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Abstract

In this paper we define and study a generalized Drazin inverse xD for ring elements x, and
give a characterization of elements a, b for which aaD = bbD. We apply our results to the
study of EP elements of a ring with involution.

2000 Mathematics subject classification: primary 16A32, 16A28, 15A09; secondary 46H05,
46L05.
Keywords and phrases: associative ring, involution, idempotent, Drazin inverse, Moore–
Penrose inverse, EP element.

1. Introduction

This paper is motivated by a recent work of Castro et al. [2], which
investigates the necessary and sufficient conditions for square complex ma-
trices A, B to have the same eigenprojection at 0. This problem, under more
restrictive conditions on A, B was first considered by Hartwig [7] more than
20 years ago.

The formulation of the problem for elements of rings requires the defini-
tion of an appropriate analogue of the eigenprojection, the so-called spectral
idempotent, well known in the case of Banach algebras. We also define and
investigate a generalized Drazin inverse for elements of rings that possess a
spectral idempotent. The main result of this paper is a characterization of
ring elements with equal spectral idempotents.

In rings with involution we can define the Moore–Penrose inverse and
EP elements, that is, ring elements for which the Drazin and Moore–Penrose
inverse exist and coincide. We give a new characterization of EP elements
based on our main theorem.
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2. Quasipolar elements in rings

In this paper ‘ring’ means an associative ring with unit 1 �= 0. Let R be
a ring. The group of invertible elements is denoted by R−1.

For any element a ∈ R we define the commutant and the double com-
mutant of a by

comm(a) = {x ∈ R : ax = xa},
comm2(a) = {x ∈ R : xy = yx for all y ∈ comm(a)}.

The Jacobson radical of R is the two-sided ideal

Rrad = {a ∈ R : 1 + Ra ⊂ R−1}.

Definition 2.1. (Harte [5].) An element a ∈ R is quasinilpotent if, for
every x ∈ comm(a), 1 + xa ∈ R−1. The set of all quasinilpotent elements of
R will be denoted by Rqnil. The set of all nilpotent elements will be written
as Rnil.

Clearly, Rrad ⊂ Rqnil. Further, Rnil ⊂ Rqnil as

(1 + xa)−1 =
k−1∑
i=0

(−1)ixiai

if a ∈ R is nilpotent of index k and x ∈ comm(a) (see also [5, Theo-
rems 3 and 4]). We note that in a ring, unlike in a Banach algebra, the
sum of two commuting quasinilpotent elements need not be quasinilpotent.
However, we have the following implication:

a ∈ R−1 and b ∈ Rqnil ∩ comm(a) =⇒ a + b ∈ R−1.(2.1)

For a Banach algebra R it is well known [4, p. 251] that

a ∈ Rqnil ⇐⇒ lim
n→∞

‖an‖1/n = 0.

Definition 2.2. An element a ∈ R is quasipolar if there exists p ∈ R
such that

p2 = p, p ∈ comm2(a), ap ∈ Rqnil, a + p ∈ R−1.(2.2)

If a is quasipolar and ap ∈ Rnil with the nilpotency index k, we say that
a is polar of order k. Any idempotent p satisfying the above conditions is
called a spectral idempotent of a. (The term ‘quasipolar’ comes from [5],
and ‘spectral’ idempotent is borrowed from spectral theory in Banach alge-
bras [4]. We shall see later that quasipolar elements are exactly the ones
which are ‘generalized Drazin invertible’—Theorem 4.2.)

2



Proposition 2.3. Any quasipolar element a ∈ R has a unique spectral
idempotent denoted by aπ.

Proof. Suppose that p, q are spectral idempotents of a quasipolar ele-
ment a ∈ R. Then

1 − (1 − p)q = 1 − (1 − p)(a + p)−1(a + p)q

= 1 − (1 − p)(a + p)−1aq = 1 − b(aq).

Since p ∈ comm2(a), we have b ∈ comm(aq); aq ∈ Rqnil implies 1 − b(aq) ∈
R−1. Then

1 − (1 − p)q = 1 − (1 − p)2q2 = (1 − (1 − p)q)(1 + (1 − p)q).

The invertibility of 1 − (1 − p)q implies that (1 − p)q = 0, that is, q = pq.
Similarly we prove that (1 − q)p ∈ R−1, and p = qp = pq. Then p = q.

Remark 2.4. From [8, Theorem 3.2] it follows that the condition a+p ∈
R−1 in (2.2) can be replaced by 1 − p ∈ (Ra) ∩ (aR).

The uniqueness of the spectral idempotent is used to prove the following
result valid in rings with involution (see Section 5).

Proposition 2.5. Let R be a ring with involution. Then a is quasipolar
if and only if a∗ is quasipolar. In this case and (a∗)π = (aπ)∗.

Proof. From a+aπ ∈ R−1 and aaπ = aπa ∈ Rqnil we obtain a∗+(aπ)∗ ∈
R−1 and a∗(a∗)π = (a∗)πa∗ ∈ Rnil by applying the involution.

For polar elements we can relax the condition that p double commutes
with a:

Proposition 2.6. Let a ∈ R, and let p ∈ R be such that

p2 = p, p ∈ comm(a), ap ∈ Rnil, a + p ∈ R−1.(2.3)

Then a is polar and p = aπ.

Proof. Since Rnil ⊂ Rqnil, we only need to prove that p ∈ comm2(a).
For ap ∈ Rnil there exists k ∈ N such that (ap)k = akp = 0. Set b =
(a + p)−1(1 − p); then ab = ba = 1 − p. Let x ∈ comm(a). We have

(1 − p)x − (1 − p)x(1 − p) = (1 − p)xp = (1 − p)kxp

= bkakxp = bkxakp = 0,

which implies xp = pxp. Similarly we show that x(1−p)−(1−p)x(1−p) = 0,
and px = pxp. This proves px = xp, and p ∈ comm2(a).

Observe that in general double commutativity of p with a is necessary.

3



3. Results on regular elements of rings

An element a ∈ R is regular (in the sense of von Neumann) if it has an
inner inverse x, that is, if there exists x ∈ R such that axa = a. Any inner
inverse of a will be denoted by a−. The set of all regular elements of R will
be denoted by R−. Given a ∈ R, we define the sets

aR = {ax : x ∈ R}, Ra = {xa : x ∈ R},
a0 = {y ∈ R : ay = 0}, 0a = {y ∈ R : ya = 0},

where aR and Ra can be considered as finitely generated R-modules; the
same is true of a0 and 0a if a ∈ R− (see Proposition 3.1 below). When
considering a matrix A, these sets reflect, respectively, the column space of
A, the row space of A, the kernel of A, and the kernel of AT. However, we
will work with these sets with no reference to rank, dimensional analysis or
orthogonality. If M ⊂ R, we can define

MR = {mx : m ∈ M, x ∈ R}, M0 = {x ∈ R : Mx = {0}};

similarly we define RM and 0M .
Some properties of these sets, established by Hartwig in [6, Proposi-

tion 6], will be needed in the following section. We include proofs for the
sake of completeness.

Proposition 3.1. Given a, b ∈ R− and A, B ⊂ R, we have

(i) (1 − a−a)R = a0;

(ii) a0 = (Ra)0;

(iii) Ra = 0(a0) = 0((Ra)0);

(iv) A ⊂ B =⇒ 0A ⊃ 0B.

Proof. (i) As a((1− a−a)y) = 0, we have (1− a−a)y ∈ a0. Conversely,
if ax = 0, then (1 − a−a)x = x which implies x ∈ (1 − a−a)R.

(ii) Clearly, a0 ⊂ (Ra)0. The reverse inclusion is immediate when we
take x = 1 in (Ra)0 = {y ∈ R : xay = 0 for all x ∈ R}.

(iii) Let ya ∈ Ra. Then yax = 0 for any x ∈ a0, and ya ∈ 0(a0). Hence
Ra ⊂ 0(a0).

Conversely let y ∈ 0(a0). Then yx = 0 for all x ∈ a0. As y = ya−a +
y(1 − a−a) and 1 − a−a ∈ a0 by (i) above, we have y(1 − a−a) = 0, and
y = ya−a ∈ Ra. This proves 0(a0) ⊂ Ra.

(iv) is obvious.
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4. The g-Drazin inverse in rings

The original definition of the ‘pseudoinverse’ was given by Drazin [3] for
elements of semigroups and polar elements of rings. It was generalized by
Harte [5] to quasipolar elements, and studied by the first author in [8] in
Banach algebras. In this section we survey the properties of the generalized
Drazin inverse (called g-Drazin inverse) for quasipolar elements of rings;
many of the results will appear in this setting for the first time.

Definition 4.1. An element a ∈ R is generalized Drazin invertible (or
g-Drazin invertible for short) if there exists b ∈ R such that

b ∈ comm2(a), ab2 = b, a2b − a ∈ Rqnil.(4.1)

Any element b ∈ R satisfying these conditions is a g-Drazin inverse of a.
We denote the set of all g-Drazin invertible elements of R by RgD. If a2b−a
in the above definition is nilpotent, then a is called Drazin invertible and b
is called a Drazin inverse of a. The set of all Drazin invertible elements of
R will be denoted by RD. The following result ensures that these concepts
are well-defined.

Theorem 4.2. An element a ∈ R is g-Drazin invertible if and only if a
is quasipolar. In this case a ∈ R has a unique g-Drazin inverse aD given by
the equation

b = (a + aπ)−1(1 − aπ) = (1 − aπ)(a + aπ)−1.(4.2)

Proof. Suppose first that a is quasipolar with the spectral idempotent
p, and set b = (a + p)−1(1 − p). Then b ∈ comm2(a). Further,

ab2 = a(1 − p)(a + p)−2 = (a + p)(1 − p)(a + p)−2 = (1 − p)(a + p)−1 = b,

and

a2b − a = a2(1 − p)(a + p)−1 − a

= a(a + p)(a + p)−1(1 − p) − a

= −ap ∈ Rqnil.

Conversely assume that a is g-Drazin invertible with a g-Drazin inverse
b, and set p = 1 − ab. Then p ∈ comm2(a), and

(1 − p)2 = a2b2 = a(ab2) = ab = 1 − p,

which implies p2 = p. Finally, to prove that a + p ∈ R−1, we observe that

(a + p)(b + p) = ab + ap + bp + p = 1 − p + ap + p = 1 + ap ∈ R−1(4.3)

as bp = b(1−ab) = b−ab2 = 0. From (a+p)b = ab+pb = 1−p+pb = 1−p it
follows that b = (a+p)−1(1−p). The uniqueness of the spectral idempotent
of a proves the uniqueness of the g-Drazin inverse b.
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The preceding theorem together with Proposition 2.5 implies the follow-
ing result valid in rings with involution (see Section 5).

Proposition 4.3. Let R be a ring with involution. Then a is g-Drazin
invertible if and only if a∗ is g-Drazin invertible. In this case (a∗)D = (aD)∗.

Definition 4.4. The g-Drazin index i(a) of a quasipolar element a ∈ R
is defined by

i(a) =




0 if a ∈ R−1,
k if a2b − a is nilpotent of index k ∈ N,
∞ otherwise.

(4.4)

If i(a) ≤ 1, we call a group invertible; the Drazin inverse of a is then called
the group inverse, and is denoted by aD = a#. The set of all group invertible
elements will be denoted by R#.

We observe that the g-Drazin index of a ∈ R is finite if and only if a is
polar. The sets RgD, RD and R# coincides with the set of all quasipolar,
polar and simply polar elements of R, respectively. Note that RgD ⊃ RD ⊃
R# ⊃ R−1. We make the following useful observation.

Proposition 4.5. An element a ∈ R is Drazin invertible if and only if
there exists k ∈ N such that ak is group invertible.

In addition to (4.2) we have the following useful relations between the
spectral idempotent and the g-Drazin inverse established in the proof of
Theorem 4.2:

aπ = 1 − aDa = 1 − aaD, aπaD = aDaπ = 0.(4.5)

By (4.3) we also have that aD + aπ ∈ R−1. This leads to the following.

Proposition 4.6. If a ∈ RgD, then aD ∈ R#, and (aD)π = aπ. In
addition, aD ∈ R−.

Proof. All we need to prove is that aD is regular for any a ∈ RgD.
Write b = aD. Then bbDb = b(1 − bπ) = b − bbπ = b − aDaπ = b.

Equation (4.2) can be improved as follows.

Proposition 4.7. Let a ∈ RgD. If x ∈ R−1 ∩ comm(a), then a+ xaπ ∈
R−1 and

aD = (a + xaπ)−1(1 − aπ).(4.6)
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Proof. Let x ∈ R−1 ∩ comm(a). Then x commutes with aπ, and aaπ +
x ∈ R−1 according to (2.1). Hence

a + xaπ = (a + xaπ)aπ + (a + xaπ)(1 − aπ)
= (aaπ + x)aπ + (a + aπ)(1 − aπ),

which shows that

(a + xaπ)−1 = (aaπ + x)−1aπ + (a + aπ)−1(1 − aπ).

The result follows from the equation

(a + xaπ)aD = aaD + xaπaD = 1 − aπ

obtained from (4.5).

Remark 4.8. In rings the double commutativity of b with a in Defini-
tion 4.1 is necessary to guarantee the uniqueness of the g-Drazin inverse. In
[8, Lemma 2.4] it is erroneously claimed that the uniqueness of the g-Drazin
inverse follows from b ∈ comm(a). However, commutativity is sufficient
when R is a Banach algebra or a2b − a is nilpotent rather than quasinilpo-
tent.

Proposition 4.9. Let a ∈ R, and let b ∈ R be such that

b ∈ comm(a), ab2 = b, a2b − a ∈ Rnil.(4.7)

Then a is polar, and aD = b.

Proof. Let p = 1−ab. Then it can be easily verified that p ∈ comm(a),
p2 = p, ap ∈ Rnil, and (a + p)(b + p) = 1 + ap ∈ R−1 which implies
a + p ∈ R−1. Thus p satisfies the conditions of Proposition 2.6, and p =
aπ ∈ comm2(a). Hence a is polar and b = (a + p)−1(1 − p) ∈ comm2(a).
This proves b = aD.

Remark 4.10. Drazin [3] defined a pseudo-inverse of a ∈ R as an ele-
ment a′ ∈ R satisfying aa′ = a′a, a(a′)2 = a′ and am+1a′ = am for some
positive integer m. (For m = 0 we get a ∈ R−1 and a′ = a−1.) It can be
verified that these conditions on a′ are equivalent to (4.7). Hence the Drazin
original definition applies only to polar elements, in which case a′ = aD.

5. The Moore–Penrose inverse

An involution x �→ x∗ in a ring R is an anti-isomorphism of degree 2,
that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.
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We say that a is Moore–Penrose invertible if the equations

bab = b, aba = a, (ab)∗ = ab, (ba)∗ = ba(5.1)

have a common solution; such solution is unique if it exists (see [11]), and
is usually denoted by a†. The set of all Moore–Penrose invertible elements
of R will be denoted by R†.

The next well known lemma (see [11, p .407]) asserts that two one-sided
invertibility conditions imply the Moore–Penrose invertibility.

Lemma 5.1. Let a ∈ R. Then a ∈ R† if and only if there exist x, y ∈ R
such that axa = a = aya, (ax)∗ = ax and (ya)∗ = ya. In this case a† = yax.

Definition 5.2. An element a ∈ R is *-cancellable if

a∗ax = 0 =⇒ ax = 0 and xaa∗ = 0 =⇒ xa = 0.(5.2)

A ring R is *-reducing if all elements are *-cancellable. This is equivalent
to a∗a = 0 =⇒ a = 0 for all a. A *-regular ring is a *-reducing regular
ring.

Applying the involution to (5.2), we observe that a is *-cancellable if and
only if a∗ is *-cancellable. It is often useful to observe that

a is *-cancellable =⇒ a∗a and aa∗ are *-cancellable.(5.3)

Generalized inverses in *-regular rings, including the Moore–Penrose in-
verse, were studied by Hartwig in [6]. The local *-cancellation property was
used by Puystjens and Robinson in [12] to study the Moore–Penrose inverse
of a morphism in a category with involution. The condition ‖x∗x‖ = ‖x‖2

guarantees that any C∗-algebra (called a Hilbert algebra in [4, Section 8.8])
is a *-reducing ring.

Theorem 5.3. Let a ∈ R. Then a ∈ R† if and only if a is *-cancellable
and a∗a is group invertible. Then also aa∗ is group invertible and

a† = (a∗a)#a∗ = a∗(aa∗)#.(5.4)

Proof. Suppose that a ∈ R† and a∗ax = 0. Then

ax = aa†ax = (aa†)
∗
ax = (a†)

∗
a∗ax = 0.

Similarly we prove that xaa∗ = 0 =⇒ xa = 0. Hence a is *-cancellable.
The Moore–Penrose invertibility of a∗a is obtained by verifying that (a∗a)† =
a†(a†)∗. Since a∗a is symmetric, (a∗a)# = (a∗a)†.

Suppose that a is *-cancellable and a∗a is group invertible, and write
x = (a∗a)#a∗. The conditions xax = x, (ax)∗ = ax and (xa)∗ = xa can be
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verified by a direct calculation. By the group invertibility, a∗a(a∗a)π = 0,
and a(a∗a)π = 0 by *-cancellation. This gives

a − axa = a(1 − (a∗a)#a∗a) = a(a∗a)π = 0.

Hence x = a† and the first equation in (5.4) is proved.
We observe that a ∈ R† if and only of a∗ ∈ R†. Applying the preceding

result to a∗ in place of a, we get the rest of the theorem.

The following is the main result on the existence of Moore–Penrose in-
verse in rings with involution. Many of the equivalences were observed
earlier for matrices; we note that the *-cancellability holds automatically in
the *-regular ring of complex matrices of the same order. The equivalence of
conditions (i) and (ix) was proved by Puystjens and Robinson [12, Lemma 3]
in categories with involution.

Theorem 5.4. For a ∈ R the following conditions are equivalent :

(i) a ∈ R†;

(ii) a∗ ∈ R†;

(iii) a is *-cancellable and a∗a ∈ R†;

(iv) a is *-cancellable and aa∗ ∈ R†;

(v) a is *-cancellable and a∗a ∈ RD;

(vi) a is *-cancellable and aa∗ ∈ RD;

(vii) a is *-cancellable and a∗a ∈ R#;

(viii) a is *-cancellable and aa∗ ∈ R#;

(ix) a is *-cancellable and both aa∗ and a∗a are regular;

(x) a ∈ aa∗R∩Ra∗a;

(xi) a is *-cancellable and a∗aa∗ is regular.

Proof. First we prove the implications

(i) =⇒ (iii) =⇒ (v) =⇒ (vii) =⇒ (i).(5.5)

(i) =⇒ (iii) Follows from Theorem 5.3 and its proof.
(iii) =⇒ (v) A Moore–Penrose invertible symmetric element is Drazin

(in fact group) invertible.
(v) =⇒ (vii) Since a is *-cancellable, then so is x = a∗a by (5.3). Hence x

is Drazin invertible, symmetric and *-cancellable. We have (xπ)∗ = (x∗)π =
xπ by Proposition 2.5. Let k ∈ N be such that xkxπ = 0. From the symmetry
of x and its *-cancellability we deduce that xxπ = 0. Hence x = a∗a ∈ R#.
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(vii) =⇒ (i) This follows from Theorem 5.3.
Since a ∈ R† ⇐⇒ a∗ ∈ R†, (5.5) gives immediately

(ii) =⇒ (iv) =⇒ (vi) =⇒ (viii) =⇒ (ii),

and the equivalence of (i)–(viii) is established.
(viii) =⇒ (ix) As we showed, (viii) is equivalent to (vii), and together

they yield (ix) (group invertibility implies regularity).
(ix) =⇒ (x) From aa∗xaa∗ = aa∗ we get aa∗xa = a, and a∗aya∗a = a∗a

implies aya∗a = a by the *-cancellability of a. Hence, a ∈ aa∗R∩Ra∗a.
(x) =⇒ (i) If a = aa∗u = va∗a are consistent, then a∗u = (aa∗u)∗u =

u∗aa∗u = u∗a. Similarly, va∗ = av∗. Further, au∗a = aa∗u = a and
av∗a = va∗a = a. Then a ∈ R† by Lemma 5.1 with x = v∗ and y = u∗.

(i) =⇒ (xi) We note that a∗aa∗((a†)∗a†(a†)∗)a∗aa∗ = a∗aa†aa∗ = a∗aa∗.
(xi) =⇒ (x) If a∗aa∗ca∗aa∗ = a∗aa∗, then, by using the *-cancellability

of a twice, we get aa∗xa∗a = a, which implies a ∈ aa∗R∩Ra∗a.

From the equivalence of (i) and (vi) (or (i) and (vii)) in the preceding
theorem we recover [9, Theorem 2.4] in C∗-algebras and [13, Lemma 2] in
*-reducing rings.

6. Elements with equal spectral idempotents

In this section we give a characterization of elements of R with equal
spectral idempotents. In view of (4.5) we observe that

aπ = bπ ⇐⇒ aaD = bbD.

This problem was studied by Hartwig [7] for matrices over a ring in the
special case when bal+1 = al and abk+1 = bk. Our investigation is motivated
by a recent study of Castro et al. [2] for the case of complex matrices.

Theorem 6.1. Let a ∈ RgD and b ∈ R. The following conditions are
equivalent:

(i) b ∈ RgD and aπ = bπ;

(ii) aπ ∈ comm2(b), baπ ∈ Rqnil and b + aπ ∈ R−1;

(iii) aπ ∈ comm2(b), baπ ∈ Rqnil and aDb + aπ ∈ R−1;

(iv) b ∈ RgD, aDb + aπ ∈ R−1 and bD = (aDb + aπ)−1aD;

(v) b ∈ RgD and bD − aD = aD(a − b)bD;

(vi) b ∈ RgD, aπ ∈ comm(b) and 1 − (bπ − aπ)2 ∈ R−1;

(vii) bDR ⊂ aDR and (bD)0 ⊂ (aD)0.
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Proof. The equivalence of (i) and (ii) is Definition 2.2.
(ii) ⇐⇒ (iii) We show that under the assumption aπ ∈ comm2(b) and

aπb ∈ Rqnil,

b + aπ ∈ R−1 ⇐⇒ aDb + aπ ∈ R−1.(6.1)

Observe that

(aD + aπ)((1 − aπ)b + aπ) = aDb + aπ.(6.2)

Since aD + aπ ∈ R−1, from (6.2) we obtain

(b + aπ) − aπb ∈ R−1 ⇐⇒ aDb + aπ ∈ R−1.

As aπb ∈ Rqnil, (6.1) will follow when we show that aπb commutes with
b + aπ (obvious) and aDb + aπ (not so obvious):

aπb(aDb + aπ) = aπbaDb + aπbaπ = baπaDb + aπb = aπb,

(aDb + aπ)aπb = aDbaπb + aπb = aDaπb2 + aπb = aπb.

This proves the equivalence of (ii) and (iii).
(iii) =⇒ (iv) Let (iii) hold. From the equivalence of (i) and (iii) we

conclude that aπ = bπ. Then

(aDb + aπ)bD = aDbbD + aπbD = aD(1 − aπ) + bπbD = aD

in view of (4.5), and (iv) follows.
(iv) =⇒ (v) If bD = (aDb + aπ)−1aD, then aD = (aDb + aπ)bD, and

bD − aD = (1 − aDb − aπ)bD = (aDa − aDb)bD = aD(a − b)bD.

(v) =⇒ (i) From bD − aD = aD(a − b)bD we get bD = aD(bπ + abD).
Multiplying this expression on the right by bDb2, after a short calculation
we get bbD = aDabDb. Writing aaD = 1 − aπ and bbD = 1 − bπ, we get
aπ = aπbπ.

Similarly, multiplying aD = (aπ + aDb)bD on the left by a2aD, we get
aaD = aaDbbD, and bπ = aπbπ. Hence aπ = bπ.

(i) =⇒ (vi) is clear.
(vi) =⇒ (i) From baπ = aπb it follows that bπaπ = aπbπ since bπ ∈

comm2(b). Then 1 − (bπ − aπ)2 = (1 − aπ + bπ)(1 − bπ + aπ), and 1 − aπ +
bπ, 1 − bπ + aπ ∈ R−1. Further, aπ(1 − aπ + bπ) = aπbπ = bπ(1 − bπ + aπ).
Hence

aπ = (1 − aπ + bπ)−1aπbπ = (1 − aπ + bπ)−1(1 − aπ + bπ)aπbπ = aπbπ,

bπ = (1 − bπ + aπ)−1bπaπ = (1 − bπ + aπ)−1(1 − bπ + aπ)bπaπ = aπbπ.
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(vii) =⇒ (i) From (bD)0 ⊂ (aD)0 it follows that RaD ⊂ RaD. Indeed,
aD, bD are regular (with inner inverses aDa, bDb, respectively). By Proposi-
tion 3.1,

(RbD)
0

= (bD)
0 ⊂ (aD)

0
= (RaD)

0
,

and

RbD = 0((RbD)
0
) ⊃ 0((RaD)

0
) = RaD.

The inclusions RbD ⊃ RaD and bDR ⊂ aDR imply the consistency of the
equations

aD = ybbD, aaDx = bD,(6.3)

since aDR = aaDR and RbD = RbbD. Equation (6.3) is equivalent to

(1 − aaD)bD = 0 = aD(1 − bbD),(6.4)

which in turn implies

aD = aDbbD and bD = aaDbD.

Then aaD = aaDbbD and bbD = aaDbbD. Thus aaD = bbD, and aπ = bπ.
(i) =⇒ (vii) As aaD = bbD, then bDR = bbDR = aaDR = aDR. Sim-

ilarly, RbD = RaD, which implies (RbD)0 = (RaD)0, or (aD)0 = (bD)0

according to Proposition 3.1.

Specializing the equivalence of conditions (i)–(v) in the preceding the-
orem to complex matrices, we recover [2, Theorem 2.1]. Condition (vi)
appears to be new. Hartwig [7, Corollary 2] proved that if bal+1 = al and
abk+1 = bk, then aaD = bbD if and only if ak+l and bk+l commute.

Remark 6.2. The condition 1 − (bπ − aπ)2 ∈ R−1 in (vi) is equivalent
to the simultaneous validity of 1−aπ +bπ ∈ R−1 and 1−bπ +aπ ∈ R−1. We
show that it cannot be replaced by 1−aπ +bπ ∈ R−1 (or 1−bπ +aπ ∈ R−1)
alone. Let R be the ring of all real 3 × 3 matrices, and set

a =




1 0 0
0 0 0
0 0 1


 , b =




1 0 0
0 0 0
0 0 0


 .

Then aD = a, bD = b and

aπ =




0 0 0
0 1 0
0 0 0


 , bπ =




0 0 0
0 1 0
0 0 1


 .
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We note that baπ = aπb, and

1 − aπ + bπ =




1 0 0
0 1 0
0 0 2


 ∈ R−1,

while aπ �= bπ.

7. EP elements in rings with involution

Complex matrices and Hilbert space operators A with the property that
the ranges of A and A∗ coincide are known as EP or range-hermitian opera-
tors. For a discussion of EP matrices see [1, Chapter 4]. A detailed study of
EP elements in involutory rings was undertaken by Hartwig [6]. The concept
has been studied recently in the setting of C∗-algebras [10].

Definition 7.1. An element a of a ring R with involution is said to be
EP if a ∈ RgD ∩ R† and aD = a†. An element a is generalized EP (or gEP
for short) if there exists k ∈ N such that ak is EP.

We recall the following well known characterization of EP elements (see,
for instance, [6, 10]):

a is EP ⇐⇒ aa† = a†a.

In [2], the authors gave characterization of complex EP matrices based
on properties of matrices with the same eigenprojection at 0. This section is
motivated by these results. The key to the characterization of EP elements
is the following proposition involving equality of spectral idempotents of
various elements given without proof in [10, Corollary 2.2] in the setting of
C∗-algebras.

Theorem 7.2. For a ∈ R the following conditions are equivalent:

(i) a is EP;

(ii) a ∈ R# and aπ = (a∗)π;

(iii) a ∈ RgD ∩R† and aπ = (a∗a)π;

(iv) a ∈ RgD ∩R† and aπ = (aa∗)π;

(v) a ∈ R† and (a∗a)π = (aa∗)π.

Proof. (i) =⇒ (ii). Assume that a is EP. The group invertibility of a
follows from the equation aaπ = a(1 − aDa) = a(1 − a†a) = a − aa†a = 0.
Further, (a∗)π = (aπ)∗ = (1 − a†a)∗ = 1 − a†a = aπ.
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(ii) ⇐⇒ (iii). If (ii) holds, then a∗ ∈ R#, aπa∗a = a∗aaπ = 0, and

a∗a + aπ = (a∗ + aπ)(a + aπ) ∈ R−1

by properties of spectral idempotents of a∗ and a. From the definition of a
spectral idempotent we conclude that (a∗a)π = aπ. A direct check reveals
that a# satisfies the definition of a†; hence a ∈ R†.

Conversely, if (iii) holds, then a∗a ∈ R# by Theorem 5.3, and conse-
quently a∗a(a∗a)π = 0. By the *-cancellation for a, aaπ = a(a∗a)π = 0,
which shows that a ∈ R#. Since aπ is symmetric, (ii) holds.

(ii) ⇐⇒ (iv). This is the equivalence (ii) ⇐⇒ (iii) with a∗ in place of a.
(iii) and (iv) together obviously imply (v).
(v) =⇒ (i). If a ∈ R†, then a is *-cancellable, and a∗a and aa∗ are group

invertible by Theorem 5.3. According to (5.4) we have

a†a = (a∗a)#a∗a = 1 − (a∗a)π = 1 − (aa∗)π = aa∗(aa∗)# = aa†,

and a is EP.

Part (ii) of the preceding proposition states that an element is EP if
and only if a is group invertible and the elements a and a∗ have the same
spectral idempotent. When we apply our main Theorem 6.1 to this situation,
a number of conditions will coalesce. In particular, we have the following
result.

Theorem 7.3. An element a ∈ R is EP if and only if a is group invert-
ible and one of the following equivalent conditions holds:

(a) a#a is symmetric;

(b) (a#)∗ = aa#(a#)∗;

(c) (a#)∗ = (a#)∗a#a;

(d) a#(aπ)∗ = aπ(a#)∗.

Proof. First assume that a ∈ R#.
(a) =⇒ (b). From (a#)2a = a# we obtain a#(a#a)∗ = a# by the

symmetry of a#a. Then a#a∗(a#)∗ = a#; applying involution, we get (b).
(b) ⇐⇒ (c). Condition (c) is obtained from (b) with a∗ in place of a by

applying involution.
(b) =⇒ (d). We have

aπ(a#)
∗

= aπaa#(a#)
∗

= aπ(1 − aπ)(a#)
∗

= 0.

Hence aπ(a#)∗ = 0 = a#(aπ)∗.
Assume that a ∈ R# and (d) holds. From (d) we get

(1 − a#a)(a#)
∗

= a#(1 − a∗(a#)
∗
)
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and

(a∗)# − a# = a#(a − a∗)(a∗)#.

By Theorem 6.1 (vi) applied to b = a∗ we get (a∗)π = aπ; hence a is EP by
Theorem 7.2 (ii).

Conversely, if a is EP, then according to Theorem 7.2 (ii) a is group
invertible, and aπ = (a∗)π = (aπ)∗,that is, aπ is symmetric; then a#a is also
symmetric.

In the following theorem we obtain a particularly simple and elegant
characterization of EP elements in a ring with involution.

Theorem 7.4. An element a ∈ R is EP if and only if a is g-Drazin
invertible and one of the following equivalent conditions holds:

(a) a∗aπ = 0;

(b) aπa∗ = 0;

(c) a∗ = a∗aDa;

(d) a∗ = aDaa∗.

Proof. Assume that a ∈ RgD; then also a∗ ∈ RgD.
Under this assumption, the equivalence of (a) and (c) follows from the

equation a∗ − a∗aDa = a∗(1 − aDa) = a∗aπ. Applying (a) to a∗ in place of
a and taking involution, we see that (a) is equivalent to (b); similarly, (c) is
equivalent to (d).

Suppose that a ∈ RgD and (c) holds. We show that aDa is symmetric:

(aDa)
∗

= a∗(aD)
∗

= aDaa∗(aD)
∗

= (aDa)(aDa)
∗
.

Since (aDa)(aDa)∗ is symmetric, so is aDa. From a∗ = aDaa∗ we get aπa∗ =
0, which implies aaπ = 0. Then a ∈ R#, and a is EP by Theorem 7.3 (i).

Conversely assume that a is EP. Then a ∈ R# and aπ is symmetric by
Theorem 7.2 (ii). Hence a∗aπ = (aπa)∗ = 0, and (a) holds.

For matrices we recover [2, Theorem 5.2 (ii)]—without the redundant
condition that aDa is symmetric.

As a final result of this paper we obtain the following characterization
of gEP elements of R (see Definition 7.1) which follows from Theorems 7.3
and 7.4.

Theorem 7.5. An element a ∈ R is gEP if and only if a ∈ RD and one
of the following equivalent conditions holds:
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(a) aπ is symmetric;

(b) aDa is symmetric;

(c) ak ∈ R# and (aD)k(aπ)∗ = 0 for some k;

(d) ak ∈ R# and (aπ)∗(aD)k = 0 for some k;

(e) ak ∈ R# and (aD)k(aπ)∗ is symmetric for some k;

(f) ak(aπ)∗ = 0 for some k ∈ N;

(g) (aπ)∗ak = 0 for some k ∈ N;

(h) ak = (aDa)∗ak for some k ∈ N;

(i) ak = ak(aDa)∗ for some k ∈ N.
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