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ABSTRACT: Enzymatic polymerization of aniline was first performed in lignosulfonate (LGS) template system. High-redox-potential cata-

lyst laccase, isolated from Aspergillus, was used as a biocatalyst in the synthesis of conducting polyaniline/lignosulfonate (PANI-ES-LGS)

complex using atmospheric oxygen as the oxidizing agent. The linear templates (LGS), also serving as the dopants, could facilitate the

directional alignment of the monomer and improve the solubility of the conducting polymer. The process of the polymerization was

monitored using UV-Vis spectroscopy, by which the conditions for laccase-catalyzed synthesis of PANI-ES-LGS complex were also opti-

mized. The structure characterizations and solubility of the complex were carried out using corresponding characterization techniques

respectively. The PANI-ES-LGS suspensions obtained was used as coating for cotton with a conventional padder to explore the applica-

tions of the complex. The variable optoelectronic properties of the coated cotton were confirmed by cyclic voltammetry and color

strength test. The molecular weight changes of LGS treated by laccase were also studied to discuss the mechanism of laccase catalyzed ani-

line polymerization in LGS template system. VC 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 42941.
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INTRODUCTION

Polyaniline (PANI) is one of the hot topics in the study of con-

ducting polymers, ascribed to its structural diversity, special dop-

ing mechanism, low monomer price, favorable electrical

properties and high thermal and chemical stability.1 It is widely

used in many applications such as biosensors,2 organic lightweight

batteries,3 and antistatic coatings.4 Unprotonated PANI has three

typical oxidation states: leucoemeraldine, pernigraniline, and

emeraldine base, contributing to the disparate conjugation mecha-

nism of PANI.1 Emeraldine salt (PANI-ES), protonated form of

emeraldine base, is the one that can be conducting.

The well-known methods for the synthesis of conducting PANI

are either chemical or electrochemical oxidation polymerization

of aniline monomer.5 The reaction conditions are harsh with

extreme pH, strong oxidants, and highly toxic solvents. The

synthesized PANI is usually postpolymerization-treated with

fuming sulfuric acid to improve its solubility and processability.

By contrast, enzymatic catalysis, having no induction period,6

provides an alternative method of a “green process” toward the

formation of soluble and processable conducting polymers

because of the milder conditions and the simplified purification

process of final products. Laccases, multicopper oxidoreductases,

can catalyze the oxidation of many substrates and laccase-

catalyzed reactions avoid using H2O2, since the oxidizing agent

is atmospheric oxygen.7,8

LGS-Ca, an inexpensive byproduct from pulp processing, is a

kind of water-soluble anionic polymeric surfactant (Scheme 1).

If the electrical conductivity could be given to LGS, the application

fields of this natural polyelectrolyte could be further widen, far

more than anticorrosion protection.9 Dong and Shen10 found that

LGS-Ca had higher surface free energy than LGS-Na and LGS-Mg,

which facilitated the electron delocalization of PANI and then

enhanced its crystallization. In our experiment, laccase-catalyzed

polymerization of conducting PANI-ES-LGS complex was per-

formed in LGS template system using atmospheric oxygen as the
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oxidizing agent. The linear templates (LGS), which also served as

the dopants, could not only facilitate the head-to-tail coupling of

the monomer but also improve the solubility of the conducting

polymer. As the polymerization of aniline in the presence of LGS

was rather complex duo to the degradation and polymerization

of LGS induced by laccase, the molecular weight changes of

LGS treated by laccase were studied using gel permeation

chromatography.

Although enzymatic synthesis of conducting PANI has been

studied for many years,1 the application of PANI complex is still

a problem due to its comparatively low conductivities (about

1024 to 1023 S/cm) in a pressed pellet form without any exter-

nal dopants. However, it was confirmed in our previous work

that the antistatic property and electromagnetic shielding effect

of cotton could be enhanced by laccase-catalyzed PANI in situ

polymerization.11 In this article, the variable optoelectronic

properties of PANI were given to cotton using a conventional

padder. According to cyclic voltammetry and color strength test,

the optoelectronic properties of coated cotton responded to pH

and ammonia, which might give researchers some enlighten-

ment for the application of the complex in the field of multi-

functional textiles.

EXPERIMENTAL

Materials

Laccase, isolated from Aspergillus (EC1.10.3.2), was supplied by

Novozymes (Shanghai, China). The enzyme activity of laccase,

which was about 60 U/g, had been measured in previous

work12 and one unit of laccase was defined as the amount of

enzyme required to oxidize 1 lmol of ABTS per minute at

room temperature. Nafion, a perfluorosulfonate linear polymer,

and LGS-Ca (Mn 7000, Mw 52,000) were purchased from

Sigma-Aldrich. Aniline and all other reagents used were analyti-

cal grade from SCR Co. Ltd. (Shanghai, China) without further

purification. All solutions were prepared with deionized water.

Laccase-Catalyzed Synthesis of Conducting PANI-ES-LGS

Complex

A 0.10 mg LGS-Ca sample was dissolved into 20 mL of 50 mM

Na2HPO4-citric acid buffered solution (pH 3.0), followed by the

addition of 35 mM aniline with constant manually stirring. The

stirring was stopped when the monomer was completely dis-

solved. The pH value of the reaction system increased to about

3.9 under the influence of LGS-Ca and aniline, and then was

adjusted to 3.5 with citric acid. The reaction was initiated by

the addition of laccase (1.2 U/mL). The reaction vessels were

put into a freezer at 58C for 144 h to complete the polymeriza-

tion process. The same amount of acetone (20 mL) was added

to the dispersion to collapse the micelles and precipitate the

complex. The precipitate was collected by centrifugation and

was thoroughly washed with acetone and 50% (v/v) acetone/

water mixture to remove unreacted monomer and any oligo-

meric products. The final purified polymer was dried in an

oven at 608C for 24 h for further characterization.

UV-Vis Spectra Analysis

UV-Vis spectra of the complex were recorded using a UV-2808S

spectrophotometer (Unicosh, China) in the range of 200 to

1100 nm. The absorption bands at 430 and 775 nm indicate the

formation of polaron in PANI structure,13 which make PANI

conducting. The polymerization kinetics was monitored by

changes in absorption of samples at 775 nm. The solutions were

diluted with buffer (1:10) before recorded.

Fourier Transformed-Infrared Spectroscopy

FT-IR spectroscopy was performed by the conventional proce-

dure using KBr pellets on an iS10 FT-IR spectrophotometer

(Nicolet).

Elemental Analysis

Elemental analyses of LGS-Ca and PANI-ES-LGS complex were

carried out using an Elementar Analysensysteme GmbH VarioEL

�.

Solubility Test

Since the liquid conductivity is proportional to the concentra-

tion of the complex, the solubility of the complex was described

by measuring the liquid conductivity by dissolving the complex

in different solvents using a S230 conductivity meter (Mettler

Toledo, Switzerland).

Cyclic Voltammetry Tests of Coated Cotton

Cyclic voltammetry tests of coated cotton were performed using

a CHI 660D electrochemical workstation (Austin) at room tem-

perature to confirm the electroactive nature of the complex and

explore its potential applications in the field of textiles. Before

the measurement, a small piece of coated cotton sample (about

0.2 cm2) was fixed to the glassy-carbon electrode by drying

Nafion emulsion (1.5 wt %).

Color of Coated Cotton

The color strength of coated cotton samples (K/S) was evaluated

from 360 nm to 700 nm using a 7000A reflectance measuring

apparatus (Gretagmacbeth). K/S is the Kubelka-Munk relation-

ship, where K is an adsorption coefficient, and S is a scattering

coefficient.14

Gel Permeation Chromatography

To characterize the change of LGS molecular weight distribu-

tion, the solutions of LGS-Ca and LGS-Ca treated by laccase

with different time were injected into a HPSEC system (Summit

HPLC system, Dionex) using Shodex OHpak SB-804 and SB-

802.5 columns (Showa Denko, Tokyo, Japan). The column

Scheme 1. A typical structure of LGS-Ca
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temperature was 508C and the temperature of RI detector was

308C. The elution was performed using the HPLC grade water

at a flow rate of 1.0 mL/min.

RESULTS AND DISCUSSION

Optimal Reaction Conditions for the Polymerization

Under the premise that the other conditions were optimal,

UV-Vis absorption spectra of laccase-catalyzed aniline polymer-

ization at different pH value were shown in Figure 1. The

absorption band at 775 nm was maximum when the polymer-

ization was carried out at pH 3.5, which indicated that the

polymer had a high degree of conjugation and high conductiv-

ity under the condition and laccase from Aspergillus catalyzed

the polymerization of aniline in LGS template system to form

conducting PANI under milder conditions than traditional

chemical. In other studies on the template-assisted laccase cata-

lyzed polymerization of aniline an optimal pH value of 3.5 was

also found.15 The maximum absorption peak of the polaron

moved to the long wavelength part of the spectrum at pH 3.0

compared with the maximum absorption peak at pH 3.5, which

revealed that the linear arrangement of positively charged ani-

line (pKa 5 4.6) along negatively charged LGS was better at a

lower pH. Although a low pH was beneficial for the crystalliza-

tion and conductivity of PANI-ES, the activity of laccase and

the yield of the complex would be reduced. When the pH value

was less than 3.0, laccase was inactivated and no aniline poly-

merization was observed. The absorption band at 775 nm disap-

peared and brown byproduct increased, when the pH value

increased to 4.0.

Compared with chemical methods, enzymatic synthesis of con-

ducting PANI was often carried out with a very low monomer

concentration and therefore had relatively lower polymer pro-

duction. To evaluate the effects of aniline concentration on the

reaction course and the properties of the products formed,

laccase-catalyzed polymerization of aniline was carried out with

different aniline concentration at 58C (Figure 2). The absorption

band at 775 nm was maximum when the polymerization was

carried out with 35 mM aniline with a yield of about 68%.

When the concentration of aniline was more than 35 mM, the

absorption band at 775 nm was weakened and brown byproduct

increased. We speculated that there was a mass of dissociative

monomer that was not arranged along the negatively charged

LGS in the reaction system and the dissociative monomer

would polymerize promiscuously under the effect of laccase.

Therefore, the concentration of aniline optimal for laccase-

catalyzed polymerization of aniline was 35 mM.

In the experiment, LGS was indispensable in the synthesis of

conducting PANI and no green product was produced without

LGS. The effect of LGS-Ca concentration on laccase-catalyzed

polymerization of aniline was shown in Figure 3. The absorp-

tion band at 775 nm was maximum when the polymerization

was carried out with 5 mg/mL LGS-About When LGS-Ca con-

centration exceeded 5 mg/mL, the maximum absorption peak

of the polaron moved to the long wavelength part of the spec-

trum with a gradually reduced peak value, which revealed that

Figure 1. UV-Vis spectra of the polymerization product catalyzed by lac-

case at different pH. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 2. Effect of concentration of aniline on the polymerization cata-

lyzed by laccase. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 3. Effect of concentration of LGS-Ca on the polymerization cata-

lyzed by laccase. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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the increase of LGS-Ca concentration was conducive to the con-

ductivity of the complex, but would reduce the yield of the

complex. We speculated that, the adsorption amount of aniline

monomer on each unit of template was relatively reduced,

although the monomer was arranged along LGS regularly. Fur-

thermore, there was not enough dissociative monomer in the

reaction system to ensure that the polymerization of aniline was

kept running in the later stage of the reaction.

The effect of reaction time on laccase-catalyzed polymerization

of aniline was shown in Figure 4. In the first 48 h, the solution

color changed from orange yellow to brown and no absorption

band was observed at 775 nm. The absorption band at 775 nm,

appearing and enhancing after 72 h, got the maximum and

became stable after 144 h. Since laccase-catalyzed reactions run

with atmospheric O2 only, oxidation of chain ends during the

polymerization could not occur with H2O2 as in the case of

peroxidase-based oxidative polymerization.16 On the other

hand, laccase-catalyzed reactions avoid the over oxidization of

the PANI chains and the formation of pernigraniline, which

may happen in the case of peroxidase-based oxidative polymer-

ization when H2O2 is present in excess.16 At the end of the reac-

tion, the complex formed remained homogenously disperse in

the aqueous solution thanks to the presence of LGS and no pre-

cipitation occurred for weeks.

Structure Characterizations of LGS-Ca and PANI-ES-LGS

Complex

FT-IR spectra of LGS-Ca and PANI-ES-LGS complex were

shown in Figure 5. The peak at 3436 cm21 was mainly attrib-

uted to O-H stretching in LGS. The vibration bands around

2935 and 2850 cm21 originated from -CH3 and -CH2 groups in

LGS. The bands around 1592 and 1499 cm21 were due to qui-

none and benzene ring deformation. Two bands appear at 1123

and 1034 cm21, in both LGS-Ca and PANI-ES-LGS spectra,

were due to the asymmetric and symmetric stretching of SO2
3 ,

indicating the presence of LGS in the complex.17 The head-to-

tail coupling of the monomer, which led to the formation of

linear polymeric chains, was indicated by the peak at

824 cm21.18

To obtain an estimate of the relative ratios of PANI-ES to LGS

in PANI-ES-LGS complex, elemental analyses of LGS-Ca and

PANI-ES-LGS were carried out. The element composition of

PANI-ES-LGS complex was quite similar to those of chemical

methods.10 There was almost no nitrogen present in LGS-Ca as

indicated in Table I. On the basis of the ratio of nitrogen to sul-

fur obtained, the ratio of aniline unit to LGS unit in PANI-ES-

LGS complex was calculated to be 7:13, implying that approxi-

mately 13 repeat units of LGS were combined with every 7

repeat units of aniline. Meanwhile, it was evident that PANI-ES

was doped with LGS.

Solubility of PANI-ES-LGS Complex

It is generally accepted that PANI is insoluble in most common

organic and aqueous solvents19,20 and low processability, due to

its stiffness and the hydrogen bonding interactions between the

imino and amino groups, limits the applications of this poly-

mer.21 In contrast to pure PANI, the solubility of PANI-ES-LGS

complex increased significantly due to the strong polarity group

(SO2
3 ) existed in LGS. The measurement of liquid conductivity

(Figure 6) reflected the relationship between the solvent and

related concentration which was useful for application. The sol-

ubility of the complex in dimethyl sulfoxide (DMSO) and N,N-

dimethylformamide (DMF) were about 11 and 8 g/100 mL

respectively. By contrast, pure PANI was slightly soluble in these

two solvents with a solubility of no more than 2.0 g/100 mL.10

It was important to emphasize that, although the product

formed could homogenously disperse in the aqueous solution

for a very long time, it was difficult for the complex to

“dissolve” in water again after precipitation. Guo et al.16 found

Figure 4. Effect of reaction time on the polymerization catalyzed by lac-

case. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5. FT-IR spectra of LGS-Ca and PANI-ES-LGS complex.

Table I. Elemental Analysis of LGS-Ca and PANI-ES-LGS Complex

Element composition (%)

Samples C H N S

LGS-Ca 38.304 5.746 0.072 5.813

PANI-ES-LGS 58.410 5.883 6.209 4.337
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that the PANI-ES isolated by the freeze-drying method with

more soft templates was much more “soluble” in some organic

solvent than the PANI-ES isolated with the acetone precipitation

method, although a real molecular PANI-ES solution could not

be obtained by the freeze-drying method.

Optoelectrical Characteristics and Applications

of PANI-ES-LGS Complex

As can be seen in Figure 7, cotton coated with the suspensions

was conducting in 50 mM Na2HPO4-citric acid buffered solu-

tion (pH 3) and lost its conductivity in buffered solution with a

pH value great than 6. This reversible change demonstrated the

reversible electrical properties of the complex and the potential

for using common textiles in electronic devices. Figure 8

showed the K/S values of coated cotton treated by ammonia

with different concentration. When the ammonia concentration

and pH value increased, the color of the coated cotton changed

from emerald green to bluish violet. This color vacation was

also reversible, indicating the potential for using common tex-

tiles in the fields of color changing textiles and gas sensing

fibers, which could detect ammonia and some toxic acid and

alkaline gases. Meanwhile, the coated cotton exhibits an electro-

chromic behavior. At pH 3 in Figure 7, for instance, the color

of coated cotton took a reversible variation from emerald green

to blackish green when the applied potential changed from

20.15 to 0.85 V, indicating that, besides pH values, the color

variations of the coated cotton could also be triggered by

applied electric field.22

Degradation and Polymerization of LGS

in the Reaction System

Laccases are polyphenol oxidoreductases which are capable of

reducing oxygen to water and eliminating one electron from

phenolic compounds to form phenoxy radicals in the meantime.

On this account, phenolic compounds and their polymers (such

as LGS) could be polymerized via laccase-catalyzed oxidation.

The polymerization of aniline in the presence of LGS, which

was also the substrate of laccase, was rather complex. To study

the molecular weight changes of LGS treated by laccase, the

HPSEC profiles of LGS and LGS treated by laccase with differ-

ent time were discussed (Figure 9). The peaks of untreated LGS

exhibited a wide bimodal distribution and shifted toward a

lower molecular weight region after the LGS was treated by lac-

case for 24 h. It was interesting to note that the peaks shifted

back to a higher molecular weight region after 96 h. It was evi-

dent that the molecular weight of LGS treated by laccase

decreased in the early stage of the reaction and increased in the

later stage. It could also be seen that, after treated by laccase,

the molecular weight distribution of LGS was much more con-

centrated than before.

The HPSEC profiles of LGS treated by laccase were consistent

with previous reports,23–26 which indicated that laccases were

able to promote both polymerization and degradation of LGS.

In the beginning, demethylation by laccase oxidation decreased

the molecular weight of LGS, accompanied by the increase of the

content of phenolic group. With the increase of incubation time,

the content of phenolic group decreased and the molecular weight

Figure 6. The conductivity vs. concentration of PANI-ES-LGS in DMSO

and DMF. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 7. Cyclic voltammograms of the coated cotton recorded in buffered

solution with different pH. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 8. K/S data of cotton coated by PANI-ES LGS suspensions in

ammonia with different concentration. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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of LGS increased, which indicated that the polymerization of LGS

was more predominant than the degradation of LGS.23

In order to check how the degradation and polymerization of

LGS affect the polymerization of aniline, UV-Vis spectra of LGS

treated by laccase with and without aniline were studied in Fig-

ure 10. Compared with control LGS, the absorption band near

278 nm of laccase treated LGS enhanced a lot, confirming the

polymerization of LGS. By comparing the UV-Vis spectra of

LGS treated by laccase with and without aniline, a conclusion

could be drawn that LGS could still act as templates and dop-

ants in aniline polymerization after its degradation and poly-

merization induced by laccase, because the SO2
3 groups existing

in LGS could not be oxidized by laccase. In other words,

although the degradation of LGS might delay the synthesis of

conducting PANI-ES in the early stage of the reaction (in the

first 48 h, no conducting PANI-ES was produced), the molecu-

lar weight changes of LGS did not affect its function in aniline

polymerization and the role of laccase for aniline polymeriza-

tion in the long term. On the contrary, the polymerization of

LGS might provide aniline polymerization with a bigger tem-

plate, which was conducive to the directional alignment of the

monomer along the linear templates, and then the increase of

the conductivity of the polymer.

Interactions between LGS And PANI-ES

Positively charged aniline monomer was fixed along negatively

charged LGS before aniline polymerization and this electrostatic

adsorption was the main force between PANI-ES chains and

LGS. We speculated that the hydrogen bonds between PANI-ES

chains and LGS were also easy to form because hydroxyl and

carbonyl groups are the most abundant two functional groups

existing in LGS. In addition, the protonation of the PANI-ES

imine nitrogens through interactions with the hydroxyl groups

in LGS could also strengthen the interactions between PANI-ES

chains and LGS.27,28 All these bonds improved the stability of

the complex in different extent. Based on above analysis, the

schematic diagram of laccase catalyzed polymerization of aniline

in LGS template system was drawn, as shown in Figure 11.

CONCLUSIONS

In this study, conducting PANI-ES-LGS complex was prepared

using laccase as a biocatalyst at pH 3.5. LGS, serving as linear

templates and dopants, promoted the synthesis and processabil-

ity of conducting polyaniline. This method had remarkable

advantages as compared with both chemical and peroxidase-

catalyzed methods due to the use of atmospheric oxygen as the

oxidant. The variable optoelectronic properties of PANI were

given to natural textile materials by immobilizing the complex

on the surface of cotton. Cyclic voltammetry of the coated cot-

ton indicated a high electrochemical activity of LGS-doped

PANI and the potential for using common textiles in electronic

devices. As the color of the coated cotton responded to ammo-

nia, the applications of common textiles in the fields of gas

sensing fibers and color changing textiles might also be realized

utilizing the PANI-ES-LGS suspensions. As for the mechanism,

the polymerization of aniline in the presence of LGS, which was

also the substrate of laccase, was rather complex duo to the deg-

radation of LGS might delay the synthesis of conducting PANI

Figure 9. HPSEC profiles of LGS treated by laccase with different time

and control (LGS untreated by laccase). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 10. Effect of LGS degradation and polymerization on aniline poly-

merization (All the solutions were diluted with buffer (1:100) before

recorded). [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 11. Schematic diagram of laccase catalyzed polymerization of ani-

line in LGS template system. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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in the early stage of the reaction. However, the degradation and

polymerization of LGS did not affect aniline polymerization in

the long term.
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