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Abstract 

Timber frame construction is characteristic of several historic city centres as well as of vernacular 

architecture in several countries around the world, either motivated by the availability of materials and 

construction traditions or by the need of reducing the seismic vulnerability of existing buildings, 

namely in south European countries. From past earthquakes, it has been seen that timber frame 

construction can be viewed as an interesting technology as it has exhibited a very reasonable 

behaviour when compared to other traditional material such as masonry.  

This chapter provides an overview of the main insights on the seismic performance of timber frame 

buildings from the evidences of past earthquakes and provides the main results of recent research 

focused on the in-plane cyclic behavior of timber frame walls with distinct geometrical configurations. 

Additionally, the main seismic performance indexes of timber frame walls, both unreinforced and 

retrofitted, are presented and discussed in detail.  
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1 Introduction 

 

Masonry and timber are materials used since ancient times in construction. Masonry buildings 

constitute an important percentage of the existing buildings and actions for their preservation 

should be taken since a large part of historical buildings are actually in masonry. A drawback 

on the use of unreinforced masonry is the low resistance to tensile stresses, leading often to an 

inadequate behaviour under seismic actions. A historical construction solution to improve the 

mechanical behaviour of ancient masonry adopted in different locations at different times, 

namely in seismic regions, has been the reinforcement of masonry with timber (Touliatos, 

2005; Vintzileou, 2008), namely at the level of the timber floors  and at additional levels (e.g. 

door and window lintels) by adding a ring timber beam aiming at improving the confining 

effect of masonry walls and thus improving its out-of-plane behaviour, adding also a more 

global seismic resistance to the masonry building by promoting the known box behaviour. 

The particular case of traditional timber frame walls constitute an example of an important 

structural element of many buildings and are usually composed of vertical posts and 

horizontal beams with bracing diagonal elements. In Portugal, timber frame walls, known as 

frontal walls, are usually part of Pombalino buildings, which were introduced by the Marquis 

of Pombal, who was responsible for the reconstruction of Downtown Lisbon after the great 

earthquake of 1755, which partially destroyed the city. The timber-framed walls are 

connected to the external masonry walls by means of the timber floor beams, which are 

connected both to the timber-framed and to the external masonry walls (Mascarenhas, 2004) 

and can be beneficial to reduce the out-of-plane vulnerability of the masonry walls. The 

timber frame walls are also identified in several countries particularly in local vernacular 

architecture, due to the low cost of such structures composed of timber and several infill 

materials from brick and stone masonry to mud and cane. 
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Given the increasing interest of the research community to this structural system, it is 

important to promote the discussion of the main findings that can contribute to the advance on 

the knowledge of the mechanical behaviour of timber frame buildings to seismic actions.  

Therefore, this chapter intends: (1) to give an overview of the different solutions of timber 

frame structures in different countries with special focus on the frontal walls characteristic of 

Pombalino buildings; (2) to describe some examples of the seismic behaviour of timber frame 

buildings in past earthquakes; (3) to summarize the experimental research carried out in recent 

years on the analysis of the behaviour to in-plane cyclic loading; (4) to give an overview on 

the possibilities of retrofitting timber frame walls and summarize some seismic indicator to 

assess their performance. 

2 A brief overview 

2.1 Traditional timber frame construction  

The origin of timber frame structures probably goes back to the Roman Empire, as in 

archaeological sites half-timbered houses were found and were referred to as Opus Craticium 

by Vitruvius (Lagenbach, 2009). But timber was used in masonry walls even in previous 

cultures. According to (Tsakanika-Theohari, 2008; Tampone, 1996) in the Minoan palaces in 

Knossos and Crete, timber elements were used to reinforce the masonry. Half-timbered 

constructions later spread not only throughout Europe, such as Portugal (edifícios 

pombalinos), Italy (casa baraccata), Germany (fachwerk), Greece, France (colombages or pan 

de bois), Scandinavia, United Kingdom (half-timber), Spain (entramados) etc., but also in 

India (dhaji-dewari) and Turkey (himis) (Lagenbach, 2009; Tampone, 1996). In each country, 

different typologies were used, but the common idea is that the timber frame can resist to 

tension, contrary to masonry, which resists to compression, thus providing a better resistance 

to horizontal loads. Besides, the timber elements are viewed as a sort of confinement to the 
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masonry structure, improving the mechanical properties to shear loads. In general, the cross 

section of the timber elements in the distinct case studies is very similar (approximately 

10x12cm). 

Timber frame buildings were common all over Greece in different periods, as reported by 

many authors (Coias, 2007; Makarios and Demosthenous, 2006; Vintzileou et al., 2007). 

Examples of this system are the monastic buildings in Meteora and Mont Athos, the post 

byzantine (Ottoman period) buildings in Central and Northern Greece and the traditional 

buildings in the island of Lefkas. The latter buildings consisted of a stone masonry ground 

floor plus one or two timber-framed masonry storeys (Figure), which represents a common 

disposition in timber frame buildings. Another innovation present in these buildings is the 

existence, at the ground floor, of timber columns stiffened by angles that constituted a 

secondary load bearing system in case of failure of the masonry walls, since they were 

connected to the timber-framed structure of the upper storeys (Tampone, 1996). 

In Germany, fachwerk construction was very popular and several examples of timber frame 

constructions are present all over the country. Different timber frame styles can be found, 

characterized by a varying number of storeys and geometries of the timber frame. In 

Germany, this construction system was introduced in the 7
th

 century and it flourished 

particularly in the 16
th

 and 17
th

 century. Three main styles can be recognized (Alemannic, 

Lower Saxonian and Franconian), differentiating mainly in regards of the spacing between the 

elements, dimensions and disposition of the framing. An example of the German 

constructions is presented in the lexicon by Otto Lueger (Lueger, 1894). 

Another example of timber frame construction is the casa baraccata in Italy. After the 1783 

earthquake in Calabria, authorities adopted construction methods similar to those imposed 

some decades before in Lisbon. The same construction technique, with slight changes, was 
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also adopted after the Messina earthquake in 1908. In particular, Vivenzio proposed a 3-

storey building with a timber skeleton aiming at reinforcing the external masonry walls, 

avoiding their premature out-of-plane collapse. The timber-framed walls constituted the 

internal shear walls, presenting a bracing system of S. Andrew’s crosses, similar to what can 

be found in Lisbon (Copani, 2007). A difference to the Portuguese solution is the continuity 

of the vertical timber posts from the foundation to the roof, being anchored in the foundation 

(especially in the buildings built after 1908) (Tobriner, 1997). 

Similar houses were also found in India and Turkey. Turkey is a prone seismic zone and is 

frequently subjected to strong earthquakes, meaning that the buildings need to be able to resist 

seismic actions. Besides, Turkey has an abundance of wood, as well as stone and clay, which 

promoted the growth of timber frame structures. The typical timber frame construction used 

in the upper floors is called himis and it is typically constituted of a timber frame filled with 

rubble or brick masonry (Gulkan and Langenbach, 2004) (Figure 1b). An alternative to 

masonry infill can be found in bagdadi constructions, where timber laths are used as infill 

material. This led to lightweight, seismic resistant, economical structures, but were more 

disposed to decay (Gulkan and Langenbach, 2004). Among India’s traditional buildings, a 

half-timbered construction typology can be distinguished in the dhajji-dewari (patchwork 

quilt wall) system, which is a braced timber frame with masonry infill, frequently used for the 

upper storeys of buildings (Figure 1 c).  

Timber frame construction has also been used in South America. In Peru, for example, the 

quincha presents a one-storey timber frame made of round or square wood (bamboo is often 

used) and filled with canes covered with earth and gypsum (Gulkan and Langenbach, 2004). 

This type of construction was for example proposed by Peruvian experts for the 

reconstruction of Haiti after the severe earthquake of 2010 (Gulhan and Guney, 2000). One of 
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the few buildings which survived the earthquake was actually built with the construction 

system of quincha. The reconstruction proposed is being done with the improved quincha. 

The posts are grounded in a concrete foundation, the infill consists of canes covered with clay 

and mud and, once dried, everything is covered with a cement plaster.  

2.1.1 Geometrical characterization and typologies of timber frame walls 

Though the general disposition and geometry of timber frame walls is similar in most 

countries, variability exists in terms of timber species, cross-section of the timber elements, 

type of connection, type of infill, spacing between posts and presence of bracing elements.  

Usually, mechanical connections such as half-lap joints or adopted were adopted, particularly 

when timber frames were specifically built with seismic resistant purposes (see the examples 

of Portugal and Lefkas, Figure 2). Generally, the diagonals were connected with simple 

notched connections or were simply nailed (Figure 2c).  

Similarly, bracings are not always regularly used, except for Lisbon. In Lefkas they are 

mainly concentrated at corners. In the casa baraccata In northern Europe they are present at 

most at the corners of the buildings or are sometimes used as decorative elements.  

Bracings disposition varies greatly, Figure 2a, as well as the dimensions of bracings and their 

regularity. If in frontal walls they are generally sturdy, thinner elements are used in dhajji 

dewari construction or even in traditional buildings found in Greece (as little as 25mm in the 

case of dhajji dewari). In himis construction a great number of timber frame wall typologies 

can be identified (Aktas, 2011), with a great variability in terms of spacing of the posts 

(varying from 15 to 60cm), while diagonal elements are present only at corners. Also in 

dhajji-dewari walls the disposition of the bracings varies greatly, going from a regular 

disposition (similar to that of frontal walls) to a highly irregular one, with random layouts 

based on the builder’s skill and the available timber elements (Langenbach, 2009).  
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The different geometry and connection types will then lead to different dissipative capacity in 

the walls, as demonstrated by the experimental results that will be presented below.  

 

2.2 The case of Pombalino buildings in Portugal in more detail 

In Portugal, typical half-timbered structures are known as Pombalino buildings, which are old 

masonry buildings constructed after the 1755 Lisbon earthquake, which destroyed Downtown 

Lisbon. The new buildings took their name from the prime minister of the time, the Marquis 

of Pombal, who encouraged the reconstruction of the city. A Pombalino building is 

characterized by external masonry walls up to 5 storeys. The ground floor consists of stone 

masonry columns supporting stone arches and clay brickwork vaults and above the first floor 

develops an internal timber structure, named gaiola (cage), see Figure 3. The gaiola consists 

of horizontal, vertical and diagonal bracing members, forming a three-dimensional braced 

timber structure. These timber-framed walls are filled with rubble brick or rubble stone 

masonry and act as shear walls. The length of a typical building is 8 to 16m and the width is 

about 10m. The internal walls of the gaiola (paredes em frontal) may have different 

geometries in terms of cell dimensions and number of elements, as it depends greatly on the 

available space and the manufacturer’s customs (Mascarenhas, 2004). The main horizontal 

and vertical elements are reasonably long, whereas the diagonal ones are very short. The 

timber elements are notched together or connected by nails or metal ties. Traditional 

connections used for the timber elements varied and could be mortise and tenon, half-lap, 

dovetail connections, and other types of notched connections. A wide range of sectional 

dimensions can be found in the elements: the diagonal members are usually smaller (10x10cm 

or 10x8cm), whilst the vertical studs and horizontal members are bigger (usually 12x10, 

12x15cm and 14 x10cm or 15x13, 10x13 and 10 x 10cm). The sectional dimensions of the 
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elements are usually bigger for the lower storeys, decreasing progressively with the height of 

the building. The frontal walls have a width of 15-20cm, with a grout thickness covering the 

masonry infill of about 2.5cm but it could vary up to 5cm (Mascarenhas, 2004; Jurina and 

Righetti, 2007). The frontal walls act as shear walls in the building but can be considered also 

as partition walls. The peculiarity of this type of building is that under a seismic event, it is 

admissible that the heavy masonry of the façades falls down, as well as the tiles of the roof 

and the plaster of the inner walls, but the timber skeleton should remain intact, keeping the 

building standing. It should be stressed that if the connections between the external masonry 

piers and the internal timber-framed walls are adequate, the out-of-plane collapse mechanisms 

of the external façades is also minimized. Some timber elements can be found in the external 

walls to promote the connection between the gaiola and the external masonry walls (Pinho, 

2000; França, 1983). 

 

3 Seismic performance of traditional timber frame buildings 

From the world seismic hazard map, it is concluded that some timber frame construction in 

the different countries and regions mentioned in the previous sections was not motivated by 

seismic reasons. Timber frame construction has been used in countries such as Germany, 

England and Scandinavia, which present low seismic activity, being motivated by tradition 

and availability of the raw materials used in the construction system, namely wood. These 

timber frame buildings were built to carry mainly gravitational loads. However, there are 

examples where timber frame structures are part of the local seismic culture, as they were 

introduced after the occurrence of strong earthquakes. The case of Pombalino buildings with a 

timber frame cage in Portugal, the Casa Baraccata in southern Italy and traditional timber 

frame buildings in Lefkas Island in Greece are examples of the local seismic culture. 
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However, even if these countries are characterized as medium to high seismic zones it is also 

true that timber frame buildings are not spread all over the countries and appear to be local. In 

Portugal, examples of timber frame walls can be seen from north (low seismicity) to south 

(high seismicity), namely in south-eastern (Vila Real de Santo António).  On the other hand, 

there are examples of traditional timber frame buildings which possibly were not built based 

on seismic motivations but have been forced to perform under these extreme natural events, 

as is the case of himis construction in Turkey (Aktas, 2011) or timber-laced masonry 

buildings and the dhajji dewari timber frame construction in India. In fact, based on the 

analysis carried out on damage state of traditional timber frame buildings located in high 

prone seismic regions after important seismic events, it has been seen that very reasonable 

behaviour is exhibited by this structural system in distinct countries with high seismicity 

(Langenbach, 2007). Timber frame structures combine the best features of masonry and 

timber, offering a better overall behaviour of the buildings under seismic actions. With this 

respect, it is important to consider that the state of conservation of the traditional timber frame 

buildings can influence their seismic behaviour. 

After the strong earthquake in 2003 in Lefkas, a high prone seismic region, it was observed 

that in spite of damages developed in the traditional buildings, they were not so severe as the 

ones observed in reinforced concrete buildings and no collapse of traditional buildings was 

recorded. The damages observed included vertical and diagonal cracks and shear cracks at the 

interface between timber frame and masonry infill, which in a certain extent promoted the 

out-of-plane collapse of infill (Figure 3a), crushing of the infill masonry. Almost no damage 

was found in the wood elements of the timber frame (Vintzileou et al. 2007). Another 

example where the efficiency of timber frame structures was actually tested consists of the 

traditional timber frame buildings in Turkey, already described. Turkey is frequently exposed 
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to severe earthquakes being one of the few countries with the shortest return period in 

earthquakes causing often loss of lives (Gulhan and Guney, 2000). Different authors have 

pointed out the reasonable earthquake resistance of timber frame buildings, especially with 

comparison to other structural systems such as masonry or reinforced concrete structures 

(Figure 3b), namely during the 1894 Istanbul earthquake, 1970 Gediz earthquake and more 

recent 1999 Marara (Kocaeli) earthquake (Gulhan and Guney, 2000). In Kocaeli-Gölcük, in 

the Sehitler distric, 51% of the buildings are RC buildings (up to 7 storeys), while the rest are 

traditional (either half-timbered or timber-laced masonry or plain masonry up to three 

storeys). From these, only 0.5% of the traditional structures presented heavy damages or 

collapsed against 7.4% of the RC structures, 0.6% of the traditional structures presented 

moderate damage versus 8.6% of the RC and 10% and 16.5% respectively presented light 

damages. In all the mentioned earthquakes, a low number of total collapses of traditional 

buildings was recorded, even if light to severe damage can develop depending on the 

conservation of the structure, on the materials, and on the structural features of the system. 

The typical damages in timber frame buildings under seismic actions include: (1) cracking 

and failure of plaster as the result of the deformation of the braced elements and posts. When 

reduced space of the posts exists no propagation of the cracking occurs for the masonry infill; 

(2) loosening and failure at the connections (Figure 3c). In fact, the connections take a central 

role on the seismic behavior of traditional timber frame buildings as they are the elements 

keeping the structure together during the earthquakes, being understandable that important 

deformations and damages can develop; (3) large lateral displacements, which can result from 

soft-storey mechanism, resulting from the changes carried out on the traditional buildings at 

the first floor related to the removing of timber brace elements and studs aiming at having free 

spaces for commercial purposes. 
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In addition, the earthquakes of India 2001 and El Salvador 1986 are other two examples 

where the timber-laced masonry buildings and the Bahareque timber frame buildings behaved 

considerably better than reinforced concrete or unreinforced masonry (Langenbach, 2007). 

The heavy damage and inadequacy of timber frame building under earthquakes, as occurred 

in Nicaragua 1936, can often be attributed to the poor condition of the connections due to 

inadequate conservation. More recently, during the earthquake of Haiti in January 2010, it 

was seen that a great number of concrete block and reinforced concrete buildings were 

heavily damaged, resulting in the loss of a dramatic number of human lives and in a huge 

economic impact in the economy (Langenbach et al., 2010). Contrarily, the behavior of 

traditional timber frame buildings did not exhibit so much severe damage.  Both the braced 

timber frame and the Colombage, with more flexible, energy dissipating systems tended to 

perform better than the other structural systems (masonry and reinforced concrete) 

(Langenbach et al., 2010). 

 

4 Experimental characterization of traditional timber frame walls 

In spite of timber-frame walls being very common all over the world and having 

demonstrated a reasonably good behaviour during past earthquake events, very little 

information is available on their experimental seismic behaviour that enables to understand 

the resisting mechanisms under lateral loading. This type of construction system has not been 

taken into great consideration from the scientific research community but a great number of 

historical buildings are actually timber framed, which means that the evaluation of its 

mechanical performance, particularly to seismic actions, can be valuable. Moreover, the great 

variability found in these buildings in terms of geometry, materials and modifications 

introduced in the structures makes their seismic assessment a relevant research issue. 



 13 

With this respect, only in the last decade experimental studies have been carried out in 

different countries for the evaluation of the in-plane lateral performance of distinct types of 

timber frame walls. Therefore, this section aims at giving an overview on the experimental 

analysis of timber frame walls under in-plane cyclic loading by presenting the main outcomes. 

4.1 In-plane cyclic behavior of “Pombalino” frontal walls 

In relation to Pombalino timber frame frontal walls, few experimental information is available 

until now. The first experimental work carried out at the national laboratory of civil 

engineering (LNEC) by Santos dates back to 1997 (Santos, 1997), in the scope of a 

rehabilitation program of ancient masonry buildings. Three specimens of real walls were 

taken from an existing building which was going to be demolished and tested under static 

cyclic loads. It should be noticed that no vertical load was applied. The hysteresis loops of the 

tested wall, shown in Figure 4a, are indicative of the good deformation capacity and energy 

dissipation capacity of the structure.  

Cyclic tests were also carried out by Meireles et al. (2012) on walls similar to the ones tested 

by Santos (1997), see Figure 4b. The wood specie selected was pinus pinaster, a typical 

Portuguese softwood, and modern nails were adopted, but assembled according to what is 

seen in existing walls (number and positioning). For the beams and posts a cross section of 

12x8cm
2
 was used and for the diagonals a section of 10x7cm

2
 was adopted. Half-lap 

connections were considered between beams and vertical posts and between diagonal bars, 

additionally secured with two nails. The diagonal bars were connected to the beams and posts 

through nails. For the infill material it was decided to use brick masonry made with low 

strength hydraulic lime mortar. The walls were tested under a cantilever boundary 

configuration, as the top of the wall could rotate. The bottom beam was fixed to the reaction 

structure so that uplift was avoided.  The vertical load applied was of about 80kN by means of 
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four hydraulic jacks, aiming at simulating the dead and live load of the typical three stories 

and the ground floor. The tests were carried out under displacement control by using the 

Curee loading protocol. The hysteresis loops obtained for the two frontal walls tested show 

that in-plane lateral response is characterized by a considerable non-linear behaviour, with the 

hysteresis loops predicting reasonable energy dissipation (Figure 4b). The response is also 

characterized by pinching, which is associated to cumulative damage at the connections and 

progressive increase on the plastic deformations, similarly to what was also recorded in the 

tests of Santos (1997).  

In-plane cyclic tests were carried out by Poletti and Vasconcelos (2014) in timber frame walls 

with the same geometrical configuration and connections (half-lap connections) but in this 

case, the dimension of the braced diagonal cell is lower, leading to a total height and a length 

of the wall 8% lower.  Only one nail was used in all half-lap connections and regular brick 

masonry was considered as infill material, even if timber frame walls without infill were also 

considered, see Figure 5a,b. In some specimens lath and plaster covering was adopted as infill 

material, see Figure 5c. The vertical load was applied directly on the posts. Two levels of 

vertical loads were considered, namely 25kN and 50kN per post, and the tests were carried 

out under displacement control following a cyclic increasing displacement history, according 

to the ISO protocol (ISO 21581, 2010). The typical load-displacement diagrams are presented 

in Figure 6 for timber frame walls with brick masonry infill and empty timber frame walls for 

the two levels of vertical load. From the analysis of these diagrams, it is possible to observe 

that: (1) the timber frames filled with brick masonry and lath and plaster covering present 

similar behaviour, being the predominant resisting mechanism characterized by flexure, 

corresponding to the uplift of the lateral posts and rotation of the wall, as can be seen also 

through the diagrams of Figure 6, where the vertical displacements measured at the bottom 
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connections (post/beam) are also shown. This resisting mechanism leads to plastic 

deformation of the nails placed at the bottom half-lap connections, which should be 

responsible for the unloaded branches characterized by a plateau; (2) the timber frame walls 

exhibit typical shear behaviour being the force-displacement diagrams characterized by 

pinching resulting from the cumulative deformation observed in the walls, particularly at the 

connections. The failure mode is characterized by the shear collapse of the central 

connections; (3) the infill brick masonry and lath and plaster covering influence the resisting 

mechanism of the timber frame walls. The resisting shear mechanism of plane timber frame 

wall is replaced by flexural rocking mechanism in case of addition of infill/covering material. 

The infill or covering materials act as confining elements, conditioning the deformation of the 

connections; (4) the vertical load applied in the posts influences the lateral resistance and the 

overall behaviour of the walls. The increase on the vertical load results in the increase of the 

lateral resistance. On the other hand, higher vertical loads lead to the decrease of the vertical 

uplift of the posts, mainly in case of brick masonry infill, meaning that the flexural rocking 

mechanism that prevails in the response of the lowest vertical load is reduced. It is possible 

that the higher stiffness of the brick masonry used in case of Poletti and Vasconcelos (2014) 

results in the higher stiffening effect of the connections leading to predominant flexural 

behaviour, contrarily to shear behaviour pointed out by Meireles et al. (2012). This appears 

also to be valid for the lateral resistance, as the lateral strength obtained by the authors is 

higher than the one pointed out by Meireles et al. (2012), taking into account that the same 

vertical load was applied. The difference is also in part attributed to the higher number of 

nails present at the bottom connections, as it was seen that a higher confining of the bottom 

connections led to lower uplifting, therefore to predominant shear behaviour (Poletti and 

Vasconcelos, 2012). The predominant flexural behaviour found for the lowest vertical pre-
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compression level was also obtained by Gonçalves et al. (2012), who carried out in-plane 

cyclic tests in the same walls of Poletti and Vasconcelos (2014). It should be noticed that in 

these two works only the brick masonry was not the same. In all mentioned experimental 

works the timber frame detach from the masonry for increasing lateral displacements. In the 

tensile part of the frame the masonry does not work at all, being only active in the 

neighborhood of the compression strut of the opposite side. The detachment pointed out by 

Meireles et al. (2012) is more associated to the shear deformation of the timber frame. 

4.2 In-plane cyclic behavior of other timber frame walls systems 

The research effort aiming at getting a more clear insight on the traditional timber frame 

construction has motivated very recent experimental works carried out on different typologies 

of timber frame walls.  

The work presented by Vieux-Champagne et al. (2014) focus on a typology of walls similar to 

the frontal Pombalino walls in terms of geometry, even if with different cross section sizes 

and different connections, being almost all of them nailed connections. Steel strips were used 

at the bottom connections. These walls intend to represent the walls built in vernacular 

buildings during Haitian reconstruction after the strong earthquake of 2010 aiming at reducing 

the seismic vulnerability of the reconstructed buildings given the reasonable seismic 

behaviour exhibited by the same type of buildings during the earthquake. The timber frame 

walls were built with and without masonry infill, namely stone masonry infill. Based on the 

force-displacement diagrams provided it is observed that in-plane behaviour is characterized 

by an early nonlinear regime and by very reasonable ability to deform during this nonlinear 

regime, see Figure 7a. It is seen also that the hysteresis loops present some “pinching”, which 

should be associated to cumulative damage and deformation developed at the nailed 

connections. This effect is more pronounced in case of empty timber frames, attributed to the 
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higher flexibility of the connections due to the absence of the confining effect of the infill 

material. The presence of stone masonry infill results in higher values of lateral resistance and 

higher stiffness but it appears that low values of maximum displacement are achieved. These 

results are in accordance to the results pointed out by Poletti and Vasconcelos (2014). 

Ruggieri and Zinno (2013) performed in-plane cyclic tests on walls typically found in 

baraccata buildings. The authors tested real scale specimens based on an existing building in 

Mileto. A timber frame was embedded in the masonry wall on both sides. The walls exhibited 

a predominant flexural behaviour, with uplift of the lateral posts.  

The experimental work carried out by Torrealva and Vicente (2012) on quincha timber frame 

walls with distinct configuration of the bracing elements (diagonal and bottom small struts) 

and with distinct height to length ratios of 1:3 and of 1:6, reveals a great capacity of nonlinear 

deformation and a trend for high energy dissipation, see Figure 7b.  

Aktas (2011) presents an extensive experimental work on distinct configurations of 

Ottomman timber frame walls most characteristic on existing himis timber frame buildings 

with and without masonry infill (brick and adobe masonry) and lath and plaster infill (bagdadi 

covering). The connections are mainly made with nails. 

The test results showed that failures were always governed by the failures at the connections. 

Under in-plane lateral loading, the bottom connections on the right and left, as well as those at 

the both ends of diagonal braces are the first ones to deform and eventually fail. At each 

loading cycle, nails were pulled out partially and driven back to their original places, until a 

point where the nail gets buckled and the connection is completely lost. In spite of somehow 

scattered results due to the random workmanship that characterizes traditional himis houses, it 

was seen that the timber frame walls appeared to have high energy dissipation capacity, which 

is one the most important factors defining a good seismic performance. It was also stated that 
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the load bearing capacity and lateral stiffness of a timber frame increases clearly with 

infill/covering material. 

4.3 Seismic performance indicators 

The seismic performance of timber shear walls submitted to in-plane cyclic loads can be 

evaluated in quantitative terms from parameters such as ductility, lateral drift, dissipation of 

energy and equivalent viscous damping. 

Usually, ductility is defined by the ability of a system to deform in the nonlinear range 

without a significant reduction of the resisting capacity. It is quantitatively defined as the 

yielding displacement to the ultimate displacement ratio, being the yielding displacement 

calculated as the elastic displacement corresponding to the yielding lateral force and the 

ultimate displacement as the displacement corresponding to 80% of the resisting lateral force 

defined in the post-peak regime, see Figure 8a. The lateral drift is also a quantity that enables 

to evaluate the capacity of in-plane lateral deformation and it is defined as the lateral 

displacement to the height of the force application point ratio.  

Another parameter that is used in the evaluation of the seismic performance is the equivalent 

viscous damping eq, given by eq. 1: 

     
  

  (  
     )

 (1) 

where Ed is the dissipated hysteretic energy enclosed in the hysteretic loop of the cyclic force-

displacement diagram and Ee
+
 and Ee

-
 are the elastic energies of an equivalent viscous system 

calculated at the maximum displacement in each loop for the positive and negative direction 

of loading respectively (Figure 8b). 
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Equivalent viscous damping represents the energy dissipation due to the nonlinear (hysteretic) 

behaviour of the walls resulting for example from the friction in the connections and opening 

and closing of cracks and gaps.  

In this section a comparative analysis is made among the different traditional timber frame 

walls with respect to the ductility and lateral drifts values, see Table 1. 

The values of lateral drift obtained by Poletti and Vasconcelos (2014) for all walls was close 

to 4%, being a little higher than the value pointed out by Meireles et al. (2012) of 3.5%. It 

should be mentioned that the values obtained by the authors could be even higher in some 

walls, particularly the ones submitted to the lowest levels of pre-compression, as the 

maximum displacement did not correspond to the collapse of the walls. The lateral drifts 

pointed out by Vieux-Champagne et al. (2014) are of the same order, ranging from 3.1% to 

4%. There is a trend for timber frame walls without infill material to present higher values of 

lateral drift, which can be attributed to the ability of the infill material to reduce the free 

deformation of the traditional connections. In the case of the casa baraccata system, a lateral 

drift of 3% was achieved, but the walls did not reach complete failure (Ruggieri and Zinno, 

2013). The lateral drifts can be even higher in case of quincha walls tested by Torrealva and 

Vicente (2012), which mention values of lateral drift ranging from  7.5% to 9.4%, depending 

on the geometrical configuration of the bracing diagonals.  

Based on the experimental results pointed out by Aktas et al. (2013), timber frame structures 

are highly ductile thanks to the energy dissipative plastic behaviour of their connections. Drift 

ratios of up to nearly 9% were observed. The values of lateral drift are influenced by the 

presence of infill masonry and covering, but it appears that covering seems to decrease the 

drift ratio in a higher percentage. For empty frames, the average drift ratio is 6%, and for 

frames with infill/covering, the average drift ratios are 5.5 and 4.9%, respectively. Moreover, 
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based on the values, adobe and brick infill seem to increase the drift ratio by around 3%, 

while bağdadi and şamdolma covering seem to decrease the drift ratio by around 18% in 

average. 

In relation to the values of equivalent viscous damping, it should be mentioned that the 

authors found higher values for low lateral drifts when compared to the values found for 

higher lateral drifts, being in average 0.1 for infilled timber frame walls and 0.12 for timber 

frame walls in case of high lateral drifts. These values are of the order of the ones found by 

Gonçalves et al. (2014), on similar traditional Portuguese frontal walls, which obtained values 

of equivalent viscous damping for low values of drift of 0.17-0.20 for infill walls and 0.19-

0.20 for empty timber frame walls. However, the values then decreased to 0.11-0.13 and 0.10-

0.11 respectively, confirming the trend of having higher values for low drifts. The values of 

the equivalent viscous damping obtained by Vasconcelos et al. (2013) for 1:2 reduced scale 

“frontal” walls tested under in-plane cyclic loads was about 0.15. This higher value can 

possibly be attributed to the distinct “frontal” walls typology and connections: additional 

vertical and horizontal bars in the braced cells and mortise-tenon connections between beams 

and posts. Casa baraccata walls had a value of damping varying between 0.06 and 0.089 

(Ruggieri and Zinno, 2013). From this work it was possible to observe that equivalent viscous 

damping depends on the resisting mechanism, being higher when shear response 

predominates. In these walls lateral drifts of about 3.5% were obtained, being comparable to 

the values obtained in the other studies.  

5 Retrofitting of timber frame walls 

As previously mentioned, timber frame buildings constitute an important portion of many 

historic city centres in the world. Many of these buildings have known little or even no care 

during their life or they have been modified without taking into account the seismic response 
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of the structure after alterations had been made, frequently causing greater damages during 

earthquakes than the ones observed in buildings which had preserved their original structure. 

For this reason, it is important to study strengthening solutions for the rehabilitation of 

existing buildings, guaranteeing a good seismic behaviour and preserving as much as possible 

the originality of the structure.  

Many examples are available on restoration works done in traditional timber frame buildings, 

but few experimental studies have been performed in order to assess the efficiency of the 

strengthening techniques adopted. Usually, rehabilitation of existing timber frame buildings, 

such as those carried out in the last decade in Lisbon, include strengthening of the elements 

(timber frame to outer masonry wall connection, timber frame to timber floor connection, 

etc.) as well as the replacement of decayed elements (such as floor beams, timber elements or 

masonry infill in timber frame walls) or even alterations of the existing structure (for 

example, filling of existing openings). The retrofitting has been made by using FRP sheets in 

the connections of the frontal walls, creating a star-shaped strengthening, or damping systems 

linked to frontal walls and to the outer masonry walls through injected anchors and providing 

additional bracing (Cóias, 2007). However, it should be noticed that these interventions have 

been done with very little background knowledge. 

From an experimental point of view, more relevant information is available on retrofitting 

techniques for traditional timber connections (Branco, 2008; Parisi and Piazza, 2002), which 

are considered also of great importance for the strengthening of traditional walls, since 

strengthening of timber frame walls is almost reduced to the strengthening of the connections.  

5.1 Retrofitting solutions for timber frame walls 

With respect to retrofitting techniques in timber frame walls, it should be stressed that their 

implementation is not a well-covered research topic among the research community. Tests 
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performed on modern timber frame walls do not cover retrofitting techniques. On the other 

hand, the majority of the information existing on strengthening techniques covers the 

retrofitting of timber elements submitted to different loading conditions and not connections. 

Due to the role that connections play on the in-plane behaviour of timber frame walls and if 

the condition of wood is acceptable, the retrofitting of timber frame walls is much 

concentrated in the retrofitting of timber connections. The retrofitting aims mainly to improve 

the deformation capacity and to reduce the damage concentrated at the connections, even if 

complementarily the increase on the lateral in-plane resistance can also be achieved.  

Cruz et al. (2001) performed diagonal tests on reduced scale wallets strengthened with glass 

fiber reinforced polymer (GFRP) rods and glass fiber fabric (GFF) sheets. The walls were 

retrofitted embedding two GFRP bars to the outer timber members and GFF sheets were 

glued to the timber elements of the central connections. Vasconcelos et al. (2013) also 

presented a solution for reinforcement of timber framed walls with glued FRP sheets in some 

of the connections of the walls in order to access the influence of this technique on the lateral 

resistance, stiffness and deformation. 

An alternative solution to fiber reinforced polymers is the use of steel plates or bolts to retrofit 

the connections. These solutions are considered to be more compatible with the existing 

structures and, above all, are reversible, contrarily to the composite materials that need a glue 

base to adhere to the timber elements.  

Gonçalves et al. (2012) and Poletti et al. (2014) presented some solutions for retrofitting 

timber frame walls with steel plates and steel bolts at the connections of timber frame walls. 

Examples of distinct steel plates configuration are presented in Figure 9, together with a 

solution for steel bolts (Poletti et al., 2014). The solution of adding pre-drilled bolts at the 

base of the walls is intended to prevent uplift displacements and then limit the possible 
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rocking mechanism, mainly for low levels of load applied to the posts. This intervention 

should also assure that the connections work properly until failure, by reducing the damage 

and instabilities in the out-of-plane direction. The steel plates can be customized (star-shaped) 

or even commercial rectangular steel plates. The steel plates are secured with screws and 

linked with bolts which go through the thickness of the wall. The steel plates can link or not 

the diagonal bracing elements to the main elements of the connection (vertical post and 

horizontal beam). From experimental results it was seen that the connection of the diagonal 

bars can result in a considerable increase on the stiffness and resistance, leading to a possible 

instability for high levels of lateral force associated to high levels of compression along the 

diagonals. 

It should be stressed that both types of steel plates require low technical equipment and non-

specialized workmanship. 

 

5.2 Experimental behaviour of strengthening solutions  

As mentioned before, the retrofitting of timber frame walls aims to improve its in-plane 

behaviour under cyclic loading, meaning that higher displacements and higher energy 

dissipation is expected together with more controlled damage. The seismic performance of 

steel plates and bolts was evaluated based on in-plane cyclic loading for two distinct levels of 

vertical load applied in the vertical posts (25kN and 50kN per post) following the same 

procedures used in the unreinforced timber frame walls (Poletti et al., 2014). 

Through Figure 10, a comparison between timber frame walls with brick masonry infill 

retrofitted with steel bolts at connections submitted to vertical load of 50kN per post 

(RIW50_B) and the corresponding unreinforced timber frame wall can be made. It is 

observed that there is no great gain in terms of ultimate capacity and stiffness. In fact, for the 
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lower vertical load level (25kN per post), the gain in terms of maximum load was of 23.7%, 

whereas for the higher vertical load level the lateral resistance decreased by 5%. In terms of 

ultimate displacement, the walls gained 5.7% and 0.2% for the lowest and highest vertical 

pre-compression levels. The very low effectiveness of bolts as a retrofitting technique in 

timber frame walls in terms of lateral resistance can be attributed to the predominant flexural 

behaviour of the walls under in-plane loading. The bolts are not completely efficient in 

resisting the tensile stresses induced by cyclic loading at the bottom connections, and the 

walls experienced damages in the central connections until their failure. The nailed diagonals 

detached from the main frame. The central beam tore off (Figure 11a) in tension and the 

central post crushed due to the shear induced by the diagonals, similarly to what happened in 

the unreinforced tests (Poletti, 2013). In spite of this, for both load cases, the shape of the 

hysteretic loops experiences some changes. The plateau caused by the uplifting and 

recovering of the vertical post from the bottom beam is still present, but it is less pronounced 

and the unloading branch of the cycles is smoother. The vertical uplifting of the posts 

decreased by approximately 40% for both load cases in relation to unreinforced walls, 

resulting from the lower predominance of the flexural resistant mechanism and from the 

contribution of a certain shear resistant component. Even in a reduced scale, the bolts 

contributed to the resistance to tensile forces developing in the bottom half-lap connections, 

and ensured a more remarkable post-peak behaviour enabling the connections to work until 

failure, contrarily to unreinforced walls, where after a certain lateral drift no contact was 

observed between the post and the bottom beam. 

The comparison between the hysteresis diagrams found in unreinforced walls and after 

retrofitting with steel plates can be made through the analysis of Figure 12a, where results are 

shown for the walls tested with the higher vertical pre-compression (RIW50_P – timber frame 
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walls with brick masonry infill submitted to a vertical load of 50kN per post retrofitted with 

custom steel plates and corresponding unreinforced wall, UIW50; RTW50_P_M – timber 

frame wall without infill submitted to a vertical load of 50kN per post retrofitted with 

commercial steel plates not connecting the diagonal braces and corresponding unreinforced 

wall, UTW50). Walls retrofitted with steel plates experienced a similar behaviour 

independently on the vertical load level. For both timber frame walls with masonry infill, an 

important increase in terms of load capacity and stiffness was recorded: the maximum lateral 

load increased by 147% for the lower vertical load and by 60.4% for the higher vertical load. 

The initial stiffness of the walls increased by 30% when compared to the unreinforced 

solution for the lower vertical load level and by 14% for the higher vertical load level. The 

displacement imposed to the walls does not correspond to its maximum displacement capacity 

as it was not possible to obtain the complete failure mode of the walls. The high stiffening 

effect of custom steel plates, linking the main elements of the connection (post and beam) to 

the diagonal braces, together with the slenderness of the wall led to this out-of-plane 

component, even if it was considered minimal. The ultimate state would be achieved if further 

lateral displacements were applied. For this type of strengthening, the values of initial lateral 

stiffness are comparable for the two vertical load levels, meaning that for such a strong 

retrofitting technique, the effect on the amount of vertical load becomes secondary.  

The solution of commercial steel plates connecting only the beam and posts allowed the walls 

to gain significantly both in terms of stiffness and load capacity, without compromising the 

displacement capacity, see Figure 12b. In terms of maximum load, the walls gained 183% and 

35% for the lower and higher pre-compression load respectively. On the other hand, this 

retrofitting solution led to remarkable pinching in the timber walls. Similarly to the 

retrofitting with custom steel plates, the vertical load has only marginal influence in terms of 
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maximum load, even if it influences the initial stiffness, being higher for the higher vertical 

pre-compression. This solution is therefore more appropriate for timber frame walls, since its 

stiffening effect is not overwhelming. 

It should be mentioned that the lateral cyclic behaviour obtained for timber frame walls 

retrofitted with commercial plates linking the main members (post and beams) with the 

diagonals was characterized by a significant increase of the lateral resistance but on the other 

hand exhibited a trend for becoming unstable in the out-of-plane direction, which should be 

associated to the high levels of compression stresses driven by the compressed diagonal strut, 

promoting the development of second-order effects. From the results obtained, it appears that 

this type of retrofitting is too stiff and not ductile enough for timber frame walls without infill, 

increasing significantly the lateral resistance (over 200% for the lower vertical load level and 

97% for the higher vertical load when compared to the equivalent unreinforced wall) and the 

stiffness of the walls (77% for the lower vertical load and 50% for the higher one).  

In case of walls retrofitted with steel plates the damages observed were similar for all walls 

and they consisted of: (1) failure of the half-lap connection linking two diagonal members 

when steel plates linked the diagonals to the main frame (Figure 11b); (2) failure of the 

central middle connection when the diagonals were not linked to the main frame through the 

steel plates (Figure 11c). The failure of the half-lap connection of the diagonal elements 

occurred in all specimens, independently on the type of plate, because this type of retrofitting 

stiffened excessively the connections, not allowing free movement to the bracing elements. 

The strong retrofitting of the post-beam half-lap connections in combination with the increase 

on the stresses carried by the diagonal bars resulted in the failure of the weakest zones of the 

wall, which were the half-lap connection of the diagonals. No damages were observed in the 

main wood members of the connection.  
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The performance of the retrofitting with custom star shape steel plates was also evaluated by 

Gonçalves et al. (2014), being observed that the retrofitting resulted in the considerable 

increase on the lateral strength and on the energy dissipation, see Figure 12c. 

Comparing the two retrofitting solutions, bolts were able to improve the overall behaviour of 

the wall in terms of deformation capacity and post-peak behaviour, but it is not relevant in the 

increase on the lateral strength. On the other hand, the appropriate steel plates configuration is 

able to guarantee a better seismic response of the walls both in terms of stiffness and load 

capacity.  

5.3 Seismic performance indicators 

Similarly to what has been discussed previously, the seismic performance of retrofitted walls 

can be also analysed in order to evaluate the effectiveness of the retrofitting techniques. A 

comparative analysis is presented here between the retrofitted walls with steel plates and with 

bolts.  

The assessment of the ability of the timber frame walls to dissipate energy is here evaluated 

based on the energy dissipated at each cycle, ED, computed by calculating the area enclosed 

by the loop in the load-displacement diagram and it represents the amount of energy 

dissipated during the cyclic loading. The energy can be dissipated through friction in the 

connections, yielding of nails, yielding and deformation of the retrofitting bolts and steel 

plates and permanent deformation accumulated in the walls as observed during the tests. 

According to the results found in Figure 13 (Poletti et al., 2014), all retrofitting techniques 

adopted were able to guarantee greater energy dissipation during the tests (RIW25_B – timber 

frame walls with brick masonry infill submitted to a vertical load of 25kN per post retrofitted 

with custom steel plates and corresponding unreinforced wall, UIW25; RIW25_P – timber 

frame walls with brick masonry infill submitted to a vertical load of 25kN per post retrofitted 
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with custom steel plates; RTW25_P_M – timber frame wall without infill submitted to a 

vertical load of 25kN per post retrofitted with commercial steel plates not connection the 

diagonal and corresponding unreinforced wall, UTW25). The highest dissipative solution is 

provided by the retrofitting technique with steel plates linking the diagonals. Timber frame 

walls with brick masonry infill retrofitted with steel plates increased the total dissipated 

energy by 96% and 57% respectively for the lower and higher vertical load level. For the 

walls tested without linking the diagonals, the dissipative capacity was lower. In case of 

timber frame walls with this alternative steel plates configuration, the total dissipated energy 

increased by 132% and 38% for the lowest and highest vertical pre-compression respectively 

when compared to the equivalent unreinforced wall. The retrofitting solution with steel plates 

connecting all elements tested by Gonçalves et al. (2014) revealed also to be highly effective 

in the improvement of the dissipation of energy, by increasing the total energy dissipation by 

254%.  

The response of the walls retrofitted with bolts showed results comparable to the ones 

obtained in unreinforced walls for low values of lateral drift, but improved for high values of 

drift in case of the higher pre-compression load, given that the solution changed the failure 

mode of the wall, reducing the amount of pinching in the walls, guaranteeing a higher 

dissipative capacity of the wall (+14%).  

Comparing the results of equivalent viscous damping for the walls tested (Figure 14), the 

influence of the vertical pre-compression load was evident only for the strengthening with 

bolts. In the latter case, the highest level of pre-compression leads to higher values of 

equivalent viscous damping than the wall submitted to the lower vertical pre-compression. In 

general the retrofitted walls present higher values of equivalent viscous damping. The walls 

retrofitted with bolts exhibit also higher values of hysteretic damping than the unreinforced 
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walls for high levels of lateral drift in case of the walls submitted to the highest level of pre-

compression. For the lower level of vertical load, the equivalent viscous damping is only 

higher for lateral drifts of 3%. Walls with steel plates present a constant final equivalent 

viscous damping of 0.12 and 0.13 for the lower and higher pre-compression level 

respectively, with little variation among the walls. Similar values were found for cyclic tests 

on bird’s mouth connections (Branco, 2008). This type of connections strengthened with bolts 

presents a value of equivalent viscous damping of 0.11, while the connections strengthened 

with stirrups presented a value of 0.15. 

 Higher values of equivalent viscous damping were observed by Gonçalves et al. (2014) for 

the retrofitting of timber frame walls with steel plates, attaining maximum values of 0.29, 

representing in average an increase of about 22.2% in relation to the unreinforced timber 

frame walls. 

Based on the results available, it appears that the retrofitting solution of steel plates and steel 

bolts applied at the connections can be considered as retrofitting solutions for timber frame 

walls as they simultaneously lead to an increase on the lateral strength, energy dissipation and 

result in higher values of equivalent viscous damping, revealing a more appropriate seismic 

performance. Additionally, it can be said that more controlled damage is achieved, meaning 

that the costs with further retrofitting can be lower in the future. 

6 Concluding remarks 

Timber frame construction can be seen in urban and vernacular buildings in several countries 

around the world, either motivated by the availability of materials and construction tradition 

or by the need of reducing the seismic vulnerability of existing buildings, namely in Portugal, 

Italy and Greece. 
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Timber frame construction encompasses a great variety of geometrical configurations and 

infill materials but it has been seen that in general during past earthquakes timber frame 

buildings exhibited a reasonable mechanical behaviour when compared with other structural 

typologies. However, it should be mentioned that the conservation state of these structures 

plays an important role in the appropriate seismic performance. 

On the other hand, in spite of traditional timber frame construction being spread all over the 

world, few research has been performed on this issue both from an experimental and a 

numerical point of view and the majority of the known research works dates back to the past 

decade and has been carried out mainly in Mediterranean countries. 

This chapter points out some experimental results on the in-plane cyclic behaviour of 

unreinforced and retrofitted timber frame walls, which are characteristic of some constructive 

systems. An overview of the in-plane experimental behaviour of timber frame walls as well as 

of the seismic parameters is given. Additionally some retrofitting solutions are presented and 

a discussion of its effectiveness under in-plane cyclic loading is discussed. 

From the analysis carried out it was possible to conclude that timber frame walls exhibit large 

capacity to deform in the nonlinear regime with remarkable lateral drifts with controlled 

damages under in-plane cyclic loading. Additionally, timber frame walls present good 

capacity to dissipate energy, which makes this system behaving better under in-plane loading 

than unreinforced masonry walls, used in vernacular architecture in several countries with 

important seismicity.  

The retrofitting with steel plates at the connections reveals to be appropriate as an increase on 

the resistance, energy dissipation and equivalent viscous damping was recorded. Besides, for 

the same lateral drifts, a more controlled damage was recorded, when compared to the 

unreinforced timber frame walls. 
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7 Research Studies and Future trends 

 

From past evidences about the reasonable mechanical performance of timber frame buildings 

under earthquakes, it can be considered that traditional timber frame construction deserves to 

be conserved and can be viewed as a true alternative for reconstruction and strengthening 

purposes of vernacular construction. This has been already made for example during the 

reconstruction process after the strong earthquake that hit Haiti in 2010 and India and 

Pakistan in 2005, after which a manual for building Dhajji construction was created (Schacher 

and Ali, 2010). 

However, it is important to mention that the knowledge on the mechanical behaviour of this 

type of structure is still limited and additional research on the in-plane behaviour and 

particularly on the out-of-plane behaviour is needed. In this scope, further dynamic tests on 

full timber frame structures can reveal with more accuracy the dynamic global mechanical 

behaviour, beyond the individual behaviour of timber frame walls. 

Additionally, the understanding of the main vulnerabilities of this type of construction, mainly 

at the level of conservation state both on the connections and on wood structural elements, is 

very important as they can result in less appropriate seismic performance. The proposal and 

validation of distinct retrofitting techniques that reveals to be compatible, reversible and 

durable needs to be further developed as it plays an important role in the improvement of the 

seismic performance of this type of structures. It should be mentioned that this topic is not 

well covered and further investigation is important to provide sound retrofitting guidelines to 

different stakeholders. 

The strategies for the numerical simulation of timber frame walls, and at the limit of timber 

frame buildings, represent also a field of investigation that needs major contributions as very 

few information is available. The numerical simulation is mandatory if assessment of seismic 
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vulnerability of timber frame buildings is required (Meireles et al., 2012; Kouris and Kappos, 

2012).   
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Table 1 

Seismic performance indexes 

 Reference Lateral drift 

(%) 

Equivalent viscous 

damping 

Poletti  et al. (2013)   

Timber infilled frame 

Timber infilled frame 

4 0.10  

0.12 

Meireles et al. (2012) 
  

Timber frame with masonry infill 3.5  

Gonçalves et al. (2013)   

Timber infilled frame 

Timber frame 

 0.11  

0.10 

Vieux-Champagne  et al. (2014) 
  

Timber frame with masonry infill 

Timber frame 

3.1-3.9 

4.2 

 

Ruggieri and Zinno (2013) 

Masonry wall with timber frame 

 

3 

 

0.06-0.089 

Torrealva and Vicente (2012)   

Walls with citara 

Walls with diagonal 

 

7.5  

9.375 

 

Aktas et al. (2013)    

Timber frame with brick 

masonry 

Lath and plaster (bagdadi 

cladding) 

5.5  

4.9 
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(a) (b)  (c) 

 

Fig. 1 

Some examples of timber frame buildings; (a) typical house of Lefkas island in Greece, built 

with the local aseismic technique (Touliatos, 2004); (b) in Turkey - hatil at ground floor and 

himis in upper storeys (Tsakanika-Theohari  and  Mouzakis, 2010) ; (c) India - dhajji-dewari 

building in Kashmir (Langenbach, 2009) 
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(a) (b) 

 

 

     (c) 

Fig. 2 

Different geometries of timber frame walls encountered: (a) geometry variability in frontal 

walls (Cóias, 2007); (b) examples of connections used in Lisbon (Mascarenhas, 2004); (c) 

connections of timber frame wall in Chalkida, Greece 
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(a) (b) 

 

  (c) 

 

Fig. 3 

Examples of damages in timber frame buildings; (a) out-of-plane collapse of masonry infill 

(Lefkada, Greece) (Makarios, 2006); (b)  comparison of damages to traditional and modern 

building after the 1999 Duzce earthquake; (c) failure of connection in timber frame (1999 

Kocaeli earthquake (Gülhan  and Güney, 2000). 
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(a) 

(a  
(b) 

 

Fig. 4 

Experimental testing of Pombalino frontal walls; (a) Santos (1997); (b) Meireles et al. (2012)  

 

 

   
(a) (b)   (c) 

Fig. 5 

Timber frame walls tested by Poletti (2013); (a) timber frame wall without infill; (b) timber 

frame wall with brick masonry infill brick; (c) timber frame wall with lath and plaster 

covering 
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(a) 

 
(b) 

Fig. 6 

Force-displacement diagrams obtained for frontal walls tested by Poletti (2013); (a) walls 

filled with brick masonry submitted to a vertical load of 25kN/post and 50kN/post; (b) empty 

walls submitted to a vertical load of 25kN/post and 50kN/post. 
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(a) 

 

(b) 

 Fig. 7 

Force-displacement diagrams obtained in distinct types of timber frame walls; (a) Vieux-

Champagne et al. (2014); (b) Torrealva and Vicente (2012). 
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(a) 

 

 

(b) 

Fig. 8 

(a) Bilinear idealization of the monotonic experimental envelop; (b) dissipated and input 

potential energy is a hysteretic loop 
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(a) (b) 

 

(c) 

 

Fig. 9 

Retrofitting solution: (a) steel bolts; (b) custom star shape steel plates; (c) commercial steel 

plates 
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Fig. 10 

Hysteretic force-displacement diagrams for walls strengthened with bolts, higher pre-compression 

load 
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(a) (b) 

 
(c) 

Fig. 11 

Typical damages in retrofitted walls: (a) tearing off of central beam in a retrofitted wall with 

steel bolts (with brick infill); (b) failure of half-lap connection in the bottom cell in a 

retrofitted wall with custom steel plates (with brick infill); (c) failure of central connection in 

in a retrofitted wall with commercial steel plates (without brick infill)   
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(a) 

 

(b) 

Fig. 12 

 Comparison of force-displacement diagrams between unreinforced and retrofitted timber 

frame walls; (a) timber frame wall with brick masonry infill custom steel plates and 

unreinforced timber frame wall; (a) timber frame wall without infill with commercial steel 

plates and unreinforced timber frame walls (Poletti and Vasconcelos, 2013); (c) retrofitted 

timber frame walls with steel plates (MW 6 and MW6) and unreinforced walls (MW1) 

(Gonçalves et al., 2014) 
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Fig. 13 

Cumulative dissipated energy for all walls tested by Poletti (2013)  
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(a) (b) 

 

Fig. 14 

Equivalent viscous damping ratio: (a) lower pre-compression level; (b) higher pre-

compression level  
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