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squeaking are discussed.

The occurrence of audible squeaking in some patients with ceramic-on-ceramic (CoC) hip prostheses is a
cause for concern. Great effort has been dedicated to understand the mechanics of the hip squeaking to
gain a deeper insight into factors contributing to sound emission from CoC hip articulation. Disruption of
fluid-film lubrication and friction were reported as the main potential cause, while patient and surgical
factors, and design and material of hip implants, were also identified as leading factors. This article
summarizes the recent available literature on this subject to provide a platform for future research and
development. Moreover, high wear rates and ceramic liner fracture as viable consequences of hip

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The natural hip articulation is one of the greatest natural
engineering designs to exist inside the body, Fig. 1. While sup-
porting the entire weight of the body, the hip joint provides a
stable and smooth articulation of the lower limb. Although the
natural hip joint may provide a lifetime of mobility without any
serious problem, chronic pain and disease can affect the hip joint
leading to pain and restricted movement. Often affected hip joints
are replaced with a biomaterial total hip arthroplasty (THA), Fig. 2.
THA restores the physical functioning of the hip joint and reduces
pain in most patients, thus improving their social wellbeing and
quality of life [1].

The mechanism of THA constitutes a femoral stem fixed in the
intramedullary canal of the femur and a ball fixed to the femoral
neck of the stem, which articulates in a cup embedded in the
acetabular of pelvis, shown in Fig. 3. All components of hip
arthroplasty are made of biocompatible materials and biofunc-
tional solutions. The femoral components including the femoral
stem and neck are generally made of stainless steel, cobalt-based
alloy or titanium-based alloy, while the femoral head is either
metal or ceramic. The cup backing can be made of metal or plastic
depending on its function. The former used with a plastic cup to
secure its fixation to the pelvic bone, whereas the plastic backing
is utilized with metal or ceramic cup for absorbing dynamic loads.
The most common materials used for bearing surfaces are listed in
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Table 1 [3]. The mechanical properties and typical roughness
values R, of the above materials are reported in Table 2 [3,4].

THA has revolutionised the treatment of osteoarthritis
(degenerative joint diseases), bone tumours, traumas and rheu-
matoid arthritis. More than 38,000, 80,000 and 200,000 THA
procedures are performed annually in Australia, UK and US,
respectively with a survival rate of 85-87% after 25 years [5-8].
Due to the difficulty of revision THA and the trauma to patients, it
is critical, especially for younger population, that the longevity of
the hip implant becomes maximized [9].

Since the early artificial hip joints, around the 1960s, the most
used combination is a metal head on a plastic cup (MoP). MoP and
ceramic-on-plastic (CoP), also denoted as soft on hard couples, are
known to suffer from wear of the plastic part with resultant debris
causing osteolysis. In order to reduce the wear rate, alternative
hard-on-hard material combinations have been promoted, such as
metal-on-metal (MoM) and ceramic-on-ceramic (CoC). However,
the presence of potentially cancerous metal ions, developed from
wear particles is a serious issue with MoM hip implants [10]. The
first CoC bearing was implanted by Pierre Boutin in 1970 [11] in
the form of an alumina ceramic ball glued to a metal stem that was
cemented in the femur. Alumina ceramic bearings are one of most
promising artificial hip joints due to their biocompatibility, high
hardness, perfect chemical inertia and low coefficient of friction
[12,13]. From the reliability point of view, it has been suggested
that surgeons, faced with young and active patients, should
consider ceramics as the only safe hard-on-hard bearing surface
[14-16].
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Fig. 1. Anatomy of the hip joint-left: “dissected” joint, right: synovial capsule
(adapted from Gray’s Anatomy tables) [2].
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Fig. 2. Total replacement and resurfacing hip prostheses [2].
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Fig. 3. Main components of an artificial hip joint [2].

Table 1
The most common materials for artificial hip joints [3].

Head M: stainless steel, CoCr and CoCrMo alloy C: alumina and zirconia
Cup P: UHMWPEM: CoCr and CoCrMo alloy C: alumina

M: metal; C: ceramic; P: plastic.

Table 2
Mechanical properties of materials and typical roughness values for hip implant
components: Young’s modulus E, Poisson’s ratio v, average roughness R, [3,4].

Material E (GPa) v R, (pm)

P UHMWPE 1 0.4 0.1-2.5

M Stainless steel 210 0.3 0.01-0.05
CoCrMo 230

C Alumina 380 0.3 0.001
Zirconia 210

The occurrence of squeaking has however been discussed
recently as a cause for concern in THA with CoC bearings [17,18].
From an engineering point of view, squeaking has been associated

with friction as the femoral head and cup articulate [19]. However,
hip squeaking is multifactorial and important additional factors
which may contribute to hip squeaking include: (i) design and
materials; (ii) implant position and orientation; (iii) patient fac-
tors; and (iv) disruption of fluid-film lubrication and friction.
While significant research has been undertaken toward under-
standing of the mechanism of squeaking, the origins and causes of
squeaking still need more investigations. Furthermore, con-
sequences of hip squeaking are unknown and it is not certain if
unrevised squeaking hips will result in a clinically adverse out-
come to the patient. To date, it has been suggested that high wear
rates in artificial hip joints may be associated with hip squeaking
[20-22]. It is known that wear of bearing surfaces is a crucial
factor in primary failure of all artificial hip joints, influencing their
lifetime and performance [23-25]. The intention of this review
paper, therefore, is to report the most outstanding work associated
with the potential causes and consequences of hip squeaking.

This paper is organized as follows. In Section 2, after defining
hip squeaking, a brief description of hip squeaking is provided. The
potential factors contributing to hip squeaking are classified into
four main groups, namely: (i) design and material; (ii) implant
position and orientation; (iii) patient factors; and (iv) disruption of
fluid-film lubrication and friction. It has been explained that how
these factors affect hip squeaking. Fundamental issues associated
with fluid-film lubrication are described, before discussing the
disruption of fluid-film lubrication and friction which are main
reasons of hip squeaking from an engineering point of view. It is in
turn reported that hip squeaking is associated with high wear
rates of noisy hips compared to silent hips and ceramic liner
fracture. Table 3 summarizes factors linked to hip squeaking by
available literature. In Section 3, a comparison of unstable fre-
quencies obtained from clinical data, experimental and computa-
tional analyses is presented. Furthermore, the finite element
method and multibody methodology as computational approaches
for investigation of hip squeaking phenomenon are discussed.
Finally, discussing future research directions in this field forms the
fourth section of the present article.

2. Hip squeaking

While CoC THA has demonstrated very good clinical perfor-
mance due to the superior wear resistance and low biological
reactivity, the occurrence of audible squeaking in some patients is
a cause for concern. Squeaking is defined as an audible sound, 20-
20,000 Hz, that occurs during movement of the hip joint, which
was firstly described in 1950s [26]. In-vitro, squeaking was also
reported by Charnley [27] during the friction analysis of this
bearing couple. In fact, hip squeaking has been reported with a
wide prevalence rate of 1-24.6% [14,17,18,28-42]. However, it has
been reported that no evidence of squeaking observed in their
cohort of patients and only eight of patients (6.4%) underwent
grinding and clicking noises [37]. In vivo, CoC fundamental
squeaking frequencies have been reported in the range of
400-7500 Hz [43]. A spectral view and a fast Fourier transform of
squeaking hips analysed in vivo have also been illustrated in Fig. 4.
The onset of squeaking was also revealed 14-40 months after total
hip arthroplasty surgery [29,38,44-46].

It is worth noting that 15% of squeaking hips stopped emitting
noise after a mean follow up of 9.5 years [46]. It has been reported
that thirteen squeaker hips out of fourteen stopped squeaking at
the last follow up, which its duration was 69.5 months [30],
indicating that it could be a temporary pattern. There was no
significant difference in patient satisfaction between those with
squeaking and silent hips, which showed that squeaking is usually
well-tolerated by patients [46]. Furthermore, squeaking is not
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Studies demonstrating factors associated with hip squeaking.
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Authors

Study type

Significant association

No association

Kang [87]
Weiss et al. [115]
Askari et al. [105]

Owen et al. [38]
Owen et al. [39]
Brockett et al. [83]
Dacheux et al.
[149]
Fan et al. [66]
Hothan et al. [73]
Kiyama et al. [36]

McDonnell et al.
[42]

Askari et al. [150]

Weiss et al. [19]

Sarialli et al. [85]
Fan and Chen [113]

Sander et al. [84]

Chevillotte et al.
[151]

Buttaro et al. [152]

Chevillotte et al.
[55]

Haq et al. [35]

Kuo et al. [37]

Sexton et al. [46]

Hothan et al. [57]
Hothan et al. [69]
Fan et al. [112]

Bernasek et al. [50]
Choi et al. [54]
Cogan et al. [33]
Ki et al. [30]
Parvizi et al. [18]

Kang [114]

Currier et al. [110]
Sariali et al. [103]
Sariali et al. [153]
Weiss et al. [49]
Glaser et al. [88]
Chevillotte et al.
[61]

Mai et al. [31]
Esposito et al.

[154]
Restrepo et al. [52]

Restrepo et al. [64]
Swanson et al. [44]
Jarrett et al. [56]

Restrepo et al. [17]

Mechanical study
Mechanical study
Mechanical study
Clinical study
Meta-analysis
Mechanical study
Case report
Mechanical study
Mechanical study
Clinical study
Clinical study

Mechanical study
Mechanical study

Mechanical-clinical
study
Mechanical study

Mechanical study

Clinical study

Clinical study
Clinical study

Clinical study
Clinical study

Clinical study
Mechanical study
Mechanical study
Mechanical study
Clinical study
Clinical study
Clinical study

Clinical study
Clinical study

Mechanical study

Mechanical study
Mechanical study
Mechanical study
Mechanical study
Mechanical-clinical
study

Mechanical study
Clinical study

Clinical study

Clinical study
Accolade stem

Clinical study
Clinical study

Clinical study

Clinical study

Negative friction-velocity slope, clearance, material
stiffness

Friction, the level of load magnitude, bearing kine-
matics, system damping

Stick-slip friction, negative friction-velocity slope, con-
tact force changes

Stryker Accolade femoral stem
Friction, third body particle, bearing clearance.
Ceramic fracture

Femoral stem design , friction

Age, obesity, cup lateralisation, Accolade stem, shor-
tened head length, activity level, pain, satisfaction
Range of motion, inclination, anteversion, head size,
ligament laxity

Stick-slip friction, negative friction-velocity slope
Friction-induced flutter instability (whirl), the femoral
stem

Edge loading, third body particle, friction, type of
motion activity

A torsional vibration and a flexural vibration of the
femoral component

Edge loading, the right combination of load vector and
bearing surface conditions, (abduction and contact
force)

Trident acetabular cup, anteversion, Metal transfer,
stripe wear

Gender, weight, height, activity level,

BM, acetabular opening angle, limb length shortening
Age, head size, range of motion

Height, weight, age, femoral offset, inclination, ante-
version, medialisation
Stem design, assembled stem, axial load

Friction-induced vibration due to mode-coupling, the
femoral stem, neck and head

Gender, inclination

Head size, gender

Association between noise and dissatisfaction

BMI (body mass index), cup design (Osteonics cup)
Neck impingement, Trident acetabular cup, combina-
tion of Trident acetabular component and Accolade
stem

Negative friction-velocity slope, the femoral stem,
bearing stiffness, bearing kinematics, head size, the
level of load magnitude

Stick-slip phenomenon, bearing clearance, friction, hip
joint velocity

Third body particle, high friction, stick-slip
Self-excited vibrations, high friction, the femoral stem
and neck

Micro-separation

Material transfer condition, disruption of fluid
lubrication

Height, neck geometry, V40 neck/Trident combination
and C-taper/Trident combination

Type of motion activity

Age, height, weight, BMI, abduction, anteversion, med-
icalisation, femoral offset

Type of motion activity

Stryker Trident cup/accolade stem combination, short
femoral neck length, rheumatoid arthritis

Negative quality of life

Edge loading, stripe wear, the kinematics of the hip
implant

Sprag-slip

Height, weight, BMI, age, indication

The head-taper interface
Loosening

Age, height, weight, BMI, gender, satisfaction, stem type

Acetabular component

Age, gender, height, weight

Hip implant design
Age, BMI, neck length, HHS

Age, acetabular anteversion

Gender, height, weight, BMI, cup size, quality of life, neck length,
inclination

Femoral head size, patient satisfaction, BMI, HHS (Harris hip score)

Cup design, bearing clearance
Cup design, assembled cup
Ceramic insert

Age, height, weight, BMI, cup size, neck length, abduction
Age, height, weight, BMI, alumina insert thickness
Inclination, anteversion,

Joint load magnitude, individual components

Micro-separation
Edge loading, abduction

Stripe wear, edge loading, microfracture, joint load magnitude

Age, gender, weight, BMI, indication, head size, acetabular
component
Inclination, patient satisfaction

Pain, functional impairment, ceramic fracture

Age, sex, height, activity level, acetabular component size, femoral
head size, BM], laterality, femoral offset, inclination

Inclination, anteversion, leg length, pain, pattern of activity (type of
motion activity)
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Table 3 (continued )

Keurentjes et al. Short neck length
[29]

Walter et al. [43]

Clinical study

Clinical study

Height, weight, age, edge loading, titanium shells,

Pain, limited function, acetabular component positioning, inter-
vention, abduction, femoral head size, type of femoral stem,
impingement, age, height, weight loosening, osteolysis
Inclination, anteversion, age, gender, BMI, cup size, head size, stem
size

Ceramic components, bearing clearance

metallic femoral components, a stiffness mismatch

between the shell and liner
Brockett et al. [71] Mechanical study Bearing clearance, friction
Murphy et al. [41] Clinical study
Walter et al. [45]  Clinical study
ment, edge loading
Taylor et al. [89] Clinical study
Jarrett et al. [28] Clinical study
Morlock et al. [58] A case report
conium oxide and aluminium oxide

Osteolysis, loosening

Height, weight, age, anteversion, inclination, impinge-

stripe wear, edge loading, impingement, inclination

Pain, anteversion, cup position

Mismatch between the joint bearings, a couple of zir-

1546Hz
3046Hz

4593Hz ' 5164Hz

7687Hz

10730Hz 12280Hz

Fig. 4. In the spectral view from the acoustic analysis at the top of the image, the squeak can be seen as a series of parallel lines. A fast Fourier transform of this squeak shows

a harmonic series of frequency peaks with a fundamental at 1546 Hz [43].

Fluid-film lubrication
&
Friction

Design and . . .
= Hip squeaking Patient factors
material

Implant position and
orientation

Fig. 5. Diagram showing proposed mechanisms and associations of squeaking in
ceramic-on-ceramic total hip replacements.

usually associated with pain, instability and limited hip function
[17,41,44,45,47]. Squeaking may be persistent, but more often it is
intermittent and tolerable. In some cases, the noise can be avoided
by activity modification alone. The incidence rate of revision for
squeaking alone is also significantly low, 0.2-0.48% [39,45].

It has been computationally and experimentally demonstrated
that squeaking can be associated with the articulation of the
femoral head and cup as well as high friction from an engineering
point of view [19], namely friction-induced vibration [48,49].
However, hip squeaking is multifactorial as indicated in Fig. 5.

2.1. Implant position and orientation

Implant position and orientation can play a key role in causing
squeaking with acetabular component inclination and anteversion,
femoral offset and medialization of the acetabular component
being the main contributors [45,46]. High or low anteversion and
inclination of the acetabular component, which increase the like-
lihood of impingement and edge-loading, were associated with
squeaking, as depicted in Fig. 6 [45,46,50]. Moreover, it has been
shown that high prosthetic femoral offset and reduced hip centre
medialization of the acetabular component are associated with hip
squeaking [36,46]. Increased contact pressure resulting from slight
lateralization could also lead to a failure of fluid-film lubrication
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Fig. 6. A computed tomography scan of bilateral ABG Il ceramic-on-ceramic hip
replacements, the right hip had excessive acetabular anteversion and it squeaked
with walking. The left hip with ideal anteversion did not squeak [45].

and increased wear, which could in turn induce squeaking [45,51].
Interestingly, one study revealed that a hip is 29 times more likely
to squeak when the acetabular component is positioned out of a
defined range [45]. In general, although acetabular component
orientation and position were correlated with squeaking, squeak-
ing can also occur when the acetabular component is in the ideal
range demonstrating that cup orientation is not the only factor
causing hips to squeak [45]. On the other hand, a good number of
studies illustrated that there was no direct correlation between the
acetabular component position and squeaking [17,52] including
anteversion and inclination [17] and femoral offset and stem
position [44,52].

2.2. Patient factors

Patient factors, such as age, sex, height and weight, can also
influence squeaking [45,46]. Taller, heavier and younger patients
with higher levels of activity are significantly more likely to have
hips that squeak [36,45,46,53]. Although prevalence of squeaking
was also found to be associated with obesity and BMI (body mass
index) [30,35,36], Sexton and co-workers reported that they were
not associated with audible vibration of THA [46].

Squeaking was also seen more commonly when patients
exhibited limb length shortening and rheumatoid arthritis [35,44].
Another patient factor which can be correlated with a higher risk
of squeaking is gender. It has been reported that female patients
are more prone to squeaking [50], although a number of studies
showed it is more frequent in men [54,55]. Interestingly, two
cohorts of patients with squeaking CoC hips showed no correlation
with age, sex, height, activity level and BMI [29,44]. Furthermore,
it was seen that squeaking occurs more in walking, bending, rising
and stair-climbing [17,40,45,46,56]. Finally, squeaking is not
usually associated with pain, instability and limited hip function
[17,41,44,45,47].

2.3. Design and material

Prosthetic design and bearing materials are contributing factors
to the prevalence of squeaking [18,44,52,57-59]. Although all
types of bearing surfaces exhibit various noises, squeaking has
only been described with hard-on-hard bearings [28]. One of the
first studies on hip squeaking illustrated that the mismatch of a
zirconium head against aluminium cup was associated with hip
squeaking and higher surface damage [58]. On the acetabular side,
several authors have noted an increased rate of squeaking in the
Stryker Trident inserts which has an elevated metal rim, Fig. 7
[18,31,44]. This unique design was proposed to provide protection
of the brittle ceramic insert from neck impingement and the
material strength increase of the insert [44, 59]. This protective

Fig. 7. A Trident (Stryker Orthopaedics, Mahwah, New Jersey), metal-backed
ceramic liner with an elevated rim [21].

rim, however, decreased range of motion by 10-15° [60], leading
to metal against metal contact due to neck-rim impingement,
Fig. 8, which generates particulate metal debris in the articular
surface leading to the disruption of fluid-film lubrication and
consequently squeaking [44,61]. Furthermore, the neck-rim
impingement also increased the chance of lever out, edge-
loading and stripe wear resulting in further damage onto articu-
lating surfaces and squeaking [17,60-63].

The Stryker Accolade femoral stem has a unique V-40 neck
design which leads to less impingement according to its smaller
neck diameter. Moreover, the titanium-molybdenum-zirconium-
iron stem is 25-40% more flexible than that of titanium-alumi-
nium-vanadium [44]. Consequently, these characteristics lead to
lower bending stiffness and therefore lower fundamental fre-
quency of the femoral stem, making it more capable of amplifying
vibrations generated by hip articulation [44, 64]. Patients with the
titanium-molybdenum-zirconium-iron-alloy stem were seven
times more likely to undergo squeaking than those with the tita-
nium-aluminium-vanadium-alloy stem [44,52]. After vibrational
tests of different hip implant designs, it was confirmed that stem
design significantly increased the incidence of hip squeaking,
amplifying vibration resulting from a stick-slip mechanism or
friction-induced vibration [57,65]. Fan and co-authors reported
that shorter, heavier or stiffer stems might limit the possibility of
squeaking [66]. A few study also reported higher incidence of
squeaking with the Trident cup and Stryker Accolade femoral stem
combination than the Stryker Trident cup with other types of
femoral stem [18,64].

Short neck length results in smaller range of motion and thus
neck-rim impingement due to the tapered nature of the femoral
stem [29]. It can also result in soft tissue laxity which can lead to
stripe wear and micro-separation and therefore be a precursor of
the squeaking sound [29,44,67,68]. The acetabular component size
and femoral head size did not directly correlate with hip squeaking
[44,46,69]. However, larger diameter ceramic bearings showed
higher friction factors, which could make them more susceptible
to produce noises than smaller diameter bearings [70]. Moreover,
although cup design and the bearing clearance did not show any
influence on the dynamic behaviour of the system [69], bearing
clearance can affect the lubrication and friction in the bearing
articulation [71,72] and the design of the cup can influence the
risk of metal transfer and subluxation, leading to squeaking [57].
In addition, a recent study reported that squeaking vibration was
not influenced by the head-taper interface [73].

One assumption about squeaking is that it is due directly to
independent vibration and natural frequencies of either acetabular
or femoral components of the THA, which are correlated with
implant design and materials. Although the fundamental fre-
quencies of the metal shells alone ranged from 4.3 kHz to 9.2 kHz,
eigenfrequencies of the assembled cup shells after inserting
ceramic inlay are above 16 kHz [43,69]. Moreover, natural fre-
quencies of the ceramic femoral head are above the audible
human range. These theories can consequently not account for the
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Fig. 8. Impingement caused by elevated rim of Stryker Trident acetabular component. Left plot: femoral neck-rim impingement, which occurs early in the arc of motion
potentially resulting in lever out, edge loading, and stripe wear. Right plot: intraoperative view showing notching of the femoral neck and the rim of the acetabular liner and

the elevated rim, [44].

i ;;

Fig. 9. Schematic of fluid entrainment [76].

observed squeaking [43,69]. However, the vibration frequencies of
titanium femoral stem are in the range of 2-20 kHz [43] which are
within the audible human range and can contribute to squeaking.

2.4. Fluid-film lubrication and friction

Since the synovial capsule is preserved in THA, the hip implant
is lubricated. However, the fluid in this case is more similar to that
obtained from diseased joints, which differs from healthy synovial
fluid. The characteristics of these fluids are close to the normal
bovine serum, which is diluted at 25% indicated in the ISO, which
is often used as lubricant for hip implant tests. While these fluids
are non-Newtonian and demonstrate piezo-viscosity [74], gen-
erally a simple incompressible, Newtonian, isoviscous lubricant
model can be assumed. As previously mentioned, squeaking noises
are associated with the articulation of the femoral head and cup
from an engineering point of view. In what follows, the mechanics
of fluid-film lubrication in artificial hip joints is firstly described. In
turn, the disruption of fluid-film lubrication and friction are
introduced as main causes for hip squeaking.

2.4.1. Fluid-film lubrication

Fluid film lubrication occurs when there is a continuous fluid
film separating articulating components. The fluid film thickness
must be wider than the average surface roughness to avoid surface
asperity interaction and the associated high friction and wear.
Fluid film lubrication can be theoretically described by Reynolds’
equation, including both the entraining and squeeze film actions.
Fluid entrainment occurs when the relative motion between
bearing surfaces drags the fluid into the space constituted
between them which may separate the articulating surfaces, as
observed in Fig. 9.

The relationship among variables affecting minimum film
thickness has been demonstrated in the Hamrock and Dowson
formula [75]

0.65 —0.21
Homin = 2.789R{’2‘} {AW } 1)
e eR>

Fig. 10. Schematic of squeeze film formation for a cylinder on a soft flat layer [76].

in which R is equivalent radius of bearing, Eq. (3), # the viscosity of

lubricant, u is sliding velocity, w load andé the equivalent material
stiffness, Eq. (4). The equivalent radius of the bearing is defined as
the product of the radius of the two surfaces in contact divided by
their difference. Consequently, the less clearance/more refined
manufacturing tolerances, the more the equivalent radius of the
bearing.

Squeeze film lubrication effect occurs when separated surfaces
move towards each other very quickly, as illustrated in Fig. 10. The
pools of lubricant may be trapped by the contact surfaces, which
leak out slowly. The relation of variables affecting minimum
squeeze film is materialized in following equation [77]:

) 0167 (4] 792

¢

Fonin =2.86R{AW } dee Q)
eR? g

where

1 1 1

RoR R ©

1 1/1-v3 1-v3

é:2< E B ) @

in which R; and R, are the head and the cup radii, respectively, and
E, v1 and E;, v, denote Young's modulus and Poisson ratio of the
head and the cup material, respectively, and t is time variable.
Squeeze film formation could occur during walking when heal
strikes the ground (heel-strike), Fig. 11, due to ground forces
suddenly appeared [78]. During walking, it is feasible that articu-
lating bearings do not come into contact. If, however, the prop-
erties of the lubrication break down and the viscosity decreases
such as in arthritis, surface contact cannot be longer avoided.

Since the fluid film thickness can be very similar to the average
roughness of surfaces articulating, mixed lubrication and bound-
ary lubrication could also take place, even in simple daily activ-
ities. In these cases, the bearing surfaces may contact. The lambda
ratio (A) is defined to distinguish the type of lubrication regime, as
follows:

hmin
A= R, )

where h,;; corresponds to the minimum film thickness and R,,
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Fig. 11. The gait cycle with the heel strike as the first phase [79].
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Fig. 12. General relationship between the friction and fluid film thickness [76].

composite roughness of the couple, is

Ro=\/RE+R} (6)

Here R. and R, are roughness of the cup and femoral head,
respectively. Once the lambda ratio is evaluated, lubrication
regime can be identified as illustrated in Fig. 12. Broadly, it can be
stated that MoM THA with a roughness of 0.02 pm and clearance
of 0.04 mm is mixed lubricated and CoC THA with a roughness of
0.004 pm and clearance of 0.04 mm is fluid film lubricated [74,80].

2.4.2. Disrupted fluid-film lubrication

Many researchers have suggested that CoC hip squeaking
occurs as a result of disruption of fluid film lubrication between
bearing surfaces [52,61,81-83]. The fluid film is disrupted by
increased surface roughness, particulate metal debris between
articulating surfaces, an alteration in the property of synovial fluid
and/or abnormal behaviours in prosthetic hip joints such as edge
loading and micro-separation. The fluid film is penetrated by large
asperities due to high surface roughness and third body particles
[61,81,84,85]. The fluid-film lubrication regime is converted to
either the mixed lubrication or boundary lubrication according to
the lambda ratio described in Eq. (5). Moreover, it was reported
that increasing the bearing clearance results in reduced fluid film
thickness which can also be concluded by Eq. (5), leading to poor
lubrication and consequently squeaking [71,83,86,87]. If the
property of synovial fluid changes affecting lubricant viscosity,
fluid film thickness decreases, which alters fluid lubrication
regime and leads to poor fluid lubrication, Eq. (1).

The non-consistent motion, microseparation, rim-neck impin-
gement and edge-loading of THA articulation, prevents the bearing
from producing optimum fluid-film lubrication. Nonconformity of
bearing surfaces and inadequate fluid film pressure to bear the
femoral head loads can result in stripe wear and third body debris

[61,84,85,88,89]. Fluoroscopic studies have elucidated micro-
separation between the ball and cup during daily hip motions
[90-93]. Moreover, implants with elevated rims, implant mis-
alignment and small femoral head size are associated with rim-
neck impingement [94,95]. There are also cases of extreme dis-
location where the ball exits the socket entirely. Such a dislocation
can occur due to neck impingement in which the head is levered
out of the cup causing the head to rest upon the socket’s rim
[96,97]. A relatively vertical cup orientation may also cause edge
loading [8]. Edge loading was identified as the first step in a chain
of events that leads to CoC squeaking and wear [84].

The fluid film lubrication thicknesses described in Eqgs. (1) and
(2) are obtained for correctly positioned THA. However, these
simulations are not appropriate for adverse loading cases such as
edge loading. In this case, there are poor lubrication conditions
and extreme contact stresses due to the low conformity of the
bearing surfaces [98-100]. Maximum contact pressure caused by
edge-loading for a CoC hip implant with 36 mm diameter has been
reported as high as 1950 MPa compared to a concentric contact
where the pressure was 45 MPa [98]. Moreover, contact pressures
for head-liner contact of edge-loaded hard bearings were more
than 1 GPa [100]. Edge loading can also cause wear on the surfaces
and roughening of both bearing surfaces [84].

While several in vitro studies successfully reproduced squeak-
ing under dry condition [19,57,61,84], it is worth noting that
squeaking noises were stopped with adding a small amount of
lubricant to a not-lubricated artificial hip articulation [61]. In
lubricated conditions, squeaking was replicated by interposing
particulate metal debris between the head and liner. Sanders et al.
[84] reported that squeaking in lubricated hip prostheses can
occur if the right combination of load vector and bearing surface
conditions exist such as applying high contact force near the
head’s wear patch.

2.5. Friction

As can be observed from Fig. 12, friction coefficient increases as
the lambda ratio decreases. This is the result of increased surface
roughness, particulate metal debris between the articulating sur-
faces, lower synovial fluid viscosity, increased bearing clearance
and abnormal motion behaviour of hip implant components.
Generally, coefficient of friction in CoC hip devices is in the range
of 0.04-0.13 [80,101-103]. Nassutt and colleagues [101] reported a
coefficient of friction varying from 0.104 for no resting duration up
to 0.131 for resting duration of 60 s. This increase in coefficient
of friction after rest is due to loss of fluid film lubrication and
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subsequent surface to surface contact when the relative velocity
between the bearing surfaces is reduced. This effect tends to make
a CoC hip bearing couple act more like non-lubricated bearings
[101,102].

It is known that when two surfaces slide against each other,
friction develops and acts as a resistance to relative motion. Sliding
is an unsteady phenomenon made up of continuous or transient
contact resulting in intermittent or cyclical squeaking due to a
slight variation in the normal contact load for instance [104-106].
Moreover, frictional force acts like a cross-coupling force linking
normal and parallel motions at the contact surface [107]. It is well
known that friction can induce vibration in structures owing to
instability in the structural system such as the instability due to a
surface property for which friction decreases as relative velocity
between sliding surfaces increases [48,104,105]. Moreover, there
are other sources of instability in structure systems, namely mode-
coupling, Sprag-slip, frictional follower forces, stick-slip and
material nonlinearity that have all been suggested as possible
causes of self-excited friction induced vibration [48,104,105,107-
109]. Mode coupling instability is characteristic that frequencies of
two structural modes of a system come closer together until they
merge and result in a pair of an unstable and a stable mode. The
stick-slip exists in most of friction-induced vibration problems as
static friction is greater than dynamic friction. Sprag-slip
instability is usually characterized by jumping or violation of the
system parameters such as contact force and penetration depth
during the gait cycle. As friction force follows the displacement
during sliding of contacting bodies, it acts as follower force which
is a type of instability in the system. Follower forces are well
known sources of asymmetry in stiffness matrices and are con-
sidered to be responsible for flutter instabilities in a wide variety
of mechanical systems. Another type of instability in a system is
due to nonlinear stiffness of articulating components, the femoral
head and the liner, leading to nonlinear normal contact force.

A possible cause of squeaking in MoM and CoC bearings
without lubrication is the stick-slip phenomenon between the
head and cup surfaces [110,111]. It has been computationally and
experimentally shown that friction-induced vibration is the main
reason of hip squeaking [48,49]. In order to consider this issue
numerically, a complex eigenvalue method was employed to
identify the stability properties of hip implants under laboratory
conditions and in a pseudo-in-vivo configuration. However, con-
siderable differences between theoretical and in-vivo results were
observed, which could be associated with the choice of boundary
conditions [112,113]. These investigations also reported that hip
prostheses become unstable when the friction coefficient between
components reaches critical values. It was observed that increas-
ing the critical friction coefficient could decrease the occurrence of
ceramic bearing squeaking [112,113].

In a theoretical model of a sphere attached to a rotating flexible
beam, as a simple model of THA, the bending modes of the beam
produced by the dynamic instability under the negative friction-
velocity slope was identified as the cause of squeaking [87,114]. An
experimental study found that a friction induced whirl vibration
led to oscillation behaviour on top of the gross head movement
against the liner [19]. This was a micrometre scale elliptical motion
inside the liner and the vibrational pattern of hip implants was
two-dimensional. However, the hip squeaking frequencies they
reported were higher than those found in-vivo. A computational
investigation on nonlinear vibration and dynamic behaviour of a
CoC hip implant demonstrated that the femoral head had a mic-
ometer/nanometre motion inside the liner [105], illustrated in
Fig. 13. This study took the physiological three-dimensional rota-
tion angles and forces into account and found that the vibration of
an artificial hip joint had a three-dimensional characteristic. The
reported cause of hip squeaking was friction-induced vibration
owing to different phenomena such as stick-slip friction, negative-
sloping friction and contact force changes. Moreover, friction-
induced vibration can increase the sliding distance of the contact

a
0.02
t=0.5s =0.7s
g g
y | 0.00 g g
<+ / <
(=3 (=3
= =
-0.02 e <
0 0.01 0.02 0.004 mm 0.004 mm
| >
c t=0.5s € =0.7s
g €
0 o]
S 8
(=3 o
(=} o
IS IS
0.004 mm 0.004 mm
» X
c 0.054 .
A £ t=0.5s c t=0.7s
0.05 g 3
: g g
0.046 = S
t=0.7s g 8
0.042
-0.02 -0.01 0 0.01 0.02 0.004 mm 0.004 mm
>y

Fig. 13. Contact point track and the vibration of the femoral head in x, y and z directions [105].
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point between the head and cup by altering its macro and micro
trajectory. It was also observed that friction-induced vibration can
significantly affect the contact pressure and joint moments. It was
shown that a low friction coefficient, low loads and high system
damping decreased the incidence of hip squeaking [115]. Table 3
summarizes the main potential factors related to hip squeaking in
available published literature.

2.6. High wear rates of noisy hips observed in vivo

Wear can influence the performance and life expectancy of an
implant and has been found to be a key factor in primary failure of
artificial hip joints [116,117]. The consequence of wear is often
revision surgery to replace the THA with a new one. This is
obviously an undesired outcome because of the hardship it
imposes on the patient and health budget. Experimental hip
simulator and computational studies on CoC and MoM bearings
have consistently shown very low wear rates under standard hip
simulator conditions which correlates to well-positioned pros-
theses [23,68,118-125]. However, this has not been confirmed by
long-term retrieval analyses [21,126-130]. The standard condi-
tions are defined with the femoral head sitting concentrically with
the acetabular cup and the acetabular cup with a clinically
equivalent inclination angle of less than 55°. Under these ideal
conditions very low wear rates have been obtained. In sharp
contrast, CoC and MoM retrievals with elevated wear rates have
been associated with steep cup-inclination angle resulting in

edge-loading [131-139]. Increased cup inclination angle have been
associated with a stripe wear area on the femoral head and an
elevated wear rate of alumina CoC retrievals [140]. However, these
steep cup-inclination angles exhibited in vitro studies do not lead
to high wear levels when tested in-vivo and even the corre-
sponding wear mechanisms [133,135,136,140,141].

Introduction of micro-separation to the gait cycle has however
demonstrated edge loading, wear rates and wear mechanisms
similar to worn retrievals [123,132,133,139,142-144]. Moreover,
the loading and motion inputs affect hip implant wear. Fialho et al.
[145] showed that the wear rates occurring during a simulated
jogging cycle had a twofold increase compared to those of the
walking cycle, due to a significant increase in loading. Considering
the effect of different motion inputs on wear prediction of hip
prostheses indicated that evaluated volumetric wear under the
ProSim simulator and the ISO motion and loading conditions are
less than that predicted for in-vivo walking motion [146]. In
addition, one study obtained that using a 3D sliding distance
increased volumetric wear by 18% compared to a simplified two
dimensional flexion-extension analysis [145].

Friction also affects sliding distance and contact stress in arti-
ficial hip joints [23,24,105]. It has been reported that the femoral
head vibrates inside the cup with micron amplitude within the
corresponding collision plane and with nanometre amplitude
normal to the collision plane due to friction-induced vibration
[19,105]. This can result in a change in the contact point trajectory
and contact stress on both a micro and macro-scale, which can
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Fig. 14. Ceramic-on-ceramic (CoC) hip implant with three-dimensional physiological loading and motion of the human body with very low friction where volumetric wear is
equal to 0.14 mm? (top row) and high friction where volumetric wear is equal to 6.9 mm? (bottom row): (a) and (d) contact point trajectory on the head and cup, illustrated
as T-Head and T-Cup, respectively; (b) and (e) linear wear depth on the cup; (c) and (f) linear wear depth on the head [20].
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affect the final wear profile, Fig. 14. Recently, computational
simulations showed that friction-induced vibration can con-
siderably increase wear rates in hard-on-hard hip implants. The
occurrence of friction-induced vibration in artificial hip joints can
therefore be a cause for high wear rates observed in vivo, Fig. 14.
High wear rates and cyclic motions of the contact point between
the cup and femoral head due to both daily locomotion and
friction-induced vibration can also lead to fracture in the ceramic
liner of total hip arthoplasty. Recently, a case study reported the
occurrence of ceramic liner fracture for two patients with hip pain
and squeaking [147].

As discussed previously, the main potential cause for hip
squeaking is friction-induced vibration. Moreover, this phenom-
enon can lead to significant increases in wear rates of hip implants.
It can be concluded that noisy hips may experience higher wear
rates compared to silent hips. In this regard, a retrieval study, [21],
reported that noisy CoC hips had a 45-fold increase in their wear
compared to silent hips. Moreover, Askari et al. [20,86,105,148]
performed a series of computational studies on hip squeaking and
wear prediction of noisy hips showing that noisy hips experience
higher wear rates compared to silent hips due to friction-induced
vibration, corroborating retrieval studies consistently. Hence, it
may be suggested that excessive wear rates are associated with hip
squeaking.

3. Computational models

In-vivo and retrieval studies have provided data and informa-
tion on frequencies at which THA squeaking occurs and con-
tributing factors, such as patient, design/material, implant posi-
tion/orientation [17,43,44,46,64,88]. In addition, experimental and
computational studies have been conducted to understand the
mechanism of hip squeaking and figure out how modifying the
system can remove squeaking [19,61,105,110,112]. For a compar-
ison purpose of fundamental frequencies of squeaking hips,
Table 4 lists two first unstable frequencies with the corresponding
method.

Notwithstanding the benefit of analysing in-vivo mechanics
using a non-invasive technique and experimental investigations,
computational studies have also proved adept at quantifying
parametric features. Thus, computational studies play an impor-
tant role in understanding THA. The finite element analysis as a
popular approach for hip implant design and analysis, and multi-
body methodology to describe bodies by kinematic relations due

Table 4
Fundamental squeaking frequencies of ceramic hip bearings.

First frequency  Second frequency Method

[Hz] [Hz]
Weiss et al. [48] 5 35 Numerical study
Fan et al. [112] 2700 3200 Numerical study
Fan et al. [113] 1843-2050 3300 Numerical study
Ouenczerfi et al. 1759 Numerical study
[65]
Askari et al. 1700 3400-3800 Numerical study
[86,150]
Askari et al. [105] 2600-3000 5000-5500 Numerical study
Walter et al. [43] 1546 3046 Clinical study
Sariali et al. [85]  2240-2460 Clinical study
Currier et al. [110] 1540-2530 3090-5070 Clinical study
Weiss et al. [19] 3400 10000 Experimental study

Sariali et al. [85] 2600 5300
Currier et al. [110] 2400-3617 4800-7235
Ouenzerfi et al. 2775-3308

[65]
Weiss et al. [49] 3350

Experimental study
Experimental study
Experimental study

Experimental study

to vibrational and dynamical nature of hip squeaking are two main
methodologies used to simulate noise emission of ceramic hip
implants. These methods are briefly described in the following
sections.

3.1. Finite element method

The stability of the hip motion equations reflects the likelihood
of squeaking of ceramic hip prostheses. Two common techniques
for evaluating the stability of a system are (i) transient dynamic
analysis; and (ii) complex eigenvalue analysis. A divergent tran-
sient solution indicates that the system is unstable. However, this
methodology is computationally costly and provides no insight
into how the system might be modified to remove the instability.
On the contrary, the complex eigenvalue method obtains the
system eigenvalues and eigenvectors such that it can be revealed
which of a system’s vibration modes are unstable. This knowledge
enables engineers and designers to deal with the unstable system
by means of several control methods. Modal frequencies could be
moved by either changing components or adding damping to
convert the corresponding unstable modes to stable ones. This
method can obtain all unstable frequencies in one run for one set
of operating conditions, which would be very difficult to achieve
with physical experiments. The complex eigenvalue approach was
utilized by Weiss et al. [48] to simulate hip squeaking and they
proved that this method was feasible. The method was utilized by
other researchers to analyse squeaking noise emitted from ceramic
hip arthroplasties during previous years [65,112,113]. Here, the
methodology of the complex eigenvalue analysis is introduced
briefly. The equation of motion for a vibrating system can be
written as follows

Mii + Cu+Ku =0 7

where M, C and K are mass, damping and stiffness matrices,
respectively, and u is the displacement vector. Due to friction
within the contact area, using the Coulomb friction law, the stiff-
ness matrix has specific properties:

K = K, +pK; ®)

K; is the structural stiffness matrix and Ky is the asymmetrical
friction induced stiffness matrix and y is the friction coefficient. If
the friction coefficient decreases with velocity owing to velocity-
dependent friction coefficient, this effect will be added to Eq. (7)
by both modified damping and stiffness matrices. The com-
plementary solution to the homogenous, second order, matrix
differential equation, Eq. (7), is in the form given below

u=gdet 9

Substituting this solution into Eq. (7) yields the complex eigen-
value problem, as follows:

s*M+sC+Kp=0 (10)
To solve the complex eigenproblem, both the damping matrix and
the asymmetric contribution of K is ignored, which yields to

(@*M+K)p=0 an

where @ is an eigenfrequency of the system. Eq. (11) is solved to
find the projection subspace formed as N obtained eigenvectors in
a matrix, [¢,...,¢y]. Now, the equation of motion is projected
onto this subspace as follows:

M* =[by, ... oy M, ... y]
C=[d....o\"Cly. ...y (12)
K*=[d;,.... 05K, ... D]
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Fig. 15. FE model of a hip endoprosthesis system [112].

Then, the complex eigenproblem is simplified to
(S*M* +sC* +K*)¢p* =0 (13)

The characteristic equation, Eq. (13), has non-trivial solutions if
the matrix in parenthesis is singular. It happens only for complex
eigenvalues, s(s;). The corresponding vectors ¢ are the eigen-
vectors of the projected system. Finally, the complex eigenvectors
of the original system can be acquired by

b=[b;.....o\" d* (14)

Both the obtained eigenvalues and eigenvectors may or may
not be complex. Assuming an eigenvalue to be s; = a; +iw;, where
a is the real part and w is the imaginary part of s for the ith mode,
the motion for each mode is written as

u; = e ot 4 ;e —Jjont (15)

when the real part of the ith eigenvalue, a;, is positive, the system
becomes unstable and squeaking noise emits.

In order to simulate squeaking using commercial FE software,
ABAQUS version 6.4 and above provide a complex eigenvalue
solution [112]. Moreover, a recent study used the commercial FE
software ANSYS Workbench to incorporate the complex eigenva-
lue method to study hip squeaking [65]. This new capability uses
direct contact coupling at the friction sliding interface described
by Yuan [155] and there is no need to introduce contact springs at
the interface and Ky The fundamental procedures for applying
ABAQUS to perform the complex eigenvalue analysis of ceramic
hip prostheses are as follows: (i) Nonlinear static analysis of the
ceramic hip endoprosthesis system for applying joint resultant
force; (ii) nonlinear static analysis to impose the rotational speed
on the femoral components; (iii) normal mode analysis to extract
natural frequency without friction coupling; and (iv) complex
eigenvalue analysis that incorporates the effect of friction
coupling.

Fig. 15 illustrates a CoC THA with a metallic shell, ceramic liner
and ball, metallic stem and a simulative bone beside acetabular
components, denoted as bone A, and a simulative bone beside
femoral components, denoted as bone F. Material properties of hip
components are listed in Table 5. In previous studies, all materials
were assumed homogeneous, isotropic and linear elastic and the
element to mesh the model was the 8-noded hexahedral element.
The femoral bone and acetabular bone are simulated as cylinders
due to the simplification of computational analyses. The hip joint
resultant force was set as either 100 N or 1500 N applied at the
end of the stem as depicted in Fig. 16 [48,112,113]. A relative
rotational motion between the head and the liner was imposed as
1rad/s around the Y-axis to produce friction. Weiss et al. [48]
explained that the applied spinning motion is easily extendable to

Table 5
The parameters of prosthetic materials [112]

Materials Density [kg/m®]  Young’s modulus [N/m?] Poisson ratio
Ti6Al4V 4500 1.10 x 10" 0.3

Ceramic 4370 3.58 x 10" 0.23
Simulative bone 1932 2.0 x 10 03

—zX

Fig. 16. Loading and boundary condition [112].

the general kinematic motion observed in hip implants in vivo that
in fact consists of a superposition of spin and translation. However,
there is no study yet to model a hip implant subject to the general
kinetic motion, using the finite element method. The bone A is
completely fixed and the edge of the bone F is supposed to be fixed
to assure the original placement of the system. A Coulomb-type
friction force with a fixed constant coefficient of friction during
each numerical experiment was utilized to allow for a proper
identification of unstable parameter-configurations. It should be
noted that no FE study to date has taken measured friction-velo-
city curves into account. Moreover, the effect of slip-stick friction
and joint clearance on hip squeaking has not been described using
this methodology.

3.2. Multibody methodology

The human body has relatively rigid bones, connected by spe-
cial joints capable of large anatomical articulations. From a
mechanical point-of-view, this description of the human body is
similar to that of a multibody mechanical system. However, the
human body system is far more complex than the great majority of
the multibody systems. Its components have a complex behaviour
due to deformations associated with the soft tissues such as the
muscles, tendons and ligaments, and due to the complexity of the
anatomical articulations relative to the standard mechanical joints
[156]. Multibody-based methodologies have been developed in
such a way that, besides the representation of mechanical systems
made only of rigid components [157], they can also represent
deformable bodies [158]. In a broad sense, much of the research
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Fig. 17. Schematic representation of the artificial hip replacement.

Fig. 18. General configuration of an artificial hip joint in a multibody system [162].

developed with the purpose to simulate daily human tasks is
based on the assumption that the joints that constrain the sys-
tem’s components are considered as ideal or perfect joints, such as
spherical, revolute and universal joints. Nevertheless, with this
approach a decrease in the kinematic and dynamic precision can
occur when compared with the living body because the idealized
models fail to capture more complex aspects of joint kinematics
and dynamics [159].

In the field of multibody system dynamics, computational
methods which represent complex phenomena such as contact
geometry, friction phenomena, wear and lubrication have been
developed [160]. However, the application of these methods in the
field of biomechanical system dynamics has been limited. A pos-
sible reason is that much of the biomechanical simulation is based
upon inverse dynamics, where movement of all degrees-of-
freedom is entered into the analysis leading to a presumption of
simple joint kinematics. For most applications concerning simple
models, this is a reasonable assumption, but for detailed investi-
gations of more complex joints, such as the THA it is not, Fig. 17. In
contrast, Askari and his co-authors [150] considered a planar
dynamic model of the THA, in which the head and cup are mod-
elled as contacting components [161]. They reported that potential
reason for hip squeaking was friction-induced vibration due to
stick-slip friction and negative friction-velocity slope. The model
developed [148] was extended to a spatial multibody dynamic hip

model, taking into account the physiological three-dimensional
rotation motions and forces for studying nonlinear dynamics and
vibration of THA as well as addressing hip squeaking. Kang
[87,114] developed a theoretical dynamic model for the ball joint
as a sphere attached to a rotating beam and in contact with a
semi-spherical rigid socket. A recent study also investigated
friction-induced vibration in THAs by considering contact between
the cup and the femoral head [115]. In what follows, the metho-
dology of the multibody methodology is introduced briefly.

It is well known that the equations of motion for a multibody
dynamic system with holonomic constraints can be written as
[19],

M{=g+g° (16)

P(q,1)=0 a7

in which M is the system mass matrix, q generalized coordinates
of the system, q the acceleration vector, and g the generalized
force vector containing all external forces and moments. The
bodies in the multibody system are interconnected by joints
imposing constraints on the bodies’ relative motion. Expressing
these conditions as algebraic equations in terms of a generalized
coordinate and time, t, holonomic kinematic constraints defined in
Eq. (17) are introduced. Moreover, g© is the vector of constraint
reaction equations, which can be rewritten by means of the
Jacobian matrix of the constraint equations (®q) and the vector of
Lagrange multipliers (A) as [19]

g9= -1 (18)
substituting Eq. (18) in Eq. (16) yields,
M{+Pi=g (19)

Furthermore, differentiating Eq. (17) twice with respect to time,
the constraint equation can be written as follows:

Dyq=— ((I)qq)qq 2@ Q- D=y (20)

where 7y is a vector function of velocity and position of the system
as well as time. As a consequence, both Eqgs. (19) and (20) yield a
system of differential algebraic equations to be solved for q and A,
given by

Bl

Eq. (21) can be solved only if the coefficient matrix of Eq. (21) is
non-singular. This can be achieved by having a positive definite
mass matrix and the Jacobian matrix ®q full row rank [5]. A
general configuration of a hip implant modelled as a multibody
system is shown in Fig. 18, and the equations of motion described
above addresses its kinetic and kinematic.

Normal contact force and tangential friction force in the
articulation surface between the femoral head and cup play
important roles in multibody dynamics formulations. There are
different approaches to deal with contact-impact events which
could be categorised into two main groups, non-smooth dynamics
formulation and continuous analysis [163]. In the first group,
colliding bodies are assumed to be rigid and unilateral constraints
are used to deal with the contact mechanics. On the other hand
the continuous methods, also known as either compliant or pen-
alty methods, are considered deformable approaches since the
contacting bodies are allowed to deform at the contact zone.
Moreover, the corresponding contact forces are evaluated as a
function of indentation and compliance of articulating surfaces
[163]. As an example, a modified Hertz contact law proposed by
Lankarani and Nikravesh [164], which belong to the second group,
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Fig. 20. Stribeck friction-velocity curve showing four regimes [172].
is given by

3 —c? 5
F = _K&} (1 +Mi>n 22)
i 50

where é and 5(7) are the relative penetration velocity and the
initial contact velocity, respectively, and c. is the coefficient of
restitution. The generalized stiffness parameter K depends on the
geometry and physical properties of the contacting surfaces [10].
This contact model also takes energy loss due to impact and Fig. 19
shows how energy loss during loading and unloading of impact
process is captured.

To compute the tangential friction forces, one of the first and
simplest friction laws is Coulomb friction law. Coulomb (1736-
1806) determined that the frictional force between two bodies
which are pressed together with a normal force can be calculated
by the product of normal force and friction coefficient. Although
the friction coefficient suggested by Coulomb is assumed to be
constant with increasing the sliding speed, experimental tests
have demonstrated that friction coefficient is a function of the
relative velocity, Panovko and Gubanova [165] and Ibrahim [166].
Different friction-speed models have therefore been proposed to
take the velocity dependence of friction into account. Moreover,
hip implant contact is lubricated and the friction force depends on
the friction-speed regimes: (i) boundary lubrication (no depen-
dence on the velocity); (ii) mixed fluid lubrication; and (iii) full
fluid-film lubrication, as described in the Section 2.4 and shown in
Fig. 12.

Generally, the friction decreases with increased relative velo-
city until a mixed or full film lubrication is obtained, after which
the friction can be constant, increase, or decrease with increasing
the sliding speed due to viscous and thermal effects. Stribeck
[167-169] suggested a model known as the Stribeck model which
can convey the friction behaviour in the different four friction

regions. The model can be written as follows:
F = (Fc+(Fs—Foje~ M ysign(v)+ kyv 3)

where F is the friction force, v the sliding velocity, F. the Coulomb
sliding friction force, F; the maximum static friction force, vg the
sliding speed coefficient, k, the viscous friction coefficient, and i an
exponent. This model is represented in Fig. 20. The reason of
decreasing friction with increasing velocity in dry sliding metallic
bodies was experimentally investigated, and was due to the
material softening as a result of high temperatures generated at
the contact surfaces [170,171]. The Stribeck model can provide a
good representation of the friction between sliding surfaces and it
can describe the stick-slip phenomenon and the negative damping
effect.

3.2.1. Operating conditions

Like the natural joint, THA in-vivo must be able to work under
transient and wide range 3D physiological operating conditions,
therefore triaxial load and angular velocity should be considered.
The most complete database for loading conditions has been
provided by Bergman et al., who measured hip forces in nine daily
activities, e.g. walking and running, among others. An example of a
normal walking gait cycle is depicted in Fig. 21, showing the three
components of the hip force and the corresponding hip angles. For
simplification purpose, the main (vertical) load component and
flexion-extension motion of the walking cycle are usually con-
sidered, according to the ISO standard 14242-1, depicted in Fig. 22.
The operating conditions are applied to the model as follow: (i) the
cup is assumed to be stationary and the forces are applied to the
centre of the femoral head; and (ii) the 3D physiological motions
are applied to the femoral head.

4. Future research directions

The main limitation of previous computational studies using
either finite element method or multibody simulation method is
that they have not taken the effect of fluid-film lubrication on the
system outcome into account. It can be physically deduced that
friction coefficient alters over the gait cycle due to the alteration of
fluid film thickness [175]. Moreover, fluid-film lubrication can
improve the articulation of the head and cup so it can significantly
affect hip squeaking [61]. Therefore, the main future direction
should address lubrication effects into numerical formulations to
assess hip squeaking.

Using multibody dynamics method, rotational motions and for-
ces of the femoral head are in-vivo inputs so where relevant data is
available developed models are applicable. However, there is lack of
corresponding information when artificial hip joint is experiencing
adverse conditions such as edge-loading and impingement. Hence
future work should include whole leg motion with muscles and
other soft tissues taken into consideration and then solving equa-
tions using inverse dynamics methods to obtain related motions
and forces in the case of edge-loading, impingement and micro-
separation. Only then can the effect of these adverse conditions on
hip squeaking over the gait cycle be investigated.

In addition to these adverse conditions, available multibody
models do not simulate elasticity of the contacting bodies, and
therefore cannot predict the effect of contact forces and impact on
the acetabular components (i.e. distortion of the ceramic insert in
the titanium shell) as a potential cause of hip squeaking. Therefore,
future work can include the elasticity of contacting surfaces.
Moreover, previous studies have only considered normal walking
activity while hip squeaking occurs due to other daily activities as
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well. So the future works could study different daily activities and
provide data on hip squeaking due to different daily activities.

Friction was found as the main cause of hip squeaking in
ceramic-on-ceramic hip implants. Most of previous studies on
simulating hip implant motions employed the Coulomb friction
force model which does not account for the Stribeck effect, stick-
slip friction and the extremely small displacement of surface
asperities. A few investigations have employed a modified friction
model including the Stribeck phenomenon to study the dynamics
of artificial hip joints, but these models did not account for non-
linear pre-slip displacements of the friction interface [87,105,115].
So when relative velocity approaches zero, the friction force is
calculated to be zero. In a real sliding scenario, tangential friction
force is not zero when very small displacements of surface aspe-
rities occur in the contact area. It can significantly affect the kinetic
of articulating hip surfaces. An object for future research is to
develop a modified friction force model to include stick-slip, Stri-
beck effect and pre-slip displacement at microscopic level to
model nonlinear dynamics and vibration of artificial hip joints,
considering hip squeaking.

Although it has been clinically and computationally illustrated
that hip squeaking may be associated with higher wear rates
compared to silent hips, these results should be validated against
controlled physical experiments and gain a better understanding
of the mechanism behind articulation and evolution of hip
squeaking and wear. Moreover, a recent case report showed
ceramic liner fracture for two patients with hip pain and squeak-
ing. There may be an association between squeaking and liner
fracture in ceramic hip prostheses and it can be deduced based on
an engineering point of view as well. However, this relation has
not been proved yet and needs more investigation clinically,
experimentally and computationally. Generally, one of main

research direction in this field is to discover if hip squeaking has
consequences which threaten the life quality and wellbeing of
patients and in turn make appropriate clinical and engineering
decisions to prevent adverse consequences.

A recent study, which investigated hip squeaking using the
complex eigenvalue method, took into account the influence of the
soft tissue around the bone on hip squeaking [65]. They illustrated
a significant decrease in fundamental squeaking frequencies that
are comparable with in-vivo frequencies. It was then discussed
that the discrepancy between in-vivo and in-vitro frequencies can
be justified by the mass added to the dynamic system due to the
presence of the soft tissues. Further experimental and computa-
tional studies are required to reveal the effect of both the soft
tissues and the bone existing around THA on squeaking. In addi-
tion, there are no studies yet to address their damping effects on
the vibrational characteristics of the system.

It is now known that the main reason of hip squeaking is
friction-induced vibration. As Askari et al. and Fan et al. demon-
strated, associated unstable frequencies and vibration modes can
be determined using numerical methods [105,112]. From an
engineering point of view, ceramic hip implants might be modified
by either changing component geometry and/or materials, or by
adding damping to convert the unstable modes to stable ones. A
recent advance is the development of two new ceramics for THA
bearings, namely alumina-toughened zirconia (ATZ) and zirconia-
toughened alumina (ZTA). They have shown a 5-fold reduction in
the overall wear rate compared to the older alumina ceramics
[123,176,177]. Moreover, studies have suggested either addition of
damping materials to acetabular components or increase in stiff-
ness of the femoral stem can improve the stability of THA
[112,113]. More investigations are required to find feasible and
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reliable solutions for modifying the mechanical system of total hip
arthroplasty to remove squeaking.

5. Concluding remarks

As has been discussed, hip squeaking does not occur in the
presence of fluid film lubrication due to non-contact between
articulating surfaces. However, the fluid film is disrupted by
increased surface roughness, particulate metal debris between
articulating surfaces, an alteration in the property of synovial fluid
and/or abnormal behaviours in prosthetic hip joints such as edge
loading and micro-separation. The fluid-film lubrication regime is
converted to either the mixed lubrication or boundary lubrication.
Consequently, friction coefficient generally increases which can
lead to hip squeaking. Micro-separation, rim-neck impingement
and edge-loading are abnormal motion behaviours in THA which
prevent the bearing from producing optimum fluid-film lubrica-
tion. In these cases, there are poor lubrication conditions and
extreme contact stresses due to the low conformity of the bearing
surfaces.

In the absence of fluid-film lubrication, bearing surfaces slide
against each other and friction develops, acting as a resistance to
relative motion. Friction can induce vibration in hip articulation
owing to instability in the structural system such as negative-
sloping friction, stick-slip, contact force changes, mode-coupling,
and material nonlinearity. Moreover, friction-induced vibration
can significantly increase wear rates in THA. Hip squeaking may
therefore be associated with high wear rates of noisy hips com-
pared to silent hips. High wear rates may lead to the occurrence of
ceramic liner fracture, but it needs more investigations to assess as
a potential consequence of hip squeaking. There is no more
information on hip squeaking consequences.
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