     
  CE2    CZ    gb_16    
   CZ    HZ    gb_3     
    C     O    gb_5     
    C    +N    gb_10    
 [ exclusions ] 
;  ai    aj 
  CB1   HD1 
  CB1   HD2 
  CB1   CE1 
  CB1   CE2 
   CG   HE1 
   CG   HE2 
   CG    CZ 
  CD1   HD2 
  CD1   CE2 
  CD1    HZ 
  HD1   CD2 
  HD1   HE1 
  HD1    CZ 
  CD2   CE1 
  CD2    HZ 
  HD2   HE2 
  HD2    CZ 
  CE1   HE2 
  HE1   CE2 
  HE1    HZ 
  HE2    HZ 
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA   CB1     ga_13    
    N    CA     C     ga_13    
  CB1    CA     C     ga_13    
  CA    CB1    CG     ga_15    
  CB1    CG   CD1     ga_27    
  CB1    CG   CD2     ga_27    
  CD1    CG   CD2     ga_27    
   CG   CD1   HD1     ga_25    
   CG   CD1   CE1     ga_27    
  HD1   CD1   CE1     ga_25    
   CG   CD2   HD2     ga_25    
   CG   CD2   CE2     ga_27    
  HD2   CD2   CE2     ga_25    
  CD1   CE1   HE1     ga_25    
  CD1   CE1    CZ     ga_27    
  HE1   CE1    CZ     ga_25    
  CD2   CE2   HE2     ga_25    
  CD2   CE2    CZ     ga_27    
  HE2   CE2    CZ     ga_25    
  CE1    CZ   CE2     ga_27    
  CE1    CZ    HZ     ga_25    
  CE2    CZ    HZ     ga_25    
   CA     C     O     ga_30    
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   CA     C    +N     ga_19    
    O     C    +N     ga_33 
    N    CA   CB2     ga_13 
  CB1    CA   CB2     ga_13 
  CB2    CA     C     ga_13    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C   CB2     gi_2     
   CG   CD1   CD2   CB1     gi_1     
   CG   CD1   CE1    CZ     gi_1     
   CG   CD2   CE2    CZ     gi_1     
  CD1    CG   CD2   CE2     gi_1     
  CD1    CG   CE1   HD1     gi_1     
  CD1   CE1    CZ   CE2     gi_1     
  CD2    CG   CD1   CE1     gi_1     
  CD2    CG   CE2   HD2     gi_1     
  CD2   CE2    CZ   CE1     gi_1     
  HE1   CD1    CZ   CE1     gi_1     
  HE2   CD2    CZ   CE2     gi_1     
   CZ   CE1   CE2    HZ     gi_1     
    C    CA    +N     O     gi_1     
   CA     N    CB1    C     gi_2 
   CA     N    CB2   CB1    gi_2  
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA   CB1    CG     gd_34    
    N    CA     C    +N     gd_44 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_45 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA   CB1    CG   CD1     gd_40  
 
Methy l -2 -cyc lopenty l -2 - ( formylamino)propanoate  
a lpha-methy l -D -cyc lopenty l  
 
[  MCP ]  
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB2  CH3     0.00000     1 
   CB1  CH1     0.00000     1    
   CG1 CH2r     0.00000     2 
   CG2 CH2r     0.00000     2 
   CG3 CH2r     0.00000     3 
   CG4 CH2r     0.00000     3 
    C     C       0.450     4 
    O     O      -0.450     4 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21 
   CA     C    gb_27 
   CA   CB2    gb_27 
   CA   CB1    gb_27 
    C     O    gb_5 
    C    +N    gb_10 
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  CB1   CG1    gb_27 
  CB1   CG4    gb_27 
  CG1   CG2    gb_27 
  CG2   CG3    gb_27 
  CG3   CG4    gb_27 
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18   
    N    CA     C     ga_13 
   CA     C     O     ga_30 
   CA     C    +N     ga_19    
    O     C    +N     ga_33 
    N    CA   CB2     ga_13 
  CB1    CA   CB2     ga_13 
  CB2    CA     C     ga_13 
    N    CA   CB1     ga_13 
    C    CA   CB1     ga_13 
   CA   CB1   CG1     ga_13 
   CA   CB1   CG4     ga_13 
  CG1   CB1   CG4     ga_7 
  CB1   CG4   CG3     ga_7 
  CG4   CG3   CG2     ga_7 
  CG3   CG2   CG1     ga_7 
  CG2   CG1   CB1     ga_7 
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C   CB2     gi_2    
   CA     N   CB1     C     gi_2 
   CA     N   CB2   CB1     gi_2 
    C    CA    +N     O     gi_1 
  CB1    CA   CG4   CG1     gi_2   
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA   CB1   CG4     gd_34 
   CA   CB1   CG4   CG3     gd_34 
   CA   CB1   CG1   CG2     gd_34 
  CB1   CG1   CG2   CG3     gd_34 
  CG2   CG3   CG4   CB1     gd_34  
  CG1   CG2   CG3   CG4     gd_1 
    N    CA     C    +N     gd_44 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA     C    +N     gd_45 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
 
2 -amino-2 - (2 -cyc lopenteny l )propanoic ac id        
a lpha-methy l -D -cyc lopenteny l  (MDC) 
 
[  MDC ] 
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB2  CH3     0.00000     1 
   CB1  CH1     0.00000     1    
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   CG1 CH2r     0.00000     2 
   CG2 CH2r     0.00000     2 
   CG3  CH1     0.00000     3 
   CG4  CH1     0.00000     3 
    C     C       0.450     4 
    O     O      -0.450     4 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21 
   CA     C    gb_27 
   CA   CB2    gb_27 
   CA   CB1    gb_27 
    C     O    gb_5 
    C    +N    gb_10 
  CB1   CG1    gb_27 
  CB1   CG4    gb_27 
  CG1   CG2    gb_27 
  CG2   CG3    gb_27 
  CG3   CG4    gb_27 
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18   
    N    CA     C     ga_13 
   CA     C     O     ga_30 
   CA     C    +N     ga_19    
    O     C    +N     ga_33 
    N    CA   CB2     ga_13 
  CB1    CA   CB2     ga_13 
  CB2    CA     C     ga_13 
    N    CA   CB1     ga_13 
    C    CA   CB1     ga_13 
   CA   CB1   CG1     ga_13 
   CA   CB1   CG4     ga_13 
  CG1   CB1   CG4     ga_7 
  CB1   CG4   CG3     ga_27  
  CG4   CG3   CG2     ga_27 
  CG3   CG2   CG1     ga_7 
  CG2   CG1   CB1     ga_7 
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C   CB2     gi_2    
   CA     N   CB1     C     gi_2 
   CA     N   CB2   CB1     gi_2 
    C    CA    +N     O     gi_1 
  CB1    CA   CG4   CG1     gi_2 
  CB1   CG4   CG3   CG2     gi_1 
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA   CB1   CG4     gd_34 
   CA   CB1   CG4   CG3     gd_34 
   CA   CB1   CG1   CG2     gd_34 
  CB1   CG1   CG2   CG3     gd_34 
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  CG2   CG3   CG4   CB1     gd_5     
  CG1   CG2   CG3   CG4     gd_1 
    N    CA     C    +N     gd_44 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA     C    +N     gd_45 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
 
2 -amino-2methy l -4 -pentenoic ac id 
a lpha-methy l -D -2 -propeno 
 
[  MPR ]  
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB2  CH3     0.00000     1 
   CB1  CH2     0.00000     2    
   CG1  CH1     0.00000     2 
   CG2  CH2     0.00000     2 
    C     C       0.450     3 
    O     O      -0.450     3 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    CB1   gb_27 
   CA    CB2   gb_27 
   CA     C    gb_27 
  CB1    CG1   gb_27 
  CG1    CG2   gb_27 
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA    CB1    ga_13    
    N    CA     C     ga_19    
   CB1   CA     C     ga_13 
    N    CA    CB2    ga_13 
   CB1   CA    CB2    ga_13 
   CB2   CA     C     ga_13 
   CA   CB1    CG1    ga_13 
  CB1   CG1    CG2    ga_28 
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    CB2    gi_2     
    C    CA    +N     O     gi_1   
   CA     N    CB1    C     gi_2 
   CA     N    CB2   CB1    gi_2    
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_44 ;backbone dihedral, changed by Ying Xue Sep 29. 2009   
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    N    CA     C    +N     gd_45 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    C    CA   CB1   CG1     gd_34 
   CA   CB1   CG1   CG2     gd_34 
 
 
Pro l ine analogs 
 
4 -hydrox ipro l ine 
 
[ HYP ] 
 [ atoms ] 
    N     N     0.00000     0 
   CA   CH1     0.00000     1 
   CB  CH2r     0.00000     1 
   CG   CH1     0.26600     2 
  OD1    OA    -0.67400     2 
  HD1     H     0.40800     2 
   CD  CH2r     0.00000     3 
    C     C       0.450     4 
    O     O      -0.450     4 
 [ bonds ] 
    N    CA    gb_21 
    N    CD    gb_21    
   CA    CB    gb_27    
   CA     C    gb_27    
   CB    CG    gb_27    
   CG   OD1    gb_18    
   CG    CD    gb_27    
  OD1   HD1    gb_1     
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N    CA     ga_31 
   -C     N    CD     ga_31    
   CA     N    CD     ga_21    
    N    CA    CB     ga_13    
    N    CA     C     ga_13    
   CB    CA     C     ga_13    
   CA    CB    CG     ga_13    
   CB    CG   OD1     ga_13    
   CB    CG    CD     ga_13    
  OD1    CG    CD     ga_13    
   CG   OD1   HD1     ga_12    
    N    CD    CG     ga_13    
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA    CD    gi_1 
   CA     C    CB     N    gi_2     
   CG   OD1    CB    CD    gi_2     
    C    CA    +N     O    gi_1     
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 



 

 208 

   -C     N    CA     C     gd_43 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA     N    CD    CG     gd_39    
    N    CA    CB    CG     gd_34    
    N    CA     C    +N     gd_44 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_45 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA    CB    CG    CD     gd_34    
   CB    CG   OD1   HD1     gd_11    
   CB    CG    CD     N     gd_34    
 
c is -3 -amino-L -pro l ine 
 
[  ALP ]  
 [ atoms ] 
    N     N     0.00000     0 
   CA   CH1     0.00000     1  
   CG  CH2r     0.00000     2 
   CD  CH2r     0.00000     2 
   CB   CH1     0.12700     3 
  N01    NZ     0.12900     4 
  H01     H     0.24800     4 
  H02     H     0.24800     4 
  H03     H     0.24800     4 
    C     C       0.450     5 
    O     O      -0.450     5 
 [ bonds ] 
    N    CA    gb_21 
    N    CD    gb_21    
   CA    CB    gb_27    
   CA     C    gb_27    
   CB    CG    gb_27 
   CB   N01    gb_9 
  N01   H01    gb_2 
  N01   H02    gb_2 
  N01   H03    gb_2 
   CG    CD    gb_27    
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N    CA     ga_31 
   -C     N    CD     ga_31    
   CA     N    CD     ga_21    
    N    CA    CB     ga_13    
    N    CA     C     ga_13    
   CB    CA     C     ga_13    
   CA    CB    CG     ga_13    
   CA    CB   N01     ga_19    
   CB    CG    CD     ga_13    
  N01    CB    CG     ga_19    
   CB   N01   H01     ga_23 
   CB   N01   H02     ga_23 
   CB   N01   H03     ga_23 
  H02   N01   H01     ga_10 
  H02   N01   H03     ga_10 
  H01   N01   H03     ga_10 
    N    CD    CG     ga_13    
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
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    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA    CD    gi_1 
   CA     C    CB     N    gi_2     
    C    CA    +N     O    gi_1 
   CB   N01    CA    CG    gi_2 
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA     N    CD    CG     gd_39 
   CB    CA     N    CD     gd_39 
    N    CA    CB    CG     gd_34    
    N    CA     C    +N     gd_44 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_45 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA    CB    CG    CD     gd_34    
   CA    CB   N01   H01     gd_14    
   CB    CG    CD     N     gd_34    
 
 c is -4 -methy l -L -pro l ine 
 
[  MLP ]  
 [ atoms ] 
    N     N     0.00000     0 
   CA   CH1     0.00000     1 
   CB  CH2r     0.00000     1 
   CG   CH1     0.00000     2 
  C01   CH3     0.00000     2 
   CD  CH2r     0.00000     3 
    C     C       0.450     4 
    O     O      -0.450     4 
 [ bonds ] 
    N    CA    gb_21 
    N    CD    gb_21    
   CA    CB    gb_27    
   CA     C    gb_27    
   CB    CG    gb_27    
   CG   C01    gb_27    
   CG    CD    gb_27    
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N    CA     ga_31 
   -C     N    CD     ga_31    
   CA     N    CD     ga_21    
    N    CA    CB     ga_13    
    N    CA     C     ga_13    
   CB    CA     C     ga_13    
   CA    CB    CG     ga_13    
   CB    CG   C01     ga_13    
   CB    CG    CD     ga_13    
  C01    CG    CD     ga_13    
    N    CD    CG     ga_13    
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
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    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA    CD    gi_1 
   CA     C    CB     N    gi_2     
   CG   C01    CB    CD    gi_2     
    C    CA    +N     O    gi_1     
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA     N    CD    CG     gd_39    
    N    CA    CB    CG     gd_34    
    N    CA     C    +N     gd_44 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_45 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA    CB    CG    CD     gd_34    
   CB    CG    CD     N     gd_34 
 
t rans -3 -hydroxy -L -pro l ine 
 
[  HLP ]  
 [ atoms ] 
    N     N     0.00000     0 
   CA   CH1     0.00000     1   
   CG  CH2r     0.00000     2 
   CD  CH2r     0.00000     2 
   CB   CH1     0.26600     3  
  O01    OA    -0.67400     3 
  H01     H     0.40800     3 
    C     C       0.450     4 
    O     O      -0.450     4 
 [ bonds ] 
    N    CA    gb_21 
    N    CD    gb_21    
   CA    CB    gb_27    
   CA     C    gb_27    
   CB    CG    gb_27 
   CB   O01    gb_18 
  O01   H01    gb_1 
   CG    CD    gb_27    
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N    CA     ga_31 
   -C     N    CD     ga_31    
   CA     N    CD     ga_21    
    N    CA    CB     ga_13    
    N    CA     C     ga_13    
   CB    CA     C     ga_13    
   CA    CB    CG     ga_13    
   CA    CB   O01     ga_13 
   CG    CB   O01     ga_13 
   CB   O01   H01     ga_12 
   CB    CG    CD     ga_13    
    N    CD    CG     ga_13    
   CA     C     O     ga_30    
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   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA    CD    gi_1 
   CA     C    CB     N    gi_2     
    C    CA    +N     O    gi_1 
   CB   O01    CA    CG    gi_2 
  [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA     N    CD    CG     gd_39 
   CB    CA     N    CD     gd_39 
    N    CA    CB    CG     gd_34    
    N    CA     C    +N     gd_44 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_45 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA    CB    CG    CD     gd_34 
   CA    CB   O01   H01     gd_11 
   CB    CG    CD     N     gd_34  

 

 

F igures 

 

Figure S1 
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Figures S2 and S3 

 

 

Figure S2. Percentage of time in a-helix, turn and 310-helix conformations for each residue of the 

AAM-I peptide (A) and analogs carrying (B) Iva(2, 3, 4, 8, 9, 14), (C) Hyp(2, 3, 4, 8, 9, 14), (D) ALP(10,13,15), (E) 

HLP(10,13,15), (F) MDL(5,12), (G) MDP(5,12), (H) MPR(5), (I) MLP(10,15), considering the last 60ns of simulation 

time. 
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Figure S3. Percentage of time in α-helix, turn and 310-helix conformations for each residue of the  

Zrv-IIB peptide (A) and analogs carrying (B) Iva(7, 9, 12, 14), (C) Hyp(7, 9, 12, 14), (D) ALP(10,13,15), (E) MCP(4), (F) 

MDL(4), (G) MDP(4), (H) HLP(10,15), (I) MLP(10,15) and (J) MLP(13,15), considering the last 60ns of simulation 

time. 
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APPENDIX IV 

Chapters VI  and VI I– G54a7 FF Parameters 



 

 216 

 

 



 

 217 

 
Dehydroamino Acids FF parameters 

;  This f i le has non-natural  AA developed by Tarsi la and Micaelo 

;  Dehydro amino acids 

 

[  bondedtypes ]  
;  bonds  ang les  d ihedra ls   impropers 
    2       2          1          2 
 
;  a lpha,beta -dehydro amino ac ids 
 
[  DPH ]  
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB   CH1     0.00000     1 
   CG     C     0.00000     1 
  CD1     C    -0.14000     2 
  HD1    HC     0.14000     2 
  CD2     C    -0.14000     3 
  HD2    HC     0.14000     3 
  CE1     C    -0.14000     4 
  HE1    HC     0.14000     4 
  CE2     C    -0.14000     5 
  HE2    HC     0.14000     5 
   CZ     C    -0.14000     6 
   HZ    HC     0.14000     6 
    C     C       0.450     7 
    O     O      -0.450     7 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    CB    gb_3    
   CA     C    gb_27    
   CB    CG    gb_27    
   CG   CD1    gb_16    
   CG   CD2    gb_16    
  CD1   HD1    gb_3     
  CD1   CE1    gb_16    
  CD2   HD2    gb_3     
  CD2   CE2    gb_16    
  CE1   HE1    gb_3     
  CE1    CZ    gb_16    
  CE2   HE2    gb_3     
  CE2    CZ    gb_16    
   CZ    HZ    gb_3     
    C     O    gb_5     
    C    +N    gb_10    
 [ exclusions ] 
;  ai    aj 
   CB   HD1 
   CB   HD2 
   CB   CE1 

   CB   CE2 
   CG   HE1 
   CG   HE2 
   CG    CZ 
  CD1   HD2 
  CD1   CE2 
  CD1    HZ 
  HD1   CD2 
  HD1   HE1 
  HD1    CZ 
  CD2   CE1 
  CD2    HZ 
  HD2   HE2 
  HD2    CZ 
  CE1   HE2 
  HE1   CE2 
  HE1    HZ 
  HE2    HZ 
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA    CB     ga_26  
    N    CA     C     ga_26    
   CB    CA     C     ga_26    
   CA    CB    CG     ga_15    
   CB    CG   CD1     ga_27    
   CB    CG   CD2     ga_27    
  CD1    CG   CD2     ga_27    
   CG   CD1   HD1     ga_25    
   CG   CD1   CE1     ga_27    
  HD1   CD1   CE1     ga_25    
   CG   CD2   HD2     ga_25    
   CG   CD2   CE2     ga_27    
  HD2   CD2   CE2     ga_25    
  CD1   CE1   HE1     ga_25    
  CD1   CE1    CZ     ga_27    
  HE1   CE1    CZ     ga_25    
  CD2   CE2   HE2     ga_25    
  CD2   CE2    CZ     ga_27    
  HE2   CE2    CZ     ga_25    
  CE1    CZ   CE2     ga_27    
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  CE1    CZ    HZ     ga_25    
  CE2    CZ    HZ     ga_25    
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    CB     gi_1 
   CA    CB     N     C     gi_1 
   CG   CD1   CD2    CB     gi_1     
   CG   CD1   CE1    CZ     gi_1     
   CG   CD2   CE2    CZ     gi_1     
  CD1    CG   CD2   CE2     gi_1     
  CD1    CG   CE1   HD1     gi_1     
  CD1   CE1    CZ   CE2     gi_1     
  CD2    CG   CD1   CE1     gi_1     
  CD2    CG   CE2   HD2     gi_1     
  CD2   CE2    CZ   CE1     gi_1     
  HE1   CD1    CZ   CE1     gi_1     
  HE2   CD2    CZ   CE2     gi_1     
   CZ   CE1   CE2    HZ     gi_1     
    C    CA    +N     O     gi_1     
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 
;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    C    CA    CB    CG     gd_47   
    N    CA     C    +N     gd_44 
;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_45 
;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA    CB    CG   CD1     gd_40    
 
[  ABU ]  
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB   CH1     0.00000     1 
   CG   CH3     0.00000     1 
    C     C       0.450     2 
    O     O      -0.450     2 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    CB    gb_27   
   CA     C    gb_27    
   CB    CG    gb_27    
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    

    H     N    CA     ga_18    
    N    CA    CB     ga_26    
    N    CA     C     ga_26    
   CB    CA     C     ga_26    
   CA    CB    CG     ga_15    
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    CB     gi_1     
    C    CA    +N     O     gi_1     
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009   
   -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    C    CA    CB    CG     gd_47    
    N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009    
 
[  DLE ]  
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB   CH1     0.00000     1 
   C1   CH1     0.00000     2 
   C2   CH3     0.00000     2 
   C3   CH3     0.00000     2 
    C     C       0.450     3 
    O     O      -0.450     3 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    CB    gb_27  
   CA     C    gb_27    
   CB    C1    gb_27    
   C1    C2    gb_27    
   C1    C3    gb_27    
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA    CB     ga_26    
    N    CA     C     ga_26    
   CB    CA     C     ga_26    
   CA    CB    C1     ga_26    
   CB    C1    C2     ga_15    
   CB    C1    C3     ga_15    
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   C2    C1    C3     ga_15    
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    CB     gi_1     
   C1    CB    C3    C2     gi_2     
    C    CA    +N     O     gi_1     
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42  
;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43  
;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    C    CA    CB    C1     gd_47    
    N    CA     C    +N     gd_44  
;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_45  
;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA    CB    C1    C2     gd_34 
  
[  DVA ]  
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB     C     0.00000     1 
   C1   CH3     0.00000     1 
   C2   CH3     0.00000     1 
    C     C       0.450     2 
    O     O      -0.450     2 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    CB    gb_27    
   CA     C    gb_27    
   CB    C1    gb_27    
   CB    C2    gb_27    
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA    CB     ga_26    
    N    CA     C     ga_26    
   CB    CA     C     ga_26    
   CA    CB    C1     ga_26    
   CA    CB    C2     ga_26    
   C1    CB    C2     ga_26    
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 

;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    CB     gi_1     
   CB    CA    C2    C1     gi_1     
    C    CA    +N     O     gi_1     
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    C    CA    CB    C2     gd_47  
    C    CA    CB    C1     gd_46   
    N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
 
[  DAL ]  
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB   CH2     0.00000     1 
    C     C       0.450     2 
    O     O      -0.450     2 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    CB    gb_27    
   CA     C    gb_27    
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA    CB     ga_26    
    N    CA     C     ga_26    
   CB    CA     C     ga_26    
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CB     N     C    CA     gi_1     
    C    CA    +N     O     gi_1     
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
  ;backbone dihedral, changed by Ying Xue Sep 29. 
2009    
   -C     N    CA     C     gd_43 
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  ;backbone dihedral, changed by Ying Xue Sep 29. 
2009 
    N    CA     C    +N     gd_44 
  ;backbone dihedral, changed by Ying Xue Sep 29. 
2009 
    N    CA     C    +N     gd_45 
  ;backbone dihedral, changed by Ying Xue Sep 29. 
2009  
     
 [  DTR ]  
  [ atoms ] 
     N     N    -0.31000     0 
     H     H     0.31000     0 
    CA     C     0.00000     1 
    CB   CH1     0.00000     1 
    CG     C    -0.21000     2 
   CD1     C    -0.14000     2 
   HD1    HC     0.14000     2 
   CD2     C     0.00000     2 
   NE1    NR    -0.10000     2 
   HE1     H     0.31000     2 
   CE2     C     0.00000     2 
   CE3     C    -0.14000     3 
   HE3    HC     0.14000     3 
   CZ2     C    -0.14000     4 
   HZ2    HC     0.14000     4 
   CZ3     C    -0.14000     5 
   HZ3    HC     0.14000     5 
   CH2     C    -0.14000     6 
   HH2    HC     0.14000     6 
     C     C       0.450     7 
     O     O      -0.450     7 
  [ bonds ] 
     N     H    gb_2     
     N    CA    gb_21    
    CA    CB    gb_27    
    CA     C    gb_27    
    CB    CG    gb_27    
    CG   CD1    gb_10    
    CG   CD2    gb_16    
   CD1   HD1    gb_3     
   CD1   NE1    gb_10    
   CD2   CE2    gb_16    
   CD2   CE3    gb_16    
   NE1   HE1    gb_2     
   NE1   CE2    gb_10    
   CE2   CZ2    gb_16    
   CE3   HE3    gb_3     
   CE3   CZ3    gb_16    
   CZ2   HZ2    gb_3     
   CZ2   CH2    gb_16    
   CZ3   HZ3    gb_3     
   CZ3   CH2    gb_16    
   CH2   HH2    gb_3     
     C     O    gb_5     
     C    +N    gb_10    
  [ exclusions ] 
 ;  ai    aj 

    CB   HD1 
    CB   NE1 
    CB   CE2 
    CB   CE3 
    CG   HE1 
    CG   HE3 
    CG   CZ2 
    CG   CZ3 
   CD1   CE3 
   CD1   CZ2 
   HD1   CD2 
   HD1   HE1 
   HD1   CE2 
   CD2   HE1 
   CD2   HZ2 
   CD2   HZ3 
   CD2   CH2 
   NE1   CE3 
   NE1   HZ2 
   NE1   CH2 
   HE1   CZ2 
   CE2   HE3 
   CE2   CZ3 
   CE2   HH2 
   CE3   CZ2 
   CE3   HH2 
   HE3   HZ3 
   HE3   CH2 
   CZ2   HZ3 
   HZ2   CZ3 
   HZ2   HH2 
   HZ3   HH2 
  [ angles ] 
 ;  ai    aj    ak   gromos type 
    -C     N     H     ga_32    
    -C     N    CA     ga_31    
     H     N    CA     ga_18    
     N    CA    CB     ga_26    
     N    CA     C     ga_26    
    CB    CA     C     ga_26    
    CA    CB    CG     ga_26    
    CB    CG   CD1     ga_37    
    CB    CG   CD2     ga_37    
   CD1    CG   CD2     ga_7     
    CG   CD1   HD1     ga_36    
    CG   CD1   NE1     ga_7     
   HD1   CD1   NE1     ga_36    
    CG   CD2   CE2     ga_7     
    CG   CD2   CE3     ga_39    
   CE2   CD2   CE3     ga_27    
   CD1   NE1   HE1     ga_36    
   CD1   NE1   CE2     ga_7     
   HE1   NE1   CE2     ga_36    
   CD2   CE2   NE1     ga_7     
   CD2   CE2   CZ2     ga_27    
   NE1   CE2   CZ2     ga_39    
   CD2   CE3   HE3     ga_25    
   CD2   CE3   CZ3     ga_27    
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   HE3   CE3   CZ3     ga_25    
   CE2   CZ2   HZ2     ga_25    
   CE2   CZ2   CH2     ga_27    
   HZ2   CZ2   CH2     ga_25    
   CE3   CZ3   HZ3     ga_25    
   CE3   CZ3   CH2     ga_27    
   HZ3   CZ3   CH2     ga_25    
   CZ2   CH2   CZ3     ga_27    
   CZ2   CH2   HH2     ga_25    
   CZ3   CH2   HH2     ga_25    
    CA     C     O     ga_30    
    CA     C    +N     ga_19    
     O     C    +N     ga_33    
  [ impropers ] 
 ;  ai    aj    ak    al   gromos type 
     N    -C    CA     H     gi_1     
    CA     N     C    CB     gi_1     
    CG   CD1   CD2    CB     gi_1     
    CG   CD1   NE1   CE2     gi_1     
    CG   CD2   CE2   NE1     gi_1     
   CD1    CG   CD2   CE2     gi_1     
   CD1    CG   NE1   HD1     gi_1     
   CD1   NE1   CE2   CD2     gi_1     
   CD2    CG   CD1   NE1     gi_1     
   CD2   CE2   CE3    CG     gi_1     
   CD2   CE2   CZ2   CH2     gi_1     
   CD2   CE3   CZ3   CH2     gi_1     
   NE1   CD1   CE2   HE1     gi_1     
   CE2   CD2   CE3   CZ3     gi_1     
   CE2   CD2   CZ2   NE1     gi_1     
   CE2   CZ2   CH2   CZ3     gi_1     
   CE3   CD2   CE2   CZ2     gi_1     
   CE3   CD2   CZ3   HE3     gi_1     
   CE3   CZ3   CH2   CZ2     gi_1     
   CZ2   CE2   CH2   HZ2     gi_1     
   CZ3   CE3   CH2   HZ3     gi_1     
   CH2   CZ2   CZ3   HH2     gi_1     
     C    CA    +N     O     gi_1     
  [ dihedrals ] 
 ;  ai    aj    ak    al   gromos type 
   -CA    -C     N    CA     gd_14    
    -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
     C    CA    CB    CG     gd_47    
     N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
     N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    CA    CB    CG   CD2     gd_40   
 

;  dehydro amino acids E posi t ion  
 
[  EDP ]  
 [ atoms ] 
    N     N    -0.31000     0 

    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB   CH1     0.00000     1 
   CG     C     0.00000     1 
  CD1     C    -0.14000     2 
  HD1    HC     0.14000     2 
  CD2     C    -0.14000     3 
  HD2    HC     0.14000     3 
  CE1     C    -0.14000     4 
  HE1    HC     0.14000     4 
  CE2     C    -0.14000     5 
  HE2    HC     0.14000     5 
   CZ     C    -0.14000     6 
   HZ    HC     0.14000     6 
    C     C       0.450     7 
    O     O      -0.450     7 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    CB    gb_3    
   CA     C    gb_27    
   CB    CG    gb_27    
   CG   CD1    gb_16    
   CG   CD2    gb_16    
  CD1   HD1    gb_3     
  CD1   CE1    gb_16    
  CD2   HD2    gb_3     
  CD2   CE2    gb_16    
  CE1   HE1    gb_3     
  CE1    CZ    gb_16    
  CE2   HE2    gb_3     
  CE2    CZ    gb_16    
   CZ    HZ    gb_3     
    C     O    gb_5     
    C    +N    gb_10    
 [ exclusions ] 
;  ai    aj 
   CB   HD1 
   CB   HD2 
   CB   CE1 
   CB   CE2 
   CG   HE1 
   CG   HE2 
   CG    CZ 
  CD1   HD2 
  CD1   CE2 
  CD1    HZ 
  HD1   CD2 
  HD1   HE1 
  HD1    CZ 
  CD2   CE1 
  CD2    HZ 
  HD2   HE2 
  HD2    CZ 
  CE1   HE2 
  HE1   CE2 
  HE1    HZ 
  HE2    HZ 
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 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA    CB     ga_26  
    N    CA     C     ga_26    
   CB    CA     C     ga_26    
   CA    CB    CG     ga_15    
   CB    CG   CD1     ga_27    
   CB    CG   CD2     ga_27    
  CD1    CG   CD2     ga_27    
   CG   CD1   HD1     ga_25    
   CG   CD1   CE1     ga_27    
  HD1   CD1   CE1     ga_25    
   CG   CD2   HD2     ga_25    
   CG   CD2   CE2     ga_27    
  HD2   CD2   CE2     ga_25    
  CD1   CE1   HE1     ga_25    
  CD1   CE1    CZ     ga_27    
  HE1   CE1    CZ     ga_25    
  CD2   CE2   HE2     ga_25    
  CD2   CE2    CZ     ga_27    
  HE2   CE2    CZ     ga_25    
  CE1    CZ   CE2     ga_27    
  CE1    CZ    HZ     ga_25    
  CE2    CZ    HZ     ga_25    
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    CB     gi_1 
   CA    CB     N     C     gi_1 
   CG   CD1   CD2    CB     gi_1     
   CG   CD1   CE1    CZ     gi_1     
   CG   CD2   CE2    CZ     gi_1     
  CD1    CG   CD2   CE2     gi_1     
  CD1    CG   CE1   HD1     gi_1     
  CD1   CE1    CZ   CE2     gi_1     
  CD2    CG   CD1   CE1     gi_1     
  CD2    CG   CE2   HD2     gi_1     
  CD2   CE2    CZ   CE1     gi_1     
  HE1   CD1    CZ   CE1     gi_1     
  HE2   CD2    CZ   CE2     gi_1     
   CZ   CE1   CE2    HZ     gi_1     
    C    CA    +N     O     gi_1     
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    C    CA    CB    CG     gd_46    
    N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 

    N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA    CB    CG   CD1     gd_40        
 
[  EDA ] 
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB   CH1     0.00000     1 
   CG   CH3     0.00000     1 
    C     C       0.450     2 
    O     O      -0.450     2 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    CB    gb_27   
   CA     C    gb_27    
   CB    CG    gb_27    
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA    CB     ga_26    
    N    CA     C     ga_26    
   CB    CA     C     ga_26    
   CA    CB    CG     ga_15    
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    CB     gi_1     
    C    CA    +N     O     gi_1     
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009   
   -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    C    CA    CB    CG     gd_46     
    N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009    
 
[  EDL ]  
 [ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB   CH1     0.00000     1 
   C1   CH1     0.00000     2 
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   C2   CH3     0.00000     2 
   C3   CH3     0.00000     2 
    C     C       0.450     3 
    O     O      -0.450     3 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    CB    gb_27  
   CA     C    gb_27    
   CB    C1    gb_27    
   C1    C2    gb_27    
   C1    C3    gb_27    
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA    CB     ga_26    
    N    CA     C     ga_26    
   CB    CA     C     ga_26    
   CA    CB    C1     ga_26    
   CB    C1    C2     ga_15    
   CB    C1    C3     ga_15    
   C2    C1    C3     ga_15    
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    CB     gi_1     
   C1    CB    C3    C2     gi_2     
    C    CA    +N     O     gi_1     
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    C    CA    CB    C1     gd_46     
    N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   CA    CB    C1    C2     gd_34 
  
[  EDT ]  
  [ atoms ] 
     N     N    -0.31000     0 
     H     H     0.31000     0 
    CA     C     0.00000     1 
    CB   CH1     0.00000     1 
    CG     C    -0.21000     2 
   CD1     C    -0.14000     2 
   HD1    HC     0.1400 

0     2 
   CD2     C     0.00000     2 
   NE1    NR    -0.10000     2 
   HE1     H     0.31000     2 
   CE2     C     0.00000     2 
   CE3     C    -0.14000     3 
   HE3    HC     0.14000     3 
   CZ2     C    -0.14000     4 
   HZ2    HC     0.14000     4 
   CZ3     C    -0.14000     5 
   HZ3    HC     0.14000     5 
   CH2     C    -0.14000     6 
   HH2    HC     0.14000     6 
     C     C       0.450     7 
     O     O      -0.450     7 
  [ bonds ] 
     N     H    gb_2     
     N    CA    gb_21    
    CA    CB    gb_27    
    CA     C    gb_27    
    CB    CG    gb_27    
    CG   CD1    gb_10    
    CG   CD2    gb_16    
   CD1   HD1    gb_3     
   CD1   NE1    gb_10    
   CD2   CE2    gb_16    
   CD2   CE3    gb_16    
   NE1   HE1    gb_2     
   NE1   CE2    gb_10    
   CE2   CZ2    gb_16    
   CE3   HE3    gb_3     
   CE3   CZ3    gb_16    
   CZ2   HZ2    gb_3     
   CZ2   CH2    gb_16    
   CZ3   HZ3    gb_3     
   CZ3   CH2    gb_16    
   CH2   HH2    gb_3     
     C     O    gb_5     
     C    +N    gb_10    
  [ exclusions ] 
 ;  ai    aj 
    CB   HD1 
    CB   NE1 
    CB   CE2 
    CB   CE3 
    CG   HE1 
    CG   HE3 
    CG   CZ2 
    CG   CZ3 
   CD1   CE3 
   CD1   CZ2 
   HD1   CD2 
   HD1   HE1 
   HD1   CE2 
   CD2   HE1 
   CD2   HZ2 
   CD2   HZ3 
   CD2   CH2 



 

 224 

   NE1   CE3 
   NE1   HZ2 
   NE1   CH2 
   HE1   CZ2 
   CE2   HE3 
   CE2   CZ3 
   CE2   HH2 
   CE3   CZ2 
   CE3   HH2 
   HE3   HZ3 
   HE3   CH2 
   CZ2   HZ3 
   HZ2   CZ3 
   HZ2   HH2 
   HZ3   HH2 
  [ angles ] 
 ;  ai    aj    ak   gromos type 
    -C     N     H     ga_32    
    -C     N    CA     ga_31    
     H     N    CA     ga_18    
     N    CA    CB     ga_26    
     N    CA     C     ga_26    
    CB    CA     C     ga_26    
    CA    CB    CG     ga_26    
    CB    CG   CD1     ga_37    
    CB    CG   CD2     ga_37    
   CD1    CG   CD2     ga_7     
    CG   CD1   HD1     ga_36    
    CG   CD1   NE1     ga_7     
   HD1   CD1   NE1     ga_36    
    CG   CD2   CE2     ga_7     
    CG   CD2   CE3     ga_39    
   CE2   CD2   CE3     ga_27    
   CD1   NE1   HE1     ga_36    
   CD1   NE1   CE2     ga_7     
   HE1   NE1   CE2     ga_36    
   CD2   CE2   NE1     ga_7     
   CD2   CE2   CZ2     ga_27    
   NE1   CE2   CZ2     ga_39    
   CD2   CE3   HE3     ga_25    
   CD2   CE3   CZ3     ga_27    
   HE3   CE3   CZ3     ga_25    
   CE2   CZ2   HZ2     ga_25    
   CE2   CZ2   CH2     ga_27    
   HZ2   CZ2   CH2     ga_25    
   CE3   CZ3   HZ3     ga_25    
   CE3   CZ3   CH2     ga_27    

   HZ3   CZ3   CH2     ga_25    
   CZ2   CH2   CZ3     ga_27    
   CZ2   CH2   HH2     ga_25    
   CZ3   CH2   HH2     ga_25    
    CA     C     O     ga_30    
    CA     C    +N     ga_19    
     O     C    +N     ga_33    
  [ impropers ] 
 ;  ai    aj    ak    al   gromos type 
     N    -C    CA     H     gi_1     
    CA     N     C    CB     gi_1     
    CG   CD1   CD2    CB     gi_1     
    CG   CD1   NE1   CE2     gi_1     
    CG   CD2   CE2   NE1     gi_1     
   CD1    CG   CD2   CE2     gi_1     
   CD1    CG   NE1   HD1     gi_1     
   CD1   NE1   CE2   CD2     gi_1     
   CD2    CG   CD1   NE1     gi_1     
   CD2   CE2   CE3    CG     gi_1     
   CD2   CE2   CZ2   CH2     gi_1     
   CD2   CE3   CZ3   CH2     gi_1     
   NE1   CD1   CE2   HE1     gi_1     
   CE2   CD2   CE3   CZ3     gi_1     
   CE2   CD2   CZ2   NE1     gi_1     
   CE2   CZ2   CH2   CZ3     gi_1     
   CE3   CD2   CE2   CZ2     gi_1     
   CE3   CD2   CZ3   HE3     gi_1     
   CE3   CZ3   CH2   CZ2     gi_1     
   CZ2   CE2   CH2   HZ2     gi_1     
   CZ3   CE3   CH2   HZ3     gi_1     
   CH2   CZ2   CZ3   HH2     gi_1     
     C    CA    +N     O     gi_1     
  [ dihedrals ] 
 ;  ai    aj    ak    al   gromos type 
   -CA    -C     N    CA     gd_14    
    -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
     C    CA    CB    CG     gd_46     
     N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
     N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    CA    CB    CG   CD2     gd_40 
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GROMOS bond-stretching parameters 

• Bond type code 

• Force constant 

• Ideal bond length 

• Examples of usage in terms of non-bonded atom types 

• This file has been change by Ying Xue Sep, 29 2009 

• This f i le has been changed by Castro and Micâelo,  2012-2015  

 

ICB(H)[N]    CB[N] B0[N] 

 
#define gb_1        0.1000  1.5700e+07 
; H  -  OA      750      
; 
#define gb_2        0.1000  1.8700e+07 
; H  -  N (all) 895      
; 
#define gb_3        0.1090  1.2300e+07 
; HC  -  C      700      
; 
#define gb_4         0.112  3.7000e+07 
; C - O (CO in heme)  2220 
; 
#define gb_5        0.1230  1.6600e+07 
; C  - O        1200     
; 
#define gb_6        0.1250  1.3400e+07 
; C  - OM       1000     
; 
#define gb_7        0.1320  1.2000e+07 
; CR1  -  NR (6-ring)   1000     
; 
#define gb_8        0.1330  8.8700e+06 
; H  -  S       750      
; 
#define gb_9        0.1330  1.0600e+07 
; C  -  NT, NL  900      
; 
#define gb_10       0.1330  1.1800e+07 
; C, CR1  -  N, NR, CR1, C (peptide, 5-ring)       
1000     
; 
 

#define gb_11       0.1340  1.0500e+07 
; C  -  N, NZ, NE       900      
; 
#define gb_12       0.1340  1.1700e+07 
; C  -  NR (no H) (6-ring)      1000     
; 
#define gb_13       0.1360  1.0200e+07 
; C  -  OA      900      
; 
#define gb_14       0.1380  1.1000e+07 
; C  -  NR (heme)       1000     
; 
#define gb_15       0.1390  8.6600e+06 
; CH2  -  C, CR1 (6-ring)       800      
; 
#define gb_16       0.1390  1.0800e+07 
; C, CR1  -  CH2, C, CR1 (6-ring)       1000     
; 
#define gb_17       0.1400  8.5400e+06 
; C, CR1, CH2  -  NR (6-ring)   800      
; 
#define gb_18       0.1430  8.1800e+06 
; CHn  -  OA    800      
; 
#define gb_19       0.1430  9.2100e+06 
; CHn  -  OM    900      
; 
#define gb_20       0.1435  6.1000e+06 
; CHn  -  OA (sugar)    600      
; 
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#define gb_21       0.1470  8.7100e+06 
; CHn  -  N, NT, NL, NZ, NE     900      
; 
#define gb_22       0.1480  5.7300e+06 
; CHn  -  NR (5-ring)   600      
; 
#define gb_23       0.1480  7.6400e+06 
; CHn  -   NR (6-ring)  800      
; 
#define gb_24       0.1480  8.6000e+06 
; O, OM  -   P     900      
; 
#define gb_25       0.1500  8.3700e+06 
; O  -  S       900      
; 
#define gb_26       0.1520  5.4300e+06 
; CHn  -   CHn (sugar)  600      
; 
#define gb_27       0.1530  7.1500e+06 
; C, CHn  -   C, CHn    800      
; 
#define gb_28       0.1610  4.8400e+06 
; OA  -   P     600      
; 
#define gb_29       0.1630  4.7200e+06 
; OA  -   SI    600      
; 
#define gb_30       0.1780  2.7200e+06 
; FE  -  C (Heme) 
; 
#define gb_31       0.1780  5.9400e+06 
; CH3  -   S    900      
; 
#define gb_32       0.1830  5.6200e+06 
; CH2  -   S    900      
; 
#define gb_33       0.1870  3.5900e+06 
; CH1  -   SI   600      
; 
#define gb_34        0.198  0.6400e+06 
; NR  -   FE    120     
; 
#define gb_35        0.200  0.6280e+06 
; NR (heme)  -  FE   120 
; 
#define gb_36       0.2040  5.0300e+06 
; S  -   S      1000     
; 

#define gb_37        0.221  0.5400e+06 
; NR  -  FE     126 
; 
#define gb_38       0.1000  2.3200e+07 
; HWat  -   OWat        1110     
; 
#define gb_39       0.1100  1.2100e+07 
; HChl  -   CChl        700      
; 
#define gb_40       0.1758  8.1200e+06 
; CChl  -   CLChl       1200     
; 
#define gb_41       0.1530  8.0400e+06 
; ODmso  -   SDmso      900      
; 
#define gb_42     0.193799  4.9500e+06 
; SDmso  -   CDmso      890      
; 
#define gb_43       0.1760  8.1000e+06 
; CCl4  -   CLCl4       1200     
; 
#define gb_44       0.1265  1.3100e+07 
; CUrea  -  OUrea       1000 
; 
#define gb_45        0.135  1.0300e+07 
; CUrea  -  NUrea       900 
; 
#define gb_46     0.163299  8.7100e+06 
; HWat  -   HWat        1110     
; 
#define gb_47     0.233839  2.6800e+06 
; HChl  -   CLChl        700     
; 
#define gb_48     0.290283  2.9800e+06 
; CLChl -   CLChl       1200     
; 
#define gb_49     0.279388  2.3900e+06 
; ODmso -   CDmso        890     
; 
#define gb_50     0.291189  2.1900e+06 
; CDmso -   CDmso        890     
; 
#define gb_51       0.2077  3.9700e+06 
; HMet  -   CMet         820     
; 
#define gb_52     0.287407  3.0400e+06 
; CLCl4 -   CLCl4       1200     
; 
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#define gb_53     0.1430  8.1800e+06 
;parameter ATB PEG2 - N-C1 
; 
#define gb_54       0.1520  5.4300e+06 
;parameter ATB PEG2 - C1-C2 or C3-C4 
; 

#define gb_55     0.1435  6.1000e+06 
;parameter ATB PEG2 - C2-O2 or C4-C5 
; 
#define gb_56     0.1000   2.3200e+07 
;parameter ATB PEG2 - O2-C3 

 

GROMOS bond-angle bending parameters 

• Bond-angle type code 

• Force constant 

• Ideal bond angle 

• Example of usage in terms of non-bonded atom types 

 

ICT(H)[N]  CT[N]  (T0[N]) 

 
#define ga_1         90.00      380.00 
; NR(heme)  -  FE  -  C          90 
; 
#define ga_2         90.00      420.00 
; NR(heme)  -  FE  -  NR(heme)  100      
; 
#define ga_3         96.00      405.00 
; H  -  S  -  CH2       95       
; 
#define ga_4        100.00      475.00 
; CH2  -  S  -  CH3     110      
; 
#define ga_5        103.00      420.00 
; OA  -  P  -  OA       95       
; 
#define ga_6        104.00      490.00 
; CH2  -  S  -  S       110      
; 
#define ga_7        108.00      465.00 
; NR, C, CR1(5-ring)    100      
; 
#define ga_8        109.50      285.00 
; CHn  - CHn - CHn, NR(6-ring) (sugar)  60       
; 
#define ga_9        109.50      320.00 
; CHn, OA  - CHn  - OA, NR(ring) (sugar)        
68       
; 
 

#define ga_10       109.50      380.00 
; H -  NL, NT  -  H, CHn  - OA  - CHn(sugar)    
80       
; 
#define ga_11       109.50      425.00 
; H  -  NL  -  C, CHn          H  -  NT  -  CHn 90       
; 
#define ga_12       109.50      450.00 
; X  -  OA, SI  -  X    95       
; 
#define ga_13       109.50      520.00 
; CHn,C  -  CHn  -  C, CHn, OA, OM, N, NE       
110      
; 
#define ga_14       109.60      450.00 
; OM  -  P  -  OA       95       
; 
#define ga_15       111.00      530.00 
; CHn  -  CHn  -  C, CHn, OA, NR, NT, NL        
110      
; 
#define ga_16       113.00      545.00 
; CHn  -  CH2  -  S     110      
; 
#define ga_17       115.00       50.00 
; NR(heme)  -  FE  - NR 10       
; 
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#define ga_18       115.00      460.00 
; H  -  N  -  CHn       90       
; 
#define ga_19       115.00      610.00 
; CHn, C  -  C  -  OA, N, NT, NL        120      
; 
#define ga_20       116.00      465.00 
; H  -  NE  -  CH2      90       
; 
#define ga_21       116.00      620.00 
; CH2  -  N  -  CH1     120      
; 
#define ga_22       117.00      635.00 
; CH3 -  N  -  C, CHn  - C  - OM        120      
; 
#define ga_23       120.00      390.00 
; H  -  NT, NZ, NE  -  C        70       
; 
#define ga_24       120.00      445.00 
; H  -  NT, NZ  -  H    80       
; 
#define ga_25       120.00      505.00 
; H - N - CH3, H, HC - 6-ring, H - NT - CHn     
90       
; 
#define ga_26       120.00      530.00 
; P, SI  -  OA  -  CHn, P       95       
; 
#define ga_27       120.00      560.00 
; N, C, CR1 (6-ring, no H)      100      
; 
#define ga_28       120.00      670.00 
; NZ  -  C  -  NZ, NE   120      
; 
#define ga_29       120.00      780.00 
; OM  - P  -  OM        140      
; 
#define ga_30       121.00      685.00 
; O  -  C  -  CHn, C          CH3  -  N  -  CHn 120      
; 
#define ga_31       122.00      700.00 
; CH1, CH2  -  N  -  C  120      
; 
#define ga_32       123.00      415.00 
; H  - N  - C   70       
; 
#define ga_33       124.00      730.00 

; O  - C  - OA, N, NT, NL   C - NE - CH2        
120      
; 
#define ga_34       125.00      375.00 
; FE  - NR  - CR1 (5-ring)      60       
; 
#define ga_35       125.00      750.00 
; -     120      
; 
#define ga_36       126.00      575.00 
; H, HC  - 5-ring       90       
; 
#define ga_37       126.00      640.00 
; X(noH)  - 5-ring      100      
; 
#define ga_38       126.00      770.00 
; OM  - C  - OM 120      
; 
#define ga_39       132.00      760.00 
; 5, 6 ring connnection 100      
; 
#define ga_40       155.00     2215.00 
; SI  - OA  - SI        95       
; 
#define ga_41       180.00    91350.00 
; Fe  -  C  -  O (heme) 57 
; 
#define ga_42       109.50      434.00 
; HWat  - OWat  - HWat  92       
; 
#define ga_43       107.57      484.00 
; HChl  - CChl  - CLChl 105      
; 
#define ga_44       111.30      632.00 
; CLChl  - CChl  - CLChl        131      
; 
#define ga_45        97.40      469.00 
; CDmso  - SDmso  - CDmso       110      
; 
#define ga_46       106.75      503.00 
; CDmso  - SDmso  -  ODmso      110      
; 
#define ga_47       108.53      443.00 
; HMet  - OMet  - CMet  95       
; 
#define ga_48       109.50      618.00 
; CLCl4  - CCl4  - CLCl4        131      
; 
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#define ga_49       107.60      507.00 
; FTFE  -  CTFE  -  FTFE        100 
; 
#define ga_50       109.50      448.00 
; HTFE  -  OTFE  -  CHTFE        85 
; 
#define ga_51        110.3      524.00 
; OTFE  -  CHTFE  -  CTFE        97 
; 
#define ga_52        111.4      532.00 
; CHTFE  -  CTFE  -  FTFE        95 
; 

#define ga_53        117.2      636.00 
; NUrea  -  CUrea  -  NUrea     120 
; 
#define ga_54        121.4      690.00 
; OUrea  -  CUrea  -  NUrea     120 
; 
#define ga_55        60.00      520.00 
; cyclopropane-ring     100      
; Tarsila 
#define ga_56        88.00      520.00 
; cyclobutane-ring      100      
; Tarsila 

; 

GROMOS improper (harmonic) dihedral  angle parameters 

• Improper dihedral-angle type code 

• Force constant 

• Ideal improper dihedral angle 

• Example of usage 

 

ICQ(H)[N] CQ[N] (Q0[N]) 

 

#define gi_1           0.0   167.42309 
; planar groups 40       
; 
#define gi_2      35.26439   334.84617 
; tetrahedral centres   80       
; 
#define gi_3           0.0   669.69235 
; heme iron     160      
; 

#define gi_4         180.0   167.42309 
; Planar Groups (Alan Mark -ref- bvictor 29 
November 2010 
; 
#define gi_5     -35.26439   334.84617 
; Tetrahedral Groups (Alan Mark -ref- bvictor 29 
November 2010 
; 

 

GROMOS (tr igonometr ic)  dihedral  tors ional angle parameters 

• Dihedral-angle type code 

• Force constant 

• Phase shift 

• Multiplicity 

• Example of usage in terms of non-bonded atom types 

  

 ICP(H)[N]  CP[N] PD[N] NP[N] 



 

 232 

 

#define gd_1    180.000       2.67          1 
; CHn-CHn-CHn-OA (sugar)  0.6 
; 
#define gd_2    180.000       3.41          1 
; OA-CHn-OA-CHn,H (beta sugar) 0.8 
; 
#define gd_3    180.000       4.97          1 
; OA-CHn-CHn-OA (sugar) 1.2 
; 
#define gd_4    180.000       5.86          1 
; N-CHn-CHn-OA (lipid) 1.4 
; 
#define gd_5    180.000       9.35          1 
; OA-CHn-CHn-OA (sugar) 2.2 
; 
#define gd_6    180.000       9.45          1 
; OA-CHn-OA-CHn,H (alpha sugar)  2.3 
; 
#define gd_7      0.000       2.79          1 
; P-O5*-C5*-C4* (dna) 0.7 
; 
#define gd_8      0.000       5.35          1 
; O5*-C5*-C4*-O4* (dna) 1.3 
; 
#define gd_9    180.000       1.53          2 
; C1-C2-CAB-CBB (heme) 0.4 
; 
#define gd_10   180.000       5.86          2 
; -C-C- 1.4 
; 
#define gd_11   180.000       7.11          2 
; -C-OA,OE- (at ring) 1.7 
; 
#define gd_12   180.000       16.7          2 
; -C-OA,OE- (carboxyl) 4.0 
; 
#define gd_13   180.000       24.0          2 
; CHn-OE-C-CHn (ester lipid) 5.7 
; 
#define gd_14   180.000       33.5          2 
; -C-N,NT,NE,NZ,NR- 8.0 
; 
#define gd_15   180.000       41.8          2 
; -C-CR1- (6-ring) 10.0 
; 
#define gd_16     0.000        0.0          2 

; -CH1(sugar)-NR(base) 0.0 
; 
#define gd_17     0.000      0.418          2 
; O-CH1-CHn-no O 0.1 
; 
#define gd_18     0.000       2.09          2 
; O-CH1-CHn-O 0.5 
; 
#define gd_19     0.000       3.14          2 
; -OA-P- 0.75 
; 
#define gd_20     0.000       5.09          2 
; O-P-O- (dna, lipids) 1.2 
; 
#define gd_21     0.000       16.7          2 
; -S-S- 4.0 
; 
#define gd_22     0.000       1.05          3 
; -OA-P- 0.25 
; 
#define gd_23     0.000       1.26          3 
; -CHn-OA(no sugar)- 0.3 
; 
#define gd_24     0.000       1.30          3 
; HTFE-OTFE-CHTFE-CTFE 0.3 
; 
#define gd_25     0.000       2.53          3 
; O5*-C5*-C4*-O4* (dna) 0.6 
; 
#define gd_26     0.000       2.93          3 
; -CH2-S- 0.7 
; 
#define gd_27     0.000       3.19          3 
; O-P-O- (dna, lipids) 0.8 
; 
#define gd_28     0.000       3.65          3 
; OA-CHn-OA-CHn,H (alpha sugar) 0.9 
; 
#define gd_29     0.000       3.77          3 
; -C,CHn,SI- 0.9 
; 
#define gd_30     0.000       3.90          3 
; CHn-CHn-OA-H (sugar) 0.9 
; 
#define gd_31     0.000       4.18          3 
; HC-C-S- 1.0 
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; 
#define gd_32     0.000       4.69          3 
; AO-CHn-OA-CHn,H (beta sugar) 
; 
#define gd_33     0.000       5.44          3 
; HC-C-C- 1.3 
; 
#define gd_34     0.000       5.92          3 
; -CHn,SI-CHn- 1.4 
; 
#define gd_35     0.000       7.69          3 
; OA-CHn-CHn-OA (sugar) 1.8 
; 
#define gd_36     0.000       8.62          3 
; N-CHn-CHn-OA (lipid) 2.1 
; 
#define gd_37     0.000       9.50          3 
; OA-CHn-CHn-OA (sugar) 2.3 
; 
#define gd_38     0.000        0.0          4 
; -NR-FE- 0.0 
; 
#define gd_39   180.000        1.0          6 
; -CHn-N,NE- 0.24 
; 
#define gd_40     0.000        1.0          6 
; -CHn-C,NR(ring), CR1- 0.24 
; 
#define gd_41     0.000       3.77          6 
; -CHn-NT- 0.9 
;
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; Below are the changes made by Ying Xue, Sep 29, 2009 
 
#define gd_42     0.000        2.8          3 
; Backbone dihedral angle -C-N-CA-C-    0.67 
; 
#define gd_43   180.000        0.7          6 
;  Backbone dihedral angle -C-N-CA-C-   0.17 
; 
#define gd_44    180.000        3.5         2 
; Backbone dihedral angle -N-CA-C-N-    0.84 
; 
#define gd_45     0.000        0.4          6 
;  Backbone dihedral angle -N-CA-C-N-   0.096 
; 
;  Dihedrals for dehydro amino acids (double bond) 
#define gd_46   180.000       53.50          1 
; C-CA-CB-CG     E:CG cis C     1.3 
; 
#define gd_47     0.000       53.50          1 
; C-CA-CB-CG     Z:CG trans C 1.3 
; 
; 
#define gd_49      0.00        5.92          3 
; O1-C1-C2-O2 
 
;  get the constraint distances for dummy atom construct ions 
 

#include "ff_dum.itp" 

[ constrainttypes ] 

; now the constraints for the rigid NH3 groups 
 MNH3    C    2   DC_MNC1 
 MNH3  CH1    2   DC_MNC2 
 MNH3  CH2    2   DC_MNC2 
 MNH3 MNH3    2   DC_MNMN 
; and the angle-constraints for OH and SH groups in proteins: 
  CH2    H    2   DC_CO 
  CH1    H    2   DC_CO 
    C    H    2   DC_CO 
    P    H    2   DC_PO 
                                                                              
; bond-, angle- and dihedraltypes for specbonds: 
[ bondtypes ] 
S      S       2    gb_36 
NR     FE      2    gb_34 
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[ angletypes ] 
CH1    CH2    S     2   ga_16 
CH2    S      S     2   ga_6 
CR1    NR    FE     2 ga_34 
NR     FE    NR     2   ga_17 
 
[ dihedraltypes ] 
S      S      1   gd_21 
NR     FE     1   gd_38 
CH2    S      1   gd_26 
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Conformational Propert ies of  the Non-canonical  Cycl ic Acnc Amino Acids:  

A Molecular Model ing Study 
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Abstract 

 

The α-helix and 310-helix folding properties of a series of non-canonical cyclic amino acids, Ac3c, Ac4c, 

Ac5c, Ac6c, (S,S)-Ac5c
dOM and (R,R)-Ac5c

dOM, were studied using molecular modeling methodologies. The 

helical propensity of these residues was evaluated using leucine-based, hexa and nonapeptides. The 

secondary structure properties of the peptides incorporating cyclic and non-cyclic α,α-disubstituted 

amino acids were investigated in water, chloroform and in trifluoroethanol/water mixture. We show 

that, in water, leucine nonapeptides carrying Ac5c and (R,R)-Ac5c
dOM residues show a high tendency to 

form α-helical secondary structures. The number of residues in α-helix was found also to change as a 

function of the solvent. In chloroform, residues Ac5c, Ac6c, (S,S)-Ac5c
dOM and (R,R)-Ac5c

dOM induced the 

formation of 310-helices, in agreement with previous experimental reports. The TFE/H2O (50/50 v/v) 

mixture increases the population of α-helical secondary structure for the hexapeptides, relative to the 

aqueous media. In summary, we show that some of the non-canonical amino acids under study are 

strong helical inducers of our model peptides and, this effect is also dependent on the peptide size and 

solvent environment. 
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1. Introduct ion 

Non-canonical constrained amino acids are being used for the design of novel peptidomimetics in 

drug discovery (Gentilucci et al. 2006; Grauer and Konig 2009; Giannis 1993; Vagner et al. 2008). The 

incorporation of constrained amino acids into peptides is a promising approach to induce well-defined 

and stable secondary structure (SS) (Toniolo et al. 2001; Hill et al. 2001; Goodman et al. 2007). In 

fact, constrained residues have been used as building blocks, with the goal to improve the global 

structural stability and to optimize peptide function (Ballet et al. 2011; Whitby et al. 2011; Mallareddy 

et al. 2011; Feytens et al. 2007; Ressurreicao et al. 2008; Oh and Lee 1999). Other advantages of 

using constrained amino acids are the improvement on the bioavailability and stability in physiological 

conditions (Balaram 1992; Toniolo et al. 2001). Also, this type of amino acids has been extensively 

used on the synthesis of therapeutic peptides to prevent proteolytic degradation in vivo (Balaram 1992; 

Karle et al. 1990; Oh and Lee 1999). 

An important class of non-canonical constrained amino acids, the α,α-disubstituted amino acids 

(dAAs), has been designed and incorporated into known peptides and proteins (Bürgi et al. 2001; 

Prasad et al. 2006). The α-amino isobutyric acid (Aib) is a well-known residue, largely investigated, 

and the prototype of this class (Marshall and Bosshard 1972; Marshall et al. 1990). Aib induces well 

defined different SS in peptides, namely β-bend (Rose et al. 1985; Venkatachalam 1968) and 310/α-

helix (Marshall and Bosshard 1972; Marshall et al. 1990; Toniolo and Benedetti 1991), according to 

the chain length (Venkatraman et al. 2001; Mendel et al. 1993; Toniolo et al. 2001). The lack of 

chirality and the geometrical constrain around the Cα atom as a result of the double substitution at this 

position, are ultimately responsible for these observations. Using this rational, we address in this study 

non-canonical constrained amino acids that are also highly constrained at the Cα position and present 

consequently similar folding properties as the Aib residue: the cyclic Acnc (1-aminocycloalkane-1-

carboxylic acids) residues, where n refers to the size of the cycle. 

The Acnc amino acids are the result of the Cα to Cα cyclization of symmetrical α,α-disubstituted 

amino acids (Benedetti et al. 1997; Toniolo 1990). The cyclization process generates residues with 

even more restricted conformational flexibility than Aib or its analogs (Alemán 1997; Zanuy et al. 

2009). Previous experimental and theoretical results indicate that the Acnc with cycles with more than 

3 atoms (n = 4‒12) explore, mostly, a main chain geometry similar to Aib (φ,ψ ≈ ±60º, ±30º) which 

is typical of 310-helix or α-helix SS (Ballano et al. 2008; Benedetti et al. 1997; Gatos et al. 1997a; 
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Gatos et al. 1997b; Moretto et al. 2001; Santini et al. 1996; Saviano et al. 2000a; Saviano et al. 

2000b). The residues Ac5c (1-aminocyclopentane-1-carboxylic acid) and Ac6c (1-aminocyclohexane-1-

carboxylic acid) have been found to originate γ-turn conformations in small peptides (Aschi et al. 

2003; Paradisi et al. 1995). On the other hand, Ac3c (1-aminocyclopropane-1-carboxylic acid) is the 

only member of Acnc family that prefers molecular geometries on the bridge region (φ,ψ ≈ ±90º, 0º) 

and this particularity (Zimmerman et al. 1977; Aschi et al. 2003; Rodriguez-Ropero et al. 2008; 

Alemán 1997; Zanuy et al. 2009) has been the subject of experimental and theoretical studies over the 

past decades (Ballano et al. 2008; Crisma et al. 1989; Headley et al. 2003; Jiménez et al. 2011; 

Zimmerman et al. 1977; Gomez-Catalan et al. 2000). 

 

F igure 1.  Two-dimensional structures of Ala and the non-canonical dAAs under study: Aib, Ac3c, Ac4c, Ac5c, Ac6c, (S,S)-
Ac5c

dOM and (R,R)-Ac5c
dOM.  

Mendel and co-workers (Mendel et al. 1993) reported in 1993 the protein biosynthesis with 

conformationally restricted amino acids, including the dAAs: Aib, Ac3c, Ac4c (1-

aminocyclobutanecarboxylic acid), Ac5c and Ac6c. Recently, Demizu and his group performed 

experimental conformational studies on peptides containing Ac5c, (Demizu et al. 2011; Demizu et al. 

2010) and the chiral disubstituted forms (S,S)-Ac5c
dOM and (R,R)-Ac5c

dOM, and reported their capability to 

induce α-helices and 310-helices. The aim of this work is to study peptides incorporating these cyclic 

dAAs in aqueous and non-aqueous media, to compute their intrinsic folding properties in order to asses 

how these dAAs can be used in the design of peptides with a specific SS. In this sense we studied two 

sets of peptides: the eight peptides investigated by Demizu (Demizu et al. 2011; Demizu et al. 2010) 

and eight new peptides analogues incorporating a new series of cycloaliphatic residues.  
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2. Mater ia ls and Methods 

2.1 Non-canonical  amino acid force f ie ld parameters  

The molecular structure of the α,α-disubstituted amino acids investigated in this study was designed 

with PyMol (Schrödinger 2010). The dAAs are not parameterized in the GROMOS force field. The 

parameters for the new, non-canonical dAAs (bonded and non-bonded terms) were based on the 

equivalent encoded amino acids present in the GROMOS 54a7 force field (FF) (Huang et al. 2011; 

Schmid et al. 2011). 

For some cycloalkanes, the angle parameters were adjusted to reproduce the geometry of these 

cyclic structures. In addition, the N-terminal of the hexa and nonapeptides, the protecting groups 

benzyloxycarbonyl (Cbz) and tert-butyl carbamate (Boc), respectively, were also parameterized. 

Topology files and further detail for the new parameters can be found in the Supporting Information 

(SI).  

2.2 System preparat ion 

The initial geometry for all peptides (Figure 1) corresponded to a fully extended (φ,ψ  = 180°, 

180°), non-helical conformation. An extended conformation was adopted for all solvents to avoid any 

bias in the SS populations. For this we built extended conformations of the hexa and nonapeptides 

synthesized by Demizu et al.,(Demizu et al. 2011) Cbz-(L-Leu-L-Leu-dAA)2-OMe and Boc-(L-Leu-L-Leu-

dAA)3-OMe, respectively, where dAA is a α,α-disubstituted amino acid: Aib, Ac5c, (S,S)-Ac5c
dOM or 

(R,R)-Ac5cdOM. In addition, we created a new set of peptidomimetics, by replacing the dAAs positions 

for: Ala, Ac3c, Ac4c and Ac6c. In total, we studied 8 hexapeptides and 8 nonapeptides with two control 

peptides: peptides with the Ala (canonical amino acid) and peptides with the Aib residue (non-canonical 

non-cyclic amino acid). All peptides were modeled in three solvents, which were also studied 

experimentally with some of these systems: water, a mixture (50/50 v/v) of trifluoroethanol (TFE) and 

water, and chloroform (CHCL3) (Demizu et al. 2011). Hexapeptides were simulated in 4x4x4 (nm) 

cubic boxes of solvent. These boxes contained 2000-2200 water molecules, 220-230 TFE molecules 

and 990 water molecules, and 450-500 molecules of CHCL3. The nonapeptides were solvated in water 

using octahedral boxes with 2000-2300 water molecules while 5x5x5 (nm) cubic boxes were used for 

the other solvents. The boxes contained 400-450 molecules of TFE and 2000-2200 water molecules, 

and 700-800 molecules of CHCL3. The solvated boxes of CHCL3 and TFE/H2O were made with 

PACKMOL (Martinez et al. 2009). The peptides were modeled in water with the simple point charge 

(SPC) water model. 
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2.3 Molecular Dynamics Simulat ions 

All simulations were performed using GROMACS 4.5.4 (Lindahl et al. 2001; Bekker et al. 1993; 

Spoel et al. 2010). For the treatment of long-range interactions, we used the Reaction Field method, 

with 1.4 nm cut-off and, for consistency, a dielectric constant of 54 for water (Smith and Vangunsteren 

1994; Berendsen et al. 1987), 52 to TFE/H2O and 4.81 for CHCL3. Van der Waals interactions were 

also truncated with a twin-range cut-off of 0.8 and 1.4 nm. The algorithm LINCS (Hess et al. 1997; 

Hess 2008) was used to constrain the chemical bonds of the peptides and the algorithm SETTLE (van 

der Spoel et al. 1998) in the case of water. The pressure and temperature Berendsen algorithms were 

used to control the temperature and pressure at 310K and 1 atm, respectively (Berendsen et al. 

1984). In all solvents τT = 0.2 ps and τP = 1.0 ps were used for the Berendsen temperature and 

pressure coupling parameter respectively. One stage of energy minimization was performed using a 

maximum of 12000 steps with a steepest descent algorithm. All the systems (peptide in water, 

TFE/H2O and CHCL3) were sampled using 200 ns molecular dynamics simulations with an integration 

interval of 2 fs.  

3. Resul ts and Discussion 

We investigated six cyclic non-canonical amino acids: Ac3c, Ac4c, Ac5c, Ac6c, (S,S)-Ac5c
dOM and (R,R)-

Ac5c
dOM. In addition, we also studied Ala, as a reference for canonical amino acids, and Aib, as non-

canonical non-cyclic reference of amino acids. The structural formula of all investigated amino acids is 

presented in Figure 1. Figure 2A-B shows the 2-dimensional structures and sequence of the hexa and 

nona peptides studied. On the hexapeptide (Figure 2A), positions 3 and 6 were replaced by the amino 

acids under study whereas in the nonapeptide (Figure 2B), the replaced positions were 3, 6 and 9.  

 

F igure 2.  Two-dimensional sructure and sequence of the (A) hexa and (B) nonapeptide studied in this work.  
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3.1 Cα ,α -d isubst i tuted glycines that induce hel ical  SS in water  

Figure 3 shows the percentage of conformations with helical SS observed for the hexa and 

nonapeptide in the three solvents through the simulation computed using the DSSP (Dictionary of 

Secondary Structure in Proteins) method (Hess et al. 2008) .Two type of SS statistics were computed: 

in the first one (Figure 3), we count the number of conformations involving a minimum number of 

residues for each SS type, namely: 3, 4 or 5 for 310-helix, α-helix or π-helix (5-helix), respectively. Then 

we normalize this value by the total number of frames analyzed. For the second percentage presented 

(Figure 5), we count how many times the same residue had a specific type of conformation, and we 

normalize this value by the total number of frames in the simulation. 

First of all, there are negligible conformations for the π-helix (< 1.7 %) in our peptides, indicating 

that is not a typical SS for the cyclized amino acids under investigation. 

Hexapeptides have fewer conformations with helical SS in water (<30 %) than nonapeptides, Figure 

3A. This suggests that this hexapeptide is likely too short to fold into a stable helical structure in water, 

regardless of the substitutions incorporated on his sequence. The hexapeptides incorporating Ala and 

Aib show a similar low percentage of helical conformations. The experimental data about the Aib 

residue on the leucine based hexapeptide (Demizu et al. 2011) indicates that this amino acid induce a 

310-helical conformation, while, our results show a small number of conformations presenting this SS 

type and a more significant contribution of the α-helical form. This difference is justified by the fact 

that, in solution, the peptide under study can populate different conformations that can be distinct from 

the ones present in crystal structure. In addition the α-helix is a common SS for peptides carrying Aib 

residues. 

The hexapeptides containing Ac5c and the chiral forms of this residue were also reported as having 

310-helix SS for Ac5c and 310-helix/α-helix for the chiral residues in water. These types of SS are also 

present in our simulations, although with low percentages: 10% of the Ac5c peptide conformations 

present helical SS and 15% of helical conformations for the peptide containing (R,R)-Ac5c
dOM, this 

confirms the observation that short peptides are less able to fold in helical structures. 

Interestingly, increasing the size of the peptide bearing the Ala residue resulted in a complete loss 

of helical conformations, while in the case of Aib we observe an increase of helical SS of the α-helix and 

310-helix types. In addition, the others nonapeptides containing non-canonical amino acids are more 

prone to adopt helical conformations (Figure 3A). The nonapeptide in water with Aib shows an increase 

in 310-helix SS percentage, compared to the hexapeptide in water. 
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F igure 3.  Percentage of conformations with helical SS (α-helix and 310-helix) observed for hexa and nonapeptides in (a) 
H2O, (b) TFE/H2O and (c) CHCL3. 
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Furthermore, the small residues Ac3c and Ac4c also seem to induce an important percentage of 310-

helix conformations. Remarkably, the highest numbers of conformations with helical SS on the 

nonapeptide in water are for Ac5c and (R,R)-Ac5c
dOM, ≈40% and 90% respectively. Note that in 

comparison the chiral image of (R,R)-Ac5c
dOM , (S,S)-Ac5c

dOM has only 10% of conformations presenting 

the α-helix form. Figure 4A depicts the intramolecular hydrogen bonds (3.5Å cut-off) involved in this 

helical structure. 

The Ac5c based residues generally stabilize the helical form of peptides in water. The cyclized 

side-chain imposes geometrical constrains around de Ca carbon so that the phi and psi angles of the 

peptide main chain populate the α-helical space of the Ramachandran Plot, thus promoting the 

formation of helical structures (see next in discussion). However, we also observe that, for Ac5c, the 

peptide helicity can be improved if these residues are functionalized with two methoxy groups with a 

specific chirality, such as (R,R)-Ac5c
dOM as opposed to its mirror image: (S,S)-Ac5c

dOM. 

 

F igure 4.  Representative α-helical structures of the nonapeptides carrying (A) (R,R)-Ac5c
dOM in H2O and (B) Ac5c in 

TFE/H2O. The coloring of atoms follows the convention: green for carbon, blue for nitrogen, red for oxygen, white for 
hydrogen and yellow to highlight the hydrogen bonds under 3.5Å cut-off and angle (donor-hydrogen-acceptor) less than 30º. 
The solvent molecules were omitted for better visualization.  

This suggests that increasing slightly the polar character of this particular residue enhances the helicity 

of this model peptide. However, there is not a clear reason why the (R,R)-Ac5c
dOM outperforms its 

equivalent chiral counterpart, (S,S)-Ac5c
dOM. The substitution in the S,S or R,R affects differently the 

main chain dihedrals and τ angle (N-Cα-C), which in consequence influences the residues on the 

neighborhood (see the difference of τ among the residues on Supporting Information).  
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Figure 5 shows the SS helicoidal population for each residue during the simulation for selected 

nonapeptide cases. Residues from position 2 to 8 of the nonapeptides with Ac5c, and (R,R)-Ac5c
dOM are 

all involved in a helical SS during most of the simulation, Figure 5A-B. Interestingly, the 

functionalization of Ac5c to give (R,R)-Ac5c
dOM has a dramatic effect on stabilizing the α helical SS in this 

peptide doubling the number of populations in most residues.  

 

F igure 5.  Percentage of simulation time in a-helix and 310-helix conformations for each residue in the sequence order of 
the following nonapeptides: (A) Ac5c in H2O, (B) (R,R)-Ac5c

dOM in H2O, (C) Aib in TFE/H2O mixture, (D) Ac5c in TFE/H2O 
mixture, (E) Ac5c in CHCL3, (F) Ac6c in CHCL3, (G) (S,S)-Ac5c

dOM in CHCL3 and (H) (R,R)-Ac5c
dOM in CHCL3. The dAAs are in 

positions 3, 6, and 9. 
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3.2 Solvent ef fect on the SS of the pept ides 

The stability of peptide conformations is determined by the sequence of residues that form the 

primary structure, but also by the interaction with the solvent. TFE (2,2,2-trifluoroethanol) was used as 

a cosolvent (TFE/H2O mixture) for the study of our peptides in solution. Demizu and co-workers used 

this mixture to perform Circular Dichroism (CD) spectra analysis (Demizu et al. 2011). Also, this 

organic solvent was chosen because it is known to protect the peptides of water molecules promoting 

conformational stability of hydrophobic residues (Hong et al. 1999; Reiersen and Rees 2000; 

Roccatano et al. 2002; Luo and Baldwin 1997). The TFE molecules can reduce the intermolecular 

interactions between the peptide and water molecules and the reduction of the hydrophobic effect 

enables effective formation or maintenance of intramolecular hydrogen bonds (Hong et al. 1999; 

Reiersen and Rees 2000; Roccatano et al. 2002; Luo and Baldwin 1997). 

Figure 3B shows that hexapeptides incorporating Ala, Aib and Ac4c solvated in TFE/H2O have 

higher percentages of conformations with helical SS compared to water (Figure 3A). Remarkably, we 

observe that the nonapeptide bearing the Ac5c residue has significantly increased the helical SS 

content in TFE/H2O, which is the expected effect of this solvent. Figure 4B shows a conformation of 

this peptide in TFE/H2O, highlighting the intramolecular hydrogen bonds involved in the α-helical 

conformation. On the other hand, the peptides carrying Ac6c and (S,S)-Ac5c
dOM show a diminution of the 

total percentage of helical structure and, importantly, the residue (R,R)-Ac5c
dOM does not promote 

helical SS in the TFE/H2O. This fact can be attributed to the molecular properties of the solvent mixture 

and the polar properties of (R,R)-Ac5c
dOM residue. In addition, the steric hindrance of the substituents at 

Ac5c rings and the total volume of these residues, may predominate over the protection effect that the 

TFE molecules can offer. 

Figure 5C and D show that all internal residues of the nonapeptides carrying Aib or Ac5c in TFE/H2O 

mixture, participate in the formation of helical SS. For the nonapeptide with Aib (Figure 5C), we observe 

a slight increase of a population of 310-helix for the residues in positions 3, 4, 5 and 6, indicating that 

these residues are not exclusively in α-helix SS. The Ac5c nonapeptide in in TFE/H2O mixture (Figure 

5D) was highly structured and stable as observed in water with at least 80% conformers with helical SS 

(Figure 5A).  

3.3 The 310-hel ix  SS type in chloroform 

Some authors reported in the last two decades that 310-helical structures are favored in chloroform 

(Karle et al. 1990; Formaggio et al. 2012; Lettieri et al. 2013; Awasthi et al. 2001). The hexapeptides 
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under study show little or none helicoidal SS in chloroform (<10%), being the largest Ac4c, Ac5c and 

Ac6c (Figure 3C).  

Nonapeptides in CHCL3 (Figure 3C) carrying Ac5c, Ac6c, (S,S)-Ac5c
dOM and (R,R)-Ac5c

dOM have 

significant percentages of conformations with helical SS in this solvent. Ac6c is the one that induces 

highest percentage of structures with helical SS of the α-helix and 310-helix type. Previous 

computational studies done by some of the authors also showed that Ac6c has a good tendency to 

induce helical SS in peptaibols of different sizes and sequences (Castro and Micaelo 2014; Castro and 

Micaêlo 2014). This indicates that the foldamer behavior of Ac6c is a feature that might be present in 

more peptides.  

The nonapeptides with Ac5c, Ac6c, (S,S)-Ac5c
dOM and (R,R)-Ac5c

dOM show in chloroform the largest 

populations of 310-helix conformations. This agrees with experimental studies, which suggest that 

chloroform generally induces this type of secondary structure or promote the transition between the 

most stable conformations (Karle et al. 1990; Formaggio et al. 2012; Lettieri et al. 2013; Awasthi et al. 

2001).  

 

F igure 6.  Three views of 310-helix of nonapeptide with (R,R)-Ac5c
dOM in CHCL3. The coloring of atoms was defined as in 

figure 4. The hydrogen bonds are highlighted in yellow and the peptide shows the cartoon that defines its SS. 
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Nonapeptides with (S,S)-Ac5c
dOM and (R,R)-Ac5c

dOM induce preferentially α-helix conformations in 

water, while in chloroform we observe an increase of the 310-helix population. In other words it is 

possible to shift the helical conformation of a peptide incorporating non-canonical amino acids, from α-

helix to 310-helix, by changing the media from aqueous to chloroform. Solvents that have a lower 

tendency to interact with backbone peptide groups, as CHCl3, induce mostly helical structures (Awasthi 

et al. 2001). This fact explains why the 310-helix is favored in this medium since it allows the greatest 

number possible of intramolecular hydrogen bonds. Particularly, CHCL3 favor the folding in peptides 

sequences above 7 residues (Awasthi et al. 2001). 

Figure 5E-H show the distribution of 310-helix conformations for each residue of the nonapeptides 

containing Ac5c, Ac6c, (S,S)-Ac5cdOM and (R,R)-Ac5c
dOM, respectively. It is evident that most of the 

residues are involved in 310-helix conformations and α-helix. Remarkably, for the nonapeptide with the 

(R,R)-Ac5cdOM residue (Figure 5H), most of the peptide residues are arranged in 310-helix conformation. 

Figure 6 illustrates one conformation of the nonapeptide with (R,R)-Ac5c
dOM solvated in CHCL3 with 310-

helix SS. 

The structural preference of Ac5c (Figure 5E), (S,S)-Ac5c
dOM (Figure 5G) and (R,R)-Ac5c

dOM (Figure 5H) 

towards helical SS is also evident from the observation of the distribution of dihedrals pairs on the 

Ramachandran space shown on Figure 7. The plots were generated with the φ and ψ information of 

the dAAs at the positions of the non-canonical residues (3, 6 and 9). 

In figure 7 we observed that, as expected, Ala explores regions assigned to β-sheets, right α-helix, 

left α-helix and extended conformations, with highest density of φ and ψ pairs in β-sheet region. On the 

other hand, it is expect that the dAAs under study explore a more constrained region in Ramachandran 

space due the double substitution at the Cα. Ac5c (Figure 7B) is found in conformations mostly in right 

α-helix, with a small population of dihedral pairs in the left a-helix region. (S,S)-Ac5c
dOM (Figure 6C) also 

is found in conformations mostly in right a -helix, but also in the β-sheet region, left α-helix region and 

fully extended conformations at 180º, revealing a flexible arrangement of this residue despite the 

constrained imposed by the double substitution at the Cα and the bulky side chain. (R,R)-Ac5c
dOM 

(Figure 7D) sampled similar conformational space as (S,S)-Ac5c
dOM, but mostly concentrated in the right 

α-helix and in the region of ψ ≈ -180º to 45º and φ ≈ 45º to 90º. Ramachandran plots for the others 

dAAs under study (Aib, Ac3c, Ac4c, and Ac6c), in chloroform, are included as supporting information. 
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Figure 7.  Nonapeptides φ and ψ dihedrals pair distribution for the amino acids (A) Ala, (B) Ac5c, (C) (S,S)-Ac5c
dOM and  (D) 

(R,R)-Ac5c
dOM in chloroform, superimposed on the Ramachandran diagram. In Ramachandran the region (a) corresponds to 

typical dihedrals or right a-helix, (b) corresponds to b-sheets space and (l) to left a-helix region.  

 

4.  Conclusions 

We investigated the folding properties of different non-canonical dAAs towards the formation of α-

helix and 310-helix SS in different solvents. We observed that some non-canonical residues have 

significant propensity to induce helical SS.  

In water, Ac5c and (R,R)-Ac5c
dOM are the most capable to induce α-helical SS but only if inserted in 

nonapeptides as the same residues do not induce structure in equivalent hexapeptides. On the other 

hand, TFE/H2O mixture induces an increase of α-helix conformations for the hexa and nonapeptides 

bearing apolar and less bulky dAAs, as Aib, Ac4c and Ac5c. This confirms that the presence of TFE in 
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the solvent helps the formation of helical SS, as previously suggested (Hong et al. 1999; Reiersen and 

Rees 2000; Roccatano et al. 2002; Luo and Baldwin 1997).  

In CHCL3, a significant shift of α-helix to 310-helix SS content was observed in several nonapeptides, 

especially the one incorporating the (R,R)-Ac5c
dOM residue. In general, these results fit available 

experimental data (Demizu et al. 2011), as Ac5c, (S,S)-Ac5c
dOM and (R,R)-Ac5c

dOM induce a mixture of α-

helix and 310-helix conformations. However, the hexapeptides have no helical structure on this 

environment, indicating that a minimum length might be important to fold in this medium.  

Summing up, we found that the presence of Ac5c based amino acids have a strong tendency to 

induce nonapeptides helical conformations on the three solvents studied compared to Ala and Aib. The 

knowledge about the α-helical and 310-helical SS inducer potential of these non-canonical amino acids 

could be useful in the design of peptides with ad-hoc helical SS.  
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Supplementary Mater ia l  of  Appendix  VI I   

 
Table 1S. GROMOS 54a7 Force Field topologies: Bonded and non-bonded parameters.  
 
[Aib] 
 [ atoms ] 
; atom label, atom type, charge, energy group 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   CB1  CH3     0.00000     1 
   CB2  CH3     0.00000     1 
    C     C       0.450     2 
    O     O      -0.450     2 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    CB1   gb_27 
   CA    CB2   gb_27 
   CA     C    gb_27    
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18    
    N    CA    CB1    ga_13    
    N    CA     C     ga_19    
   CB1   CA     C     ga_13 
    N    CA    CB2    ga_13 
   CB1   CA    CB2    ga_13 
   CB2   CA     C     ga_13 
   CA     C     O     ga_30    
   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    CB1    gi_2     
    C    CA    +N     O     gi_1   
   CA     N    CB2    C     gi_2 
   CA     N    CB1   CB2    gi_2 
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
    N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009   
    N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 

[Ac3c] 
; atom label, atom type, charge, energy group 
 [ atoms ]    
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   C1  CH2r     0.00000     1 
   C2  CH2r     0.00000     1 
    C     C       0.450     2 
    O     O      -0.450     2 
 [ bonds ] 
    N     H    gb_2     
    N    CA   gb_21    
   CA    C1   gb_27 
   CA    C2   gb_27 
   C1    C2   gb_27 
   CA     C    gb_27 
    C      O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18   
    N    CA     C     ga_13 
    N    CA    C1     ga_13 
    N    CA    C2     ga_13        
   C2    CA     C     ga_13 
   C1    CA     C     ga_13 
   C1    CA    C2     ga_55 
; (cyclopropane ring ga_55 = 60º; Force constant = 520) 
   CA    C2    C1     ga_55 
   CA    C1    C2     ga_55 
   CA     C     O     ga_30 
   CA     C    +N     ga_19    
    O     C    +N     ga_33 
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N    C1     C     gi_2    
   CA     N     C    C2     gi_2 
   CA     N    C2    C1     gi_2     
    C    CA    +N     O     gi_1   
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
-C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
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    N    CA    C1    C2     gd_34 
    C    CA    C2    C1     gd_34    
    N    CA     C    +N     gd_44 

 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 

 

[Ac4c] 
 ; atom label, atom type, charge, energy group 
 [ atoms ]    
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   C1  CH2r     0.00000     1 
   C2  CH2r     0.00000     1 
   C3  CH2r     0.00000     1 
    C     C       0.450     2 
    O     O      -0.450     2 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    C1    gb_27 
   CA    C3    gb_27 
   C1    C2    gb_27 
   C2    C3    gb_27 
   CA     C    gb_27 
    C     O    gb_5     
    C    +N    gb_10 
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18   
    N    CA     C     ga_13 
    N    CA    C1     ga_13 
    N    CA    C3     ga_13        
   C1    CA    C3     ga_56 
; (cyclobutane ring ga_56 = 88º ; Force constant = 520 ) 
   C1    C2    C3     ga_56 
   CA    C1    C2     ga_56 
   CA    C3    C2     ga_56 
   C3    CA     C     ga_13 
    C    CA    C1     ga_13 
   CA     C     O     ga_30 
   CA     C    +N     ga_19    
    O     C    +N     ga_33 
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    C1     gi_2    
   CA     N    C3     C     gi_2 
   CA     N    C1    C3     gi_2 
    C    CA    +N     O     gi_1   
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  

    N    CA    C1    C2     gd_34 
    C    CA    C3    C2     gd_34 
   CA    C3    C2    C1     gd_34 
   CA    C1    C2    C3     gd_34 
    N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 

 
[Ac5c] 
; atom label, atom type, charge, energy group 
 [ atoms ]    
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   C1  CH2r     0.00000     1 
   C2  CH2r     0.00000     1 
   C3  CH2r     0.00000     2  
   C4  CH2r     0.00000     2 
    C     C       0.450     3 
    O     O      -0.450     3 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    C1    gb_27 
   CA    C4    gb_27 
   C1    C2    gb_27 
   C2    C3    gb_27 
   C3    C4    gb_27 
   CA     C    gb_27 
    C     O    gb_5     
    C    +N    gb_10 
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18   
    N    CA     C     ga_13 
    N    CA    C1     ga_13 
    N    CA    C4     ga_13 
    C    CA    C4     ga_13 
    C    CA    C1     ga_13 
   C1    CA    C4     ga_7 
   CA    C1    C2     ga_7 
   CA    C4    C3     ga_7 
   C1    C2    C3     ga_7 
   C2    C3    C4     ga_7 
   CA     C     O     ga_30 
   CA     C    +N     ga_19    
    O     C    +N     ga_33 
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
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   CA     N     C    C1     gi_2    
   CA     N    C4     C     gi_2 
   CA     N    C1    C4     gi_2 
    C    CA    +N     O     gi_1   
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA    C1    C2     gd_34 
    C    CA    C4    C3     gd_34 
   CA    C4    C3    C2     gd_34 
   CA    C1    C2    C3     gd_34 
   C1    C2    C3    C4     gd_1 
    N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 

 
[ (S,S ) -Ac5c

dOM ]  
; atom label, atom type, charge, energy group 
 [ atoms ]    
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   C1  CH2r     0.00000     1 
   C2  CH2r     0.00000     1 
   C3  CH2r     0.00000     2  
   C4  CH2r     0.00000     2 
  O01    OE      -0.450     3       
   C5   CH3       0.450     3 
  O02    OE      -0.450     4 
   C6   CH3       0.450     4 
    C     C       0.450     5 
    O     O      -0.450     5 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    C1    gb_27 
   CA    C4    gb_27 
   C1    C2    gb_27 
   C2    C3    gb_27 
   C3    C4    gb_27 
   CA     C    gb_27 
   C2   O01    gb_13 
  O01    C5    gb_18 
   C3   O02    gb_13 
  O02    C6    gb_18 
    C     O    gb_5     
    C    +N    gb_10 
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18   

    N    CA     C     ga_13 
    N    CA    C1     ga_13 
    N    CA    C4     ga_13 
    C    CA    C4     ga_13 
    C    CA    C1     ga_13 
   C1    CA    C4     ga_7 
   CA    C1    C2     ga_7 
   CA    C4    C3     ga_7 
   C1    C2    C3     ga_7 
   C2    C3    C4     ga_7 
   C2   O01    C5     ga_12 
   C3   O02    C6     ga_12 
  O01    C2    C1     ga_13 
  O02    C3    C4     ga_13 
  O01    C2    C3     ga_13 
  O02    C3    C2     ga_13 
   CA     C     O     ga_30 
   CA     C    +N     ga_19    
    O     C    +N     ga_33 
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    C1     gi_2 
   CA     N    C1    C4     gi_2    
   CA     N    C4     C     gi_2 
   C3   O02    C2    C4     gi_2 
   C2   O01    C3    C1     gi_2 
    C    CA    +N     O     gi_1   
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA    C1    C2     gd_34 
    C    CA    C4    C3     gd_34 
   CA    C4    C3    C2     gd_34 
   CA    C1    C2    C3     gd_34 
   C4    C3   O02    C6     gd_13 
   C1    C2   O01    C5     gd_13 
   C1    C2    C3    C4     gd_1 
    N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 

 
[ (R,R ) -Ac5c

dOM ]  
; atom label, atom type, charge, energy group 
 [ atoms ]    
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   C1  CH2r     0.00000     1 
   C2  CH2r     0.00000     1 
   C3  CH2r     0.00000     2  
   C4  CH2r     0.00000     2 
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  O01    OE      -0.450     3       
   C5   CH3       0.450     3 
  O02    OE      -0.450     4 
   C6   CH3       0.450     4 
    C     C       0.450     5 
    O     O      -0.450     5 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    C1    gb_27 
   CA    C4    gb_27 
   C1    C2    gb_27 
   C2    C3    gb_27 
   C3    C4    gb_27 
   CA     C    gb_27 
   C2   O01    gb_13 
  O01    C5    gb_18 
   C3   O02    gb_13 
  O02    C6    gb_18 
    C     O    gb_5     
    C    +N    gb_10 
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18   
    N    CA     C     ga_13 
    N    CA    C1     ga_13 
    N    CA    C4     ga_13 
    C    CA    C4     ga_13 
    C    CA    C1     ga_13 
   C1    CA    C4     ga_7 
   CA    C1    C2     ga_7 
   CA    C4    C3     ga_7 
   C1    C2    C3     ga_7 
   C2    C3    C4     ga_7 
   C2   O01    C5     ga_12 
   C3   O02    C6     ga_12 
  O01    C2    C1     ga_13 
  O02    C3    C4     ga_13 
  O01    C2    C3     ga_13 
  O02    C3    C2     ga_13 
   CA     C     O     ga_30 
   CA     C    +N     ga_19    
    O     C    +N     ga_33 
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N     C    C1     gi_2    
   CA     N    C4     C     gi_2 
   CA     N    C1    C4     gi_2 
   C3   O02    C4    C2     gi_2 
   C2   O01    C1    C3     gi_2 
    C    CA    +N     O     gi_1   
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 

 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
   -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA    C1    C2     gd_34 
    C    CA    C4    C3     gd_34 
   CA    C4    C3    C2     gd_34 
   CA    C1    C2    C3     gd_34 
   C4    C3   O02    C6     gd_13 
   C1    C2   O01    C5     gd_13 
   C1    C2    C3    C4     gd_1 
    N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA     C    +N     gd_45 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 
 

[Ac6c] 
 ; atom label, atom type, charge, energy group  
[ atoms ] 
    N     N    -0.31000     0 
    H     H     0.31000     0 
   CA     C     0.00000     1 
   C1  CH2r     0.00000     1 
   C2  CH2r     0.00000     1 
   C3  CH2r     0.00000     2 
   C4  CH2r     0.00000     2 
   C5  CH2r     0.00000     2 
    C     C       0.450     3 
    O     O      -0.450     3 
 [ bonds ] 
    N     H    gb_2     
    N    CA    gb_21    
   CA    C1    gb_27 
   CA    C5    gb_27 
   CA     C    gb_27 
   C1    C2    gb_27 
   C2    C3    gb_27 
   C3    C4    gb_27 
   C4    C5    gb_27 
    C     O    gb_5     
    C    +N    gb_10    
 [ angles ] 
;  ai    aj    ak   gromos type 
   -C     N     H     ga_32    
   -C     N    CA     ga_31    
    H     N    CA     ga_18   
    N    CA     C     ga_13 
    N    CA    C1     ga_13 
    N    CA    C5     ga_13        
   C1    CA     C     ga_13 
   C5    CA     C     ga_13 
   C1    CA    C5     ga_13 
   CA    C1    C2     ga_13 
   CA    C5    C4     ga_13 
   C1    C2    C3     ga_13 
   C2    C3    C4     ga_13 
   C3    C4    C5     ga_13  
   CA     C     O     ga_30 
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   CA     C    +N     ga_19    
    O     C    +N     ga_33    
 [ impropers ] 
;  ai    aj    ak    al   gromos type 
    N    -C    CA     H     gi_1     
   CA     N    C1     C     gi_2    
   CA     N     C    C5     gi_2 
   CA     N    C5    C1     gi_2      
    C    CA    +N     O     gi_1   
 [ dihedrals ] 
;  ai    aj    ak    al   gromos type 
  -CA    -C     N    CA     gd_14    
   -C     N    CA     C     gd_42 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009 

   -C     N    CA     C     gd_43 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA    C5    C4     gd_34 
    C    CA    C1    C2     gd_34    
    N    CA     C    +N     gd_44 
 ;backbone dihedral, changed by Ying Xue Sep 29. 2009  
    N    CA     C    +N     gd_45 
;backbone dihedral, changed by Ying Xue Sep 29. 2009  
   CA    C1    C2    C3     gd_34 
   CA    C5    C4    C3     gd_34 
   C1    C2    C3    C4     gd_34 
   C2    C3    C4    C5     gd_34 
    N    CA    C1    C2     gd_34 

 

Figure 1S. Ramachandran Plots in CHCL3 

This section presents the dihedrals pair distribution (φ and ψ) superimposed on the 

Ramachandran diagram, for the non-canonical amino acids Aib (A), Ac3c (B), Ac4c (C) and Ac6c (D). 
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Table 2S. τ angle (degrees) (N-Cα-C’) for the non-canonical amino acids under study, in all three 

solvent environments.  

 

 hexapept ides nonapept ides 

τ angle H2O TFE/H2O CHCL3 H2O TFE/H2O CHCL3 

Aib 116.7 116.4 116.9 117.2 117.1 117.7 
Ala 114.3 114.4 114.4 115.1 114.1 114.6 

Ac3c 136.3 136.8 137.2 118.9 119.3 119.5 
Ac4c 114.0 113.6 113.8 114.1 114.4 114.2 
Ac5c 114.0 114.2 114.7 113.1 112.6 112.9 
Ac6c 111.9 111.0 111.5 112.4 112.8 112.8 

[(S,S ) -Ac5c
dOM] 114.3 114.3 114.3 114.3 113.8 113.8 

[(R,R ) -Ac5c
dOM] 113.7 115.4 113.9 112.6 114.2 113.9 
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