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Abstract. Variants of Herbelin’s λ-calculus, here collectively named
Herbelin calculi, have proved useful both in foundational studies and
as internal languages for the efficient representation of λ-terms.
An obvious requirement of both these two kinds of applications is a clear
understanding of the relationship between cut-elimination in Herbelin
calculi and normalisation in the λ-calculus. However, this understanding
is not complete so far. Our previous work showed that λ is isomorphic to
a Herbelin calculus, here named λP, only admitting cuts that are both
left- and right-permuted. In this paper we consider a generalisation λPh
admitting any kind of right-permuted cut.
We show that there is a natural deduction system λNh which conser-
vatively extends λ and is isomorphic to λPh. The idea is to build in
the natural deduction system a distinction between applicative term and
application, together with a distinction between head and tail applica-
tion. This is suggested by examining how natural deduction proofs are
mapped to sequent calculus derivations according to a translation due
to Prawitz.
In addition to β, λNh includes a reduction rule that mirrors left permu-
tation of cuts, but without performing any append of lists/spines.

1 Introduction

Herbelin introduced in [9] a fragment of sequent calculus for intuitionistic impli-
cational logic (here named the canonical fragment), together with a term calcu-
lus, named the λ-calculus, as a way of extending the Curry-Howard isomorphism
to sequent calculus. Since then, variants of λ (let us call them Herbelin calculi)
have been mainly used as a tool for proof-theoretical studies [5, 12, 7].

At the same time, the potential of Herbelin calculi as internal languages for
the λ-calculus was recognised. This is manifest in the design of the “spine calcu-
lus” [2]. The potential lies in the fact that the representation of applicative terms
brings the head to the surface [4]. This is useful in normalisation or unification
procedures [2].

A clear understanding of the relationship between cut-elimination in Herbelin
calculi and normalisation in the λ-calculus is obviously a basic requirement for



both foundational studies and applications to the implementation of λ-calculi.
Yet, such understanding is not complete so far. We are aware of only two exam-
ples of such kind of study [2, 7].

Our starting point is [7], where a very particular Herbelin calculus (here
named λP) was proved isomorphic to λ. In λP only cuts that are both left- and
right-permuted are allowed. In this paper we define an extension of λP, named
λPh, in which any right-permuted cut is admitted. Then we show that there is
a natural deduction system, named λNh, which conservatively extends λ and is
isomorphic to λPh.

The idea for λNh is obtained by examining a mapping of natural deduction
proofs to sequent calculus derivations due to Prawitz [11]. Through this mapping,
eliminations correspond to two kinds of inferences: either a particular kind of left
inference, or a cut. The idea is then to build in the natural deduction side this
distinction. The result is a calculus with a distinction between applicative term
and application, together with a distinction between two kinds of application:
head and tail applications.

The isomorphism λPh ∼= λNh gives insight into the mismatch that exists,
even for implication, between sequent calculus and natural deduction - when
natural deduction is defined as a system isomorphic to λ.

The paper is organised as follows. First, we study λPh. Then we recall
Prawitz’s mapping. Next we consider λNh and the isomorphism λNh ∼= λPh.
Finally, we compare our result with the results in [2].

Remark: Because of space limitations, no proofs are given here. They may
be found in [6].

Notations and terminology

λ-calculi: α-equivalent terms are seen as equal. Barendregt’s variable convention
[1] applies to all λ-calculi in this paper. A value is a variable or a λ-abstraction.
A value application is an application MN where M is a value.

Types: Types are ranged over by A,B,C, D. We just treat intuitionistic
implicational logic. Implication is written A ⊃ B.

Contexts: A context is a consistent set of declarations x : A. By consistent
we mean that if x : A and x : B are in a context, then A = B. Contexts are
ranged over by Γ . We write x ∈ Γ meaning x : A ∈ Γ for some A. Γ, x : A
denotes the consistent union Γ ∪ {x : A}, which means that, if x is already
declared in Γ , then it is declared with type A.

Relationship between calculi: We will find several times the following
situation. (1) The terms of a calculus λ1 are also terms of another calculus λ2.
(2) If t → u in λ1 then t →+ u in λ2. (3) There is a mapping p : λ2 → λ1

such that (i) pt = t, for all t in λ1 and (ii) t → u in λ2 implies pt →∗ pu in λ1.
Such mapping will be called a projection. Then, we say that λ2 is a conservative
extension of λ1, because it holds that

t →∗ u in λ1 iff t →∗ u in λ2, for all t, u in λ1.



“Only if” follows from (2). As to “if”, suppose t →∗ u in λ2, with t, u in λ1.
Then, by (3-ii), pt →∗ pu in λ1. But pt = t and pu = u, by (3-i).

2 Cut-elimination in the canonical fragment

2.1 The λPh-calculus

The canonical fragment of sequent calculus was rediscovered several times in the
1990’s [9, 10, 5, 3]. A derivation is canonical if every left inference

Γ ` A Γ,B ` C

Γ, A ⊃ B ` C
(1)

occurring in it is canonical, which, in turn, means that the active formula in
the right premiss (the bold B in (1)) is main and linear. The exact meaning
of “main” and “linear” depends on how the syntax is set up (particularly the
structural rules). We immediately move to an example, precisely the calculus
of cut-elimination λPh that we introduce in this paper (see Table 1). For the
moment we are interested in the typing rules, given in Table 2.

Table 1. The λPh-calculus

(Terms) u, v, t ::= x |λx.t | t(u · l)
(Lists) l, l′ ::= [] | t :: l

(β1) (λx.t)(u · []) → subst(u, x, t)
(β2) (λx.t)(u · (v :: l)) → subst(u, x, t)(v · l)
(h) (t(u · l))(u′ · l′) → t(u · append(l, u′ :: l′))

where

subst(v, x, x) = v
subst(v, x, y) = y , y 6= x

subst(v, x, λy.t) = λy.subst(v, x, t)
subst(v, x, t(u · l)) = subst(v, x, t)(subst(v, x, u) · subst(v, x, l))

subst(v, x, u :: l) = subst(v, x, u) :: subst(v, x, l)
subst(v, x, []) = []

append(t :: l, l′) = t :: append(l, l′)
append([], l′) = l′



Table 2. Typing rules for λPh

V ar
Γ, x : A;− ` x : A

Right
Γ, x : A;− ` t : B

Γ ;− ` λx.t : A ⊃ B
x /∈ Γ

HeadCut
Γ ;− ` t : A ⊃ B Γ ;− ` u : A Γ ; B ` l : C

Γ ;− ` t(u · l) : C

Ax
Γ ; A ` [] : A

Lft
Γ ;− ` t : A Γ ; B ` l : C

Γ ; A ⊃ B ` t :: l : C

We follow the tradition of [9] by using sequents with a stoup for enforc-
ing canonical derivations. The stoup is a distinguished position in the LHS of
sequents containing at most one formula. If a formula is in the stoup, it is guar-
anteed to be main and linear. This is easily confirmed in our particular system by
inspection of the rules in Table 2. The only inference rules that produce sequents
with non-empty stoups are Ax and Lft. On the one hand, the stoup-formulas
they produce are main. On the other hand, observe that the only weakened
formulas of the system are those of Γ in rules V ar and Ax (thus the left A
introduced by Ax is not weakened), whereas contraction happens implicitly by
identification of Γ ’s in rules HeadCut and Lft (thus no contraction occurs when
A ⊃ B is introduced by Lft). Therefore, every Lft inference is canonical.

Whether the stoup is empty or not determines two kinds of sequents and
the corresponding two kinds of expressions (terms or lists, respectively) that
annotate them - see Table 1 for the grammars. Terms may be variables, λ-
abstractions or head-cuts t(u · l). When t in t(u · l) is a variable, the head-cut
represents another form of left inference, the admissible

Γ, x : A ⊃ B;− ` u : A Γ, x : A ⊃ B;B ` l : C
Left

Γ, x : A ⊃ B;− ` x(u · l) : C

which is simply an abbreviation of the following instance of HeadCut:

V ar
Γ, x : A ⊃ B;− ` x : A ⊃ B Γ, x : A ⊃ B;− ` u : A Γ, x : A ⊃ B; B ` l : C

Γ, x : A ⊃ B;− ` x(u · l) : C

The difference between Left and Lft is that the A ⊃ B introduced by the former
is not necessarily linear.

The typing derivation of a head-cut has a rigid structure. We consider the
particular case x(u1 · l). Then, there are k ≥ 1, u2, ..., uk such that l = [u2, ..., uk]
(if k = 1 this is []) and the typing derivation looks like



····
Γ ;− ` u1 : A1

····
Γ ;− ` u2 : A2

····
Γ ;− ` uk : Ak

Ax
Γ ;B ` [] : B

Lft
Γ ;Ak ⊃ B ` [uk] : B····

Γ ;A3 ⊃ ... ⊃ Ak ⊃ B ` [u3, ..., uk] : B
Lft

Γ ;A2 ⊃ ... ⊃ Ak ⊃ B ` [u2, ..., uk] : B
Left

Γ ′, x : A1 ⊃ A2 ⊃ ... ⊃ Ak ⊃ B ` x(u1 · [u2, ..., uk]) : B
(2)

where Γ = Γ ′, x : A1 ⊃ A2 ⊃ ... ⊃ Ak ⊃ B. We call the sequence of bold
formulas the principal path of this derivation.

2.2 Comparison with Herbelin’s system

Herbelin’s original λ-calculus differs from λPh at some points. In the former we
find, instead of Ax, a dereliction rule

Γ, x : A; A ` l : B

Γ, x : A;− ` xl : B
(3)

that explicitly takes a formula out of the stoup position; and Herbelin’s head-cut
has the form

Γ ;− ` t : A Γ ; A ` l : B

Γ ;− ` tl : B
(4)

which really looks like a cut. The syntax of terms in λ is

t ::= xl |λx.t | tl , (5)

and the syntax of lists is unchanged. Then, our x and t(u · l) are derived as
Herbelin’s x[] and t(u :: l). From this we see in what sense our head-cut is a cut
- it may be seen as an abbreviation for

Γ ;− ` t : A ⊃ B

Γ ;− ` u : A Γ ; B ` l : C
Lft

Γ ;A ⊃ B ` u :: l : C
(4)

Γ ;− ` t(u :: l) : C

(6)

Hence, our head-cuts are right-permuted cuts, because, in accordance with (6),
their right cut-formulas are main and linear, and, for this reason, they cannot
be permuted to the right any further. In Herbelin’s system, the head-cut t[] is
right-permutable, as the right cut-formulas is introduced by an axiom:



t[] → t . (7)

Moreover, in Herbelin’s system there is a distinction between (x[])(u :: l), a
head-cut whose left subderivation is an axiom, and the left inference x(u :: l)
that results from eliminating such trivial cut:

(x[])(u :: l) → x(u :: l) . (8)

This distinction does not exist in our system.
Herbelin’s syntax has this advantage: cut=redex. However, there is a price to

pay. First, from the point of view of getting a manageable and smooth extension
of the λ-calculus, it is simply annoying the need for reduction steps like (7) and
(8), as well as not having variables (only derelictions x[]). Second, experience
has shown that reduction steps like (7) and (8) complicate the meta-theory of
these calculi. An example is the study of the spine calculus [2], a variant of both
λ and λPh to which we will return below.

As to λPh, it is true that cuts x(u · l) are not redexes, but we get a smooth
extension of λ. Terms in λPh are either variables, λ-abstractions or a kind of
generalised applications. Indeed, we may think of t(u · l) as t applied to u, with
l providing further arguments. Usual application is recovered as t(u · []) - see
mapping G below. Moreover, as Curry-Howard counterparts to the canonical
fragment, the only difference between λ and λPh is that in the latter some
trivial cut-elimination steps become implicit.

2.3 Cut-elimination

We now consider cut-elimination in the canonical fragment. Herbelin’s original
system [9] was equipped with a stepwise cut-elimination procedure. The goal
was to define a procedure simultaneously strongly normalising and complete at
least w.r.t. β-normality. However, from the point of view of sequent calculus, this
procedure was not very systematic, as, for instance, a cut was not allowed to
permute upwards past another cut. More systematic is the proposal in [3]. If we
consider, in the terminology of op. cit., every formula to be t-coloured, then the
canonical fragment is closed for (the intuitionistic part of) the t-protocol. The
idea of this procedure is, on the one hand, to give priority to right permutation,
when a cut is both right and left permutable - in this sense, we call the t-protocol
a right-protocol; on the other hand, if we decide to permute a cut to the right
(resp. left), then we must perform in a single go, by calling a meta-operator, the
complete right (resp. left) permutation of that cut. In [7], Herbelin’s syntax was
equipped with a procedure in the style of the t-protocol.

The cut-elimination procedure represented by the reduction rules of λPh is
a right protocol for eliminating right-permuted cuts. A head-cut t(u · l) is left-
permutable iff t is neither a variable nor λ-abstraction. In this case, t is of the
form t′(u′ · l′) and the complete left permutation of t(u · l) is performed in a
single go by reduction rule h: (t′(u′ · l′))(u · l) reduces to t′(u′ · append(l′, u :: l)).
On the other hand, if t is x, we have seen that the head-cut represents a left



inference and, hence, is not a redex. Finally, if t is λx.t′, then the head-cut is
also left-permuted. In this case, both cut-formulas are main and linear and the
key-step of cut-elimination applies.

Now, in Herbelin’s original system, the key-step is written

(λx.t)(u :: l) → (t{x := u})l , (9)

where t{x := u} represents a mid-cut

Γ ;− ` u : A Γ, x : A;− ` t : B

Γ ;− ` t{x := u} : B
.

A mid-cut is a cut whose right cut-formula is not in the stoup (as opposed to
head-cuts (4)). It is also a right-permutable cut. In λPh there is no explicit
constructor for right-permutable cuts. What we have is the admissible rule

Γ ;− ` u : A Γ, x : A;− ` t : B

Γ ;− ` subst(u, x, t) : B
.

The role of operator subst is to perform the complete right permutation of right-
permutable cuts. This explains the use of subst in reduction rules β1 and β2.
The operator replaces the right-permutable cut generated by the key-step of
cut-elimination. Therefore, rules βi aggregate both the key-step and what [3]
calls the first structural step (which, in the case of t-coloured formulas, means
the complete right permutation). For this reason cut-elimination in λPh is even
more implicit than in the t-protocol.

Finally, the reason for separating two rules β is that, since we do not have
Herbelin’s head-cut tl (with l allowed to be []), we cannot write in λPh the
key-step as

(λx.t)(u :: l) → subst(u, x, t)l .

We have to be sure that there is at least another argument in l for generating a
new head-cut, as we do in rule β2.

2.4 Relating λPh and λ

We now sketch the relationship between λ and λPh. There is an injection G from
λ to λPh

Gx = x

G(λx.M) = λx.GM

G(MN) = GM(GN · []) .

This is the traditional translation, going back to [8], that maps elimination in-
ferences to combinations of left inferences and cuts.

Conversely, there is the following projection from λPh to λ:



Qx = x Q′(M1,M2, []) = M1M2

Q(λx.t) = λx.Qt Q′(M1,M2, u :: l) = Q′(M1M2,Qu, l)
Q(t(u · l)) = Q′(Qt,Qu, l)

Use is made of the auxiliar Q′ : λTerms × λTerms × Lists → λTerms. If
Q(t) = M and Q(ui) = Ni, then the idea of Q is to map t(u1 · [u2, ..., uk]) to
MN1N2...Mk.

This mapping sends βi reduction steps to β reduction steps, and collapses h
reduction steps.

Proposition 1. λPh is a conservative extension of λ.

3 Prawitz’s embedding

We now consider an embedding of natural deduction into sequent calculus due
to Prawitz [11]. Contrary to the traditional embedding G, Prawitz’s mapping P
sends normal proofs to cut-free derivations, by taking advantage of the structure
of normal proofs, uncovered in [11]. It is known that the range of P is within
the canonical fragment [13]. Let us recall why.

P maps variables and λ-abstractions identically. Now, given an application,
one firstly has to unfold it thus:

V ar
Γ ` x : A1 ⊃ ... ⊃ Ak ⊃ B

····
Γ ` N1 : A1

Elim
Γ ` xN1 : A2 ⊃ ... ⊃ Ak ⊃ B······

Γ ` xN1...Nk−1 : Ak ⊃ B

····
Γ ` Nk : Ak

Elim
Γ ′, x : A1 ⊃ ... ⊃ Ak ⊃ B ` xN1...Nk : B

(10)

where Γ = Γ ′, x : A1 ⊃ ... ⊃ Ak ⊃ B and k ≥ 1 (if k = 1, A2 ⊃ ... ⊃ Ak ⊃ B is
just B). The displayed sequence of bold formulas is called the main branch [11]
of the proof. We now extract from this proof two smaller proofs. The first is just
a proof of Γ ` N1 : A1 and the second is a proof of

Γ, z1 : A2 ⊃ ... ⊃ Ak ⊃ B ` z1N2...Nk : B ,

where z1 is fresh.
Now apply P to these two smaller proofs and get two cut-free derivations of

sequents Γ ` P(N1) : A1 and Γ, z1 : A2 ⊃ ... ⊃ Ak ⊃ B ` P(z1N2...Nk) : B.
Finally, conclude with an application of the left rule:



····
Γ ` P(N1) : A1

····
Γ, z1 : A2 ⊃ ... ⊃ Ak ⊃ B ` P(z1N2...Nk) : B

Left
Γ ′, x : A1 ⊃ A2 ⊃ ... ⊃ Ak ⊃ B ` P(xN1...Nk) : B

Now, this left inference is canonical. Consider its right active formula (the
bold one). It is main, by definition of P, and linear, because z1 is fresh. Hence,
by unfolding P(z1N2...Nk), one sees that the right subderivation above this left
inference consists of a stack of left inferences introducing (from top to bottom)
the successive linear formulas B,Ak ⊃ B, ..., A2 ⊃ ... ⊃ Ak ⊃ B. In a syntax
like that of λPh, these linear formulas would be in the stoup, instead of being
annotated with fresh z’s.

Prawitz’s embedding may then be defined as the following mapping from λ
to λPh.

P(x) = x (11)
P(λx.M) = λx.P(M) (12)

P(xN1N2...Nk) = x(P(N1) · [P(N2), ...,P(Nk)]) (13)

A slight generalisation to non-normal λ-terms is available:

P((λx.M)N1N2...Nk) = (λx.P(M))(P(N1) · [P(N2), ...,P(Nk)]) . (14)

P transforms proof (10) into derivation (2), if we let P(Ni) = ui. There is a
precise correspondence between formulas in the main branch and in the principal
path, and between elimination inferences and left inferences (in the sense of both
Left or Lft inferences). However, as it were, P turns the main branch upside
down. This is so because the topmost elimination corresponds to the bottom-
most left inference; and the elimination just below the former corresponds to the
left inference just above the latter, and so on. This phenomenon is the logical
counterpart to the inversion of (...((xN1)N2)...Nk) as x(u1 · (u2 :: ...(uk :: [])...))
operated by P.

4 An extension of the λ-calculus

4.1 The λNh-calculus

We now compare proof (10) with derivation (2) in order to show that the dif-
ference between λPh and λ is greater than the question of how application is
bracketed. There are three observations to make:

1. In (2) two kinds of left inferences, corresponding to distinct constructors in
λPh, correspond in (10) to the same kind of elimination inference.



2. Recall that the Left inference at the bottom of (2) is a particular case
x(u1 · l) of head-cut. How about counterparts in λ to general head-cuts
t(u1 · l)? The only extension of main branches available is (λx.M)N1...Nk

- a branch topped with a head-redex instead of a head-variable. However,
in t(u1 · l), t is not restricted to variables or λ-abstractions. Actually, t and
u1 form a kind of leftmost application, whereas in λ one only recognises the
leftmost end of an applicative term when a value is found.

3. A head-cut cannot be identified with its leftmost application. On the other
hand, in λ, xN1...Nk cannot be distinguished from its right-most application.

From these observations we define λNh, an extension of λ based on two
ideas: (i) the inclusion of a constructor for applicative terms, distinguished from
application. (ii) the separation of two kinds of applications, head and tail ap-
plications, matching the separation between bottom-most inferences of principal
paths and Lft inferences, respectively. Head application provides a notion of
leftmost application in an applicative term.

The definition of λNh is given in Tables 3 and 4. There are two classes of
expressions: terms and applications, the latter ranged over by A. An applicative
term is of the form app(A). Head and tail applications are constructors MN and
AN , respectively, both typed with an elimination rule.

Table 3. The λNh-calculus

(Terms) M, N ::= x |λx.M | app(A)
(Apps) A ::= MN |AN

(β1) app((λx.M)N) → M [N/x]
(β2) ((λx.M)N)N ′ → M [N/x]N ′

(h) app(A)N → AN

where

x[N/x] = N (M1M2)[N/x] = M1[N/x]M2[N/x]
y[N/x] = y, y 6= x (AM)[N/x] = A[N/x]M [N/x]

(λy.M)[N/x] = λy.M [N/x]
(app(A))[N/x] = app(A[N/x])

Defining β is an interesting exercise because the obvious (λx.M)N → M [N/x]
fails. The redex is an application whereas the contractum is a term. Rule β1 alone
cannot reduce app(((λx.M)N)N ′). Hence, the extra rule β2 is needed and we



Table 4. Typing rules for λNh

V ar
Γ, x : B ` x : B

Intro
Γ, x : B ` M : C

Γ ` λx.M : B ⊃ C
x /∈ Γ

App Γ ` A : B
Γ ` app(A) : B

HdElim Γ ` M : B ⊃ C Γ ` N : B
Γ ` MN : C

TailElim Γ ` A : B ⊃ C Γ ` N : B
Γ ` AN : C

find again a separation of β into two rules. β1 is a relation on Terms and β2 is
a relation on Apps.

A h-redex is a head application A′ = M ′N ′
1 that is not a value application,

hence M ′ is some applicative term app(MN1...Nk). With a h-step, the head
application A = MN1 at the bottom of M ′ becomes the head application of the
applicative term where A′ lives:

app(app(MN1...Nk)N ′
1...N

′
m) → app(MN1...NkN ′

1...N
′
k) (15)

We underlined the head applications for highlighting the simplification operated
by h. Curiously, this happens in a single step, without any kind of append.

4.2 Relating λNh and λ

There is an injection ι between λ and λNh that simply says that every applica-
tion in λ is head:

ιx = x
ι(λx.M) = λx.ιM
ι(MN) = app(ι(M)ι(N))

Conversely, there is a projection | | from λNh to λ that forgets both the
boundaries of applivative terms and whether an application is head or tail:

|x| = x |MN | = |M ||N |
|λx.M | = λx.|M | |AN | = |A||N |
|app(A)| = |A|

This projection maps each βi reduction step to a β reduction step, and collapses
h reduction steps.



Proposition 2. λNh is a conservative extension of λ.

4.3 Mappings Ψ and Θ

We now codify in a mapping Ψ : λNh → λPh (see Table 5) the intended
correspondences between the eliminations in a main branch and the inferences
in a principal path. Since the distinction between head and tail eliminations
is built in λNh, the mapping is rather direct. Equation Ψ(app(A)) = Ψ ′(A, [])
starts the translation of an applicative term. As long as we find tail eliminations,
we generate Lft inferences (Ψ ′(AN, l) = Ψ ′(A,ΨN :: l)). Once we find the head
elimination, the bottom-most inference of a principal path (that is, an instance
of head-cut) is returned (Ψ ′(MN, l) = ΨM(ΨN · l)). The final effect is that, if
Ψ(M) = t and Ψ(Ni) = ui, the applicative term app(MN1N2...Nk) is mapped
to the head-cut t(u1 · [u2, ..., uk]). This is done with the help of an auxiliar
Ψ ′ : Apps× Lists → Terms, where Terms is in λPh.

Table 5. From λNh to λPh

Ψ(x) = x Ψ ′(MN, l) = ΨM(ΨN · l)
Ψ(λx.M) = λx.ΨM Ψ ′(AN, l) = Ψ ′(A, ΨN :: l)

Ψ(app(A)) = Ψ ′(A, [])

Conversely, there is an inverse to Ψ , named Θ and defined in Table 6. Use
is made of an auxiliar Θ′ : Apps × Lists → Terms, where Terms is in λNh.
Again, if Θ(t) = M and Θ(ui) = Ni, the idea is simply to map a head-cut
t(u1 · [u2, ..., uk]) to the applicative term app(MN1N2...Nk).

Table 6. From λPh to λNh.

Θ(x) = x Θ′(A, []) = app(A)
Θ(λx.t) = λx.Θt Θ′(A, u :: l) = Θ′(AΘu, l)

Θ(t(u · l)) = Θ′(ΘtΘu, l)

Mappings Ψ and Θ are mutually inverse. Moreover, they map a reduction
step in one calculus to a reduction step of the same kind in the other calculus.



Theorem 1 (Isomorphism). Let R ∈ {β1, β2, h}.
1. M →R M ′ in λNh iff ΨM →R ΨM ′ in λPh.
2. t →R t′ in λPh iff Θt →R Θt′ in λNh.

5 Related results

5.1 A lifting

One isomorphism of the kind of Theorem 1 is given in [7] and holds between λ and
a calculus named λH in op. cit. Here we give a slight different (but equivalent)
presentation of λH that will be named λP. λP may be defined as the appropriate
restriction of λPh when one only allows head-cuts t(u · l) with t a value, that is,
cuts which are both right and left permuted. Terms are then restricted to

t, u ::= x |λx.t |x(u · l) | (λx.t)(u · l) . (16)

Instead of full t(u · l), one has the admissible

Γ ;− ` t : A ⊃ B Γ ;− ` u : A Γ ;B ` l : C

Γ ;− ` insert(u, l, t) : C
,

where insert(u, l, t) is defined by

insert(u, l, x) = x(u · l)
insert(u, l, λx.t) = (λx.t)(u · l)

insert(u, l, x(u′ · l′)) = x(u′ · append(l′, u :: l))
insert(u, l, (λx.t)(u′ · l′)) = (λx.t)(u′ · append(l′, u :: l)) .

(17)

The idea of the last two equations is to perform implicit h steps. Of course, h
reduction does not exist in λP. Moreover, uses of head-cuts in the other reduction
rules of λPh have to be replaced by calls to insert. Hence, in addition to β1,
λP has the following version of β2

(λx.t)(u · (v :: l)) → insert(v, l, subst(u, x, t)) , (18)

with subst adapted appropriately, as well.
Equations (11) to (14) suggest a match between λ-terms and terms in (16)

and indeed P is an isomorphism between λ and λP. This is proved in [6] following
the route of [7]. First, λ is presented in the style of λNh, with a separate class
of applications as follows:

A ::= xN | (λx.M)N |AN .

That is, we require M to be a value in every head application MN . We name λN
this subsystem of λNh. Then, appropriate restrictions of Ψ and Θ are defined
between λP and λN , constituting a pair of mutually inverse isomorphisms of
normalisation procedures.



We do not give more details about λN here. However, it is clear now that
the isomorphism we introduce in this paper is a “lifting” of the isomorphism
proved in [7] - see Fig.1. For the sake of symmetry, Fig.1 mentions an arrow
N : λ → λN . There is one natural arrow of this kind satisfying N = Θ ◦ P.
Details in [6].

Fig. 1. A lifting
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5.2 The spine calculus

We now consider the intuitionistic part of the linear spine calculus of [2], denoted
here λSpine. The terms of λSpine are those of Herbelin - recall grammar (5):
derelictions xl, λ-abstractions λx.t and head-cuts tl. Lists (=spines) as usual.
The reduction rules are

(λx.t)(u :: l) → subst(u, x, t)l (19)
(xl)[] → xl (20)
(tl)[] → tl (21)

(20) and (21) are called nil -reductions and garbage collect empty lists.
In [2], λSpine is compared with λ and an “isomorphism” is established for

well-typed, η-long, nil-normal terms. Typing rules for λSpine are rules (3) and
(4) of section 2.2 for dereliction and head-cut, and rules Right, Ax and Lft of
λPh. However, there is the proviso that in every sequent Γ ;B ` l : A, type
A must be atomic. Hence, every dereliction xl and every head-cut tl (which
correspond to applicative terms) must have atomic type. This entails that, if
(xl)l′ or (tl)l′ are well-typed, then l′ = []. Hence, up to nil-reduction, the only



well-typed head-cuts are of the form (λx.t)l - actually (λx.t)(u :: l′), as (λx.t)[]
is not well-typed. Thus, basically, we are back to (16), the terms of λP!

Reduction rules of λSpine and λP look very different. However, in the η-
long setting, one does not need to insert as in (18). In λSpine, take for in-
stance (λx.t)(u1 :: u2 :: []). Term t cannot have atomic type, hence it is some
λ-abstraction. After one (19)-step we get some (λy.t′)(u2 :: []). It is useless to
insert u2, [] in λy.t′, because, according to (17), the same head-cut would be
returned. Now this t′ must have atomic type. Suppose t′ = y[]. Then, the next
(19)-step generates a nil-redex (u2[])[] (actually two, because u2 has atomic type).
Hence, nil-normal terms are not closed for (19) and the nuisance of nil-reductions
is unavoidable. Redex u2[] was generated because we substituted in a dereliction
y[] instead of a variable y. The outer redex (u2[])[] was created because rule
(19) failed to recognise the empty list in (λy.t′)(u2 :: []). In λP, because of the
separation of β into β1 and β2, one does not need to garbage collect such a list.
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