
Permutative Conversions in Intuitionistic
Multiary Sequent Calculi with Cuts

José Esṕırito Santo and Lúıs Pinto?

Departamento de Matemática, Universidade do Minho
4710-057 Braga, Portugal
{jes,luis}@math.uminho.pt

Abstract. This work presents an extension with cuts of Schwichten-
berg’s multiary sequent calculus. We identify a set of permutative con-
versions on it, prove their termination and confluence and establish the
permutability theorem. We present our sequent calculus as the typing
system of the generalised multiary λ-calculus λJm, a new calculus in-
troduced in this work. λJm corresponds to an extension of λ-calculus
with a notion of generalised multiary application, which may be seen as
a function applied to a list of arguments and then explicitly substituted
in another term. Proof-theoretically the corresponding typing rule en-
compasses, in a modular way, generalised eliminations of von Plato and
Herbelin’s head cuts.

1 Introduction

It is well-known that two intuitionistic sequent calculus derivations determine
the same natural deduction proof when they are inter-permutable [9, 6]. In [1]
this idea is made precise for cut-free sequent calculus by the identification of a
basic set of permutations and the definition of a confluent and weakly normal-
ising rewriting system whose normal forms are the normal natural deductions.
Schwichtenberg proved in [7] that a variant of this rewriting system is strongly
normalising.

In this work we obtain similar results for an extension with cuts of the system
in [7]. Specifically: (i) we define the system λJm and permutative conversions
on it; (ii) we prove confluence and strong normalisation of the corresponding
rewriting system; (iii) we introduce an interpretation φ of λJm into a notational
variant of the λ-calculus; (iv) we prove the permutability theorem establishing
that two λJm-terms have the same interpretation iff they are inter-permutable.

Schwichtenberg introduces in [7] the idea of multiary left rule, a generalisation
of the ordinary binary left rule for implication, by which in a single inference
one may introduce A1 ⊃ ... ⊃ Ak ⊃ B, for some k ≥ 1. Schwichtenberg also
introduces the notion multiary sequent terms, used in [7] as a convenient tool to
represent derivations, in order to obtain termination results.
? Both authors are supported by FCT through the Centro de Matemática da Univer-

sidade do Minho, Braga, Portugal

Here we take the view that the notion of multiary sequent terms is of in-
terest on its own, having in mind the computational interpretation of sequent
calculus. Indeed, λJm may be seen as an extension of the λ-calculus where ap-
plication is generalised in two directions: (i) “generality” in the sense of von
Plato’s generalised eliminations [8]; and (ii) “multiarity” here formalised in the
style of Herbelin’s λ-calculus [4]. We call this new construction generalised multi-
ary application. Three particular cases of this construction (generalised applica-
tion, multiary application and simple application) determine subsystems of λJm,
which turn out to correspond exactly to three previously know calculi: (i) ΛJ
[5] (denoted here as λJ) —the type-theoretic counterpart to von Plato’s natural
deduction system with generalised eliminations; (ii) λPh [2, 3] —the multiary
λ-calculus, essentially corresponding to the head-cuts subsystem of Herbelin’s λ;
(iii) λG —a sequent calculus isomorphic to natural deduction [2]. Interpretations
of λJm onto λJ and λPh, and also from these two systems onto λG, are defined
and the commutative diagram in Figure 1 is obtained.

λJm qm

- λJ

@@
φ

@@R
λPh

pm

?

q
- λG

p

?

Fig. 1. λJm and its subsystems

We consider two kinds of permutative conversions: p-permutations (inspired
by [7]) and the q-permutation (specific to this work). Permutations of the former
(resp. the latter) kind deal with “generality” (resp. “multiarity”) of application
and, when combined together, they reduce generalised multiary applications to
simple applications. Each of the mappings in Figure 1 produces the normal form
w.r.t. the appropriate kind(s) of permutations: mappings p and pm (resp. q and
qm) produce p- (resp. q-) normal forms, whereas φ produces p,q-normal forms.

2 λJm: the generalised multiary λ-calculus

2.1 Expressions

The generalised multiary λ-calculus λJm is a term calculus for intuitionistic
implicational logic, corresponding to an extension with cuts of Schwichtenberg’s
multiary cut-free sequent calculus presented in [7]. In λJm, formulas (=types)
A, B, C, ... are built up from propositional variables p, q, ... using just ⊃ (for
implication) and contexts Γ are finite sets of variable : formula pairs, associating

at most one formula to each variable. In the following, V denotes the set of
variables and x, y, w, z range over V.

Definition 1 The terms of λJm are described in the following grammar:

(terms of λJm) t, u, v ::= x | λx.t | t(u, l, (x)v)
(lists of λJm) l ::= t :: l | []

The sets of λJm-terms and λJm-lists are denoted by ΛJm and LJm respectively.
Term constructions of the form t(u, l, (x)v) are called generalised multiary ap-
plications. The list [] is called the empty list and lists of the form t :: l are called
cons-lists. In terms λx.v and t(u, l, (x)v), occurrences of x in v are bound.

Schwichtenberg’s multiary sequent terms are obtained from ΛJm by requiring
t to be a variable in every t(u, l, (x)v) and writing y(u, l, (x)v) as vx(y, L), where
L is the list u, l. Notice this L is non-empty as required in [7]. In Section 3 we
explain in what sense t(u, l, (x)v) is a generalised form of application.

2.2 Typing rules

Sequents of λJm are of one of the following two forms

Γ ;−` t :A
Γ ;B` l :C,

called term sequents and list sequents respectively. The distinguished position
in the LHS of sequents is called the stoup and may either be empty (as in
term sequents) or hold a formula (the case of list sequents). Read a list sequent
Γ ;B` l :C as “list l leads the formula B to its instance C in context Γ”. C is an
instance of B if B is of the form B1 ⊃ ... ⊃ Bk ⊃ C, for some k ≥ 0.

Definition 2 The typing rules of λJm are as follows:

x :A,Γ ;−`x :A Axiom
x :A,Γ ;−` t :B

Γ ;−`λx.t :A ⊃ B
Right

Γ ;−` t :A ⊃ B Γ ;−`u :A Γ ;B` l :C x :C, Γ ;−`v :D
Γ ;−` t(u, l, (x)v) :D

gm− Elim

Γ ;−`u :A Γ ;B` l :C
Γ ;A ⊃ B`u :: l :C

Lft
Γ ;C` [] :C Ax

with the proviso that x : A does not belong to Γ in Right and the proviso that
x :C does not belong to Γ in gm-Elim.

An instance of rule gm − Elim is called a generalised multiary elimination
(or gm-elimination, for short). We explain now why we regard these typing rules
as defining a sequent calculus.

Observe that

y :A ⊃ B, Γ ;−`u :A y :A ⊃ B, Γ ;B` l :C x :C, y :A ⊃ B, Γ ;−`v :D
y :A ⊃ B, Γ ;−`y(u, l, (x)v) :D

m− Left

(1)
is a derived rule in λJm, whose instances are called multiary left (or m-left, for
short) inferences. Rule m−Left may be seen as the particular case of gm−Elim
when the leftmost premiss is an instance of Axiom. Schwichtenberg’s multiary
sequent calculus is then obtained by requiring every gm-elimination to be a
m-left inference.

In λJm, “multiarity” is implemented with rules Lft and Ax, a device due
to Herbelin [4]. Rule Lft is a special form of a sequent calculus left rule that
requires both the active formula of the right premiss and the main formula to
be in the stoup. This entails, in a derivation, that if the inference immediately
above the right premiss of an instance of Lft is not an instance of Ax, then it
is again an instance of Lft. Therefore, the rightmost branch of a derivation D
ending with a list sequent is a sequence of k instances of Lft (k ≥ 0) topped
with an instance of Ax.

Going back to (1), one can now see that the formula A ⊃ B introduced by
m − Left is actually of the form A ⊃ B1 ⊃ ... ⊃ Bk ⊃ C, for some k ≥ 0. A
particular case of this rule is (2), obtained when the second premiss of m−Left
is an instance of Ax and, hence, k = 0, l = [] and B = C.

y :A ⊃ B,Γ ;−`u :A x :B, y :A ⊃ B,Γ ;−`v :D
y :A ⊃ B, Γ ;−`y(u, [], (x)v) :D

Left
(2)

This is the ordinary binary left rule for implication.
We now want to explain what kind of derivations become available when one

goes beyond Schwitchenberg’s derivations, i.e. when one no longer requires every
gm-elimination to be a m-left inference. For that purpose, we interpret λJm in
Herbelin’s λ-calculus [4].

2.3 Interpretation into λ-calculus

In λ we find the same separation between terms and lists, but there are no
variables and no gm-applications. Instead there are the term constructors xl
(dereliction), tl (head-cut) and v{x := t} (mid-cut), with typing rules

x :A,Γ ;A` l :B
x :A,Γ ;−`xl :B Der

Γ ;−` t :A Γ ;A` l :B
Γ ;−` tl :B h− Cut

Γ ;−` t :A x :A,Γ ;−`v :B
Γ ;−`v{x := t} :B

m− Cut

Now, on the one hand, a variable y is interpreted as the dereliction y[] and, on
the other hand, a gm-application t(u, l, (x)v) is interpreted as the combination
v{x := t(u :: l)} of an head-cut and a mid-cut:

Γ ;−` t :A ⊃ B

Γ ;−`u :A Γ ;B` l :C
Γ ;A ⊃ B`u :: l :C

Lft

Γ ;−` t(u :: l) :C
h− Cut

x :C, Γ ;−`v :D
Γ ;−`v{x := t(u :: l)} :D

m− Cut

(3)
Notice that the computational interpretation of a mid-cut is an explicit substi-
tution [4, 2]. The same interpretation was given to vx(y, L) in [7].

When the rightmost premiss of a gm-elimination is an instance of Axiom,
the gm-elimination is essentially an head-cut t(u :: l), which corresponds to a
right-permuted cut. Only head-cuts t[] are missing in λJm. However, t[] and
t are the same, up to a trivial right-permutation of cuts. The particular form
x(u :: l) of head-cuts (together with variables x) gives to λJm the full power of
dereliction xl. In this sense, λJm includes the entire cut-free fragment of λ.

According to (3), a gm-elimination is a particular form of mid-cut. In λJm

we do not have general mid-cuts - and this is what is missing for having a direct
simulation of LJ with cuts inside λJm. Instead, there is the derived rule

Γ ;−` t :A x :A, Γ ;−`v :B
Γ ;−`s(t, x, v) :B (4)

where s(t, x, v) is the generalised multiary substitution operation (gm-substitution,
for short), to be introduced in Definition 3 below.

2.4 Reduction rules

In λJm we have reduction rules and permutative conversions. Permutative con-
versions aim to reduce gm-eliminations to a particular form that corresponds
to the elimination rule of natural deduction. They are defined in Section 4 and
constitute the central topic of our study. Reduction rules are introduced now.

Definition 3 The reduction rules for λJm are as follows:

(β1) (λx.t)(u, [], (y)v) → s(s(u, x, t), y, v)
(β2) (λx.t)(u, v :: l, (y)v′) → s(u, x, t)(v, l, (y)v′)
(π) t(u, l, (x)v)(u′, l′, (y)v′) → t(u, l, (x)v(u′, l′, (y)v′))
(µ) t(u, l, (x)x(u′, l′, (y)v)) → t(u,append(l, u′, l′), (y)v), x 6∈ u′, l′, v

where s(t, x, x) = t
s(t, x, y) = y, y 6= x

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u(v, l, (y)v′)) = s(t, x, u)(s(t, x, v), s′(t, x, l), (y)s(t, x, v′))

s′(t, x, []) = []
s′(t, x, v :: l) = s(t, x, v) ::s′(t, x, l)

append([], u, l) = u :: l
append(u′ :: l′, u, l) = u ::append(l′, u, l)

The notations →β,π,µ and →∗
β,π,µ stand for the one-step and the zero or more

steps reduction relations, respectively, induced by the reduction rules (β1), (β2),
(π) and (µ), that is →β,π,µ is the compatible closure of these rules and →∗

β,π,µ

is the reflexive and transitive closure of →β,π,µ.
The set of normal forms w.r.t. →β,π,µ, which we write as nf(λJm), is given

by the following grammar:

t, u ::= x | λx.t | x(u, l, (y)v)
l ::= u :: l | []

where in the last production for terms, if v is of the form y(u′, l′, (y′)v′), y must
occur either in u′, l′ or v′. The normal forms w.r.t. →β,π are as above omitting
this last proviso. The latter and the former sets of normal forms correspond to
Schwichtenberg’s “multiary sequent terms” and their “multiary normal forms”,
respectively.

Reduction rule (µ) is structural and was already introduced in [7]. Consider
the µ-redex in Definition 3 and a typing derivation D of this redex. When x /∈
u′, l′, v′, the name x is in some sense redundant. Its type, of the form A ⊃ B,
instead of being introduced in D by the m-left inference x(u′, l′, (y)v′), could
have been introduced in a more “multiary” fashion by a Lft-inference u′ :: l′.
This transformation of D is the ultimate effect of (µ). Notice that there are in D
subderivations of Γ ;D` l :A ⊃ B, Γ ;−`u′ :A and Γ ;B` l′ :C, for some Γ,C, D,
and that

Γ ;D` l :A ⊃ B Γ ;−`u′ :A Γ ;B` l′ :C
Γ ;D`append(l, u′, l′) :C (5)

is a derived rule of λJm.
Reduction rules (β1), (β2) and (π) perform cut-elimination. Consider a gm-

elimination t(u, l, (y)v) and let us focus on the head-cut t(u :: l) that exists
inside it, in the sense of (3). Such an head-cut is right-permuted, because its
right cut-formula A ⊃ B, being in the stoup, is main and linear. Now, if t is
a gm-elimination, the head-cut is left-permutable. Rule π permutes the lower
gm-elimination, where t(u :: l) lives, over the upper gm-elimination t. If t is a
λ-abstraction λx.t0, the head-cut is both left- and right-permuted, and the key-
step of cut-elimination applies. A first cut with cut-formula A is generated and
immediately eliminated by performing s(u, x, t0). Now, if l is empty, we do not
have arguments for forming a new gm-elimination, and a another substitution
is called - this is rule (β1). If l = v0 :: l0, a second cut with cut-formula B is
generated, namely the head-cut (s(u, x, t0))(v0 :: l0) that lives in the new gm-
elimination s(u, x, t0)(v0, l0, (y)v) - this is rule (β2).

With the help of the fact that typing rules (4) and (5) are derivable, it is
routine to prove subject reduction for →β,π,µ.

We end this section by stating two properties of gm-substitution, that follow
by routine induction.

Lemma 1 For all t, u ∈ ΛJm, s(t, x, u) = u, if x 6∈ u.

Lemma 2 (Substitution Lemma) For all t, u, v ∈ ΛJm such that y /∈ t, and
x 6= y, s(t, x, s(u, y, v)) = s(s(t, x, u), y, s(t, x, v)).

3 Various subsystems of λJm

In this section we define several subsystems of λJm by constraining the con-
struction t(u, l, (x)v), as illustrated in the following diagram:

λJm

gm-application

t(u, l, (x)v)
-

λJ

g-application

t(u, [], (x)v)

Abbreviation: t(u·(x)v)

λPh

m-application

t(u, l, (x)x)

Abbreviation: t(u·l)

?

-

λG
application

t(u, [], (x)x)

Abbreviation: t[u]

?

It turns out that, by doing so, we capture a number of previously known sys-
tems as subsystems of λJm, w.r.t. expressions, typing rules and reduction rules
allowed.

3.1 λJ: the generalised λ-calculus

Definition 4 The terms of λJ are described in the following grammar:

(λJ− terms) t, u, v ::= x | λx.t | t(u, l, (x)v)
(λJ− lists) l ::= []

where x ranges over the set V of variables. ΛJ and LJ are used to denote the
sets of λJ-terms and λJ-lists respectively.

Hence, the sets ΛJ and LJ are obtained from ΛJm and LJm, respectively,
by omitting cons-lists. Since there is only one form of lists in λJ, every gm-
application in λJ is of the form t(u, [], (x)v), which we call a generalised appli-
cation (or g-application, for short). λJ-terms can simply be described as:

(λJ− terms) t, u, v ::= x | λx.t | t(u·(x)v) ,

where t(u·(x)v) is used as an abbreviation to t(u, [], (x)v). This expression can
be typed by the derived rule

Γ ;−` t :A ⊃ B Γ ;−`u :A x :B,Γ ;−`v :C
Γ ;−` t(u·(x)v) :C

g − Elim ,
(6)

with proviso x :B does not belong to Γ , which corresponds to an instance of the
rule gm− Elim where the penultimate premiss is an instance of Ax.

Definition 5 The reduction rules for λJ are as follows:

(β1) (λx.t)(u·(y)v) → s(s(u, x, t), y, v)
(π) t(u·(x)v)(u′ ·(y)v′) → t(u·(x)v(u′ ·(y)v′))

where s(t, x, x) = x
s(t, x, y) = y, y 6= x

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u(v ·(y)v′)) = s(t, x, u)(s(t, x, v)·(y)s(t, x, v′))

Comparatively to λJm, λJ drops all rules and clauses involving cons. Since
β2-redexes and µ-contracta fall outside ΛJ (notice that append([], u′, l′) is a
cons-list), the rules (β2) and (µ) are omitted.

The set nf(λJ) of λJ normal forms is given by the following grammar:

t, u ::= x | λx.t | x(u·(y)t)

Because of the omission of the (µ)-rule, there are λJ normal forms which are
not λJm normal forms.

The system thus obtained is the so-called ΛJ-calculus of Joachimski and
Matthes [5], which in turn is the Curry-Howard counterpart to a system of
natural deduction due to von Plato [8], where the idea of generalised elimination
rules originated. These rules allow arbitrary consequences, as in the usual natural
deduction rule for disjunction elimination, and the rule for implication (with
term annotations) is

t :A ⊃ B u :A

[x :B]....
v :C

t(u·(x)v) :C
⊃ E .

The g −Elim rule in (6) is then the “sequent style” formulation of this natural
deduction rule.

3.2 λPh: the multiary λ-calculus

Definition 6 The terms of λPh are described in the following grammar:

(λPh− terms) t, u ::= x | λx.t | t(u, l, (x)x)
(λPh− lists) l ::= t :: l | []

where x ranges over the set V of variables. ΛPh and LPh are used to denote
the sets of λPh-terms and λPh-lists respectively.

Hence, the sets ΛPh and LPh are obtained from ΛJm and LJm, respectively,
by constraining v in t(u, l, (x)v) to be x. A gm-application of the form t(u, l, (x)x)

is called a multiary application (or m-application, for short) and is written as
t(u·l). It may be typed with the derived rule

Γ ;−` t :A ⊃ B Γ ;−`u :A Γ ;B` l :C
Γ ;−` t(u·l) :C

m− Elim

which corresponds to an instance of the rule gm − Elim where the rightmost
premiss is an instance of Axiom.

Definition 7 The reduction rules for λPh are as follows:

(β1) (λx.t)(u·[]) → s(u, x, t)
(β2) (λx.t)(u·v :: l) → s(u, x, t)(v ·l)
(h) t(u·l)(u′ ·l′) → t(u·append(l, u′, l′))

where s(t, x, x) = x
s(t, x, y) = y, y 6= x

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u(v ·l)) = s(t, x, u)(s(t, x, v)·s′(t, x, l))

s′(t, x, []) = []
s′(t, x, v :: l) = s(t, x, v) ::s′(t, x, l)

append([], u, l) = u :: l
append(t :: l, u′, l′) = t ::append(l, u′, l′)

Observe that π-contracta and µ-redexes fall outside ΛPh. The (π) and (µ)
rules have been combined into the new rule (h):

t(u·l)(u′ ·l′) = t(u, l, (x)x)(u′, l′, (y)y)
→π t(u, l, (x)x(u′, l′, (y)y))
→µ t(u,append(l, u′, l′), (y)y)
= t(u·append(l, u′, l′)) .

The set of λPh normal forms is the restriction to λPh of the set of λJm

normal forms and can thus be described as follows:

t, u ::= x | λx.t | x(u·l)
l ::= u :: l | []

The system thus obtained is identical to the λPh-calculus defined in [2, 3].
Originally this system was seen as a calculus of right-permuted cuts, but it can
also be seen as the natural extension of the λ-calculus where functions may be
applied to lists of arguments.

3.3 λG: Gentzen-style λ-calculus

The calculus λG is the subsystem obtained from λJm by combining the con-
straints that define λJ and λPh, that is, by constraining gm-applications to be

of the form t(u, [], (x)x), which we call a (simple) application. Therefore the set
of λG-terms, written as ΛG, can be characterised as follows:

(λG − terms) t, u ::= x | λx.t | t(u, l, (x)x)
(λG − lists) l ::= []

As before an application t(u, [], (x)x) can be abbreviated to t(u·[]). Further,
we even write this last expression as t[u]. The typing rule is the following derived
rule:

Γ ;−` t :A ⊃ B Γ ;−`u :A
Γ ;−` t[u] :B Elim

which one can recognize as the ordinary natural deduction elimination rule.
This rule is an instance of the rule gm − Elim where the last two premisses
are instances of Ax and Axiom respectively. Using the abbreviations above, and
since there is only one form of lists in λG, λG-terms can simply be described as
follows:

(λG − terms) t, u ::= x | λx.t | t[u]

Definition 8 The unique reduction rule for λG is as follows:

(β1) (λx.t)[u] → s(u, x, t)

where s(t, x, x) = x
s(t, x, y) = y, y 6= x

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u[v]) = s(t, x, u)[s(t, x, v)]

The system λG is no more than an isomorphic copy of the λ-calculus. In fact,
λG is the image of Gentzen’s mapping G from natural deduction into sequent
calculus [2].

Again, the normal forms of λG are not necessarily normal forms of its exten-
sions. For example, t[u][u′] is not a redex of λG, but it is a redex of its extensions.

4 Permutative conversions for λJm

Terms of λJm can be interpreted onto λG via the mapping φ introduced below.
In this section we identify a set of conversions on λJm-terms, corresponding to
certain oriented permutations on derivations. From the viewpoint of λ-calculi,
the goal of permutations is to reduce gm-applications to simple applications.
Taking this set of conversions as defining a rewriting system, one obtains a
strongly normalising and confluent rewriting system such that the normal form
of a λJm-term is its φ-image. Moreover we get a permutability theorem: two
λJm-terms have the same φ-image iff they are inter-permutable.

4.1 Mapping φ

Definition 9 φ : ΛJm −→ ΛG and φ′ : ΛG ×ΛG ×LJm×V×ΛG −→ ΛG are
defined by simultaneous recursion as follows:

φ(x) = x
φ(λx.t) = λx.φ(t)

φ(t(u, l, (x)v)) = φ′(φ(t), φ(u), l, x, φ(v))

φ′(t, u, [], x, v) = s(t[u], x, v)
φ′(t, u, v :: l, x, v′) = φ′(t[u], φ(v), l, x, v′)

The following two propositions establish that φ commutes with application
and that λG-terms are invariant under φ, and thus φ is onto.

Proposition 1 For all t, u ∈ ΛJm, φ(t[u]) = φ(t)[φ(u)].

Proof: φ(t[u]) = φ′(φ(t), φ(u), [], x, φ(x)) = s(φ(t)[φ(u)], x, x) = φ(t)[φ(u)]. ut
Proposition 2 For all t ∈ ΛG, φ(t) = t.

Proof: Routine induction on t. The case of application uses Proposition 1. ut
Two other properties relating the mappings φ and φ′ with the notion of

substitution are as follows.

Proposition 3 For all t, u, v ∈ ΛJm and for all l ∈ LJm,

φ′(φ(t), φ(u), l, x, φ(v)) = s(φ(t(u·l)), x, φ(v)) .

Proof: By induction on l. ut
Proposition 4

(i) φ(s(t, x, v)) = s(φ(t), x, φ(v)), for all t, v ∈ ΛJm.
(ii) φ′(s(φ(t), x, φ(v1)), s(φ(t), x, φ(v2)), s′(t, x, l), y, s(φ(t), x, φ(v)))

= s(φ(t), x, φ′(φ(v1), φ(v2), l, y, φ(v))), for all t, v, v1, v2 ∈ ΛJm, l ∈ LJm.

Proof: By simultaneous induction on v and l. ut

4.2 Permutative Conversions

Permutative conversions on λJm-terms, that from here on we call simply per-
mutations, are divided into p-permutations and q-permutations. p-permutations
(resp. q-permutations) deal with “generality” (resp. multiarity) of gm-application.
The p-permutations are:

(p1) t(u, l, (x)y) → y, x 6= y
(p2) t(u, l, (x)λy.v) → λy.t(u, l, (x)v)
(p3) t1(u1, l1, (x)t2(u2, l2, (y)v)) →

t1(u1, l1, (x)t2)(t1(u1, l1, (x)u2),p′3(t1, u1, l1, x, l2), (y)v) if x 6∈ v,
where

p′3 : ΛJm ×ΛJm × LJm ×V × LJm −→ LJm

p′3(t, u, l, x, []) = []
p′3(t, u, l, x, u′ :: l′) = t(u, l, (x)u′) ::p′3(t, u, l, x, l′) .

Mapping p′3 is a way of generating a gm-application for each element of a list.
p-permutations are essentially as in Schwichtenberg’s [7]. In particular, we follow
the idea of requiring x 6∈ v in (p3), which is crucial in guaranteeing termination.
In a sense, our permutations are simpler because we are not obliged to stay in
the cut-free fragment and do not need permutations to preserve µ-normal form.

The unique q-permutation is

(q) t(u, v :: l, (x)v′) → t[u](v, l, (x)v′) .

This kind of permutation is first pointed out in [2] in the context of the system
λPh. As opposed to [7], a permutation to deal with multiarity is necessary
because we are not confined to the cut-free fragment.

We use →p and →q to denote the one-step reduction relations (compatible
closure) induced by p-permutations and by the q-permutation respectively. The
notation →p,q represents the union of →p and →q. As usual, given a one-step
reduction relation→r,→∗

r and↔∗
r denote respectively its reflexive and transitive

closure and its equivalence closure.
Proposition 5 establishes invariance of permutation reducibility under the

mapping φ. In its proof we use the following lemma, proved by induction on l.

Lemma 3 φ′(t, u, s′(t1(u1·l1), x, l), y, v) = φ′(t, u,p′3(t1, u1, l1, x, l), y, v), for all
t, u, v, t1, u1 ∈ ΛJm, l, l1 ∈ LJm.

Proposition 5 If t→∗
p,q u then φ(t) = φ(u), for all t, u ∈ ΛJm.

Proof: The proof follows by induction on the relation →∗
p,q. ut

Proposition 6 asserts that any λJm-term can be reduced to its φ-image using
p and q-permutations. Its proof uses the fact that g-applications can be reduced
to substitutions using solely p-permutations, as in the following lemma proved
by induction on v.

Lemma 4 t(u·(x)v)→∗
p s(t[u], x, v), for all t, u, v ∈ ΛG.

Proposition 6 (i) t→∗
p,q φ(t), for all t ∈ ΛJm.

(ii) φ(t)(φ(u), l, (x)φ(v))→∗
p,q s(φ(t(u·l)), x, φ(v)),

for all l ∈ LJm and for all t, u, v ∈ ΛJm.

Proof: By simultaneous induction on the structure of t and l. ut

4.3 Main Results

Propositions 5 and 6, establishing respectively invariance of p and q-permutations
under φ and reducibility to the φ-image using such permutations, are now used
in proving the theorems below.

Theorem 1 (characterization of p,q-normal forms) For all t ∈ ΛJm, t is
p,q-normal iff t ∈ ΛG.

Proof: On the one hand, terms of λG have neither p or q-redexes and so they are
p,q-normal. Consider, on the other hand, that t is p,q-normal. By Proposition
6, t→∗

p,q φ(t) and thus the normality of t implies t = φ(t). The proof concludes
observing that the co-domain of φ is ΛG. ut
Theorem 2 (confluence) For all t, t1, t2 ∈ ΛJm, if t →∗

p,q t1 and t →∗
p,q t2,

then t1→∗
p,q t3 and t2→∗

p,q t3, for some t3 ∈ ΛJm.

Proof: Assuming t→∗
p,q t1 and t→∗

p,q t2, by Proposition 6 follows that t1→∗
p,q φ(t1)

and t2→∗
p,q φ(t2). Yet by Proposition 6 we have t→∗

p,q φ(t) and we can now use
Proposition 5 to conclude that φ(t1) = φ(t) = φ(t2). ut
Theorem 3 (permutability) φ(t1) = φ(t2) iff t1↔∗

p,q t2, for all t1, t2 ∈ ΛJm.

Proof: Proposition 5 guarantees φ(t1) = φ(t2) whenever t1 ↔∗
p,q t2. As to the

only if part, we use Proposition 6, obtaining t1→∗
p,q φ(t1) and t2→∗

p,q φ(t2) and
thus, as by hypothesis φ(t1) = φ(t2), t1 and t2 are inter-permutable. ut

In order to ensure termination of the rewriting system induced by permuta-
tions p and q, we introduce a notion of weight for terms and lists of λJm.

Definition 10 w(t) and w(l), the weight of an λJm-term t and of an LJm-list
l respectively, are defined as follows:

w(x) = 1
w(λx.t) = 1 + w(t)

w(t(u, l, (x)v)) = w(v)(w(t) + w(u) + w(l) + 1)

w([]) = 0
w(u :: l) = 2 + w(u) + w(l)

Theorem 4 (termination) The rewriting system induced by permutations p
and q is strongly normalisable.

Proof: Each permutation can be shown to have a RHS of weight lower than its
LHS and thus every sequence of permutations must be finite. For permutation
(p3), we use the inequality below, that can be proved by induction on l2.

w(p′3(t1, u1, l1, x, l2)) < (w(l2) + 1)(w(t1) + w(u1) + w(l1)) + w(l2) ut
Since →p,q is confluent and strongly normalising, each λJm-term t has a

unique normal form that we denote by ↓p,q (t).

Theorem 5 (representation of φ) φ(t) =↓p,q (t), for all t ∈ ΛJm.

Proof: By Proposition 6, t→∗
p,q φ(t) and φ(t) is a normal form. ut

5 Decomposing the main results

This section illustrates two ways of decomposing the mapping φ using λPh and
λJ as intermediate systems, according to Figure 1 in the introductory section.
In the spirit of the study in the previous section for mapping φ, similar results
may be established (i) for the mappings p and pm relatively to p-permutations
and (ii) for the mappings q and qm relatively to q-permutations.

Definition 11 The mappings pm, qm, p and q are as follows.

pm : ΛJm −→ ΛPh
pm(x) = x

pm(λx.t) = λx.pm(t)
pm(t(u, l, (x)v)) = s(pm(t)(pm(u)·pm′(l)), x,pm(v))

pm′([]) = []
pm′(u :: l) = pm(u) ::pm′(l)

qm : ΛJm −→ ΛJ
qm(x) = x

qm(λx.t) = λx.qm(t)
qm(t(u, l, (x)v)) = qm′(qm(t),qm(u), l, x,qm(v))

qm′(t, u, v :: l, x, v′) = qm′(t[u],qm(v), l, x, v′)
qm′(t, u, [], x, v) = t(u·(x)v)

p : ΛJ −→ ΛG
p(x) = x

p(λx.t) = λx.p(t)
p(t(u·(x)v)) = s(p(t)[p(u)], x,p(v))

q : ΛPh −→ ΛG
q(x) = x

q(λx.t) = λx.q(t)
q(t(u·l)) = q′(q(t),q(u), l))

q′(t, u, v :: l)) = q′(t[u],q(v), l))
q′(t, u, [])) = t[u]

A mapping corresponding to p from λJ into the λ-calculus is given in [5]. In [2]
an interpretation Q of λPh into the λ-calculus corresponding to q is studied.

Let us now consider p and q-permutations in the context of the subsystems
λPh and λJ. In λPh we have that no p-permutation applies to its terms and
that the q-permutation can be simplified as follows:

(q) t(u·v :: l) → t[u](v ·l) .

Similarly, λJ is irreducible for q-permutations and p-permutations assume the
following special forms.

(p1) t(u·(x)y) → y, x 6= y
(p2) t(u·(x)λy.v) → λy.t(u·(x)v)
(p3) t1(u1 ·(x)t2(u2 ·(y)v)) → t1(u1 ·(x)t2)(t1(u1 ·(x)u2)·(y)v) if x 6∈ v

The sequence of theorems in the previous section, leading to the representa-
tion of mapping φ via p,q-normal forms, can also be established by analogous
arguments for mappings p, q, pm and qm. In particular, we have permutability
theorems for all these mappings and we have confluence and strong normalisa-
tion of the rewriting systems induced by →q on ΛPh, →p on ΛJ, →p on ΛJm

and →q on ΛJm. The unique normal forms of a λJm-term t w.r.t. each of these
systems is written as ↓λPh

q (t), ↓λJ
p (t), ↓p (t) and ↓q (t), respectively.

Theorem 6 (representation of p, q, pm and qm)

(i) q(t) =↓λPh
q (t), for all t ∈ ΛPh. (ii) p(t) =↓λJ

p (t), for all t ∈ ΛJ.
(iii) pm(t) =↓p (t), for all t ∈ ΛJm. (iv) qm(t) =↓q (t), for all t ∈ ΛJm.

6 Conclusion

This paper is a direct successor of [1, 7] in revisiting with the help of new λ-calculi
—specifically, variants of Herbelin’s calculus— Zucker and Pottinger classical
results [9, 6]. The novelty here is that, at the same time, we pay attention to how
the λ-calculus we arrive at, the system λJm, more than being a term-annotation
or book-keeping device [6], gives computational interpretations to fragments of
sequent calculus. We believe it does so because: on the one hand λJm may be
seen as an extension of the λ-calculus with a notion of generalised multiary
application; on the other hand it captures as subsystems, in a modular fashion,
a system isomorphic to the λ-calculus, the system ΛJ of Joachimski and Matthes
and the system λPh in [3]. So, we consider worthwhile to investigate more into
its properties. In particular, we intend to study confluence and normalisation of
the reduction relation →β,π, introduced in Section 2 to perform cut-elimination.
Also of interest is the study of properties of the rewriting system obtained by
adding permutations p and q on top of the reduction relation →β,π.

References

1. R. Dyckhoff and L. Pinto, Permutability of inferences in intuitionistic sequent
calculi , Theoretical Computer Science, 212 (1999) 141–155.

2. J. Esṕırito Santo, Conservative extensions of the λ-calculus for the computational
interpretation of sequent calculus , PhD thesis, University of Edinburgh, 2002.

3. J. Esṕırito Santo, An isomorphism between a fragment of sequent calculus and
an extension of natural deduction , in: M. Baaz and A. Voronkov (Eds.), Proc.
of LPAR’02 , 2002, Springer-Verlag, Lecture Notes in Artificial Intelligence, vol.
2514, 354–366.

4. H. Herbelin, A λ-calculus structure isomorphic to a Gentzen-style sequent calculus
structure, in: L. Pacholski and J. Tiuryn (Eds.), Proceedings of CSL’94 , 1995,
Springer-Verlag, Lecture Notes in Computer Science, vol. 933, 61–75.

5. F. Joachimski and R. Matthes, Short proofs of normalisation for the simply typed
λ-calculus, permutative conversions and Gödel’s T, (accepted for publication in
Archive for Mathematical Logic).

6. G. Pottinger, Normalization as a homomorphic image of cut-elimination, Annals
of Mathematical Logic 12 (1977) 323–357.

7. H. Schwichtenberg, Termination of permutative conversions in intuitionistic
Gentzen calculi , Theoretical Computer Science, 212 (1999) 247–260.

8. J. von Plato, Natural deduction with general elimination rules , Annals of Mathe-
matical Logic, 40 (2001) 541–567.

9. J. Zucker, The correspondence between cut-elimination and normalization, Annals
of Mathematical Logic 7 (1974) 1–112.

