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ABSTRACT 

In our work we have chosen to integrate formalism for 
knowledge representation with formalism for process 
representation as a way to specify and regulate the 
overall activity of a multi-cellular agent. The result of 
this approach is XP,N,  another formalism, wherein a 
distributed system can be modeled as a collection of 
interrelated sub-nets sharing a common explicit con- 
trol structure. Each sub-net represents a system of 
asynchronous concurrent threads modeled by a set of 
transitions. XP,N combines local state and control 
with interaction and hierarchy to achieve a high-level 
abstraction and to model the complex relationships 
between all the components of a distributed system. 
Viewed as a tool XP,N provides a carefully devised 
conflict resolution strategy that intentionally mimics 
the genetic regulatory mechanism used in an organic 
cell to select the next genes to process. 

1. INTRODUCTION 

We believe that the application of biological ideas to 
novel software and hardware design can possibly lead 
to a non conventional style of approach on the design 
of distributed systems. Following this perspective we 
developed M C 2  [l] - cellular computational model - 
to explore what seems to be central to the concept of 
network, typically consisting of a large number of el- 
ements, similar or identical, mutually interconnected 
by a homogeneous pattern of interconnections. 
In order to preserve the integrity of the informa- 
tional structure required to our representation of a 
distributed system, as well as to explicitly control 
the activities at the component level, we present 
XP,N - an Interactive Extended Petri Net model. It 
combines production systems formalism, to encode 
the knowledge of a certain problem domain, with 
Petri Net formalism to model choice and coordination 
among alternative actions and concurrent activities. 
In our programming methodology, XP,N may be 
viewed as providing a general genetic regulatory 
mechanism suitable to represent and coordinate 
the overall structure and the dynamic properties 
of a distributed system [2]. It may be used as a 
mechanism that allows each cell to determine the 
next sections of code to run [3] and as a way to 

influence the code executed by the totallity of the 
cells in a multi-agent system. 
Next we attempt to give a short description of the 
novel model discussing some of the basic characteris- 
tics of a distributed system viewed as an agent, the 
analog to a multi-cellular biological organism. 

Cellular Computation Model 

An agent in M C 2  is a distributed system modeled as a 
set of independent cells, or elementary agents, which 
may communicate through asynchronous messages to 
produce a global behavior. This set of cells may dy- 
namically evolve by creating new cells, or building 
new structures of communication channels. 
Within a single cell, generally defined by a large num- 
ber of independent states and actions, several exe- 
cutions (processes) may simultaneously occur, being 
each process represented as a single address space 
with one or more threads of control. 

Knowledge representation 
Due to the event-driven nature of interaction between 
cells, the dynamic properties of an agent information- 
processing capacity are better encoded declarativelly 
as opposed to procedurally. 
Taking this approach, we can view each process in 
a cell as being modeled by a production system [4] 
that determines the proper structure for represent- 
ing the knowledge applicable to a certain problem 
domain. Each production system consists of a set of 
rules designed to selectively respond to different com- 
binations of inputs and data to produce an adaptive 
behavior in diverse environments. 
As in natural biological systems where the genome 
appears to carry all the information needed to de- 
scribe the structural and dynamic properties of an 
individual, in M C 2 ,  to code the overall properties of 
an individual cell or multi-cellular agent, we use pro- 
duction systems. This suggests a functional equiva- 
lence between the rules of a production system and 
the genes of a genome. 

Control representation 
Since some of the agent’s behaviors will include long 
sequence of actions, i t  must be able to coordinate the 
firing of several rules by explicitly evoking its succes- 
sors. But if this path is taken, production rules au- 
tonomy is lost, which limits the ability of an agent to 
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grow by augmenting and refining its knowledge about 
the environment. 
The most obvious way to mitigate the difficulties of 
using production systems without loosing their ad- 
vantages, is to find a mechanism that can preserve 
the agent capability to be responsive to demands of 
its environment, maintaining at the same time the 
continuity in its behavior without sacrificing rules au- 
tonomy and modularity. Adding control structure to 
a production system by appending to each rule some a 
priori information may give some clue as which rules 
are likely to be activated. 

2. OBJECTIVES OF THE WORK 

In MC‘ we have chosen to integrate a formalism 
for knowledge representation - production systems - 
with a formalism for process representation - Petri 
Nets - as a way to specify and regulate the over- 
all activity of multi-cellular agents. The result of 
this approach is XP,N, another formalism, wherein 
a multi-cellular agent can be modeled with a col- 
lection of interrelated sub-nets which are production 
systems sharing a common explicit control structure. 
Each sub-net represents a process, a system of asyn- 
chronous concurrent threads modeled by a set of tran- 
sitions. Since a process is the equivalent of a produc- 
tion system, a transition is really a “home” for the 
rule describing a gene. 
XPiN provides a carefully devised conflict resolution 
strategy that intentionally mimics the genetic regu- 
latory mechanism used in an organic cell to select 
the next genes to process. The approach will en- 
sure the correctness and efficiency of the agent pro- 
gram largely dependent on the number of rules to fire 
and the policy used to choose which rules to evalu- 
ate and in what order. However, in the context of a 
distributed system a single control construct used in 
isolation provides little power to model other cellular 
phenomenon. 
An agent as a distributed system needs the ability to 
create hierarchies of control that allow many distinct 
processes divided among several cells to mutually in- 
fluence the system global behavior. XP,N offers a so- 
lution to this problem based on the perspective that 
the flow of control of a multi-cellular agent may also 
be represented and coordinated, by using the basic 
regulatory mechanism. 
Following this perspective we may view a distributed 
system as being represented by a collection of several 
sub-nets linked together through a general interaction 
mechanism. The sub-nets represent local control and 
the activity at  each elementary site. 
The interaction mechanism is based in a message- 
passing model of communication that allows any pair 
of threads to communicate, whether they reside in the 
same cell or in distinguished cells. 

3. THE XPiN MODEL 

Distributed systems tend to be complex, with many 
distinct components that may communicate to estab- 
lish dynamic relationships. In this context, support 

for a programming methodology that facilitates dis- 
tributed programming is especially important. 
Programming using the process-based message- 
passing paradigm, while straightforward in principle, 
typically forces the programmer to explicitly manage 
all task creation and synchronization in a program. 
These tasks can be unmanageable in large systems 
with hundreds or thousands of concurrent activities. 
The design of XPiN has pursued two main objectives: 

0 to enhance performance and to simplify the de- 
velopment of distributed programs, by combin- 
ing in a uniform approach the principles of mul- 
tithreading, data-flow computing and message- 
passing. 

0 to model the complex relationships between all 
the components of a distributed system, by com- 
bining local state and control with interaction 
and hierarchy in a high-level abstraction 

In systems characterized by a strong interaction 
with the environment, due to the event-driven na- 
ture of program applications, workload allocation and 
scheduling are critical when resources are not dedi- 
cated or the demands are not predictable. XPiN at- 
tempts to automate thread instantiation and message 
passing in order to address these issues by providing 
a scheme that delays binding of work and scheduling 
only when data is available. This also enables a more 
optimal assignment of resources to tasks. 
The use of data-driven, to mask some of the inher- 
ent complexity of programming with asynchronously- 
communicating sequential entities, essentially re- 
quires entities to be declared with named data depen- 
dencies. When the data dependencies for a certain 
entity are satisfied, the underlying software automat- 
ically schedules and executes an entity of that type. 
In our work the principles of data-driven have been 
converted into an equivalent representation by means 
of Petri nets through the use of XPiN. 
The conversion is easy to obtain if we consider that 
the entities in a sub-net may specify its data depen- 
dencies in terms of other entities - i.e. they indicate 
that their activation requires the availability of a set 
of specific messages (data or control) issued upstream. 
All the running entities of an application inform the 
scheduling sub-system when they generate those mes- 
sages. When a complete set of messages, bounded to 
an entity, has been formed, the corresponding thread 
is spawned at  the most suitable location, as deter- 
mined by the state of the system. 
With Petri nets, the programmer is not limited to 
sequential code, but can also describe parallel pro- 
cesses, fork & join mechanisms, synchronization be- 
tween tasks and so on. 
The model proposed by .Y.P,N benefits from PNs, 
being at the same time straightforward and compre- 
hensive enough to represent distributed application 
programs. 
Programming with XP,N does not require explicit 
thread creation or message passing, thus simplifying 
the complex state management task required by par- 
allel distributed applications. In order to achieve a 
high-level abstraction and modularity it supports the 
construction of composite program elements by con- 
sidering the design of a parallel application as being 
processed at  two different levels of representation: 
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microscopic - here we decide the functions to ex- 
ecute when the transitions in a sub-net are se- 
lected to “run”. Afterwards we describe, in terms 
of XPiN,  the existence of data dependencies be- 
tween all the transitions in a local sub-net. 
macroscopic - here we define a separate and ex- 
plicit control structure by means of a hierarchy 
of sub-nets. At this level, the activation of a 10- 
cal transition will be propagated to the global 
system, indirectly influencing or controlling the 
activities of other sub-nets. 

Basic definitions 

The design of XPiN retains and is compatible with 
the essence of Petri nets, both including the basic 
concepts of transition, place, token and arc. 
Places represent queues, whereas the transitions ex- 
pect the arriving of synchronization data elements to 
become active. Tokens may be either signals with 
only control significance or events with associated 
pieces of data. Arcs are direct edges into places and 
transitions representing the channels for the exchange 
of tokens between the two types of nodes. 
The XPiN has a structural restriction: each place 
has only one input transition and one output transi- 
tion, what suggest that XP,Ns may be regarded as 
marked-graphs (51. 
As a result of our work, a more in-depth analysis re- 
veals extended capacities, some already introduced 
by other PN models and others only proposed, to our 
knowledge, within the XP,N model. To ease the task 
of understanding our work, next we present several 
basic definitions illustrated by an overloaded graphi- 
cal representation of a XP,N transition (see Eig. 1). 

L. 

5l 
* 
= 0  

LLE 

GLE 

Figure 1: A transition in XPiN. 

Running/Inactive state - a transition is fired when 
a set of named conditions are satisfied; its action does 
not occur instantaneously, it remains in a running 
state until it terminates returning to the inac t ive  
state. 

Firing - before entering the running state the tran- 
sition removes one token from each marked input 
place; if an input place is empty, it remains empty. 

TEA - a local variable composed by three binary data 
fields (TRIGGER, ENABLE, and ALT) whose value is the 
completion code returned by the transition’s action. 

Trigger - the value of the TRIGGER data field may be 
used to allow/prevent the generation of tokens after 
the transition completion; thus by set tinglunsetting 
the value of the TRIGGER data field we enableldisable 
the evolving of the net. 

Guard  - a constant expression attribute associated 
to an arc that imposes a special restriction to the pas- 
sage of tokens; when the expression matches the value 
coming from the ALT data field of the input transition 
the correspondent output place is filled; used to dy- 
namically select the evolving direction of the net. 

Local trigger - the value of the ENABLE data field 
offers the possibility to overcome the restriction to 
fire; when the ENABLE field is set the transition is 
defined as Candidate irrespectively of the evaluation 
of any other local conditions; it also generates a local 
trigger, enabling its own scheduling, even when the 
TRIGGER data field is unset. 

Port - a low-level communication mechanism that 
uses a one-way data channel to link a transition to 
any place in a local or a remote sub-net; it may be 
used to asynchronously sendlreceive pieces of data or 
control events through the established connection. 
Data sent through a channel is put into a buffer lo- 
cated at the reception transition by the underlying 
system; the data in the buffer must be explicitly re- 
ceived during the running state by executing an ap- 
propriate primitive function. A transition may have 
at most one input port/output port and associate 
to it a SYNC-IN/SYNC,OUT attribute. Setting a SYNC 
attribute forces the correspondent por t  to be regis- 
tered as an element of the sub-net. When a port is 
registered the system guarantees the automatic gen- 
eration of the control tokens in both sides of the es- 
tablished communication channel. The restriction of 
using marked graphs does not apply for input/output 
ports. 

The above definitions resume the most important fea- 
tures of the model, however it includes other charac- 
teristics already presented in fig. 1 which it is worth 
examining. 
Besides the usual graphical representation of the 
XP,N entities on the net, we use a special notation 
based on bullets (black and white) to facilitate the 
understanding of the net behavior and to specify the 
functionality associated with transitions. The bullets 
may only be placed at  the top-left (enable bullet) and 
bottom-right (trigger bullet) of a transition, in a di- 
rect correspondence with the data fields ENABLE and 
TRIGER. The presence of a blacklwhite bullet indi- 
cates that the respective data field should always be 
interpreted as if it were setlunset; the absence of a 
bullet means that its data field maintains the value 
returned in the last completion code. 

Scheduling definitions 

The extensions we made to standard Petri net 
strongly affect the rules that determine the firing of 
transitions. Therefore, to determine the transition 
activation requirements it is necessary to introduce 
the following definitions: 

Accepted/Rejected - a transition is said to be ac- 
ceptedlrejected when all the conditions needed to fire 
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including local and global dependencies are success- 
fully/unsuccessfully accomplished. 

LLE - an optional local logical expression re- 
fines the standard rules used to decide the firing of a 
transition; the terms in the expression correspond to 
the existence or absence of tokens in its input places. 

GLE - an optional global logical expression to 
be satisfied by a transition before being accepted; the 
terms represent the running state of other transitions. 

Candidate - used to classify a transition that eval- 
uates to true the named conditions or its LLE (if 
present); alternatively a transition may become a 
Candidate whenever the ENABLE data field is set by 
its last returned completion code. 

Priority - a constant numeric value associated with 
each transition used as a global condition to suspend 
the firing of an accepted transition, until no other 
transition with a higher priority lasts in a running 
state. 
Optional conditions - additional conditions may 
be used to restrict the number of accepted transition; 
used to improve the selectivity response of a system 
or to support other conflict resolution strategies. 

Activation of transition 
A transition to be activated must pass through sev- 
eral filters until being classified as an accepted tran- 
sition; it then removes tokens from their input places 
and unsets the ENABLE data field. 
The transition remains in a running state for an 
indefinite period always returning with a completion 
code value, used to update the local TEA variable. 
The standard firing mechanism imposes that after the 
firing of a transition all its output places are filled 
with control tokens locally generated; when the value 
of the TRIGGER data field is unset the mechanism is 
disable; consequently no control tokens are generated, 
preventing the net to evolve. 
The tokens generated after the triggering of an input 
transition are not automatically put in their output 
places. For each output place, the Guard attribute 
must be tested against the value of the ALT data field 
of the input transition. The occurrence of a match en- 
ables the correspondent output place to be filled; the 
opposite situation (mismatch) disables the passage of 
tokens into the respective places. The use of a Guard 
expression permits to decide the evolving direction of 
the net to be influenced at  run-time by the ALT data 
field values of the input transitions. In the absence of 
Guards the passage of tokens after triggering retains 
the standard interpretation. 
In order to define a systematic approach to the rules 
governing the activation of transitions we next de- 
scribe the basic algorithm using the flowgraph in 
fig. 2; boxes represent the successive states associ- 
ated with a transition and diamonds the conditions 
to evaluate. 

4. XP,N VERSUS PN 

In an attempt to explain the importance of the ex- 
tensions we made to the standard PN, we summa- 
rize below some of the most relevant contributions 

Figure 2: Activation of a transition. 

of XPiN.  Some of the novelties being equivalent to 
other already proposed extensions made by other au- 
thors are not presented. 
The completion code returned by a transition is 
copied into TEA and it may be used to enrich PNs 
with a dynamic mechanism for structural reconfigu- 
ration. The extension allows the same XPiN to be 
simulated under different structural configurations by 
tuning the values of the data fields, without introduc- 
ing or deleting arcs, places and transitions. 
The ALT data field adds the capability to dynami- 
cally select alternative paths for the evolving of the 
net; it is equivalent to the arc expressions of Colored 
Petri Nets (CPN) [6j; the moment for evolving the 
net may also be decided at run-time by setting the 
TRIGGER data field. 
At last, a transition whose ENABLE data field is perma- 
nently set will run forever irrespectively of the mark- 

- 

ing of its input places. 
Based on an XP,N transition described by one input 
place and a left output place with guard = 0 and a 
right output place with guard = 1, we show in fig. 3 
how its structural configuration changes whenever the 
value of TEA changes. 

P 
M A E L M  
TRIGGER.. 

t. 
0 

4, 0 

Figure 3: TEA data fields converted into PN. 
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The structural restriction of using marked graphs 
does not limit the description power of XPiN.  The 
use of LLE simplifies the representation of the con- 
nections between transitions and the respective input 
places, avoiding in some situations the use of complex 
sub-nets to represent those connections. 
We show in fig. 4 how the expression LLE = P 1 . m ~  
P3 applied to the single extended transition in fig. 1 
is represented by a PN using inhibitor arcs between 
place P2 and transitions T11 and T12. 

PI n P2 n 

Figure 4: LLE converted into PN. 

The conversion was made considering that, if the LLE 
of a given transition contains a negated place as a lit- 
eral in its constitution then equivalent representation 
in PN have to be implicitly designed with an inhibitor 
arc between the place and the transition. In this case 
we also have to decide which transition to fire if a 
conflict occurs; transition T12 must be forced to fire 
when all the transitions are enabled. 
Since a P N  with inhibitor arcs gives the capability 
to test for zero, XP,N can model any system with 
the computational capacity of a Turing machine. In 
addition to this property the LLE extension also of- 
fers the possibility to specify fireable transitions that 
would not be fireable in PNs and to reduce the total 
number of nodes. 
A Candidate transition may not be accepted to fire 
( re jected)  when its GLE is evaluated to false; the 
terms of GLE represent the running states of the tran- 
sitions. GLE is typically used to restrict the firing of 
transitions whose combination of running s t a t e s  is 
not allowed to occur simultaneously; as it happens 
with LLE, in some situations it also avoids the use of 
complex sub-nets to represent the same expression in 
PN. 
P r i o r i t i e s  are used to delay the firing of accepted 
transitions until all higher-priority running transi- 
tion return to the inac t ive  s t a t e ;  typically used 
to order the access to shared resources such as de- 
vices and variables, or to favor the execution of priv- 
ileged functions, such as a system call. If correctly 
used, priorities allow the space-state explosion (the 
major problem of PNs) to he reduced and solve some 
non-deterministic situations; lower priority accepted 
transitions are not taken into account when defin- 
ing the combinations for the state of the reachability 
graph. 

CPN Representation 

The design of XP,N as an extension of PNs could 
presumably benefit from a well-established concep- 
tual model for dealing with concurrency and take ad- 
vantage of all the related analysis tools already in 
existence. However some of the proposed extensions 

can not he directly converted into the standard PN 
model. We need a more complex description model, 
powerful enough to represent data fields and guards; 
in addition it would facilitate the acceptance of our 
methodology by programmers familiar with PNs. 
Once a distributed parallel program is described using 
XPiN we may further convert it into a CPN, using 
colored tokens to interpret the behavior of the ex- 
tended transitions. 
Fig. 5 shows the XPiN transition of fig. 1 represented 
as an equivalent CPN. The extended transition is split 
into one input transition (Tl’) and one output transi- 
tion (TI”). The sub-net between these two transitions 
represents the function to be executed. 
The function returns a colored token x, to be tested 
in the output arcs of the T1” transition. 
The place Enbl and the two connected arcs corre- 
spond to an upper-level self-loop, to implement in the 
lower level the behavior forced by the existence of the 
ENaBLE field. This changes the expression associated 
with TI’ to be (LLE + Enbl).GLE. 

Figure 5: Convertion to CPN. 

5 .  DISCUSSION 

Programming with XPiN does not require explicit 
thread creation or message passing, thus simplifying 
the complex management task required by parallel 
distributed applications. In addition, to achieve a 
high-level abstraction and modularity it supports the 
construction of composite programs. 
By considering the design of a parallel application as 
being processed at two different levels of representa- 
tion, will give the programmer greater flexibility and 
will make it easy to manage the overall design of a 
complex program to be executed in a distributed sys- 
tem. 
The basic components (sub-nets) of a program are de- 
signed at the microscopic l eve l  of representation. 
At this level, we describe the functions to execute, us- 
ing a conventional programming language such as C, 
and we specify their data dependencies, using XP,N 
as the representation model. 
Once the complete set of sub-nets required for the 
application are developed we may further continue 
the process design linking the components through a 
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definable explicit control structure, also specified by 
means of X Pi N .  

(P) Principal 

(S) Satellite 

Sub-net 

Figure 6: Interactive sub-nets. 

To illustrate the advantages of the methodology, next 
we describe how it has been successfully applied in the 
implementation of M e 2 .  
The objective was to design and implement every 
agent (as defined in MC2)  viewed as a set of elemen- 
tary agents or cells that may dynamically evolve, 
concurrently executing in a distributed system. In 
order to meet the required computing power and the 
modularity of the implementation we took the follow- 
ing approach: 
At the microscopic level of representation the sub- 
net is equivalent to an operon1 and the functions to 
execute when transitions are fired represent the ele- 
mentary actions produced by genes. 
At this level the operon is a basic functional unit and 
we use X P , N  as an elementary regulatory circuit that 
controls the firing or inhibiting of the genes. 
At the macroscopic level each operon may be re- 
garded both as a functional unit or a regulatory 
unit that cooperates to produce a common task; here 
we use XPiN to integrate and govern the activity of 
the operon. 
The complete functionality of a cell is represented by 
a macro-net that organizes and coordinates the to- 
tallity of the definable sub-net to produce a global 
behavior. Fig. 6 shows a representation of a cell as it 
has been modeled and implemented in X P , N .  To link 
the sub-nets that constitute a cell we use Ports, the 
low-level interaction mechanism included in XP,N. 
Using the proposed extension we may establish a com- 
munication channel between the regulatory units 
and the functional units to obtain a higher level 
organization. Data and control tokens generated in 
both types of units may be sent and received through 
channels allowing any running transition to influence 
or be influenced by the actions being executed by 
other transitions in distinguished sub-nets. 
A full representation of an agent is obtained by fol- 
lowing the same approach we use to model a cell. 

'Operon, a group of neighbors genes in a chromosome that 
cooperate to accomplish a certain cellular function. 

The substitution is straightforward: at  the micro- 
scopic level, instead of genes we take an operon and 
at the macroscopic level we substitute the operon by 
cells. The overall behavior of the macro-net that 
represents the agent is obtained again using the in- 
teraction mechanism provided by ports. 

Conclusions and future work 

In this paper we presented XPiN a model that bene- 
fits from PNs, being at the same time straightforward 
and comprehensive enough to represent distributed 
application programs. 
X P i N  allow us to combine, in two different levels of 
representation, control with interaction and hierarchy 
to achieve a high-level abstraction and to model the 
complex relationships between all the components of 
a distributed system. X P i N  offers to the program- 
mer a great flexibility and eases the management of 
the overall design of a parallel program. 
Presently XPiN is being implemented as a native 
software layer on top of DoTS [7], an experimen- 
tal message- passing parallel programming environ- 
ment for distributed computation that uses domains, 
groups and threads to obtain structured fine-grained 
computation and communication with control and 
shared memory. 
We plan in the near future to extend the use of this 
layer to construct a programmable independent user- 
level package that may serve as an alternative thread 
scheduler to use under Unix based computational 
platforms. 
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