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Abstract 
 

 

Incremental Mining Techniques 
 

The increasing necessity of organizational data exploration and analysis, seeking new knowledge 

that may be implicit in their operational systems, has made the study of data mining techniques 

gain a huge impulse. This impulse can be clearly noticed in the e-commerce domain, where the 

analysis of client’s past behaviours is extremely valuable and may, eventually, bring up important 

working instruments for determining his future behaviour. Therefore, it is possible to predict what 

a Web site visitor might be looking for, and thus restructuring the Web site to meet his needs. 

Thereby, the visitor keeps longer navigating in the Web site, what increases his probability of 

getting attracted by some product, leading to its purchase. To achieve this goal, Web site 

adaptation has to be fast enough to change while the visitor navigates, and has also to ensure that 

this adaptation is made according to the most recent visitors’ navigation behaviour patterns, which 

requires a mining algorithm with a sufficiently good response time for frequently update the 

patterns. 

 

Typical databases are continuously changing over the time, what can invalidate some patterns or 

introduce new ones. Thus, conventional data mining techniques were proved to be inefficient, as 

they needed to re-execute to update the mining results with the ones derived from the last 

database changes. Incremental mining techniques emerged to avoid algorithm re-execution and to 

update mining results when incremental data are added or old data are removed, ensuring a better 

performance in the data mining processes. In this work, we analyze some existing incremental 

mining strategies and models, giving a particular emphasis in their application on Web sites, in 
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order to develop models to discover Web user behaviour patterns and automatically generate some 

recommendations to restructure sites in useful time. 

 

For accomplishing this task, we designed and implemented Spottrigger, a system responsible for 

the whole data life cycle in a Web site restructuring work. This life cycle includes tasks specially 

oriented to extract the raw data stored in Web servers, pass these data by intermediate phases of 

cleansing and preparation, perform an incremental data mining technique to extract users’ 

navigation patterns and finally suggesting new locations of spots on the Web site according to the 

patterns found and the profile of the visitor.  

 

We applied Spottrigger in our case study, which was based on data gathered from a real online 

newspaper. Our main goal was to collect, in a useful time, information about users that at a given 

moment are consulting the site and thus restructuring the Web site in a short term, delivering the 

scheduled advertisements, activated according to the user’s profile. Basically, our idea is to have 

advertisements classified in levels and restructure the Web site to have the higher level 

advertisements in pages the visitor will most probably access. In order to do that, we construct a 

page ranking for the visitor, based on results obtained through the incremental mining technique. 

Since visitors’ navigation behaviour may change during time, the incremental mining algorithm will 

be responsible for catching this behaviour changes and fast update the patterns. Using Spottrigger 

as a decision support system for advertisement, a newspaper company may significantly improve 

the merchandising of its publicity spots guaranteeing that a given advertisement will reach to a 

higher number of visitors, even if they change their behaviour when visiting pages that were 

usually not visited.  

 

Keywords: Clickstreams; Algorithms and Strategies for Incremental Data Mining; Web Site 

Restructuring. 
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Resumo 
 

 

Técnicas de Mineração Incremental 
 

A crescente necessidade de exploração e análise dos dados, na procura de novo conhecimento 

sobre o negócio de uma organização nos seus sistemas operacionais, tem feito o estudo das 

técnicas de mineração de dados ganhar um grande impulso. Este pode ser notado claramente no 

domínio do comércio electrónico, no qual a análise do comportamento passado dos clientes é 

extremamente valiosa e pode, eventualmente, fazer emergir novos elementos de trabalho, 

bastante válidos, para a determinação do seu comportamento no futuro. Desta forma, é possível 

prever aquilo que um visitante de um sítio Web pode andar à procura e, então, preparar esse sítio 

para atender melhor as suas necessidades. Desta forma, consegue-se fazer com que o visitante 

permaneça mais tempo a navegar por esse sítio o que aumenta naturalmente a possibilidade dele 

ser atraído por novos produtos e proceder, eventualmente, à sua aquisição. Para que este 

objectivo possa ser alcançado, a adaptação do sítio tem de ser suficientemente rápida para que 

possa acompanhar a navegação do visitante, ao mesmo tempo que assegura os mais recentes 

padrões de comportamento de navegação dos visitantes. Isto requer um algoritmo de mineração 

de dados com um nível de desempenho suficientemente bom para que se possa actualizar os 

padrões frequentemente. 

 

Com as constantes mudanças que ocorrem ao longo do tempo nas bases de dados, invalidando ou 

introduzindo novos padrões, as técnicas de mineração de dados convencionais provaram ser 

ineficientes, uma vez que necessitam de ser reexecutadas a fim de actualizar os resultados do 
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processo de mineração com os dados subjacentes às modificações ocorridas na base de dados. As 

técnicas de mineração incremental surgiram com o intuito de evitar essa reexecução do algoritmo 

para actualizar os resultados da mineração quando novos dados (incrementais) são adicionados ou 

dados antigos são removidos. Assim, consegue-se assegurar uma maior eficiência aos processos 

de mineração de dados.  

 

Neste trabalho, analisamos algumas das diferentes estratégias e modelos para a mineração 

incremental de dados, dando-se particular ênfase à sua aplicação em sítios Web, visando 

desenvolver modelos para a descoberta de padrões de comportamento dos visitantes desses sítios 

e gerar automaticamente recomendações para a sua reestruturação em tempo útil. Para atingir 

esse objectivo projectámos e implementámos o sistema Spottrigger, que cobre todo o ciclo de vida 

do processo de reestruturação de um sítio Web. Este ciclo é composto, basicamente, por tarefas 

especialmente orientadas para a extracção de dados “crus” armazenados nos servidores Web, 

passar estes dados por fases intermédias de limpeza e preparação, executar uma técnica de 

mineração incremental para extrair padrões de navegação dos utilizadores e, finalmente, 

reestruturar o sítio Web de acordo com os padrões de navegação encontrados e com o perfil do 

próprio utilizador. Além disso, o sistema Spottrigger foi aplicado no nosso estudo de caso, o qual é 

baseado em dados reais provenientes de um jornal online. Nosso principal objectivo foi colectar, 

em tempo útil, alguma informação sobre o perfil dos utilizadores que num dado momento estão a 

consultar o sítio e, assim, fazer a reestruturação do sítio num período de tempo tão curto quanto o 

possível, exibindo os anúncios desejáveis, activados de acordo com o perfil do utilizador. Os 

anúncios do sistema estão classificados por níveis. Os sítios são reestruturados para que os 

anúncios de nível mais elevado sejam lançados nas páginas com maior probabilidade de serem 

visitadas. Nesse sentido, foi definida uma classificação das páginas para o utilizador, baseada nos 

padrões frequentes adquiridos através do processo de mineração incremental. Visto que o 

comportamento de navegação dos visitantes pode mudar ao longo do tempo, o algoritmo de 

mineração incremental será também responsável por capturar essas mudanças de comportamento 

e rapidamente actualizar os padrões.  

 

Palavras-chave: Clickstreams; Algoritmos e Estratégias para a Mineração de Dados Incremental; 

Reestruturação de Sítios Web. 
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Chapter 1 
 

1Introduction 
 

 

1.1 The Importance of Data Exploration 

 

Daily, in extremely dynamic market sectors, companies face situations where information quality 

and knowledge over them play an important and vital role. For surviving in such competitive 

markets, they must be aware of what is making losses and profits inside them. Therefore, 

companies should know as much as they can about themselves and everything else that may 

somehow affect on the way they behave in market, such as inflation, country’s economy growth 

and naturally market share. However, they must give especial attention on acquiring knowledge 

about their stakeholders – mainly their clients – because that is essentially where their survival 

comes from. 

 

In the digital era we are living in, people are each day performing more of their daily activities 

through computers. Examples of such activities include shopping, working, reading newspapers, 

magazines, and many others. The average amount of time people spend on computers is growing 

at a rapid pace. As a direct consequence, Web sites are day by day more accessed, enlarging the 

amount of information stored in companies’ databases. With all this information in mind, 

organizations began to realize the importance of exploring the huge amounts of data stored in 

their operational systems.  
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With the e-commerce emergence, many were the companies that promoted the creation of 

specialized sites for publishing their activities and commercialized products. Rapidly, some of them 

realized that this new way of being in commercial life, when properly assured and explored, could 

bring a great profit for their investments. However, to assure their survival in this new world, 

companies had to develop mechanisms, as in conventional markets, to allow them to know better 

their customers, or simply their Web visitors, and their behaviour in the sites they visit. Particularly, 

their interest is to know what are the main actions performed by visitors in the Web sites – 

searching or buying actions.  

 

In order to publish their goods and products to customers, so they can be largely consumed, 

companies need to understand how customers behave in the market. Customer past behaviour 

analysis can provide valuable information for a possible determination of their future behaviour, 

contributing for enhancing the decision making process and for obtaining better decisions. When 

developing some type of data analysis process, the main goal is the discovery of client’s behaviour 

patterns from data about these clients, usually stored in company’s operational systems. 

 

 

1.2 Knowledge Discovery through Data Mining 

 

The increasing competitiveness among the organizations urged for developing ways to differentiate 

their offered services in order to gain market share. The companies, one faster than the others, 

discovered that they could have great advantages and acquire new knowledge about their business 

activities if they focused some efforts on the application of data mining techniques over their 

operational data systems. Data mining techniques can drill through enormous volume of data to 

discover frequent patterns or relationships that were implicit in the database but previously 

unknown by companies’ management staff. This extracted information can be potentially useful in 

decision making processes. 

 

According to Fayyad [Fayyad 1996], data mining is part of a larger process known as Knowledge 

Discovery in Databases (KDD). The KDD include several steps, which can be resumed as: 
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• Understand the end-user goals, the available relevant knowledge and the application 

domain. 

• Choose the dataset from where we want to extract knowledge and submit data to a pre-

processing phase, which intends to clean and prepare the data for the further processes. 

 

• Select the data mining technique to be applied, which includes choosing what will be 

extracted from the mining process (association rules, sequential patterns, etc.), the 

algorithm itself and the mining parameters and models that will be used.  

 

• Execute the mining technique in order to extract frequent patterns and models. 

 

• Analyze the discovered knowledge through graphs, tables and other views available 

according to the tool being used, and perform data interpretation and consolidation. 

 

The KDD process is iterative, meaning that after the execution of a task, adjustments might have 

to be made in preceding steps. Figure 1 illustrates the KDD main steps. 

 

 

 

  

 

 

 

 

 

 

 

Figure 1: KDD steps 
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In particular, when performing data mining techniques over companies’ repository of information 

about the navigation processes developed in their sites, fed through data derived from the site 

usage, we can obtain a valuable insight that can be used in customer relationship field. These data 

give us important information about the site access, namely, information about the pages, servers, 

objects or accessed hyperlinks. This information is typically stored in Web servers and specific log 

files, usually called clickstreams.  

 

When applying data mining techniques over data derived from Web sites, we are dealing with a 

specific branch of study in the data mining field called Web Mining. Through Web Mining, we are 

able to acquire a better understanding of the Web and its visitors. From the Web sites, we can get 

some types of data according to the context we want to mine the Web data. The data extracted 

can be classified as follows [Srivastava et al. 2000]: 

 

• Content data: data carried to the Web user, usually consisted of text and graphics, 

typically in form of HTML documents. 

 

• Structure data: data about the organization of the Web sites and information systems. 

 

• Usage data: data collected from user interactions with the Web site. 

 

Therefore, the Web Mining field was divided into three more sub-areas, where each area of study 

is related to applying mining over one of the collected data types described above. Figure 2 shows 

the three sub-areas of the Web Mining domain. 

 

 

 

 

 

 

 

 

Figure 2: Web mining sub-areas 
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In this manner, the Web Content Mining (WCM) is related to the application of data mining 

techniques to extract knowledge from the content of the Web documents. The Web Structure 

Mining (WSM), in turn, uses the Web hyperlink structure as information source for the mining. 

Finally, the Web Usage Mining (WUM) uses data derived from clickstreams to study way sites have 

been used [Cooley 1997] [Srivastava et al. 2000]. 

 

We will focus our attention in the analysis of visitors’ behaviour in a Web site, dealing therefore 

with the WUM domain. WUM techniques can be applied for several purposes. Their application 

helps in decision making processes and provides ways to better attend company’s customers. For 

instance, we can personalize and modify the Web site according to each visitor profile. In addition, 

we can find bottlenecks or the most frequent accessed pages and services which might be an 

important characteristic when deciding where the company needs to perform optimizations in the 

system.  

 

Moreover, stakeholders supporting a Web site generally want to know how much of company’s 

business is going through the site. WUM techniques may answer several of their questions related 

to customers’ behaviour within the Web site and provide statistics of site usage. As a result, the 

company is able to make decisions intending to achieve customer satisfaction and loyalty, and 

thereby increase its revenues and profits. 

 

Therefore, the implementation of WUM services in a company has as its main goals the 

improvement of services quality and customer relationship. These objectives, when reached, will 

bring a greater profit from their investments on the Web sites, the capacity of attending several 

directions of their Web clients and the possibility of restructuring in advance their sites for turning 

them more useful, attractive and pleasant to their visitors. 

 

 

1.3 Focus and Motivation 

 

It is known that databases in the Web domain quickly change due to visitor navigation processes 

on the site. Initial data mining techniques suit well for static databases, but are not flexible enough 

regarding to the addition of new data. In other words, such developed techniques cannot update 
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their results, considering the new data incorporated into the data repositories, without having to 

re-execute the algorithm over the whole database.  

 

Incremental mining techniques emerged to solve such problem. Some applications where these 

incremental techniques have been used are, for instance, to find frequent sequences among the 

alarms in a GSM network [Zheng et al. 2002] and recommend books for visitors of an electronic 

bookstore [Veloso et al. 2002a]. 

 

In this work, we will cover some of the existing incremental algorithms developed for two data 

mining types: association rules mining and sequential patterns mining. Firstly, we explain the 

processes of mining for association rules and sequential patterns. Afterwards, we give a brief 

explanation of some early developed incremental techniques. Then, we describe some recent 

incremental algorithms, which have as their main goal the reduction of the required memory and 

processing (I/O). 

 

Due to the large amount of results that can be generated through mining techniques, we also 

explain some objective measures of pattern interestingness. Thus, just the most interesting 

patterns are selected from the mining process.  

 

When mining data derived from Web site usage, we have to understand what kind of information 

we can acquire from this data and in what possible formats they might be stored. Therefore, we 

provide a detailed explanation on how clickstreams are stored by Web servers, according to the 

main existing formats. Along with that, we also point the main problems when handling clickstream 

data and the crucial preprocessing phase, which these data have to be submitted in order to be 

clean and put in a suitable format for the application of mining techniques. Further, we explain 

how is the process of mining data derived from clickstreams – WUM – and the main practical 

applications of the WUM in the real world domain, which are:  

 

• personalization – profile and analyze customers behaviour to provide customized and 

personalized services for each Web site visitor [Baglioni et al. 2003] [Mobasher et al. 

2000].  
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• site modification – dynamically restructure a Web site to attend visitors needs [Eirinaki & 

Vazirgiannis 2003] [Srivastava et al. 2000]. 

 

• business intelligence – help organization marketing analysts in decision making processes 

by providing answers to questions related to business coming into the company through 

Web site usage [Buchner et al. 1999] [Abraham 2003]. 

 

• usage characterization – foresee users future behaviour through the analysis of their 

navigational strategy when browsing the Web site [Catledge & Pitkow 1995] [Srivastava et 

al. 2000]. 

 

• system improvement – analyze performance of the provided services and Web traffic 

towards making improvements for turning the system faster, easier and, thus, more 

pleasant to the user [Srivastava et al. 2000] [Zaiane 2001]. 

 

Finally, we apply an incremental mining technique over real data derived from an online newspaper 

clickstream. The main question of our work is:  

 

How a given company can advertise in an online newspaper having some guarantee 

that its published advertisement will be seen by most of the newspapers visitors? 

 

It is known that readers of online newspapers may change their behaviour very fast with the 

occurrence of important events that are rapidly published on the pages. Therefore, in short periods 

of time, pages that were frequently accessed turn to be low accessed and some previously low 

accessed turn to be highly accessed. When this occurs, which is a common situation in the Web 

domain, companies that paid for advertising in frequently accessed pages and expected their 

advertisements to be often visualized by the newspaper visitors, see their investments going at the 

wrong way because the pages they advertised are not visited anymore.  

 

Our main goal is providing means to dynamically change the advertisements on a newspaper in a 

useful time, in other words, reflecting very recent visitors’ behaviour. Thereby, a newspaper 

company may merchandise its advertisements spots guaranteeing that a given advertisement will 

reach a high number of visitors, even if they change their behaviour by visiting pages that were 
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usually not visited. The predominantly exhibited advertisements may, for example, be the most 

expensive ones or ones that the organization has interest on it by some reason, like a partnership 

with the advertising company. 

For this case study, we developed a system that was named by Spottrigger. The system is 

responsible to get the new data from the clickstream stored by a Web server, clean, filter and 

prepare these data through a preprocessing stage, and finally perform mining tasks. Due to the 

incremental nature of the technique employed, we store the results and some other attributes of 

the mining process to be used in the further mining iterations. By using these stored information, 

the results are fast updated, which allows us to execute the mining process at regular short 

intervals of time and guarantee that pages are restructured according to frequent patterns, taking 

into consideration the navigation behaviour of readers that recently accessed the site.  

 

In short, the goal of this thesis is to study incremental mining approaches, their importance and 

application in a real practical case. This way, we implement the idea of re-structuring pages 

according to visitor’s behaviour records in a useful time.  

 

 

1.4 Thesis Organization 

 

This thesis is organized into for more chapters, namely: 

 

• chapter 2 that covers incremental mining techniques, explaining the main pattern 

interestingness measures and two types of mining: association rules and sequential 

patterns; then, early and recent incremental mining algorithms were characterized and 

compared among them.  

 

• chapter 3 refers to clickstreams and how the mining processes are performed over them; 

we describe the main applications of mining Web data and how the incremental approach 

fits into this area.  

 

• chapter 4 presents a practical case, aiming on replacing advertisements of an online 

newspaper pages, where the information to perform the site modification is based on the 
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results acquired from an incremental mining algorithm; it describes Spottrigger, the system 

we developed to get the data and perform all the necessary processes to come up with 

recommendations of what advertisements shall be put in what pages for a given visitor; 

we show our experiments results, emphasizing the importance of using an incremental 

mining approach.  

 

• chapter 5 gives some conclusions and point some future works. 

 

The organization followed covers all the aspects related to the development of a data mining 

system using incremental techniques. Each step involved is carefully detailed, also providing 

references to treatments or processes not pertaining to our main focus and therefore not 

comprised in this work.  
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Chapter 2 
 

2Incremental Mining 
 

 

2.1 General Background and Problem Definition 

 

The amount of information stored in companies’ databases is rapidly growing. The experience tells 

us that the bigger the working data repository is, the bigger the processing time will be. This 

unsurprising situation reveals that we will have mining processes taking each time longer than 

before, since those repositories tend to increase in size as new data are added. This is a very 

common situation. 

 

It is known that databases are continuously changing throughout the time. Thus, every attempt to 

discover new knowledge would require re-executing the mining processes over any database that 

had been somehow modified. It is evident that this situation is rather inefficient. So, what can be 

done? The task of guaranteeing a fast answering time in a mining process is very hard when the 

databases are dynamic, which means, they change throughout the time due to the insertion or 

deletion of data. Any change occurred in the database can invalidate some of the existing 

behaviour patterns, discovered in previous mining processes, or else, add new ones. Some 

examples of domains where we commonly find these time-changing databases are supermarket 

purchases, bank transactions, daily records of traffic and meteorology, e-commerce and many 
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others. In order to solve these problems, a new variant of data mining arouse: incremental data 

mining. 

Therefore, the incremental data mining emerged with the necessity of mining large amounts of 

data in constantly changing databases, since the previous developed algorithms were inefficient 

once they needed to be re-executed over the entire database for updating its results. Those initial 

algorithms ignored the previously performed computation, leading to a duplicate work since most 

of it was already done. In many applications we might also want to mine the database according to 

a specific recent window of time, for instance, the last 30 days. Having a fixed-length time window 

means that transactions are daily added and removed from the target database. Consequently, to 

attend this requirement, most of the incremental mining algorithms allow not only the addition of 

new transactions but also the removal of transactions that currently belong to the mining but 

should not be considered anymore.  

 

The problem of incremental mining, introduced in [Cheung et al. 1996], is defined as follows: Let 

LDB be a set of frequent itemsets, commonly known as large itemsets, in a transactional database 

DB. An itemset is a non-empty set of items. After some updates on the database, another set of 

transactions is added to DB (the problem also includes deletion), resulting in an updated database 

DB+. The objective is to discover LDB+, that is, the new set of frequent itemsets on the updated 

database, respecting the minimum support value. The support is the percentage of the itemset 

occurrence in DB. In [Cheung et al. 1996] was also specified that the maintenance of frequent 

itemsets involves the research of two itemset types: losers, which are previously frequent itemsets 

that, after adding the incremental data to the database, became infrequent, and winners. These 

are itemsets that were not frequent, but turned out to be after the database update. 

 

A system designed with an incremental mining approach considers 2 main tasks. At a first stage, it 

needs to perform a general mining in the initial dataset. Then, when database changes come, in 

order to produce the updated results, it uses information derived from previous mining iterations 

and combines this information with the fresh data in order to find, in an efficient way, the new set 

of frequent itemsets. Figure 3 shows how an incremental mining process basically works. The 

dataset where the mining is performed keeps being updated. The results produced by the mining 

are stored in a database of patterns. According to the algorithm used, some other information 

might also be stored in the database. Then, the incremental mining uses these stored information 

for further mining iterations when new data arrives.  
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Some incremental mining techniques may store a lot of information for a faster update when new 

data arrives, while others may still have to make some processing in the original dataset. However, 

the more information is stored, the more memory will be necessary. This might be inappropriate 

when dealing with very large databases. Therefore, this is one important characteristic to consider 

when choosing or designing an incremental algorithm. Another important characteristic is the 

flexibility regarding to modifications in users parameters, such as minimum support. According to 

each case, it might be necessary to regularly make changes in the mining parameters, thus this 

flexibility may be a significant feature that one must be aware of when choosing the algorithm.  

 
 

 

 

 

 

 

 

Figure 3: Incremental Data Mining 

 
A relevant question one faces, when dealing with an incremental mining approach, is how often 

the algorithm shall be applied. If it is applied too frequently over a constantly updated database, 

with the extreme case of being applied on every new update, the overhead will be large, resulting 

in taking no benefit from the incremental approach. On the other hand, if the interval between 

each incremental execution is too long, there is a high risk of either missing important new rules, 

which were not caught because the last results available are already outdated, or the size of the 

update might be so big that the incremental approach may not be valuable when compared to 

running a traditional algorithm over the whole database. These situations show us the importance 

of knowing the frequency on which the database that will be mined is updated, so the algorithm 

can be executed in suitable interval of times. Some works have been published to address the 

problem of determining when to update [Lee & Cheung 1997] [Zheng et al. 2003]. Other efforts to 

improve the performance of the incremental mining algorithms include solutions to parallelize the 

algorithm [Parthasarathy et al. 2003] [Veloso et al. 2003]. 
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The existing incremental techniques are essentially based in two data mining types: association 

rule mining and sequence pattern mining. The main goal of these techniques is to assure a greater 

efficiency, with resource optimization, mainly in means of memory and processing (I/O). Prior to 

giving detailed information of these two mining types, we will cover the most commonly used 

measures in the data mining field for filtering and analyzing attributes such as significance and 

interest of the rules.  

 

 

2.2 Commonly Used Mining Measures 

 

A data mining algorithm can potentially generate thousands or even millions of patterns [Han & 

Kamber 2001]. However, not all patterns generated are interesting. Therefore, in order to generate 

and filter patterns from a set of transactions containing items, some measures were created to 

allow the selection of just the most interesting patterns. These measures are statistical and are 

defined using probabilities to evaluate characteristics such as the frequency of the items, their 

significance and interest.  

 

When a market analyst of a company is making a strategic decision, he may want to know, for 

instance, how much the interest of a client for a product B grows after the purchase of a product 

A? Hence, the measures were conceived to answer such questions and we will give an explanation 

of the most commonly used ones, namely: support, confidence, lift and conviction.  

 

Support 

Initially presented in [Agrawal et al. 1993], the support of an item A is the percentage of 

transactions in a dataset that contains A, being thus a statistical significance. It is commonly called 

a frequency constraint, since it is just a count of the transactions containing the given item, 

dividing it by the total number of transactions. Thus, if A  B has support 30%, it means that 30% 

of the total number of transactions contain A and B. When an itemset exceeds a minimum defined 

support threshold, this itemset is considered to be frequent, usually called a large itemset. The 

support measure has an important characteristic called the antimonotonicity property, which states 

that all subsets of a frequent set are also frequent. Analyzing this statement in another angle, no 
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super set of an infrequent set can be frequent. For instance, if an itemset “A, B” is found to be 

infrequent, we know by the antimonotonicity property that there is no need to analyze the itemset 

“A, B, C”, since its subset “A, B” is already infrequent making it also infrequent. This characteristic 

is very important to prune the search space and thus increase the algorithm performance. The 

support main problem is that it misses possibly interesting and valuable rules that may occur in 

itemsets that are not frequent. The support calculation can be resumed in the following formula:  

 

 

 

 

 

Equation 1: Support 

 
where t is a transaction and D is the set of transactions in the database. 

 

Confidence 

Also presented in [Agrawal et al. 1993], the confidence, also known as strength, is the probability 

of a given itemset occurrence (consequent) after the occurrence of another itemset (antecedent). 

For example, an itemset “C” has 80% of chance for occurring after the itemset “A, B” occurs. 

Analyzing the confidence attribute, we find that the confidence of A  B is different from the 

confidence of B  A. The confidence characteristic has the problem that it is sensitive to the 

frequency of the consequent in the database, meaning that the higher is the consequent support 

the higher will be the confidence even if there is no association between the items [WWW02]. The 

confidence of A  B can be calculated with the following formula:  
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Lift 

Firstly mentioned in [Brin et al. 1997] with its initial name “interest”, the lift attribute denotes how 

much the probability of an item B occurrence will increase if an item A occurs. This measure is 

expressed as a ratio, for instance, when A occurs, B will be 4 times more likely to occur. In other 

words, it indicates the degree of dependency among the items. The lift property has the advantage 

of not being sensitive to the frequency of the items. Itemsets with low occurrence together in the 

database can produce very high lift values. Equation 3 shows how the lift measure is calculated. 

 

 

 

 

 

Equation 3: Lift 

 

Conviction 

Also introduced in [Brin et al. 1997], the conviction measures the deviation of the implication A  

B from the assumption that A and B occur independently. It was developed to be an alternative to 

confidence due to the fact that confidence does not capture direction of associations adequately. 

Conviction is a directed measure since it also uses the information of the absence of the 

consequent. In other words, it measures the effect of the right-hand-side not being true. A 

conviction value equals to 1 (one), means that the items are unrelated. If a rule holds 100% of the 

time, its conviction is the highest possible value of infinity. Thus, in contrast to lift, conviction is not 

symmetric and has no upper bound. The following formula is used to calculate conviction: 

 

 
 

 

 

Equation 4: Conviction 

 
When we have a high lift, it points out that there is an affinity between the considered items. 

Additionally, a high conviction can also indicate a strong implication amongst the items. Then, if we 
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have a high support and confidence, means that the itemset occurs enough so that it may be of 

high importance, possibly being very valuable in decision making processes. If this situation holds 

for items of itemsets corresponding to the purchase of products by customers, it may be 

worthwhile to make an offer involving those items.  

 

There are also other measures which can be applied according to each case necessity. Those that 

were explained here are just some of the most important and commonly used ones. 

 

 

2.3 Association Rules 

 

The association rules are the most used models when one wants to discover the influence that one 

or more items may have over others. For instance, one can analyze that some product P may have 

a greater probability of being bought when products A and B are purchased.  

 

As initially stated in [Agrawal et al. 1993], the problem of mining association rules comprises two 

sub-problems. The first is to find all large itemsets, that means, itemsets that are contained in a 

considerable number of transactions, respecting a minimum support threshold. The second sub-

problem corresponds to the extraction of association rules from the large itemsets found, 

respecting the minimum confidence threshold. Having the large itemsets, the generation of 

association rules does not require much effort since it is made just by calculations over the large 

itemsets results, not requiring database scans. On the other hand, the first sub-problem consumes 

a lot more time, being computationally intensive, due to the huge search space. The search space 

for enumeration of all itemsets is 2n, which is exponential in n, with n being the number of items 

[Veloso et al. 2002b]. Thus, most researches since then have been focused on efficiently finding 

large itemsets.  

 

The association rules mining problem was formalized in [Agrawal & Srikant 1994] as follows:  

 

Let I = {i1, i2, ..., in} be a set of literals, called items; let D be a set of transactions 

where each transaction T is a set of items, so that T ⊆ I; to each transaction is 

associated a unique identifier, called TID (Transaction ID). We say that a transaction 
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T contains X, a set of some items from I, if X ⊆ T. An association rule is an implication 

of the form X ⇒ Y, where X ⊂ I, Y ⊂ I, and X ∩ Y = 0. The rule X ⇒ Y is valid in the 

transaction set D with confidence c if c% of the transactions in D that contains X, also 

contains Y. The rule X ⇒ Y has support s in the transaction set D if s% of the 

transactions in D contains X ∪ Y. 

 

Given a set of transactions D, the association rules mining problem is to generate all association 

rules that have support and confidence greater than a minimum user-defined (minsup and 

minconf). In a practical manner, when working with association rules, we have an expression of 

the form A ⇒ B which attends the minsup and minconf, where A and B are itemsets, for example: 

 

{bread, milk} ⇒ {coffee} (sup=20%, conf=50%) 

 

The idea behind this is that people who buy bread and milk have a strong disposition to buy 

coffee. In the above example, this rule occurs in 20% of the total transaction set, and, when bread 

and milk are bought, the client has a probability of 50% for also buying coffee. In this case we 

have a common example, which might not be a surprise. However, the interestingness of 

association rules is to find unusual associations according to each database mined. For example, in 

a given supermarket we can find that milk goes with bread, but soy milk does not.  

 

The area where the association rules have been more applied is in market basket analysis [Lee et 

al. 2001]. In this case, the items purchased by customers are stored in the database. Discovering 

the association rules occurred within this stored dataset, that is, the set of items that are 

frequently purchased together, may be a lot valuable when making promotions and discounts. It 

may also help on decisions of how the products may be better arranged in the shelves in order to 

catch the attention of the highest number possible of buyers. Other fields where the association 

rules have been used are in telecommunications, e.g. for finding associations in clients phone calls 

destination, in profiling clients accessing a Web site by finding patterns in their navigation within 

the site, and many others. 

 

In [Agrawal & Srikant 1994] the first algorithm to solve such problem in static datasets was 

proposed, called Apriori. This algorithm finds large itemsets iteratively in a breadth-first search, 

firstly generating candidate itemsets on each iteration and then checking them by a database scan. 
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That means, for each set of candidates generated, one pass over all transactions in database is 

necessary. In addition, it uses some techniques to prune the search space for generating a small 

number of candidate itemsets. Since Apriori was introduced, there have been a lot of studies for 

improvements following its bottom-up, breadth-first nature, relying on taking advantages from the 

antimonotonicity property of the minimal support threshold [Goethals & Bussche 2000]. 

 

The association rule problem was also tackled in another manner, using a depth-first strategy. The 

first algorithm following this strategy was the FP-Growth, presented in [Han et al. 2000]. Despite 

the fact that this algorithm has an efficient counting mechanism, it presents the deficiencies of not 

taking advantage from the antimonotonicity property, resulting in much more candidate patterns, 

and its structure implicitly requires the database to reside in main-memory. FP-Growth works well 

in dense datasets, because it can construct a compressed tree. Dense datasets are the ones where 

the transactions tend to be similar, having approximately the same length and containing mostly 

the same items. However, the performance of the FP-Growth falls down when dealing with sparse 

datasets [Zheng et al. 2001]. 

 

One of the problems with the association rules is that a large dataset can lead to a very large 

number of rules, even if reasonable minimum support and confidence threshold values are used. 

The confidence by itself is not sufficient in some cases, for instance if all transactions contain B, 

then, any rule A  B will have a confidence of 100%. Thus, other metrics such as lift and 

conviction, explained in the previous section, can be used to better filter the rules according to 

each specific case.  

 

Although the initially created algorithms to solve the association rules problem are somewhat 

efficient in static databases, they do not treat the problem of maintaining the association rules if 

database changes occur. The high computational costs involved due to the immense search space 

when finding large itemsets may be acceptable when dealing with static databases, but not with 

ever changing databases, since the time consuming itemset enumeration process would be 

frequently repeated.  

 

Therefore, an incremental mining in association rules consists on the discovering of the item 

associations in evolving databases. The updates on the database can invalidate some rules, 
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because the existing rules might no more attend the required minimum support and confidence 

after the update, or there may be new rules attending the requirements. 

 
 

2.4 Sequential Patterns 

 

Advances in the way information is stored in databases, helped by technologies such as bar-codes 

and magnetic cards, have enabled companies’ systems to store a very large amount of data in 

their databases. The records stored by a retail organization derived from customers purchases, 

usually contain the transaction date and the items bought in the transaction. In addition, they may 

also contain the customer-id, if it is possible to identify the clients, for example, via customer 

registration or acquiring the information from credit or loyalty cards. Aiming on analyzing the 

database to help decision support systems developed for mailing and increasing customer 

satisfaction, the sequential pattern problem emerged. Later, the problem was brought to other 

areas such as the scientific and business area [Parthasarathy et al. 1999]. 

 

The problem of sequential patterns mining, or sequence mining, essentially consists in finding 

temporal relations of frequent sub-sequences in a sequence database. Thus, it takes into 

consideration not only the association of the items according to their occurrence, but also the order 

in which they occur.  

 

The problem was defined in [Agrawal & Srikant 1995] as follows. Let us consider a database D of 

clients’ transactions. Each transaction is composed of the following fields: client id, transaction time 

and items purchased within the transaction. No client may have more than one transaction at the 

same time. The quantity of items purchased in a transaction is not considered. Each item is a 

binary variable representing when an item was bought or not. A sequence is a set of time-ordered 

items. A data sequence is composed of all transactions of a customer grouped by in an ascendant 

order. The support of a sequence s is, therefore, the fraction of the total data sequences that 

contain s. This way, the problem is to find sequences with the support greater then the user-

defined. Each sequence attending the minimum support threshold is then called a sequential 

pattern or frequent sequence.  
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In order to better illustrate the problem, suppose we want to find the sequential patterns in an 

electronic store. Each data sequence would correspond to the equipment acquisitions of a 

customer, and each transaction to the equipments acquired by the customer in one order. An 

example of sequential pattern that could be found might be:  

 

{PC} ⇒ {DVD Player} ⇒ {Digital Photo Camera} (sup=80%) 

 

The example above shows that 80% of the customers firstly buy a PC, next a DVD player and, 

later, a digital photo camera. Note that these purchases do not need to be consecutive as 

customers who buy other items in between are also fitted to this sequential pattern. Moreover, the 

items involved in a sequence do not need to be single items. For example, in a retail industry we 

may have the following sequential pattern: 

 

{Suit, Long Sleeve Shirt} ⇒ {Tie, French Perfume} (sup=50%) 

 

The sequence above show that 50% of the people buy a suit with a long sleeve shirt, and then 

come back to buy a tie and a French perfume. In this case, the elements of the sequence are not 

single items. However, all the items in an element must be present in a single transaction for the 

data sequence to support the pattern. 

 

Along with the sequential patterns mining problem definition, [Agrawal & Srikant 1995] also 

proposed three algorithms to solve the problem. The most famous of them, being a reference to 

many further works, was called AprioriAll. Later, in [Srikant & Agrawal 1996], the problem was 

extended by adding taxonomy (is-a hierarchy) on items and time constraints such as minimum and 

maximum gap between adjacent elements of a pattern. A new algorithm called GSP was also 

proposed in this work, which outperformed AprioriAll up to 20 times. This performance 

improvement is important specially when dealing with very large databases, where the discovery of 

all frequent sequences is computationally costly due to the huge search space that grows 

exponentially according to the length of the longest transaction sequence.  

 

When dealing with an evolving database, as association rules can arise or be invalidated, new 

sequential patterns can also turn out to be frequent and some previous frequent patterns can 

become irrelevant with the database updates. That makes necessary the existence of efficient 
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algorithms for updating, maintaining, and managing the discovered information. The incremental 

approach should take advantage of previously discovered patterns and, thus, avoid the algorithm 

re-execution, whenever the data is updated. The problem of maintaining the sequential patterns is 

more complicated than maintaining the association rules, once the transaction cutting and 

sequence permutation must be taken into account [Masseglia et al. 2000]. 

Some distinct areas where the sequential patterns mining processes can be applied are, for 

example: in the Web domain one can analyze the Web database access, in the telecommunication 

field alarms can be generated based on the telecommunication network, in the health care industry 

it can be used in the treatment of diseases from sequences of symptoms and in the financial 

industry predictions of investments risks can be made based on past sequential stock market 

events.  

 
 

2.5 Early Incremental Algorithms 

 

The first incremental mining algorithm, called Fast Update (FUP), was presented in [Cheung et al. 

1996]. It uses information from previous iterations to generate a smaller candidate set to be 

checked in the original database. In order to do that, it eliminates in an earlier stage the itemsets 

that, just by checking the increment, are known to be either frequent or infrequent. This way, it 

executes the update with a drastic performance improvement when compared to rerunning the 

algorithm in the whole updated database, as non-incremental techniques do. The first FUP 

algorithm developed only deals with changes regarding to the insertion of new transactions.  

 

In the author’s subsequent work, FUP2 [Cheung et al. 1997], the algorithm was improved to also 

handle deletions. When compared to the original FUP, FUP2 has good performance handling 

deletions but it is slower if only insertions are made. Although it is generally better than rerunning 

the algorithm on the whole updated database, it was found that the bigger is the difference 

between old and new transactional datasets, the bigger is the degradation of FUP2 performance. If 

the size difference reaches around 40% of the original database, the incremental update is no 

longer advantageous.  

 

Afterwards, Lee and Cheung proposed an algorithm called DELI (Difference Estimation of Large 

Itemsets) [Lee & Cheung 1997] which is an extension of FUP that decides whether an update is 
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necessary, thereby minimizing costs. The algorithm uses statistical sampling to determine how 

large the difference between the mined dataset and incremental dataset is. If the difference is 

found to be large enough so that it justifies the overhead of running the algorithm, the updating 

process is applied through the execution of an incremental algorithm. Otherwise, it states that the 

current mining results can be used because it represents a good approximation of the present real 

situation. 

 

Later, the algorithm called ULI (Update Large Itemsets) was proposed in [Thomas et al. 1997], 

striving to reduce I/O cost for updating the set of frequent itemsets by maintaining previous 

frequent itemsets and the negative border along with their supports. The negative border in the 

context of sequential patterns mining is consisted of all sequences that are not frequent, which 

means that did not attend the required minimum support threshold, but both of whose generating 

subsequences are frequent. When mining for association rules, the negative border is consisted of 

all itemsets that were candidates, but lacked the minimum support. Maintaining the negative 

border, a full scan on the database is only necessary if the negative border expands. In the case of 

ULI algorithm, the database is scanned once, but the incremental portion has to be scanned as 

many times as the size of the longest frequent itemset. 

 

In addition, some other incremental algorithms developed are PELICAN [Veloso et al. 2001] and 

MAAP [Zhou & Ezeife 2001]. These algorithms only focus on how to maintain maximal frequent 

itemsets when the database is updated, and thus they do not allow calculation of the count of non-

maximal itemsets. A frequent itemset is considered maximal if it is not a subset of any other 

frequent itemset. Knowing the maximal frequent itemsets we can determine all sets that are 

frequent, but not their supports. However, the exact supports can be obtained by counting in the 

database all distinct subsets of the maximal sets. PELICAN makes its calculations based on vertical 

database format and lattice decomposition, scanning the search space for frequent itemsets. The 

efficiency of this algorithm was demonstrated by comparisons to non-incremental techniques, 

proving that it outperforms them. On the other hand, MAAP uses an Apriori-based framework to 

calculate the maximal frequent itemsets. 
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2.6 Recent Algorithms 

 

Pushed by the necessity of urgent analyzing data derived from databases that are updated each 

time faster, mainly in the retailing industry and in the ever growing e-commerce field, new 

incremental mining techniques were developed. These techniques aim to reduce even more the 

I/O costs with lower processing and memory optimization. Early incremental mining algorithms 

based on the Apriori approach generally suffer from two main problems: a possible occurrence of 

an immense set of candidate itemsets and the necessity of multiple scans on the database. 

Therefore, the recent algorithms try to reduce such problems. 

 

Sliding-Window Filtering, ZIGZAG, Incremental Sequence Mining and Incremental Sequence 

Extraction, are some references of algorithms used by the new incremental mining techniques 

already available for application in a real world domain. The first two mentioned algorithms are 

especially oriented for association rules discovering while the last two are for sequential patterns 

discovering. 

 

Sliding-Window Filtering 

The incremental association rules mining technique Sliding-Window Filtering (SWF), firstly 

presented in [Chen et al. 2001], is based on splitting the transactional database into several 

partitions. It filters unnecessary candidate itemsets by establishing a minimum support threshold 

on each partition. This way, it carries selectively the information from the previous partition to 

generate candidate itemsets in the subsequent partitions. Using cumulative filters and techniques 

to reduce the number of scans in the database, the algorithm minimizes the I/O and CPU costs. 

Thus, only one scan in the incremented dataset is necessary. Moreover, through the sliding-

window partition, it controls memory usage more efficiently. The SWF is suitable for short-term 

mining over a transactional database, in other words, mining the database according to a specific 

time window, as it can easily “slide” the considered database by inserting a new incremental 

partition to it and removing an old one.  

 

In SWF, each new set of candidate itemsets is consisted of the candidate itemsets carried from the 

set of candidate itemsets in the previous phase that remained candidates after considering the 

current partition, along with candidate itemsets that were not in the previous phase results but 
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turned to be selected after considering the current partition. The algorithm results in a cumulative 

filter composed of the progressive set of candidate itemsets, their occurrence count and related 

required partial support.  

 

The algorithm first phase is to mine the original database, divided in partitions. The first partition is 

then sequentially scanned to generate the set of candidate 2-itemsets (C2). A k-itemset is an 

itemset composed of k items. The C2 set, containing the itemset, its occurrence count and the 

partition in which it started to be frequent, is the only information to be stored for using in the 

subsequent phase. Once having the candidate itemsets at the end of each partition processing, the 

set of candidate large itemsets can be generated using the scan reduction technique [Park et al. 

1997]. Therefore, C2 is used to use generate Ck (k = 3, 4 … n). Having the candidate itemsets, 

only one database scan is necessary to generate the large itemsets. Further, when updates come, 

the algorithm uses C2 along with the new data to refresh the results. The removal of a partition 

from the data considered for the mining process is made just by subtracting the occurrence count 

of the itemsets in the partition being removed, obviously just considering the ones that were 

already frequent in that partition, from the last C2 found.  

 

One example of application were SWF can be efficiently used is on merchandising products in 

constant evolution, in other words, products having new releases within a short period of time, 

such as electronic products. New electronic products get in market monthly and almost all of them 

become obsolete in two or three years from their releases. Therefore, after this time frame they 

are not sold in the stores anymore, having new models taking their place. Then, the new models 

sale rapidly grows on its early stage, that is, before the release and growth of another newer one, 

which a very common situation in this domain. Hence, the SWF algorithm fits in this situation once 

it easily adapts to changes according to the time. There will be a moment that the old product is 

no more largely consumed, thus not attending the required minimum support within the partition, 

being removed from the set of candidate itemsets.  

 

Later, two modifications to the SWF were proposed to increase its performance based on the 

incorporation of previously discovered information [Chang & Yang 2003]. The experience proved 

that these two are faster than the original SWF. We refer to: 
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− SWF with Frequent Itemset (FI_SWF), which reuses the frequent itemsets of previous 

mining processes to reduce the number of new candidate itemsets that have to be 

analyzed.  

 

− SWF with Candidate Itemset (CI_SWF), which reuses the candidate itemsets from previous 

mining processes. 

 

 

ZIGZAG 

The ZIGZAG algorithm [Veloso et al. 2002a] main idea is maintaining only the maximal frequent 

itemsets (MFI), also referred as positive border, to build in an incremental way a frequent itemset 

grid. This algorithm uses the knowledge discovered in prior phases to reduce the frequent itemset 

updating cost. The maximal frequent itemsets are updated through a process of retroactive search, 

leaded by the results of previous mining iterations, being thus an efficient way of determining the 

frequent itemsets. The idea of a backtrack search for finding maximal frequent itemsets in 

databases is based in a previously developed non-incremental algorithm called GENMAX [Gouda & 

Zaki 2001]. 

 

The algorithm is also very efficient when the user modifies some parameters, for instance the 

minimum support. The computation of the support used in ZIGZAG is based on the itemset 

associativity [Veloso et al. 2003]. This algorithm also supports mining when old transactions are 

removed from the database and new transactions are added, keeping the set of association rules 

coherent with the most recent data. This way, it allows a high interactivity degree, being therefore 

also suitable for mining fixed-length time windows.  

 

ZIGZAG is also appropriate to find reliable association rules by means of the stability property [Liu 

& Ma 2001]. Stable rules do not have great changes over the time, being thus more reliable. 

Thereby, it uses these associations to improve the performance of the incremental mining to 

accuracy. The algorithm also allows establishing a relaxation threshold to update only the frequent 

itemsets where the variation of popularity exceeds this threshold. The idea behind is that if there 

are few changes in the data related to an itemset, the rules from its subsets will probably stay very 

close to the actual rules. By not fully updating some maximal frequent itemsets, the algorithm 

increases its efficiency. 
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Incremental Sequence Mining 

The incremental sequential pattern mining algorithm called Incremental Sequence Mining (ISM) 

[Parthasarathy et al. 1999] is based on the SPADE [Zaki 1998] algorithm. This algorithm can 

update the sequential patterns on a database when new transactions and new clients are added to 

the database. The algorithm efficiently manages the memory by indexing the database creating an 

Increment Sequence Lattice (ISL), which is composed of all frequent sequences and also all 

sequences located on the negative border on the original database. The ISL prunes the search 

space for potential new sequences. The support of each member is also stored in the nodes of the 

lattice, where the children of each node are their subsequences. The algorithm uses a vertical 

database layout partitioned into blocks, which can fit in memory, where the attributes are 

associated with the list of transactions in which they occur. 

 

The main idea of the ISM algorithm is that when incremental data arrive, the incremental portion is 

scanned once to incorporate the new information in the lattice. The new data is combined with the 

frequent sequences and the negative border to determine the original database portions that need 

to be rescanned. In order to do this, there is a customer-id index that locates the block where a 

particular customer-id can be found. Then, a second index locates the items within the given 

partition. Afterwards, the algorithm makes a linear search for a given customer-id. Thereby, it can 

quickly jump to portions that will be affected by the update.  

 

Incremental Sequence Extraction 

The Incremental Sequence Extraction (ISE) [Masseglia et al. 2000] algorithm reduces the 

computational costs through the reuse of minimum information from old frequent sequences like, 

for example, the support of frequent sequences. The set of candidate sequences to be tested is, 

therefore, considerably reduced.  

 

Being k the length of the longest sequence, the problem can be divided into finding all frequent 

sequences of size j ≤ (k+1) and finding all sequences of size j > (k+1). In the former sub-

problem, infrequent sequences in the database may become frequent with the update and new 

sequences that were not in the database may also become frequent. On the other hand, the latter 

sub-problem is much simpler and can be solved in a straightforward manner with a GSP-like 
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approach that uses k+1 sequences to generate candidate k+2 sequences and so forth, until it finds 

all frequent sequences. 

 

For discovering frequent sequences of size j ≤ (k+1), the ISE algorithm executes iteratively. In 

order to better explain how the algorithm works, suppose we have an original database DB and an 

incremental set db+. First of all, the algorithm scans db+ pruning out infrequent sequences by 

combining with the frequent sequences in DB and generates the candidate 1-sequences L1. From 

L1 x L1 it generates candidate 2-sequences, checking them in the updated database to find the 

frequent 2-sequences. At the same time, it also obtains the set of frequent subsequences 

preceding items of db+. From this set, associating items of db+ to subsequences of DB, it obtains 

a new set of frequent sequences called freqSeed. Afterwards, the algorithm generates candidate 

extensions from the frequent 2-sequences. Later, it uses these candidate extensions along with the 

freqSeed to generate candidate 3-sequences. Finally, the updated database is scanned for 

validating the candidate sequences, finding the set of frequent sequences. The process reiterates 

the generation of candidate extensions and candidate sequences until all candidate sequences of 

size j ≤ (k+1) are found. 

  

 

2.7 Algorithms Comparison 

 

If we analyze the incremental mining techniques explained in the previous section, we can notice 

some of their advantages and disadvantages. Looking on the algorithms proposed to find 

association rules, the SWF is very efficient when we want to mine according to a delimited time 

space, for instance, the last 6 months. As it works with partitions, the windows are moved 

throughout the time and only the patterns that meet the required support are passed over to the 

next updates. The database partition helps on efficiently managing the memory, which is very 

important when dealing with large databases. However, the algorithm is not so efficient when the 

support is changed, turning to be somewhat inflexible. The support can only be changed to a lower 

number without re-executing the mining over the whole database if the new support is only 

considered in the incremental partitions after its change [Cavalcanti & Belo 2005]. In other words, 

the algorithm cannot find the missing candidate itemsets, due to the consideration of a lower 

support, on the already mined partitions without re-executing. This does not occur with higher 
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support values because all the algorithm has to do is filter the candidates that previously met the 

support requirement but do not attend to the new minimum value.  

 

On the other hand, the ZIGZAG is more flexible regarding to changes in support value and also 

performs efficiently when mining according to a fixed-length time window. Nevertheless, it has a 

drawback in terms of memory requirements since it needs to have its lattice structure in memory 

in order to perform its database retroactive search to update the frequent itemsets. Therefore, 

ZIGZAG potentially consumes a lot of memory when dealing with large databases and can turn out 

to be slower than SWF in this case.  

 

In the case of the algorithms for mining sequential patterns, the ISM is very efficient for small 

databases and presents more flexibility since it allows changing the support value without having 

to rescan the original database. That occurs due to the storage of the negative border. However, 

keeping this negative border consumes a lot of memory, what makes it not very adaptable on large 

databases. It is obvious that the adaptability to large databases also depends on the hardware 

used.  

 

The ISE, in turn, looses flexibility by not using the negative border, what increases the probability 

of having to rescan the database, for instance, when the support value is changed. The candidate 

set generated can also be huge, making its test phase slow. Another disadvantage is that its level-

wise working manner requires multiple scans of the whole database, which is very costly when 

sequences are long. Although ISE may be some times costly in terms of processing, it generally 

consumes less memory than the ISM, what makes it more suitable when mining large databases.  

 

We can therefore realize that for choosing an incremental mining technique, we foremost shall 

analyze some characteristics like the database size, the available hardware and eventual 

necessities of changes in the mining requirements. Thus, it is possible to choose a suitable 

incremental mining algorithm for each specific case, balancing important characteristics such as 

flexibility and fastness [Cavalcanti & Belo 2005]. 
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Chapter 3 
 

3Incremental Mining on the Web 
 

 

3.1 Clickstream Information Sources 

 

As organizations realized the importance of discovering knowledge about their customers, they had 

to make their sites capture as much information as they could about them when using their sites. 

For instance, a site-restructure seeking to attend each visitor’s characteristic and necessity is only 

possible if we have some knowledge about their profile. Consequently, Web sites began to adopt 

several strategies for identifying the profile of the users. Some of them initially asked the user to 

register, giving some personal data – a “passport” could be delivered – which would give him 

access to the contents of the site. Nevertheless, many users give up in visiting a given site when 

they are asked or invited to fulfil forms [Nakov 2000]. 

 

Therefore, when this fact was evidenced, some specialized mechanisms for automatic profile 

discovering were developed. Recent studies and applications added the automatic recording and 

tracking of users’ activities while they navigate on the site. For instance, they store the visited 

pages, pressed buttons, followed hyperlinks, or the query submitted. Moreover, other information 

related to a specific user is also stored, such as the IP address, the Web browser used, or the date 

and time of the site access. All the collected information is stored according to some standard 

formats, in specific log files, usually called clickstreams. One visited page is, therefore, one of the 
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several data items stored in the site’s clickstream belonging to a session. A session is composed of 

a sequence of clicks derived from the recording of the actions performed over a site. Thus, the site 

keeps a complete history of the users’ activities, allowing an effective and objective profiling. 

Before any kind of analysis, it is important to pay attention on what kind of actions can be done 

and which information can be gathered from clickstreams to achieve effective actions. 

 

Through the clickstreams, it is possible to extract a wide variety of information about the 

interaction processes between the client and the accessed site. The information captured can 

provide valuable insight through data mining. If the recording of these actions is performed in a 

fast way, they can be very important for helping an eventual decision-making process or a site 

restructuring, according to the visitor profile.  

 

The clickstream data used for applying mining processes can be collected at server-level, client-

level, proxy-level, or else acquired from an organization database. Client-level collection benefits 

from lowering the problems related to caching and session identification. However, it has the 

drawback that it is made by a remote agent, e.g. Javascripts or Java applets, or modifications on 

the Web browser, thus requiring authorization and cooperation from the user to enable 

functionalities or use a modified browser. Proxy-level collection, in turn, may show the real HTTP 

request from multiple clients to multiple servers, but these data might also not be available since 

the proxy may be outside of the organization. Finally, server-level collection is the most important 

one as it records the browsing behaviour of site visitors, not requiring their authorization and being 

always available since it resides at the same server where the Web pages are stored [Srivastava et 

al. 2000]. Thus, in this work, we will only consider the clickstream data stored at the server-level. 

 

The Web servers usually follow specific standards to record data from user’s navigation processes 

within the Web logs, probably supported with cookies. The two most popular formats are 

[WWW03]: the NCSA Common Log Format (CLF) and the NCSA Extended Common Log Format 

(ECLF) [Luotonen 1995]. The CLF is the oldest format and the one that contains fewer fields, being 

somewhat poor in terms of information stored. However, it has the advantage of being accepted 

by most of the Web servers, being also the default format for many of them. A log entry in the CLF 

is composed of the following fields: “remotehost”, “ident”, “authuser”, “date”, “request”, “status” 

and “bytes”.  
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The ECLF is a variant of the CLF where two more fields were added: “referrer” and “user-agent”. 

Table 1 below explains the meaning of each one of these fields. 

 

Table 1: Extended Common Log Format fields 

Element Description 

Remotehost Domain name of the client that made the request or IP 
address if the name is unavailable 

Ident Remote user identity information (name) 

Authuser Username as which the user has authenticated himself 

Date Date and time that the request reached the server 

Request The first request line from the client 

Status The three-digit HTTP status code returned to the client 

Bytes The content-length of the document transferred excluding 
HTTP headers 

Referrer URI of the source of the request 

User-agent Name and version of the client’s operating system and 
browser used 

 

An example of a log in the ECLF is given in figure 4 below, where we identified each one of its 

fields. Note that the fields related to user identification are not required, having a minus sign “–” 

character when not supplied.  

 

Although the CLF and ECLF are the most used log formats, they do not provide the transfer time, 

domain name or cookie information, which disables the possibility of generating some reports. In 

order to support the necessities of servers, clients and proxies, another log format was developed 

by the World Wide Web Consortium, the W3C Extended Log Format (ExLF) [Hallam-Baker & 

Behlendorf 1996]. This type of log is self-identifying containing at the beginning of the file log a 

header with metadata directives about the file content. Therefore, the metadata header tells what 

information, with its data type, is recorded in the log. Thus, the ExLF is the most flexible among 

the log formats. Table 2 shows some directives present in ExLF. Among the directives, only version 

and fields are required ones, the others are optional. 
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Remotehost 

Ident 

Authuser

Date Request

Status

10.0.0.26 - - [30/May/2004:18:17:58 +0100] "GET /newsonline/sports.htm HTTP/1.1" 200 

818 "http://newsonline.com/main.htm" "Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)" 

Bytes 
Referrer User-agent 

 

 

 

 

 

 

 

 

Figure 4: Example of log in ECLF 

 

From the fields recorded by the Web server in the clickstream, we can also obtain extra 

information by analyzing them. For example, through the IP address it is possible to identify the 

individual users and user’s origin. Moreover, we can also identify the user’s sessions including the 

start page, end page, and all pages visited between those two. 

 

Table 2: ExLF directives 

Directives Description 

Version  The version of the ExLF 

Fields  List of fields recorded in the log file 

Software Identification of the software that generated the log 

Start-Date Date and time of log creation 

End-Date Date and time that the log was finished 

Date Date an time that the entry was added 

Remark Comment information (shall be ignored when analyzing 
the log) 
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If we develop knowledge-discovering activities in clickstreams, we expect to get results that we 

can use, with significant advantages in the Customer Relationship Management (CRM) field, which 

has as its main goal maximizing customer satisfaction and loyalty. Consequently, the organization 

will have a greater Return Over Investment (ROI) on the Web, and will naturally increase its 

profits. However, in order to make the data extracted have business sense, so the analysis and 

decisions made from them are suitable to the company, it is important to merge the acquired 

information with information related to the Web site architecture, products and services the 

company is promoting and supplying on the site, and mainly the company’s business and 

marketing objectives. 

 

When we apply mining techniques over Web sites to discover knowledge based on data derived 

from customer navigation behaviour, we are studying the way the site is being used. In this 

situation, we are dealing with a specific branch of study in the data mining field called Web Usage 

Mining (WUM). 

 

 

3.2 Mining Clickstreams 

 

When performing WUM techniques over a site to analyze users’ navigation behaviour we are 

essentially looking towards examining clickstream data. Due to the huge amount of generated data 

in frequently visited sites, clickstream analysis is very hard to do “by hand” [Ypma & Heskes 2002]. 

Actually, the sum of data collected each day quickly makes clickstream data difficult to manage 

and very costly to analyze. Thus, many efforts have been done lately in researches for WUM and 

the main focus of actions have been in analyzing, treating and mining clickstreams for efficient 

extraction of Web navigation patterns, as well as the discovery of sorting relations, the prediction 

of navigation behaviour, or the extraction of other characteristics that may be interesting [Banerjee 

& Ghosh 2001]. Using this knowledge, companies may identify customers segments to target 

offline, optimize market campaigns through personalization of Web pages, banners and links or 

else avoid content delivery issues such as redundant contents or pages too rich in graphics and 

animations for low bandwidth users.  
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From the application of mining techniques over clickstreams, one can extract statistics and 

interesting patterns in order to help in decision making processes. Within the overall process to 

achieve this goal, the data shall pass by three main phases:  

 

• Preprocessing – clean and prepare data for the mining process.  

 

• Pattern discovery – perform the mining process for knowledge discovering. 

 

• Pattern analysis – analyze, interpret and understand the mining results in order to apply 

them in decision making processes. 

 

Figure 5 shows the base architecture of a WUM system comprising these three stages. 
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Figure 5: Base architecture of a WUM system 

 

First of all, the Web server stores the data about client navigation in the clickstream. Once stored, 

the data shall pass through a cleaning process to, for example, eliminate null values or incomplete 

data, complete some of the incomplete data that may be important, and remove unnecessary data 

for the mining process. This preprocessing task is the most difficult among the WUM processes, 

many times due to the incomplete data [Srivastava et al. 2000].  



Incremental Mining on the Web 
 

 
37 

In order to visualize one of the problems (the missing requests) in this phase, suppose that the site 

being analyzed can be viewed as a tree (figure 6). The page A has a connection to page B, and 

page B, in turn, links to pages D and E. There is no direct connection from page A to either D or E. 

We know that if the log file has only requests for A and D, a path completion needs to be made by 

adding a request for page B to the user. This situation generally occurs due to the caching of Web 

pages by clients or proxy servers aiming on reducing network traffic. When the page is already in 

cache, it is not requested to the Web server. Thus, the log record to that page will be missing, 

resulting in an incomplete path.  

 

 
A

B C

D E F

 

 

 

 

Figure 6: Example of a tree of linked pages in a Web site 

 

Some other errors that commonly occur within clickstream data include, for instance, log entries 

pointing to invalid pages or mal formed logs originated from proxy access errors. Besides that, in 

order to have just the data required for the mining process, the cleaning procedure has to filter 

unnecessary data. When mining to discover user navigation behaviour patterns, we usually only 

want the requests representing pages of the site. Hence, we need to filter log entries related to 

requests for images, scripts, style sheets, and others. By removing the useless data, the 

clickstream size is reduced, what will consume less storage space and facilitate the upcoming 

tasks. However, whether to keep or not these requests for images depends on the purpose of the 

mining. For example, if the mining is used for Web caching, the requests for images and 

multimedia files from logs should not be removed, because these are typically bigger files than 

HTML documents, and therefore are the most important to cache. 

 

Among the filtering process, another important task that has to be made is to eliminate the 

requests derived from the navigation of Web robots, also known as Web crawlers. Crawlers can 

significantly change the access frequency of a given page, since some of them navigate through all 
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pages they can find a link to. Therefore, low-accessed pages may appear to be frequently visited 

due to crawler accesses. This has a high chance of occurring if the page in question is referred by 

links in many other pages, thus robots can easily find it. Most robots can be identified by their IP 

address or user agent. However, some of them have hidden identity, complicating the filtering 

task. In order to identify these hidden robots, methods generally based on heuristics are used. 

Some works have been published addressing this problem [Tan & Kumar 2002]. 

 

Moreover, when the mining analysis requires user identification, one frequently found problem is 

how to identify the unique users and associate them with their access log entries. The easiest way 

for accomplishing this task is through user registration by asking him to fill out a questionnaire. 

This method has the advantage of collecting some data that are usually not available in server logs 

such as rich demographic information. However, many users may simply provide incomplete or 

false information, or else not go further if the site asks for registration, as referred before. 

Consequently, the study for the identification of users in clickstreams without requiring user 

cooperation gained impulse. 

 

One of the difficulties found when identifying users in clickstreams is that single IP addresses may 

contain multiple sessions. This occurs when Internet Service Providers (ISPs) have proxy servers 

that users access the Web through them. Then, more than one user may access a given Web site 

at the same time through the same proxy server, having thus the same IP.  

 

A single user may also access a Web site from different machines, having a different IP address in 

each session. This will complicate the task of keeping track of repeat visits from the same user. 

Therefore, user identification is a difficult task if the site does not have an authentication 

mechanism. Some studies proposed heuristics for accomplishing this task [Cooley et al. 1999] 

[Pirolli et al. 1996], like the identification based on IP, time and user-agent. 

 

Once cleaned and, if necessary for the mining process, with the users identified, the transaction 

logs need to be identified with the click sequences separated into sessions. Extracting user 

sessions from Web server logs, especially in the lack of cookie information, is also a difficult work. 

There are some methods for performing this task but they are all based on heuristics, making us 

achieve only a relative accuracy. The simplest method for achieving this task is based on a 

timeout, where we define a time limit between page requests from a given user IP. Every time this 
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limit is surpassed, we consider that the next page requested belongs to a new session. The most 

common timeout limit used, which was defined based in several experiments, is 30 minutes 

[Cooley et al. 1999]. 

 

Then, the resulting clean data can finally be integrated in the database that will be mined, typically 

a Data Webhouse. The term Data Webhouse was firstly introduced in [Kimball & Merz 2000] and it 

basically refers to a Data Warehouse especially projected for storing data derived from 

clickstreams, aiming on helping the decision making process inside organizations that develop their 

activities in an e-commerce environment. The data are stored in a multidimensional form, which 

makes possible the use of more efficient data analysis techniques, for example, through OLAP 

systems or data mining.  

 

With the integration of the cleaned and prepared data into the Data Webhouse, the preprocessing 

phase comes to its end. At this moment, the data is appropriate for the pattern discovery process 

which is generally made by a data mining technique. The patterns extracted can be, for instance, 

association rules or sequential patterns as explained in previous sections.  

 

The data extracted from a WUM process can be used for several purposes. Figure 7 summarizes 

some of the main WUM applications areas, which include as shown: personalization, site 

modification, business intelligence, system improvement and usage characterization [Srivastava et 

al. 2000]. In the following sections, we will provide an explanation of these application areas and 

how they can be applied in the real world domain. 
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Figure 7: Web Usage Mining Application Areas 

 

Once the data mining extracts the patterns, the third and last phase begins, which comprehends 

the analysis of the discovered patterns. Patterns analysis can be made by the market analyst or 
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the Web site administrator, usually through a specialized analysis tool. An analysis tool is extremely 

necessary if the mining process generates a high number of patterns. Nevertheless, it is also very 

important for a better understanding of the patterns generated, transforming patterns in easily 

understandable knowledge. In this phase, the interestingness measures previously explained in 

section 2.2 can also be used to filter the most interesting patterns. In addition, other 

characteristics may be taken into account, for instance, one can analyze separately only the new 

rules produced, that is, the ones that were not in prior mining results. 

 

For analyzing the discovered patterns through an analysis tool, one can perform, for example, 

OLAP operations, ad-hoc queries (if the patterns are appropriately stored in a database), pattern 

visualization through graphs and other types of analysis that may be available. Some examples of 

these tools are WebMiner [Mobasher et al. 1996], which enable us to query the discovered 

knowledge (association rules or sequential patterns) through a SQL-like mechanism, WebViz 

[Pitkow & Bharat 1994] and Starfield Display [Hochheiser & Schneiderman 1999], which provide 

the visualization of traversal patterns through graphs. 

 

  

3.3 Personalization and Site Modification 

 

An interesting use of clickstream information is the personalization of Web sites to individual user 

desires [Baglioni et al. 2003]. For instance, one can deliver services and advertisements based on 

user interests and thereby improve the quality of user interaction leading to a higher customer 

loyalty. Therefore, Web site personalization is one of the most direct and potentially effective ways 

for winning the loyalty of the visitors. The Personalization Consortium [WWW04] provides the 

following definition: 

 

“Personalization is the use of technology and customer information to tailor electronic 

commerce interactions between a business and each individual customer” 

 

Customer interests are generally based on what they have looked at on the Web site in the past 

and especially which sections of the site they visit and spend some time in. Through the 

clickstream it is possible to extract this information of where in the site customers probably want to 
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go, what information they seek, what services they utilize and what they buy, if the company in 

case sells products on the site. From their behaviour patterns, it is possible to determine what else 

they might be interested in. Thus, the company can profile their visitors in order to provide, for 

example, advertisements for desired products or links to their desired pages in dynamic customized 

and personalized Web pages for each visitor. Moreover, the clickstream data can be evaluated in 

order to measure how effective the customization and personalization of the given Web site was. 

Thereby, one can take better decisions about improvements on the Web site.  

 

According to [Mobasher et al. 2000], the main elements of Web personalization are: the 

categorization and preprocessing of Web data, the extraction of correlations between and across 

different kinds of such data and the determination of the actions that should be recommended by 

such a personalization system. A personalization system may analyze data through different 

manners such as collaborative filtering, rule-based filtering, content-based filtering and Web Usage 

Mining [Eirinaki & Vazirgiannis 2003].  

 

Collaborative filtering is based on asking the users to rate objects and tell their interests in order to 

predict what information should be of his interest, most of the times based on the interests of 

other users with similar choices. Rule-based filtering is slightly different since it asks the user to 

answer questions derived from a decision tree. After following the tree down to its leaves, it comes 

up to a final result, which should attend user’s needs. Notwithstanding, as we previously 

mentioned, visitors usually do not like to answer questions, rate objects or fulfil forms.  

 

On the other hand, content-based filtering relies on only following users behaviour in the past and 

recommending items that are similar to the ones they liked in the past. However, user behaviour 

changes throughout the time. Web Usage Mining will then extract statistics and patterns from user 

navigation behaviour and use them in order to properly personalize the site. The WUM 

personalization process usually has an offline part, which corresponds to the preprocessing and 

pattern discovery phases, and an online part, corresponding to the generation and publishing of 

personalized content which is based on the knowledge extracted from the offline component 

[Baraglia & Palmerini 2002] [Mobasher et al. 2000]. 

 

One example of personalization that can be made is as follows. Imagine that a visitor named Juan 

goes into the Sun Microsystems Web site and choose the Spanish language version of the site. 
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Then he follows the links to the Java programming language section and chooses to download the 

Java 2 Micro Edition (J2ME) toolkit for UNIX systems. At this time, without asking any explicit 

questions to the visitor, a Sun’s software should be able to conclude by analyzing the clickstream 

that Juan prefers the Spanish language instead of English, he is a UNIX user and is interested in 

programming for mobile devices. Next time Juan accesses the site, it should be able to self adjust 

in order to serve the pages in Spanish, filter links to show the ones for UNIX first and give more 

information about news, available updates and other links regarding to application development for 

mobile devices. In order to achieve this goal, the recommendations are generally obtained by 

analyzing data through a data mining algorithm. Therefore, the main goal of personalization is to 

better serve the customer by anticipating his needs. 

 

One of the most common uses of personalization is on the so-called recommender systems 

[Schafer et al. 2001]. They are mainly applied in e-commerce sites for making products 

recommendation and providing customer with information for helping them on deciding which 

product to buy. This can be particularly important if the site has many products advertised, making 

customers confused when choosing a product. 

 

In order to process the Web site contents and classifies it in conceptual categories, a content 

management model can be used. Then, the information acquired from the use of WUM techniques 

along with knowledge derived from the content management can provide possible alternatives to 

restructure the site. A publishing mechanism would be responsible for performing this restructuring 

job and guaranteeing that each user navigates through a site structure personalized for him 

[Eirinaki & Vazirgiannis 2003].  

 

Initially created Web sites have been designed to attend generic user desires. Personalization can 

be employed to develop what is called an adaptive Web site, which means that some modifications 

are made on the site to customize its content and interface to suit individual users or groups of 

users. An adaptive Web site may, for instance, add, remove or rearrange links, change reformat 

contents, show specific images or banners, etc. At the beginning, site changes used to be made by 

hand. As competitiveness among the companies grows at a fast rate, site modifications are turning 

to be automatically made. Thus, as soon as new frequent patterns are extracted from a WUM 

process, the restructuring task can be called and the site will provide information according to up 

to date user navigation behaviour. 
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3.4 Business Intelligence and Usage Characterization 

 

Knowledge obtained through WUM is very valuable for a company in order to make decisions 

efficiently related to e-business. The information on how customers are using the Web site allows 

market analysts to draw strategies aiming mainly on improvements regarding to customer 

relationship. Customer relationship life cycle involves customer attraction, customer retention, 

cross sales, customer departure [Buchner et al. 1999]. The effectiveness of promotional campaigns 

is also another important assessment that can be made through WUM. From there, the company 

may decide if it is worthwhile making more promotions similar to the one that was made or if the 

promotion made was not successful. WUM can also provide information on what products were 

most bought and advertisement click-through rates. 

 

When a company builds a Web site, it is evident that they are interested on how much of its 

business is coming into the company through the Web site. Organizations are generally concerned 

on attending the needs and interests of their stakeholders, because that is where their survival 

comes from. The most important stakeholders of a Web site include the company’s customers, 

suppliers and employees who use the site. Usually, distinct groups of stakeholders have different 

interests. For instance, some stakeholders may be interested in business and marketing 

management, while others may be interested in product management and in the technology field. 

Some questions asked by stakeholders in respect to the company’s Web site may be [Bosworth & 

Schiffman 2001]: 

 

• What marketing campaigns are driving visitors to the site? 

 

• What products are receiving a lot of interest, but they are not being bought at the end? 

 

• Are visitors accessing the information the company is emphasizing? 

 

• Are visitors looking mostly the pages that are easy to find? 

 

• How long is the average sequence of clicks from a visitor since he enters the site to where 

they want to be, or to where the company wants him to be? 
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• What behaviours result in more business and what behaviours result in less?  

 

• What does the behaviour of most customers suggest to company’s marketing and sales 

departments? 

 

All these questions are very common and important in the customer relationship field. The answers 

to them can be attained through WUM. As a result, if the company achieves customer satisfaction 

and loyalty, it will obviously increase its revenues and profits. The main goal is maximizing the 

advantages for both: the visitor and the company. Therefore, what will measure and drive the 

success of a Web site are mostly its visitor or customer experience and relationship with it. 

 

Most of the stakeholders’ questions are actually related to site usage characterization. By finding 

patterns through WUM we are studying how browsers are used and how user interaction happens 

with the browser interface. Therefore, the navigational strategy of the user browsing the 

company’s Web site is analyzed. Knowing the navigational strategy of most users, one can predict 

users’ future behaviour while he interacts with the Web site.  

 

 

3.5 System Improvement 

 

When users access a Web site and within it execute an action, performance and quality of the 

services provided are decisive factors to satisfy them. Through WUM techniques, it is possible to 

understand how the site is being used and thereby develop strategies for load balancing, network 

transmission, Web caching or data distribution [Srivastava et al. 2000] [Zaiane 2001]. In addition, 

it is possible to extract patterns for helping in intrusion and frauds detection, besides the 

discovering of other security problems.  

 

Once having the frequent patterns in hand, one can realize that some part of the Web site is many 

times more visited than others, or else find out that a given service within the site is more required 

than the others. This knowledge allows the organization to take some decisions with a much higher 

level of confidence. For instance, the company may decide to put some pages or services in a 
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specific server to improve systems performance and thus provide a faster access to them. One can 

also realize the need of extra hardware equipments.  

 

In addition, some frequently accessed pages may be redesigned to better attend the kind of users 

that, according to the behaviour patterns, access these pages of the site. However, if a page, or 

service, is highly accessed, and because of that it represents a system bottleneck, turning slow its 

access, the system can be redesigned to distribute it. For example, one can provide alternatives for 

achieving the same results of that service, or else other pages providing some information that 

used to be only available through the high accessed one. Knowing customer behaviour through 

WUM is therefore an important tool for helping in making improvements on a Web site, aiming on 

better attending its clients, maximizing their satisfaction and loyalty. 

 

 

3.6 Incremental Web Mining 

 

There are many possibilities for using WUM techniques inside a company. The advantages acquired 

from that are also very diverse and have, usually, a large impact, mainly on activities related to 

tracking visitors and site re-structuring. The WUM processes are performed over large dimension, 

usually static, data repositories. The execution time is usually very large when compared to the 

time the decision agent has to take any urgent decision.  

 

Databases that hold data derived from clickstreams are always changing. For example, to enable 

the analysis of Web site visitor behaviour, each time one makes a click for buying a product or just 

for navigating on the site, the Web server stores the information on the clickstream. Thereby, the 

database got a new record, what means the early mining techniques would already have to re-

execute the algorithm on the whole database in order to update the results for considering this 

new click.  

 

From the example above, we can see that usage data collection on the Web is incremental in 

nature. Suppose now we want to mine data derived from a frequently accessed site. In this 

situation, the database rapidly grows. If we want to personalize such Web site to better attend the 

needs of visitors, we must be aware that their navigation behaviour may also rapidly change. 
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Consequently, the behaviour patterns extracted by a mining algorithm may also change very fast – 

which is a common situation in WUM. For example, important commercial dates, like Christmas, 

Valentine’s Day and others may cause a drastic change in the search for some specific kinds of 

products or in the visiting frequency of some specific areas of the Web site. Re-executing the 

algorithm in the entire database would soon produce only undesired results, because when the 

mining algorithm finally finishes its execution, the behaviour patterns found might be no longer 

valid. Therefore, WUM algorithms should be scalable and accurate to be applicable to real-life Web 

sites with a high number of visitors. 

 

Through this example we can visualize the importance of applying the incremental mining 

approach in the Web domain. The incremental process efficiently adjusts to the new behaviour 

patterns that may emerge or to the previously valid patterns that may turn out to be invalid in 

consequence of the updates. Most recent studies regarding to mining Web sites are being 

performed in this incremental approach.  

 

Figure 8 extends the idea presented before in figure 5 by adding the incremental approach to the 

WUM architecture. The patterns discovered by the data mining system are now stored in a 

database. After updating the Data Webhouse with cleaned and prepared data coming from the 

preprocessing phase, the data mining system uses the already discovered patterns derived from 

previous mining processes, gathered with the data coming from the update, and refreshes the 

patterns through an incremental technique. The incremental mining techniques explained in the 

previous chapter are suitable for this type of application. Therefore, association rules or sequential 

patterns are examples of valuable information that can be extracted from visitors’ navigation 

behaviour records in the Web site. 

 

Using an incremental approach, the organization market analyst can efficiently get the result 

information from the system, what can be a very important help when he needs to take fast and 

effective decisions, in either a short or medium term.  

 

The fast result update enables the company to track client trends and this way it can restructure in 

advance its Web site in order to make it more functional, attractive and pleasant to its clients. 

Thus, incremental WUM allows the site to reflect the most recent results by restructuring it with 

information that is guaranteed to be either the same or extremely close to the real-time frequent 
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patterns. Therefore, one can restructure the pages according to a given visitor profile taking into 

consideration the last customer behaviour records, while this visitor is navigating on the site. Site 

modifications that, with the increasing competitiveness among the companies, have already 

changed from a manual execution to an automatically way, can now be performed even faster with 

the mining results being updated much more often. 
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Figure 8: WUM system with an incremental approach 

 

The incremental mining can also provide benefits in terms of system improvements. The 

incremental processes usually require much less memory and CPU processing for accomplishing 

the same tasks. Therefore, in some cases that the algorithm needed to be parallelized in several 

machines to have the results on a reasonable time, now the results can be achieved with a smaller 

number of machines. 
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Chapter 4 
 

4A Practical Application Case 
 

 

4.1 The Case Study 

 

The amount of time people are working, studying or just entertaining on computers has been 

growing very fast. This fact has made the Internet be one of the most important sources of 

information for many people. As we saw in previous chapters, the analysis of data derived from 

visitor navigation behaviour is crucial to predict their possible future behaviour and thereby take 

effective decisions for attending their needs. In this research, we worked on a real case study 

aiming on analyzing data derived from the navigation of visitors over an online newspaper.  

 

Day by day, people are reading more online newspapers rather than buying printed ones. Hence, 

newspaper companies realized that if they wanted to keep their clients loyalty, they should turn 

their attention to this new way of being in commercial life.  

 

Most of the online newspaper content is free, what makes the Web profit come basically from 

publishing other companies’ advertisements. In order to attract companies to advertise on its Web 

pages, the newspaper company has, in turn, to guarantee that visitors will see the published 

advertisement, thereby this advertisement can possibly catch the attention of visitors. 

Organizations interested in advertising their products or services usually seek reaching the highest 
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number possible of visitors. However, how can the newspaper company guarantee that a given 

published advertisement will be seen by most of its visitors?  

 

One of the possible solutions is to merchandise the advertisement spots according to the page 

access rate. Nevertheless, each client has his own interests and accesses different pages. 

Moreover, some expected or unexpected events such as political elections, tragedies, sport 

competitions or any other important happening may provoke a sudden change on visitor navigation 

behaviour. This change may turn some previously low-accessed pages into high-accessed pages 

and vice-versa. 

 

As explained in chapter 3, when visitors navigate through a Web site, the Web server keeps track 

of their navigation, storing, among other information, the accessed pages. By applying mining 

techniques over this stored information, it is possible to extract navigation patterns and profile 

users. These patterns may be extremely valuable for taking decisions such as dynamically 

changing the Web site advertisements according to each visitor profile and thereby catch their 

attention.  

 

Moreover, if an incremental approach is followed, the mining algorithm is able to perceive the 

behaviour changes and adapt the pages to have the desired advertisements in spots that were not 

frequently visited, but for some reason turned to be often visited. Thus, a newspaper company 

may merchandise its advertisements spots, charging for the publicity according to the frequency in 

which the pages are visited, what will be, consequently, the frequency in which the advertisement 

published will be seen. This frequency-oriented merchandising is possible due to the fact that we 

can guarantee through the incremental mining process that a given advertisement will reach a high 

number of visitors, even if the visitors change their navigation behaviour. For accomplishing this 

purpose, we suggest to classify the advertisements into levels, where the highest-level ones, which 

will be the most seen, may either be the most expensive ones or ones that are considered more 

important for some other reason, like a partnership between companies.  

 

Figure 9 shows how our incremental mechanism works when changing the publicity banners. In 

short, the main idea is to have the advertisements classified into levels, according to their price 

and importance, and along with the mining results identify the most visited pages, building a page 

rank for the visitor’s profile. The most visited pages have “n” spots for advertisements. The 
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available spots, in turn, are classified by the access frequency of the pages they belong and their 

location within the pages. In the example shown in figure 9, the most visited sections of the 

newspaper for the given visitor are, in sequence: Main (M), Technology (T), Business (B), Sports 

(S) and Health (H). Besides that, it shows the distribution of the advertisements according to their 

levels in the pages spots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Incremental mechanism for changing page ads 

 

Note that if the visitor starts by the main page and instead of going to the technology section, 

decides to go to the sports section, after accessing the sports section he will probably be fitted in 

another pattern with a different arrangement of the most visited sections. Therefore, we can have 

a pattern telling that people who accesses main and sports sections have a greater probability of 

also accessing health and not technology or business. Thus, the advertisements will be reorganized 

so that the top level ones will be now shown in the health section, leaving the lower level ones to 

technology and business. In this example, since the visitor navigation did not follow the most 

probable pattern stated at the begging, a lower level advertisement was initially shown in the 

sports section. However, the top level advertisements are yet guaranteed to be the most seen as 

this visitor will likely be fitted in another pattern and thus the section with the highest probability of 

being the next accessed according to this new pattern will be restructured to have the top level 

advertisements in the spots. 
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Basically, what we want to do is collect and process, in a useful time, the navigation information 

about the users that at a given time are consulting the organization’s site. Thus, it would be 

possible to restructure the Web site in a short term and thereby deliver the desired 

advertisements, activated according to the user’s profile. 

 

The incremental mining algorithm combined with the advertisements level database act as a 

trigger to dynamically shoot advertisements in the pages spots. Based on this idea, we named 

our system as “Spottrigger”. In the following sessions we will show how Spottrigger can 

dynamically update the Web site, changing advertisements in the pages spots. 

 

 

4.2 Data Life Cycle 

 

We devise a model through the Spottrigger system for the data analysis process that goes from 

the storage of information about visitor navigation to the Web site restructure. This analysis 

process has several intermediate phases. The complete data life cycle is illustrated in figure 10. 

First of all, we briefly describe each process corresponding to the numbers signed in the figure, 

indicating after the description its number involved in parenthesis. Later, we provide a better 

explanation of each one of the cycle processes. It is important to say that even though we show 

data being stored in databases in some of the processes, our system may also work only with flat 

files. 

 

The cycle starts when a user is visiting the newspaper Web site. The pages he visits are requested 

to the Web server (1). The Web server stores visitor navigation information in log files, commonly 

called clickstream (2). The system regularly requests the clickstream new data and stores them in 

a Data Staging Area, where some cleansing and preparing processes will be performed. This way, 

the acquired data will have only the information desired and in suitable format, so they can be 

loaded into the Data Webhouse (4). Now, the data are ready to be analyzed, in our case, by an 

incremental mining algorithm.  

 

The incremental mining approach is the chief section of the Spottrigger system, thus we will bring 

into focus, carefully detailing its steps in a further section. The incremental mining algorithm gets 
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data from the Data Webhouse and from results of previous mining iterations (5). By processing the 

incremental algorithm we obtain frequent patterns (6) which represent visitor navigation 

behaviour. These results are stored in a patterns database (7) for being used by the forthcoming 

processes responsible for replacing the advertisements on newspaper pages and by the next 

mining iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Spottrigger Data Life Cycle 
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Afterwards, we get to the other main pillar of our system, the advertisement replacement 

algorithm. As we shortly explained in the last section, the idea is to have the advertisements 

classified in levels and stored in a database. The advertisement replacement algorithm will process 

the information from both, patterns database and advertisements database (8), and matching with 

the data coming from current visitor navigation records (9) will update the advertisements on the 

page spots (10). These updated pages are, according to the frequent patterns, the ones this given 

user has the highest probability of visiting. Once updated, the pages are sent to the Web Server 

(11), so it can deliver the pages with the desired advertisements on the page spots for that visitor 

(12). From now on, the system cycle restarts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Spottrigger interface 

 

We designed a simple interface in Java [WWW05] for our Spottrigger system to better perform our 

tests and visualize the results. The interface allow us to interact with the system by, for example, 

establishing the mining parameters, choosing the files to mine or visualizing the results through 
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tables that enable us to order the results according to any of the table columns. The initial view of 

the Spottrigger interface is illustrated in figure 11. In short, through the interface it is possible to 

choose a file to clean and prepare, perform full mining on the original dataset or an incremental 

mining if a previous mining has been made, change the mining settings, launch clicks as they were 

being performed at the moment for a simulation of what occurs in real world domain, visualize the 

results through tables and simulate a visitor navigation seeing the sections in sequence where the 

advertisements would be replaced.  

 

In the following sections, we will detail the processes that compose Spottrigger’s Life Cycle, 

explaining our experiments. For the steps possible to visualize through our interface, we will show 

pictures detailing how we perform them and the results obtained. We evaluated the main 

processes measuring the time they took to execute with a given amount of data. Our efforts were 

mainly focused on two particular processes of the system: the incremental mining and the 

advertisement replacement. It is important to emphasize that some processes on the cycle might 

include steps other than the ones described in the following sections, which we found uninteresting 

for this work as they are not part of our focus.  

 

 

4.3 Storage, Extraction and Pre-processing 

 

Initially, as users navigate through the newspaper’s Web site, the pages accessed are requested to 

the Web server. The Web server, in turn, stores information obtained from every click on log files, 

the so-called clickstream. Therefore, the clickstream is constantly being updated with new data, a 

common situation in the Web domain.  

 

The system’s first step is to establish an FTP connection to the Web server, pass by the 

authentication process and make the request to extract the clickstream that will be analyzed by the 

mining process. This way, the clickstream extracted is firstly stored in the system’s data staging 

area and may alternatively have an Operational Data Store (ODS). The ODS is a data structure 

appropriate for real-time or near real-time operational process support and for tactical decision 

support. It is usually non-persistent, storing only cleansed and consolidated data for short periods 

of time [Kimball & Ross 2002]. The clickstream extraction module is visually detailed in figure 12. 
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The clickstream may be extracted from multiple Web servers if the company has more than one 

server holding the Web site. When it gets to the data staging area, it contains raw data, which 

means there may be errors, incomplete data, data that are not in a proper format for the 

upcoming processes, or even unwanted data. Therefore, after being extracted from the Web 

server, the clickstream shall pass through a pre-processing phase, which consists in data cleansing 

and preparing, so it can further be successfully integrated in the decision support systems, typically 

in a Data Webhouse. This preprocessing work is performed within the Data Staging Area, where 

the renowned Extract, Transform and Load (ETL) processes take place.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Clickstream Request Module 

 

In our case study, the online newspaper’s clickstream contained, for example, unwanted data such 

as requests for site images and scripts, data generated by the navigation of crawlers or Web 

robots, and logs with errors, for example, derived from a proxy access denied. Some fields found 

to be in an inappropriate format were date, time and page. From the page field, we extracted the 

page category and associated with an ID for applying the mining. We will soon describe how we 

extracted the page categories from the pages.  

 

Other fields according to each specific case may also demand modifications. For instance, disparate 

codes for gender, marital status, and other fields may be required to be transformed into the Data 

Web Server

Data Staging 
Area / ODS 

Authentication 

Clickstream
 

R
equest 

Clickstream

Cl
ic

ks
tr

ea
m



A Practical Application Case 
 

 
57 

Webhouse standard, or else, companies that sell products or offer services on the internet may be 

required to change the product or service name by their IDs, since a given product or service 

name could have been written in different ways (with abbreviations, spelling errors, etc.).  

 

The errors encountered and cleaned in this pre-processing phase are catalogued for a possible 

future analysis. If the error percentage represents a large part of the clickstream, it may be 

worthwhile to analyze what is the primary reason of these error occurrences and possibly make 

corrections on the storage process. 

 

One common and important question regarding to this clickstream extraction process is how often 

the system should ask for the clickstream updates. In fact, there is no unique right answer for that 

question. It really depends on the average amount of information stored per minute or per hour, 

and on how often the upcoming processes require the data to be updated in order to not 

jeopardize the overall system performance. If the average information flow into the clickstream is 

low, the system can take longer to get the incremental information, because the overhead of the 

extraction process to acquire a small amount of information will likely not be compensated by the 

processing time gain it yields by loading this information sooner. In addition, if we process a small 

amount of incremental information the final results will likely be the same or have only minor 

modifications. If we indeed have a high flow of information, which in an online navigation matter 

means a frequently accessed site, the system has to acquire the clickstream more often as the 

amount of work to be done by the cleansing and preparing processes will increase and, therefore, 

the processing time gain will make up for the overhead. Moreover, in this situation, taking longer 

to acquire the information might signify that you may work with results that are not valid anymore, 

since the results may quickly change due to the amount of new data inserted within a short period 

of time. 

 

With an approximately daily average of 800 to 1000 pages requested per hour, our system was 

designed to request the clickstream every 3 hours. We found that less than 3 hours is not 

worthwhile since at this value the information processing time is sufficiently low, the overhead 

caused is not high, the upcoming processes do not need the updated information faster and the 

amount of information in 3 hours is sufficient to make small changes in the result and not stay 

outdated, missing result changes, for a long time. In addition, when we reduce the time for 

performing the incremental mining process we are loosing some information. This occurs because 
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visitors generally spend a considerable amount of time reading a newspaper. Then, if one starts 

reading at a given moment and the information stored in the clickstream is acquired during his 

reading, his navigation will be interpreted as two distinct sessions because the preprocessing phase 

will not know that his navigation was not finished yet. Therefore, the more we reduce the time 

interval between the mining iterations, the more sessions will be cut, what may affect in the 

discovery of long navigation patterns. In order to solve this problem, we would require a 

mechanism of session controlling so only full sessions would be passed to the incremental dataset 

to be mined. 

 

In an online newspaper, the pages change from day to day. For example, we can have on one day 

a page URL http://www.onlinenewspaper/sports/semifinaleuronews.html and a few days later this 

page might not be available anymore. Besides, a page URL http://www.onlinenewspaper/sports/ 

finaleuronews.html that did not exist in the newspaper section may now exist and become 

frequently visited. Therefore, if we make our analysis considering the paths at the Web page level 

of resolution, paths tend to have very little similarity with one another. At such a high resolution, 

there are very few precise Web page matches between the paths [Alves et al. 2004]. Thus, Web 

pages can be firstly grouped into categories (that we also call concepts), in our case based on the 

newspaper sections. When we convert the raw paths to concept-based paths, the average size of 

the path reduces, and we get paths that can be easily understood. We also aggregate the concepts 

by merging successive concepts. This way, the mining results will be more concise and accurate 

making easier and faster the task of connecting page spot, the desired advertisement to publish 

and reader’s navigation for an online advertisement replacement. Table 3 shows how we extract 

the concepts from the Web pages. 

 

Furthermore, another important task that has to be performed after the cleansing process is the 

session identification. As explained in section 3.2, the most common method used to identify the 

sessions is based in assuming a timeout limit of 30 minutes between the page requests from a 

given user IP. Consequently, we adopted this 30 minutes timeout value in our cleansing algorithm 

for performing the session identification. 

 

The preprocessing phase is generally the most expensive in terms of processing time, since it is 

the hardest one due to the amount of validations, corrections, problems with incomplete data and 

all kinds of processes that have to be performed in order to have accurate data, so we can trust 

http://www.onlinenewspaper/sports/semifinaleuronews.html
http://www.onlinenewspaper/sports/%20finaleuronews.html
http://www.onlinenewspaper/sports/%20finaleuronews.html
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the analysis that will further be made from them. Although cleansing and preparing data is 

extremely important, this was not our main focus in this work. Therefore, the algorithm developed 

for accomplishing this task performs most of the necessary and common treatments but may also 

miss some advanced ones. 

 

Table 3: Original paths converted to concept-based paths 

Original Path Concept-Based Path 

main/home.html 

main/todaysnews.html 

sports/semifinaleuroresults.html 

business/stockmarketnewrecord.html

Main 

- 

Sports 

Business 

main/home.html 

main/urgentnews.html 

politics/presidentfridaymeeting.html 

sports/nationalleaguecalendar.html 

sports/finaleuroresults.html 

main/todaysheadlines.html 

Main 

- 

Politics 

Sports 

- 

Main 

 

Through Spottrigger’s interface, we can perform the data preprocessing task by clicking at the 

“Clean and Prepare” button. The cleaning tab will show up with a field for choosing the source file 

to be cleaned, as we can see in figure 13. Once the file is chosen, all we need to do is click in the 

“Execute” button. The dataset will be preprocessed and the file with clean data will be stored in a 

system default directory called “prepared-data”. Later, at the mining process, the system is set to 

look into this directory for getting the file and mine it. After accomplishing the preprocessing task, 

the process log is shown revealing some statistics, such as the number of requests removed for 

each filtering procedure (images, crawlers, invalid pages and errors), the processing time and the 

number of sessions identified.  

 

For our experiment, we firstly considered 15 days of log as being our original dataset. Figure 13 

shows our system after preprocessing this raw clickstream, displaying the process statistics. Later, 

this preprocessing phase is performed in every incremental dataset arrived. 
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Figure 13: Clean and prepare process 

 

The clickstream considered as our initial dataset – containing 15 days of log recording – has a size 

of 356 MB. Thus, through the statistics shown in the figure above, we can see that our 

experiments resulted in a time of 90 seconds for cleaning and preparing 356 MB of clickstream 

data. Within the processed clickstream, there were a total of 1,620,987 entries, from which we 

initially filtered 1,399,413 entries, which represents around 86% of it. This occurs because one 

isolated page request usually generates requests for many images, scripts, style sheets, and 

others. Therefore, the amount of data filtered is commonly a lot larger than what stays in the 

cleaned result, unless if our goal to achieve through the mining process claims for using these kind 

of data being filtered. We also removed a sum of 19,745 requests derived from crawler navigation. 

Moreover, there were 738 requests for invalid pages and 39 log requests that were recorded with 

errors.  
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After the filtering process, we identified 112,885 sessions. From those sessions, we counted 82,948 

containing length equals to one page concept. Those sessions with length equals to one mostly 

point out crawlers, uninterested user or ones who just want to see only one section of the 

newspaper. It is very hard to deal with sessions like that as we cannot extract associations from 

only one concept. Therefore, we did not consider these sessions although it is important to know 

and analyze how much they represent of the total data. If they represent a high percentage of the 

clickstream, it may be valuable trying to discover the main reason of their occurrence, that is, if 

they are mostly crawlers that were not caught by the heuristics used in the preprocessing phase, 

or if the users are not sufficiently attracted to navigate on the site. After the preprocessing phase, 

we ended up with 29,937 sessions – which is around 26.5% of the total number of sessions – 

representing the visitors that navigated in at least two sections of the newspaper during the 15 

days considered. 

 

Since the preprocessing phase is not our main focus, we did not implement an SQL-like algorithm 

for preprocessing the clickstream in a Data Staging Area. Nevertheless, when building a Data 

Webhouse, a carefully designed Data Staging Area is highly recommended in order to have only 

reliable data. Through our preprocessing algorithm, we can choose to put the resulting clean data 

in either a file or a Data Webhouse.  

 

 

4.4 Loading into the Data Webhouse 

 

Once cleaned and in a suitable format, the data can be loaded into the Data Webhouse, which is a 

particular case of Data Warehouse specially oriented to shelter data derived from clickstreams 

[Kimball & Merz 2000]. This step is usually made through a bulk loader tool that can be provided 

by the Data Webhouse database or it can be a third-party one [Kimball & Ross 2002].  

 

Although they are especially projected to hold clickstream data, Data Webhouses share the same 

basis but they may also have some distinct dimensions according to each specific case. For 

instance, there is no need for having a product dimension if the company does not sell products. 

An example of data mart for clickstream data that can fit in our online newspaper case is shown in 

figure 14. It is important to notice that even though the activity may be the same, differences may 
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still occur in the Data Webhouse. In our example, we do not have a client dimension as the site we 

worked on does not require authentication and we did not implement any mechanism for client 

identification. However, there may be another newspaper Web site requiring user authentication, 

for instance, if its contents are only for registered users. Hence, depending on how the Web site is 

designed and what is recorded by the Web server, it may be possible or not to have the values for 

a client dimension. 
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Figure 14: A partial schema of a data mart for clickstream data 

 

Although our developed algorithms are completely prepared for databases, since we implemented 

a database handler capable of making the connection and read/write data on it, our final 

experiments were mainly based on storing the information in flat files. In our initial tests, we were 

reading and writing data in a MySQL database. However, we found that the overhead of 

connecting to a database for reading data and writing the results was not advantageous when 

taking into consideration the amount of data we processed. 
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4.5 Incremental Mining over Newspaper Data 

 

Continuing the data cycle, the subsequent step is to apply the incremental mining algorithm, which 

uses data obtained from the Data Webhouse along with the results from previous mining iterations 

stored in a patterns database to update the frequent patterns. This incremental mining step is the 

heart of the Spottrigger system. Through the incremental approach we can guarantee a fast 

update on the mining results and, hence, ensure that the current navigation behaviours are taken 

into account when choosing the advertisements to put in the page spots. Therefore, along with the 

advertisement replacement algorithm, it is where the system relies to come up with fast, accurate 

and updated information for changing the advertisements in a useful time, in other words, in real-

time or in the closest it can get to real-time.  

 

Once the mining algorithm is applied, the results produced are frequent patterns, which in our case 

are association rules, representing the navigation behaviour of the site visitors. One example of 

association rule in an online newspaper may be: when a reader accesses the Sport section, he has 

a high probability of accessing the Business section. With this knowledge in hands, when one 

accesses the Sport section, it is possible to previously update the Business section spots with the 

desired advertisement according to this user profile. 

 

It is important to highlight that the Spottrigger system needs an incremental mining algorithm, but 

does not requires it to be a specific one. The incremental mining step is like a black box that 

receives clean data from a Webhouse (or a flat file), computes along with the results from previous 

mining iterations, and updates the frequent patterns. Therefore, any incremental algorithm that 

meets the requirement of generating frequent patterns can be used. 

 

In order to simplify and clarify our explanation, we will firstly describe how the mining process 

works, assuming a small dataset containing only part of the newspaper sections. Later, we will give 

more details of our implementation and the results obtained when processing our real data in 

which we had 15 days of log for the initial dataset and some incremental datasets that we added 

containing 3 hours of log. 

 

Remember that we take into account the page concepts and not the complete page URL. Thus, for 

this short example, we consider the following available page concepts: Main, Sports, Business, 
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Technology and Health, which we will identify in our example by their first letter. For these pages, 

suppose we have the following initial set composed of six transactions:  

 

Initial dataset = {(M, S, H), (M, H), (M, S, T), (M, S, B), (S, H, T), (S, H, B)} 

 

Through this short set of transactions, we can notice that a visitor may enter on the site by any 

page, not necessarily the newspaper’s main page. This occurs because many newspaper readers 

usually bookmark the pages they frequently visit or know the URL to directly access them.  

 

We use association rules to analyze the pages accessed by the Web site visitors, in order to find 

possible associations among them and, thereby, allow a better publishing on the site. This 

publishing can be, for instance, through links, publicity banners, or pop-up windows. Our choice for 

association rules was mainly due to the fact that the site we worked on does not require client 

authentication and does not have any mechanism for client identification. Thus, it is hard to keep 

track of sequences of items from a client that occur with a large interval of time between them.  

 

In order to discover the association rules derived from the given initial transaction set, we used for 

our example the SWF algorithm with a minimum support of 40% and minimum confidence of 70%. 

It is important to emphasize that the minimum support and confidence chosen are only an 

assumption for our example. In the real world, their values have to be determined by analyzing the 

dataset. Thus, there are no right values, but the ones that better fit in each specific case. 

Appropriate support and confidence values will balance number of results and processing time. 

 

The first step of the SWF mining process consists in splitting the original database into partitions. 

The number of partitions is a user-defined parameter where the desired number is one that makes 

each partition’s size approximated to the size of the incremental partitions that might be added 

later to the database. For this example, we divide the original database into two partitions, each 

one having 3 transactions. The partition transactions are scanned for the generation of candidate 

2-itemsets. This way, for the first partition, composed of the first three transactions {(M, S, H), (M, 

H), (M, S, T)}, the minimum number of times one itemset has to appear to be considered frequent 

is: ⎡3 * 0.4⎤ = 2, where 3 is the number of transactions in the partition and 0.4 is the support 

established.  
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Table 4 shows the candidate 2-itemsets derived from the transactions of the first partition, giving 

also the number of the partition it first appeared (Start Partition) and the number of times it 

occurred until the current partition processing (Count). Notice that, only the candidate itemsets 

indicated with the symbol “•” on the right are considered frequent, that is, attended the minimum 

support. Thus, after each partition processing, only the candidate 2-itemsets considered frequent 

are stored in what is called the “cumulative filter” and will be carried over to the further phases. 

The other candidate k-itemsets (k = 3, 4, 5 … n) are found in a later stage and are not required 

for the processing of each partition. 

 

Table 4: SWF mining of the 1st partition 

Candidate 2-itemsets Start Partition Count

          M, S • 1 2

          M, H • 1 2

         S, H 1 1

         M, T 1 1

         S, T 1 1

 

Afterwards, we consider the occurrence of the next three transactions that compose the second 

partition: {(M, S, B), (S, H, T), (S, H, B)}. Therewith, the minimum support for the itemsets 

coming from the previous mining process is based on 6 (3+3) transactions, resulting in a minimum 

support of: ⎡(3+3) * 0.4⎤ = 3. However, for the new candidate itemsets identified, the filter is: ⎡3 * 

0.4⎤ = 2. In table 5 we can observe that the itemset “M, H”, even though it makes part of the 

frequent candidates set in the prior phase, it does not meet the required support when considering 

the cumulative data and, therefore, will not make part of the set of frequent candidate itemsets in 

a further phase. On the other hand, two other itemsets “S, H” and “S, B” meet the required 

minimum support and will be carried to the forthcoming phases. 

 

After finding all candidate itemsets, the large itemsets, which means the itemsets that are actually 

frequent, can be found using the scan reduction technique [Park et al. 1997]. Only one scan of the 

time-variant database is necessary for this. 

 

 



Incremental Mining Techniques 
 

 
66 

Table 5: SWF mining after 2nd partition 

Candidate 2-itemsets Start Partition Count

          M, S • 1 3

         M, H  1 2

         M, B 2 1

          S, H • 2 2

         S, T 2 1

         H, T 2 1

          S, B • 2 2

         H, B 2 1

 

Furthermore, we consider an incremental partition to the database. The SWF incremental step 

consists in removing an old partition from the mined data and adding a new one, updating its final 

results. We assume the occurrence of the following transactions in the incremental partition:  

 

Incremental Partition = {(M, S, T), (M, T, B), (S, T, B)} 

 

Firstly, we remove the first partition subtracting the final candidate itemsets that have as their start 

partition the one being removed, by their occurrence count on the first partition, which are stored 

in the cumulative filter. The start partition number of the remaining items that initially pertained to 

the first partition is incremented by one, so they now pertain to the following partition after the 

one being removed.  

 

Table 6: SWF incremental mining – 1st step 

Candidate 2-itemsets Start Partition Count

         M, S  2 1

          S, H • 2 2

          S, B • 2 2
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In our example, the “M, S” itemset was the only one left in the last cumulative filter that started in 

the first partition being removed. Thus, its start partition now turned to be 2 and its occurrence 

count was subtracted by its occurrence count in the first partition. Table 6 shows the result of this 

operation. 

 

We can notice that this “M, S” itemset did not meet the requirements after the subtraction and, 

therefore, will not be carried to the next step. Later, the incremental transactions are added, 

following the same operations of any partition in the initial step. Table 7 shows the results after 

adding the incremental partition.  

 

Table 7: SWF incremental mining – 2nd step 

Candidate 2-itemsets Start Partition Count

         S, H 2 2

          S, B •  2 3

         M, S 3 1

          M, T • 3 2

          S, T • 3 2

         M, B 3 1

          T, B • 3 2

 

One clear advantage is that it was not necessary to scan again the whole database to generate the 

candidate itemsets. This way, we can obtain the updated association rules in a much shorter time, 

when compared to obtaining these updated association rules through a non-incremental mining 

technique. Now, for finding the actual frequent itemsets, the scan reduction technique is applied. 

The scan reduction technique matches the itemsets having the same length k that contain at least 

k-1 items in common, resulting in a candidate of length k+1, which is composed of the k-1 items 

that matched plus the two items that differed the two itemsets being combined. In addition, the 

candidate 1-itemsets are all the distinct items of the dataset. The 1-itemsets obviously cannot be 

association rules but their calculation is particularly important for later calculating some of the 

pattern interestingness measures. If we get the candidate 2-itemsets from table 7 and apply the 

scan reduction technique, we will find the following candidates:  
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{“S”, “B”, “T”, “M”, “H”, “S, B”, “M, T”, “S, T”, “T, B”, “S, B, T”, “M, T, B”, “M, T, S”, “S, M, B, T”} 

 

Then, scanning the database only once to count the itemsets, we will find the following large 

itemsets meeting the required support: {“S”, “B”, “T”, “M”, “S, B”, “S, T”}. Therefore, we can see 

that the candidates “S, B” and “S, T” are truthfully frequent itemsets.  

 

In order to verify if these itemsets are association rules, we now have to check for confidence. 

Calculating their confidence by the formula explained previously in section 2.2, we found the 

following results: 

 

• Conf (S  B) = 60% 

• Conf (B  S) = 75% 

• Conf (S  T) = 60% 

• Conf (T  S) = 75% 

 

As we can see, “B  S” and “T  S” meet the minimum required confidence of 70% being thus 

considered association rules. With this knowledge, we know that when a page related to business 

or technology is visited, there is a strong probability that this visitor, according to what occurred in 

the past, will also be interested in the sports sections. 

 

Knowing a set of association rules, we can restructure the Web site having some conviction for 

publishing the desired advertisements in the most visited pages according to the user behaviour. 

Thus, one can charge for advertisements according to the frequency of pages visited without 

having problems with changes on the navigation behaviour of visitors, which may occur due to 

external factors. For example, if an important sport event is occurring, visitors will likely visit more 

times the sports section. The incremental algorithm will catch this behaviour change and may 

dynamically adapt the pages to have the most important advertisements in spots that were not 

much visited but now turned to be often visited. 

 

In case of incremental mining of sequential patterns with the given algorithms, the process is 

somehow similar. However, in this case, as its own name indicates, the sequence of the pages 

visited is considered in pattern extraction processes. 
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In our real case study, we had an initial dataset of 29,937 cleaned and prepared transaction 

entries, or sessions, that we considered as our original dataset to be mined. Additionally, average 

increments of around 250 sessions were inserted, each increment representing nearly 3 hours of 

navigation storage. It is important to emphasize that this average of 250 sessions are related just 

to the clean sessions containing two or more concepts within each session. The actual raw log, 

before the cleansing, session identification and one-concept sessions filtering processes, contains 

in average over 10,000 entries. 

 

Based on the average increment size containing 3 hours of log, we decided to split the initial 

dataset into 120 partitions for the first mining iteration. As we earlier explained, although this is 

not extremely necessary, for a better performance of the SWF algorithm, the number of partitions 

in which the initial dataset should be divided is a number that makes the resulting partitions have 

approximately the size of the increments. In our case, 15 days divided into 120 partitions results in 

each partition having the size close to the average size of a three-hour clean log.  

 

The SWF incremental mining algorithm for the system was implemented in Python [WWW01]. We 

created object classes for handling each one of the important concepts involved when performing 

an incremental mining process using the SWF algorithm. In other words, we have objects 

representing the items, transactions, itemsets, partitions, and the cumulative filter. Besides that, 

we have a class containing the processes that are used by both, full and incremental mining, from 

which we extended one class having the specific operations for performing the initial full mining 

and another one for the incremental process of the SWF algorithm.  

 

Additionally, we created a file handling class, which is responsible for performing all the reading 

and writing processes. Through this file handling class, the algorithm can be configured to get the 

information from either a Data Webhouse or a flat file, and it can also write its results in a flat file 

or in a database.  

 

The class for performing the full mining process requires the following parameters from the user or 

system process that calls it:  

 

• name of the file containing the initial dataset 

 
• number of partitions this dataset will be split  
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• minimum support value  

 

• minimum confidence value  

 

In our experiments, we executed the algorithm giving 120 for the number of partitions, 0.01 as the 

minimum support and 0.2 as the minimum confidence. We came up with these minimum support 

and confidence values after analyzing a smaller amount of the dataset and verifying that, with this 

number, the relation of processing time and number of results was satisfactory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Setting up the mining parameters 

 

For setting up the parameters through the Spottrigger’s system interface, all we have to do is click 

on the “Settings” button on the left-side menu. A settings tab will be shown as demonstrated in 

figure 15, allowing us to set values for the number of partitions we want to split our initial dataset, 

minimum support, and minimum confidence. When performing incremental mining, the number of 

partitions is ignored and the algorithm considers the incremental portion as one partition. By 
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clicking at the “Save Settings…” button, the configured information is stored on disk for being used 

in further mining processes.  

 

After setting up the mining parameters, and having the clean original dataset to be mined, the 

initial full mining process can be finally performed. For performing mining operations in 

Spottrigger, we shall click at the “Mining” button on the menu, so the mining tab will appear as 

illustrated in figure 16. Since we have already established the mining parameters, for 

accomplishing this task the system just asks the location of the dataset to be mined and the 

mining type, if it is, respectively, a full mining or an incremental one.  

 

Thus, for mining our initial 15 days dataset containing 29,937 sessions with the configuration we 

mentioned above, we must choose the dataset file, mark the full mining option and click on the 

“Run” button. The algorithm took 307 seconds (5 minutes and 7 seconds) to perform the full 

mining, as we can see through the mining statistics window in figure 16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Full mining the initial dataset 
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For better visualizing the results obtained, we designed in the Spottrigger system a result panel, 

accessible through the “Results” button on the menu, which contains a table that can be ordered 

by any of the main measures of pattern interestingness, namely, support, confidence, lift and 

conviction. These measures were previously explained in section 2.2. For visualizing the results of 

our initial dataset mining, all we have to do is choose the result file and click on the “Refresh” 

button as shown in figure 17. As we can see, it is shown the rules, the values for each of the 

pattern interestingness measures and the start partition where each one of the rules first 

appeared. We can rearrange any column of the table in ascendant and descendant orders just by 

clicking at the column label. These operations allow us to better analyze the rules acquired. In 

figure 17, we descendant ordered the results by the lift measure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Initial dataset mining results 

 

After accomplishing the initial mining iteration, we introduced an incremental dataset holding three 

hours of log. This incremental set initially had a size of 3 MB, composed of 13,620 log entries. After 
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passing through the preprocessing stage, 274 sessions containing two or more concepts were 

identified. The incremental process uses the cumulative filter information from the previous mining 

iteration for processing this incremental dataset and updating the association rules results.  

 

In our system, the incremental mining operation can only be executed if a full mining had been 

previously performed. The SWF incremental algorithm developed needs the following parameters 

for being executed: the name of the file containing the incremental dataset, and the minimum 

support and confidence values. We maintained the same configuration for mining the incremental 

dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Incremental mining over three hours of log 

 

In order to perform the incremental mining through the Spottrigger system, we shall access the 

same mining tab of the full mining step through the “Mining” button on the menu. Then, we must 

choose the incremental dataset file, mark the incremental mining option and finally click at the 
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“Run” button. Thus, for processing the additional 274 sessions in the incremental step and update 

the mining results, we reached a time of 28 seconds. Figure 18 above shows the execution and 

statistics of our incremental mining iteration over three hours of the Web site navigation log. 

 

After each mining process, the patterns database is updated with the new results, which will be 

used in the forthcoming Spottrigger processes as well as in future mining iterations. Figure 19 

below shows the association rules results from our incremental mining process. In order to 

perceive some differences between the two results, we also ordered this last one by the lift 

measure. We can see that with the addition of the incremental portion, the itemset “policia  

ultima” that at the beginning appeared before “policia  centro”, as demonstrated in figure 17, 

now appears after it, as shown in figure 19.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Incremental mining results 
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This signifies that when dynamically changing advertisements according to the lift measure, before 

the incremental portion being processed, if a newspaper reader visited the “policia” section, the 

“ultima” section would have higher level advertisements than the “centro” section. Nevertheless, 

after the incremental mining process, once a visitor enters the “policia” section, “centro” section 

will now be restructured with higher level advertisements than “ultima” section. Moreover, we can 

also notice some other changes, for example, the previously frequent rule “main, politica  

sociedade”, did not meet the support and confidence requirements, being removed from the set of 

association rules after the incremental mining processing. 

 

Analyzing the full and incremental processes, we can see differences mainly in terms of processing 

time. While the full mining took over five minutes to run, the incremental step took only 28 

seconds, which is over 10 times faster. Although five minutes is not a long time, this is the time for 

15 days of log. Remind that the bigger is the data repository to be mined, the bigger the 

processing time will be. Besides, if we establish an even lower support value, the processing time 

will also increase. Therefore, re-running the full mining over the whole dataset would take each 

time longer, degrading system performance and jeopardizing the system’s main goal of 

restructuring advertisements in a useful time. On the other hand, the incremental processing time 

will not have a great increase, since the average incremental dataset size should be always low. It 

is important to emphasize that, as we mentioned in previous chapters, if the incremental dataset 

size gets too big, the incremental mining may no longer be advantageous.  

 

 

4.6 Click Launcher 

 

Our initial tests were made by adding manually the incremental portion to perform the mining 

process. However, today’s systems should be able to automatically perform the updates. This way, 

the company would not need to have a responsible person for this task and could ensure the 

updates are performed in a regular interval of times, making the system use the newest results for 

restructuring the Web site.  

 

Aiming on testing our system in a real situation, we developed what we called the Click Launcher. 

The main idea is to simulate the addition of new data on clickstream as if the visitors’ clicks were 
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really occurring at the present time. Thus, what we do is take an old log of one day, get the time 

in which the requests occurred in that day and change the date as if they were being requested at 

the current day. This way, for a simulation of what occurs in a real situation, we automatically 

launch the clicks when the current time is equal to the time of the request at the modified log.  

 

We summarize the main idea of our click launcher in figure 20. In the example shown, the original 

log was dated December 30th of 2004. Supposing the current date is June 03rd of 2005, we 

transformed the records from the original log to have the current date. Then, the transformed 

dataset shown in the figure is nothing more than the old clickstream with the current date. When 

the current time is equals to the time of a request in the modified log, the request is launched to a 

new log, which will be automatically mined every three hours.  
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03/Jun/2005 – 12:00:20 

192.168.0.1 - - [30/Dec/2004:12:00:00…
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Transformed Dataset 

 

 

 

Figure 20: Click Launcher 

 

Thus, the system is capable to identify, every three hours, what data have been already mined and 

what are the new data that need to be mined. This way, the system gets the new data and 

192.16 -8.2.5 -
[03/Jun/2005:12:00:20… 

Launched Log 

192.168.0.1 - - [03/Jun/2005:12:00:00… 
192.168.3.2 - - [03/Jun/2005:12:00:10… 
192.168.5.7 - - [03/Jun/2005:12:00:15… 
192.168.0.1 - - [03/Jun/2005:12:00:16… 
192.168.9.4 - - [03/Jun/2005:12:00:17… 
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performs the incremental mining. It is important to say that our click launcher can only be started 

if a full mining has already been performed, because we use an incremental approach over the 

new data launched.  

 

For performing this real-time simulation through our system, we shall access the click launcher tab 

through the “Click Launcher” button on the menu. Then, there will be shown fields for choosing 

the source and destination file, where the destination file is already filled by a system default one. 

Thus, all we have to do is click on the “Start Launcher” button and the clicks will start being 

launched. Once started, the “Start Launcher” button will change to “Stop Launcher” for stopping 

the click launcher. When we start the launcher, the clicks that occurred before the current time are 

all launched at the moment. The ones that did not occurred yet will be launched at the right time. 

Then, data preprocessing and incremental mining operations will be performed every three hours 

until either the user stops the launcher or all the clicks from the source file have been already 

launched.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Click launcher execution 
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Figure 21 shows the click launcher after the execution of an incremental mining operation. After 

each mining iteration, the statistical logs from the preprocessing and incremental mining phases 

are shown at the log window. The results from the incremental mining iterations can be viewed 

through the results panel as we explained before. These results will be used to restructure the 

Web site with advertisements according to their level classification.  

 

 

4.7 Advertisement Replacement on Page Spots 

 

As formerly explained, the Spottrigger system has an advertisements database that holds the 

advertisements classified in levels by their price and importance. The classification in levels is 

important because according to the season of the year or with the occurrence of an important 

event, the range applied for the classification of the advertisements in level may vary. This occurs 

due to the fact that in these occasions, the search for advertising in the newspaper pages may 

increase or decrease, possibly affecting in the advertising price. 

 

The constantly updated patterns database along with the advertisements database are the key 

sources of information for the decision process that will resolve what advertisement shall be shot in 

the spots of a page that a given visitor will probably access and thereby perform the page spots 

update. For accomplishing this task, we developed an advertisement replacement algorithm, which 

is the other key point of our Spottrigger system. Once having the frequent patterns and ensuring 

that an incremental mining process regularly updates them, we can guarantee that most people, 

regardless of their navigation behaviour on the site, will see a given advertisement. 

 

Our advertisement replacement algorithm extracts the classified data from the advertisements 

database and connects them with the results stored in the patterns database. Furthermore, when a 

visitor is navigating through the Web page, his accessed pages are also sent to this algorithm. 

Matching the results obtained by processing the data from patterns and advertisements databases 

with the current reader navigation records, the algorithm analyzes what will be the next page 

sections probably accessed by the reader and chooses what advertisements shall be put in these 

page spots, restructuring the target Web pages. For clarifying the idea of our algorithm, we will 

give a practical example (figure 22). 



A Practical Application Case 
 

 
79 

Suppose we have two advertisements, ADV1 and ADV2. ADV1 is more expensive and therefore is 

classified as a level 1 advertisement. ADV2, on the other hand, belongs to level 2. Now, let us 

assume that “S -> B, T” is an association rule pertaining to the patterns database, meaning that a 

reader that accesses the sports section has a high probability of also accessing the business and 

technology sections. In this example, when the reader accesses the sports section, the 

advertisement spots in the business and technology sections will show ADV1, while the ADV2 will 

be shown if the reader accesses the other sections. We can have a high confidence in this 

operation because according to the association rule found, the latter will occur fewer times than 

the former, what corresponds to the expected results since we want the higher level advertisement 

to be seen more times than the lower one. 
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Figure 22: Advertisement Replacement Example 

 

Once having the pages with the desired advertisements in spots, they can be finally updated in the 

Web server for the view of the specific visitor who had his navigation behaviour analyzed by the 

Spottrigger system. In this case, the Web server has to keep track of each reader’s navigation 

records to send them to the advertisement replacement algorithm. One way the server can keep 



Incremental Mining Techniques 
 

 
80 

track of the visitors’ navigation steps is by storing separately the accessed pages by their IP-

address, along with a timeout for the sessions. This way, the correct restructured Web pages can 

be sent to the reader.  

 

Through the Spottrigger’s interface, we implemented a way to simulate the navigation of a given 

visitor, and by choosing the main pattern interestingness measure from what the advertisement 

replacement will be based, we show the page concept rank for restructuring the pages of these 

concepts with the advertisements according to their level. This module is accessible through the 

“Ads Replacement” button on the menu. In order to exemplify, we are going to demonstrate a 

practical example through our system, based on the result obtained after our incremental 

execution previously explained and shown in figure 19.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: First advertisement replacement 

 

Figure 23 shows how we simulate the advertisement replacement through our system. In order to 

simulate a real user navigation, we firstly choose a page concept in the available accessed page 
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concept combo. When we click on the “Add to Path” button, the page concept selected is inserted 

in the concept path field. Clicking now at the “Refresh” button, the advertisement replacement 

algorithm will make the relationship between the next probably accessed pages and the 

advertisements by analyzing the user navigation path and the association rules found.  

 

Suppose we want to restructure the pages according to the lift measure. If a given visitor accesses 

the “policia” section, we can see through figure 23 that the section having a greater lift, which will 

receive the higher level advertisements, when this occurs, is the “grande_lisboa” section. 

Furthermore, the level 2 advertisements will be shown in “pais”, level 3 in “centro” and so forth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Second advertisement replacement 

 

Now, let us assume that this user accessed the “pais” section, signifying that he will see the level 2 

advertisements. At this point, the advertisement replacement algorithm will run again to see if the 

pages need to be once more restructured.  
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Figure 24 shows the results after the second advertisement replacement. We can see that the 

“grande_lisboa” section, which used to have level 1 advertisements, now has level 2 

advertisements. According to the patterns matching this new navigation path, the “centro” section 

that previously had level 3 advertisements, now has level 1.  

 

Initiate system operation; 

establish FTP connection with Web Server; 

terminate = false; 

while not (terminate) do 

user authentication(userid, password); 

extract clickstream file not processed from Web Server; 

store clickstream file on system data staging area; 

clean new clickstream data; 

catalog cleaning errors; 

store cleaning data on system Webhousing; 

apply incremental data mining process; 

analyze mining results; 

identify target Web pages based on mining results and spots offering; 

restructure target Web pages; 

update Web site with restructured target Web pages;  

make garbage collection; 

continue or not (terminate) 

end-do; 

close FTP connection; 

terminate system operation. 

Figure 25: Spottrigger’s Life Cycle Pseudo-Code 

 

Through this short example, we could see how it is possible to restructure the advertisements on 

the pages. Guaranteeing that the patterns are regularly updated, these results will represent the 

actual navigation behaviour of the users, or have a good approximation of them. Thus, it is 

possible to have some confidence on this page restructuring method, which may be a valuable 

quality difference when merchandising the advertisement spots. After the page restructure, the 

entire process restarts.  
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When the entire data cycle is finished, with the visitor leaving the newspaper site, it is important to 

make a garbage collection because variables, temporary tables and other objects are used 

throughout the processes and do not need to be kept in memory anymore. Then, the FTP 

connection with the Web server is finally closed before the system terminates its operation. We 

summarize the whole Spottrigger Life Cycle in the pseudo-code shown in figure 25. 

 

 

4.8 Implementation Resources 

 

Our experiments were all performed on a notebook computer having an Intel Pentium M Centrino 

1.6 MHz processor, with 1GB of RAM. They were executed on top of Microsoft Windows 2000 

Professional.  

 

We implemented the cleaning processes and the SWF incremental algorithm using Python 

[WWW01], version 2.3. Python has the advantage of being a fast scripting language and works 

well in an object-oriented manner. Besides, it is very concise and productive, being easy to learn, 

understand and, further, maintain. 

 

For implementing the interface, we used the Java [WWW05] programming language and the 

Netbeans [WWW06] tool. The Java language has a broad Application Program Interface (API) for 

designing systems interfaces. Moreover, Netbeans provides a friendly environment for working with 

Java APIs.  

 

The Spottrigger’s Java made interface links to the python algorithms, passing the mining 

parameters established by the user. After processing, the results produced by the python 

algorithms which are stored in either a file or a database can be visualized through the interface. 

In addition, the processes log produced by the algorithms can also be visualized. 

 

The performance results presented were derived from a clickstream of an existing newspaper 

company. For performing our experiments, we were given the clickstream data derived from one 

month of visitors’ navigation in the newspaper Web site. We chose to use 15 days of log as being 

our initial dataset and so we incrementally added the remaining data in portions comprising 3 
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hours of users’ navigation. Thus, we performed our tests in different ways, such as simulating real 

time accesses through the click launcher and also submitting incremental portions in a manual 

way. For performing the incremental mining in a manual way, we separated files “by hand” in 

order to make each one of them contain 3 hours of log, and thus designated the incremental file to 

the algorithm. On the other hand, when performing mining operations through the click launcher, 

we implemented an automatic way to break the file every 3 hours and submit this separated 

incremental portion to the incremental mining algorithm.  
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Chapter 5 
 

5Conclusions and Future Work 
 

 

5.1 Final Remarks 

 

The high-speed e-commerce race that we observe today among companies has made them realize 

the importance of exploring and analyzing data that they have stored in their operational systems. 

When properly studied through mining techniques, this data may bring up new knowledge that can 

be extremely valuable to determine the future behaviour of companies’ customers. 

 

When discovering clients’ navigation behaviour in a Web site, we are actually looking towards 

mining clickstreams, which is comprised in the Web usage mining area. We saw that this area has 

attracted during the last few years much attention from research and e-business professionals, 

offering many benefits to an e-commerce Web site, namely: target customers based on usage 

behaviour or profiling (personalization); dynamically restructuring Web sites based on user page 

access patterns (site modification); answer stakeholders business questions which may help in the 

decision making processes for enhancing the service quality and delivery to the end users – cross-

selling and up-selling (business intelligence); analyze the navigational strategy of users browsing 

the company’s Web site for predicting their future behaviour while they interact with the Web site 

(usage characterization); or improve system performance, mainly based on the Web traffic analysis 

(system improvement).  
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Initially, the proposed mining algorithms were found to be inefficient when dealing with dynamic 

databases, because they needed to be re-executed over the entire database, each time appeared 

new update occurrences, in order to update results. In e-commerce sites, databases are constantly 

changing as time passes. Every time a product is sold, a client updates its shopping cart, or even a 

visitor accesses a page through a simple click, databases that support these tasks are, obviously, 

updated. Thus, the incremental mining techniques emerged for solving some of the needs of 

mining data on dynamic databases. On this field, some incremental algorithms, mainly for mining 

association rules [Chen et al. 2001] [Veloso et al. 2002a] and sequential patterns [Parthasarathy et 

al. 1999] [Masseglia et al. 2000] were proposed, having good performance when compared to 

previously developed ones. Taking into account the increasing size of databases due to the high 

and increasing dataflow, which is nowadays verified inside the most different Web sites, mining 

data in a suitable (or useful) time, so the decisions can be taken fast, is certainly an interesting 

challenge. This difficult and stimulating task is the main goal of the new incremental mining 

approach.  

 

In this work, we explained and analyzed some of the most recent incremental mining algorithms. 

We compared these techniques and reached a conclusion that the choice of one technique to be 

applied depends on some characteristics like the database size, the available hardware, and 

eventual necessities of changes in the mining requirements. For each specific case, there might be 

one technique that fits better than the others. Thus, what we have to do is balance characteristics 

such as flexibility and fastness when choosing the algorithm for a specific application case. 

 

For our study, we were given real data derived from an online newspaper site usage. Our main 

challenge was regarded to how an online newspaper company may commercialize its Web site 

advertisements spots. Organizations willing to publish their advertisements generally look for 

reaching the highest number possible of readers. However, readers’ navigation behaviour may 

change very fast, so that pages that used to be frequently accessed might not be accessed 

anymore, and non-accessed pages might turn out to be frequently visited. In this way, an 

organization might have paid a lot of money for publishing on frequently accessed pages, thinking 

its advertisements would be highly seen, but suddenly realize that its investments went on the 

wrong way because readers do not access those pages anymore. 
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We demonstrated the possibility of dynamically changing the advertisements on newspaper’s 

online pages, so one can assure that the most important advertisements will be the most exhibited 

to the readers regardless of their navigation behaviour changes. For that, as the visitor navigates, 

we incrementally construct a page ranking by the most visited pages according to his profile, 

acquired through the mining results, and then place the desired advertisements on pages he will 

probably visit. Thus, it is possible to merchandise the publicity “spots” considering how frequently 

the announcement will be seen. 

 

For accomplishing this task, we built Spottrigger, a system capable of extracting the data stored in 

the Web server, cleaning, preparing and mining these data, and restructuring the newspaper 

pages according to the mining results along with a set of advertisements classified in levels of 

importance. Thus, the higher is the level of the advertisement, the more it will be exhibited. 

Therefore, through Spottrigger, we devised a life-cycle model designated for performing all the 

operations since the acquisition of the raw clickstream data from Web servers until the choice of 

advertisements level to be on the pages. According to a given reader’s current navigation, it makes 

possible to restructure the Web site taking into account the newspaper visitors past navigation. 

 

Spottrigger uses Sliding Window Filtering (SWF), which is an incremental association rules mining 

algorithm, for restructuring the pages of the online newspaper according to the reader’s profile. 

The SWF was chosen because of its fastness, simplicity and adaptability to short term incremental 

mining operations. In other words, we wanted to mine in a specific window of time, by adding new 

transactions and removing old ones whenever each new incremental dataset arrived. For example, 

one can choose to have the navigation patterns of the last month with increments of one day. 

Thus, on every incremental process, one day of data would be removed from the considered 

dataset (the earliest one) and a new one-day increment would be added, with the final results 

being updated.  

 

Our initial goal was to effectively analyze the possibility of restructuring the Web site in a useful 

time, that is, as fast as possible, to adapt the site to the user’s profile as he navigates through the 

pages. In our practical case, we added new increments containing 3 hours of the newspaper Web 

site usage. This increment was added both in a manual way and simulating a real situation through 

our click launcher – a process that launches clicks from an old log, simulating the navigation of the 

newspapers readers as if they were occurring at the present time. We came up with this 3 hours 
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interval between the mining processes by analyzing the available data and realizing that if we 

established a shorter interval of time, there would not be a considerable amount of data for 

changing much the results, so the high overhead for often getting these data would not 

compensate. By refreshing the results at every 3 hours, we are guaranteeing that the current 

results reflect a good approximation of the actual readers’ navigation behaviour, balancing with the 

memory and processing costs. 

 

For testing, we firstly considered 15 days of log as our initial dataset. We achieved a time of over 5 

minutes for the full mining process, considering a value of 0.01 for minimum support, and 0.2 for 

minimum confidence. Having lower support and confidence values or working with bigger datasets 

than the one we had available would obviously increase the processing time. Using a non-

incremental approach, the processing time always increase over the time and soon would not allow 

the mining processes to be performed within a short interval of time. This would lead to a situation 

where by the time the results are finally obtained, they do not represent the current visitors’ 

navigation behaviour anymore, being already outdated. On the other hand, we added 3 hours of 

log through an incremental approach, reaching a time of 28 seconds for this processing. The time 

for incremental mining processing will not grow much if the increments size keeps approximately 

the same. This way, we can assure that the results are fast updated, allowing the replacement of 

advertisements according to the recent readers’ navigation behaviour. 

 

For performing the advertisement replacement, we also developed, in the Spottrigger system, an 

algorithm that distributes the advertisements classified in levels in the newspaper pages according 

to the association rules acquired through the incremental mining algorithm. This distribution may 

be performed taking into consideration any of the most used pattern interestingness measures, like 

support, confidence, lift, or conviction. 

 

One of the disadvantages of the algorithm we used is some lack of flexibility when changing 

mining parameters. If we change the support value for a lower value, the results comprehended 

within the older value and the new lower value will only be considered in the incremental data. 

With the addition of increments the results will gradually adapt to the new support, because each 

time we add a new increment we also remove an old one. However, it is not possible to instantly 

have the results from a lower support without performing a full mining operation in the database.  
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Spottrigger was designed to support any incremental mining algorithm though, meaning that we 

can develop other algorithms capable of acquiring the new increments, gathering with the already 

existing patterns, and updating the results. However, some algorithms might need to store some 

information that are not being stored and a full mining would be necessary in order to have this 

information. We resume Spottrigger main characteristics in table 8. 

 

Through our experiments, we could realize the importance and application of the incremental 

mining algorithms as well as the subsisting problems. We could see the scalability of the 

incremental approach through the high savings in terms of processing time. Thus, the Spottrigger 

system could allow an effective Web site restructuring, in a useful time and in agreement with 

readers’ profile, that is, reflecting the latest readers’ navigation behaviour. This way, a newspaper 

company may merchandise its advertisements spots guaranteeing that most of its readers will 

visualize the published advertisement. 

 

Table 8: Spottrigger Characteristics 

Characteristic Description 

Original Dataset Format • ECLF 

Preprocessing treatments • Filter requests for images, scripts and other 

unwanted ones 

• Remove logs derived from crawlers navigation 

• Eliminate logs with errors 

• Extract page concept from remaining requests, 

associating it with an ID 

• Identify the sessions 

Mining Type Chosen • Association Rules 

Incremental Algorithm Used • Sliding-Window Filtering 

Results Refreshment Interval • 3 hours 
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5.2 Future Work 

 

In this work, we could successfully indicate advertisements for the newspaper pages. Nevertheless, 

we only implemented one of the many existing incremental mining algorithms. As we previously 

explained, there is no best algorithm, but simply one that may fit better than the others according 

to each specific case. Besides that, our system may also be improved in several ways. Based on 

the experience acquired during this work, we are able to say that the system must be improved 

and refined. Thus, some additional work must be done in a near future, namely to: 

 

- Add other alternative incremental association rules mining algorithms on the system, 

allowing the comparison of results, improving performance and flexibility among the 

several mining possibilities. 

 

- Develop an incremental algorithm for sequential patterns mining, which may be used 

for the same purpose as the association rules one, giving particular results when 

considering the order in which the pages are visited and, hence, its costs and benefits 

when compared to the association rules ones could be also analyzed. 

 

- Improve and incorporate new treatments on the preprocessing phase. Since it was not 

our main focus, a lot of work can be done aiming on refining the data to achieve a 

high level on data quality, in order to ensure that results can be highly trustable. 

 

- Allow page restructuring by other measures and with different calculations. We only 

indicated advertisements given one of the main interestingness measures (besides the 

required minimum support and confidence that each itemset has to attend to be 

considered as an association rule). Some other calculations, for instance, based on 

giving a weight to each measure, could be also applied in order to come up with the 

page rank for the advertisement replacement.  

 

These are just some of the possible proposals. Depending on where the system will be applied, 

many other modifications can be necessary such as acquiring data from XML texts or writing 

results in specific formats to be used by other existing decision support systems. With the high 

research progress in this area, soon there will be even more improvements that can be possibly 
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incorporated. However, it is important to analyze each case for the organization’s needs and draw 

the best possible strategy to attend these requirements. It might not be necessary to have the 

most complete and modern system, but one that attend to the basic knowledge discovering 

requirements of the organization, providing the desired results. 
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WWW References 
 

[WWW01] http://www.python.org/

This site provides a large amount of information about the scripting and object-oriented 

language Python. It has current and old versions of the language, documentation and 

current researches. 

 

[WWW02] http://wwwai.wu-wien.ac.at/~hahsler/research/association_rules/measures.html

This site provides detailed information about most of the existing objective measures of 

pattern interestingness. 

 

[WWW03] http://www.w3.org

World Wide Web Consortium (W3C) - an international consortium composed of member 

organizations, a full-time staff, and the public that work together to develop Web standards. 

It develops interoperable technologies (specifications, guidelines, software, and tools) to 

lead the Web to its full potential. W3C is a forum for information, commerce, 

communication, and collective understanding. 

 

[WWW04] www.personalization.org  

Personalization Consortium - an international advocacy group formed to promote the 

development and use of personalization technology on the Web. 

 

[WWW05] http://www.java.sun.com

This site provides a large amount of information about the object-oriented language Java 

from Sun Microsystems. It is possible to find a wide variety of resources including current 

http://www.python.org/
http://wwwai.wu-wien.ac.at/%7Ehahsler/research/association_rules/measures.html
http://www.w3.org/
http://www.personalization.org/
http://www.java.sun.com/
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and past versions of the language, a rich documentation of each version, discussion groups, 

researches, and much more. 

 

[WWW06] http://www.netbeans.org

This site provides a large amount of information about the powerful Netbeans software 

development product from Sun Microsystems. It is an open source tool specially oriented to 

address the needs of software developers using Java.  

 

http://www.netbeans.org/
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