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Abstract. Healthcare organizations often benefit from information technologies 

as well as embedded decision support systems, which improve the quality of 

services and help preventing complications and adverse events. In Centro 

Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of 

Centro Hospitalar of Oporto (CHP), an intelligent pre-triage system is 

implemented, aiming to prioritize patients in need of gynaecology and 

obstetrics care in two classes: urgent and consultation. The system is designed 

to evade emergency problems such as incorrect triage outcomes and extensive 

triage waiting times. The current study intends to improve the triage system, 

and therefore, optimize the patient workflow through the emergency room, by 

predicting the triage waiting time comprised between the patient triage and their 

medical admission. For this purpose, data mining (DM) techniques are induced 

in selected information provided by the information technologies implemented 

in CMIN. The DM models achieved accuracy values of approximately 94% 

with a five range target distribution, which not only allow obtaining confident 

prediction models, but also identify the variables that stand as direct inducers to 

the triage waiting times. 

Keywords. Data Mining, Real data, Obstetrics Care, Maternity Care, 

Gynaecology and Obstetrics Care, Emergency Room, Triage Systems, Triage 

Waiting Time, Interoperability, Intelligence Decision Support System. 

1 Introduction 

Healthcare professionals are increasingly turning to clinical decision support systems 

(CDSS) as well as health information technologies that provide hospitals with patient-

specific assessments and recommendations to aid clinical decision making [1] [2]. In 

the emergency department (ED), triage CDSSs are used in order to optimize the 

patient workflow, improving the quality of care and reduce the risks associated to 

prolonged waiting lists [3] [4]. The most common triage systems are the classification 

system with five levels of severity, such as the Emergency Severity Index (ESI) and 

the Manchester Triage System (MTS), efficient in general emergency units [5]. 

In the maternity emergency care, these triage systems became inadequate for their 

lack of flexibility addressing the specific patients that attend the gynaecology and 



obstetrics (GO) care services, such as pregnant women at different gestation stages 

and conditions [5] [6]. Accordingly, the emergency care of GO in CMIN resorts to a 

pre-triage system, developed in CHP, specified to categorize women in emergency  

(URG) and consultation (ARGO) classes. The system integrates the intelligent CDSS 

implemented in CMIN and allows increase patient’s safety [5].  

The current study aims to predict the patients’ waiting time – the time between the 

patient’s triage and their clinical admission, through the induction of data mining 

(DM) models.  The research is based on real data provided by the information systems 

used in CMIN to collect and store the patients’ clinical records. After inducing DM 

techniques in several data scenarios, the case study achieved useful knowledge to 

support the maternity emergency room, since the best DM models reached accuracy 

values of approximately 94%, concerning a five range target dataset. The prediction 

of triage waiting times helps the emergency service identify the clinical and 

environmental features leading to longer waiting times. It assists the professionals 

prioritizing patients and operations, as well as avoiding medical errors, overcrowding 

and patient elopement. 

This article includes five sections in addition to the introduction. The second 

section presents the context and related work, and the study description follows in 

section three. Section four tracks the data mining process following the Cross Industry 

Standard Process for Data Mining (CRISP-DM) phases. Formerly, section five 

contains a discussion about the obtained results, while the last section includes the 

conclusions and future directions to the accomplished work.  

2 Background and Related Work 

2.1 Context 

In maternity care, a variety of gynaecology and obstetrics (GO) conditions are 

presented, since labour assessment issues to antepartum fetus threatening symptoms 

[6]. An adequate triage system has to be flexible and dedicated to GO guidelines, in 

order to provide patients with the proper care.  

This study focus on the prediction of the patient’s waiting time between the triage 

and the medical admission, which can be essential to the improvement of the GO 

emergency room patient flow and satisfaction. 

2.2 Pre-triage System for Gynaecology and Obstetrics Care in CMIN 

In CMIN, the maternity emergency room has to provide patients with proper GO 

services such as evaluation of labour, fetal examination and obstetric nurture. In this 

context, a specific emergency pre-triage system is implemented in CMIN since 2010 

and establishes clinical priorities according to the severity of the patients’ clinical 

condition. The triage is based on a set of predefined queries in form if rules of a 

decision tree. The pre-triage system is inserted in the intelligent decision support 

system (IDSS) developed and currently deployed in CHP that supports this process, 



indicating the triage result (urgent or consultation) [5]. The IDSS is an interactive and 

adaptable system, which uses artificial intelligence techniques and decision models to 

answer a question. The presence of the IDSS offers a better understanding of the 

patient’s real state [6].  

Currently, the pre-triage system helps increasing patient safety for women in need 

of immediate care and reducing high-risk care in low-risk patients, maximizing the 

use of resources [7].  

2.3 Interoperability, Archive and Diffusion of Medical Information 

This study support data was gathered from distinct information systems (Support 

Nursing Practice System - SAPE and Electronic Health Record – HER) used at CMIN 

by the Agency for Integration, Archive and Diffusion of Medical Information 

(AIDA). The AIDA platform is built on a set of pro-active agents that ensure the 

standardization of clinical systems, overcoming the medical and administrative 

complexity of the diverse sources of data from the hospital [8]. By providing this 

interoperation between the hospital existing systems, this platform allows a suitable 

information management [9] [10].  

The data managed by SAPE, the system supporting nursing practices, regards the 

records of clinical episodes associated with each patient, as an alternative to the 

traditional way of saving this information on paper. By the other hand, the EHR 

system handles storing and retrieving of detailed patient information, as the admission 

form, assisting monitor, report and improve data on health care quality and safety [11] 

[12]. 

2.4 Knowledge Discovery and Data Mining in Healthcare 

The knowledge Discovery from Databases (KDD) is a five steps process that aims to 

identify new valid, meaningful and potentially useful information hidden in large data 

repositories [13] [14]. First of all, the dataset needs to be chosen, which corresponds 

to the first step. On the second stage, all the data is cleaned and processed, in order to 

become consistent. Thereafter, accordingly to the study goal, the data undergoes a 

transformation so it can be properly explored. The fourth step is the core of all the 

process, and corresponds to the Data Mining (DM), which is where the knowledge is 

retrieved from the data, through pattern discovery. Here the DM techniques used will 

depend on the nature of the problem, which can be segmentation, association, 

prediction and summarization. Finally, the last phase of the process is to interpret and 

evaluate the results obtained [15]. 

Healthcare organizations, which nowadays store most of their data in databases, 

can benefit a lot from the use of DM techniques. The possible applications go from 

the identification of effective treatments and best practices (better care to the patients), 

to anticipating patient's future behaviour and finding solutions concerning institution’s 

management (better services and clinical decisions supported by evidence) [16] [17]. 

The Intensive Care Unit in CHP employ data mining models to predict patient 

outcome, readmissions, length of stay and organ failure in real-time, among others 

[18] [19] [20]. Furthermore, many DM studies have been conducted regarding 



obstetrics and maternal care, in order to identify services limitations and possible 

solutions. Among them, DM classification algorithms were used to predict the type of 

birth using pregnancy characteristics and to predict events in the voluntary 

interruption of pregnancy [21] [22]. In these cases, a training set containing a group of 

attributes was provided, so the classification algorithms could discover relationships 

between them that would make it possible to predict the outcomes. 

3 Methodologies, Materials and Methods 

Following the KDD process described in section 2.3, the current study uses SAPE and 

EHR information to accomplish useful knowledge concerning the maternity 

emergency triage system. The DM phase applies the Cross Industry Standard Process 

for Data Mining (CRISP-DM), a sequence of defined six steps that allow to structure 

and guide the DM process [23]. The six stages are business understanding, data 

understanding, data preparation, modelling, evaluation and deployment, which 

support the development of DM models to be used in real environments [24]. 

A total number of 73330 admissions on CMIN’s GO care emergency room are 

included in the study dataset, comprising a period between 2010-01-06 and 2015-06-

25 (1850 days), regarding 31620 women patients. 

The exploration of the dataset as well as the DM process was performed using the 

R language and the interface R Studio, for their comprehensiveness and availability. 

Different classification techniques were considered: Decision Trees (DT), Naïve 

Bayes (NB), Generalized Linear Models (GLM), Support Vector Machine (SVM) and 

Neural Networks (NN). The selection of the DM techniques was based on the 

interpretability of the models, the engine efficiency and their suitability regarding the 

dataset features. 

4 Data Mining Process 

The current section describes all the work developed through the DM process, 

following the KDD process, according to the CRISP-DM phases, having into account 

the methods and methodologies described previously. 

4.1 Business Understanding 

The main business goal of the study is to identify the triage features that provide 

information about the patient waiting time, and therefore, be able to predict it. The 

prediction of the triage waiting times in the emergency room of the CMIN’s GO unit 

will contribute to the improvement of the triage process. 

Thus, the DM aims to develop accurate models able to predict the triage waiting 

time from the environmental and personal attributes available in the collected data. 

Decent results can be used by the CMIN’s IDSS, enhancing the quality of services 

among the patient satisfaction. 



4.2 Data Understanding 

The study dataset meets the data provided by the information systems SAPE and 

EHR, considering a set of attributes available at triage time. A total of 17 variables 

were considered, some of those environmental features: the day of the week, the part 

of the day, the month, the day of the month, the part of the month, the trimester, the 

hour, the season of the year, the identification number (ID) of the triage professional 

and their medical specialty, the number of triage professionals working (NTP) and the 

number of patients waiting in the room (NPW). Additionally, it also considers the age 

and the gestation weeks (in case of pregnancy) of the patient, as well as their triage 

result, triage module and motive of visit. 

In order to better understand these attributes and their relation with the prediction 

of triage waiting times, table 1 presents detailed information about some variables and 

their percentage of occurrence in the dataset. Accordingly, table 2 shows some 

statistical measures regarding the numerical variables of the study. 

Table 1. Classes and occurrences of some variables used in the dataset. 

Variable Class Percentage Variable Class Percentage 

Day of the Week Sunday 10.23% Trimester First Quarter 25.14% 

Monday 18.69%  Second Quarter 27.94% 

Tuesday 14.56%  Third Quarter 24.51% 

 Wednesday 15.09%  Last Quarter 22.41% 

 Thursday 15.29% Station Winter 23.76% 

 Friday 14.92%  Spring 28.84% 

 Saturday 11.22%  Summer 24.81% 

Part of the Day Morning 44.01%  

Triage 

Module 

Autumn 22.59% 

 Evening 55.73% Triage Module URG 49.02% 

 Night 0.26%  ARGO 50.98% 

Part of the Month First Third 29.73% Triage Result 50 50.98% 

Second Third 36.54%  52 48.99% 

Last Third 33.73%  54 0.03% 

Table 2. Statistical measures of the numerical variables of the dataset. 

Variable Min Max Avg Std Dev 

NTP 1 63 5.44 3.47 

NPW 1 61 1.77 1.92 

Age 8 92 32.12 10.53 

Gestation Weeks 0 46 11.23 15.40 

 

The target variable Triage Waiting Time (TWT) was divided in different range 

approaches in order to obtained good data mining models. In a first approach, the 

target was simply distributed in two ranges, separated by the variable mean value. It 

allowed evaluating the relation between the selected variables and the study’s aim, 

confirming its suitability to predict the triage waiting time, and subsequently, 

obtaining useful statistical results. 

On the other hand, following a more clinical approach, the target TWT was 

organized having into account the categories of emergency of the Manchester Triage 



System (MTS). The category of emergency is associated with a maximum waiting 

time until the patient is attended by the doctor, regarding their condition. Table 3 

highlights these approaches’ ranges and occurances in the dataset. 

Table 3. Distributions of the target variable through the different assigned approaches. 

ID Approach Class Distribution Percentage 

1 Simple Split 0 0 – 17 minutes 96.28% 

  1 18 – 516 minutes 3.72% 

2 MTS 0 0 – 5 minutes 63.82% 

  1 6 – 10 minutes 24.98% 

  2 11 – 60 minutes 9.56% 

  3 61 – 120 minutes 0.68% 

  4 121 – 516 minutes 0.96% 

4.3 Data Preparation 

The cleaning and processing of a target dataset are important tasks of the data mining 

process, allowing the transformation of EHR and SAPE information in valuable 

information.  

Firstly, the desired attributes are attained from raw records. For instance, the 

temporal variables were obtained by processing the entrance, triage and admission 

hours and dates. Similarly, the number of patients and triage professionals available at 

the emergency room for a particular record required creating procedures to 

concatenate the dataset entries given the record’s specifications. The noise instances, 

such as duplicates, inconsistences and missing values are removed from the dataset. 

As visible in table 3, there is a disproportion concerning the distribution of the 

target variable TWT in the three last approaches. In order to provide the study with a 

balance target dataset, the technique of oversampling was implemented. It consists in 

replicating the lower target ranges, until a composed dataset is obtained. 

4.4 Modelling 

Once the datasets are ready, the DM models are induced using the DM techniques 

presented in section 3: DT, NB, GML, SVM and NN, using R miner and the 

algorithms and configurations featured in table 1. The sampling method Holdout 

Sampling was applied, having 30% of the dataset composing the testing set, and the 

remaining 60% used for training. In order to identify which variables influence the 

triage waiting time the most, the dataset attributes were combined, generating ten 

different scenarios to test the DM techniques: 

S0: {All variables} 

S1: {Day of the week, Part of the day, Trimester, Hour, Season, Triage Module, 

Motive} 

S2: {NTP, NPW, Triage Module, Triage Result} 

S3: {Age, Gestation Weeks, Day of the week, Part of the day, Trimester, Hour, 

Season, NTP, NPW, Triage Module, Motive} 



S4: {Month, Day of the month, Hour, ID professional, NPW, Motive, Triage 

Result} 

S5: {Age, Day of the week, Part of the day, Day of the month, Part of the month, 

Season, NTP, Triage Module, Triage Result } 

S6: {Month, Day of the month, Part of the month, Trimester, Season, Motive, 

Triage Module} 

S7:   {Day of the week, Part of the day, Hour, Module} 

S8:  {Age, Gestation Weeks, Day of the month, Season, NTP, NPW, Triage 

Module, Triage Result, Motive} 

S9: {Age, Gestation Weeks, Trimester, NTP, NPW, Triage Result} 

Each DM model (DMM) can be identified by equation 1. 

DMM𝑚 = DMTy × Ab × T  × S𝑖   (1) 

DMTY refers to the DM technique, Ab is the target approach, Ts represents the 

sampling method and Si identifies the scenario. A total of 100 models were induced 

(10 scenarios * 5 techniques * 1 sampling method * 2 target approaches). 

4.5 Evaluation 

The evaluation of the models considered the accuracy statistic metric described in 

equation 2. The accuracy is estimated through the results provided by the confusion 

matrix (CMX) of each model. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃/ (𝑇𝑃+𝐹𝑇+𝑇𝑁+𝐹𝑁) (2) 

The CMX contains four types of results: the number of True Positives (TP), False 

Positives (FP), True Negatives (TN) and False Negatives (FN). The CMX along with 

the accuracy result were obtained automatically using the package ‘caret’ in R Studio. 

The best results concerning the DM techniques, scenarios and target approaches are 

exposed in table 4. 

Table 4. Best accuracy results in view of the best DM technique and scenario for each target 

approach 

Approach DMT Accuracy DMT Accuracy DMT Accuracy DMT Accuracy 

1 Scenario 0 Scenario 3 Scenario 4 Scenario 8 

 DT 0.9359 DT 0.8982 DT 0.8670 DT 0.8614 

 GML 0.8006 GML 0.7954 NB 0.7505 GML 0.7950 

 NN 0.7846 NN 0.8041 GML 0.7915 SVM 0.7979 

         

2 Scenario 0 Scenario 3 Scenario 8 Scenario 9 

 DT 0.7494 DT 0.7081 DT 0.7277 DT 0.6636 

 

Overall, the best DM models were attained by inducing decision trees (DT). 

Regarding the attributes, scenario 0 presents best accuracy values, showing that the 

selected variables influence indeed the triage waiting times in the maternity 

emergency room. 



4.6 Deployment 

The best DM models, as well as the new knowledge obtained about the attributes that 

influence the triage waiting times in the GO unit of maternity emergency room are 

reported to the maternity care unit of CMIN, being implemented in the IDSS and the 

Business Intelligence (BI) platform in use in CHP [25]. The BI platform supports the 

clinical and administrative decision making process, concerning the care and the 

patients. 

5 Discussion 

As presented in table 4, the study achieved worthy results for all the persuaded target 

distributions, allowing sensible predictions of the triage waiting times and therefore, 

the support to the CMIN’s triage process. It is up to the healthcare professionals to 

choose which target approach could be most beneficial to the melioration of the 

maternity emergency room patient flow. On the one hand, the first approach, which 

classifies the admissions in two classes according to the mean triage waiting time in 

the last 5 years, is the most opportune regarding statistical grounds. On the other 

hand, if the most clinical fitting approach would be classify the triage waiting times 

concerning the levels of severity; the second approach should be persuaded. Table 5 

briefs the best models to predicting the triage waiting times. 

Table 5. Top DM models that present the higher values of accuracy in view of the best target 

approaches 

Target Approach Scenario DMT Accuracy 

1 0 DT 0.9359 

2 0 DT 0.7494 

 

Another useful contribution of the study is the identification of the dataset 

attributes as enhancers to the patients’ triage waiting time. Variables as the number of 

patients present in the waiting room, the number of triage professionals working at the 

moment and some temporal variables can be used to identify outstanding situations in 

the triage process, and therefore, improve the healthcare services. 

In a real time environment, physicians can rely on the DM models to send 

warnings informing about the triage waiting time itself, but also about workflow 

issues and uncommon or risk conditions. Consequently, the physicians can be 

observant and alert to special cases and can put the patients on watch accordingly, 

allowing the healthcare institution saving resources and time. 

6 Conclusions and Future Work 

By means of real data obtained from CMIN’s information systems SAPE and EHR, it 

is possible to prove the viability of using DM models to predict the triage waiting 



time, in maternity emergency room, through environmental and individual 

characteristics of the GO unit and patients. Clinically suitable results were achieved 

regarding the accuracy metric, by inducing the DM technique Decision Trees on data 

from scenario 0, achieving approximately 96% of accuracy, when using a five level 

target approach. The best DM models to predict the triage waiting times can also be 

used to implement a time tracker in the emergency room, since studies indicate that 

the awareness of waiting times increases the individuals’ satisfaction and reduces 

anxiety and unattended leaves [26]. Accordingly, the best models and the results 

achieved will be included in the IDSS and the BI platforms, allowing the 

improvement of the GO patient flow and satisfaction, supporting the physicians’ 

decision-making, leading to quality improvements in the maternity care. 

Applying the present DM strategy on a different setting or environment could 

represent a significant step to evince the support decision solutions benefits on 

improving the quality of the emergency services, by aiding both health professionals 

and patients. 
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