
Optimistic Total Order in Wide Area Networks∗

António SOUSA , José PEREIRA, Francisco MOURA, Rui OLIVEIRA

Universidade do Minho, Portugal
{als,jop,fsm,rco}@di.uminho.pt

Abstract

Total order multicast greatly simplifies the implementa-
tion of fault-tolerant services using the replicated state ma-
chine approach. The additional latency of total ordering
can be masked by taking advantage of spontaneous order-
ing observed in LANs: A tentative delivery allows the ap-
plication to proceed in parallel with the ordering protocol.
The effectiveness of the technique rests on the optimistic as-
sumption that a large share of correctly ordered tentative
deliveries offsets the cost of undoing the effect of mistakes.

This paper proposes a simple technique which enables
the usage of optimistic delivery also in WANs with much
larger transmission delays where the optimistic assumption
does not normally hold. Our proposal exploits local clocks
and the stability of network delays to reduce the mistakes in
the ordering of tentative deliveries. An experimental evalu-
ation of a modified sequencer-based protocol is presented,
illustrating the usefulness of the approach in fault-tolerant
database management.

1. Introduction

Total order multicast greatly simplifies the implementa-
tion of fault-tolerant services using the replicated state ma-
chine approach [25]. By ensuring that deterministic replicas
handle the very same sequence of requests from clients, it is
ensured that the state is kept consistent and the interaction
with clients is serializable [12]. A particularly interesting
application is the database state machine [21] which allows
high performance replication of transactional databases.

Implementation of total order multicast is however more
costly than other forms of multicast due to the unavoidable
additional latency. For instance, in a sequencer based pro-
tocol [5, 16] all processes (except the sequencer itself) have
to wait for the message to reach the sequencer and for the
sequence number to travel back before the message can be
delivered.

On the other hand, protocols based on causal history [18,
23, 10] can provide latency proportional to the interarrival
delay of each sender and thus lower latency than sequencer
based protocols. However, when each sender has a large in-

∗Research supported by FCT, ESCADA proj (POSI/33792/CHS/2000).

terarrival time and low latency is desired, this requires the
introduction of additional control messages. This is espe-
cially unfortunate in large groups and in wide area networks
with limited bandwidth links.

In some protocols, such as those based on consensus [7,
4] or on a sequencer [5, 16], the total order decided is the
spontaneous ordering of messages as observed by some pro-
cess. In addition, in local area networks (LANs) it can be
observed that the spontaneous order of messages is often
the same in all processes. The latency of total order pro-
tocols can therefore be masked (not reduced) by tentatively
delivering messages based on spontaneous ordering, thus
allowing the application to proceed the computation in par-
allel with the ordering protocol [17]. Later, when the total
order is established and if it confirms the optimistic order-
ing, the application can immediately use the results of the
optimistic computation. If not, it must undo the effects of
the computation and restart it using the correct ordering.

The effectiveness of the technique rests on the assumption
that a large share of correctly ordered tentative deliveries
offsets the cost of undoing the effects of mistakes. This is
unfortunate as this makes optimistic delivery useful only in
LANs where the latency is much less of a problem than in
wide area networks (WANs).

This paper proposes a simple protocol which enables op-
timistic total order to be used in WANs with much larger
transmission delays where the optimistic assumption does
not normally hold. Our proposal exploits local clocks and
the stability of network delays to reduce the mistakes in the
ordering of tentative deliveries by compensating the vari-
ability of transmission delays. This allows protocols which
are based on spontaneous ordering to fulfill the optimistic
assumption and thus mask the latency.

An experimental evaluation of the technique is presented
using a sequencer-based protocol, illustrating the useful-
ness of the approach in fault-tolerant database management.
When applied to the sequencer based protocol, our tech-
nique does not introduce additional messages. The only
overhead is that of an additional integer piggybacked on
data messages. This compares favorably with both plain
sequencer based and causal history based protocols.

The paper is structured as follows. The next section re-
calls the problems of total order and optimistic total order
multicasts, as well as the reasons preventing spontaneous

1

total order in wide are networks. Section 3 introduces the
intuition underlying our proposal and presents a protocol
providing optimistic delivery of messages based on a fixed-
sequencer total order multicast protocol. In Section 4 we
evaluate the performance gains of our approach. In Sec-
tion 5 we discuss the paper contribution in general settings
as well as applied to a specific application. Section 6 con-
cludes the paper.

2. Background

2.1. Totally ordered multicast

Informally, totally ordered multicast (or atomic multicast)
ensures that no pair of messages is delivered to distinct des-
tination processes in different order. Totally ordered multi-
cast greatly simplifies the implementation of fault-tolerant
services using the replicated state machine (or active repli-
cation) approach [25, 12]: By delivering exactly the same
messages in the same order to a set of deterministic repli-
cas, their internal state is kept consistent.

More formally, we consider an asynchronous message
passing system composed of a finite set of sequential pro-
cesses communicating over a fully connected reliable point-
to-point network [7]. Processes do not have access to shared
memory or to a global clock. A process may only fail by
crashing and once a process crashes it does not recover. A
process that never crashes is said correct. Totally ordered
multicast is defined by primitives to-multicast(m) and to-
deliver(m), and satisfies the following properties [14]:
Validity. If a correct process to-multicasts a message m,

then it eventually to-delivers m.
Agreement. If a correct process to-delivers a message m,

then every correct process eventually to-delivers m.
Integrity. For every message m, every process to-delivers

m at most once, and only if m was previously to-
multicast.

Total Order. If two correct processes to-deliver two mes-
sages m and m′, then they do so in the same order.

Total order multicast has been shown to be equivalent to
the generic agreement problem of consensus [7]. Therefore
we must assume that in our system the consensus problem
is solvable [11, 7], requiring that a majority of processes
is correct and that failure detection is of class �S [6]. In
some protocols, consensus is explicitly invoked to decide
the message sequence [7, 4]. In others, consensus is implicit
in a group membership service which supports the actual
ordering protocol [5, 15, 10].

There is a plethora of total order protocols for asyn-
chronous message passing systems which can be classi-
fied according to several criteria [9]. Namely, some or-
der the message while disseminating it [3, 2, 15]. Others
take advantage of an existing unordered multicast proto-
col [5, 16, 7] and work in two stages: First, messages are

p1 • seq(m1)
%%

seq(m1)
&&

//

p3 • DELIV(m1) //

p2 MCAST(m1)

66

<<

77oooo

• DELIV(m1) //

Figure 1. Sequencer based total order protocol.

disseminated using a reliable multicast protocol Then, an
ordering protocol is run to decide which is the correct de-
livery sequence of buffered messages. This results in addi-
tional latency, when compared to reliable multicast.

An example of a protocol often used in group commu-
nication toolkits is the sequencer [5, 16], which uses con-
sensus implicitly in the view-synchronous reliable multi-
cast protocol used to disseminate messages previously to
ordering them. As depicted in Figure 1, a data message is
disseminated using unordered reliable multicast. Upon re-
ception (depicted as a solid dot), the message is buffered
until a sequence number for it is obtained. A single pro-
cess (p1 in the example) is designated as the sequencer: it
increments a counter and multicasts its value along with the
original message’s identification to all receivers as a control
message. Data messages are then delivered according to the
sequence numbers. A group membership protocol is used
to ensure that for any given data message there is exactly
one active sequencer.

Besides being a very simple protocol, it offers several ad-
vantages, especially in networks with limited bandwidth or
in large groups with large and variable message interarrival
times: it requires at most a single additional control mes-
sage for each data message and any message can always
be delivered after two successive message transmission de-
lays. The basic protocol is also easily modified to cope with
higher message throughput by batching sequence numbers
for several messages in a single one [5], reducing the num-
ber of control messages at the expense of higher latency.

2.2. Optimistic total order

A reliable multicast protocol can deliver a message af-
ter a single transmission delay from the originator to the
receiver. This contrasts with the latency of totally ordered
multicast1 which is either twice as large, when using a se-
quencer based protocol, or proportional to message interar-
rival delay in protocols using causal history. However:

• Some protocols, such as the sequencer, produce an or-
dering which is the spontaneous ordering observed by
some process.

• In local area networks, it can be observed that the spon-
taneous ordering of message reception of all processes

1Except in the degenerate situation where a single process is multicas-
ting and it can assume the sequencer role.

2

is often very similar, therefore, similar to the final or-
dering decided by the sequencer.

Nevertheless, delivery incurs always in the additional la-
tency. The optimistic atomic broadcast protocol [22] takes
this in consideration to improve average delivery latency of
a consensus based total order protocol.

Further latency improvements can be obtained if the ap-
plication itself can take advantage of a tentatively ordered
delivery. This is called optimistic delivery [17, 26] as it rests
on the optimistic assumption that reliable multicast sponta-
neously orders messages. It also implies that eventually an
authoritative total order is determined, leading to a confir-
mation or correction of previously used delivery order. To
the interval between the optimistic delivery and the author-
itative delivery we call optimistic window. It is during this
interval that the application can optimistically do some pro-
cessing in advance.

To define optimistic total order multicast we use two
different delivery primitives an optimistic opt-deliver(m)
that delivers messages in a tentative order and a final fnl-
deliver(m) that delivers the messages in their final, or au-
thoritative, order. Optimistic total order multicast satisfies
the following properties [26]:

Validity. If a correct process to-multicasts a message m,
then it eventually fnl-delivers m.

Agreement. If a correct process fnl-delivers a message m,
then every correct process eventually fnl-delivers m.

Integrity. For every message m, every process opt-
delivers m only if m was previously multicast; and
every process fnl-delivers m only once, and only if m
was previously multicast.

Local Order. No process opt-delivers a message m after
having fnl-delivered m.

Total Order. If two processes fnl-deliver two messages m
and m′, then they do so in the same order.

An example of such an application is the database state
machine [21] which allows high performance replication of
transactional databases and works as follows: transactions
are executed optimistically by any of the replicas without
locking. The resulting read and write sets are then multicast
to all replicas which perform a deterministic certification to
ensure that the transaction does not conflict with concur-
rent transactions already committed. Total order multicast
is used to ensure that the result of the certification process is
identical in all replicas, thus ensuring consistency. If the or-
der of messages is known in advance by optimistic delivery,
this can be used to speed up the certification [17].

Notice that if the optimistic ordering turns out to be
wrong, the application has to undo the effect of any pro-
cessing it might have done. Therefore, the net advantage of
optimistic delivery depends on the balance between the cost
of a mistake and the ratio of correctly ordered optimistic de-
liveries. In the database state machine, being able to undo

the effects of optimistic delivery just means than the trans-
action cannot be effectively committed until authoritative
delivery. When the optimistic delivery is wrong, there is a
performance penalty: The processing resources used have
been wasted.

The tradeoff is thus similar to the one involved in the de-
sign of cache memories. However, the protocol designer
has no possibility to reduce the cost of a mistake, as this
depends solely on the application. The only option is thus
to try to maximize the amount of messages which are deliv-
ered early but correctly ordered.

2.3. Obstacles to spontaneous total order

A high ratio of spontaneously totally ordered messages
which results in good performance of optimistic applica-
tions is not trivially achieved, especially in wide area net-
works. One reason for this is loopback optimization in the
operating system’s network stack. Noticing that the out-
going packet is also to be delivered locally, the operating
system may use loopback at higher layers of the protocol
stack and immediately queue the message for delivery. This
allows it to be delivered in advance of packets from other
senders which have reached the network first.

Another reason for out of order delivery lies in the net-
work itself. Although not frequent, there is a possibility that
packets are lost by some but not all destinations. A reliable
multicast protocol detects the occurrence and issues a re-
transmission. However, the delay introduced opens up the
possibility of other packets being successfully transmitted
while retransmission is being performed.

An additional issue is the complexity of the network
topology. Different packets can be routed by different paths,
being therefore subject to different queuing delays or even
to being dropped by congested routers. This is especially
noteworthy when there are multiple senders. Receivers
which are nearer, in terms of hops, to one of them will re-
ceive its messages first. Receivers which are nearer of an-
other will possibly receive messages in the opposite order.

Notice however that bad spontaneous order in wide area
networks is not attributable to large delays themselves, but
to the fact that the delays to different destinations are likely
to be different, often by two orders of magnitude. Consider
Figure 2(a). Messages m1 and m2 are multicast to three
different processes, including the senders themselves. The
time taken to transmit each message varies with the recipi-
ent, for instance, transmission to the sender itself (typically
hundreds of microseconds by loopback) takes less time than
transmission to other processes (typically up to tens of mil-
liseconds over a long distance link). The result is that pro-
cess p1 spontaneously orders message m1 first while p2 and
p3 deliver m2 first.

Figure 2(b) shows a similar example where message
transmission delays are longer but where is it more likely

3

oo d1 //
//•

m1 ((

,,YYYYYYYYYYYYY

..

• •
//• •
//•

m2
66

22eeeeeeeeeeeee

00

• •
oo

d2

//

(a) Variable transmission delays lead to overlapping deliveries and
no spontaneous total order.

oo d1 //
//•

m1 ,,

--[[[[[[[[[[[[[[[[[[[[[

..

• •
//• •
//•

m2

33

11ccccccccccccccccccccc

00

• •
oo
d2

//

(b) Comparable transmission delays reduces the probability of over-
lapping deliveries.

Figure 2. Transmission delays and spontaneous total order.

that messages are delivered by all processes in the same or-
der. What matters is the difference between transmission
delays to different processes depicted as d1 and d2. Larger
values for d1 and d2 mean that there is a higher probabil-
ity of overlapping and thus of different delivery order even
with higher delays than the previous example.

3. Delay compensation

3.1. Intuition

A network exhibiting identical transmission delays with
low variance among any pair of processes would enable
spontaneous total ordering of messages. This observation
leads to the intuition underlying our proposal: given the
magnitude of the latency introduced by total order protocols
it should be possible, by judiciously scheduling the delivery
of messages, to reduce the differences among transmission
delays and produce an optimistic order which is likely to
match the authoritative total order. As an example, notice
that Figure 2(a) can be transformed in Figure 2(b) simple
by delaying some of the deliveries.

What remains to be established is how to determine the
correct delays to introduce to each message such that the
likelihood of matching the authoritative total order is im-
proved. The challenge is to do this with minimal overhead,
both in terms of messages exchanged as well as computa-
tional effort. In addition, by introducing delays our tech-
nique increases the average latency of optimistic delivery.
This must therefore be minimized and compensated by the
higher share of correctly ordered optimistic deliveries.

Notice that in a WAN this cannot ever replace a total or-
der algorithm: Transmission delays cannot be precisely es-
timated, some uncertainty exists and thus it is likely that
some messages are delivered out of order [20]. On the other
hand, if the only modification to the original sequencer al-
gorithm is the introduction of finite delays, its correctness
in an asynchronous system model is unaffected. Therefore
by reusing an algorithm known to be correct in the asyn-
chronous system model we ensure the robustness of the so-
lution [19]. Timing assumptions, namely on the stability of
transmission delays as measured by a process’s local clock
are then used only to improve the performance.

3.2. Relatively Equidistant Receivers

As the basis for our protocol, we consider a fixed-
sequencer total order multicast algorithm as described in
Section 2.1. We assume that the total order of messages
is based on the spontaneous ordering of messages as seen
by the sequencer.

The different orders seen by a process p between the
messages it delivers optimistically and those that it delivers
authoritatively reflects the relative differences between the
communication delays from the senders to p and to the se-
quencer. We like to think of these communication delays as
“distances” between processes (more precisely, as directed
distances as the distance from p to q can be different from
that of q to p). If, through the introduction of artificial de-
lays, we manage to get each process p and the sequencer
as relatively equidistant receivers with respect to all other
processes, then the order in which p delivers messages op-
timistically will be that of the sequencer and therefore will
match the authoritative order.

The way to increase the distance between q and p is to
delay the optimistic delivery of messages from q at p. This
means that when p needs to get q closer either p reduces
the delay it might be imposing to the messages from q, or p
has to stand back from all other processes by delaying the
optimistic delivery of messages from these processes. This
is the basic mechanism of our algorithm. It is simple and
independently managed at each process, i.e., the adjustment
of the distance between p and q is independent from that
between q and p.

Two particular cases however require special attention.
One is the fact that any process is usually closer to itself
than from the sequencer and thus it will have to distance
from itself. This case is simple, each process will delay the
optimistic delivery of its own messages such that “it dis-
tances from itself” as it distances from the sequencer. The
other case regards the sequencer itself. While, as any other
process, it is closer to itself than the others the distance to
the sequencer does not apply here and the order of opti-
mistic delivery trivially matches that of the authoritative’s.
However, it is required, as happens with the other processes,
that the sequencer “distances from itself” by delaying the
optimistic delivery of its own messages. The reason for
this is that unless the sequencer delays the optimistic de-

4

m1

--

��
s •

seq(m1)))SSSSSSSS

ts +3 •
seq(m2)))RRRRRRR

//

p • ks
tp

• •
tsp

+3 • //

m2

FF

11

Figure 3. Delays used in adjusting.

livery of its own messages, the optimistic and authoritative
delivery of its messages will always occur almost simulta-
neously. This is true at the sequencer process itself as well
as in any other process and, as exemplified in the next sec-
tion, it would eventually force the same phenomenon in the
messages of the other processes. The problem of delaying
the optimistic delivery of the sequencer’s messages is that it
also delays their authoritative delivery.

3.3. Distance calculation

Consider the scenario depicted in Figure 3. Message m1

is multicast by a process p1. Message m2 is multicast by
another process p2. Both the sequencer s and a second pro-
cess p receive m1 and m2 as shown. Upon reception they
are ordered by s, which assigns them sequence numbers and
delivers them immediately. The authoritative order of the
messages becomes m1, m2 as this was the spontaneous or-
der seen by s. In contrast, process p can only make an op-
timistic guess about the final relative order of m1 and m2,
and in this situation it would have mistakenly predicted the
delivery of m2 before m1. The final order is known only
upon reception of the sequence numbers from s.

As soon as it receives the sequence numbers for both mes-
sages, p becomes aware that its relative distances to p1 and
p2 are different from those of s, because it has received the
same messages in the inverse order. If it had delayed the
optimistic delivery of m2 until after the reception of m1,
it would have compensated its relative distance from the
senders with respect to that of the sequencer and matched
the authoritative order.

Although any sufficiently large delay imposed on m2 by
p would correctly order it relatively to m1, a correct predic-
tion of the final order by p requires an evaluation of relative
distances to senders to s and to p, enabling an optimal de-
lay to be introduced. Notice that the delay should not be so
large that it causes m2 to be misordered with a message m3

that arrives to all processes after both m1 and m2.
Explicit estimation of distances among all processes is

not required. A better approach is to directly determine op-
timal delays to be introduced prior to optimistic delivery by
observing that:

• If the relative distance of p and s is the same with re-
spect to senders of m1 and m2 and each message is

multicast simultaneously to all destinations, then in-
terarrival times ts and tp will be identical.

• If transmission delays of seq(m1) and seq(m2) from
s to p are the same, then p can use the value of tsp to
locally determine ts. This avoids assumptions on the
drift rate of clocks.

Process p can easily calculate the delay it should have intro-
duced to the optimistic delivery of m2 to match its relative
distance from p1 and p2 to that of the sequencer. Specifi-
cally, it should have delayed m2 by tsp − tp.2 To cope with
spurious variations on transmission delays, adjustments are
made taking into account an inertia pondering factor.

In the next section we will see in detail how the delays are
calculated and which process’s messages are delayed. Right
now, the reader should keep in mind that delays to a pro-
cess’s messages are only introduced when it is not possible
to achieve the same result by reducing the delays inflicted
to the other.

The way the sequencer calculates its own messages de-
lays is different. Should it use the same method as the others
and it, obviously, would not delay its own messages. To un-
derstand the method followed by the sequencer let us first
exemplify the consequences of not introducing delays on
the sequencer’s own messages. Consider three processes, p,
q and s. Process s is the sequencer. Process q, for simplic-
ity, is δ equidistant of s and p. The distance from s to p is
dsp and the distance of s to itself is dss.

Having p and s relatively equidistant from q means that
(δ − dss) = (δ − dsp). To achieve this, since we cannot
reduce dsp, we can have 1) p to distance from q, or 2) s to
distance from itself, or both. Now suppose that s does not
delay its own messages. In this case, p will have to stand
back ∆ = dsp − dss from q. Since dss (the loopback de-
lay) is usually negligible we can admit that ∆ ' dsp. This
means that when a message multicast by q is optimistically
delivered at p it is almost simultaneously delivered authori-
tatively at p too. Therefore, unless the sequencer delays the
optimistic delivery of its own messages the size of the opti-
mistic window at the other processes becomes uninteresting
or even vanishes.

Below we will show how the sequencer computes the de-
lay for its own messages. This, contrary to other processes
adjustments, is not independent and requires their cooper-
ation. The idea is that the sequencer will stand back from
itself what it distances from the farthest process.

3.4. Algorithm

We present in this section the algorithm executed by each
process (Figure 4). The algorithm consists of a procedure
TO-multicast(m) invoked by the client application to multi-
cast a message and a set of four upon-do statements, exe-

2Notice that tp is negative in Figure 3, indicating that the relative order
of m1,m2 is reversed.

5

1: g ← 0 {Global sequence number}
2: l← 0 {Local sequence number}
3: R← ∅ {Messages received}
4: S ← ∅ {Sequence numbers}
5: O ← ∅ {Messages opt-delivered}
6: F ← ∅ {Messages fnl-delivered}
7: delay[1..n]← 0
8: r delay[1..n]← 0 {Delays requested to the sequencer}

9: procedure TO multicast(m) do
10: R multicast(DATA(m, max(delay[])− delay[seq]))

11: upon R deliver(DATA(m, d)) do
12: R ← R ∪ {(m, d, now + delay[m.sender])}

13: upon ∃(m, d, t) ∈ R : now ≥ t ∧m 6∈ O ∧m 6∈ F do
14: opt delivery(m)
15: O ← O ∪ {m}
16: if p = seq then
17: g ← g + 1
18: R multicast(SEQ(m, g))
19: r delay[m.sender]← d

20: delay[p]← max(r delay[])

21: upon R deliver(SEQ(m, s)) do
22: S ← S ∪ {(m, s, now)}

23: upon ∃(m, d, o) ∈ R : (m, l + 1, t) ∈ S ∧m 6∈ F do
24: fnl delivery(m)
25: if ∃(m′, d′, o′) ∈ R : (m′, l, t′) ∈ S then
26: ∆← (t− t′) − (o− o′)
27: if ∆ > 0 then
28: adjust(m′ .sender, m.sender, ∆)
29: else
30: adjust(m.sender, m′.sender, |∆|)
31: l← l + 1
32: F ← F ∪ {m}

33: procedure adjust(i, j, d) do
34: v ← (delay[i] × α) + (delay[i]− d)× (1− α)
35: if v ≥ 0 then
36: delay[i]← v

37: else
38: delay[i]← 0
39: delay[j] ← delay[j] + |v|

Figure 4. Delay compensation algorithm for process p

cuted atomically, that deal with the optimistic and authori-
tative delivery of the messages. The actual delivery of the
messages to the client application is done through two up-
calls opt-deliver(m) and fnl-deliver(m). Procedure adjust is
an auxiliary procedure local to the algorithm.

Each process manages four queues R, O, F and S where
it keeps track of the messages received, optimistically and
authoritatively delivered to the application, and those for
which it has already received a sequence number, respec-
tively. Every message m has a special attribute (m.sender)
identifying its sender. At each process a variable seq iden-
tifies the sequencer process.

To multicast a totally ordered message, the client applica-
tion invokes procedure TO-multicast(m) (lines 9-10). This,
in turn, invokes an underlying primitive providing reliable
multicast with a pair (m, max(delay[])− delay[seq]). The
value computed by max(delay[]) − delay[seq], as will be
discussed below, corresponds to the delay the process sug-
gests the sequencer to inflict to its own messages.

The reception and delivery of messages is done by the
four upon-do statements. The first two handle the optimistic
delivery while the others handle the authoritative delivery.

When a process p receives a message m (line 11) it sim-
ply adds m as a tuple (m, d, d′) to the queue of received
messages scheduling its delivery for after the delay d′ in-
flicted by p to the sender of m. When this timer expires and
if m was not already optimistically delivered (m 6∈ O) nor
authoritatively delivered (m 6∈ F), which corresponds to
the condition on line 13, then m is optimistically delivered
to the application and the fact registered by adding m to
the O queue. If p happens to be the sequencer it computes
a sequence number to give to m and reliably multicasts a
sequence message composed by m’s id and its sequence
number. Afterwards, p (if in the role of sequencer) takes
parameter d just received with m and adjusts the delays it

imposes to its own messages.
Upon receiving a sequence message at line 21, each pro-

cess simply adds the received tuple (message id and se-
quence number) plus the current time to the queue of se-
quence numbers S.

Once a message m that has already been received (m ∈
R) gets a sequence number in the S queue and its se-
quence number corresponds to the next message to be au-
thoritatively delivered (the whole condition at line 23), then
m is authoritatively delivered to the application through
fnl deliver. At this point, the algorithm computes the ad-
justments that might need to be done to the delays inflicted
to the sender of m or to the sender of the message m′ de-
livered just before m. To do this we consider the interval
between the reception of the sequence number for m′ and
the sequence number for m given by (t− t′) and the interval
between the optimistic reception of m′ and the optimistic
reception of m given by (o − o′). The difference ∆ (line
26) between these intervals represents the relative adjust-
ment that should have been done to the delays imposed to
the optimistic delivery of m′ or m to make the interval of
the optimistic deliveries of these messages match that of the
authoritative deliveries.

If ∆ is negative it means that the optimistic order matched
the authoritative’s. If ∆ is positive then either the order
was reversed or the interval between optimistic deliveries
is smaller than the interval between authoritative deliveries.
Depending on this, procedure adjust is called differently.
In the first case adjust is called to decrease the delay put
on messages received from the sender of m, otherwise it
should decrease the delay inflicted to the sender of m′.

Procedure adjust(p,q,d) works as follows. Based on the
delay d and on a inertia parameter α, we compute the new
delay v to give to messages of p. If v becomes negative, then
it means that we actually need to anticipate p’s messages

6

which is not possible. Instead, we do not delay the messages
of p but start delaying the messages of q by an additional |v|.

Finally, we explain how sequencer computes the delays
on the optimistic delivery of its own messages. Every pro-
cess when R multicasts a data message (line 10) sends
also the value of the greatest delay it is applying locally
(this is usually the self delay) minus the delay it is cur-
rently inflicting to the sequencer messages. Only the se-
quencer makes use of this values keeping track of them on
vector r delay. The delay the sequencer inflicts on its own
messages is given, at each moment, by the greatest value in
r delay.

4. Performance evaluation

4.1. Evaluation criteria

For an application to benefit from optimistic ordering it
is required that the 1) tentative order closely matches the fi-
nal order; and that 2) the time between optimistic delivery
and final delivery is enough to do meaningful processing.
Performance evaluation is done with an event-based simu-
lation, which allows us to study the impact of the system
and protocol parameters, as well as with an implementa-
tion of the protocol within a group communication toolkit,
which validates simulation results.

The primary evaluation criteria is thus to compare opti-
mistic and final orders of both the original and the modified
sequencer protocol.

It turns out that this criterion is not entirely realistic in
the context of the database state machine [21], which is the
main motivation of this work. In fact, it has been shown that
it is advantageous to certify transactions in batches, which
allows them to be reordered in order minimize the number
of conflicting transactions that must be aborted [21]. There-
fore we also compare the optimistic ordering of batches of
messages of size k in a similar fashion: If the first k mes-
sages in the final log differ from the next k messages in the
optimistic log, a miss is recorded.

A second evaluation criterion is to compute whether the
time between optimistic delivery and final delivery — the
optimistic window — is enough to do meaningful process-
ing. Finally, we study also the impact of delay compen-
sation in end-to-end latency of final delivery: We want to
make sure that the optimistic window is not increased at
the expense of larger end-to-end latency. Considering a re-
ceiver process p, this is done both by averaging messages
from different senders, as well as only for messages from
the process p itself. The average latency has direct conse-
quences on the abort rate due to the increased likelyhood of
conflicting concurrent transactions.

0

20

40

60

80

100

100 200 300 400 500

S
po

nt
an

eo
us

 to
ta

l o
rd

er
 (

%
)

messages/s

σ=0%
σ=1%
σ=3%
σ=5%

σ=10%

(a) Spontaneous ordering.

0

20

40

60

80

100

100 200 300 400 500

S
po

nt
an

eo
us

 to
ta

l o
rd

er
 (

%
)

messages/s

σ=0%
σ=1%
σ=3%
σ=5%
σ=10%

(b) Optimistic ordering.

Figure 5. Comparison of spontaneous with opti-
mistic order after delay compensation.

4.2. Simulation model

Using discrete event simulation we study the performance
of the protocol in a scenario without overheads for message
processing and delivery and without application overheads.
We consider a fully connected point-to-point network. The
transmission delay in each link is normally distributed with
parametrized mean and standard deviation. Message inter-
arrival rate is exponentially distributed with equal mean in
every participating process.

Although we have experimented with several combina-
tions of transmission delays and number of processes, mim-
icking several network topologies, we present results in a
situation where a long distance link separates two clusters of
processes. This is the worst case scenario for spontaneous
order: Messages which do not cross the long distance link
are much faster and thus deliveries overlap with high prob-
ability.

Figure 5 shows the ratio of correctly ordered messages
with both protocols. In these we have used an average trans-
mission delay of 20ms within each cluster and 40ms when
traversing the long distance link. The delay to the process
itself is 0ms. There is no bandwidth limitation or message
handling overhead. Each curve presents results for a dif-
ferent configuration of transmission delay variability. As
observed in extensive measurements of the Internet [20], the
standard deviation of transmission delays is mostly less than
10% for large data packets and often less than 1% for small
control packets.

In the experiments we consider the pondering factor α of
95% for process delay adjustments. This is high enough
not to degrade the delay estimate even with the maximum
10% standard deviation assumed, and allows for delays to
stabilize quickly, typically in less that 100 messages. In net-
works with less variability, a lower α can be used in order to
converge even faster. Each simulation is run for 100s, dis-
carding initial messages needed for stabilization of delays.

With the original protocol (Figure 5(a)), the spontaneous
order in the nodes which are more distant from the se-
quencer across the long distance link is almost inexistent.
Nodes close to the sequencer exhibit higher ratios of cor-
rectly ordered messages, although not really worth using.
When we use delay compensation, as shown in Figure 5(b),

7

0

20

40

60

80

100

100 200 300 400 500

S
po

nt
an

eo
us

 to
ta

l o
rd

er
 (

%
)

messages/s

σ=0%
σ=1%
σ=3%
σ=5%

σ=10%

(a) Spontaneous ordering.

0

20

40

60

80

100

100 200 300 400 500

S
po

nt
an

eo
us

 to
ta

l o
rd

er
 (

%
)

messages/s

σ=0%
σ=1%
σ=3%
σ=5%
σ=10%

(b) Optimistic batch order.

Figure 6. Comparison of spontaneous with op-
timistic order after delay compensation with
batches of size k = 2.

all nodes exhibit higher ratios of correctly ordered opti-
mistic deliveries. In addition, ratios of nodes that are dis-
tant from the sequencer are very close to ratios of processes
close to the sequencer.

Nevertheless, with high variability of σ = 10% and high
message rates, the results are still not perfect. The reason
for this is that in this situation the message interarrival inter-
val (e.g. 2.5ms for 400 msg/s) is smaller than the standard
deviation (e.g. 4ms for the longest link). Therefore, even
after compensating delays it is likely that messages are still
out of order. Notice however, that after compensation, in-
stead of messages being out of order by an amount of time
comparable to the transmission delay and thus far from their
final position, it is likely that messages are just “off by one”.

This is confirmed by the results of Figure 6, which shows
similar results when spontaneous ordering of batches of size
k = 2 is considered. Although the advantage of compensat-
ing delays is not as dramatic, it is possible to achieve very
high rates of correctly ordered messages even when the sys-
tem is subjected to a very high message throughput.

Therefore, this shows that although delay compensation
does not immediately result in a perfect optimistic order, it
enables the application to achieve an effective perfect op-
timistic order even for very high messages rates simply by
batching pairs of messages. This is very interesting as with
high thoughput the additional delay to work on pairs of mes-
sages is comparatively low. For instance, with 400 msg/s,
the application has to wait only an additional 2.5ms to take
advantage of a much better optimistic ordering.

Table 1 shows end-to-end latency and the size of usable
optimistic window as measured by the sequencer, by a pro-
cess near the sequencer and by a process distant to the se-
quencer. For each, values considering only the messages
from the process itself and from all processes are shown.
Notice that the optimistic window at the sequencer is al-
ways zero: It never performs optimistic deliveries as it or-
ders messages as soon as received. Notice also that without
delay compensation the optimistic window of each process
equals delivery latency, as optimistic delivery is performed
immediately upon multicast.

The tradeoff for the improved optimistic order is the addi-
tional latency caused by delay compensation. In particular,

messages from: itself all
compensation: no yes no yes

Sequencer latency 0 41.4 28.5 32.3
opt. window 0 0 0 0

Near latency 40.1 40.2 48.8 52.6
opt. window 40.1 21.8 20.3 20.2

Distant latency 80.6 80.8 69.3 73.0
opt. window 80.6 27.3 42.0 24.6

Table 1. End-to-end latencies and optimistic win-
dow sizes (in ms).

this shows up in the delivery latency of messages multicast
by the sequencer, which grows from zero to 41.4ms. In ad-
dition, the optimistic window in other processes is reduced,
although mainly for messages from itself. This has to be
weighted with the improvement in the ratio of messages
correctly ordered.

4.3. Implementation

In order to validate the results obtained with the sim-
ulation model we implemented a sequencer protocol us-
ing Java based group communication toolkit. Although we
have evaluated the performance of the protocol during sta-
ble periods when the membership is not changing, the view-
synchronous multicast is used to migrate the sequencer role
upon membership change and to order remaining messages
after the sequencer fails [15].

The underlying reliable multicast protocol transmits mes-
sages using point-to-point UDP. The error recovery mech-
anism is initiated by the receiver when it discovers that
messages are missing. Scalable gossip-style algorithms are
used for stability tracking and failure detection [13]. Group
membership and view-synchrony use a consensus protocol.

Measurements in a wide area network presented below
were obtained by running the implementation on top of a
simulated network. This setup allows a precise simulation
of the components of interest by using a highly accurate
timer to measure the duration of the implementation code.
This approach has been shown to accurately represent real-
time characteristics of the system being simulated while al-
lowing centralized fault injection and omniscient observa-
tion [1]. The performance of the implementation code is
thus related with that of the host workstation: a dual Pen-
tium III/1 GHz workstation with 1GB memory using IBM
Java 1.3. The network simulation used was the Scalable
Simulation Framework (SSFNet) [8] which offers realis-
tic routing behavior and allows us to introduce background
traffic.

The topology used is that of a backbone network, con-
necting several leaf networks. The backbone network is
composed by two routers connected through a 34Mbps long
distance link. Each of these routers connects to the local
network main router. The local network backbone are three

8

0

20

40

60

80

100

100 200 300 400 500

S
po

nt
an

eo
us

 to
ta

l o
rd

er
 (

%
)

messages/s

Delay compensation
Spontaneous

(a) Optimistic ordering.

0

20

40

60

80

100

100 200 300 400 500

S
po

nt
an

eo
us

 to
ta

l o
rd

er
 (

%
)

messages/s

Delay compensation
Spontaneous

(b) Optimistic batch order.

Figure 7. Spontaneous and optimistic order in the
implementation.

routers connected between them for fault tolerance, being
two of them connected to the network main router. Depart-
mental routers, to which application hosts are connected,
are themselves connected to two of the backbone routers,
for fault tolerance.

Experiments were conducted by placing a process in a
departmental network of each of the leaf networks. In this
setting between every two nodes there are between 8 and 11
communication hops. Notice that the existence of redun-
dant links allows routing of packets to be done by slightly
different routes, thus introducing variance in transmission
delays. We have also configured realistic background HTTP
traffic, by placing 80 clients and 20 servers evenly scattered
across the whole network. Notice that protocol mechanisms
themselves introduce additional background traffic for fail-
ure detection and stability tracking.

These is similar to the scenario described for the discrete
event simulation. Message interarrival is also exponentially
distributed with parameters from 20 to 100 ms, resulting in
an aggregate throughput of 100 to 500 messages per sec-
ond in the system. We have also used the same value for
parameter α.

Figure 7 shows results comparable to those of the previ-
ous section. Notice that the experimental values show re-
sults similar to simulation results with σ = 10%. In short,
there is an improvement in the spontaneous total order rang-
ing from less than around 20% to around 70% in workloads
of 100 messages per second. Once again considering or-
dered batches of two messages the results improved.

5. Discussion

To understand the impact of this results in the applica-
tion we need to evaluate the tradeoff between the benefit of
optimistic execution and the penalty incurred by a wrong
optimistic delivery.

Consider an application which cannot interrupt the pro-
cessing of a message after it has started. This means that
even if meanwhile there is a final delivery which shows that
the optimistic delivery was wrong, it has to wait for it to
finish to start the processing of the correct message. On the
other hand, we do not consider any penalty for undoing the
effect of the computation when required. Let g be the time

required to process a message. If the latency of final deliv-
ery is l and no optimistic processing is done then latency of
the whole computation is l + g.

Let w be the size of the optimistic window. If g ≤ w
and there is no penalty, it is obvious that optimistic deliv-
ery is useful, as its latency is never worse than the original
computation after delivery of the final message. However,
if g > w then the effective latency can be either:

• l + g − w, when the optimistic delivery is correct;

• l + g − w + g, when the optimistic delivery turns out
to be wrong.

If r is the ratio of correct deliveries, the average latency is
r(l+g−w)+(1−r)(l+g−w+g). Therefore, optimistic
delivery decreases latency if g < w/(1 − r).

Consider a distant process with σ = 3% and handling 100
msg/s. This results in hit ratios of 11.2% and 82.5% respec-
tively without and with delay compensation. According to
Table 1, respective window sizes are 42.0ms to 24.6ms. Be-
fore the optimization we cope with a g < 47.2ms. After de-
lay compensation, it is possible to cope with g < 140.7ms.

A concern when using an optimistic algorithm is that the
performance of the final delivery is not affected, i.e. the op-
timistic delivery does not increases the algorithm latency.
This is not an issue, as we are only delaying optimistic de-
liveries, and as soon as a sequence number for a message
locally available is known it is immediately be delivered,
even if its optimistic delivery has been erroneously delayed
by an excessive amount of time. Nevertheless, it is up to the
application to, as soon as possible, interrupt processing of
an optimistic delivery if the final delivery happens to be of
a different message. A second concern when implementing
our technique is the granularity of operating system timers
used to delay messages.

While evaluating the performance of our proposal we
have used always messages of similar sizes. However, mes-
sages of different sizes result in different transmission de-
lays among the same pair of processes, namely, due to frag-
mentation. It is thus interesting to consider an extension
of our mechanism which takes this into consideration when
adjusting delays.

It is also interesting to discuss the application of the pro-
posed technique to algorithms other than the simple fixed
sequencer algorithm presented. This requires that messages
are disseminated to receivers before suffering the latency
of ordering, excluding algorithms which delay dissemina-
tion until messages are ordered [15, 3, 2]. It is also required
that the decided order is directly derived from the sponta-
neous ordering at some process, which is not true for causal
history algorithms [18, 23, 10]. These requirements are sat-
isfied by consensus based algorithms [7] as long as the co-
ordinator for each instance of consensus is likely to be the
same.

9

6. Conclusions

Although total order multicast is a convenient tool in
programming fault-tolerant distributed systems, it exhibits
higher latency than simple reliable multicast. This directly
translates in increased latency for transactional clients of the
database application with which we are concerned.

In this paper we propose a technique to improve the per-
formance of optimistic total order multicast in wide area
networks, which allows us to mask the latency of the order-
ing protocol. Our technique consists in compensating the
differences in transmission delays and can easily be applied
to an existing sequencer based protocol. This is achieved
without additional messages and with minimal additional
computational effort. As our proposal works only by intro-
ducing finite delays, the correctness of the original protocol
developed in an asynchronous system model is not affected.

As far as we know, this is the only total order algorithm
which allows an effective end-to-end latency of less than a
round-trip delay without restriction of traffic pattern. Simi-
lar latency is possible with a moving sequencer when traffic
is bursty or with causal history algorithms if the interarrival
delay at each sender is less than the transmission delay. We
also observe that the variance of latency observed by differ-
ent clients of the system is reduced. This is interesting in
applications such as stock trading [24] in which fair oppor-
tunities have to be offered for all clients.

Acknowledgments

We thank P. Almeida, X. Défago and L. Rodrigues.

References

[1] G. Alvarez and F. Cristian. Applying simulation to the de-
sign and performance evaluation of fault-tolerant systems.
In Symp. Reliable Distributed Systems, 1997.

[2] G. Alvarez, F. Cristian, and S. Mishra. On-demand asyn-
chronous atomic broadcast. In Proc. the 5th IFIP Work-
ing Conf. Dependable Computing and Critical Applications,
Urbana-Champaign, IL, Sept. 1995.

[3] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and P. Cia-
rfella. The Totem single-ring ordering and membership pro-
tocol. ACM Trans. Comput. Syst., 13(4), Nov. 1995.

[4] E. Anceaume. A lightweight solution to uniform atomic
broadcast for asynchronous systems: proofs. TR PI-1066,
IRISA, Nov. 1996.

[5] K. Birman, A. Schiper, and P. Stephenson. Lightweight
causal and atomic group multicast. ACM Trans. Comput.
Syst., 9(3), Aug. 1991.

[6] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest fail-
ure detector for solving consensus. J. ACM, 43, July 1996.

[7] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. J. ACM, 43(2), Mar. 1996.

[8] J. Cowie, D. Nicol, and A. Ogielski. Modeling the global
Internet. Comp. in Science and Eng., 1(1), Jan./Feb. 1999.

[9] X. Défago, A. Schiper, and P. Urbán. Totally ordered broad-
cast and multicast algorithms: A comprehensive survey. TR
DSC/2000/036, EPFL, Switzerland, Sept. 2000.

[10] P. Ezhilchelvan, R. Macêdo, and S. Shrivastava. Newtop: A
fault-tolerant group communication protocol. In Proc. the
15th Int’l Conf. on Dist. Comp. Syst., Los Alamitos, CA,
USA, May 30–June 2 1995. IEEE CS Press.

[11] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 1985.

[12] R. Guerraoui and A. Schiper. Software-based replication for
fault tolerance. IEEE Computer, 30(4), Apr. 1997.

[13] K. Guo. Scalable Message Stability Detection Protocols.
PhD thesis, Cornell Univ., Computer Science, May 1998.

[14] V. Hadzilacos and S. Toueg. A modular approach to fault-
tolerant broadcasts and related problems. TR TR94-1425,
Cornell Univ., CS Dept., May 1994.

[15] J. Hickey, N. Lynch, and R. van Renesse. Specifications and
proofs for Ensemble layers. In R. Cleaveland, editor, 5th
Int’l Conf. Tools and Algorithms for the Construction and
Analysis of Systems. Springer-Verlag, Berlin, 1999.

[16] M. Kaashoek and A. Tanenbaum. Group communication
in the Amoeba distributed operating system. In Proc. the
11

th Int’l Conf. on Distributed Computing Systems ICDCS,
Washington, D.C., USA, May 1991. IEEE CS Press.

[17] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Process-
ing transactions over optimistic atomic broadcast protocols.
In Proc. the Int’l Conf. on Dist. Comp. Syst., Austin, Texas,
June 1999.

[18] L. Lamport. Time, clocks and the ordering of events in dis-
tributed systems. Commun. ACM, 21(7), 1978.

[19] R. Oliveira, J. Pereira, and A. Schiper. Primary-backup
replication: From a time-free protocol to a time-based im-
plementation. In IEEE Int’l Symp. Reliable Dist. Syst., Oct.
2001.

[20] V. Paxson. Measurements and Analysis of End-to-End In-
ternet Dynamics. PhD thesis, Univ. of CA, Berkeley, Apr.
1997.

[21] F. Pedone. The Database State Machine and Group Com-
munication Issues. PhD thesis, EPFL, Switzerland, 1999.

[22] F. Pedone and A. Schiper. Optimistic atomic broadcast. In
Proc. the 12

th Int’l Symp. on Dist. Computing, Sept. 1998.
[23] L. Peterson, N. Buchholz, and R. Schlichting. Preserving

and using context information in interprocess communica-
tion. ACM Trans. Comput. Syst., 7(3), Aug. 1989.

[24] R. Piantoni and C. Stancescu. Implementing the Swiss Ex-
change Trading System. In Proc. 27

th Ann. Int’l Symp.
Fault-Tolerant Computing (FTCS’97). IEEE, June 1997.

[25] F. Schneider. Replication management using the state-
machine approach. In S. Mullender, editor, Distributed Sys-
tems, chapter 7. Addison Wesley, second edition, 1993.

[26] A. Sousa, F. Pedone, R. Oliveira, and F. Moura. Partial
replication in the database state machine. In IEEE Int’l
Symp. Networking Computing and Applications. IEEE CS,
Oct. 2001.

10

