
Revisiting the Correspondence between Cut
Elimination and Normalisation

José Esṕırito Santo?

Laboratory for Foundations of Computer Science
Division of Informatics, The University of Edinburgh, James Clerk Maxwell Building,

The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland UK
jes@dcs.ed.ac.uk

Abstract. Cut-free proofs in Herbelin’s sequent calculus are in 1-1 cor-
respondence with normal natural deduction proofs. For this reason Her-
belin’s sequent calculus has been considered a privileged middle-point
between L-systems and natural deduction. However, this bijection does
not extend to proofs containing cuts and Herbelin observed that his cut-
elimination procedure is not isomorphic to β-reduction.

In this paper we equip Herbelin’s system with rewrite rules which, at the
same time: (1) complete in a sense the cut elimination procedure firstly
proposed by Herbelin; and (2) perform the intuitionistic “fragment” of
the tq-protocol - a cut-elimination procedure for classical logic defined
by Danos, Joinet and Schellinx. Moreover we identify the subcalculus of
our system which is isomorphic to natural deduction, the isomorphism
being with respect not only to proofs but also to normalisation.

Our results show, for the implicational fragment of intuitionistic logic,
how to embed natural deduction in the much wider world of sequent
calculus and what a particular cut-elimination procedure normalisation
is.

1 Introduction

In his paper about a “λ-calculus structure” isomorphic to a “Gentzen-style se-
quent calculus structure”[6], Herbelin proposed to define a λ-like calculus corre-
sponding to a LJ-like sequent calculus in the same way as λ-calculus corresponds
to natural deduction.

Herbelin starts by refining the simplest, many-one assignment of terms to
sequent calculus proofs, usually denoted by ϕ and that comes from the theory
of the relationship between sequent calculus and natural deduction [10, 15, 9,
11, 3]. The refinement is to consider a restriction of LJ called LJT (respec. a
term calculus called λ-calculus) whose cut-free proofs (respec. cut-free terms)
are in 1-1 correspondence with normal natural deduction proofs (respec. normal
λ-terms).

? The author is supported by Fundação para a Ciência e Tecnologia, Portugal.

Dyckhoff and Pinto [2, 3] showed the merits of the cut-free fragment of LJT
as a proof-theoretical tool and emphasized its privileged intermediate position
between sequent calculus and natural deduction. The purpose of this paper is to
define an intermediate system of this kind for proofs possibly containing cuts and
a cut-elimination procedure which together give an isomorphic copy of natural
deduction in sequent calculus format, with respect not only to proofs but also to
proof normalisation.

Full LJT is not the solution to this problem. The bijection with natural
deduction does not extend to proofs with cuts and Herbelin observed that his
cut-elimination procedure fails to implement full β-reduction (it just implements
a strategy).

The λ-calculus includes an operator of explicit substitution so that local
steps of cut permutation can be written as elementary steps of substitution
propagation (calculi of explicit substitution for similar purposes can be found
in [14, 5, 13]). Instead of making substitution explicit, we perform the complete
upwards permutation of a cut in a single step of reduction by a global operation.
This is inspired in the so-called tq-protocol, a cut-elimination procedure for
classical “coloured” proofs defined by Danos, Joinet and Schellinx [1].

We equip LJT with a reduction procedure of this kind which completes, in a
sense, LJT ’s original procedure, obtaining a sequent calculus and corresponding
λ-calculus which we call HJ+ and λ+

H , respectively. We prove that HJ+ is just
performing the intuitionistic “fragment” of the tq-protocol and that the typable
subcalculus of λ+

H is strongly normalising and confluent. Furthermore, we identify
natural subsystems HJ and λH such that HJ (respec. λH) is isomorphic, in the
strong sense required above, to NJ (respec. λ). In particular, both λ+

H and λH

implement full β-reduction.
The reader finds in Table 1 (where inc stands for inclusion) a map of systems

and translations which will appear in the following.

Notations and Terminology

We just treat intuitionistic implicational logic (implication written as ⊃). Baren-
dregt’s convention applies to all calculi in this paper. A context is a consistent
set of declarations x : A. By consistent we mean that if x : A and x : B are in a
context, then A = B. Contexts are ranged over by Γ . We write x ∈ Γ meaning
x : A ∈ Γ for some A. Γ, x : A denotes the consistent union Γ ∪ {x : A}, which
means that, if x is already declared in Γ , then it is declared with type A.

We call left (respec. right) subderivation of a cut instance the subderivation
in which the cutformula occurs in the RHS (respec. LHS) of its endsequent. Such
cutformula is called the left (respec. right) cutformula of that instance.

2 Background

2.1 Herbelin’s LJT and λ-calculus

We refer to [6] for details about LJT and λ. We adopt some simplification of
syntax introduced in [2] (but the numbering of cuts is different!). Table 2 presents

Table 1. Map of systems and translations

LJT/λ

LJT+/λ
+

inc

?

LJ t ¾ ρ

ϕ
- HJ+/λ+

H

...............
¾inc

()−
- HJ/λH

¾Ψ

Θ
- NJ/λ

the syntax and typing rules of λ (and thus the inference rules of LJT) and the
reduction rules of λ which define the cut-elimination procedure of LJT (Der
stands for Dereliction).

In λ there are two kinds of expressions: terms and lists of terms. The term
x[t1, ..., tn] can be seen as the λ-term (...(xt1)...tn) but with the advantage of
having the head-variable at the surface. t{x := v} and l{x := v} are explicit
substitution operators and ll′ is an explicit append of list (cf. the reduction
rules). Notice that in t{x := v} and l{x := v}, x is bound and x /∈ FV (v).

There are two kinds of derivable sequents: Γ ;− ` t : B and Γ ;A ` l : B.
In both there is a distinguished position in the LHS called stoup. The crucial
restriction of LJT is that the rule L ⊃ introduces A ⊃ B in the stoup and B has
to be in the stoup of the right subderivation’s endsequent. Forget for a second
rules cut2 and cut4. In this case (in particular in cut-free LJT), besides Ax, no
rule can introduce a formula in the stoup and thus the last rule of the right
subderivation of an instance of L ⊃ is again L ⊃ and so on until Ax is reached.

There are two kinds of cuts (head-cut and mid-cut) according to whether the
right cutformula is in the stoup or not. Notice that in the reduction rules there
are no permutation of cuts.

2.2 LJt and the Intuitionistic “tq-protocol”

Table 3 presents the sequent calculus LJ t and a corresponding, nameless term
calculus in which a cut-elimination procedure is expressed.

We leave to the reader to provide the definitions of free and bound variable
in a term L. The idea is that, in L(x, L1, (y)L2), x occurs free and y bound. By
Barendregt’s convention, neither y occurs free in L1 nor x occurs bound in L1 or

Table 2. Herbelin’s LJT and λ-calculus

u, v, t ::= xl |λx.t | tl | t{x := v}
l, l′ ::= [] | t :: l | ll′ | l{x := v}

Ax
Γ ; A ` [] : A

Der
Γ ; A ` l : B

Γ, x : A;− ` xl : B

L ⊃ Γ ;− ` t : A Γ ; B ` l : C
Γ ; A ⊃ B ` t :: l : C

R ⊃ Γ, x : A;− ` t : B
Γ ;− ` λx.t : A ⊃ B

x /∈ Γ

mid-cuts

cut1
Γ ;− ` v : A Γ, x : A;− ` t : B

Γ ;− ` t{x := v} : B
x /∈ Γ cut2

Γ ;− ` v : A Γ, x : A; C ` l : B
Γ ; C ` l{x := v} : B

x /∈ Γ

head-cuts

cut3
Γ ;− ` t : A Γ ; A ` l : B

Γ ;− ` tl : B
cut4

Γ ; C ` l : A Γ ; A ` l′ : B
Γ ; C ` ll′ : B

(λ11) (λx.t)(u :: l) → t{x := u}l
(λ12) t[] → t

(λ21) (xl)l′ → x(ll′), l′ 6= []

(λ31) (u :: l)l′ → u :: (ll′)
(λ32) []l → l

(λ41) (xl){x := v} → vl{x := v}
(λ42) (yl){x := v} → yl{x := v}, y 6= x

(λ43) (λy.u){x := v} → λy.u{x := v}

(λ51) (u :: l){x := v} → u{x := v} :: l{x := v}
(λ52) []{x := v} → []

Table 3. LJ t

L ::= Ax(x) |Cut(L, (y)L) | L(x, L, (y)L) |R((x)L)

Ax
Γ, x : A ` Ax(x) : A

L ⊃ Γ ` L1 : A Γ, y : B ` L2 : C
Γ, x : A ⊃ B ` L(x, L1, (y)L2) : C

, y /∈ Γ

R ⊃ Γ, x : A ` L : B
Γ ` R((x)L) : A ⊃ B

x /∈ Γ

Cut
Γ ` L1 : A Γ, y : A ` L2 : C

Γ ` Cut(L1, (y)L2) : C
y /∈ Γ

Structural step S1:

Cut(L1, (x)L2) → L2[L1/x], if x is not freshly and logically introduced in L2

Structural step S2:

Cut(L1, (x)L2) → L1[(x)L2/−],
if x is freshly and logically introduced in L2 and L1 6= R((z)L0) all z, L0

Logical step:

Cut(R((z)L0), (x)L(x, L1, (y)L2))
→ Cut(Cut(L1, (z)L0), (y)L2),

if x is freshly introduced in L(x, L1, (y)L2))

where
Ax(x)[L/x] = L
Ax(y)[L/x] = Ax(y), y 6= x

L(x, L′, (z)L′′)[L/x] = Cut(L, (x)L(x, L′[L/x], (z)L′′[L/x])
L(y, L′, (z)L′′)[L/x] = L(y, L′[L/x], (z)L′′[L/x]), y 6= x

R((y)L′)[L/x] = R((y)L′[L/x])
Cut(L′, (y)L′′)[L/x] = Cut(L′[L/x], (y)L′′[L/x])

Ax(y)[(x)L/−] = L[y/x]
L(y, L′, (z)L′′)[(x)L/−] = L(y, L′, (z)L′′[(x)L/−])

R((y)L′)[(x)L/−] = Cut(R((y)L′), (x)L)
Cut(L′, (y)L′′)[(x)L/−] = Cut(L′, (y)L′′[(x)L/−])

L2, although x may occur free in L1 or L2 (meaning that an implicit contraction
is happening).

The cut-elimination procedure is a “fragment” of the so-called tq-protocol,
a strongly normalising and confluent procedure for classical, “coloured” proofs
defined in [1]. To be precise, it is the restriction of the tq-protocol to intuitionistic,
t-coloured proofs in which an “orientation” of the multiplicative connective ⊃
has been fixed.

Roughly, the protocol works as follows: a cut is firstly permuted upwards
through its right subderivation (structural step S1) and then through its left
subderivation (structural step S2) until it becomes a logical cut, to which the
logical step applies, giving rise to new cuts of lower degree. A logical cut is a cut
whose both cutformulas are freshly and logically introduced, i.e. introduced by a
logical rule (L ⊃ or R ⊃) without implicit contraction. An equivalent description
of step S1 (respec. step S2) is: to push the left (respec. right) subderivation
upwards through the “tree of ancestors” [1] of the right (respec. left) cutformula.

The operations L2[L1/x] and L1[(x)L2/−] implement the structural steps
S1 and S2, respectively, and are inspired in the operations of substitution and
co-substitution defined by Urban and Bierman in [12].

3 HJ+ and the λ+
H-calculus

We refer to Table 4 for the definition of HJ+ and λ+
H . The motivation for these

systems rests in the following observations.
The “life cycle” of a cut in LJT has three stages. It starts as a mid-cut

and the first stage is a upwards permutation through its right subderivation,
performed by rules λ4i and λ5j. The goal is to generate head-cuts (see rule
λ41). The operation subst performs this permutation in a single step. In doing
so, cuts of the form l{x := v} become “internal” to this process and hence are
not needed in the syntax. Now observe that in LJT such permutation of a mid-
cut can complete only if, in its course, we do not need to permute this mid-cut
with another cut. This is why, in the definition of subst, extra clauses occur
corresponding to the permutations

(λ44) (tl){x := v} → t{x := v}l{x := v} ,

(λ45) t{y := u}{x := v} → t{x := v}{y := u{x := v}} .

Let us return to the head-cuts generated by the first stage. Notice that in a
head-cut vl, if l 6= [] then its right cutformula is freshly and logically introduced.
Such a cut is permuted upwards through its left subderivation by the rules λ21
and λ3i, generating along the way λ11-redexes, i.e. logical cuts in the LJ t sense.
The last stage of the “life cycle” of these logical cuts is λ11-reduction, by which
cuts of lower degree are generated.

Again the operation insert performs in a single step the permutations of the
second stage and cuts ll′ become “internal” and thus superfluous in the syntax.
Extra clauses in insert’s definition correspond to the permutations

Table 4. HJ+ and λ+
H -calculus

u, v, t ::= xl |λx.t | tl | t{x := v}
l, l′ ::= [] | t :: l

Ax
Γ ; A ` [] : A

Der
Γ ; A ` l : B

Γ, x : A;− ` xl : B

L ⊃ Γ ;− ` t : A Γ ; B ` l : C
Γ ; A ⊃ B ` t :: l : C

R ⊃ Γ, x : A;− ` t : B
Γ ;− ` λx.t : A ⊃ B

x /∈ Γ

mid− cut
Γ ;− ` v : A Γ, x : A;− ` t : B

Γ ;− ` t{x := v} : B
x /∈ Γ

head− cut
Γ ;− ` t : A Γ ; A ` l : B

Γ ;− ` tl : B

(mid) t{x := v} → subst(v, x, t)
(head) tl → insert(l, t), if t is not a λ-abstraction or l = []

(log) (λx.t)(u :: l) → t{x := u}l

where

subst(v, x, x[]) = v
subst(v, x, xl) = v subst(v, x, l), l 6= []
subst(v, x, yl) = y subst(v, x, l), y 6= x

subst(v, x, λy.t) = λy.subst(v, x, t)
subst(v, x, tl) = subst(v, x, t)subst(v, x, l)

subst(v, x, t{y := u}) = subst(v, x, t){y := subst(v, x, u)}

subst(v, x, u :: l) = subst(v, x, u) :: subst(v, x, l)
subst(v, x, []) = []

insert([], t) = t
insert(l, xl′) = x append(l′, l), l 6= []

insert(l, λx.t) = (λx.t)l, l 6= []
insert(l, tl′) = t append(l′, l), l 6= []

insert(l, t{x := v}) = insert(l, t){x := v}, l 6= []

append(t :: l, l′) = t :: append(l, l′)
append([], l′) = l′

(λ22) (tl′)l → t(l′l) ,

(λ23) (t{x := v})l → (tl){x := v} .

Define LJT+ as LJT plus the four new reduction rules just presented. We
leave to the reader the formalisation of the obvious relations between LJT ,
LJT+ and HJ+.

On the other hand, it should be clear that reductions →m(id) and →h(ead) in
HJ+ have a strong connection with the structural steps S1 and S2, respectively,
of LJ t and that, roughly (but not exactly), a mid-cut is a S1-redex and a head-
cut is a S2-redex. This is formalised by defining a map ρ : HJ+ → LJ t as in
Table 5 (where z /∈ FV (l) in the second and last clauses of the definition of ρ).

Table 5. Translations ρ and ϕ

ρ(x[]) = Ax(x)
ρ(x(t :: l)) = L(x, ρ(t), (z)ρ(zl))

ρ(λx.t) = R((x)ρ(t))
ρ(t{x := v}) = Cut(ρ(v), (x)ρ(t))

ρ(tl) = Cut(ρ(t), (z)ρ(zl))

ϕ(Ax(x)) = x[]
ϕ(R((x)L)) = λx.ϕ(L)

ϕ(L(x, L1, (y)L2)) = ϕ(L2){y := x[ϕ(L1)]}
ϕ(Cut(L1, (y)L2)) = ϕ(L2){y := ϕ(L1)}

Lemma 1. ρ(subst(v, x, t)) = ρ(t)[ρ(v)/x], if x /∈ FV (v).

Proposition 1. If t →m t′ in HJ+ then either ρ(t) →S1 ρ(t′) or ρ(t) = ρ(t′)
in LJ t.

The single anomaly is a mid-step of the form

(xl){x := v} →m vl , (1)

where x /∈ FV (l), which collapses in LJ t because ρ((xl){x := v}) = ρ(vl). There
is another (and last) anomaly, this time regarding head-cuts. The term t[] is a
S1-redex and not a S2-redex. We can split →h as

(h1) t[] → t
(h2) tl → insert(l, t), if t is not a λ-abstraction and l 6= []

and then:

Lemma 2. ρ(insert(l, t)) = ρ(t)[(z)ρ(zl)/−], if z /∈ FV (l) and l 6= [].

Proposition 2. If t →hi t′ in HJ+ then ρ(t) →Si ρ(t′) in LJ t, i = 1, 2.

Finally:

Proposition 3. If t →log t′ in HJ+ then ρ(t) →Log ρ(t′) in LJ t.

Corollary 1. The typable terms of λ+
H are strongly normalising.

Proof. By strong normalisation of the tq-protocol, Propositions 1,2,3 and the
fact that there can be no infinite reduction sequence starting from a λ+

H -term
and only made of steps (1). ut

In the following it will be useful, namely for proving confluence of λ+
H , to

consider a translation ϕ : LJ t → HJ+, as defined in Table 5.

4 HJ and the λH-calculus

HJ (see Table 6) was obtained by simplifying HJ+ in such a way that the new
calculus could be proved isomorphic to NJ by means of functions Ψ, Θ extending
those defined in [2] between cut-free LJT and normal NJ .

The first thing to do is to get rid of mid-cuts and →m. This requires that log
becomes

(λx.t)(u :: l) → subst(u, x, t)l . (2)

However this is not enough. One problem is that we would have Θ(t[]) = Θ(t)
and thus Θ would not be injective. Hence we must require l 6= [] in every head-
cut tl. The second problem is that Ψ(M) will be h-normal, for all λ-term M .
This requires two measures: (a) We restrict ourselves to h-normal terms. When
mid-cuts are dropped, t(u :: l) is h-normal iff t is a λ-abstraction. Thus head-
cuts are required to be of the restricted form (λx.t)(u :: l). (b) We drop →h

and have to reduce immediately, by performing insert, the h-redexes generated
in (2). Now subst(u, x, t)l can itself be a h-redex and the h-redex ul′ may be
created at subformulas of t of the form xl′. This explains the first clause in the
new definition of subst in HJ and the new version of (2) which we call βH .

Every λH -term is a λ+
H -term and next proposition says that βH is a packet

of several steps of reduction in HJ+ and, indirectly, in the tq-protocol.

Proposition 4. If t →βH
t′ in HJ then t →+

l,m,h t′ in HJ+.

Conversely, there is a translation ()− : HJ+ → HJ defined by:

(xl)− = xl− ,
(λx.t)− = λx.t− ,

(tl)− = insert(l−, t−) ,
(t{x := v})− = subst(v−, x, t−) ,

(u :: l)− = u− :: l− ,
([])− = [] .

Define ρ as the restriction of ρ to HJ and ϕ = ()− ◦ ϕ. These ρ, ϕ extend
those of [3].

Table 6. HJ and λH -calculus

u, v, t ::= xl |λx.t | (λx.t)(v :: l)
l, l′ ::= [] | t :: l

Ax
Γ ; A ` [] : A

Der
Γ ; A ` l : B

Γ, x : A;− ` xl : B

L ⊃ Γ ;− ` t : A Γ ; B ` l : C
Γ ; A ⊃ B ` t :: l : C

R ⊃ Γ, x : A;− ` t : B
Γ ;− ` λx.t : A ⊃ B

x /∈ Γ

beta− cut
Γ, x : A;− ` t : B Γ ;− ` v : A Γ ; B ` l : C

Γ ;− ` (λx.t)(v :: l) : C
x /∈ Γ

(βH) (λx.t)(v :: l) → insert(l, (subst(v, x, t))

where

subst(v, x, xl) = insert(subst(v, x, l), v)
subst(v, x, yl) = y subst(v, x, l), y 6= x

subst(v, x, λy.t) = λy.subst(v, x, t)
subst(v, x, (λy.t)(u :: l)) = (λy.subst(v, x, t))(subst(v, x, u) :: subst(v, x, l))

subst(v, x, u :: l) = subst(v, x, u) :: subst(v, x, l)
subst(v, x, []) = []

insert([], t) = t
insert(l, xl′) = x append(l′, l), l 6= []

insert(l, λx.t) = (λx.t)(u :: l′), l = u :: l′

insert(l, (λx.t)(u :: l′)) = (λx.t) (u :: append(l′, l)), l 6= []

append(t :: l, l′) = t :: append(l, l′)
append([], l′) = l′

Proposition 5. ϕ ◦ ρ = id.

Corollary 2. The typable subcalculs of λ+
H is confluent.

Proof. Since the typable subcalculus of λ+
H is strongly normalising, it suffices, by

Newman’s Lemma, to prove uniqueness of normal forms. Suppose t →∗ t1, t2 and
that both ti are cut-free. By the simulation results above, ρ(t) →∗ ρ(t1), ρ(t2)
and, since ρ preserves cut-freeness, both ρ(ti) are cut-free. As ρ preserves ty-
pability, ρ(t1) and ρ(t2) are obtained within the tq-protocol and, by confluence
of the tq-protocol, ρ(t1) = ρ(t2). Now crucially t1, t2 ∈ HJ because t1, t2 are
cut-free. Then, t1 = ϕ(ρ(t1)) = ϕ(ρ(t1)) = ϕ(ρ(t2)) = ϕ(ρ(t2)) = t2. ut

Now let us turn to the relation between HJ and NJ . It is convenient to give
the syntax of λ-calculus as

M, N ::= x |λx.M | app(A)
A ::= xM | (λx.M)N |AM .

Translations Ψ and Θ between HJ and NJ are given in Table 7.

Table 7. Translations Ψ and Θ

Ψ(x) = x[]
Ψ(λx.M) = λx.ΨM

Ψ(app(A)) = Ψ ′(A, [])

Ψ ′(xM, l) = x(ΨM :: l)
Ψ ′((λx.M)N, l) = (λx.ΨM)(ΨN :: l)

Ψ ′(AM, l) = Ψ ′(A, ΨM :: l)

Θ(x[]) = x
Θ(x(u :: l)) = Θ′(xΘu, l)

Θ(λx.t) = λx.Θt
Θ((λx.t)(u :: l)) = Θ′((λx.Θt)Θu, l)

=
Θ′(A, []) = app(A)

Θ′(A, u :: l) = Θ′(AΘu, l)

Proposition 6. Θ ◦ Ψ = id and Ψ ◦Θ = id.

Proof. Extend the proof in [2]. ut
Lemma 3. Ψ(M [N/x]) = subst(ΨN, x, ΨM).

Corollary 3. Θ(subst(v, x, t)) = Θt[Θv/x].

The promised isomorphism of normalisation procedures is the following

Theorem 1.

1. If M →β M ′ in NJ then ΨM →βH ΨM ′ in HJ .
2. If t →βH

t′ in HJ then Θt →β Θt′ in NJ .

Hence β and βH are isomorphic, but β performs normalisation in NJ whereas
βH performs cut elimination in HJ .

5 Further Work

There are two main directions of further work.
First, to extend this work to the other connectives of intuitionistic predicate

logic. Challenging seems to be the positive fragment and the treatment in this
framework of the anomalies caused by disjunction and reported in [15].

Second, to generalise the whole enterprise to classical logic. The key players
should be Herbelin’s LKT and λµ-calculus [7], Parigot’s natural deduction and
λµ-calculus [8] and an appropriate LKt. We plan to report on this in [4].

Acknowledgements

We thank Samson Abramsky for encouragement and guidance, Lúıs Pinto for his
enthusiasm about this work and René Vestergaard for many chats on structural
proof theory.

References

1. V. Danos, J-B. Joinet, and H. Schellinx. A new deconstructive logic: linear logic.
The Journal of Symbolic Logic, 62(2):755–807, 1997.

2. R. Dyckhoff and L. Pinto. Cut-elimination and a permutation-free sequent calculus
for intuitionistic logic. Studia Logica, 60:107–118, 1998.

3. R. Dyckhoff and L. Pinto. Permutability of proofs in intuitionistic sequent calculi.
Theoretical Computer Science, 212:141–155, 1999.

4. J. Esṕırito Santo, 2000. PhD Thesis (in preparation).
5. J. Gallier. Constructive logics. Part I. Theoretical Computer Science, 110:248–339,

1993.
6. H. Herbelin. A λ-calculus structure isomorphic to a Gentzen-style sequent calculus

structure. In L. Pacholski and J. Tiuryn, editors, Proceedings of CSL’94, volume
933 of Lecture Notes in Computer Science, pages 61–75. Springer-Verlag, 1995.

7. H. Herbelin. Sequents qu’on calcule, 1995. PhD Thesis, Université Paris VII.
8. M. Parigot. λµ-calculus: an algorithmic interpretation of classic natural deduction.

In Int. Conf. Logic Prog. Automated Reasoning, volume 624 of Lecture Notes in
Computer Science. Springer Verlag, 1992.

9. G. Pottinger. Normalization as a homomorphic image of cut-elimination. Annals
of Mathematical Logic, 12:323–357, 1977.

10. D. Prawitz. Natural Deduction. A Proof-Theoretical Study. Almquist and Wiksell,
Stockholm, 1965.

11. A.M. Ungar. Normalization, Cut-eliminations and the Theory of Proofs. Num-
ber 28 in CSLI Lecture Notes. 1992.

12. C. Urban and G. Bierman. Strong normalisation of cut-elimination in classical
logic. In Proceedings of TLCA’99, Lecture Notes in Computer Science. Springer-
Verlag, 1999.

13. R. Vestergaard and J.Wells. Cut rules and explicit substitutions. In Second Inter-
national Workshop on Explicit Substitutions, 1999.

14. P. Wadler. A Curry-Howard isomorphism for sequent calculus, 1993. Manuscript.
15. J. Zucker. The correspondence between cut-elimination and normalization. Annals

of Mathematical Logic, 7:1–112, 1974.

