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ABSTRACT
Due to environmental concerns about accumulation of the herbicide
atrazine in food products and water reservoirs, there is a need to develop
safe and economical methods for its dissipation. The main aim of this
study was to evaluate atrazine dissipation in a biobed system inoculated
with immobilized white-rot fungi in a pelletized support (PS). All fungal
isolates evaluated were efficient in colonizing the surface and inner parts
of the PS, with no differences observed in the colonization over the
assay. The highest atrazine dissipation (93%) was observed for Stereum
hirsutum Ru-104 after 60 days of incubation. In contrast, the lowest
atrazine dissipation (78%) was observed for the non-inoculated biobed
over an identical period. Trametes versicolor HL01 was involved in the
highest phenoloxidase activity. This activity indicates that inoculated and
non-inoculated biobeds were biologically active over the incubation
period. A high respiration rate in the biobed was observed when it was
inoculated with S. hirsutum Ru-104. Inoculation of fungi on PS systems
may be a coadjutant in the increase of fungal efficiency in enzymatic
production.
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Introduction

The widespread contamination of soil with chlorinated aromatic herbicides is an important envir-
onmental and societal concern. When it can have a negative influence on the quality of soil, it can
also become a potential threat to human health (Bastos & Magan 2009). Atrazine is a chlorinated
aromatic herbicide that is used worldwide for the control of broad-leaved weed in agricultural
production (Ralebitso et al. 2002), as well as in urban and recreational green areas. Its inadequate
management on farms, especially related to its handling, appears to be the most important source
of contamination. Furthermore, spillage can often occur, particularly during the filling of spraying
equipment, which is described as a point source of contamination. Due to the environmental
concerns associated with the accumulation of atrazine in food products and water reservoirs, there
is a need to develop safe and economical methods for the dissipation of this pesticide (Zhang &
Qiao 2002).

Biobed is a biopurification system representing a cost-effective technology for dissipation of
pesticides. It is composed of straw, peat and soil that absorbs and facilitates pesticide dissipation.
Due to biobed microbial activity, especially the enzymatic activity of white-rot fungi (Castillo et al.
2008), pesticide dissipation can occur. Although the precise role of enzymes in pesticide dissipation
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by white-rot fungi has not yet been completely established, evidence suggests that a complex of
enzymes, which includes lignin peroxidases (LiP, EC 1.11.1.14), manganese peroxidases (MnP, EC
1.11.1.13) and laccases (Lcc, EC 1.10.3.2), is responsible at least in part for the degradative capability
of biobeds (Tortella et al. 2008).

Rodríguez-Rodríguez et al. (2013) described the importance of white-rot fungi in pesticide
dissipation through its bioaugmentation in a biopurification system. In addition, various strains
of Phanerochaete chrysosporium, Pleurotus ostreatus and Trametes versicolor have shown marked
ability to biodegrade different classes of pesticide (Mougin et al. 1997; Castillo et al. 2001).

The application of white-rot fungi in the biodegradation process has been used mainly through
the addition of pre-grown fungal cultures on lignocellulosic supports as a pre-adaption medium. It
can improve the fungal ability to survive in the presence of other soil microorganisms (D’Annibale
et al. 2006). Several types of lignocellulosic support have been used to introduce pre-inoculated
white-rot fungi into the soil (Leštan et al. 1996; Walter et al. 2005). This practice can facilitate the
access and consumption of specific nutrients by fungi, leading to cellular growth (Walter et al.
2005; Rubilar et al. 2011). Immobilized fungi have potential to improve atrazine dissipation in a
biobed system. The main aim of the present study was to evaluate atrazine dissipation in a biobed
system with immobilized white-rot fungi.

Materials and methods

Fungal strains

Stereum hirsutum Ru-104, Inonotus sp. SP2 and Trametes versicolor HL01 were isolated from dead
wood in Rucamanque Park in southern Chile. Strains were preserved and supplied by the
Environmental Biotechnology Laboratory, Universidad de La Frontera, Chile. Fungi were transferred
from slant cultures to glucose malt extract agar plates (GMEA, 10 g L−1 glucose, 30 g L−1 malt
extract, 15 g L−1 agar, pH 5.2) and incubated at 25 ± 1°C for 7 days.

Pelletized support and fungal immobilization

A support including 74% sawdust, 6% starch, 2% corn meal, 15% flaxseed and 3% lignosulphonate
was prepared for fungal immobilization (patent requested 2013–1395, Chile). In order to obtain a
pelletized support (PS) of 8 mm, ingredients were mixed, moistened to approximately 10%
humidity with distilled water and pressed using a pellet mill (ZLSP300B R-Type). Ten grams of PS
were transferred to polypropylene bags and moistened with 4 mL of GMEA. Fungal immobilization
was produced by inoculation with five plugs of active mycelium of S. hirsutum Ru-104, Inonotus sp.
SP2 or T. versicolor HL01 previously grown on GMEA plates. Finally, bags containing inoculated PS
were incubated at 25 ± 1°C for 30 days.

Scanning electron microscopy

Photomicrographs were taken using a scanning electron microscope (SEM, Leica/Cambridge
Instrument S360, Cambridge, UK). Samples from the surface and center of the PS were prepared
by cutting the immobilized fungus into small pieces. For all formulations, samples were cut to the
same length (2 cm) using a sterilized knife. Samples were fixed with 2.5% glutaraldehyde for 1.5 h
at 4°C, followed by 0.1 M cacodylate salt buffer pH 7.0 for 30 min, then post-fixed with 1% osmium
tetroxide, dehydrated with acetone, dried and metalized with gold.

1452 S. ELGUETA ET AL.



Biomixture formulation and biobed system establishment

The biomixture was prepared as previously described (Urrutia et al. 2013; Tortella et al. 2013a).
Briefly, Andisol top soil (Freire serie) was mixed with wheat straw and peat in a volumetric
proportion of 1:2:1. The soil was collected from 0 to 15 cm and sieved (<3 mm). Wheat straw
was cut into 2 cm pieces using a food processor. Commercial peat, obtained from a local market,
contained 33% cellulose and 21% lignin. The soil provided pH 5.4, 18 mg kg−1 of available nitrogen,
17 mg kg−1 of available phosphorus and 12% organic matter.

Wheat straw provided pH 5.9, 0.56% total nitrogen, 9.9% lignin, 41% cellulose and 50% organic
matter. The biomixture was stored in a polypropylene bag at 4°C until use. The final biomixture
composition provided pH 4.8, 0.54% total nitrogen and 30% organic carbon, a with C/N ratio of 57.
In order to obtain a homogeneous biomixture, the constituents were vigorously mixed and then
moistened with distilled water to 60% water-holding capacity (WHC). The biomixture was incu-
bated for 30 days at 20 ± 1°C in a closed polypropylene bag before use.

In order to establish a biobed system, the biomixture (1000 g) was transferred to 5000 mL glass
pots and inoculated with 10% (w w−1) immobilized fungi on PS. Fungal inoculum was prepared by
incorporating immobilized fungi on PS at a depth of 5 cm below the biobed surface. Thereafter,
80 mg kg−1 atrazine was spread over the biobed.

Four biobed systems were prepared: biomixture + atrazine, biomixture + fungal inoculum,
biomixture + atrazine + fungal inoculum and biomixture as control. Each experiment was carried
out in triplicate using a destructive sampling mode.

Residual atrazine and their metabolites

Atrazine was purchased from Bayer Chemicals; deethylatrazine (DEA) and deisopropylatrazine (DIA)
were purchased from Aldrich; all other chemicals were purchased from Merck Chile. In order to
extract atrazine from the biobed, 20 mL of methanol was added to 10 g samples and incubated for
1 h at 25°C under shaking (350 rpm). Afterwards, samples were sonicated at full power for 30 min,
subsequently centrifuged at 10,000 rpm for 10 min and filtered through 0.2 µm PTFS membrane
filters (Whatman). Residual atrazine was extracted from the biobed system 15 days after initial
application. This extraction process was performed twice for each sample and expressed in mg kg−1.
Atrazine concentration in the final supernatant was measured by high-performance liquid chro-
matography (HPLC, VWR Hitachi). Samples (20 µL) were injected into a Rheodyne 7725 injector
supplied with a Merck Hitachi L-7100 pump, in an apparatus equipped with a Merck Hitachi L-7455
diode array detector set at 290 nm.

Separation was performed using a C18 column. The mobile phase was 100% methanol and the
flow rate was set at 1 mL min−1. The recovery rate of atrazine was greater than 85%. The half-life
value of atrazine was obtained using the first-order kinetic equation as concentration = C0 e

−kt, and
from this equation Equation (1) was obtained:

T1=2 ¼ Ln 2ð Þ=k (1)

where k is the first-order rate constant (d−1).

Microbial activity in the biobed system

Phenoloxidase (PO) activity was determined every 15 days and was performed using 3-methyl-2-
benzothiazolinone hydrazone (MBTH) and 3-(dimethylamino) benzoic acid (DMAB) (Castillo et al.
1994). Because no individual activity was determined for MnP, LiP and Lcc, PO activity repre-
sents the sum of all three. Briefly, biobed samples (10 g) were shaken (150 rpm) for 2 h with
25 mL 100 mM succinate–lactate buffer (pH 4.5) and then centrifuged at 4000 rpm for 20 min.
The supernatant was collected, filtered through a 0.45 μm membrane and PO activity was
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immediately determined by spectrophotometry (Spectronic Genesis 2PC) at 590 nm
(ε = 0.053 μM−1 cm−1), adding 10 μL of 10 mM H2O2 to the reaction mixture, which then
contained 300 μL of 6.6 mM DMAB, 100 μL of 1.4 mM MBTH, 30 μL of 20 mM MnSO4 and
1560 μL of the filtered sample.

Fluorescein diacetate (FDA): was determined in the biobed system (Schnürer & Rosswall 1982).
Briefly, 1 g of incubated biobed material was transferred to a flask containing 9.9 mL 0.1 mM
sodium phosphate buffer (pH 7.8) and FDA solution (2.0 mg mL−1). After 1 h incubation at 25°C, the
reaction was stopped with 10 mL acetone and colorimetric measurements were performed at
490 nm. Results were plotted against a calibration curve with standard quantities of FDA and
expressed in µg FDA g−1 h−1.

Respiration activity was measured as CO2 produced and absorbed in a 0.2 M NaOH solution at
20°C, and was plotted against time. The values are expressed in mg CO2 g

−1 dry biobed (Iannotti
et al. 1994).

All experiments were conducted using three independent replicates and statistical analysis was
performed. Data were subjected to a multi-way analysis of variance and the averages were
compared by Tukey’s range tests.

Results and discussion

Fungal immobilization and inoculation

In the present study, an evaluation of fungal immobilization over 20 days on PS was performed. An
assay based on SEM microscopy was done. Overall, all fungal strains evaluated were efficient in
colonizing both surface and core of the PS and no differences in colonization were observed over
the assay. Uniform fungal growth across the interspaces of the PS was observed. The behavior of T.
versicolor HL01 at both surface and core of the lignocellulosic support can be observed on the SEM
photomicrographs in Figure 1. A similar growth pattern was observed for S. hirsutum Ru-104 and

Figure 1. Images of (A) T. versicolor on PS; and microphotographs obtained by SEM for (B) pure PS core; (C) T. versicolor on PS
surface; (D) T. versicolor into PS core. All analysis were made with T. versicolor (HL01) after 7 days of incubation at 30°C. Bars A
4 cm; B 50 µm; C–D 200 µm.

1454 S. ELGUETA ET AL.



Inonotus sp. SP2 (data not shown). Fungal immobilization facilitated hyphal penetration into the
biobed, so that fungi reached contaminants in ways that other non-immobilized microorganisms
cannot do. As result, increased fungal dissipation capacity in the biobed surrounding environment
was achieved.

Results obtained in this present work are corroborated by previous studies published elsewhere
(Walter et al. 2004; Schmidt et al. 2005). In order to evaluate the potential of native white-rot fungi
to biodegrade pentachlorophenol, Walter et al. (2004) assessed different species of these micro-
organisms and observed that T. versicolor was the most efficient fungal species with the highest
release of chloride on wheat straw support. In addition, Schmidt et al. (2005) evaluated the effect of
fungal inoculum properties on the colonization of unsterile soil by three isolates of T. versicolor. The
authors assessed fungal inoculum concentration and its age, from 3 to 21 days, and observed that
colonization of soil by T. versicolor was improved by increasing the corn content of the fungal
inoculum. Furthermore, the authors found that younger (<7 days) fungal inocula resulted in better
soil colonization. As attested above, in the present work no differences in fungal growth over the
process were observed among the three fungal species evaluated.

Biomixture composition can markedly affect biobed efficiency. Typically, biomixture consists of
peat, straw and topsoil. Straw guarantees a continuous supply of nutrients and high microbial
activity (Karanasios et al. 2010). However, the microbial adaptation step is crucial for a successful
bioprocess. Different adaptation systems have been developed worldwide. The microbial immobi-
lization conditions for biomass growth and an additional supply of carbon sources improved
microbial performance in a long-term trial (Ottoni et al. 2014).

In order to increase pesticide dissipation, and to protect fungi from native microflora and
overcome the low nutrient rate in soil, immobilized white-rot fungi have been used worldwide
as live microorganisms combined with carrier supports (Baldrian 2008).

Atrazine dissipation

The atrazine dissipation rate in the inoculated biobed system was higher than that observed for the
non-inoculated example after 60 days (Figure 2A). The highest dissipation rate (93%) was observed
for S. hirsutum Ru-104 after 60 days of incubation. In contrast, the lowest dissipation rate (78%) was
observed for the non-inoculated biobed over an identical period. The metabolites DIA and DEA
(Figure 2B and C) were found during the experiment in different amounts. The low concentration
of both metabolites in the biobed system can be explained by the rapid degradation of atrazine in
the experiment. The addition of lignocellulosic substrates in the formulation of the biobed can
modify atrazine dissipation (Urrutia et al. 2013).

Bending et al. (2002) evaluated the capacity of nine species of white-rot fungi in the degrada-
tion of contrasting mono-aromatic pesticides. Degradation of atrazine (20 µg g−1) in a sterile and
inoculated biomixture composed of soil, wheat straw and peat was assessed. These authors
observed a degradation rate of over than 70% when the biobed was inoculated with Coriolus
versicolor or Hypholoma fasciculare. However, no data for atrazine degradation on sterile biobed
were presented in their work.

The capacity of T. versicolor to actively degrade atrazine (0.5 μg g−1) in a non-inoculated
calcareous clay soil for up to 24 weeks (20°C) was tested (Bastos & Magan 2009). The authors
claimed that fungal inoculation increased atrazine degradation up to 98% and 85% at −0.7 and
−2.8 MPa, respectively. These data are close to the 88.8% obtained in the present study for T.
versicolor HL01. For soil with no fungal presence and under the same pressure conditions, atrazine
degradation was respectively 96 and 50%, and in our case without inoculant 78%.

According to our results, atrazine had a lower half-life (t1/2) in the inoculated biobed than in the
non-inoculated (Figure 2). Among the species evaluated, fungi with the highest capacity to
degrade atrazine over the time are ranked in the following increasing order of t1/2: S. hirsutum
Ru-104 = 16 days, T. versicolor HL01= 21 days, and Inonotus sp. = 26 days. S. hirsutum Ru-104
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demonstrated optimal dissipation performance. Moreover, for the non-inoculated biobed the t1/2
was 30 days. The results obtained here are in agreement with data previously reported by Urrutia
et al. (2013), who where studied atrazine dissipation (100 mg kg−1) in a non-inoculated biobed
composed of straw, topsoil and peat. A t1/2 of 28 days for atrazine was found. Furthermore, Tortella
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et al. (2013b) observed that terpenes added individually at relatively low concentrations
(50 µg kg−1) significantly enhanced both atrazine dissipation and biological activity at the begin-
ning of incubation. According to these authors, successive terpene applications were seen as a way
of sustaining microbial activity and improving atrazine dissipation in the long term. However, this
practice proved not to be not cost effective but gives new insights into exploring the importance
of different organic substrates in biobed systems, to increase microbial activity for pesticide
dissipation and further decrease (<16 days) atrazine t1/2.

An attractive alternative to reducing atrazine t1/2 could be the use of natural residues with high
terpene content, such as orange peel and eucalyptus leaves, which would be cost effective.
Furthermore, the use of natural residues as a supplement or support for fungal growth and enzyme
production has been described as a promising process at the industrial level (Maciel et al. 2013,
2014). In fact, as described above, the evidence suggests that a complex of extracellular enzymes is
responsible at least in part for the degradative capabilities of the fungal species assessed (Ottoni
et al. 2014).

Biological activity in the biomixture

After inoculation of immobilized white-rot fungi isolates, PO activity in the biobeds contaminated
with atrazine was assessed. Results obtained for the non-inoculated biobed indicate PO activity of
around 0.1–0.2 U kg−1. In contrast, for the inoculated biobed, PO activity varied from 0.1 to
0.7 U kg−1. Overall, enzymatic activity increased over time reaching a maximum at the 30th day,
after which it decreased to the 60th day of assay (Figure 3).

Among the fungal species evaluated, the optimal enzyme producer was T. versicolor HL01,
which resulted in PO activity of 0.7 U kg−1 at the 30th day of assay; S. hirsutum Ru-104 followed T.
versicolor HL01 in terms of enzymatic activity. This fungal isolate presented its optimal PO activity
at the 15th day of assay (0.4 U kg−1). In contrast, Inonotus sp. SP2 showed a PO activity comparable
to that observed for the non-inoculated biobed (Figure 3).

In the present work, decreased PO activity in the biobed over time may be explained by reduced
phenolic compound availability. In addition, microbial cells are able to produce intracellular and
extracellular PO for a variety of purposes. Excretion or cell lysis allows these enzymes to enter the
environment where their aggregate activity mediates the key ecosystem functions of lignin
degradation, humification, carbon mineralization and dissolved organic carbon export
(Sinsabaugh 2010).
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Many researchers have assumed that degradation of pesticides by white-rot fungi is mediated
by peroxidases, enzymes involved in the degradation of lignin. In the present study, the biobed
tested included 50% wheat straw. Furthermore, PS contains carbon sources readily available and
other compounds related to lignin degradation. Together, this could explain PO activity in the
biobed system tested (Tortella et al. 2013a).

FDA activity was used as an estimation of biological potential in the complex mixture compos-
ing the biobed. This provides a measurement of microbial biomass by determining a spectrum of
microbial enzyme activity (lipases, proteases, esterases) (Leštan et al. 1996). In all biomixture assays,
FDA activity was in the range 30–55 μg g−1 h−1 over the 60 days of incubation (Figure 4). These
findings indicate that both the inoculated and non-inoculated biobed were biologically active over
the incubation period.

Among all inoculated biobed assays, that with T. versicolor HL01 showed the highest FDA
activity (53 μg g−1 h−1) at the 45th day. The biobed inoculated with Inonotus sp. SP2 followed T.
versicolor HL01 in terms of FDA activity (51 μg g−1 h−1) at the 45th day (Figure 4). In contrast, the
non-inoculated biobed showed lower FDA activity over the assay (31–34 μg g−1 h−1). This result
demonstrates that inoculation increases the metabolic activity of microorganisms in a biobed. At
the 45th day of assay, FDA activity in the inoculated biobed with S. hirsutum Ru-104, Inonotus sp.
SP2 or T. versicolor HL01 showed significant differences (P ≤ 0.05) compared with the non-
inoculated example. Moreover, at the 60th day FDA activity in all biobed assays decreased for
values of 30–40 μg g−1 h−1.

High values of FDA activity in a non-inoculated biobed contaminated with atrazine were also
observed by Urrutia et al. (2013). For these authors this indicated that the high FDA hydrolysis value
is indicative that all biobeds were biologically active over the incubation period, and that non-
significant negative effects were caused by the application of pesticide. In such a non-inoculated
system, high biological activity is not always associated with pesticide dissipation. The microorganisms
naturally present in the biobed components may not have the capacity to degrade pesticides. In
contrast, pesticide dissipation can be greatly improved through the inoculation of specific microorgan-
isms. Moreover, an adaptation or immobilization step can improve microbial efficiency still further.

In the present study, respiratory activity was used as a microbial activity indicator. This activity
was higher in the inoculated biobed than in the non-inoculated (Figure 5). A high respiration rate
(19 mg CO2 g

−1 d−1) was observed in the biobed inoculated with S. hirsutum Ru-104, followed by
that with Inonotus sp. SP2 (17 mg CO2 g

−1 d−1). The high respiration rate in the biobed inoculated
with S. hirsutum Ru-104 can be related to the high level of atrazine dissipation in this biobed; it can
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also be attributed to the presence of an easily degradable carbon source in that environment. In
contrast, low respiration rates were observed for the non-inoculated biobed (16 mg CO2 g−1 d−1)
(Figure 5).

The highest respiration activity (155 mg CO2 g
−1) was observed for the biobed inoculated with S.

hirsutum RU-104 over 60 days of assay. In contrast, the lowest was observed for the non-inoculated
biobed (99 mg CO2 g−1). Respiration rates of 126 and 108 mg CO2 g−1 were observed for the
biobeds inoculated with Inonotus sp. SP2 and T. versicolor Ru-104, respectively. Similar results were
observed by Tortella et al. (2013b) for a non-inoculated biobed contaminated with atrazine
(100 mg kg−1). In this case, the authors replaced wheat straw by barley husk and sawdust in the
biomixture. As a result, accumulated respiration after 120 days of incubation was 47 and 42 mg
CO2 g

−1, respectively.
Bastos and Magan (2009) observed that respiration was significantly enhanced in soil containing

inoculant, particularly in the presence of atrazine, indicating that it remained metabolically active
throughout the study. By comparing the data obtained in the present work to those available on
the literature, there is clear evidence that inoculation plays an important role in respiratory activity.
Furthermore, the inoculation of fungi in PS systems might be a coadjutant in increasing fungal
efficiency in enzyme production.

Conclusions

All fungal strains evaluated were efficient in colonizing both surface and core of the PS, and no
differences in the colonization were observed over the assay. Uniform fungal growth across the
interspaces of the PS was observed. Moreover, the biobed inoculated with white-rot fungi immo-
bilized on PS resulted in increased atrazine dissipation. Inoculated biobed systems showed higher
phenoloxidase activity over time, reaching a maximum at the 30th day after which this decreased
to the 60th day of assay. T. versicolor HL01 showed the highest phenoloxidase activity.

FDA activity indicates that both inoculated and non-inoculated biobeds were biologically active
over the incubation period. A high respiration rate was observed in the biobed system inoculated
with S. hirsutum Ru-104, followed by that inoculated with Inonotus sp. SP2. This may be related to
the high level of atrazine degradation in the latter biobed system. Moreover, it can also be
attributed to the presence of an easily degradable carbon source in that environment. In contrast,
low respiration rates were observed in the non-inoculated biobed system.
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