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ABSTRACT. We prove quantitative equidistribution results for actions of Abe-
lian subgroups of the (2g +1)-dimensional Heisenberg group acting on com-
pact (2g +1)-dimensional homogeneous nilmanifolds. The results are based
on the study of the C∞-cohomology of the action of such groups, on tame es-
timates of the associated cohomological equations and on a renormalization
method initially applied by Forni to surface flows and by Forni and the sec-
ond author to other parabolic flows. As an application we obtain bounds for
finite Theta sums defined by real quadratic forms in g variables, generalizing
the classical results of Hardy and Littlewood [25, 26] and the optimal result
of Fiedler, Jurkat, and Körner [17] to higher dimension.
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1. INTRODUCTION

In the analysis of the time evolution of a dynamical system many problems
reduce to the study of the cohomological equation; in the case, for example, of a
smooth vector field X on a connected compact manifold M this means finding
a function u on M that is a solution of the equation

X u = f ,(1.1)

where f is a given function on M .
For a detailed discussion of the cohomological equation for flows and trans-

formations in ergodic theory the reader may consult [28].

Received June 26, 2015; revised September 3, 2015.
2010 Mathematics Subject Classification: Primary: 37C85, 37A17, 37A45; Secondary: 11K36,

11L07.
Key words and phrases: Equidistribution, Heisenberg group, cohomological equation.

IN THE PUBLIC DOMAIN AFTER 2043 305 ©2015 AIMSCIENCES

http://dx.doi.org/10.3934/jmd.2015.9.305


306 SALVATORE COSENTINO AND LIVIO FLAMINIO

In the 2006 paper [14], Forni and the second author used renormalization
techniques coupled with the study of the cohomological equation to derive
the equidistribution speed of nilflows on Heisenberg three-manifolds. This ap-
proach had initially been used by Forni for the study of flows on translation
surfaces and subsequently by Forni and the second author [13] for the study of
horocycle flows, where precise asymptotics of the equidistribution of these flows
were obtained (see also [3]). Renormalization fails for homogeneous flows on
higher-step nilmanifolds as, in general, the automorphism group of the under-
lying nilpotent group is rather poor, lacking semi-simple elements. In a recent
paper [16] Forni and the second author developed a novel “rescaling technique”
to overcome this difficulty in higher-step nilmanifold; as a consequence they ob-
tained non-trivial estimates on Weyl sums, estimates which have recently been
improved independently by Wooley [50].

The present paper moves in a different direction: the study of higher-rank
Abelian actions, a theme of research that has been the subject of several inves-
tigations, primarily by A. Katok and co-authors (e.g., [29, 35, 11, 34, 11, 33]). In
fact, homogeneous actions of Abelian subgroups of higher-dimensional Heisen-
berg groups provide a setting where renormalization methods may still be ap-
plied, yielding precise quantitative estimates of the rate of equidistribution of
the orbits once an in-depth analysis of the cohomological equations is carried
out. Thus, an important part of this work is devoted to the study of the full
cohomology of the actions of these groups; our attention has been focused on
obtaining tame estimates for the solutions of cohomological equations with
minimal loss of smoothness, a result that has its own interest in view of future
applications to the study of some perturbations of these actions.

An immediate consequence of the quantitative estimates of the rate of equidis-
tribution are bounds on exponential sums for quadratic forms in terms of cer-
tain diophantine properties of the form. To our knowledge these bounds, which
generalise the classical results of Hardy and Littlewood [25, 26] and the optimal
result of Fiedler, Jurkat, and Körner [17], are new.

Cohomology in Heisenberg manifolds. In this article we study the cohomol-
ogy of the action of an abelian subgroup P of the (2g +1)-dimensional Heisen-
berg group Hg on the algebra of smooth functions on a homogeneous manifold
Hg /Γ. The linearity of the problem and the fact that the unitary dual of Hg is
classical knowledge make the use of harmonic analysis particularly suitable to
our goal, as it was the case in the works of L. Flaminio and G. Forni [13, 14, 15].
As a consequence, our results on the cohomology of P also apply to more gen-
eral Hg -modules, those for which the action of the center of Hg has a spectral
gap.

Before stating our results, let us fix some notation.
Let G be a connected Lie group of Lie algebra g, and let M=G/Γ be a compact

homogeneous space of G. Then G acts by left translations on C∞(M) via

(h. f )(m) = f (h−1m), h ∈G, f ∈C∞(M).(1.2)
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Let F be a closed G-invariant subspace of C∞(M). The space F is a tame graded
Fréchet space [24, Def. II.1.3.2] topologized by the family of increasing Sobolev
norms ‖ ·‖s , defining L2 Sobolev spaces W s(M).

For any connected Lie subgroup P<G with Lie algebra p, the action by trans-
lations of P on G/Γ turns F into a p-module. Therefore we may consider the
Chevalley-Eilenberg cochain complex A∗(p,F ) :=Λ∗p′⊗F of F -valued alternat-
ing forms on p, endowed with the usual differential “d”. By cohomology of the p-
module F we simply mean the Lie-algebra cohomology H∗(p,F ) of this cochain
complex. When F =C∞(M) we also refer to this cohomology as the cohomology
of the action of P on M.

A natural question that arises when we consider a Lie group or Lie algebra
cohomology with values in a topological module is whether the reduced coho-
mology coincides with the ordinary cohomology; that is, whether the spaces
B∗(p,F ) of coboundaries are closed in the spaces Z∗(p,F ) of cocycles. Follow-
ing A. Katok [27], we give the following definition.

DEFINITION 1.1. The p-module F is cohomologically C∞-stable in degree k if
the space B k (p,F ) of F -valued coboundaries of degree k is closed in the C∞
topology.

Let Zk (p,F ) denote the space of closed currents of dimension k, that is, the
space of all continuous linear functionals on Ak (p, M) vanishing on B k (p,F ). By
the Hahn-Banach Theorem, B k (p,F ) is a closed subspace of Ak (p,F ) if and only
if it is equal to the intersection of the kernels of all D ∈ Zk (p,F ).

We recall that a tame linear map φ : F1 → F2 between tame graded Fréchet
spaces satisfies a tame estimate of degree r with base b if, denoting by ‖ ·‖s the
norms defining the grading, we have ‖φ( f )‖s ≤C‖ f ‖s+r for all s ≥ b and f ∈ F1;
the constant C may depends on s.

The tame grading of F implies that A∗(p,F ) is a tame graded Fréchet cochain
complex and that the differentials are tame maps of degree 1. Thus, besides
C∞-stability, another question that arises naturally is whether, for a given a
coboundary ω, there exists a primitive Ω whose norm is tamely estimated by
the norm of ω.

DEFINITION 1.2. We say that the p-module F is tamely cohomologically C∞-
stable in degree k ≥ 1 if there exists a tame map d−1 : B k (p,F ) → Ak−1(p,F ) as-
signing to every coboundary ω ∈ B k (p,F ) a primitive of ω.

A related question, which is fundamental in perturbation theory, is whether
the chochain complex Ak (p,F ) has a tame splitting [24] (see [30, 12]). Recall
that a graded Fréchet space F1 is a tame direct summand of a graded Fréchet
space F2 if there are tame maps L : F1 → F2 and M : F2 → F1 such that M ◦L is
the identity map of F1 [24, Def. II.1.3.1]. In this situation we also say that the
short exact sequence 0 → F1 → F2 → F2/L(F1) → 0 splits tamely.

DEFINITION 1.3. We say that the p-module F has tame splitting in degree k if
the space B k (p,F ) is a tame direct summand of Ak (p,F ).
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Let Hg be the Heisenberg group of dimension 2g +1. Any compact homo-
geneous space M = Hg /Γ is a circle bundle p : M→ Hg /(ΓZ(Hg )) over the 2g -
dimensional torus T2g =Hg /(ΓZ(Hg )), with fibers given by the orbits of the cen-
ter Z(Hg ) of Hg . The space of C∞ functions on M splits as a direct sum of the
Hg -invariant subspace p∗(C∞(T2g )) and the Hg -invariant subspace F0 =C∞

0 (M)
formed by the smooth functions on M having zero average on the fibers of the
fibration p. The following theorem is a particular case of Theorem 3.16 below.

DEFINITION 1.4. A connected Abelian subgroup of Hg without central elements
will be called an isotropic subgroup of Hg . A Legendrian subgroup of Hg is an
isotropic subgroup of Hg of maximal dimension g .

THEOREM 1.5. Let P be a d-dimensional isotropic subgroup of Hg with Lie alge-
bra p. The p-module F0 is tamely cohomologically C∞-stable in all degrees. In
fact, for all k = 1, . . . ,d there are linear maps

d−1 : B k (p,F0) → Ak−1(p,F0)

associating to each ω ∈ B k (p,F0) a primitive of ω and satisfying tame estimates
of degree (k +1)/2+ε for any ε> 0.

We have H k (p,F0) = 0 for k < d; in degree d, we have that H d (p,F0) is infinite-
dimensional if d < g or one-dimensional if d = g (that is, if p is a Legendrian
subspace) in each irreducible p-sub-module of F0.

The p-module F0 has tame splitting in all degrees: for k = 0, . . . ,d and for any
ε> 0 there exist a constant C and linear maps

M k : Ak (p,F0) → B k (p,F0)

such that the restriction of M k to B k (p,F0) is the identity map, and the following
estimates hold:

‖M kω‖s ≤C‖ω‖s+w , ∀ ω ∈ Ak (p,F0),

where w = (k +3)/2+ε, if k < d and w = d/2+ε if k = d.

Let P<Hg be a subgroup as in the theorem above and let P̄ be the group ob-
tained by projecting P on Hg /Z(Hg ) ≈R2g . As before we set T2g =Hg /(ΓZ(Hg )).
The P-module p∗(C∞(T2g )) is naturally isomorphic to the P̄-module C∞(T2g ).
It should be considered as folklore that the cohomology of the action of a sub-
group P̄ on a torus depends on the Diophantine properties of P̄, considered as a
vector space. The Diophantine condition p̄ ∈ DCτ(Γ̄) mentioned in the theorem
below will be made precise in Section 3.1.

THEOREM 1.6. Let P be an isotropic subgroup of Hg , let M :=Hg /Γ be a com-
pact homogeneous space, and let F :=C∞(M). Let P̄ be the projection of P into
Hg /Z(Hg ) ≈R2g , let p̄ be its Lie algebra, and let Γ̄= Γ/(Γ∩Z(Hg )) ≈Z2g . Then the
action of P on M is tamely cohomologically C∞-stable and has a tame splitting
in all degrees if and only if p̄ ∈ DCτ(Γ̄) for some τ> 0. In this case we have

H k (p,F ) =Λkp if k < dim p, H k (p,F ) =Λkp⊕H k (p,F0) if k = dimp.
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Equidistribution of isotropic subgroups on Heisenberg manifolds. We denote
by M = Hg /Γ the standard Heisenberg nilmanifold (see Section 2 for details
on the definitions and notations). Let (X1, . . . , Xg ,Ξ1, . . . ,Ξg ,T ) be a fixed ratio-
nal basis of hg = Lie(Hg ) satisfying the canonical commutation relations. Then
the symplectic group Sp2g (R) acts on Hg by automorphisms1. For 1 ≤ d ≤ g ,

let Pd be the subgroup generated by (X1, . . . , Xd ) and, for any α ∈ Sp2g (R), set

Xα
i :=α−1(Xi ), 1 ≤ i ≤ d . We define a parametrization of the subgroup α−1(Pd )

according to

Pd ,α
x := exp(x1Xα

1 +·· ·+xd Xα
d ), x = (x1, . . . , xd ) ∈Rd .

Given a Jordan region U ⊂ Rd and a point m ∈M, we define a d-dimensional
p-current P d ,α

U m by

〈
P d ,α

U m,ω
〉

:=
∫

U
f (Pd ,α

x m)dx(1.3)

for any degree d p-form ω = f dXα
1 ∧ ·· · ∧dXα

d , with f ∈ C∞
0 (M) (here C∞

0 (M)
denotes the space of smooth functions with zero average along the fibers of the
central fibration of M).

It is well-known that the Diophantine properties of a real number may be
formulated in terms of the speed of excursion, into the cusp of the modular
surface, of a geodesic ray having that number as limit point on the boundary of
hyperbolic space. This observation allows us to define the Diophantine proper-
ties of the subgroup Pd ,α in terms of bounds on the height of the projection, in
the Siegel modular variety Σg =Kg \Sp2g (R)/Sp2g (Z), of the orbit of α under the
action of some one-parameter semi-group of the Cartan subgroup of Sp2g (R)
(here Kg denotes the maximal compact subgroup of Sp2g (R)). We refer to Sec-
tion 4.4 for the definition of height function.

Let {exp t δ̂(d)}t∈R be the Cartan subgroup of Sp2g (R) defined by the formula

exp(t δ̂(d))Xi = e t Xi , for i = 1, . . . ,d and exp(t δ̂(d))Xi = Xi , for i = d + 1, . . . , g .
Roughly, the Definition 4.10 states that α ∈ Sp2g (R) satisfies a δ̂(d)-Diophantine

condition of type σ if the height of the projection of exp(−t δ̂(d))α in the Siegel
modular variety Σg is bounded by e2td(1−σ); if, for any ε> 0, the height consid-

ered above is bounded by e2tdε, then we say that α ∈ Sp2g (R) satisfies a δ̂(d)-

Roth condition; finally we say that α is of bounded type if the height of exp(−δ̂)α
stays bounded as δ̂ ranges in a positive cone a+ in the Cartan algebra of diago-
nal symplectic matrices (see Definition 4.10).

As the height function is defined on the Siegel modular variety Σg , the Dio-
phantine properties of α depend only on its class [α] in the quotient space
Mg = Sp2g (R)/Sp2g (Z).

1By acting on the left on the components of elements of hg in the given basis.
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The definitions above agree with the usual definitions in the g = 1 case.
Several authors (Lagarias [36], Dani [10], Kleinbock and Margulis [32], Cheval-
lier [7]) proposed, in different contexts, various generalizations of the g = 1 case.
We postpone to Remark 4.11 the discussion of these generalizations.

We may now state our main equidistribution result.

THEOREM 1.7. Let Pd < Hg be an isotropic subgroup of dimension d ≤ g . Set
Q(T ) = [0,T ]d . For any s > 1

4 d(d + 11)+ g + 1/2 and any ε > 0 there exists a
constant C = C (P,α, s, g ,ε) > 0 such that, for all T À 1 and all test p-forms
ω ∈Λdp⊗W s

0 (M),

• there exists a full measure set Ωg (wd ) ⊂Mg such that if [α] ∈Ωg (wd ) then∣∣∣〈P
g ,α
Q(T )m,ω

〉∣∣∣≤C (logT )d+1/(2g+2)+εT d/2 ‖ω‖s ;

• if [α] ∈Mg satisfies a δ̂(d)-Diophantine condition of exponent σ> 0 then∣∣∣〈P d ,α
Q(T )m,ω

〉∣∣∣≤C T d(1−σ′/2) ‖ω‖s ;

for all σ′ <σ;
• if [α] ∈Mg satisfies a δ̂(d)-Roth condition, then∣∣∣〈P d ,α

Q(T )m,ω
〉∣∣∣≤C T d/2+ε ‖ω‖s ;

• if [α] ∈Mg is of bounded type, then∣∣∣〈P d ,α
Q(T )m,ω

〉∣∣∣≤C T d/2 ‖ω‖s .

The exponent of the logarithmic factor in the first case is certainly not op-
timal. When d = 1, a more precise result is stated in Proposition 5.9, which
coincides with the optimal classical result for d = g = 1 (Fiedler, Jurkat, and
Körner [17]).

The method of proof is, to our knowledge, the first generalization of the meth-
ods of renormalization of Forni [20] and of Flaminio and Forni [14, 15] to ac-
tions of higher dimensional Lie groups. A different direction is the one taken
by Flaminio and Forni in [16], where equidistribution of nilflows on higher step
nilmanifolds requires a subtler rescaling technique, due to the lack of a renor-
malization flow.

A drawback of the inductive scheme that we adopted is that we are limited to
consider averages on cubes Q(T ) (the generalization to pluri-rectangles is how-
ever feasible, but more cumbersome to state). For more general regions, grow-
ing by homotheties, we can obtain weak estimates where the power T d/2 is re-
placed by T d−1. However, N. Shah’s ideas [45] suggest that equidistributions es-
timates as strong as those stated above are valid for general regions with smooth
boundary.

Application to higher-dimensional Theta sums. In their fundamental 1914 pa-
per [25], Hardy and Littlewood introduced a renormalization formula to study
the exponential sums

∑N
n=0 e(n2x/2+ξn), usually called finite theta sums, where
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N ∈N and e(t ) := exp(2πi t ). Their algorithm provided optimal bounds for these
sums when x is of bounded type.

Since then, Hardy and Littlewood’s renormalization method has been applied
or improved by several authors obtaining finer estimates on finite theta sums
(Berry and Goldberg [4], Coutsias and Kazarinoff [8], Fedotov and Klopp [18]).
Optimal estimates have been obtained by Fiedler, Jurkat, and Körner [17]. Differ-
ently from the previously quoted authors, who relied heavily on the continued
fractions properties of the real number x, Fiedler, Jurkat, and Körner’s method
was based on an approximation of x by rational numbers with denominators
bounded by 4N .

In this paper we consider the g -dimensional generalization, the finite theta
sums ∑

n∈Zg∩[0,N ]g

e (Q[n]+`(n)) ,(1.4)

where Q[x] := x>Qx is the quadratic form defined by a symmetric g × g real
matrix Q, and `(x) := `>x is the linear form defined by a vector ` ∈ Rg . In the
spirit of Flaminio and Forni [14], our method consists of reducing the sum (1.4)
to a Birkhoff sum along an orbit (depending on `) of some Legendrian subgroup
(depending on Q) in the standard (2g +1)-dimensional Heisenberg nilmanifold.

The occurrence of Heisenberg nilmanifolds is not a surprise; in fact the con-
nection between the Heisenberg group and the theta series is well known and
very much exploited [1, 2, 48, 14, 42, 43].

The application to g -dimensional finite theta sums (1.4) is the following
corollary of Theorem 5.11.

COROLLARY 1.8. Let Q[x] = x>Qx be the quadratic form defined by the symmet-
ric g × g real matrix Q, let α= (

I 0
Q I

) ∈ Sp2g (R), and let `(x) = `>x be the linear
form defined by ` ∈Rg . Set

Θ(Q,`; N ) := N−g /2
∑

n∈Zg∩[0,N ]g

e (Q[n]+`(n)) .

• There exists a full measure set Ωg ⊂Mg such that if [α] ∈Ωg and ε> 0 then

Θ(Q,`; N ) =O
(
(log N )g+1/(2g+2)+ε) .

• If [α] ∈Mg satisfies a δ̂(g )-Roth condition, then for any ε> 0

Θ(Q,`; N ) =O
(
Nε

)
.

• If [α] ∈Mg is of bounded type, then

Θ(Q,`; N ) =O (1) .

The Diophantine conditions in terms of the symmetric matrix Q are dis-
cussed in Remark 4.11.

As we mentioned above, dynamical methods have already been used to study
the sums Θ(Q,`; N ). Götze and Gordin [21], generalizing [38], show that some
smoothings of Θ(Q,`; N ) have a limit distribution. See also Marklof [39, 40].
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Geometrical methods, similar to ours, to estimate finite theta sums are also
used by Griffin and Marklof [23] and Cellarosi and Marklof [9]. They focus on
the distributions of these sums as Q and ` are uniformly distributed in the
g = 1 case. As they are only interested in theta sums, they may consider a single
irreducible representation ρ of the Heisenberg group and a single intertwining
operator between ρ and L2(M). The other more technical difference is that as
Q and ` vary, it is more convenient to generalize the ergodic sums (1.3) to the
case when ω is transverse current.

Estimates of theta sums are also crucial in the paper of Götze and Margulis
[22], which focuses on the finer aspects of the “quantitative Oppenheim con-
jecture”. There, it is a matter of estimating the error terms when counting the
number of integer lattice points of given size for which an indefinite irrational
quadratic form takes values in a given interval. This is clearly a subtler problem
than the one considered here.

Article organization. In Section 2, we introduce the necessary background on
the Heisenberg and symplectic groups. In Section 3 we prove the results about
the cohomology of isotropic subgroups of the Heisenberg groups. Section 4
deals with the relation between Diophantine properties and dynamics on the
Siegel modular variety. Finally, in Section 5 we prove the main equidistribution
result and the applications to finite theta sums.

Applications to the rigidity problem of higher-rank Abelian actions on Heisen-
berg nilmanifolds, as a consequence of the tame estimates for these actions, will
be the subject of further works.

2. HEISENBERG GROUP AND SIEGEL SYMPLECTIC GEOMETRY

2.1. The Heisenberg group and the Schrödinger representation.

The Heisenberg group and Lie algebra. Let ω denote the canonical symplec-
tic form on R2g ≈ Rg ×Rg , i.e., the non-degenerate alternate bilinear form
ω((x,ξ), (x ′,ξ′)) = ξ · x ′− ξ′ · x, where we use the notations (x,ξ) ∈ Rg ×Rg and
ξ · x := ξ1x1 + ·· · + ξg xg . The Heisenberg group over Rg (or the real (2g + 1)-
dimensional Heisenberg group) is the set Hg = Rg ×Rg ×R equipped with the
product law

(x,ξ, t ) · (x ′,ξ′, t ′) = (x +x ′,ξ+ξ′, t + t ′+ 1
2ω((x,ξ), (x ′,ξ′))) .(2.1)

It is a central extension of R2g by R, as we have an exact sequence

0 →Z(Hg ) →Hg →R2g → 0,

with Z(Hg ) = {(0,0, t )} ≈R.
The Lie algebra of Hg is the vector space hg =Rg ×Rg ×R equipped with the

commutator [
(q, p, t ), (q ′, p ′, t ′)

]= (0, 0, p ·q ′−p ′ ·q).
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Let T = (0,0,1) ∈ Z (hg ). If (Xi ) is a basis of Rg , and (Ξi ) the symplectic dual
basis, we obtain a basis (Xi ,Ξ j ,T ) of hg satifying the canonical commutation
relations:

[Xi , X j ] = 0, [Ξi ,Ξ j ] = 0, [Ξi , X j ] = δi j T, 1 ≤ i , j ≤ g .(2.2)

A basis (Xi ,Ξ j ,T ) of hg satisfying the relations (2.2) will be called a Heisenberg
basis of hg . The Heisenberg basis (X 0

i ,Ξ0
j ,T ) where X 0

i and Ξ0
j are the standard

bases of Rg , will be called the standard Heisenberg basis.
Given a Lagrangian subspace l ⊂ Rg ×Rg , there exists a Heisenberg basis

(Xi ,Ξ j ,T ) such that (Xi ) spans l; in this case the span l′ = 〈
Ξ j

〉
is also Lagrangian

and we say that the basis (Xi ,Ξ j ,T ) is adapted to the splitting l× l′×Z (hg ) of hg .

Standard lattices and quotients. The set Γ :=Zg ×Zg × 1
2Z is a discrete and co-

compact subgroup of the Heisenberg group Hg , which we shall call the standard
lattice of Hg . The quotient

M :=Hg /Γ

is a smooth manifold that will be called the standard Heisenberg nilmanifold.
The natural projection map

p : M→Hg /(ΓZ(Hg )) ≈ (Hg /Z (Hg ))/(Γ/Γ∩Z(Hg ))(2.3)

maps M onto a 2g -dimensional torus T2g := R2g /Z2g . All lattices of Hg were
described by Tolimieri in [48]. Henceforth we will limit ourselves to consider
only a standard Heisenberg nilmanifold, our results extending trivially to the
general case. Observe that expT is the element of Z(Hg ) generating Γ∩Z(Hg ).

Unitary Hg -modules and Schrödinger representation. The Schrödinger repre-
sentation is a unitary representation of ρ :Hg →U (L2(Rg ,dy)) of the Heisenberg
group into the group of unitary operators on L2(Rg ,dy); it is explicitly given by

(ρ(x,ξ, t )ϕ)(y) = e i t−iξ·y−1
2 iξ·xϕ(y +x), (ϕ ∈ L2(Rg ), (x,ξ, t ) ∈Hg )

(see [19]). Composing the Schrödinger representation with the automorphism
(x,ξ, t ) 7→ (|h|1/2x,ε|h|1/2ξ,ht ) of Hg , where h 6= 0 and ε = sign(h) = ±1, we ob-
tain the Schrödinger representation with parameters h: for all ϕ ∈ L2(Rg ,dy)

(ρh(x,ξ, t )ϕ)(y) = e i ht−iε|h|1/2ξ·y−1
2 i hξ·xϕ(y +|h|1/2x).(2.4)

According to the Stone-von Neumann theorem [37], the unitary irreducible
representations π :Hg →U (H ) of the Heisenberg group on a Hilbert space H

are

• either trivial on the center; then they are equivalent to a one-dimensional
representation of the quotient group Z(Hg )\Hg , i.e., equivalent to a char-
acter of R2g ,

• or infinite dimensional and unitarily equivalent to a Schrödinger represen-
tation with some parameter h 6= 0.
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Infinitesimal Schrödinger representation. The space of smooth vectors of the
Schrödinger representation ρh : Hg → U (L2(Rg ,dy)) is the space of Schwartz
functions S (Rg ) ⊂ L2(Rg ,dy) [44]. By differentiating the Schrödinger representa-
tion ρh we obtain a representation of the Lie algebra hg on S (Rg ) by essentially
skew-adjoint operators on L2(Rg ,dy); this representation is called the infinites-
imal Schrödinger representation with parameter h. With an obvious abuse of
notation, we denote it by the same symbol ρh ; the action of X ∈ hg on a function
f will be denoted ρh(X ) f or X . f when no ambiguity can arise. Differentiating
the formulas (2.4) we see that, for all k = 1,2, . . . , g , we have

ρh(X 0
k ) = |h|1/2 ∂

∂yk
, ρh(Ξ0

k ) =−iε|h|1/2 yk , ρh(T ) = i h,

where (yi ) are the coordinates in Rg relative to the standard basis (X 0
i ) and

ε= sign(h). More generally, by the Stone-von Neumann theorem quoted above,
given any Heisenberg basis (Xi ,Ξ j ,T ) of hg , the formulas

ρh(Xk ) = |h|1/2 ∂

∂yk
, ρh(Ξk ) =−iε|h|1/2 yk , ρh(T ) = i h,(2.5)

define, via the exponential map, a Schrödinger representation ρh with parame-
ter h on L2(Rg ,dy) such that

ρh(ex1 X1+···+xg Xg ) f (y) = f (y +|h|1/2x),

ρh(eξ1Ξ1+···+ξgΞg ) f (y) = e−iε|h|1/2ξ·y f (y),

ρh(e tT ) f (y) = e i th f (y).

(2.6)

2.2. Siegel symplectic geometry.

Symplectic group and moduli space. Let Sp2g (R) be the group of symplectic

automorphisms of the standard symplectic space (R2g ,ω). The group of those
automorphisms of Hg that are trivial on the center is the semi-direct product
Aut0(Hg ) = Sp2g (R)nR2g of the symplectic group with the group of inner auto-

morphisms Hg /Z(Hg ) ≈R2g .
The group of automorphisms of Hg acts simply transitively on the set of

Heisenberg bases, hence we may identify the set of Heisenberg bases of hg

with the group of automorphisms of Hg . However since we are interested in
the action of subgroups defined in terms of a choice of a Heisenberg basis
and since the dynamical properties of such action are invariant under inner
automorphisms, we may restrict our attention to bases which are obtained by
applying automorphisms α ∈ Sp2g (R) to the standard Heisenberg basis.

Explicitly, the symplectic matrix written in block form α = (
A B
C D

) ∈ Sp2g (R),

with the g×g real matrices A,B ,C and D satisfying C>A = A>C , A>D−C>B = 1,
and D>B = B>D , acts as the automorphism

(x,ξ, t ) 7→α(x,ξ, t ) := (Ax +Bξ,C x +Dξ, t ) .
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Siegel symplectic geometry. The stabilizer of the standard lattice Γ<Hg inside
Sp2g (R) is exactly the group Sp2g (Z). We call Mg = Sp2g (R)/Sp2g (Z) the moduli
space of the standard Heisenberg manifold. We may regard Sp2g (R) as the defor-
mation (or Teichmüller) space of the standard Heisenberg manifold M=Hg /Γ
and Mg as the moduli space of the standard nilmanifold, in analogy with the
2-torus case.

The Siegel modular variety, the moduli space of principally polarized abelian
varieties of dimension g , is the double coset space

Σg :=Kg \Sp2g (R)/Sp2g (Z),

where Kg is the maximal compact subgroup Sp2g (R)∩SO2g (R) of Sp2g (R), iso-
morphic to the unitary group Ug (C). Thus, Mg fibers over Σg with compact
fibers Kg .

The quotient space Kg \Sp2g (R)/±12g may be identified with Siegel upper
half-space in the following way. Recall that the Siegel upper half-space of de-
gree/genus g [46] is the complex manifold

Hg :=
{

Z ∈ Symg (C)
∣∣∣ℑ(Z ) > 0

}
of symmetric complex g×g matrices Z = X+i Y with positive definite symmetric
imaginary part ℑ(Z ) = Y and arbitrary (symmetric) real part X .

The symplectic group Sp2g (R) acts on the Siegel upper half-space Hg as gen-

eralized Möbius transformations. The left action of the block matrix α= (
A B
C D

)
in Sp2g (R) is defined as

Z 7→α(Z ) := (AZ +B)(C Z +D)−1 .(2.7)

This action leaves invariant the Riemannian metric d s2 = tr(d Z Y −1d Z Y −1).
As the the kernel of this action is given by ±12g and the stabilizer of the point

i := i 1g ∈Hg coincides with Kg , the map

α ∈ Sp2g (R) 7→α−1(i ) ∈Hg

induces an identification Kg \Sp2g (R)/±12g ≈Hg and consequently an identifi-
cation of the Siegel modular variety Σg ≈ Sp2g (Z)\Hg .

NOTATION 2.1. For α ∈ Sp2g (R) we denote by [α] :=αSp2g (Z) its projection on
the moduli space Mg . We denote by [[α]] :=Kg αSp2g (Z) the projection of α to
the Siegel modular variety Σg . We remark that under the previous identification
[[α]] coincides with the point Sp2g (Z)α−1(i ) ∈ Sp2g (Z)\Hg .

3. COHOMOLOGY WITH VALUES IN Hg -MODULES

Here we discuss the cohomology of the action of a subgroup P ⊂ Hg on a
Fréchet Hg -module F , that is to say the Lie algebra cohomology of p = Lie(P)
with values in the Hg -module F . We assume that P is a connected Abelian Lie
subgroup of Hg contained in a Legendrian subgroup L.
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The modules interesting for us are, in particular, those arising from the reg-
ular representation of Hg on the space C∞(M) of smooth functions on a (stan-
dard) nilmanifold M :=Hg/Γ. As mentioned in the introduction, the fact that Hg

acts on M by left translations, implies that the space F =C∞(M) is a p-module:
in fact for all V ∈ p and f ∈ F one defines (cf. formula (1.2))

(V. f )(m) = d

dt
f (exp(−tV ).m)

∣∣∣∣
t=0

, (m ∈M) .

As P is an Abelian group, the differential on the cochain complex A∗(p,F ) =
Λ∗p⊗F of F -valued alternating forms on p is given, in degree k, by the usual
formula

dω(V0, . . . ,Vk ) =
k∑

j=0
(−1) j V j .ω(V0, . . . ,V̂ j , . . . ,Vk ) .

NOTATION 3.1. When F is the space of C∞-vectors of a representation π of Hg

we may denote the complex A∗(p,F ) also by the symbol A∗(p,π∞).

In order to study the cohomology of the complex A∗(p,C∞(M)), it is conve-
nient to observe that the projection p of M onto the quotient torus T2g (see (2.3))
yields a Hg -invariant decomposition of all the interesting function spaces on M
into functions with zero average along the fibers of p — we denote such func-
tion spaces with a suffix 0 — and functions that are constant along such fibers;
these latter functions can be thought of as pull-backs of functions defined on
the quotient torus T; hence we write, for example,

C∞(M) =C∞
0 (M)⊕p∗(C∞(T2g )) ≈C∞

0 (M)⊕C∞(T2g ),(3.1)

and we have similar decompositions for L2(M) and — when a suitable Laplacian
is used to define them — for the L2-Sobolev spaces W s(M).

If we denote by P̄ the projection of P into T2g and by p̄ its Lie algebra, we ob-
tain that we may split the complex A∗(p,C∞(M)) into the sum of A∗(p,C∞

0 (M))
and A∗(p, p∗(C∞(T2g ))) ≈ A∗(p̄,C∞(T2g )). The action of P̄ on T2g being lin-
ear, the computation of the cohomology of this latter complex is elementary
and folklore when dim P̄ = 1. For lack of references we review it in the next
Section 3.1 for any dim P̄. In Section 3.2 we shall consider the cohomology of
C∗(p,C∞

0 (M)).

REMARK 3.2. To define the norm of the Hilbert Sobolev spaces W s(M), we fix a
basis (Vi ) of the Lie algebra hg , set ∆=−∑

V 2
i , and define ‖ f ‖2

s =
〈

f , (1+∆)s f
〉

where 〈·, ·〉 is the ordinary L2 Hermitian product. This has the advantage that for
any Hilbert sum decomposition L2(M) =⊕

i Hi of L2(M) into closed Hg -invariant
subspaces we also have a Hilbert sum decomposition W s(M) = ⊕

i W s(Hi ) of
W s(M) into closed Hg -invariant subspaces W s(Hi ) :=W s(M)∩Hi .

Currents. Let F be any tame Fréchet hg -module, graded by increasing norms
(‖ ·‖s)s≥0, defining Banach spaces W s ⊂ F .

The space of continuous linear functionals on Ak (p,F ) =Λkp⊗F will be called
the space of currents of dimension k and will be denoted Ak (p,F ′), where F ′ is
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the strong dual of F ; the notation is justified by the fact that the natural pairing
(Λkp,Λkp) between k vectors and k-forms allows us to write Ak (p,F ′) ≈Λkp⊗F ′.
Endowed with the strong topology, Ak (p,F ′) is the inductive limit of the spaces
Λkp⊗ (W s)′.

The boundary operators ∂ : Ak (p,F ′) → Ak−1(p,F ′) are, as usual, the adjoint
of the differentials d; hence they are defined by 〈∂T,ω〉 = 〈T,dω〉. A closed cur-
rent T is one such that ∂T = 0. We denote by Zk (p,F ′) the space of closed
currents of dimension k and by Zk (p, (W s)′) the space of closed currents with
coefficients in (W s)′.

3.1. Cohomology of a linear Rd action on a torus. Let Λ be a lattice subgroup
of R` and let R` act on the torus T` = R`/Λ by translations. We consider the
restriction of this action to a subgroup Q<R` isomorphic to Rd , with Lie algebra
q. Then the Fréchet space C∞(T`) is a q-module. In this section we consider
the cohomology of the associated complex A∗(q,C∞(T`)).

Let Λ⊥ = {
λ ∈ (R`)′

∣∣λ ·n =Z ∀ n ∈Λ}
denote the dual lattice of Λ. We say

that the subspace q satisfies a Diophantine condition of exponent τ > 0 with
respect to the lattice Λ, and we write q ∈ DCτ(Λ), if

∃ C > 0 such that sup
V ∈qà{0}

|λ ·V |
‖V ‖ ≥C‖λ‖−τ, ∀ λ ∈Λ⊥à {0}.(3.2)

We set
µ(q,Λ) = inf

{
τ |q ∈ DCτ(Λ)

}
.

REMARK 3.3. The Diophantine condition considered here is dual to the Dio-
phantine condition on subspaces of (R`)′ ≈R` considered by Moser in [41]. In
fact, if we set q⊥ = {

λ ∈ (R`)′
∣∣kerλ⊃ q

}
, the condition (3.2) is equivalent to

∃ C > 0 such that dist(λ,q⊥) ≥C‖λ‖−τ, ∀ λ ∈Λ⊥à {0}.

Thus, by Theorem 2.1 of [41], the inequalities (3.2) are possible only if τ≥ `/d−1,
and the set of subspaces q⊥ with µ(q,Λ) = `/d −1 has full Lebesgue measure in
the Grassmannian Gr(Rd ;R`).

We say that q is resonant (with respect to Λ) if, for some λ ∈Λ⊥à {0}, we have
q ⊂ kerλ; in this case the closure of the orbits of Q on R`/Λ are contained in
lower dimensional tori, the orbits of the rational subspace kerλ, and we may
understand this case by considering a lower dimensional ambient space R`

′

with `′ < `.
Thus we may limit ourselves to non-resonant q; in this case, if q is not Dio-

phantine, we have µ(q,Λ) = +∞ and we say that q is Liouvillean (with respect
to Λ).

THEOREM 3.4 (Folklore). Let q ∈ Gr(Rd ;R`) be a non-resonant subspace with
respect to the lattice Λ<R`. Then the action of Q= expq on the torus T` :=R`/Λ
is cohomologically C∞-stable if and only if q ∈ DCτ(Λ) for some τ > 0. In this
case we have

H∗(q,C∞(T`)) ≈Λ∗q,
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the cohomology classes being represented by forms with constant coefficients. Fur-
thermore, the q-module C∞(T`) is tamely cohomologically C∞-stable and has
tame splitting in all degrees.

Proof. Without loss of generality we may assume Λ=Z`. The s-Sobolev norm
of a function f ∈C∞(T`) with Fourier series representation

f (x) = ∑
n∈Z`

f̂ (n)e2πi n·x

is given by

‖ f ‖2
s =

∑
n∈Z`

(
1+‖n‖2)s | f̂ (n)|2 .

We have a direct sum decomposition C∞(T`) =C〈1〉⊕C∞
0 (T`) , where C〈1〉 is the

space of constant functions and C∞
0 (T`) is the space of zero mean smooth func-

tions on T`. An analogous orthogonal decomposition W s(T`) =C〈1〉⊕W s
0 (T`)

holds for Sobolev spaces. Hence every ω ∈ Z k (q,C∞(T`)) splits (tamely) into
a sum ω = ω0 +ωc of a form ω0 ∈ Z k (q,C∞

0 (T`)) and a constant coefficient
form ωc ∈ Λkq. Consequently, the cohomology H∗(q,C∞(T`)) splits into the
sum of cohomology classes represented by forms with constant coefficients and
H∗(q,C∞

0 (T`)). We now show that, under the assumption (3.2) on q, we have
H∗(q,C∞

0 (T`)) = 0.
By Fourier analysis, C∞

0 (T`) splits into a L2-orthogonal sum of one-dimensio-
nal modules Cn ≈C, n ∈Z`à {0}; the space q acts on Cn by

V. z = i (n ·V ) z, ∀ z ∈Cn , ∀ V ∈ q;

hence, for ω ∈Λkq⊗Cn and V0, . . . ,Vk ∈ q,

dω(V0, . . . ,Vk ) =
k∑

j=0
i (n ·V j )ω(V0, . . . ,V̂ j , . . . ,Vk ).

Let X1, X2, . . . , Xd be a basis of q, and define the co-differential d∗ by

d∗η(V1, . . . ,Vk ) :=−
d∑

m=1
i (n ·Xm)η(Xm ,V1, . . . ,Vk ).

We have H = d∗◦d+d◦d∗ = (∑d
m=1 |n ·Xm |2) IdΛ*q. It follows that if ω ∈Λkq⊗Cn

is closed then ω= dΩ with

Ω= H−1d∗ω.

We conclude that the map d−1 := H−1d∗ is a right inverse of d on the space
Z k (q,Cn) of closed forms. From the definitions of the maps d∗ and H we obtain
the estimate

‖d−1ω‖0 ≤
( d∑

m=1
|n ·Xm |2

)− 1
2 ‖ω‖0, ∀ ω ∈ Z k (q,Cn).

It is easily seen that the Diophantine condition (3.2) is equivalent to the ex-
istence of a constant C > 0 such that

∑d
m=1 |n · Xm |2 > C ‖n‖−2τ for all n ∈ Z`.
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Hence, for some constant C > 0 we have ‖d−1ω‖0 ≤C−1‖n‖τ‖ω‖0, and therefore

‖d−1ω‖s ≤C−1‖ω‖s+τ
for all s ∈R and all ω ∈ Z k (q,Cn).

Since the Sobolev space (W s
0 (T`),‖ · ‖s) is equal to the Hilbert direct sum⊕

n 6=0(Cn ,‖ ·‖s), the map d−1 extends to a tame map

d−1 : Z k (q,C∞
0 (T`)) → Ak−1(q,C∞

0 (T`))

satisfying a tame estimate of degree τ with base 0 and associating a primitive to
each closed form.

Combining these results with the previous remark on constant coefficient
forms, we conclude that under the Diophantine assumption (3.2) the q-module
C∞(T`) is tamely cohomologically C∞-stable and has a tame splitting in all
degrees.

The “only if” part of the statement may be proved as in the case dimQ = 1
(see Katok [28, page 71]).

3.2. Cohomology with values in C∞
0 (M). The previous section settles the study

of the cohomology of the action of a abelian subgroup P ⊂ Hg with values in
the Hg -sub-module p∗(C∞(T2g )). We are left to consider the action of P with
values in the Hg -sub-module C∞

0 (M).
Since the center Z (Hg ) has spectrum 2πZà {0} on L2

0(M), the space L2
0(M)

splits as a Hilbert sum of Schrödinger Hg -modules Hi equivalent to ρh , with
h ∈ 2πZà {0}. The same remark applies to the Sobolev space W s

0 (M), which
splits as a Hilbert sum of the (non-unitary) Hg -modules W s

0 (Hi ) = Hi ∩W s
0 (M).

The space C∞(M)∩Hi can be characterized as the space C∞(Hi ) of C∞ vec-
tors in the Hg -module Hi ; it is a tame graded Fréchet space topologized and
graded by the increasing family of Sobolev norms. This leads us to consider
the action of P with values in the space of smooth vectors of a Schrödinger
Hg -module.

Thus let P be an isotropic subgroup of Hg of dimension d . Fix a Legendrian
subgroup L such that P≤ L<Hg . Let |h| > h0 > 0.

Since the group of automorphisms of Hg acts transitively on Heisenberg
bases, we may assume that we have fixed a Heisenberg basis (Xi ,Ξ j ,T ) of hg

such that (X1, . . . , Xd ) forms a basis of p and (X1, . . . , Xg ) is a basis of Lie(L). This
yields isomorphisms L≈Rg and P≈Rd , with the latter group embedded in Rg

via the first d coordinates. With these assumptions, the formulas yielding the
representation ρh on L2(Rg ) are given by the equations (2.6). The space ρ∞

h of
C∞ vectors for the representation ρh is identified with S (Rg ), on which hg acts
by the formulas (2.5).

Homogeneous Sobolev norms. The infinitesimal representation extends to a
representation of the enveloping algebra U(hg ) of hg ; this allows us to define
the “sub-Laplacian” as the image via ρh of the element

Hg =−(X 2
1 +·· ·+X 2

g +Ξ2
1 +·· ·+Ξ2

g ) ∈U(hg ).
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Formulas (2.5) yield

ρh(Hg ) = |h|
(
|x|2 −

g∑
k=1

∂2

∂x2
k

)
= |h|ρ1(Hg ).(3.3)

Since Hg is a positive operator with (discrete) spectrum bounded below by g |h|,
we define the space W s(ρh ,Rg ) of functions of Sobolev order s as the Hilbert
space of vectors ϕ of finite homogeneous Sobolev norm

9ϕ92
s,h := 〈

(ρh(Hg ))sϕ,ϕ
〉

.(3.4)

This makes explicit the fact that the space ρ∞
h of C∞ vectors for the represen-

tation ρh coincides with S (Rg ).
The homogeneous Sobolev norms (3.4) are not the standard ones (later on

we shall make a comparison with standard Sobolev norms). They have, however,
the advantage that the norm on W s(ρh ,Rg ) is obtained by rescaling by the factor
|h|s/2 the norm on W s(ρ1,Rg ). For this reason we can limit ourselves to studying
the case h = 1; later we shall consider the appropriate rescaling. Thus we denote
ρ = ρ1 and, to simplify, we write Hg for ρ(Hg ) and W s(Rg ) for W s(ρ1,Rg ); we
also set

9ϕ9s :=9ϕ9s,1 = ‖H s/2
g ϕ‖0.

The cochain complex A∗(p,ρ∞). It will be convenient to use the identification
Rg ≈ Rd ×Rg−d and, accordingly, to write ϕ(x, y), with x ∈ Rd and y ∈ Rg−d ,
for a function ϕ defined on Rg . We also write dx = dx1 · · ·dxd . Then, by the
formula (2.4), the group element q ∈P≈Rd acts on ϕ ∈S (Rg ) according to

ϕ(x, y) 7→ϕ(x +q, y).

Thus the complex A∗(p,ρ∞) is identified with the complex of differential forms
on p ≈ Rd with coefficients in S (Rg ). It will be also convenient to define the

operators H ′
d =

(
|x|2 −∑d

k=1
∂2

∂x2
k

)
and H ′′

g−d =
(
|y |2 −∑g−d

k=1
∂2

∂y2
k

)
on S (Rd ) and

S (Rg−d ), respectively; they may be also considered as operators on S (Rg ), and
then Hg = H ′

d +H ′′
g−d .

LEMMA 3.5. Consider S (Rg ) as a Hg -module with parameter h = 1. Define the
distribution Ig ∈S ′(Rg ) by

Ig ( f ) :=
∫
Rg

f (x)dx

for f ∈S (Rg ). Then, for any s > g /2, Ig extends to a bounded linear functional
on W s(Rg ), that is Ig ∈W −s(Rg ).

Proof. Using Cauchy-Schwartz inequality we have

|Ig ( f )|2 ≤
∫
Rg

|(g +|x|2)|−s dx ·
∫
Rg

(g +|x|2)s | f (x)|2 dx

As g +|x|2 ≤ 2Hg , the second integral is bounded by a constant times 9 f 92
s , and

the result follows.
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For the next lemma we adopt the convention R0 = {0} and S (R0) =W s(R0) =C
with the usual norm.

LEMMA 3.6. For 1 ≤ d ≤ g , consider the map Id ,g : S (Rg ) 7→S (Rg−d ) defined by

(Id ,g f )(y) :=
∫
Rd

f (x, y)dx.

We consider S (Rg ) and S (Rg−d ) as Hg and Hg−d -modules, respectively, with
parameter h = 1. Then, for any ε > 0 and s ≥ 0, the map Id ,g extends to a

bounded linear map from W s+d/2+ε(Rg ) to W s(Rg−d ), i.e.,

9Id ,g f 9s ≤C 9 f 9s+d/2+ε

for some constant C =C (s,ε,d , g ). In particular this proves the inclusion

Id ,g (S (Rg )) ⊂S (Rg−d ).

Proof. For d = g we have Ig ,g =Ig and the result is a restating of the previous
lemma.

Now suppose d < g . The operators H ′
d and H ′′

g−d , considered as operators on

L2(Rd ) and L2(Rg−d ), have discrete spectrum (they are independent d-dimen-
sional and (g −d)-dimensional harmonic oscillators); thus identifying L2(Rg ) ≈
L2(Rd )⊗L2(Rg−d ) their joint spectral measure on L2(Rg ) is the product of the
spectral measures on L2(Rd ) and L2(Rg−d ) respectively. Clearly Hg ≥ H ′

d and
Hg ≥ H ′′

g−d .

Let (vm) and (wn) be orthonormal bases of L2(Rd ) and L2(Rg−d ) of eigen-
vectors of H ′

d and H ′′
g−d with eigenvalues (λm) and (µn), respectively. We may

choose these bases so that {vm} ⊂S (Rd ) and {wn} ⊂S (Rg−d ).
Writing for f ∈ S (Rg ), f = ∑

fmn vm ⊗wn and letting dm = Id (vm) we have
Id ,g f =∑

n(
∑

m(dm) fmn)wn . It follows that

9Id ,g f 92
s =

∑
n
µs

n

∣∣∣∑
m

dm fmn

∣∣∣2 ≤
(∑

m
|dm |2λ−d/2−ε

m

)( ∑
m,n

µs
nλ

d/2+ε
m | fmn |2

)
.

The first term in this product equals ‖Id‖2
−(d/2+ε), which is bounded by Lem-

ma 3.5; the second term is majorated by 9 f 92
s+d/2+ε, since Hg ≥ H ′

d and Hg ≥
H ′′

g−d .

The proof of the following corollary is immediate.

COROLLARY 3.7. We use the notation of the previous lemma. Suppose d < g . For
all t ≥ 0 and all s > t +d/2 the map

D ∈W −t (Rg−d ) 7→ D ◦Id ,g ∈W −s(Rg )

is continuous. In particular, if f ∈ W s(Rg ) with s > d/2 then Id ,g ( f ) = 0 if and

only if T ◦Id ,g ( f ) = 0 for all T ∈ L2(Rg−d )′.
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Let ϕd ∈S (Rd ) be the ground state of Hd normalized by the condition
Id (ϕd ) = 1, namely

ϕd (x) := (2π)−d/2e−|x|
2/2, (x ∈Rd );

we have 9ϕd9s =π−d/4d s/2.

LEMMA 3.8. For 1 ≤ d < g , let Ed ,g : S (Rg−d ) 7→S (Rg ) be defined by

(Ed ,g f )(x, y) :=ϕd (x) f (y).

We consider S (Rg ) and S (Rg−d ) as Hg and Hg−d -modules, respectively, with
parameter h = 1. Then, for any s ≥ 0, the map Ed ,g extends to a bounded linear

map from W s(Rg−d ) to W s(Rg ), i.e.,

9Ed ,g f 9s ≤C 9 f 9s

for some constant C =C (s,d).

Proof. Consider H ′
d = and H ′′

g−d as operators on S (Rg ). For all integers n, from

the binomial identity for (H ′
d + H ′′

g−d )n , we obtain 9Ed ,g f 92
n = ∑

j
(n

j

)
9ϕd 92

j

9 f 92
n− j ≤ 2n 9ϕ2

d 9n 9 f 92
n , where for the last inequality we used H ′

d ≥ 1 and

H ′′
g−d ≥ 1. This proves the lemma for integer s; the general claim follows by

interpolation.

LEMMA 3.9. Let d = 1. Let f be an element of the Hg -module S (Rg ) with pa-
rameter h = 1. Suppose that I1,g f = 0. Set

(P f )(x, y) :=
∫ x

−∞
f (t , y)dt .

For all t ≥ 0 and all ε> 0 there exists a constant C =C (t ,ε) such that

9P f 9t ≤C 9 f 9t+1+ε .(3.5)

In particular this proves that P (S (Rg )) ⊂S (Rg−d ).

Proof. When g = 1, the lemma is a variation on the statement of Lemma 6.1
in [14], which can be easily proved by use of the Cauchy-Schwartz inequality as
in Lemma 3.5.

Suppose now that g > 1 and consider the decomposition Hg = H ′
1+H ′′

g−1. The

condition I1,g f = 0 implies that I1,g (H ′′
g−1)w f = 0 for any w ≥ 0; furthermore

P (H ′′
g−1)w f = (H ′′

g−1)wP f . Using the result for the case g = 1 and the definition
of the norm ‖ ·‖0 we have for all t ≥ 0 and all ε> 0

‖(H1)t/2 (H ′′
g−1)w/2 P f ‖0 ≤C (t ,ε)‖(H ′

1)(t+1+ε)/2 (H ′′
g−1)w/2 f ‖0.
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For integer values of the Sobolev order, using the above inequality and the bi-
nomial formula, we may write, for any ε> 0 and n ∈N,

9P f 92
n = 〈P f , H n

g P f 〉
0
=

n∑
k=0

(
n

k

)
‖(H ′

1)k/2 (H ′′
g−1)(n−k)/2 P f ‖2

0

≤C (ε,n)
n∑

k=0

(
n

k

)
‖(H ′

1)(k+1+ε)/2 (H ′′
g−1)(n−k)/2 f ‖2

0

≤C (ε,n)‖(Hg )n/2 (H ′
1)(1+ε)/2 f ‖2

0

≤C (ε,n)‖H (n+1+ε)/2
g f ‖2

0 =C (ε,n) 9 f 92
n+1+ε .

The general inequality follows by interpolation of the family of norms 9 ·9n .

Sobolev cocycles and coboundaries. Having fixed a Euclidean product on hg ,
we obtain, by restriction, a Euclidean product on p ⊂ hg and, by duality and
extension to the exterior algebra, a Euclidean product on Λkp′. The spaces
Ak (p,ρ∞) ≈Λkp′⊗S (Rg ) of cochains of degree k are endowed with the Hermit-
ian products obtained as tensor product of the Euclidean product on Λkp′ and
the Hermitian products ‖ · ‖s or 9 ·9s on S (Rg ). Completing with respect to
these norms, we define the Sobolev spaces Λkp′⊗W s(Rg ) of cochains of degree
k and use the same notations for the norms.

It is clear that, for k < d , the cohomology groups are H k (p,S (Rg )) = 0. Here
we estimate the Sobolev norm of a primitive Ω ∈ Ak−1(p,S (Rg )) of a cobound-
ary ω= dΩ ∈ B k (p,S (Rg )) = Z k (p,S (Rg )) in terms of the Sobolev norm of ω.

PROPOSITION 3.10. Let s ≥ 0 and 1 ≤ k < d ≤ g . Consider S (Rg ) as a Hg -module
with parameter h = 1. For every ε > 0 there exist a constant C = C (s,ε, g ,d) > 0
and a linear map

d−1 : Z k (p,S (Rg )) → Ak−1(p,S (Rg ))

associating to every ω ∈ Z k (p,S (Rg )) a primitive Ω= d−1ω ∈ Ak−1(p,S (Rg )) sat-
isfying the estimate

9Ω9s ≤C 9ω9s+(k+1)/2+ε .(3.6)

Proof. We denote points of Rg ≈ p×Rg−d ≈ R×Rd−1 ×Rg−d as triples (t , x, y)
with t ∈R, x ∈Rd−1, and y ∈Rg−d . For 0 ≤ k ≤ d ≤ g , one defines linear maps

Ak (Rd ,S (Rg ))
I−−−−−→←−−−−−
E

Ak−1(Rd−1,S (Rg−1))

as follows. For a monomial ω= f (t , x, y)d t ∧dxa in Ak (Rd ,S (Rg )), where a is
a multi-index in the set {1,2, . . . ,d −1}, we define

Iω :=
(∫ ∞

−∞
f (t , x, y)dt

)
dxa = (I1,g f )dxa ;(3.7)
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if dt does not divide ω we define instead Iω= 0. For a monomialω= f (x, y)dxa

in Ak−1(Rd−1,S (Rg−1)), we define

E ω :=ϕ(t ) f (x, y)dt ∧dxa = (E1,g f )dt ∧dxa .(3.8)

By Lemma 3.6 we obtain that for any t ≥ 0 and ε> 0 we have

9Iω9t ≤C 9ω9t+1/2+ε, C =C (t ,ε, g ).(3.9)

It follows from this inequality that the image of I lies in Ak−1(Rd−1,S (Rg−1)).
For the map E the inclusion E (Ak−1(Rd−1,S (Rg−1))) ⊂ Ak (Rd ,S (Rg )) is obvious,
and by Lemma 3.8 we have, for any s ≥ 0,

9Eη9s ≤C 9η9s , C =C (s,d).(3.10)

From (3.9) and (3.10) it follows that, for any s ≥ 0,

9EIω9s ≤C 9ω9s+1/2+ε .(3.11)

The maps I and E commute with the differential d. It is well known that I

and E are homotopy inverses of each other. In fact, it is clear that IE is the
identity.

We claim that the usual homotopy operator

K : Ak (Rd ,S (Rg )) → Ak−1(Rd ,S (Rg ))

satisfying 1−EI = dK −K d also satisfies tame estimates. For a monomial ω
not divisible by dt , K is defined as K ω= 0; for a monomial ω= f (t , x, y)dt ∧
dxa it is defined as K ω= g (t , x, y)dxa where

g (t , x, y) =
∫ t

−∞

[
f (r, x, y)−ϕ(r )

(
∫
R

f (u, x, y)du

)]
dr

=P ( f −E1,g I1,g f ).
(3.12)

Then by Lemma 3.9 and (3.11) we have that for all s ≥ 0

9K ω9s ≤C (s,ε, g ,d) 9ω9s+3/2+ε,(3.13)

unless Iω= 0, in which case we have

9K ω9s ≤C (s,ε, g ,d) 9ω9s+1+ε .(3.14)

This proves the claim.
Let ω ∈ A1(Rd ,S (Rg )) be closed and 1 < d ≤ g . Then Iω= 0 (by homotopy-

ing the integral in (3.7) with an integral with x →∞) and therefore Ω=K ω in
A0(Rd ,S (Rg )) ≈S (Rg+1) is a primitive of ω, i.e., dΩ=ω, and by (3.14) it satis-
fies the estimate 9Ω9s ≤C (s) ·9ω9s+1+ε for all s > 1/2. Thus the proposition is
proved in this case.

Assume, by induction, that the proposition is true for all g ≥ 1, all d ≤ g and
all k ≤ min{n,d}−1. Let ω ∈ An(Rd ,S (Rg )), with n < d , be closed. Then the (n−
1)-form Iω ∈ An−1(Rd−1,S (Rg−1)) is also closed. By the induction assumption,
Iω= dη for a primitive η ∈ An−2(Rd−1,S (Rg−1)) satisfying the estimate

9η9s ≤C 9Iω9s+n/2+ε .(3.15)
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Since EIω = E dη and E commutes with d, we obtain that a primitive of ω is
given by d−1ω :=Ω :=K ω+Eη. Therefore, from Lemma 3.6 and the estimates
(3.9), (3.10), (3.13), and (3.15), we have, for some constants C ’s which only de-
pend on s ≥ 0 and ε> 0,

9Ω9s ≤9K ω9s +9Eη9s

≤C ′ 9ω9s+3/2+ε+C ′′ 9η9s

≤C ′ 9ω9s+3/2+ε+C ′′′9Iω9s+n/2+ε/2

≤C ′ 9ω9s+3/2+ε+C ′′′′9ω9s+n/2+1/2+ε
≤C 9ω9s+(n+1)/2+ε .

(3.16)

Thus the estimate (3.6) holds also for k = n. This concludes the proof.

We are left to consider the space H k (p,S (Rg )) when k = d := dimp.
The map Id ,g extends to a map

Id ,g : Ad (p,S (Rg )) →S (Rg−d )(3.17)

by setting for a form ω= f (x, y)dx1 ∧·· ·∧dxd

(Id ,g ω)(y) :=
∫
Rd

f (x, y)dx.

PROPOSITION 3.11. Let s ≥ 0 and 1 ≤ d ≤ g . Consider S (Rg ) as a Hg -module
with parameter h = 1 and let ω ∈ Ad (p,S (Rg )). The form ω is exact if and only if
Id ,gω= 0. Furthermore, for every ε> 0 there exist a constant C =C (s,ε, g ,d) > 0
and a linear map

d−1 : kerId ,g ⊂ Ad (p,S (Rg )) → Ad−1(p,S (Rg ))

associating to every ω ∈ kerId ,g a primitive Ω of ω satisfying the estimate

9Ω9s ≤C 9ω9s+(d+1)/2+ε .(3.18)

Proof. The “only if” part of the statement is obvious. For d = 1 and any g ≥ 1,
this is Lemma 3.9. Indeed, a primitive of the 1-form ω= f (x, y)dx is the 0-form
Ω := (P f )(x, y), and the estimate for the norms comes from (3.5).

Assume, by recurrence, that the Proposition is true for all g ′ < g and all
d ≤ g ′. Let ω ∈ Ad (Rd ,S (Rg )) be a d-form such that Id ,gω= 0. Consider Iω in

Ad−1(Rd−1,S (Rg−1)), where I is the operator defined in the previous proof (see
(3.7)). It is clear from the definitions that Id ,g (ω) = 0 implies Id−1,g−1Iω = 0.

By recurrence, Iω = dη for a primitive η ∈ Ak−1(Rk ,S (Rg )) satisfying the esti-
mate

9η9s ≤C 9Iω9s+d/2+ε .(3.19)

As in the previous proof, one verifies that the form d−1ω := Ω := K ω+Eη in
Ad−1(Rd ,S (Rg )) is a primitive of ω (where the operators E and K are defined
in the previous proof, see (3.8) and (3.12)). Therefore, from Lemma 3.6 and the
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estimates (3.9), (3.10), (3.13), and (3.19), we have, for some constants C ’s which
only depend on s ≥ 0 and ε> 0,

9Ω9s ≤9K ω9s +9Eη9s

≤C ′ 9ω9s+3/2+ε+C ′′ 9η9s

≤C ′ 9ω9s+3/2+ε+C ′′′9Iω9s+d/2+ε/2

≤C ′ 9ω9s+3/2+ε+C ′′′′9ω9s+d/2+1/2+ε
≤C 9ω9s+(d+1)/2+ε .

(3.20)

The proof is complete.

PROPOSITION 3.12. Let s ≥ 0 and 1 ≤ d ≤ g . Consider S (Rg ) as a Hg -module
with parameter h = 1. For any k = 0, . . . ,d, the space of coboundaries B d (p,S (Rg ))
is a tame direct summand of Ak (p,S (Rg )). In fact, there exist linear maps

M k : Ak (p,S (Rg )) → B k (p,S (Rg ))

satisfying the following properties:

• the restriction of M k to B k (p,S (Rg )) is the identity map;
• the map M k satisfies, for any ε> 0, tame estimates of degree (k +3)/2+ε if

k < d and of degree d/2+ε if k = d.

Proof. For ω= f dx1 ∧·· ·∧dxd ∈ Ad (p,S (Rg )) let

M d (ω) =ω− (Ed ,g ◦Id ,g f )dx1 ∧·· ·∧dxd .

Lemmas 3.6 and 3.8 show that M d is a linear tame map of degree d/2+ε for
every ε> 0. Clearly for ω ∈ B d (p,S (Rg )) we have M d (ω) =ω. Since the map M d

maps Ad (p,S (Rg )) into B d (p,S (Rg )), we have proved that B d (p,S (Rg )) is a
direct summand of Ad (p,S (Rg )).

Now consider the case where k < d . We have B k (p,S (Rg )) = Z k (p,S (Rg )).
For ω ∈ Ak (p,S (Rg )) let

M k (ω) =ω−d−1 ◦d(ω).

The map M k is a linear tame map of degree (k +3)/2+ε for every ε> 0.
Clearly for ω ∈ Z k (p,S (Rg )) we have M(ω) = ω. Furthermore d ◦ M = 0.

Thus the map M k sends Ak (p,S (Rg )) into Z k (p,S (Rg )). We have proved that
Z d (p,S (Rg )) is a direct summand of Ad (p,S (Rg )).

P-invariant currents of dimension dimP. Recall that the space of currents
of dimension k is the space Ak (p,S (Rg )) of continuous linear functionals on
Ak (p,S (Rg )) and that Ak (p,S (Rg )) is identified with Λkp⊗S ′(Rg ). For any
s ≥ 0, the space Λkp⊗W −s(Rg ) is identified with the space of currents of dimen-
sion k and Sobolev order s.

It is clear, from Lemma 3.5, that Ig =Ig ,g ∈ W −s(Rg ) for any s > g /2, i.e., it
is a closed current of dimension g and Sobolev order g /2+ε, for any ε> 0.

For d < g and t > 0, consider the currents D ◦Id ,g with D ∈ W −t (Rg−d ). It

follows from Lemma 3.6 that such currents belong to Λdp⊗W −s(Rg ) for any
s > t +d/2. It is also easily seen that they are closed.
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We have the following proposition, whose proof follows immediately from
Lemma 3.6 and Proposition 3.11.

PROPOSITION 3.13. For any s > dimP/2, the space of P-invariant currents of
dimension d := dimP and order s is a closed subspace of Λdp⊗W −s(Rg ) and it
coincides with the space of closed currents of dimension d. It is

• a one dimensional space spanned by Ig , if dimP= g ;
• an infinite-dimensional space generated by

Id (p,S (Rg )) =
{

D ◦Id ,g

∣∣∣D ∈ L2(Rg−d )′
}

if dimP< g . We have Id (p,S (Rg )) ⊂W −d/2−ε(Rg ), for all ε> 0.

Let ω ∈ Λdp′⊗W s(Rg ) with s > (d +1)/2. Then ω admits a primitive Ω if and
only if T (ω) = 0 for all T ∈ Id (p,S (Rg )); under this hypothesis we may have
Ω ∈Λd−1p′⊗W t (Rg ) for any t < s − (d +1)/2.

Bounds uniform in the parameter h. Here we observe that the estimates in
Propositions 3.10 and 3.11 are uniform in the Planck constant h, provided that
this constant is bounded away from zero.

PROPOSITION 3.14. Let s ≥ 0 and 1 ≤ k ≤ d ≤ g , and consider the Hg -module
S (Rg ) with parameter h such that |h| ≥ h0 > 0. Let B k = Z k (Rd ,S (Rg )) if k < d
and B d = kerId ,g if k = d. For every ε > 0 there exist a positive constant C =
C (s,ε, g ,d ,h0) and a linear map

d−1 : B k → Ak−1(p,S (Rg ))

associating to every ω ∈ B a primitive Ω = d−1ω ∈ Ak−1(p,S (Rg )) satisfying the
estimate

9Ω9s ≤C 9ω9s+(k+1)/2+ε .(3.21)

Furthermore, for any ε > 0 there exists a constant C ′ = C ′(s,ε, g ,d ,h0) > 0 such
that the splitting linear maps of Proposition 3.12

M k : Ak (p,S (Rg )) → B k (p,S (Rg ))

satisfy tame estimates
9M k (ω)9s ≤C ′ 9ω9s+w

where w = (k +3)/2+ε if k < d and w = d/2+ε if k = d.

Proof. From (2.5) we see that the boundary operators in the Schrödinger repre-
sentation with Planck constant h are ħd := ρh(d) = |h|1/2 d. Therefore, if ω= dΩ,
then ω = ħdΩ′ with Ω′ = |h|−1/2Ω. Consequently, by (3.3), the estimates (3.6)
and (3.18) imply

9Ω′9s,h = |h|−1/2 9Ω9s,h = |h|s/2−1/2 9Ω9s

≤C |h|s/2−1/2 9ω9s+(k+1)/2+ε
=C |h|−(k+1+ε)/2 9ω9s+(k+1)/2+ε,h

≤C ′ 9ω9s+t+ε,h .

(3.22)
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for some C ′ depending also on h0. The second statement is proved in an analo-
gous manner.

Comparison with the usual Sobolev norms. The standard Sobolev norms as-
sociated with a Heisenberg basis (Xi ,Ξ j ,T ) of hg were defined in Remark 3.2.
For a Hg -module S (Rg ) with parameter h, the image of the Laplacian

−(X 2
1 +·· ·+X 2

g +Ξ2
1 +·· ·+Ξ2

g +T 2) ∈U(hg )

under ρh is ∆g = Hg +h2. Thus

‖ f ‖2
s = 〈 f , (1+∆g )s f 〉 = 〈 f , (1+h2 +Hg )s f 〉.

Here we claim that the uniform bound as in Proposition 3.14 continues to hold
with respect to the usual Sobolev norms. This is a consequence of the following
easy lemma which applies to S (Rg ) but also to any tensor product of S (Rg )
with some finite dimensional Euclidean space.

LEMMA 3.15. Let L : S (Rg ) → S (Rg ) be a linear map satisfying, for some t ≥ 0
and every s ≥ 0, the estimate

9L( f )9s ≤C (s)9 f 9s+t .

Then for every s ≥ 0 we have

‖L( f )‖s ≤C1(s)‖ f ‖s+t ,

where C1(s) = maxu∈[0,s+1] C (u).

Proof. For integer s = n, using the binomial formula, we get

‖L( f )‖2
n := 〈

L( f ), (Hg +1+h2)n L( f )
〉

0

=
n∑

j=0

(
n

j

)
‖(1+h2)(n− j )/2H j /2

g L( f )‖2
0

≤C ′(n)
n∑

j=0

(
n

k

)
‖(1+h2)(n− j )/2H ( j+t )/2

g f ‖2
0

=C ′(n)‖(1+∆g )n H t/2
g f ‖2

0

≤C ′(n)‖ f ‖2
n+t ,

with C ′(n) := max j∈[0,n] C ( j )2. For non integer s the lemma follows by interpola-
tion.

3.3. Proofs of Theorems 1.5 and 1.6. We are now in a position to integrate over
Schrödinger representations and obtain our main result on the cohomology of
P<Hg with values in Fréchet Hg -modules.

THEOREM 3.16. Let P be a d-dimensional isotropic subgroup of Hg , and let F∞
be the Fréchet space of C∞-vectors of a unitary Hg -module F . Let F = ∫

Fαdα
be the direct integral decomposition of F into irreducible sub-modules. Suppose
that

1. F does not contain any one-dimensional sub-modules;
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2. A generator of the center Z(Hg ) acting on F has a spectral gap.

Then the reduced and the ordinary cohomology of the complex A∗(p,F∞) coin-
cide. In fact, for all k = 1, . . . ,d, there are linear maps

d−1 : B k (p,F∞) → Ak−1(p,F∞)

associating to each ω ∈ B k (p,F∞) a primitive of ω and satisfying tame estimates
of degree (k +1)/2+ε for any ε> 0.

We have H k (p,F∞) = 0 for k < d; in degree d, we have that H d (p,F∞) is finite
dimensional only if d = g and the measure dα has finite support.

For any k = 0, . . . ,d and any ε> 0, there exist a constant C and a linear map

M k : Ak (p,F∞) → B k (p,F∞)

such that the restriction of M k to B k (p,F∞) is the identity map and the following
estimate holds:

‖M kω‖s ≤C‖ω‖s+w , ∀ ω ∈ Ak (p,F∞),

where w = (k + 3)/2+ ε if k < d and w = d/2+ ε if k = d. Hence the space of
coboundaries B k (p,F∞) is a tame direct summand of Ak (p,F∞).

(The hypotheses 1 and 2 of the above theorem could be stated more briefly by
saying that F satisfies the following property: any non-trivial unitary Hg -module
weakly contained in F is infinite dimensional.)

Proof. Let F∞ be the Fréchet space of C∞-vectors of a unitary Hg -module (ρ,F ).
Let F = ∫

Fαdα be the direct integral decomposition of F into irreducible sub-
modules (ρα,Fα). The hypotheses of Theorem 3.16 imply that there exists h0 > 0
such that for almost every α the Hg -module Fα is unitarily equivalent to a
Schrödinger module with parameter h satisfying |h| ≥ h0.

For any s ∈ R, we also have a decomposition of the Sobolev spaces W s(F,ρ)
as direct integrals

∫
W s(Fα,ρα)dα; this is because the operator 1+∆g defining

the Sobolev norms is an element of the enveloping algebra U(hg ) and because
the spaces Fα are U(hg )-invariant. It follows that any form ω ∈ Ak (p,F∞) has a
decomposition ω= ∫

ωαdα with ωa ∈ Ak (p,F∞
α ) and

‖ω‖2
W s (F,ρ) =

∫
‖ωα‖2

W s (Fα,ρα) dα.(3.23)

For the same reason mentioned above, we have

dω=
∫

(dωα)dα.(3.24)

Hence ω is closed if and only if ωα is closed for almost all α, that is,
Z k (p,W s(F,ρ)) = ∫

Z k (p,W s(Fα,ρα))dα.
For k < d we set B k

α = Z k (p,F∞
α ). For k = d we set B d

α = ker Id ,g ,α, where

Id ,g ,α : Ad (p,F∞
α ) →S (Rg−d ) are the tame maps defined, for each α, as in (3.17).

By Proposition 3.14 and Lemma 3.15, we have a constant C =C (s,ε, g ,d ,h0)
and, for each α, a linear map

d−1,α : B k
α→ Ak−1(p,F∞

α )
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associating to each ω ∈ B k
α(p,F∞

α ) a primitive Ω= d−1ω of ω satisfying the esti-
mates

‖d−1,αω‖W s (Fα,ρα) ≤C ‖ω‖W s+(k+1)/2+ε(Fα,ρα).(3.25)

Let B k be the graded Fréchet subspace of Ak (p,F∞) defined as
∫

B k
αdα. For

k < d we have B k = Z k (p,F∞) and, in degree d , we have B d ⊃ B d (p,F∞).
The above estimate shows that it is possible for one to define a linear map

d−1 : B k → Ak−1(p,F∞) by setting, for ω= ∫
ωαdα ∈ B k ,

d−1ω :=
∫

d−1,αωαdα.

By (3.23) and (3.24), the estimates (3.25) are still true if we replace d−1,α by d−1.
This shows that d−1 is a tame map of degree (k +1)/2+ε for all ε> 0 associ-

ating to each ω ∈ B k a primitive of ω.
Thus H k (p,F∞) = 0 if k < d . For k = d , we have H d (p,F∞) = ∫

H d (p,F∞
α )dα.

By Proposition 3.11, we have H d (p,F∞
α ) ≈ S (Rg−d ), hence the top degree co-

homology is infinite dimensional if d < g and one-dimensional if d = g . This
shows that H d (p,F∞) is finite dimensional if and only if d = g and the measure
dα has finite support.

Finally for each α, we have tame maps M k
α given by Proposition 3.12. Setting

M k = ∫
M k
αdα we obtain maps M k satisfying the Theorem’s conclusion.

Proof of Theorem 1.5. The proof is immediate as the space F = L2
0(M) formed by

the L2 functions on M of average zero along the fibers of the central fibration of
M satisfy the hypothesis of the theorem above. In fact L2

0(M) is a direct sum of
irreducible representations of Hg on which the generator Z of the center Z(Hg )
acts as scalar multiplication by 2πn, with n ∈Zà {0}.

Proof of Theorem 1.6. The theorem follows from the theorem above and the
“folklore” Theorem 3.4, as explained at the beginning of Section 3.

4. SOBOLEV STRUCTURES AND BEST SOBOLEV CONSTANT

4.1. Sobolev bundles.

Sobolev spaces. The group Sp2g (R) < Aut(Hg ) ≈ Aut(hg ) acts (on the right) on

the enveloping algebra U
(
hg

)
in the following way: we identify U

(
hg

)
with

the algebra of right invariant differential operators on Hg ; if V ∈ U
(
hg

)
and

α ∈ Sp2g (R), the action of α on V yields the differential operator Vα defined by

Vα( f ) :=α∗V
(
(α−1)∗ f

)
, f ∈C∞(Hg ).(4.1)

Let ∆=−(X 2
1 +·· ·+X 2

g +Ξ2
1+·· ·+Ξ2

g +T 2) ∈U(hg ) denote the Laplacian on Hg de-

fined via the “standard” basis (Xi ,Ξ j ,T ) (cf. sect. 2.1). Then ∆α =−((α−1X1)2 +
·· · + (α−1Ξg )2 + T 2), that is, ∆α is the Laplacian on Hg defined by the basis
(α−1(Xi ),α−1(Ξ j ),T ).

Let Γ′ be any lattice of Hg and M′ := Hg /Γ′ the corresponding nilmanifold.
For each α ∈ Sp2g (R), the operator ∆α is an elliptic, positive and essentially
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self-adjoint operator on L2(M′). Recall that L2
0(M′) denotes the space of ell-two

functions on M′ with zero average along the fibers of the toral projection. Its
norm is defined via the ell-two Hermitian product 〈·, ·〉 with integration done
with respect to the normalized Haar measure. Setting Lα = 1+∆α we define the
Sobolev spaces

W s
α(M′) := L−s/2

α L2
0(M′),(4.2)

which are Hilbert spaces equipped with the inner product

〈 f1, f2〉s,α := 〈Ls/2
α f1,Ls/2

α f2〉 = 〈 f1,Ls
α f2〉.

For simplicity, we denote by W s(M′) the Sobolev spaces defined via the operator
1+∆. The space W −s

α (M′) is canonically isomorphic to the dual Hilbert space of
W s
α(M′).

REMARK 4.1. It is useful to notice that, since the Laplacian ∆ is invariant under
the above action of the maximal compact subgroup Kg of Sp2g (R), the Sobolev
space W −s

α (M′) depends only on the class Kgα ∈ Hg in the Siegel upper half-
space.

Let Γ be the standard lattice of Hg and M := Hg /Γ. For α ∈ Sp2g (R), let
Γα :=α(Γ) and Mα :=Hg /Γα the corresponding nilmanifold. The automorphism
α induces a diffeomorphism (denoted with the same symbol) according to the
formula

α :M→Mα, hΓ 7→α(h)Γα, ∀ h ∈Hg .

It is immediate that the pull-back map α∗ : C∞(Mα) →C∞(M) satisfies

α∗(∆ f ) =∆α(α∗ f ), f ∈C∞(Mα);

since α∗ preserves the volume, we obtain an isometry

α∗ : W s(Mα) →W s
α(M).

Observe that, as topological vector spaces, the spaces W s
α(M), with α∈Sp2g (R),

are all isomorphic to W s(M). Only their Hilbert structure varies as α ranges in
Sp2g (R). In fact we have the following lemma, whose proof is omitted.

LEMMA 4.2. For every R > 0 there exists a constant C (s) > 0 such that for all
α,β ∈ Sp2g (R) with dist(α,β) < R we have

‖ϕ‖s,α ≤C (s) (1+dist(α,β)2)|s|/2 · ‖ϕ‖s,β.

Here, dist(·, ·) is some left-invariant distance on Sp2g (R).

LEMMA 4.3. Let s ≥ 0. For γ ∈ Sp2g (Z) and α ∈ Sp2g (R), the pull-back map γ∗

is an isometry of W s
α(M) onto W s

αγ(M). Hence γ∗ : W −s
αγ (M) → W −s

α (M) is an
isometry.

Proof. By the above, we have isometries (αγ)∗ : W s(Mαγ) → W s
αγ(M) and

α∗ : W s(Mα) → W s
α(M). However, Mαγ = Mα, since Γαγ = Γα. It follows that

γ∗ = (αγ)∗(α∗)−1 is an isometry of W s
α(M) onto W s

αγ(M).

JOURNAL OF MODERN DYNAMICS VOLUME 9, 2015, 305–353



332 SALVATORE COSENTINO AND LIVIO FLAMINIO

The Sobolev bundle over the moduli space and its dual. For s ≥ 0, let us con-
sider W s(M) as a topological vector space. The group Sp2g (Z) acts on the right
on the trivial bundles Sp2g (R)×W s(M) → Sp2g (R) according to

(α,ϕ) 7→ (α,ϕ)γ := (αγ,γ∗ϕ),

for all γ ∈ Sp2g (Z), and all (α,ϕ) ∈ Sp2g (R)×W s(M). By Lemma 4.3, the norms

‖(α,ϕ)‖s := ‖ϕ‖s,α

are Sp2g (Z)-invariant. In fact, by that lemma we have ‖γ∗ϕ‖s,αγ = ‖ϕ‖s,α. Con-
sequently, we obtain a quotient flat bundle of Sobolev spaces over the moduli
space:

(Sp2g (R)×W s(M))/Sp2g (Z) →Mg = Sp2g (R)/Sp2g (Z) ;

the fiber over [α] ∈Mg may be locally identified with the space W s
α(M) normed

by ‖ ·‖s,α. We denote this bundle by Ws and the class of (α,ϕ) by [α,ϕ].
By the duality paring, we also have a flat bundle of distributions W−s whose

fiber over [α] ∈Mg may be locally identified with the space W −s
α (M) normed by

‖·‖−s,α. Observe that for this bundle (α,D) ≡ (αγ−1,γ∗D) for all γ ∈ Sp2g (Z) and
(α,D) ∈ Sp2g (R)×W −s(M). We denote the class of (α,D) by [α,D].

4.2. Best Sobolev constant.

The best Sobolev constant. The Sobolev embedding theorem implies that for
any α ∈ Sp2g (R) and any s > g +1/2 there exists a constant Bs(α) > 0 such that
any f ∈W s

α(M) has a continuous representative such that

‖ f ‖∞ ≤ Bs(α) · ‖ f ‖s,α.(4.3)

For any Sobolev order s > g +1/2, the best Sobolev constant is defined as the
function on the group of automorphisms Sp2g (R) given by

Bs(α) := sup
f ∈W s

α(M)\{0}

‖ f ‖∞
‖ f ‖s,α

.(4.4)

LEMMA 4.4. The best Sobolev constant Bs is a Sp2g (Z)-modular function on Hg ,
i.e., Bs(α) = Bs(καγ) for all α ∈ Sp2g (R), all γ ∈ Sp2g (Z) and all κ ∈Kg .

Proof. The Kg invariance is an immediate consequence of Remark 4.1. By
Lemma 4.3, the the pull-back map γ∗ is an isometry of W s

α(M) onto W s
αγ(M). As

the map γ∗ is also an isometry for the sup-norm, the lemma follows.

Thus, we may regard Bs as a function on the Siegel modular variety Σg =
Kg \Sp2g (R)/Sp2g (Z) or as a Sp2g (Z)-invariant function on the Siegel upper half-
space Hg . Recalling that [[α]] denotes the class of α ∈ Sp2g (R) in Σg , we shall
write Bs([[α]]) or Bs([α]) for Bs(α).

Let A⊂ Sp2g (R) denote the Cartan subgroup of diagonal symplectic matrices,
A+ ⊂A the subgroup of positive matrices, and a⊂ sp2g the Lie algebra of A.
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For α= (
δ 0
0 δ−1

) ∈A+, where δ= diag(δ1, . . . ,δg ), we define

k(α) :=
g∏

i=1
(δi +δ−1

i ).

PROPOSITION 4.5. For any order s > g +1/2 and any α ∈A+ there exists a con-
stant C =C (s) > 0 such that

Bs([[α]]) ≤C k(α)1/2.

Proof. Let α = (
δ 0
0 δ−1

) ∈ A+, where δ = diag(δ1, . . . ,δg ) as above. Since the map
α∗ : W s(Mα) → W s

α(M) is an isometry, the best s-Sobolev constant Bs([α]) for
the operator 1+∆α on the Heisenberg manifold M is equal to the best s-Sobolev
constant for the operator 1+∆ on the Heisenberg manifold Mα, namely

Bs([α]) = sup
f ∈W s (Mα)\{0}

‖ f ‖∞
‖(1+∆)s/2 f ‖L2(Mα)

.(4.5)

We fix the fundamental domain F = [0,1]g × [0,1]g × [0,1/2] for the action
of the lattice Γ on Hg . By the standard Sobolev embedding theorem, for any
s > g +1/2 there exists a constant C (s) such that for any f ∈W s

loc(Hg ) we have

| f (I )|2 ≤C (s)
∫

F
|(1+∆)s/2 f (x)|2 dx,

where I = (0,0,0) is the identity of Hg and dx is the Haar measure assigning vol-
ume 1 to F . Since left and right translation commute and since (1+∆) operates
on the left, for every f ∈W s

loc(Hg ) and every h ∈Hg we have

| f (h)|2 ≤C (s)
∫

F h
|(1+∆)s/2 f (x)|2 dx.(4.6)

It easy to see that, for any h ∈Hg , the set F h is also a fundamental domain for Γ.
Furthermore, if we let pα : h ∈ Hg 7→ hΓα ∈Mα denote the natural projection,
the projection pα((F h)o) of the interior of F h covers each point of Mα−1 at most

2g
g∏

i=1
max{δi ,δi

−1} ≤ 2g k(α)(4.7)

times.
Given any f ∈ W s(Mα), let f̃ = f ◦pα. Then, for any h ∈Hg and any integer

n ≥ 0∫
F h

∣∣(1+∆)n/2 f̃ (x)
∣∣2

dx ≤ 2g k(α)
∫
Mα

∣∣(1+∆)n/2 f (x)
∣∣2

dx (by (4.7))

= 2g k(α)‖(1+∆)n/2 f ‖2
L2(Mα).

We deduce, by interpolation and by (4.6), that for any s ≥ g +1/2 there exists a
constant C such that

sup
h∈Mα

| f (h)| ≤C (k(α))1/2 ‖ f ‖W s (Mα).(4.8)

This concludes the proof.
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4.3. Best Sobolev constant and height function. The height of a point Z ∈Hg

is the positive number

hgt(Z ) := detℑ(Z ).(4.9)

Let Fg ⊂Hg denote the Siegel fundamental domain for the action of Sp2g (Z)
on Hg (see [31]). We define the height function Hgt: Σg →R+ to be the maximal
height of a Sp2g (Z)-orbit (which is attained by Proposition 1 of [5]), or, equiv-
alently, the height of the unique representative of an orbit inside Fg . Thus, if
[Z ] ∈Σg denotes the class of Z ∈Hg in the Siegel modular variety,

Hgt([Z ]) := max
γ∈Sp2g (Z)

hgt(γ(Z )) = max
γ∈Sp2g (Z)

detℑ(γ(Z )).(4.10)

Any point in Hg may be uniquely written as Z = X +iW >DW , where X = (xi j )
is a symmetric real matrix, W = (wi j ) is an upper triangular real matrix with
ones on the diagonal, and D = diag(δ1, . . . ,δg ) is a diagonal positive matrix. The
coordinates (xi j )1≤i≤ j≤g , (wi j )1≤i< j≤g , and (δi )1≤i≤g thus defined are called Iwa-
sawa coordinates on the Siegel upper half-space. For t > 0, define Sg (t ) ⊂Hg as
the set of those Z = X + iW >DW ∈Hg such that

|xi j | < t (1 ≤ i , j ≤ g )(4.11)

|wi j | < t (i < j )(4.12)

1 < tδ1 and 0 < δk < tδk+1 (1 ≤ k ≤ g −1).(4.13)

For all t sufficiently large, Sg (t ) is a “fundamental open set” for the action of
Sp2g (Z) on Hg , containing the Siegel fundamental domain Fg (see [5] or [31]).
We will need the following Lemma, which is an easy consequence of the expres-
sion

d s2 = tr
(
d X Y −1d X Y −1 +dDD−1dDD−1 +2(W >)−1dW >DdW W −1D−1)(4.14)

for the Siegel metric in Iwasawa coordinates, where Y =W >DW .

LEMMA 4.6. Any point Z = X + iW >DW inside a Siegel fundamental open set
Sg (t ) is at a bounded distance from the point i D.

Proof. Let Z = X + iW >DW , with W and D as explained above, be a point in
Sg (t ). In the sequel of the proof we denote by C1, C2 etc., positive constants
depending only on t and the dimension g .

We first observe that (4.12) says that the entries of the matrices W and W >
are bounded by t . Since these matrices are unipotent, their inverses are also
bounded by a constant C1. Consider the path Z (τ) = X + iW (τ)> D W (τ), with
W (τ) := τW and τ ∈ [0,1]. The entries of (W >)−1dW >D dW W −1D−1 along this
path are all proportional to C2 (δi /δ j )(dτ)2, where j > i . Since δi /δ j < t j−i by
(4.13), it follows from (4.14) that the length of the path is bounded by a constant
C3. Thus, the arbitrary point Z = X + iW >DW ∈ Sg (t ) is within a bounded
distance from X + i D .
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But X + i D is within a bounded distance from i D . Indeed, fixed any pair of
indices 1 ≤ i ≤ j ≤ g , we may consider the path Z(i j )(τ) = X(i j )(τ)+i D , (τ ∈ [0,1]),
where X(i j )(τ) is the symmetric matrix with entries xi j (τ) = x j i (τ) = τxi j and all
other entries constant and equal to those of X . It follows from (4.14) that the
length of any such path is ∫ 1

0

|xi j |√
δiδ j

dτ,

which is bounded by some constant C4 because of (4.11) and (4.13). The claim
follows by choosing successively all pair of indices, thus constructing a sequence
of paths joining X + i D to i D .

The Siegel volume form dX dY /(detY )g+1 in Iwasawa coordinates is

dVolg = ∏
i≤ j

dxi j ·
∏
i< j

dwi j ·
∏
k
δ−(k+1)

k dδk .(4.15)

A computation, using again the fundamental open set Sg (t ), gives the follow-
ing.

LEMMA 4.7. The logarithm of the height function on the Siegel modular variety
is distance-like with exponent kg = g+1

2 . More precisely, for any τÀ 0

Volg
{

[Z ] ∈Σg
∣∣Hgt([Z ]) ≥ τ}³ e−

g+1
2 τ .

Proof. A change of variable as in page 67 of [31] shows that this volume is within
a bounded ratio of ∫ ∞

eτ
t−(g+3)/2dt . �

PROPOSITION 4.8. For any s > g +1/2 there exists a constant C (s) > 0 such that
the best Sobolev constant satisfies the estimate

Bs([[α]]) ≤C (s) · (Hgt([[α]])
)1/4 .

Proof. Let Z = X + iW >DW ∈ Fg be the representative of [[α]] ∈ Σg inside the
Siegel fundamental domain, so that Bs(Z ) = Bs([[α]]). Since the Siegel funda-
mental domain Fg is contained in a fundamental open set Sg (t ), by Lemma 4.6,
the point Z is within a uniformly bounded distance from the point i D . Thus,
by Lemma 4.2, there exists a constant C =C (s) > 0 such that

Bs(Z ) ≤C Bs(i D).

Since i D = β−1(i ), with β =
(

D−1/2 0
0 D1/2

)
, we have Bs(i D) = Bs(β) and, by Propo-

sition 4.5, Bs(β) ≤ C k(β)1/2 ≤ C ′(t )det(D)1/4 = C ′(t )hgt([[α]])1/4. The middle
inequality above follows from the definition of k(β) and the observation that,
for Z in a fundamental open set set Sg (t ), the entries δi of the matrix D are
bounded below by t−i .
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4.4. Diophantine conditions and logarithm law. We will need, in the final re-
normalization argument, some control on the best Sobolev constant Bs([[ρα]]),
hence, by Proposition 4.8, on Hgt([[ρα]]), when ρ are certain automorphisms in
the Cartan subgroup A⊂ Sp2g (R) of diagonal symplectic matrices. This control
is the higher-dimensional analogue of the escape rate of geodesics into the cusp
of the modular surface.

Diophantine conditions. Let a+ ⊂ sp2g be the cone of those δ̂ = (
δ 0
0 −δ

) ∈ sp2g
where δ = diag(δ1, . . . ,δg ) is a non-negative diagonal matrix. We consider the

corresponding one-parameter subgroup of diagonal symplectic matrices e t δ̂

in A ⊂ Sp2g (R), and also denote by e−t δ̂ the corresponding automorphisms

(x,ξ, z) 7→ (e−tδx,e tδξ, t ) of the Heisenberg group.
We recall that under the left action of the symplectic matrix β=(

A B
C D

)∈Sp2g (R),
the height on Hg transforms according to

hgt(β(Z )) = |det(C Z +D)|−2 hgt(Z ).(4.16)

LEMMA 4.9. Let δ = diag(δ1,δ2, . . . ,δg ) be a non-negative diagonal matrix and

let δ̂= (
δ 0
0 −δ

) ∈ a be the generator of the one-parameter group (e t δ̂)t∈R < Sp2g (R).
For any [α] ∈Mg and any t ≥ 0 we have the trivial bound

Hgt([[e−t δ̂α]]) ≤ (dete tδ)2 Hgt([[α]]).

Proof. We recall that Hgt is the maximal hgt of a Sp2g (Z) orbit. Therefore, we

may take the representative β=αγ, with γ ∈ Sp2g (Z), such that (e−t δ̂β)−1(i ) ∈Hg

realizes the maximal height, that is,

Hgt([[e−t δ̂α]]) = hgt((e−t δ̂β)−1(i )),

and prove the inequality for the function hgt, namely

hgt((e−t δ̂β)−1(i )) ≤ (dete tδ)2 hgt(β−1(i )),

since then hgt(β−1(i )) ≤ Hgt([[α]]). By the Iwasawa decomposition, any sym-
plectic matrix β ∈ Sp2g (R) sending the base point i := i 1g into the point β−1(i ) =
X + iW >DW may be written as β−1 = νηκ with ν =

(
W > X W −1

0 −W −1

)
, η =

(p
D 0

0
p

D
−1

)
,

and κ ∈Kg . By the formula (4.16),

hgt(νηκ(Z )) = hgt(ηκ(Z )) = (detD) hgt(κ(Z ))

(because detW = 1) for all Z ∈Hg . Therefore, since hgt(κ(i )) = 1, we only need
to prove

hgt(κe t δ̂(i )) ≤ dete2tδ.

Let κ = (
A B
−B A

) ∈ Kg , i.e., with A>A + B>B = 1g and A>B symmetric. Since

e t δ̂(i ) = i e2tδ, using formula (4.16), the above inequality is equivalent to

|det(−i Be2tδ+ A)|−2 ·dete2tδ ≤ dete2tδ,

that is, to
|det(A− i Be2tδ)|2 ≥ 1,
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and therefore to
|det(A A>+Be4tδB>)| ≥ 1.

But, by our hypothesis on δ and t , the norm of e2tδ is ‖e2tδ‖ ≥ 1, and therefore〈
x, (A>A+B>e4tδB)x

〉
≥ 〈

x, (A>A+B>B)x
〉= ‖x‖2

for any vector x ∈Rg . Hence, all the eigenvalues of the symmetric matrix A>A+
B>e4tδB are ≥ 1, and the same occurs for the determinant.

DEFINITION 4.10. Let δ = diag(δ1, . . . ,δg ) be a non-negative diagonal matrix,

and δ̂= (
δ 0
0 −δ

) ∈ a+ ⊂ sp2g . We say that an automorphism α ∈ Sp2g (R), or, equiv-
alently, a point [α] ∈Mg in the moduli space,

• is δ̂-Diophantine of type σ if there exists a σ> 0 and a constant C > 0 such
that

Hgt([[e−t δ̂α]]) ≤C Hgt([[e−t δ̂]])(1−σ) Hgt([[α]]) ∀ t À 0;(4.17)

• satisfies a δ̂-Roth condition if for any ε > 0 there exists a constant C > 0
such that

Hgt([[e−t δ̂α]]) ≤C Hgt([[e−t δ̂]])ε Hgt([[α]]) ∀ t À 0,(4.18)

that is, if it is Diophantine of every type 0 <σ< 1;
• is of bounded type if there exists a constant C > 0 such that

Hgt([[e−t δ̂α]]) ≤C(4.19)

for all δ̂ ∈ a+ and all t ≥ 0.

REMARK 4.11. In the final section, dealing with theta sums, we will be inter-
ested in Diophantine properties in the direction of the particular δ̂= (

I 0
0 −I

) ∈ a.
For such δ̂, the Diophantine properties of an automorphism α ∈ Sp2g (R) only

depend on the right T class of α−1, where T ⊂ Sp2g (R) is the subgroup of block-

triangular symplectic matrices of the form
(

A B
0 (A>)−1

)
. In particular, those α

in the full measure set of those automorphisms such that α−1 = (
A B
C D

)
with

A ∈ GLg (R) are in the same Diophantine class of β = (
I 0

−X I

)
, where X is the

symmetric matrix X = C A−1. For such lower-triangular block matrices β, the
Height in the Diophantine conditions above is (see (4.16))

Hgt([[e−t δ̂β]]) = max
∣∣det(QQ>e−2t + (QX +P )(QX +P )>e2t )

∣∣−1
,(4.20)

the maximum being over all
(N M

P Q

) ∈ Sp2g (Z). When g = 1, we recover the classi-
cal relation between Diophantine properties of a real number X and geodesic
excursion into the cusp of the modular orbifold Σ1, or the behaviour of a cer-
tain flow in the space M1 = SL2(R)/SL2(Z) of unimodular lattices in the plane.
Indeed, our (4.20) coincides with the function δ(Λt ) = maxv∈Λt \{0} ‖v‖−2

2 , where

Λt is the unimodular lattice made of
(

e t 0
0 e−t

)(
1 X
0 1

)( P
Q

)
, with P,Q ∈Z. The maxi-

mizers, for increasing time t , define a sequence of relatively prime integers Pn

and Qn which give best approximants Pn/Qn to X in the sense of continued
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fractions. In particular, our definitions of Diophantine, Roth, and bounded type
coincide with the classical notions.

This same function δ(Λt ), extended to the space SLn(R)/SLn(Z) of unimodu-
lar lattices in Rn , has been used by Lagarias [36], or, more recently, by Chevallier
[6] to understand simultaneous Diophantine approximations. A similar func-
tion, ∆(Λt ) = maxv∈Λt \{0} log(1/‖v‖∞), has been considered by Dani [10] in his
correspondence between Diophantine properties of systems of linear forms and
certain flows on the space SLn(R)/SLn(Z), or more recently by Kleinbock and
Margulis [32] to prove a “higher-dimensional multiplicative Khinchin theorem”.

Khinchin-Sullivan-Kleinbock-Margulis logarithm law. A stronger control on
the best Sobolev constant comes from the following generalization of the Kin-
chin-Sullivan logarithm law for geodesic excursion [47], due to Kleinbock and
Margulis [32].

Let X = G/Λ be a homogeneous space, equipped with the probability Haar
measure µ. A function φ :X→R is said to be k-DL (for “distance-like”) for some
exponent k > 0 if it is uniformly continuous and if there exist constants c± > 0
such that

c−e−kt ≤µ({
x ∈X ∣∣φ(x) ≥ t

})≤ c+e−kt .

Theorem 1.7 of [32] says the following.

PROPOSITION 4.12 (Kleinbock-Margulis). Let G be a connected semisimple Lie
group without compact factors, µ its normalized Haar measure, Λ ⊂ G an ir-
reducible lattice, a a Cartan subalgebra of the Lie algebra of G, z a non-zero
element of a. If φ :G/Λ→R is a k-DL function for some k > 0, then for µ-almost
all x ∈G/Λ one has

limsup
t→∞

φ(e tzx)

log t
= 1/k.

We have seen in Proposition 4.7 that the logarithm of the height function Hgt
is a DL-function with exponent g+1

2 on the Siegel variety Σg , hence it induces
a DL-function on the homogeneous space Mg = Sp2g (Z)\Sp2g (R). Thus, the
following proposition is a consequence of the easy part of Proposition 4.12 and
of Proposition 4.8.

PROPOSITION 4.13. Let s > g + 1/2. For any non-zero vector δ̂ ∈ a in the Car-
tan subalgebra of diagonal symplectic matrices there exists a full measure set
Ωg (δ̂) ⊂Mg such that for all [α] ∈Ωg (δ̂) we have

limsup
t→∞

logHgt([[e−t δ̂α]])

log t
≤ 2

g +1
.

In particular, any such [α] satisfies a δ̂-Roth condition.

5. EQUIDISTRIBUTION

In this section we consider only functional spaces “built up” from the space
of functions with zero average along the fibers of the central fibration of the
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standard nilmanifold M. Thus, all smooth forms have coefficients in C∞
0 (M),

all Sobolev forms and currents have coefficients in some W s
α(M), s ∈ R (see

Definition 4.2).

5.1. Birkhoff sums and renormalization. Let (X 0
1 , . . . , X 0

g ,Ξ0
1, . . . ,Ξ0

g ,T ) be the
“standard” Heisenberg basis defined in Section 2.1.

For 1 ≤ d ≤ g , we define the sub-algebra pd ,0 ⊂ hg generated by the first d
base elements X 0

1 , . . . , X 0
d , and then the Abelian subgroup Pd ,0 := exppd ,0.

According to (4.1), the group Sp2g (R) acts on the right on the enveloping

algebra U (hg ) and in particular for V ∈ hg , Vα =α−1(V ). For simplicity we set,
for any α ∈ Sp2g (R), (Xα

i ,Ξαj ,T ) := (α−1(X 0
i ),α−1(Ξ0

j ),T ). Then pd ,α := α−1(pd ,0)

and Pd ,α = α−1(Pd ,0) are respectively the algebra and the subgroup generated
by (Xα

i ,Ξαj ,T ). Every isotropic subgroup of Hg is obtained in this way, i.e., given

by some Pd ,α defined as above.
It is immediate that for every α,β ∈ Sp2g (R) we have

α−1(Pd ,β) =Pd ,βα;

in particular, if β belongs to the diagonal Cartan subgroup A, then Pd ,βα =Pd ,α.
We define a parametrization of Pd ,α, hence a Rd -action on M subordinate to

α, by setting

Pd ,α
x := exp(x1Xα

1 +·· ·+xd Xα
d ) with x = (x1, . . . , xd ) ∈Rd .(5.1)

Birkhoff sums. We define the bundle A j (pd ,Ws) →Mg of p-forms of degree j
and Sobolev order s as the set of pairs

(α,ω), α ∈ Sp2g (R), ω ∈ A j (pd ,α,W s
α(M)),

mod the equivalence relation (α,ω) ≡ (αγ,γ∗ω) for all γ ∈ Sp2g (Z). The class of

(α,ω) is denoted [α,ω]. We also define the dual bundle A j (pd ,W−s) →Mg of
p-currents of dimension j and Sobolev order s as the set of pairs

(α,D), α ∈ Sp2g (R), D ∈ A j (pd ,α,W −s
α (M)),

mod the equivalence relation (α,D) ≡ (αγ, (γ∗)−1D) for all elements γ ∈ Sp2g (Z).
The class of (α,D) is denoted [α,D].

The bundles A j (p,Ws) and A j (p,W−s) are Hilbert bundles for the dual norms

‖ [α,ω]‖s := ‖ω‖s,α, ‖ [α,D]‖−s := ‖D‖−s,α.

In the following, it will be convenient to setωd ,α = d Xα
1 ∧·· ·∧d Xα

d and to identify

top-dimensional currents D with distributions by setting
〈
D, f

〉
:= 〈

D, f ωd ,α
〉

.
Given a Jordan region U ⊂Rd and a point m ∈M, we define a top-dimensional

p-current P d ,α
U m as the Birkhoff sums given by integration along the chain

Pd ,α
U m =

{
Pd ,α

x m
∣∣∣x ∈U

}
. Explicitly, if ω= f dXα

1 ∧·· ·∧dXα
d is a top-dimensional
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p-form, then 〈
P d ,α

U m,ω
〉

:=
∫
Pd ,α

U m
ω=

∫
U

f (Pd ,α
x m)dx1 . . .dxd .(5.2)

Our goal is to understand the asymptotic of these distributions as U ↗Rd in a
Følner sense. A particular case is obtained when U =Q(T ) = [0,T ]d .

We remark that the Birkhoff sums satisfy the following covariance property:

γ−1
∗

(
P d ,α

U m
)
=P

d ,αγ
U (γ−1m), ∀ m ∈M,∀ γ ∈ Sp2g (Z).

Renormalization flows. For each 1 ≤ i ≤ g , we denote by δ̂i :=
(
δi 0
0 −δi

)
∈ a the

element of the Cartan subalgebra of diagonal symplectic matrices defined by
the diagonal matrix δi = diag(d1, . . . ,dg ) with di = 1 and dk = 0 if k 6= i . Any such

δ̂i generates a one parameter group of automorphisms r t
i := e t δ̂i ∈A, with t ∈R.

Left multiplication by the one parameter group (r t
i ) yields a flow on Sp2g (R)

that projects to the moduli space Mg according to [α] 7→ r t
i [α] = [r t

i α].

Above this flow, we consider its horizontal lift to the bundles A j (pd ,Ws) and
A j (pd ,W−s) (s ∈R), defined by

r t
i [α,ω] := [r t

i α,ω] r t
i [α,D] := [r t

i α,D]

for α ∈ Sp2g (R) and ω ∈ A j (pd ,α,Ws) or D ∈ A j (pd ,α,W−s). This is well defined

since, as we remarked before, pd ,α = pd ,r t
i α.

DEFINITION 5.1. For s > 0, let Zd (pd ,W−s) be the sub-bundle of the bundle
Ad (pd ,W−s) consisting of elements [α,D] with D ∈ Zd (pd ,α,W −s

α (M)), i.e., with
D a closed pd ,α-current of dimension d and Sobolev order s.

We remark that the definition is well posed. In fact, if D is a closed pd ,α-
current of dimension d then, from the identities

〈
D, Xα

i ( f )
〉= 0 for all test func-

tions f and i ∈ [1,d ], we obtain 0 = 〈
γ∗D,γ∗Xα

i ( f )
〉 = 〈

γ∗D, Xαγ−1

i ( f )
〉

, which

shows that γ∗D is a closed pd ,αγ−1
-current of dimension d .

Observe that, although the subgroup Pd ,(r t
i α) and Pd ,α coincide, the actions

of Rd defined by their parameterizations (5.1) differ by a constant rescaling; in
fact

P
d ,(r

t1
1 ...r

tg
g α)

(x1,...,xd ) =Pd ,α
(e−t1 x1,...,e−td xd )

.(5.3)

Consequently, denoting by (e−t1 , . . . ,e−td )U the obvious diagonal automorphism
of Rd applied to the region U , the Birkhoff sums satisfy the identities

P
d ,(r

t1
1 ...r

tg
g α)

U m = e t1+···+td P d ,α
(e−t1 ,...,e−td )U

m.(5.4)

PROPOSITION 5.2. Let s > d/2. The sub-bundle Zd (pd ,W−s) is invariant under
the renormalization flows r t

i with 1 ≤ i ≤ d. Furthermore, for every (t1, . . . , td ) ∈Rd

and any [α,D] ∈ Zd (pd ,W−s) and any s > d/2, we have∥∥r t1
1 . . .r td

d [α,D]
∥∥−s = e−(t1+···+td )/2

∥∥ [α,D]
∥∥−s .
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Proof. The invariance of the sub-bundle Zd (pd ,W−s) is clear from (5.3).
Set, for simplicity, r := r t1

1 . . .r td

d . By definition
∥∥r [α,D]

∥∥−s =
∥∥ [rα,D]

∥∥−s =
‖D‖−s,rα for any [α,D] ∈ Ad (pd ,W−s).

Without loss of generality we may assume that D belongs to the space
Ad (pd ,α,W −s(ρh)), where ρh is an irreducible Schrödinger representation in
which the basis (Xα

i ,Ξα,T ) acts according to (2.5). Let L̃α = (ρh)∗Lα and

L̃r t
dα

= (ρh)∗L̃r t
dα

be the push-forward to L2(Rg ) of the operators defining the
norms ‖ ·‖s,α and ‖ ·‖s,r t

dα
.

By Proposition 3.13, the space of closed currents of dimension d is span-
ned by Ig if d = g and by the dense set of currents D = D y ◦Id ,g with D y in

L2(Rg−d ,d y) if d < g . Any such current is given, for any test function f ∈S (Rg ),
by

〈
D, f

〉 = 〈
D y ,

∫
Rd f (x, y)dx

〉
. The unitary operator Ut : L2(Rg ) → L2(Rg ) de-

fined, for t = (t1, . . . , td ), by2

Ut f (x, y) := e(t1+···+td )/2 f
(
(e t1 , . . . ,e td )x, y

)
(5.5)

(x ∈Rd , y ∈Rg−d ), intertwines the differential operator L̃α with the operator L̃rα,
i.e., Ut (L̃α f ) = L̃rαUt f for any smooth f . Thus

‖D‖−s,rα = sup
‖ f ‖s,rα=1

∣∣〈D, f
〉∣∣= sup

‖L̃s/2
rα f ‖=1

∣∣〈D, f
〉∣∣

= sup
‖L̃s/2

α U−1
t f ‖=1

∣∣〈D, f
〉∣∣= sup

‖L̃s/2
α f ‖=1

∣∣〈D,Ut f
〉∣∣

= sup
‖(Lα)s/2 f ‖=1

∣∣∣∣〈D y ,
∫
Rg

e(t1+···+td )/2 f
(
(e t1 , . . . ,e td )x, y

)
dx

〉∣∣∣∣
= sup

‖(Lα)s/2 f ‖=1
e−(t1+···+td )/2

∣∣∣∣〈D y ,
∫
Rg

f (x, y)dx

〉∣∣∣∣
= e−(t1+···+td )/2 ‖D‖−s,α

5.2. The renormalization argument.

Orthogonal splittings. For any exponent s > d/2, the sub-bundle Zd (pd ,W−s)
is a closed subspace of the Hilbert bundle Ad (pd ,W−s) and therefore induces
an orthogonal decomposition

Ad (pd ,W−s) = Zd (pd ,W−s)⊕Rd (pd ,W−s),(5.6)

where Rd (pd ,W−s) := Zd (pd ,W−s)⊥. We denote by Z −s and R−s the corre-
sponding orthogonal projections, and, given α ∈ Sp2g (R), by Z −s

α and R−s
α the

restrictions of these projections to the fiber over [α] ∈ Mg . In particular, we

obtain a decomposition of the Birkhoff sums D =P d ,α
U m as

[α,D] =Z −s[α,D]+R−s[α,D] = [α,Z −s
α (D)]+ [α,R−s

α (D)](5.7)

with “boundary term” Z −s
α (D) ∈ Zd (pd ,α,W −s

α (M)) and “remainder term”
R−s
α (D) ∈ Rd (pd ,α,W −s

α (M)).

2This is a particular case of the metaplectic representation (see [49, 19]).
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We will also need an estimate for the distortion of the Sobolev norms along
the renormalization flow. Below, |t | denotes the sup norm of a vector t ∈Rd .

LEMMA 5.3. Let s > d/2+2. For t = (t1, . . . , td ) ∈Rd and τ ∈R, let r τ = r−τt1
1 . . .r−τtd

d .
There exists a constant C =C (s) such that if |τt | is sufficiently small then the or-
thogonal projection

Z −s
r τα : Rd (pd ,α,W −(s−2)

α (M)) → Zd (pd ,α,W −s
r τα(M))

has norm bounded by C |τt |.
Proof. As in the proof of Proposition 5.2, we may restrict to a fixed Schrödinger
representation ρh in which the basis (Xα

i ,Ξαi ,T ) acts according to (2.5). It is
also clear from Lemma 3.15 that we may use the homogeneous Sobolev norm
defined in (3.4). If H = (ρh)∗Lα denotes the sub-Laplacian inducing the Sobolev
structure of W −s

α (Rg ), then the Sobolev structure of W −s
r τα(Rg ) is induced by

Hτ =U ′
−τHU ′

τ

where U ′
τ =Uτt is the one-parameter group of unitary operators of L2(Rg ) de-

fined according to (5.5). We denote by
〈
φ,ψ

〉
−s,τ =

〈
φ, H−s

τ ψ
〉

the inner product
in W −s

r τα(Rg ). A computation shows that the infinitesimal generator of U ′
τ is i

times the self-adjoint operator A = (ρh)∗
(∑d

k=1 tk (1/2−XkΞk )
)
. Moreover, us-

ing the Hermite basis, one can show that there exists a constant C such that
‖Aψ‖ ≤C |t |‖Hψ‖ for ψ in the domain of A.

Now, let R ∈ W −s+2
α (Rg ) be a distribution (we identify top-dimensional cur-

rents with distributions as explained in 5.1) which is orthogonal to the subspace
Z of closed distributions when τ= 0, i.e., such that

〈R,D〉−s,0 =
〈
R, H−sD

〉= 0

for all D ∈ Z . In order to bound the norm of its projection to Z w.r.t. the
Sobolev structure at τ we must bound the absolute values of the scalar products
〈R,D〉−s,τ for all D in Z . Now,

〈R,D〉−s,τ =
〈
R,U ′

−τH−sU ′
τD

〉 = 〈
U ′
τR, H−sU ′

τD
〉

.

If R is in the domain of A, we may write

U ′
τR =R+ i

∫ τ

0
U ′

u AR du.

According to Proposition 5.2, the group U ′
τ preserves Z . Therefore, since R is

orthogonal to U ′
τD for all τ, we may write

〈R,D〉−s,τ = i
∫ τ

0

〈
U ′

u AR, H−sU ′
τD

〉
du

= i
∫ τ

0

〈
AR,U ′

−u H−sU ′
τD

〉
du

= i
∫ τ

0

〈
AR,U ′

τ−uD
〉
−s,u du.
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By Cauchy-Schwartz and Lemma 4.2, if |τt | is sufficiently small we have∣∣〈R,D〉−s,τ
∣∣≤ ∣∣∣∣∫ τ

0
‖AR‖−s,u ‖U ′

τ−uD‖−s,u du

∣∣∣∣
≤C ′ ‖AR‖−s,0

∣∣∣∣∫ τ

0
‖U ′

τ−uD‖−s,u du

∣∣∣∣
≤C ′′ |t |‖R‖−s+2,0

∣∣∣∣∫ τ

0
‖U ′

τ−uD‖−s,u du

∣∣∣∣ .

But ‖U ′
τ−uD‖−s,u = ‖D‖−s,τ. It follows that∣∣〈R,D〉−s,τ

∣∣≤ |τt |C ′′ ‖R‖−s+2,0 ‖D‖−s,τ.

This says that the orthogonal projection Zτ(R) of R onto Z w.r.t. the Sobolev
structure at τ has norm

‖Zτ(R)‖−s,τ ≤ |τt |C ′′ ‖R‖−s+2,0. �

NOTATION 5.4. In order to shorten our formulas, in the proofs of the following
statements we drop the “initial point” m ∈ M or the automorphism α in the
symbol P d ,α

U m whenever the estimates are uniform in m, in α, or both.

From the Sobolev embedding theorem and the definition (4.4) of the Best
Sobolev Constant Bs we have the following trivial bound.

LEMMA 5.5. For any Jordan region U ⊂ Rd with Lebesgue measure |U |, for any
s > g +1/2 and all m ∈M we have∥∥∥[α,P d ,α

U m]
∥∥∥−s

≤ Bs([[α]]) |U |.
For the remainder term we have the following estimate. Below, we denote by

∂D the boundary of the current D, defined by
〈
∂D,η

〉= 〈
D,dη

〉
.

LEMMA 5.6. Let s > g +d/2+1. For any non-negative s′ < s−(d+1)/2, there exists
a constant C =C (g ,d , s′, s) > 0 such that, for all m ∈M and α ∈ Sp2g (R), we have

‖R−s [α,P d ,α
U m]‖−s ≤C ‖ [α,∂(P d ,α

U m)]‖−s′ .

Proof. Let ω : [α] → ω([α]) be a section of Ad (pd ,Ws). Writing ω = ωs
Z +ωs

R
for its decomposition with ωs

R in the annihilator of Zd (pd ,W−s) and ωs
Z in the

annihilator of Rd (pd ,W−s), we have〈
R−s
α (P d ,α

U ),ω
〉
=

〈
R−s
α (P d ,α

U ),ωs
R

〉
=

〈
P d ,α

U ,ωs
R

〉
.

Since s > (d +1)/2 and since, by definition,
〈

T,ωs
R

〉= 0 for any T ∈ Zd (pd ,W−s),
by Theorem 3.16 there exists a constant C :=C (g ,d , s′, s) and a section of (d −1)-
forms η with dη = ωs

R and satisfying, for all s′ < s − (d + 1)/2, the estimate
‖η([α])‖s′,α ≤C‖ωs

R ([α])‖s,α for all α. It follows that〈
P d

U ,ωs
R

〉
=

〈
∂P d

U ,η
〉

.

Hence, for s′ < s − (d +1)/2, for all m ∈M and α ∈ Sp2g (R), we have
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U ,ωs

R

〉∣∣∣≤C‖∂P d
U‖−s′ ×‖ωs

R‖s ≤C‖∂P d
U‖−s′ ×‖ω‖s . �

To estimate the boundary term, we need the following recursive estimate.

LEMMA 5.7. Let s > d/2+2. There exists a positive constant C1 =C1(s) such that
for all t1 ≥ 0, . . . , td ≥ 0 and all [α,D] ∈ Ad (pd ,W−(s−2)) we have

‖Z −s[α,D]‖−s ≤ e−(t1+···+td )/2 ‖Z −s[r−t1
1 . . .r−td

d α,D]‖−s

+C1 |t1 +·· ·+ td |
∫ 1

0
e−u(t1+···+td )/2‖R−s[r−ut1

1 . . .r−utd

d α,D]‖−(s−2) du.

Proof. Set for simplicity r u = r−ut1
1 . . .r−utd

d and t = t1 + ·· · + td . Consider the
orthogonal decomposition

D =Z −s
r−uα(D)+R−s

r−uα(D), u ∈ [0,1].

If we apply the projection Z −s
r τ−uα, since by Proposition 5.2 we have the identity

Z −s
r τ−uαZ −s

r−uα(D) =Z −s
r−uα(D), we obtain

Z −s
r τ−uα(D) =Z −s

r−uα(D)+Z −s
r τ−uα(R−s

r−uα(D))

and therefore we may write

[r τ−uα,Z −s
r τ−uα(D)] = [r τ−uα,Z −s

r−uα(D)]+ [r τ−uα,Z −s
r τ−uα(R−s

r−tα(D))]

= r τZ −s[r−uα,D]+Z −s[r τ−uα,R−s
r−uα(D)].

Now, we compute the norm with exponent −s. By Proposition 5.2, the first term
on the right has norm

‖r τZ −s[r−uα,D]‖−s = e−
t
2τ‖Z −s[r−uα,D]‖−s .

To estimate the norm of the second term on the right, we observe that Z −s
r τ−u is

an orthogonal projection, and that by Lemma 5.3 the projection

Rd (pd ,α,W −(s−2)
r τ−uα (M)) → Zd (pd ,α,W −s

r−uα(M))

has norm bounded by C (s) t τ. Therefore

‖Z −s[r τ−uα,D]‖−s ≤ e−
t
2τ ‖Z −s[r−uα,D]‖−s

+C (s) t τ‖R−s[r−uα,D)‖−(s−2).

Let n ∈N+, and set τ= 1/n, u = kτ, with k ∈N∩ [0,n]. By finite induction on k
we obtain

‖Z −s[α,D]‖−s ≤ e−
t
2 ‖Z −s[r−1α,D]‖−s

+C (s)
t

n

n∑
k=1

e−
tk
2n ‖R−s[r−k/nα,D]‖−(s−2).

The lemma follows by taking the limit as n →∞.

Next, we consider the case d = 1.
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THEOREM 5.8. Let α ∈ Sp2g (R) and s > g +7/2. Let P1,α be the 1-dimensional
Abelian subgroup of Hg generated by the base vector field Xα

1 ∈ hg . Let UT = [0,T ]

and P 1,α
UT

m be the Birkhoff sum associated to some m ∈M for the action of P1,α
x

(x ∈ R). There exists a constant C2 = C2(s) > 0 such that for all T ≥ 1 and all
m ∈M we have∥∥∥ [α,P 1,α

UT
m]

∥∥∥−s
≤ C2 T 1/2 Hgt

(
[[r− logT

1 α]]
)1/4

+C2

∫ logT

0
eu/2 Hgt

(
[[r−u

1 α]]
)1/4 du.

Proof. For simplicity we set r t = r t
1 . To start, we observe that, according to (5.4)

and Lemma 5.6, we have

‖R−s[r−tα,P 1,α
Uet T

]‖−(s−2) = e t ‖R−s[r−tα,P 1,r−tα
UT

]‖−(s−2)

≤ e t
∥∥ [r−tα,∂(P 1,r−tα

UT
)]

∥∥−s′

provided g +1/2 < s′ < s−3. The boundary ∂(P 1,r−tα
UT

) is a 0-dimensional current
given by 〈

∂(P 1,r−tα
UT

, f
〉
= f (Pr−tα

T (m))− f (m) ,

hence, by the Sobolev embedding theorem and the definition (4.4) of the Best
Sobolev Constant, we have∥∥ [r−tα,∂(P 1,r−tα

UT
)]

∥∥−s′ ≤ 2Bs′([[r−tα]]) .

It follows from Proposition 4.8 that∥∥R−s[r−tα,P 1,α
Uet T

]
∥∥−(s−2) ≤ 2e t Bs′([[r−tα]]) ≤C (s′)e t Hgt([[r−tα]])1/4 .

Using Lemma 5.7 with D =P 1,α
Uet T

m and t = nτ, we may estimate the boundary

term in the decomposition (5.7) as∥∥∥Z −s[α,P 1,α
Uet T

]
∥∥∥−s

≤e−t/2
∥∥∥Z −s[r−tα,P 1,α

Uet T
]
∥∥∥−s

+C (s, s′)
∫ t

0
eu/2 Hgt([[r−uα]])1/4 du .

By the covariance formula (5.4), the Proposition 4.8 and Lemma 5.5, we have∥∥∥Z −s[r−tα,P 1,α
Uet T

]
∥∥∥−s

= e t
∥∥∥Z −s[r−tα,P 1,r−tα

UT
]
∥∥∥−s

≤ e t C (s)T Hgt([[r−tα]])1/4 .

It follows that∥∥∥Z −s[α,P 1,α
Uet T

]
∥∥∥−s

≤ e t/2 C (s)T Hgt([[r−t
1 α]])1/4

+C (s, s′)
∫ t

0
eu/2 Hgt([[r−uα]])1/4 du.

JOURNAL OF MODERN DYNAMICS VOLUME 9, 2015, 305–353



346 SALVATORE COSENTINO AND LIVIO FLAMINIO

If we take first T = 1, then rename e t := T ≥ 1, we finally get∥∥∥Z −s[α,P 1,α
UT

m]
∥∥∥−s

≤C (s)T 1/2 Hgt([[r− logTα]])1/4

+C (s, s′)
∫ logT

0
e t/2 Hgt([[r−tα]])1/4 dt .

The reminder term in the decomposition (5.7) is estimated as at the beginning
of the proof, using Lemma 5.6, Proposition 4.8 and Lemma 4.9, and is bounded
by ∥∥∥R−s[α,P 1,α

UT
]
∥∥∥−s

≤C (s) Hgt([α])1/4

=C (s) Hgt([[r logT r− logTα]])1/4

≤C (s)T 1/2 Hgt([[r− logTα]])1/4 .

The theorem follows.

The next result follows immediately from the above Theorem 5.8 and the
Kleinbock-Margulis logarithm law, i.e., from Proposition 4.13.

PROPOSITION 5.9. Let the notation as in Theorem 5.8. There exists a full mea-
sure set Ωg (δ̂1) ⊂Mg such that if [α] ∈Ωg (δ̂1) and ε> 0 there exists a constant
C =C (s,ε) > 0 such that for all T À 1 and all m ∈M we have∥∥∥ [α,P 1,α

UT
m]

∥∥∥−s
≤C T 1/2 (logT )1/(2g+2)+ε.

Now we may use induction on the dimension of the isotropic group Pd ⊂Hg .
Let (sd )d∈N be the solution of the recursive equation sd+1 = sd + 3+d/2 with
initial condition s1 = g +7/2, that is, sd = d(d +11)/4+ g +1/2.

THEOREM 5.10. Let s > sd . There exists a constant C3 = C3(s,d) > 0 such the
following holds true. Let α ∈ Sp2g (R) and let Pd ,α ⊂ Hg be the d-dimensional
Abelian subgroup of Hg generated by the base vector fields Xα

1 , . . . , Xα
d ∈ hg . Let

Ud (t ) := [0,e t ]d . Let P d ,α
Ud (t ) = P d ,α

Ud (t )m be the Birkhoff sum associated to some

m ∈ M for the action of Pd ,α
x , (x ∈ Rd ). Then, for all t > 0 and all m ∈M, we

have ∥∥∥ [α,P d ,α
Ud (t )m]

∥∥∥−s
≤C3

d∑
k=0

∑
1≤i1<···<ik≤d

∫ t

0
. . .

∫ t

0
exp

(
d
2 t − 1

2

k∑
`=1

u`
)

×Hgt
(
[[

∏
1≤ j≤d

r−t
j

k∏
`=1

r u`

i`
α]]

)1/4
du1 . . .duk .

(5.8)

Proof. We argue by induction. The case d = 1 is Theorem 5.8. We assume the
result holds for d −1 ≥ 1.

Set for simplicity r u = r u
1 . . .r u

d .

Decomposing P d ,α
Ud (t )m as in (5.7) as a sum of the currents Z −s[α,P d ,α

Ud (t )] and

R−s[α,P d ,α
Ud (t )], we first estimate the boundary term

∥∥Z −s[α,P d ,α
Ud (t )]

∥∥−s . Using
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Lemma 5.7 we have∥∥∥Z −s[α,P d ,α
Ud (t )]

∥∥∥−s
≤ e−d t/2

∥∥∥Z −s[r−1α,P d ,α
Ud (t )]

∥∥∥−s

+C1(s)
∫ t

0
e−ud/2‖R−s[r−uα,P d ,α

Ud (t )]‖−(s−2) du

= I + I I .

(5.9)

By the covariance (5.4), Lemma 5.5, and Proposition 4.8, we have∥∥∥Z −s[r−1α,P d ,α
Ud (t )]

∥∥∥−s
= ed t

∥∥∥Z −s[r−1α,P d ,r−tα
Ud (0) ]

∥∥∥−s

≤C ed t Hgt([[r−tα]])1/4.

Hence

I ≤C ed t/2 Hgt([[r−tα]])1/4,(5.10)

corresponding to the term with k = 0 in the statement of the theorem.
To estimate the term I I , we start observing that, provided s′ < s−2−(d +1)/2,

using (5.4) and Lemma 5.6, we have∥∥R−s[r−uα,P d ,α
Ud (t )]

∥∥−(s−2) =
∥∥eud R−s[r−uα,P d ,r−uα

Ud (t−u)]
∥∥−(s−2)

≤C (s′, s)eud
∥∥ [r−uα,∂(P d ,r−uα

Ud (t−u))]
∥∥−s′ .

(5.11)

The boundary ∂(P d ,r−uα
Ud (t−u)) is the sum of 2d currents of dimension d−1. These

currents are Birkhoff sums of d “face” subgroups Pd−1,r−uα
j , ( j = 1, . . . ,d), ob-

tained from Pd ,r−uα by omitting one of the base vector fields Xα
1 , . . . , Xα

d . For

each j = 1, . . . ,d there are two Birkhoff sums of Pd−1,r−uα
j for points m± j along

the (d −1)-dimensional cubes Ud−1, j (t −u) obtained from Ud (t −u) by omitting
the j -th factor interval [0,e t−u].

If s′ > sd−1 (and therefore s > sd−1+ (d +1)/2+2 = sd ), denoting by P d−1,r−uα
Ud−1(t−u)

the generic summand of ∂(P d ,r−uα
Ud (t−u)), we may estimate the norm of each such

boundary term using the inductive hypothesis (5.8). For the j -face we obtain

∥∥∥ [r−uα,P d−1,r−uα
Ud−1(t−u)]

∥∥∥−s′
≤ C3(s′,d −1)

d−1∑
k=0

∑
1≤i1<···<ik≤d

i` 6= j

×
∫ t−u

0
dui1 · · ·

∫ t−u

0
duik exp

(
d−1

2 (t −u)− 1
2

k∑
`=1

ui`

)
×Hgt

(
[[

∏
1≤`≤d

6̀= j

r−(t−u)
`

k∏
`=1

r
ui`

i`
r−uα]]

)1/4
.
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From (5.9) and (5.11) we obtain the following estimate for the term I I :

I I ≤ C4(s,d)
d∑

j=1

d−1∑
k=0

∑
1≤i1<···<ik≤ d

i` 6= j

×
∫ t

0
du

∫ t−u

0
dui1 · · ·

∫ t−u

0
duik exp

(
d−1

2 t + 1
2 u − 1

2

k∑
`=1

ui`

)
×Hgt

(
[[

∏
1≤`≤d

r−t
`

k∏
`=1

r
ui`

i`
r−u+t

j α]]
)
.

(5.12)

Applying the change of variable u j = t −u, majorizing the integrals
∫ t−u

0 with

integrals
∫ t

0 and observing that there are at most k +1 integer intervals ]it , it+1[
in which the integer j in the above sum may land, we obtain

I I ≤ C4(s,d)
d∑

j=1

d−1∑
k=0

∑
1≤i1<···<ik≤d

i` 6= j

×
∫ t

0
du j

∫ t−u

0
dui1 · · ·

∫ t−u

0
duik

exp
(

d
2 t − 1

2 u j − 1
2

k∑
`=1

ui`

)
×Hgt

(
[[

∏
1≤`≤d

r−t
`

k∏
`=1

r
ui`

i`
r
−u j

j α]]
)
.

≤ C5(s,d)
d∑

k=1

∑
1≤i1<···<ik≤d

∫ t

0
dui1 · · ·

∫ t

0
duik

×exp
(

d
2 t − 1

2

k∑
`=1

ui`

)
Hgt

(
[[

∏
1≤`≤d

r−t
`

k∏
`=1

r
ui`

i`
α]]

)
.

(5.13)

The remainder term R−s[α,P d ,α
Ud (t )] in the decomposition (5.7) is estimated us-

ing Lemma 5.6, Proposition 4.8 and Lemma 4.9. We have:∥∥∥R−s[α,P d ,α
Ud (t )]

∥∥∥−s
≤C (s) Hgt([α])1/4

=C (s) Hgt([[r t r−tα]])1/4

≤C (s)e td/2 Hgt([[r−tα]])1/4 ,

(5.14)

producing one more term like (5.10). The theorem follows from the estimates
(5.10) and (5.13) for the terms I and II and from (5.14) for the remainder.

Different possible asymptotics are then consequences of the Diophantine
conditions (4.17), (4.18), and (4.19), or the Kleinbock-Margulis logarithm law
(Proposition 4.13).
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Proof of Theorem 1.7. Let the notations be as in Theorem 5.10, and consider the
integrals in (5.8). It follows from Lemma 4.9 that, for any 0 ≤ k ≤ d ,

Hgt
(
[[

∏
1≤ j≤d

r−t
j

k∏
`=1

r u`

i`
α]]

)1/4 ≤ e
1
2

∑k
`=1 uk Hgt

(
[[

∏
1≤ j≤d

r−t
j α]]

)1/4
.

It follows from (5.8) that∥∥∥ [α,P d ,α
Ud (t )]

∥∥∥−s
≤C t d e

d
2 t Hgt

(
[[

∏
1≤ j≤d

r−t
j α]]

)1/4
(5.15)

for some constant C =C (s,d). Therefore the norms of our currents depend on
the Diophantine properties of α in the direction of δ̂(d) := δ̂1+·· ·+δ̂d ∈ a (recall

that r t
i = e t δ̂i ), defined in 4.10. For example, if α satisfies a δ̂(d)-Diophantine

condition (4.17) of exponent σ> 0, we get∥∥∥ [α,P d ,α
Ud (t )]

∥∥∥−s
≤C t d ed(1−σ/2)t ≤C ′ed(1−σ′/2)t

for all σ′ <σ. If α satisfies a δ̂(d)-Roth condition (4.18), we get∥∥∥ [α,P d ,α
Ud (t )]

∥∥∥−s
≤C e(d/2+ε)t

for all ε > 0. If α is of bounded type, i.e., satisfies (4.19), then all the “Height”
terms inside the integrals of (5.8) are bounded, and we get∥∥∥ [α,P d ,α

Ud (t )]
∥∥∥−s

≤C e(d/2)t .

On the other side, according to the easy part of Kleinbock and Margulis theo-
rem 4.12, there exists a full measure setΩg (δ̂(d)) ⊂Σg such that if [[α]] ∈Ωg (δ̂(d))
and ε> 0 then

Hgt
(
[[

∏
1≤ j≤d

r−t
j α]]

)1/4 ≤C t 1/(2g+2)+ε .

It follows from (5.15) that for such α’s∥∥∥ [α,P d ,α
Ud (t )]

∥∥∥−s
≤C t d+1/(2g+2)+ε e(d/2)t .

5.3. Birkhoff sums and Theta sums.

First return map. Here it is convenient to work with the “polarized” Heisenberg
group, the set Hg

pol ≈Rg ×Rg ×R equipped with the group law (x,ξ, t )·(x ′,ξ′, t ′) =
(x + x ′,ξ+ξ′, t + t ′+ξx ′). The homomorphism Hg → H

g
pol, as well as the expo-

nential map exp : hg → H
g
pol, is (x,ξ, t ) 7→ (x,ξ, t + 1

2ξx). Define the “reduced

standard Heisenberg group” Hg
red :=H

g
pol/({0}× {0}× 1

2Z) ≈Rg ×Rg × (R/ 1
2Z), and

then the “reduced standard lattice” Γred := Zg ×Zg × {0} ⊂H
g
red. It is clear that

the quotient Hg
red/Γred ≈Hg /Γ is the standard nilmanifold. The subgroup N ={

(0,ξ, t )
∣∣ξ ∈Rg , t ∈R/ 1

2Z
}

is a normal subgroup of Hg
red. The quotient Hg

red/N is
isomorphic to the Legendrian subgroup P= {

(x,0,0) |x ∈Rg
}
, and we have an
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exact sequence 0 →N→H
g
red →P→ 0. Therefore H

g
red ≈PnN, and in particular

any (x,ξ, t ) ∈Hg
red may be uniquely written as the product

(x,ξ, t ) = exp(x1X1 +·· ·+xg Xg ) · (0,ξ, t ) = (x,0,0) · (0,ξ, t ) .

Given a symmetric g × g real matrix Q, we consider the symplectic matrix
α = (

I 0
Q I

) ∈ Sp2g (R). Then exp(x1Xα
1 +·· ·+ xg Xα

g ) = (x,−Qx,−x>Qx), and any

element of Hg
red can be written uniquely as a product

exp(x1Xα
1 +·· ·+xg Xα

g ) · (0,ξ, t ) = (x,ξ−Qx, t − 1
2 x>Qx)

for some x ∈Rg , ξ ∈Rg an t ∈R/ 1
2Z. Given n ∈Zg , m ∈Zg , hence (n,m,0) ∈ Γred,

then

exp(x1Xα
1 +·· ·+xg Xα

g ) · (0,ξ, t ) · (n,m,0) = exp(x ′
1Xα

1 +·· ·+x ′
g Xα

g ) · (0,ξ′, t ′)
(5.16)

if and only if x ′ = x +n, ξ′ = ξ+m +Qn and t ′ = t +ξ>n + 1
2 n>Qn + 1

2Z.

Birkhoff sums of certain functions on the circle. Let ϕ ∈ S
(
R/ 1

2Z
)
, and let

ψ ∈ E (Rg ) be a smooth function with compact support. Define a function φ :
H

g
red ≈α−1(P)nN→C as the product

φ(exp(x1Xα
1 +·· ·+xg Xα

g ) · (0,ξ, t )) :=ψ(x) ·ϕ(t )

and then a function φ̃ : M→ C on the quotient standard nilmanifold by sum-
ming over the lattice Γred. Namely, if m = exp(x1Xα

1 +·· ·+xg Xα
g )·(0,ξ, t )·Γred ∈M,

we set

φ̃(m) := ∑
(n,m,0)∈Γred

φ(exp(x1Xα
1 +·· ·+xg Xα

g ) · (0,ξ, t ) · (n,m,0))

= ∑
n∈Zg

ψ (x +n) ·ϕ(
t +ξ>n + 1

2 n>Qn
)

,

where we used (5.16). Since ψ has compact support, this sum is finite, so that
φ̃ is indeed a smooth function. The Birkhoff average of ω = φ̃dXα

1 ∧ ·· ·∧dXα
g

along the current Pg ,α
U m with m ∈M as above is, according to (5.2),〈

P
g ,α

U m,ω
〉= ∑

n∈Zg

(
ϕ

(
t +ξ>n + 1

2 n>Qn
) ·∫

U
ψ(y +x +n)dy

)
.

Let 0 < δ < 1/2, and choose a test function ψ ∈ E (Rg ) with support in a small
ball Bε(0) = {

x ∈Rg | |x|∞ ≤ ε}
of radius 0 < ε< δ, and unit mass

∫
Rg ψ(x)dx = 1.

For N a positive integer, U = [−δ, N +δ]g and x = 0, we have〈
P

g ,α
U m,ω

〉= ∑
n∈Zg∩[0,N ]g

ϕ
(
t +ξ>n + 1

2 n>Qn
)

.(5.17)

Theorem 5.11 follows from Theorem 1.7 in the Introduction and the above dis-
cussion (i.e., formula (5.17)):

THEOREM 5.11. Let Q[x] = x>Qx be the quadratic forms defined by the sym-
metric g × g real matrix Q, α = (

I 0
Q I

) ∈ Sp2g (R), `(x) = `>x be the linear form
defined by ` ∈Rg , and t ∈R. Then,
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• there exists a full measure set Ωg ⊂Mg such that if [α] ∈Ωg and ε> 0, then∑
n∈Zg∩[0,N ]g

ϕ
(
t +`(n)+ 1

2Q[n]
)=O

(
(log N )g+1/(2g+2)+εN g /2) ;

• if [α] ∈Mg satisfies a δ̂(g )-Roth condition, then for any ε> 0∑
n∈Zg∩[0,N ]g

ϕ
(
t +`(n)+ 1

2Q[n]
)=O

(
N g /2+ε) ;

• if [α] ∈Mg is of bounded type, then∑
n∈Zg∩[0,N ]g

ϕ
(
t +`(n)+ 1

2Q[n]
)=O

(
N g /2)

as N →∞, for any test function ϕ ∈W s(R/ 1
2Z) with Sobolev order s > sg and zero

average
∫ 1/2

0 ϕ(t )d t = 0.

Corollary 1.8 in the Introduction follows if we take ϕ(t ) = e4πi t .
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