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Abstract

For the past few years, we have begun to witness an exponential growth in the inform-

ation and communication technologies (ICT) sector. While undoubtedly a milestone, all of

this occurs at the expense of high energy costs needed to supply servers, data centers, and

any use of computers. Associated with these high energy costs is the emission of greenhouse

gases. These two issues have become major problems in society. The ICT sector contributes

to 7% of the overall energy consumption, with 50% of the energy costs of an organization

being attributed to the information technology (IT) departments.

Most of the measures taken to address the high level of energy consumption have been

on the hardware side. Although is the hardware that does consume energy, it is the software

that operates that hardware. As a consequence, the software is the main responsible for

the energy consumed by the hardware, very much like a driver that drives/operates a car

influences drastically the fuel consumed by the car.

This dissertation proposes and implements a methodology to analyze the software energy

consumption. This methodology relates energy consumption to the source code of a soft-

ware application, so that software developers are aware of the energy footprint that he/she

is creating with his/her application. The proposed technique interprets abnormal energy

consumption as software faults, and adapts a well-known technique for locating faults on

programs’s source code, to locate “energy faults”, that we name as “energy leaks”.

This methodology has been fully implemented in a software framework that monitors

the energy consumed by a software program and identifies its energy leaks, given its source

code. Moreover, a list of problematic parts of the code is produced, thus, helping software

developers identifying energy faults on their source code. We validate our findings by showing

that our methodology can automatically find energy leaks in programs for which such leaks

are known.

With this results, one intends to provide help to the development phase and to gener-

ate more energy efficient programs that will have less energy costs associated with, while

supporting practices that promote and contribute to sustainability.
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Resumo

Localização de falhas de energia baseada no espectro do programa

Nos últimos anos, temos vindo a assistir a um crescimento exponencial no sector das

tecnologias de comunicação e informação (TIC). Contudo, e apesar de, inquestionavelmente,

se tratar um marco importante, tudo isto ocorre à custa de altos gastos de energia necessários

para alimentar servidores, centros de dados e qualquer uso de computadores.

Paralelamente, associado aos altos custos de energia estão as emissões dos gases de efeito

de estufa. Estas duas questões têm-se tornado grandes problemas da sociedade. O sector das

TIC contribúı para 7% do consumo global de energia, o que representa, para o departamento

de Tecnologias de Informação de uma organização, 50% de custos, associados, à energia.

A maioria das medidas adotadas para resolver o ńıvel elevado do consumo de energia, têm

sido feitas do lado do hardware. Apesar de ser o hardware que consume energia efectivamente,

é o software que opera esse hardware. Como consequência deste facto, o software é o maior

responsável pela energia consumida pelo hardware, tal como um condutor que dirige/opera

um carro influencia drasticamente o consumo de combust́ıvel de um carro.

Esta dissertação propõe e implementa uma metodologia para analisar o consumo de

energia por parte do software. Esta metodologia relaciona o consumo de energia com o

código fonte de uma aplicação, permitindo que os desenvolvedores das aplicações estejam

conscientes da pegada de energia que a sua aplicação está a ter. A técnica proposta interpreta

um consumo de energia anormal como falhas no software, e adapta uma técnica de localização

de falhas em código fonte bem conhecida, para localizar falhas de energia denominadas energy

leaks.

A metodologia foi implementada numa framework que monitoriza a energia consumida

por uma aplicação e dado o seu código fonte, identifica as suas falhas energéticas. Como

adição, uma lista das partes problemáticas do código é produzida, ajudando assim os desen-

volvedores a identificar as falhas de energia no seu código. Validamos os nossos resultados

mostrando que a nossa metodologia consegue automaticamente encontrar falhas de energia

em programas para os quais essas falhas são conhecidas.
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Com estes resultados, pretende-se contribuir com uma ajuda na fase de desenvolvimento

e na criação de programas mais eficientes a ńıvel energético que terão menores custos de en-

ergia associados, ajudando a práticas que promovem e contribuem para a sustentabilidade.
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1 INTRODUCTION

1. Introduction

Currently, we are witnessing a technological era where information media has grown

exponentially, with billions of users. Almost everyone has access to computers, and the

internet is accessible virtually anywhere, which is undoubtedly a milestone in the field of

content delivery [Guelzim and Obaidat, 2013].

The problem with this globalization is that all of this occurs at the expense of energy

consumption that is the necessary and indispensable element to supply servers, data centers

and any use of computers [Guelzim and Obaidat, 2013]. The energy required to meet the

growing demand for power to run the Information and Communication Technologies (ICT)

infrastructure and storage its information, grows faster along with the widespread diffusion

of cloud services over the internet [Ricciardi et al., 2013]. This fast and growing power

consumption attracted the attention of governments, industry and academia [Zhang and

Ansari, 2013]. Also, associated with this energy consumption, is the emission of greenhouse

gases. These two issues are becoming a major problem in the society of information and

communication [Ricciardi et al., 2013].

The costs of energy consumption in the field of ICT will be increasing over the next 20

years [Rühl et al., 2012] which alone is a great incentive for green practices. The ICT with

its intrinsic properties and with their use, helps to reduce the energy consumption in other

sectors. Nonetheless, it has a forecast increase in their energy consumption. Its share of

7% in global energy consumption will be increased to more than 14.5% in 2020 [Vereecken

et al., 2010].

Recently, the world has witnessed an exponential growth of IT devices. Data centers

are nowadays a common term in the vocabulary of informatics and all the big technological

companies have this kind of infrastructure. Although these infrastructures endure what is

widely known as the cloud, and upon all the benefits that this feature brings, maintaining

data centers carries substantial energy costs related to supply (huge set of machines and

devices as well as cooling systems) [Mouftah and Kantarci, 2013]. Adding up to the costs,

there is still a large amount of greenhouse gases in this eco-system. With what is expected to

be a future reality in a very short period of time, the Internet of Things [Atzori et al., 2010],

1



1 INTRODUCTION

it is expected that the network of devices present increases significantly. That fact itself will

imply that there is an infrastructure capable of handling this increase of information which

will naturally result in a boost of global energy consumption.

The energy consumption has an immediate impact on the business value. In fact, the

energy costs associated with information technology departments constitute approximately

50% of the overall energy costs of the entire organizations [Harmon and Auseklis, 2009].

There is also electricity that is wasted, and potentially avoidable, that is leading to high

operating costs [Zhang and Ansari, 2013]. Thus, this raises the need and expectation of

reducing the energy costs and the impact on the environment, by directing attention to

these issues [Harmon and Auseklis, 2009].

Energy efficiency requires a thorough investigation to discover and understand everything

that is related with it [Zhang and Ansari, 2013]. ICT services require the integration of

sustainable practices for green computing to meet sustainability requirements [Harmon and

Auseklis, 2009]. This term, green computing, refers to the practice of using computing

resources more efficiently, maintaining or increasing their overall performance. Although

the original conceptual already exists for two decades now, only since the last decade has it

received more attention [Harmon and Auseklis, 2009].

Thus, green computing paradigms are emerging to reduce energy consumption, the

resulting emissions of greenhouse gases, and operating costs [Ricciardi et al., 2013], that is,

researchers and companies are trying to find solutions that make all these systems energy

efficient [Mouftah and Kantarci, 2013].

The industry is becoming more active in the area of green computing, increasingly

attempting to reduce costs and energy consumption. For example, Symantec, using the

monitoring of their resources, found there were some resources that were being squandered

and by implementing measures to reduce this waste they saved close to $2 million and more

than 6 million kilowatts of energy [Symantec, 2008a,b]. Google also made some changes,

using customized cooling systems in their data centers bettered the energy consumption

values [Google, 2014].

New researches and discussions are being addressed to enable new solutions that use

energy as an additional constraint, minimizing its consumption [Ricciardi et al., 2013].

2



1 INTRODUCTION

This Thesis addresses in detail green computing in the energy consumption of software.

Nowadays when one says that a program is efficient, the term efficient encapsulates the

notion that software is fast to execute and performs the task without requiring a lot of

resources (CPU, memory, disk, etc.). However, efficiency can also be applied to energy, and

it is exactly this notion that one needs to change in the consciousness of the programmer,

the notion that it is also possible to have an efficient software in terms of energy.

All the hardware components of ICT consume a constant power consumption to be run-

ning. When they are performing operations they increase this power consumption. These

operations are directly related to the software needs, which makes the study of energy con-

sumption quite pertinent in software. Due to the fact that it is software that makes hardware

perform its tasks, up to 90% of the energy used by ICT can be attributed to software applic-

ations running on them [Standard, 2013]. The design of software has significant impact on

the amount of energy used [Standard, 2013]. So it is very important that software engineers

are aware of the consumed energy by the software they design, in order to project more

efficiently in regards to energy consumption, knowing precisely where the high consumption

parts are and how to correct them.

1.1. Research Questions

During my Thesis work, three important questions arose, relative to the design of a

technique to analyze the software and identify its energy leaks (anomalous values of energy

consumption). These questions when answered, help to better understand what was made,

and if/how we were able to accomplish its challenges.

1. Can we define a methodology to analyze the energy consumption of software source

code?

2. Is it possible to adapt a general purpose fault localization algorithm to the context of

energy leak localization?

3. Can we find energy leaks in software source code?

By the time I conclude my dissertation, I plan to easily answer all of these questions.

3



1 INTRODUCTION

1.2. The Solution

The objective of this Thesis is to create a technique to analyze a program’s execution

with a test suite and discover the energy leaks present in the software program.

There are two points of views in the energy consumption: the energy consumption and

power consumption. While the energy consumption is the total energy consumed during a

period of time and is measured in joules (J), defined in the International System of Units

(SI), the power consumption is the energy consumed per unit time (J/s), or as is defined

in the SI, watts (W). The energy consumption indicates, for a given component, the total

energy consumed which is the desired information when we want to extract information

from an analysis on where we can make some changes that improve instantly the energy

performance of the program’s execution, the choice taken in this Thesis. On the other hand,

the use of power consumption is useful when we want to find the software components that

consume more amount of energy per time and therefore their utilization in multiple programs

against less consuming components is discouraged. This type of information can be used to

extract energy consumption patterns, which is set for future work.

With the Thesis objective in mind a methodology to accomplish this goal was defined.

This methodology has three different phases. For each of these phases, a sub-technique was

developed. In the first phase the software code is modified to also extract the execution

information of each program’s constituent besides execute it. This information is structured

and represents the constituent energy consumption, the time of its execution and the number

of times it was used. After this process the software is compiled and ran with a test suite.

In the second phase, the execution data produced by the program’s execution are collected,

aggregated and treated and the information is then passed into the final phase. In the

final phase and using a technique based in the program’s spectrum and its execution data,

the data is evaluated and the information about which are the energy leaks is obtained.

This methodology in conjunction with the three phases defined, accomplishes the objective

previously set.

4



1 INTRODUCTION

1.3. Structure of the Dissertation

This dissertation is organized as follows:

Chapter 2 - Green Computing and Software Fault Localization Techniques - contains

the State of the Art, with information on green computing evolution and the emer-

ging area of green software computing and introduces the software fault localization

techniques establishing the relation between software energy leaks and software faults.

Chapter 3 - Instrumentation, Compilation and Execution - presents the methodology

proposed, detailing each phase of the methodology.

Chapter 4 - The SPELL Framework - describes and showcases the framework de-

veloped, which contains and describes in more detail all the techniques and imple-

mentations presented in Chapter 3.

Chapter 5 - Validation - contains the process of validation of the methodology pro-

posed.

Chapter 6 - Conclusion - concludes this dissertation with comments on the work done,

results, and future work, along with answers to our research questions.

5
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2 GREEN COMPUTING AND SOFTWARE FAULT LOCALIZATION TECHNIQUES

2. Green Computing and Software Fault Localization

Techniques

2.1. Green Computing

The concept of green computing despite being a hot topic is a relatively old concept. It

has emerged around the 90s when the awareness of the energy that was being used by IT

devices was raised, which led the IT community to take some measures. One of the first

measures taken under green computing was the assignment of a “certificate” to products that

had a concern in terms of energy consumption, minimizing it while maximizing efficiency.

This certificate (Figure 1) was applied to different peripherals, computers, monitors, printers,

etc. One of the first real results of this awareness was the appearance of the stand-by

functionality in the devices that made them entering in sleep mode after a period of inactivity.

Figure 1: Energy Star certification symbol

Despite the fact that this awareness already started 20 years ago, only just more recently,

in the last decade, started to exist a more active concern with the reduction of energy usage.

With the predictions of an increase of the global energy consumption, countless associ-

ations begun to focus their attention on this issue. A number of organizations, including

the USA’s Environmental Protection Agency (EPA), have identified a number of processes,

optimizations and energy alternatives in data centers and even in home appliances [Fanara

et al., 2009]. Google was another of the organizations that included in its research the topic

of green computing and has already achieved some results, reducing its data centers’ energy

consumption [Google, 2014].

7



2 GREEN COMPUTING AND SOFTWARE FAULT LOCALIZATION TECHNIQUES

Another aspect of IT is the use of personal computers, and recently (and exponentially

growing) smartphones and tablets. These devices have an intrinsic concern for energy usage

since their power supply is taken from a battery which has a limited capacity. The less

energy consuming components of these devices are, the less power will be consumed, and

therefore it is possible to use these devices during a longer period of time. So, with this in

mind, all the companies involved with these devices have a great interest in this field.

Energy wise, version after version, Intel, the largest producer of processors for computers,

smartphones, tablets, etc., has had a concern in obtaining maximum efficiency while lowering

the power consumption of its processors. This development has permitted after each release,

on the one hand to reduce the energy consumption in the use of processors, and on the other

hand to extend the usage time of portable battery powered devices [Ralph, 2011; Crisostomo,

2012; Anthony, 2013].

The interest in this area exists and has strong promoters which is already remarkable.

However, one can not ignore the fact that the ITs consist of two artifacts of different types:

hardware and software. If on one side a lot has been done in order to decrease the power

consumption of the hardware, as already shown – which is understandable since hardware

changes do not alter the normal functioning of the software and allow immediate energy

savings to be made –, either by physical limitations or because more needs to be done to

reduce the energy usage, software is an obvious target.

2.1.1. Green Software Computing

The concern for energy usage in software has already started to happen although on

a smaller scale when compared to the hardware, and has already been dubbed the Green

Software Computing.

Slowly we start to see some initiatives from companies that support some of the world’s

major operating systems (OS) such as Apple’s Mac OS X and iOS, and Google with Android.

Indeed Apple, in its most recent versions of the operating system for desktop (Mac OS X),

by using only the operating system software, was able to improve the energy performance

of their computers, thus allowing the battery life to be extended, in some cases, up to 4

hours [Brownlee, 2013]. Regarding the mobile OS, iOS and Android devices already have

8



2 GREEN COMPUTING AND SOFTWARE FAULT LOCALIZATION TECHNIQUES

tools that allow the user to check the battery consumption profile of applications. Apple

already allows its developers in its integrated development environment (IDE) – Xcode –

to make an energy profiling to their applications. Android in its new version (Lolipop) is

scheduled to receive energy profiling tools aimed at software engineers.

A recent study showed that software developers are aware and interested in the green

software domain [Pinto et al., 2014]. This study demonstrated that there is an interest in

the community to learn more about this area and try to find out what may be the causes

of high energy consumption and possible ways to address them. Also note that software

engineers feel there is a lack of tools to support this identification process and optimization.

To make greener software, besides requiring the energy consumption values, developers

also need to know what zones of code are hotspots, or areas where the power consumption is

excessive. These areas can be seen as red zones and must be the first ones to be investigated.

In order to proceed with the identification of these red areas, one needs to be able to

measure the energy consumption. As mentioned, research in green software computing is

still in an early stage and therefore the techniques and tools that exist to measure this

consumption are incomplete and insufficient. To overcome this fact in some cases estimates

are used but some of these estimates are not reliable and are not precise [Hurni et al.,

2011]. Although external devices can be used, they will only allow to measure the total

power consumption for a period of time. This option may have read errors that are always

associated with the reading of values in external devices. Adding to these difficulties, there

is also the fact that the measurement of consumption is done on the whole system and not

only on the desired applications.

Intel, as a manufacturer of processors, and also as a promoter of green computing,

since 2012 began to worry about providing tools to software engineers to gain access to

energy consumption by existent on-chip components (either the processor, DRAM or even

on-chip GPU). This tool is provided as an API and is named Running Average Power Limit

(RAPL) [Rotem et al., 2012]. RAPL is an interface that allows system calls to consult

the values of energy consumed by each hardware component. These intakes are updated

by the processor that will from time to time update some special registers in memory re-

served for this purpose. Thus, by reading these registers one can know the recorded energy

9
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consumption. There are studies that prove that the measurements made by this interface

are accurate and trustworthy [Hähnel et al., 2012]. However, RAPL only reports on-chip

consumption leaving aside peripherals such as the hard drive, and non-integrated GPUs and

motherboard.

To address this lack of information, academia started to construct their own tools to

allow them to monitor the power consumption.

As previously said, the tools to run energy profiling are short in number and often lack

the desired accuracy. Because of this, several institutions have developed their own methods

for monitoring power consumption. Software Improvement Group (SIG), a company that

is linked to qualitative analysis of software, in collaboration with Amsterdam University,

developed a laboratory related to energy. This laboratory has developed a piece of hardware

that can be connected to any computer hardware component and also connected to a device

termed Data Acquisition (DAQ) that will produce as output the power consumption of the

components connected to it (Figure 2) [Ferreira et al., 2013]. At SIG they also already

researched the efficiency of e-services energy and proposed some indicators to improve its

consumption [Arnoldus et al., 2013]. They also defined some metrics to quantify how the

values of the optimum of system-relative energy efficiency and its utilization are aligned.

This quantification also allows the comparison of two distinct services [Grosskop and Visser,

2013; Grosskop, 2013].

Li et al. [2014] also developed a similar technique but for mobile devices. One can also use

hybrid variants for measuring the power consumption: Li et al. [2013] showed that combining

hardware analysis based on power measurements, and software statistical modelling, at least

in Android, is possible to calculate values of the source line energy consumption.

To measure the energy, which can be done using external or internal devices, and with

a higher/lower level of refinement, some contributions have already been made.

Using a model-based policy, Zhang et al. [2010] during hers PhD developed an applic-

ation for Android that allows any application’s energy consumption to be monitored. The

limitations of this application are largely associated with the problems of using models,

i.e., the need to calibrate the model for the environment where the application is running.

[Couto et al., 2014; Couto, 2014] attempts to solve this and other limitations by creating a
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Figure 2: SEFLab infrastructure [Ferreira et al., 2013]

dynamically calibration of the models for any smartphone.

Hönig et al. [2013] published a technique that uses a model-based technique to generate

information about software energy consumption. This technique, illustrated in Figure 3,

uses symbolic execution and execution knowledge stored in a database, to predict energy

consumption of a particular program.

Figure 3: SEEP technique that tries to bring energetic advices to the development process [Hönig
et al., 2013]

Also, in an attempt to provide energy information for a particular program, Noureddine

et al. [2014] developed a technique for the instrumentation and collection of the energy
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usage data in Java (JalenUnit) where they analyze the power consumption of a method by

varying the method’s data input, and validate the results by inspecting the code manually

and confirming that its implementation lead to such results.

One of the current practices in the development of applications is, before publishing

them to the public, run an obfuscation tool on the source code trying to deter copying of

software logic. Using this as motivation, Sahin et al. [2014] investigated and demonstrated

that obfuscation has a significant statistical impact and is more likely to increase the energy

usage. These conclusions are an indicator that the way the code is written has an influence

on energy consumption.

Gutiérrez et al. [2014] did an energy consumption study in multiple Java Collections.

They produced as results what were the collections that had higher intakes of energy or that

were more energetically efficient. In conjunction with this analysis, they also developed a

framework which taking into account the data obtained, refactors the Java source code to

use the collections that statistically consume less energy.

A common practice in the software world, the use of patterns, was also questioned at

the energy level. Vásquez et al. [2014] presented a qualitative and quantitative study of the

high energy consumption in API calls and patterns used in Android. Their findings indicate

that there are patterns that have a significant impact on the energy consumption, such as

the Model-View-Controller pattern. Sahin et al. [2012] also did an analysis of the impact on

the energy usage in software design patterns and concluded that each design impacts but

not in a similar way, the energy consumption values.

Gonçalves et al. [2014] did a study about how a Database Management System can

use some energy consumption indicators to build query plans and obtain a SQL query that

consumes less energy. The results that they obtained suggested that this approach could be

successful to produce query plans that consume less energy.

2.2. Software Fault Localization

It is becoming more common to have IDEs offering tools to provide the values of power

consumption of the programs being written. Although the values of energy consumption

12
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are already provided to developers, the notion of what they mean and what relevance the

consumption of certain software components have in the program’s consumption is yet to

be determined.

In this dissertation, we propose a set of techniques and tools to determine red areas in

the software energy consumption. In this context, a parallel is made between the detection

of anomalies in energy consumption in software during execution of the program and the

detection of faults in the execution of a program. Establishing this parallelism, we will adapt

fault detection techniques, used to investigate the failures in the execution of a program, to

be used in the analysis of energy consumption.

When it comes to identify faults in programs there are two main possibilities: reasoning

approaches (i.e. Mayer and Stumptner [2008]) or statistical (i.e. Zheng et al. [2003]). The

reasoning approaches to fault localization build a model of the correct behaviour of the

system using prior knowledge which allow to extract accurate conclusions about failures

that may be happening. However, and because in a model we have to define the complete

system, when applied to energy, at least for now, it would be impractical to obtain an

energy model of the software. It would be necessary to take into account the system settings

and all the implications that a change in the model would lead to, energetically wise. The

statistical analysis, based on the implementation of the program using the source code, does

not allow taking totally accurate conclusions, but allows useful information to be extracted

with relative ease.

So, knowing the two main options, the statistical analysis technique of fault localization

is the most appropriate. Since its foundations rely on an analysis of the program based

on its implementation (in its source code), one does not need to model the entire system.

Within the statistical analysis techniques for locating faults, the technique of using the

program spectrum is more efficient than the use of dynamic slicing [Korel and Laski, 1988]

and therefore the technique that stands out as candidate, with very good results in this field,

is the Spectrum-based based Fault Localization technique (SFL) [Abreu et al., 2009].
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2.2.1. Spectrum-based Fault Localization

A program spectrum is a set of run-time execution data of a program [Reps et al., 1997].

There are different types of program spectro that can be used [Harrold et al., 2000], Table 1

shows some examples. To better understand those types of program spectro, let us consider

the use of the block-hit type, in the Listing 1 (it calculates the largest of three numbers). One

can see what is actually considered as a block-hit in the program execution. The spectrum

of a block-hit program is a set of flags that will reflect if the condition of the block is used

or not.

Table 1: Types of program spectrum [Harrold et al., 2000; Abreu, 2009]

Name Description

Statment-hit statements that were executed
Block-hit conditional branches that were executed
Path-hit intraprocedural, path that was executed
Output output that was produced

Time spectra execution time of program’s components

In SFL, the hit spectrum is used to build a matrix A, n × m, where the m columns

represent the different parts of the program during n executions (independent, i.e. the

result of each execution does not influence the next) as can be seen in Figure 4 (left-hand

part). In this hit spectrum (anm), the value 0 means that part m was not executed in

execution n, and the value 1 means it was. The SFL representation also presents one

column vector e corresponding to the errors (right hand part of Figure 4). Each element

of this vector represents the presence of an error in the result of the test, where the value

0 means that no error occurred and 1 otherwise. The objective of spectrum-based fault

localization technique is to try to find which components of the program are more likely to

being faulty by using their column representation and discovering which component column

best explains the existence of the errors represented in the vector of errors. This similarity

of vectors is quantified by coefficients of similarity [Jain and Dubes, 1988]. The existing test

vector can be obtained in different ways. In SFL, there is the notion of an oracle that enables

the vector error to be generated with the consultation of the oracle state. This oracle, in the

case of detecting faults in a program, can be seen as the supposed output that the program
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Listing 1: Instrumented program to the block level

int largestNumberAmongThreeNumbers(int a, int b, int c) {

int res;

if (a > b) {

// block (c1)

if (a > c) {

// block (c2)

res = a;

}

else {

//bock (c3)

res = b;

}

}

else {

// block (c4)

if (b > c) {

// block (c5)

res = b;

}

else {

// block (c6)

res = c;

}

}

return res;

}

may have.

Given the coefficients of similarity existing in SFL techniques the best performing coef-

ficient is the Ochiai [Abreu et al., 2006]

SO =
n11(j)√

(n11(j) + n01(j)) · (n11(j) + n10(j))
(1)

where n11(j) is the number of failed runs in which component j was involved, n10(j) is the

number of successful runs where component j was involved, n01(j) is the number of failed

runs where component j was not involved, and n00(j) is the number of successful runs where
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Figure 4: The spectrum-based fault localization model (A,e)

component j was not involved.

In the case of coefficients of similarity, a value closer to 1 means that this vector is more

likely to explain the result of the vector of errors. To better understand the spectrum-based

fault localization technique we will use an example. Figure 5 presents the values of the

Ochiai coefficients calculated for each m column vector, of applying the SFL technique to

the program shown in Listing 1 with the inputs 〈2, 4, 1〉, 〈5, 3, 1〉, 〈5, 2, 7〉, 〈3, 9, 12〉, 〈1, 3, 1〉
and 〈2, 1, 4〉, and with the outputs 4, 5, 7, 12, 3 and 4 respectively.

c1 c2 c3 c4 c5 c6 e
0 0 0 1 1 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 1
0 0 0 1 0 1 0
0 0 0 1 1 0 0
1 0 1 0 0 0 1

n11(j) 2 0 2 0 0 0
n10(j) 1 1 0 3 2 1
n01(j) 0 2 0 2 2 2

sO(j) 0.82 0.0 1.0 0.0 0.0 0.0

Figure 5: Result of SFL technique applied to Listing 1, indicating c3 as the faulty component

The last row of Figure 5 indicates that the component 3 (c3) has the highest probability

of being faulty, and the component 1 (c1) is the closest second. In fact, if we consult the

program in Listing 1 we can see that the block c3 has an error, because it does not compare

the value of b with c, which will lead to failure for some inputs. The fact that c1 has such a

hight probability can be explained because this component enclosures the faulty component

and so, will also fail for some inputs.
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3. Spectrum-based Energy Leak Localization Analysis

The process of energy analysis is dependent on the approach that one wants to define.

The aim of this thesis is to conduct an energy consumption analysis of the software source

code, so this process will focus on the source code level. The process takes as input a

program yet to be compiled and a set of program tests, and provides information about the

program’s energy consumption.

What is proposed here can be seen as a generic methodology to be followed for the

energy usage analysis on an application’s source code. The method is generic and therefore

can be applied to any language/programming paradigm.

The basis of this methodology is the methodology used in the SFL, i.e., we have a

program and we want to extract its spectro in different tests in order to draw conclusions.

Because this is an energy consumption analysis the data collected must be more informative

about the program’s execution. This is why, at the end of the executions where it will exist

the execution data non-structured, this data should be structured hierarchically so one can

analyze it. After having this execution information, as in SFL technique, it is analyzed and

conclusions are extracted.

In the proposed methodology, one can identify three distinct steps:

1. Instrumentation, compilation and execution

2. Execution information processing

3. Energy data analysis.

Over the following sections, each step will be explored in detail.

3.1. Instrumentation, Compilation and Execution

As seen in Section 2.2.1, when one wants to identify the spectrum of a program imple-

mentation it must specify the level on where the analysis will be performed. Depending on

the programming language where the target program was developed, this granularity may

vary. For instance, in the C language, one can have Libraries > Files > Functions > Block
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of code > Line of code. In a second example, Java, one can have Packages > Classes >

Methods > Block of code > Line of code. In other languages/paradigms there may exist

other components. Consequently, for each language it will always be necessary to define the

desired granularity.

After having defined the level of source code for which one wants to retrieve the informa-

tion, it is also necessary to define the desired information to collect with the instrumentation.

The final goal of the process is to analyze the program’s energy consumption. Therefore,

the logic data to be gathered is the information related with the energy consumption of the

computer hardware components. As examples of hardware components there are the CPU,

CPU cache, DRAM, hard drive disk, fans, graphics card, motherboard, and other machine

specific peripherals, and the program specific components (for example, the use of the mouse

in a specific program). To complement this process, there is information that can be useful

to retrieve conclusions about the profiling of energy: execution time, CPU frequency, CPU

temperature, etc.

3.1.1. Instrumentation

With the level of source code granularity and the information to collect chosen the next

step is to perform the instrumentation itself. To do so one can start by write by hand

on the source code the instructions to collect the data after the execution, but this is an

inefficient, time consuming and not scalable process. So, in order to obtain an automated

instrumentation, a structure that represents the program and can be modified to contain

the collecting instructions must be defined. The use of such structure is a technique that

modern compilers already use in their compiling processes and is called Abstract Syntax

Tree (AST). The AST represents the constituents of a program in a hierarchical manner.

For instance, in Figure 6, we have the abstract syntax tree of the largest of three numbers

program, presented in Listing 1. This structure allows changes by using operations without

having concerns about the syntax structure of the source code file. This operations can be:

add, remove or update nodes. Currently there are front-ends for almost every language, that

offer a parser with the AST construction. Therefore, the instrumentation becomes simpler

for almost every language.
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Program

if

>

a b

block (c1)

if

. . .

else

. . .

else

block (c4)

if

. . .

else

. . .

return

res

Figure 6: The abstract syntax tree of a program (the largest of three numbers program, presented in
Listing 1)

Besides having to collect spectrum information from the program, one also needs to

collect energy information, and therefore one needs to define how it is obtained. The source

of this information may vary. It can be an external device that measures the overall energy

consumption, a set of system calls that allow greater precision, or even a pre-defined model.

To the instrumentation here defined it is assumed that there is a framework that allows

to accurately measure the power consumption within a certain range (depending on the

granularity level). So, to define this range, information nodes to read the context information

and print it to the standard output are both added before and after the granularity level

content. An example of an AST of the largest of three number program, shown in Listing 1,

instrumented can be seen in Figure 7.

The syntax of this information generated from all components has to be produced in a strict

format because it will serve as input to the next phase (Section 3.2).

We want to systematize the process of analysing software in terms of energy, and to

do so, we will create an activity diagram that will be built throughout this dissertation.

Figure 8 shows the start of this activity diagram, with the process mentioned above.

3.1.2. Compilation and Execution

After the instrumentation is made in the AST, the software source code has to be

compiled, but now containing the needed instructions to collect the energy usage. After the
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Program

if

>

a b

block (c1)

printBegin if

. . .

else

. . .

printEnd

else

block (c4)

printBegin if

. . .

else

. . .

printEnd return

res

Figure 7: AST of the largest of three number program instrumented at block level with nodes to
extract energy information

Source Code

Energy Instrumentation

Source Code Instrumented

Figure 8: Process of instrumentation

compilation, the compiled program must be ran with a set of different inputs (test suite),

that will test the program code. The more diverse and complete in terms of coverage of the

program these tests are, the better analysis of the information extracted from the software

implementation can be made [Cai and Lyu, 2005].

Continuing to build on the methodology and process defined in Figure 8, Figure 9 adds

this step to the activity diagram. The resultant execution data will serve as input to the

next phase as already mentioned. The general execution of this first phase is shown in

Algorithm 1.

The input to the next phase (described in the following Section) is the output from

the instrumented program execution. This output is written in a flat and sequential way,

representing the order that the components were used in the program. Listing 2 shows

a sample of the output of an execution with 3 tests of largest of three number program
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Algorithm 1 Program Instrumentation, compilation, and execution with a test suite

1: procedure Instrumentate, compile, and execute tests
2:

3: for all module in software do
4: moduleInstrumented← energyInstrumentation(module)
5: softwareInstrumented← softwareInstrumented + moduleInstrumented

6:

7: softwareCompiled← compile(softwareInstrumented)
8:

9: for all testCase in testSuite do
10: output← execute(softwareCompiled)
11: instrumentationOutput← instrumentationOutput + output

12:

13: return instrumentationOutput.

Instrumentation, Compilation & Execution

Source Code

Energy Instrumentation

Source Code Instrumented

Compile & Run

Execution Data

Tests

Figure 9: Process of instrumentation, compilation and execution of the software with the test suite

previously instrumented. Each line represents or the beginning of component execution,

or the end of its execution and has inside its square brackets the execution information.

This output follows the syntax grammar defined in Appendix A. In the next Section we will

explain in detail the format of this output.

21



3 SPECTRUM-BASED ENERGY LEAK LOCALIZATION ANALYSIS

So, whatever is the language of the program instrumented, the output form will have the

same syntax for all languages and paradigms, which makes the following phase independent

of any programming language or paradigm.

Listing 2: Example of an ouput of a execution of the largest of three number instrumented program
ran with 3 tests.

/*test 1*/

> c1 [ time = 0, cpu = 32, dram = 7 ]

> c2 [ time = 0, cpu = 65, dram = 12 ]

< c2 [ time = 7, cpu = 120, dram = 16 ]

< c1 [ time = 15, cpu = 140, dram = 19 ]

/*test 2*/

> c4 [ time = 0, cpu = 34, dram = 8 ]

> c5 [ time = 0, cpu = 64, dram = 14 ]

< c5 [ time = 6, cpu = 121, dram = 17 ]

< c4 [ time = 13, cpu = 130, dram = 20 ]

/*test 3*/

> c4 [ time = 0, cpu = 31, dram = 5 ]

> c6 [ time = 0, cpu = 64, dram = 7 ]

< c6 [ time = 6, cpu = 117, dram = 12 ]

< c4 [ time = 14, cpu = 134, dram = 14 ]

3.1.3. Process Instantiation

The process of instrumentation, compilation and execution was instantiated to instru-

ment programs written in C language, which, by doing so, allows the analysis of the energy

consumption of C programs. We choose the C language because it is well established in

the community and provides access to a good number of repositories of robust open source

software that can be tested energy wise.

To do this instrumentation it was necessary to find an instrumentation tool that allowed

the extraction of the C language AST from a program. The natural language of choice was

a fairly complete tool that actually serves as a C front-end for the LLVM compiler and that

among the many features already available, can build the program’s AST from a file; it is
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called the Clang1 framework.

The accuracy chosen for the analysis and consequently to instrument the code was

defined at the function level, which means that to retrieve the information required for

the analysis one needs to know where is the beginning and the end of each function. The

granularity choice is related with the precision one wants to extract and analyze information

and in this case it is also limited to the existing tools and their accuracy.

The chosen framework to collect the energy data required for posterior instrumentation

and analysis was the Intel Power Gadget framework2. This framework works based on the

framework RAPL and provides information on energy consumption and performance of the

CPU. To measure the execution time it is used the Time library in C3.

It was developed a small program in C++ linked with Clang that allows to build the

AST, add the nodes and regenerate the source code. At the end of the instrumentation, one

generates again the program’s source code, as shown in Listing 3, and compile it.

Listing 3: Generic instrumented C program with information to log energy

consumption

void function () {

startMeasuring (Regist information , Display begin)

/* PROGRAM EXECUTION BEHAVIOR */

endMeasuring (Display end & information)

}

The compiled program is then executed with a test suite, and for each test, it produces

the information about its energy consumption.

The Section 4.1 provides more details about this phase implementation.

1 http://clang.llvm.org/
2 https://software.intel.com/en-us/articles/intel-power-gadget-20
3 http://www.cs.utah.edu/dept/old/texinfo/glibc-manual-0.02/library_19.html
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3.1.4. Instrumentation Case Study: GraphViz

As an initial proof of concept and to apply the instrumentation to a robust application

fully established, it was decided to choose a tool that had heavy processes and did some

intensive processing to generate its output. The chosen tool was an open-source tool called

GraphViz [Gansner and North, 2000]. GraphViz is a software package that enables the

design of graphs, processing and generating the corresponding view. The instrumentation

tool (explained in Section 4.1) was applied to the software package with about 18 tests.

The OS of the computer where these tests were run was the MacOS X 10.9. These tests

ran GraphViz with different generation flags and different input graphs. In Figures 10

and 11 we show the results (for the sake of visualization, some functions, modules and tests

are omitted). Figure 10 shows the energy consumption (in milijoules) (y-axis), of GraphViz

functions (x-axis) – represented with numbers to simplify its visualization –, for the different

tests cases – represented with different colors. Figure 11 shows the energy consumption (in

milijoules) (y-axis), of GraphViz modules (x-axis), for the different tests cases – represented

with different colors.

Figure 10: Energy consumption of GraphViz functions

These graphs show that different inputs and different flags have different energy con-

sumption values which by itself is and indicator that an analysis can be made with different

tests to extract energy usage information. This was one of the first results that motivated

further research.
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Figure 11: Energy consumption of GraphViz modules

The Influence of CPU Execution on the Energy Consumption Values During the in-

strumentation and data collection of the GraphViz application several tests were made.

During these tests it was discovered that for some functions, the consumption values would

increase in about 1000%. In a quick checkout to discover what was happening it was evident

that something went wrong, and it was not a bad design of the function code. What we

discovered was that when the program was executing, if the processor was working on one

particular function that demanded large computational resources, the processor would be

set to 100% of its capabilities. When the CPU is running at full power it consumes more en-

ergy. Therefore, the functions processed by the CPU when it was working at the maximum

level had higher consumption values. The fact that this was happening had an impact on

other functions besides the ones that needed such resources. The functions that lead to this

suspicion were, in fact, being influenced because when the processor finished processing the

resource demanding functions and started processing other functions, it was still working at

high level when this was not probably needed.

The operating system is responsible for operating the hardware components of the com-

puter. Because the OS used in these tests was developed to improve the performance of

execution of a program in terms of execution time and resources, and not in terms of energy

consumption, the operating system set the CPU frequency to achieve better execution times

and not better energy consumption values.
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In the process of trying to obtain more information about this situation, further research

was made. The demanding resources functions were identified and a new instrumentation

process of the software was made. In this new instrumentation, and besides the instructions

to collect the energy usage, an instruction to force the program execution to pause was

added. After compiling this new version and execute it again, the new data was collected.

The results of this instrumentation were somewhat positive but not conclusive:

• 19% of the functions that were firstly influenced had their consumption back on the

normal values.

• 15% of the functions that were firstly influenced increased their overall consumption

values.

• in the other cases there was no influence.

Because of this new instrumentation, the time that the program took to execute the input

obviously increased but the energy consumption values were the same as before because the

energy usage was not being tracked while the program was paused.

These first results seem promising and would require more investigation. Because the

optimization of the OS to energy consumption goes out of the scope of this Thesis, this topic

was not explored any further, and is left as future work.

3.2. Results Treatment

The results produced by the execution of the program instrumented and compiled, are

not structured which difficults the task of extracting knowledge about each component’s

energy consumption. Therefore, there is a need to build a structure that holds the inform-

ation hierarchically and allow easy transformations to be made and immediate information

calculation for each component.

The input to this phase is the output from the instrumented program execution. Thus,

one needs to define a specific syntax for the input that the instrumentation output must

follow.
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The input syntax of this phase was defined using a grammar and is presented in Ap-

pendix A. This grammar defines the input as being a sequence of components. Each compon-

ent is identified by its beginning (Component-begin) and its end (Component-end); between

this it may contain more components. Inside the component begin and end is the inform-

ation retrieved about its execution. Listing 2 shows a sample of this input following this

grammar rules.

Figure 12: Example of collected data node’s information

Having the input in a standard representation one can process this data and construct

the structure needed to treat the information. This structure, and because the execution

information is a hierarchy information (execution path), the representation chosen was a

n-ary tree where the nodes represent the components identified, and characterized by the

execution information.

In this new representation, each node contains information about the energy consump-

tion as well as the time consumed and the number of times it was performed (a graphical

representation can be consulted in Figure 12).
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Listing 4: Example of the output of the result treatment phase applied to the largest of three number
program, with 6 tests and only 3 components.

/*c1*/ /*c2*/ /*c3*/

[ [ time = 7, cpu = 65, numberUsed = 1 ] _ [ time = 9, cpu = 62, numberUsed = 1 ] ]

[ [ time = 4, cpu = 49, numberUsed = 1 ] _ [ time = 6, cpu = 63, numberUsed = 1 ] ]

[ [ time = 5, cpu = 65, numberUsed = 1 ] _ [ time = 9, cpu = 62, numberUsed = 1 ] ]

[ [ time = 7, cpu = 47, numberUsed = 1 ] [ time = 8, cpu = 31, numberUsed = 1 ] _ ]

[ [ time = 6, cpu = 65, numberUsed = 1 ] _ [ time = 9, cpu = 62, numberUsed = 1 ] ]

[ [ time = 5, cpu = 43, numberUsed = 1 ] [ time = 7, cpu = 50, numberUsed = 1 ] _ ]

An graphical representation of a program output example illustrating the complete tree-

structure including all nodes can be seen in Figure 13. This tree-structure is built for each

test run.

The next phase of the analysis of the software energy usage, described in Section 3.3,

receives as input the program spectrum (containing the execution time, energy consumption

and number of times used for each component in each test). So in order to produce the next

phase input we must transform our n-ary trees into that program spectrum information. To

do so, we start by analysing every n-ary tree. For each one, we analyze every node of the tree

and collect all of its children information – this will aggregate, for each node (representation

of a component), its totals (execution time, energy consumption, and number of times

used). Then, having all the nodes information aggregated, we start to produce the program

spectrum. Listing 4 has a sample of an output matrix of this phase. Each component test

element has its execution information within the square brackets. This output (a matrix)

follows the syntax grammar defined in Appendix B which is the syntax needed by the next

phase, and therefore, can be used as its input. Algorithm 2 illustrates this process.

For the n tests, and for each node in the tree, a transformation to feed the next phase will

be made. In this transformation each tree node aggregates all of its children information. For

each test this process produces a row with all the components and its aggregated information.

This output must be in a specific and standard format to be passed onto the next phase.

This phase is the following step in the methodology that we started to build in the

previous Section (Section 3.1 - Figure 9). Adding it to the activity diagram we obtain the

activity diagram represented in Figure 14.

To summarize we have defined the first two phases of the entire methodology:
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Figure 13: An example of a n-ary tree constructed to a test’s data collected. This Figure illustrates
the hierarchy between calls and its consumptions

Algorithm 2 Results treatment of the output of a instrumented program execution

1: procedure Treat the results
2:

3: for all inputSample in input do
4: tree← parseTree(inputSample)
5: trees← trees + tree
6:

7: for all node in tree do
8: component[node.name]← component[node.name] + node.information

9:

10: for i ← 1 .. component.length do
11: resultsTreatmentOutput← resultsTreatmentOutput + component[i]

12: return resultsTreatmentOutput.
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Results TreatmentInstrumentation, Compilation & Execution

Source Code

Energy Instrumentation

Source Code Instrumented

Compile & Run

Execution Data Process Results

Energy Data

Tests

Figure 14: Process of the methodology being constructed, containing the instrumentation, compila-
tion and execuiton, and the results treatment phase

• The first phase, dependent of the language/paradgim, where the program is annotated

and ran with a test suite and produces the results;

• The second phase, independent of any language/paradigm, where the results from the

first phase are collected and adapted in order to produce data to the analysis phase,

that we are going to approach in the next Section.

3.2.1. Process Instantiation

This phase was developed and implemented in Java, and so, the grammar that this

phase uses to define the input’s syntax was implemented using the ANTLR framework [Parr

and Quong, 1995] (when dealing with Java is one of the most used frameworks to deal with

grammars). The semantic rules of this grammar were used to transform the collected data

into a n-ary tree. Section 4.2 has complementary information about this implementation.
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3.3. Energy Consumption Data Analysis

The technique here presented, Spectrum-based Energy Leak Localization (SPELL), is a

technique that is independent of the programming language which means it is generic and

therefore can be applied to different languages/paradigms.

As seen in Section 2.2.1 and as the name indicates, SFL is based on the program execu-

tion hit-spectrum. In the technique developed in this Thesis, a part of the knowledge used

is also the spectrum of the program’s execution. This spectrum allows the discrimination

of the component usage, was it used or not, and in the cases where it was used, to extract

more information about its execution. As in the SFL, the tests are also independent, i.e.,

the execution order of the tests is irrelevant because the state of a test does not affect the

execution of another test. However, and contrary to what the SFL states, where there is an

oracle to which one can ask questions about the validity of the output obtained by running

a test, the SPELL analysis does not receives an oracle as input. This can be explained

because, energy wise, if on one hand, there is still no known oracle to answer with 100%

certainty to what is a excess of energy consumption, on the other hand, what can really be

seen as an excess of energy consumption? Therefore, the oracle is not an artifact that can

easily be obtained as an input.

3.3.1. The Static Model Formalization

Aside from the difference in the use of an oracle provided in the input, the technique

presented here has important and complementary information to the spectrum of the exe-

cution that SFL does not need. This information can and is used as a way to obtain a more

useful and complete analysis about energy consumption of the programs components.

The input of this tool is a matrix A that has n lines which correspond to the number

of tests run and has m columns that are the m program’s components (defined at the

granularity level of the instrumentation) (Figure 15).

Each matrix element, λmn, if used in test n, contains information about the component
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m components

n spectra


λ11 λ12 · · · λ1m

λ21 λ22 · · · λ2m
...

...
. . .

...
λn1 λn2 · · · λnm


Figure 15: The spectrum-based energy leak localization input matrix (A)

m execution, or nothing otherwise, as shown in Equation 2.

λij =


(
Eenergy, Texecution, N#

)
ij

if cj was used

∅ if cj was not used

(2)

This component’s execution data is segmented in 3 categories: energy consumption,

execution time and number of times executed. In the energy consumption category, values

of the energy consumed by different hardware components may be present: CPU (ECPU),

DRAM memory (EDRAM), fans (Efans), hard drive (Edisk) and graphic card (GPU) (EGPU)

(Equation 3).

Eenergyij
=
(
Ecpu, EDRAM, Efans, Edisk, EGPU

)
ij

(3)

All hardware components that consume energy may have its component represented

on this tuple, but on this Thesis we defined only this components because they are rep-

resentative of the differences between computers. All the energy consumption values are

expressed in a multiple unit of the energy unit (J): milliJoule (mJ). The component’s execu-

tion time is represented in the attribute Texecution, this attribute is expressed in milliseconds.

Finally, information about the number of executions (cardinality) is defined in N# and is

dimensionless.
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3.3.2. The Definition of an Oracle

With the matrix that contains, for each test, the execution information of each program

component, the next steps are the processing and analysis of this information.

The ideal situation would be to have an oracle adapted to the context of energy to better

understand the values of the execution data and validate the correctness of a test (or as it is

used in the SFL, the error vector). Thus, since we cannot get the oracle as input, the first

phase will be to build one that can be used. For the oracle construction several options can

be considered. The first approach could be to implement a simple metric to calculate the

average energy consumption of the program in all the tests and the oracle would determine

if each test consumption was above average to be recorded as a failure, and otherwise to be

considered as a pass. However, this technique has some limitations, as the average energy

consumption could hide significant statistical differences, one would also be ignoring the

other execution information such as execution time and the number of times the component

was involved in the test.

Another possibility for this oracle would be to build a base of prior execution consump-

tion knowledge and use various programs to feed this knowledge base. The knowledge base

could be segmented by type of software (image processing, graphs, etc.) and could be a

correspondence between patterns of software execution and energy consumption. However,

despite many positive points, the construction of this knowledge base would need a big cor-

pus of different programs and for each one it would be necessary to catalog its execution

pattern and the respective consumption. Another disavantage is that the oracle would not

be independent of the input tests for which the patterns were identified and that might differ

between different tests.

Thus, the solution defined for the oracle creation must be premised on the fact that

it has to be relative to the program implementation and use all available information to

extract the best knowledge. Another point to consider is that the oracle cannot decide with

a binary criterion (fail, pass) a test execution; the criterion has to be a continuous value to

represent the greenness of a test.

Taking the example of what is usually done in the regulation of greenhouse gas emissions
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of world countries, where after assessing how much is the total emission of gases in the

different years, depending on what each country contributed in gas emissions in those years,

assigns the percentage of responsibility to each country. In this analysis one can try to

establish an analogy, where the years are the different tests, the countries are the different

components with the total for each category (energy, execution time, and cardinality), and

the goal is to try to assign responsibilities to each component comparing with the total value.

To construct the oracle is then necessary, for each test, sum up all the values of the

categories creating a total element. This total element will have the same structure of each

component, having in each category the value resultant of the sum of all the category values

(Equation 4).

m∑
i=1

λ1i =
( m∑

i=1

Eenergy,
m∑
i=1

Texecution,
m∑
i=1

N#

)
1j

(4)

Because this is done for the n tests at the end we will get a vector here called t (total),

as shown in Equation 5.

t

m∑
i=1

λ1i

m∑
i=1

λ2i

...
m∑
i=1

λni


=


t1

t2
...

tn


(5)

Having the oracle defined, the final model that this Thesis introduces is totally defined

and can be seen in Figure 16. It is based on this model that the remaining process of analysis

will focus and is where from the knowledge will be extracted.

3.3.3. Analysis on the Model Using the Oracle

With the complete model established, the next step is, and following the analogy of

gas emissions, relate the data of each component with the total data, as represented in

Equation 6. In the end, one wants to obtain a simple structure that contains the similarity
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m components t

n spectra


λ11 λ12 · · · λ1m

λ21 λ22 · · · λ2m
...

...
. . .

...
λn1 λn2 · · · λnm



t1
t2
...
tn


Figure 16: The spectrum-based energy leak localization input matrix (A) and the total vector (t)

of any component (ci) and the total vector (t).

ci t


λ1i

λ2i

...

λni


?≈


t1

t2
...

tn


(6)

Similarity of each Category

The similarity between component i and the total vector t can be seen as how much

component i is responsible for each execution information of the total vector. This associ-

ation has as domain the current model and data, and therefore does not depend on prior

knowledge, and is independent of other software, allowing conclusions regarding the soft-

ware developed. Thus, it eliminates the dangers that could be introduced by comparing a

program consumption with the consumption of other programs, since energy consumption is

relative and it is totally dependent on what is the purpose of the program execution. As it

would be expected, if there are few number of components, every value of each component

will have bigger influence in the total vector value, which then influences the extracted sim-

ilarity. The quality of the test suite is also important because only with tests that provide

global coverage and test the program for different inputs, one can hope to extract interesting

information.

To obtain the component similarity (φ) with the oracle vector, there is a need to define a

function that receives the vector of a component and the total vector, and returns a structure
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with the similarity (α) for each of the constituents of component’s execution information

(Equations 7 and 8).

similarity

(

λ1i

λ2i

...

λni

 ,


t1

t2
...

tn


)

= φi (7)

where,

φi =
(
α(EEnergy), α(Texecution), α(N#)

)
i

(8)

The chosen formula to calculate the similarity coefficient for each of the component’s

constituents, is the Jaccard similarity coefficient [Real and Vargas, 1996]. This formula,

with two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), where xi, yi ≥ 0, calculates

the similarity coefficient using formula present in Equation 9.

J(x, y) =

n∑
i=1

min(xi, yi)

n∑
i=1

max(xi, yi)
(9)

The Jaccard similarity coefficient is a well-known formula to calculate the similarity

coefficient between two vectors and has been used for a long period of time in the biology

domain [Rousseau, 1998; Dombek et al., 2000].

With the application of this similarity function to all components of the matrix, the

result will be a row vector that represents, for each component and for each execution, the

information about their influence in the overall context. As already mentioned, this vector

contains the similarity of each execution information for each component, which allows the

similarity analysis to focus on a specific execution information. So, defining a sort criteria

and sorting the similarity vector allows to better understand which are the components

with that information that are closer to representing the totality of execution information

(Equation 10. Thus, and relating to the sorting criteria, one can realize what and why are
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the possible failures at energy level of the program.

sortBy
(
φ,Ecpu, Texecution) =

[
. . .
]

(10)

Global Similarity

With this similarity execution information of each component it is possible to make a

parameterized analysis, however, and complementary it can also be useful to have a value

that encodes all the execution information. This value will allow a numerical and global

comparison between the different components. This analysis will do the sorting of all com-

ponents, where the components with highest value were likely to be faulty at energy level.

To allow this conversion, a function that translates the execution information in a numeric

value must be developed. This function aims to convert the information available into a

value, which is dimensionless and therefore is not directly related to any of the units of in-

formation used. To obtain the desired value, one needs to sum all the values within the same

category (Equation 13) and then multiply all the values of each category (Equation 11). The

decision to multiply all categories is due to the fact that it makes the final value to grow

depending on the proportion that each category adds: the higher the value of the category

the higher is the proportion that it increases the overall value. Regarding the information

within the same category, they have a summative contribution within the category, and will

influence in proportion the global value.

globalValue
(
λni
)

= EEnergyni
× Texecutionni

×N#ni
(11)

The Factor of each Energy Information

In the energy category, there are different types of results on the hardware components’

energy consumption. These hardware components have a usual power consumption value and

it varies from hardware component to hardware component. Therefore, it makes sense that

these energy information are standardized according to the spontaneity of those hardware

components to produce more power. A illustration of this normalization can be for instance:

• Two hardware components A and B, wherein A in average consumes more power than
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B;

• Two software components 1 and 2 with the same total energy consumption value;

• The software component 1 energy, accounts only for the use of hardware component

A;

• The software component 2 energy, accounts only for the use of hardware component

B;

Besides having the same consumption value, software components 1 and 2 should have their

global similarity value influenced in different ways. Because hardware component A has

a higher average power consumption, software component 1 it is likely to contribute more

to energy consumption in different occasions (even if for the given test suite its energy

consumption value is the same as software component 2).

To apply such standardization a multiplier factor can be defined for each hardware

component. Table 2 explains the average power consumption for each component4 and the

factor that it will have on the formula. This factor of an hardware component k is calculated

using the formula shown in Equation 12.

factork =
powerk
n∑

i=1

poweri

(12)

where powerk represents the average power consumption of the hardware component k,

and n is the number of hardware components available.

Table 2: Average power consumption for each hardware component

Component name Power consumption (average) (W) Formula factor

CPU 102.5 0.34
DRAM 3.75 0.01
Fans 3.3 0.01
Hard Drive 7.5 0.02
GPU 187.5 0.62

4http://www.buildcomputers.net/power-consumption-of-pc-components.html
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So, with the data from Table 2 one can produce the formula present in Equation 13, to

calculate the energy category of the global value.

EEnergyij
= 0.34×ECPUij

+0.01×EDRAMij
+0.01×Efansij +0.02×Ediskij

+0.62×EGPUij
(13)

With this informations the full model and its operations are specified.

This analysis hold up an important and crucial step in the methodology that is being

defined. So, adding it to the respective activity diagram the definition of the methodology

is concluded. In Figure 17 the complete methodology can be seen, where are identified the

three distinct phases that were defined and developed along the last three Sections:

• The first phase, dependent of the language/paradigm, where the program is annotated

and ran with a test suite and produces the results;

• The second phase, independent of any language/paradigm, where the results from the

first phase are collected and adapted in order to produce data to the analysis phase.

• The third and last phase, independent of any language/paradigm, where the analysis

of the structured execution data is performed, and energy leaks of the software are

identified and can be investigated.

In the following Section an example using the analysis technique is given.

3.3.4. An Example

To understand how this analysis works and see how the analysis handles the execution

data, we will present an example.

Let us think of a program that could be written in any language. This program has four

different components (for instance functions in C, modules in C, methods in Java, etc.), and

is ran with a test suite of five different inputs. This program has previously been through

the first two phases of the methodology defined (Sections 3.1 and 3.2), and its energy,

execution time, and usage have been identified. Therefore, we can use the information of

this program’s execution and start the analysis. In Table 3 we can see the entire model of

the SPELL analysis already defined, but let us construct it step by step.
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SPELL AnalysisResults TreatmentInstrumentation, Compilation & Execution

Source Code

Energy Instrumentation

Source Code Instrumented

Compile & Run

Execution Data Process Results

Energy Data Analyze Results Produce Report

Tests

Report

Figure 17: Activity diagram illustrating the methodology to analyze a software to detect energy leaks

The input data is the data seen in Table 3 where for each component and each test we

have a triple of three categories. This triple contains the CPU energy consumption value

(the only hardware component measured is the CPU), the number of times that software

component was used, and the consumption time:
ECPU

N#

Texecution


So, in Table 3 we can check all the data from the program’s execution in the given tests.

Having this inputs, and as defined in SPELL, we have to build the oracle (t vector). To

do so, for each test, we sum all the values of each category of the component data. After

doing this for every test we have built the “oracle vector”. The following step is to calculate

each component’s category similarity. To achieve this we apply for each component category

vector and the oracle vector the Jaccard’s coefficient similarity formula. For example, for
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Table 3: SPELL matrix built for the example program

test c1 c2 c3 c4 t

1

37
1
75

  61
2

102

 0
0
0

 42
1
34

 140
4

211



2

38
3
77

  50
1

103

 34
2
42

 44
1
37

 166
7

259



3

36
1
73

  58
1

102

 35
1
43

 0
0
0

 129
3

218



4

37
3
74

  66
2

105

 0
0
0

 61
2
43

 164
7

222



5

39
2
75

  54
3

100

 51
4
60

 65
2
60

 209
11
295


similarity by
component’s

category

0.2314
0.3125
0.3104

 0.3577
0.2813
0.4249

 0.1485
0.2188
0.1203

 0.2623
0.1875
0.1444


global similarity 0.0197 0.0373 0.0116 0.0112

c1, and for the energy category similarity coefficient we will have the formula represented in

Equation 14.

α(ECPU) =
min(37, 140) +min(38, 166) +min(36, 129) +min(37, 164) +min(39, 209)

max(37, 140) +max(38, 166) +max(36, 129) +max(37, 164) +max(39, 209)
= 0.2314 (14)

The calculation for the other categories and the different components would be the same,

and its results can also be consulted in Table 3 in the similarity by component’s category

row.

To end the gathering and calculation of all the values needed to make the energy leak

analysis in the program, we must calculate the global similarity of each component. To do

so, we must apply the formula defined in the prior Section (Equation 11) and calculate for
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each test and each component its global value.

For example, for the test 1 and the component 1, its global value would be calculated

as shown in Equation 15.

globalValue
(
λ11

)
= (37× 0.34)× 75× 1 = 943.5 (15)

Doing the same for every test of component 1 and also for each oracle test value we obtain

the values represented in Table 4.

Table 4: Component c1 and oracle global value vector

c1 t
943.5 40174.4

2984.52 102325.72
893.52 28684.44
2792.76 86651.04

1989 230589.7

Using the Jaccard’s coefficient similarity formula we can obtain the following similarity

coefficient: 0.0197. Doing this calculations for every component of the program the global

value similarity coefficient can be consulted in Table 3.

Now that we have all the needed information to analyze, we can extract some inform-

ation. Reading the global similarity coefficient value we can see which component has the

highest probability of have an energy leak. Sorting the components for this metric we obtain

the following configuration: c2, c1, c3 and finnaly c4. This means that if the reader was a

developer of this application he/she should consider looking first into the component c2 to

improve the energy consumption of the program. The advantage of the SPELL technique

is that it can tell, besides the global value, why the component is faulty. For example,

c2 is calculated as the most probable component to have a energy leak because if we look

into its categories similarity values we will see that this component ranks first in the energy

similarity value, second in the cardinality similarity value and first in the execution time

similarity. This ranks clearly points to this component. Also, there are some curious facts

that can be seen in this analysis. For example, c4 has an energy category similarity value

higher than the c1, although and due to the other categories its ranked fourth in the overall.
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Other curiousity is that c3 has in test 5 an higher value of energy consumed than any of the

c1 energy values retrieved. However and because we take into consideration multiple tests,

c3 is ranked third in the overall, when c1 is ranked second. Other curious facts could be

found and explained but, and to compare this analysis over a technique using only the en-

ergy consumption values, another fact will be given. If we calculate the components average

energy consumption values we would obtain:

c1 = 37.4, c2 = 57.8, c3 = 24, c4 = 42.4

what would indicate the following ranking: c2, c4, c1 and finnaly c3. This rank is completely

different from the obtained in the SPELL analysis because it ignores the other compon-

ents influence. To prove that this technique produces true conclusions in the Chapter 5 a

validation of the technique will be presented.

3.3.5. Process Instantiation

This last phase was also developed and implemented using Java. Therefore, the grammar

for the input was created using the ANTLR framework. Every operation described in this

phase (e.g. the calculation of each category similarity), were implemented as Java methods.

More details about this implementation can be consulted in Section 4.3.
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4. The SPELL Framework

Throughout the Thesis development, all the phases already identified in Section 3.1, 3.2

and 3.3 were materialized as individual tools. Doing so allowed us to use them separately

and if needed to be modified and updated without having to propagate those changes to the

other phases. Another factor that weighed in the decision to build multiple tools was the

compilation process. For a program to be able to use the Intel Power Gadget framework to

retrieve the energy consumption information, a compilation flag needs to be added to the

compilation process. Because in C developed software, every program has its own makefile

(file that builds the software from its source files), this process, being a specific process for

each program’s makefile, could not be systematized.

To combine the multiple tools that we created we used the CROSS platform introduced

in [Martins et al., 2012] - a web portal that allows the construction of certifications5 to ana-

lyze open source software using different tools. In this portal, one can create a certification

to represent the whole process of this tool which will be automatically linked. A possible

certification for the whole process using the modules built in this Thesis is represented in

Figure 18. In this Figure 18, there are six tools, represented by six boxes. Each tool has

an input language that for each input given, transforms it into the output language – this

input and output languages are also represented in these boxes (inputLanguage → output-

Language). The connection between the boxes represents the flow that the input will follow,

and the transformation that will suffer, when submitted to perform the certification. In this

certification, the first tool is the energy instrumentation, that will receive and produce a

program in the C language; then it is compiled by the gcc; executed by softwareExecutor,

that produces the output of the execution; its results are then treated by the next tool

(text2SPELLInput), which produces a matrix to be used in the energy analysis phase; in

the next phase the energy analysis is performed on this data by SPELLAnalysis ; and, in

the end, a tool transforms the output report from the analysis into a formatted report by

text2Report (this report is a CROSS language specification and must be the last type of the

certification process). This visual language was defined by us and is presented in [Carção

5Certifications are programs that run software throught a set of tools and analyze it.
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and Martins, 2014].

Figure 18: A visual certification that represents the composition of the different modules to create
a full process.

This set of tools is enclosed in a framework. The deployment diagram, the UML diagram

most suitable to represent a framework’s modules architecture, shown in Figure 19, illustrates

this framework composition and its tools (known in the deployment diagram as components).

Each component identifies an executable tool and contains its implementation language.

In the following Sections each tool of the framework will be explained in detail.

4.1. The Instrumentation, Compilation and Execution

As it was described in Section 3.1.3, this phase was implemented to instrumentate,

compile and execute C programs in order to analyze C programs.

This was developed in C++ using the Clang framework to retrieve and annotate the

AST (Figure 19 - ClangAST Instrumentation). The Power Gadget Tool from Intel was the
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«pc client»
Client

«Executable»
ClangAST Instrumentation

«Executable»
Instrumentation

«Executable»
Results Treatment

«Executable»
Software Energy Analysis

{Language=Perl}

{Language=Java}

{Language=Java}

{Language=C++}

«Executable»
Test Suite Execution

{Language=Perl}

Figure 19: Deployment diagram of the SPELL framework developed

source of the energy information. In the end, a Perl script that applied the instrumentation

to every module of a software package was developed (Figure 19 - Instrumentation). To

execute this package (now instrumented) was also developed a Perl script (Figure 19 - Test

Suite Execution).

Because the RAPL tool has a limitation that do not isolates the processes, which means

that in its energy measures it takes into account the whole system, we took some cautions.

To try to exclude the system influence over the program energy consumption values, the

test was ran multiple times (40 in our case), where the 10 runs with the higher consumption

were discarded. With the rest of the executions, an average for each consumption value was

calculated.

The data produced by this tool can be used in the tool of the next Section.
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4.2. The Results Treatment

As stated in Section 3.2.1, this tool (Figure 19 - Results Treatment) was developed in

Java, and its grammar was implemented using ANTLRWorks framework. The software

architecture of this tool is shown in in Figure 20 and is represented in a class diagram. This

class diagram contains the different packages of the tool and its classes.

Results treatment

Parsing

Parser

+parse(): ComponentSample[][]

ResultsTreatment

+aggregateNodeComponents()
+generateOutput()

ComponentSample

-timeInformation : long
-cardinalityInformation : long

PowerInformation

-cpu : double
-DRM : double
-GPU : double
-fans : double
-disk : double
-...

-powerInformation

Gram.g

-grammar

-parser

nAryTree-trees 1..*

ComponentNode

+name: String

-nodes

-executionData

Figure 20: Class diagram illustrating the internal design of the results treatment tool
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With the n-ary tree that represents the execution path of each of the program’s com-

ponent build, various operations are performed on the tree. Each component can appear

multiple times as a node on the tree, so, its information is aggregated and refreshed. Tra-

versing the tree and having done this for all the components, the information aggregated is

ready to be produced to the next phase. In a similar way the next phase’s input must also

follow a specific syntax.

4.3. SPELL Analysis

The last tool (Figure 19 - Software Energy Analysis), and as shown in Section 3.3.5, was

also developed in Java using the ANTLRWorks framework to implement its grammar.

As this tool implements the SPELL analysis it must implement its concepts. Each

concept and its corresponding Java artifact is represented in the Table 5.

Table 5: Correlation between the SPELL concepts and its implementation in the tool

SPELL concept Implemented as

Software Component’s power information Class: PowerInformation

Software Component Class: ComponentSample

Matrix of software components Instance Variable: ComponentSample[ ][ ]

Oracle Instance Variable: ComponentSample[ ]

Formula to calculate the similarity coefficient Class: SimilarityFormula

Formula to apply the calculation of the similarity between
the component and the oracle

Class: ComponentSimilarityStrategy

Component similarity Class: ComponentSimilarity

An array of components’ similarity Instance Variable: ComponentSimilarity[ ]

Global value of component’s Class: TotalV alueComponent

An array of components’ global value Instance Variable: TotalV alueComponent[ ]

In this tool, there is a main class (SPELLAnalysis) that is the center of this process.

It has the model information and the operations of this model (defined in Section 3.3, i.e.,

calculating the oracle, sortBy criteria, and compute global value).

The software architecture of this module is represented in the class diagram presented

in the Figure 21.
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Analysis

Parsing

Parser

+parse(): ComponentSample[][]

SPELLAnalysis

+calculateOracle()
+calculateComponentsSimilarity()
+orderComponentsBy(param): ComponentSample []
+calculateComponentsGlobalSimilarity(): double [] ComponentSample

-timeInformation : long
-cardinalityInformation : long

PowerInformation

-cpu : double
-DRM : double
-GPU : double
-fans : double
-disk : double
-...

-powerInformation

Gram.g

-grammar

-matrix [][]
-parser

Component Similarity

+timeSimilarity : double
+cardinalitySimilarity : double

-similarityComponentVector

PowerSimilarity

+cpu: double
+DRAM : double
+GPU : double
+fans : double
+disk : double
+...

-powerSimilarity
ComponentSimilarityStrategy

+calculateComponentsProbability()

OracleVectorConstructionStrategy

+constructOracleVector()

SimilarityFormula

+calculateSimilarity()

JaccardSimilarityCoefficient

Figure 21: Class diagram illustrating the internal design of the Software Energy Analysis tool

4.4. How to Use the SPELL Framework

This framework can be obtained at https://github.com/tcarcao/spellframework.

The package contains all of three tools and a README file. These tools must be ran

separately or linked all together in a platform like the CROSS portal. The README file

gives instructions on how to run each of the tools and the pre-requisites to run them.
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5. Validation

To evaluate the results reported by the methodology and the framework developed, we

need to, and using our framework, find energy leaks that are already known.

In Section 2.1 we already saw that Gutiérrez et al. [2014] made a research on how much

the Java collections consumed, and made an energy consumption rank of those collections,

identifying the collections that perform best on energy usage. To build this rank they ran

an well-known benchmark6 and measured the energy consumption of the benchmark with

the different collections. Table 6 shows the operations performed in the benchmark for each

collection.

Table 6: Operations performed in the benchmark for each collection

Operations performed in the benchmark

add 100000 distinct elements
addAll 1000 times 1000 elements

clear
contains 1000 times

containsAll 5000 times
iterator 100000

remove 10000 elements
removeAll 10 times 1000 elements

retainAll 10 times
toArray 5000 times

The format of their conclusions were, for each collection, how many times, when replaced

by other collection, the program energy consumption values got better or how many times

got worse. We can transform this format in a rank (worst to better) that is represented in

Table 7.

To apply our framework to the same problem we have to adapt it. Because our framework

only works with C programs we have to run the Java code from a proxy C program. This

program instantiates a version of the Java Virtual Machine (JVM) and then uses Java Native

Interface (JNI) to run the desired code. To analyse this benchmark in terms of energy in

our framework, we need to define which are the components and the execution tests. As

6 http://java.dzone.com/articles/java-collection-performance
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Table 7: Rank obtained by [Gutiérrez et al., 2014], from worst to better, of the Java collections

ConcurrentLinkedDeque
LinkedBlockingDeque
LinkedList
LinkedTransferQueue
ConcurrentLinkedQueue
ArrayList
PriorityQueue
CopyOnWriteArrayList
ConcurrentSkipListSet
TreeSet
CopyOnWriteArraySet
LinkedHashSet
HashSet

we want to know which collection is more likely to have an energy leak, the collections are

defined as the components. Each operation available in the benchmark (Table 6) will be a

test to the components (the collections). For each operation, the energy is only measured

after initializing the JVM, thus eliminating the energy usage of the JVM initialization7.

Applying our framework to the benchmark, the analysis input and calculated similarities

(as shown in Section 3.3) can be consulted in Table 98. Because each operation was called

only once in the execution to simulate a test, the usage cardinality of each component

element is always 1.

Table 8 contains the comparison between the rank obtained by [Gutiérrez et al., 2014]

and our collections rank ordered by global similarity value. Comparing these two ranks we

can observe that 9 of 13 collections have the same rank and only two pairs of collections

are misplaced. It is important to mention that ConcurrentLinkedDeque and LinkedBlocking-

Deque, and also, LinkedHashSet and HashSet were reported to have close values [Gutiérrez

et al., 2014]. Also, in our analysis, the similarity value of energy consumption category are

very alike (0.0960 vs 0.0919 and 0.0640 vs 0.0660) as well as the global similarity (0.1160 vs

0.1080 and 0.0482 vs 0.0447). Therefore, a possible lack of precision on the energy measure

7 Using the JVM and JNI, there is an excess of consumption in each benchmark operation but because it is
constant for every operation, in terms of operations comparison, this excess of consumption is negligible.

8 Due to size constrains, Table 9 is the inverse matrix where the components are the rows and the tests
(methods) are the columns.
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Table 8: Rank obtained by [Gutiérrez et al., 2014] on the left vs our analysis rank on the right

ConcurrentLinkedDeque LinkedBlockingDeque
LinkedBlockingDeque ConcurrentLinkedDeque
LinkedList LinkedList
LinkedTransferQueue LinkedTransferQueue
ConcurrentLinkedQueue ConcurrentLinkedQueue
ArrayList ArrayList
PriorityQueue PriorityQueue
CopyOnWriteArrayList CopyOnWriteArrayList
ConcurrentSkipListSet ConcurrentSkipListSet
TreeSet TreeSet
CopyOnWriteArraySet CopyOnWriteArraySet
LinkedHashSet HashSet
HashSet LinkedHashSet

may be the explanation to this difference. It is important to highlight that these differences

only affect a misplace in one position and in any case this technique ranks a supposedly

free energy leak collection as a collection with a high probability of being energy faulty. At

most, this misplace, would lead the developer to choose a different collection, that would

not impact by much its results, with the addition that he/she in our framework could know

what were the reasons behind such fact.

With our analysis we came to very much the same conclusion of [Gutiérrez et al., 2014]

about which Java collections were the better and the worse in terms of energy. This means

that our solution works, and therefore, may be used to identify energy leaks in the software

with the addition of being able to give extra reports on why is that happening.
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Table 9: SPELL Matrix built for the benchmark test. Collections are the components (rows) and
the operations to the collections are the tests (columns).

a
d

d

a
d

d
A

ll

cl
e
a
r

co
n
ta

in
s

co
n
ta

in
sA

ll

it
e
ra

to
r

re
m

o
v
e

re
m

o
v
e
A

ll

re
ta

in
A

ll

to
A

rr
a
y

si
m

il
a
ri

ty
b
y

co
m

p
o
n

e
n
t’

s
ca

te
g
o
ry

G
lo

b
a
l

si
m

il
a
ri

ty

LinkedBlockingDeque
796 614 918 1293 1241 1101 1387 1137 1247 1306 0.0960

0.11601 1 1 1 1 1 1 1 1 1 0.0769
770 636 4936 5120 5212 3782 5290 4144 5183 4086 0.0949

ConcurrentLinkedDeque
709 550 1046 1394 945 1035 1257 1399 1086 1145 0.0919

0.10801 1 1 1 1 1 1 1 1 1 0.0769
705 619 5007 4313 5300 3728 4985 4335 5123 3983 0.0923

LinkedList
770 524 1048 926 996 811 1008 1075 1194 1400 0.0848

0.09351 1 1 1 1 1 1 1 1 1 0.0769
694 817 4980 2961 4607 3198 4951 4373 4764 4370 0.0870

LinkedTransferQueue
760 722 1250 702 1226 920 1159 647 1226 989 0.0835

0.08811 1 1 1 1 1 1 1 1 1 0.07692
787 815 4409 3219 4618 3142 5414 3513 4438 3987 0.0832

ConcurrentLinkedQueue
741 700 1163 999 954 701 1164 810 1277 889 0.0817

0.08311 1 1 1 1 1 1 1 1 1 0.0769
724 852 4391 3359 3838 3339 5352 3381 4396 3622 0.0806

ArrayList
503 747 970 1024 1335 533 1106 728 961 746 0.0752

0.07761 1 1 1 1 1 1 1 1 1 0.0769
430 2712 2785 3268 5431 1835 4442 4653 4906 2221 0.0792

PriorityQueue
721 998 1134 908 514 1069 631 545 883 1182 0.0746

0.07611 1 1 1 1 1 1 1 1 1 0.0769
3182 3906 4690 4503 481 3781 2449 1816 2596 4980 0.0785

CopyOnWriteArrayList
827 1063 772 533 704 727 1089 1217 739 768 0.0734

0.06961 1 1 1 1 1 1 1 1 1 0.0769
3678 4163 763 3121 3493 1965 4779 3866 3595 2363 0.0770

ConcurrentSkipListSet
625 865 1016 1043 687 1362 597 566 554 964 0.0720

0.06571 1 1 1 1 1 1 1 1 1 0.0769
2977 3566 3603 3890 618 3881 2505 2208 2060 4319 0.0718

TreeSet
787 909 591 935 199 1020 1070 741 705 981 0.0690

0.06501 1 1 1 1 1 1 1 1 1 0.0769
2980 3790 382 4882 370 3887 3492 1995 2244 4826 0.0699

CopyOnWriteArraySet
1307 975 685 550 708 725 1067 742 543 520 0.0680

0.06441 1 1 1 1 1 1 1 1 1 0.0769
5160 5070 3055 2271 435 2229 5443 2054 2048 956 0.0696

HashSet
738 622 1042 730 896 581 706 785 636 859 0.0660

0.04821 1 1 1 1 1 1 1 1 1 0.0769
2245 2794 3201 2001 2787 2314 2367 2214 2304 2874 0.0608

LinkedHashSet
556 625 970 586 765 673 738 732 639 1073 0.0640

0.04471 1 1 1 1 1 1 1 1 1 0.0769
980 2397 3240 1160 1017 3184 1968 2729 2626 3771 0.0559

Oracle
9840 9914 12605 11623 11170 11258 12979 11124 11690 12822
13 13 13 13 13 13 13 13 13 13

25312 32137 45442 44068 38207 40265 53437 41281 46283 46358
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6. Conclusion

The importance of the energy consumption is felt either on users of mobile devices or

by software developers. The programming languages for several years have been providing

tools to allow software developers to improve the execution performance of their programs

and eliminate faults (debuggers, profilers, etc.). In this Thesis we developed techniques and

a framework that help the developers to localize energy leaks. By doing so, we hope to

impact the development of green software by making it easier and productive.

To achieve this Thesis results, we first started by identifying the different steps to reach

our goal. The instrumentation, compilation and execution is the first step and is where the

software is transformed to produce information about its execution, and then is compiled

and executed. This phase was implemented using Clang and Perl and analyzes C language

programs. This is the only phase programming language dependent. In a second step, the

analysis of the information produced in the first step is made and the matrix needed in step

three is generated using the first step’s data. This second phase was developed in Java and

is language/paradigm independent. In the third and last step an analysis is performed and

the conclusions about energy leaks are drawn. This last phase was developed in Java and is

also language/paradigm independent. We have also developed a framework enclosing these

three tools. A validation of the methodology and framework created was performed and we

have shown that it accomplishes very good results.

Throughout the Thesis research and development multiple contributions were made.

The main contributions of this Thesis are:

• A methodology to analyze a program’s source code energy consumption.

This methodology defines what are the steps to be taken in order to execute, read and

analyze a program’s energy usage.

• A software tool that allows the instrumentation to retrieve energy and execution in-

formation.

This module allows the instrumentation of C programs to extract the execution data

of the source code.
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• A software tool that processes the execution data.

This module is independent of the program language and accepts as input the pro-

gram’s execution data. It processes this data and aggregates the information by com-

ponent.

• A software tool that analyzes the execution data.

This module (SPELL) is also programming language independent. It analyzes the

program execution data and produces as output which are the energy leaks in the

program.

• A framework that encloses all the modules above mentioned.

6.1. Research Questions Answered

We proposed ourselves to answer three research questions. These questions are related

to the concept, the design, and implementation of this Thesis. Now, we can answer these

questions.

Q1 Can we define a methodology to analyze the energy consumption of software source

code?

Yes, we identified three different phases (Sections 3.1, 3.2 and 3.3) in the path to

analyze the energy consumption of software source code and detailed each one of them.

Within this definitions we systematized the process and extracted such methodology.

Q2 Is it possible to adapt a general purpose fault localization algorithm to the context of

energy leak localization?

Yes, in Section 2.2.1 we identified a fault localization technique which in Section 3.3

we analyzed and transformed, making the necessary changes while introducing other

useful concepts, having reached an energy leak localization technique.

Q3 Can we find energy leaks in software source code?

Indeed, after defined and implemented the energy leak localization technique in Sec-

tion 3.3, in Chapter 5 we automatically identified energy leaks that in fact were energy

leaks known.
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6.2. Other Contributions

In addition to this Thesis contributions, during its work I was involved in other research

topics that culminated in three publications and one prize award:

• A Visual DSL for the Certification of Open Source Software, Tiago Carção,

Pedro Martins. In the proceedings of the International Conference on Computational

Science and Its Applications (ICCSA’14), Guimarães, Portugal, June 30 - July 3, 2014.

• Detecting Anomalous Energy Consumption in Android Applications, Marco

Couto, Tiago Carção, Jácome Cunha, João Paulo Fernandes, João Saraiva. In the pro-

ceedings of the Brazilian Symposium on Programming Languages (SBLP’14), Maceio,

Brazil, October 2-3, 2014.

• Measuring and visualizing energy consumption within software code, Tiago

Carção. In the proceedings of the Visual Languages and Human-Centric Computing

(VL/HCC’14), Melbourne, Victoria, Australia, July 28 - August 1, 2014.

• Energy consumption detection in LabView, Tiago Carção, Jácome Cunha, João

Paulo Fernandes, Rui Pereira, João Saraiva. Grand prize ($2000) of a competition on

innovating ideas applied to a specific software, awarded by National Instruments

6.3. Future Work

With the contributions of this Thesis as basis, where we already defined a methodology

and a technique analysis that can identify energy leaks in the source code, some research

could be made to further improve the tools available to help the development of software

applications. This research can target the following topics:

• As noted in Section 3.3 where we choose to use the energy consumption and not the

power consumption in the technique, a further investigation could be done in using

the power consumption to extract results and trying to identify patterns and possibly

bad software components.
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• More languages could be investigated, and therefore, the phase of instrumentation,

compilation, and execution, could be instantiated to those language.

• Since one of the basis of the technique developed is the function that gives the similarity

between components and the oracle vector, to improve the accuracy of the technique

developed, other functions of similarity could be tested.

• Identify patterns of energy usage (red smells): Having a tool to identify the energy

leaks in a software program, one can run multiple software packages and identify some

bad smells in terms of energy.

• Propose refactorings to remove those red smells. With the red smells identified, mul-

tiple techniques to refactor them with a greener version can be researched.

• Develop a visual tool to present the information collected. With all of the information

– the energy leaks, the red smells, and consequent refactorings – we need to present this

information. Thus, a visual tool, that can also be integrated in an IDE, that implement

these techniques can be developed. This tool would be a major contribution to the

daily tasks of the software developer.

• Research the influence of CPU execution on the energy consumption values. As de-

scribed in Subsection 3.1.4, during the development of this Thesis we faced an odd

situation in the energy measurement of a C program execution. We did some research

and got some results that seem promising and require more investigation. A more

profound investigation on trying to find a win-win situation in the execution time and

the energy consumption levels, by optimizing the OS to prioritize the performance in

terms of energy consumption, should be made.
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A GRAMMAR USED TO DEFINE THE INPUT SYNTAX OF THE RESULTS
TREATMENT PHASE

Appendices

A. Grammar used to define the input syntax of the results
treatment phase

〈Input〉 −→ 〈Data〉*

〈Data〉 −→ 〈Component-begin〉 〈Data〉* 〈Component-end〉

〈Component-begin〉 −→ ‘>’ 〈Component〉

〈Component-end〉 −→ ‘<’ 〈Component〉

〈Component〉 −→ ID ‘[’ 〈Params〉 ‘]’

〈Params〉 −→ 〈Param〉 (‘,’ 〈Param〉)*

〈Param〉 −→ ‘time’ ‘=’ NUMBER
| ‘cpu’ ‘=’ NUMBER
| ‘dram’ ‘=’ NUMBER
| ‘gpu’ ‘=’ NUMBER
| ‘fans’ ‘=’ NUMBER
| ‘disk’ ‘=’ NUMBER
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B GRAMMAR USED TO DEFINE THE SYNTAX OF THE INPUT OF THE SPELL
ANALYSIS PHASE

B. Grammar used to define the syntax of the input of the
SPELL analysis phase

〈Matrix 〉 −→ 〈Row〉*

〈Row〉 −→ 〈Component-Sample〉*

〈Component-Sample〉 −→ ‘[’ 〈Params〉 ‘]’
| ‘_’

〈Params〉 −→ 〈Param〉 (‘,’ 〈Param〉)*

〈Param〉 −→ ‘time’ ‘=’ NUMBER
| ‘numberUsed’ ‘=’ NUMBER
| ‘cpu’ ‘=’ NUMBER
| ‘dram’ ‘=’ NUMBER
| ‘gpu’ ‘=’ NUMBER
| ‘fans’ ‘=’ NUMBER
| ‘disk’ ‘=’ NUMBER
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