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Abstract

We prove a folklore theorem, that two derivations in a cut-free se-
quent calculus for intuitionistic propositional logic (based on Kleene’s G3)
are inter-permutable (using a set of basic “permutation reduction rules”
derived from Kleene’s work in 1952) iff they determine the same natu-
ral deduction. The basic rules form a confluent and weakly normalising
rewriting system. We refer to Schwichtenberg’s proof elsewhere that a
modification of this system is strongly normalising.

Key words: intuitionistic logic, proof theory, natural deduction, sequent calcu-
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1 Introduction

There is a folklore theorem that two intuitionistic sequent calculus derivations
are “really the same” iff they are inter-permutable, using permutations as de-
scribed by Kleene in [13]. Our purpose here is to make precise and prove such
a “permutability theorem”.

Prawitz [18] showed how intuitionistic sequent calculus derivations determine
natural deductions, via a mapping ¢ from LJ to NJ (here we consider only
the cut-free derivations and normal natural deductions respectively), and (in
effect) that this mapping is surjective by constructing a right inverse of ¢ from
NJ to LJ. Zucker [24] showed that, in the negative fragment of the calculus
LJ¢ (i.e. LY including cut), two derivations have the same image under ¢ iff
they are inter-convertible using a sequence of “permutative conversions”, e.g.
permutations of logical rules with the cut rule. In the present paper we prove a
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similar result for a cut-free system, making precise the idea referred to above. In
fact, we show how certain “permutation reduction rules” can be used to reduce
an arbitrary derivation to “normal form” and that the set of such reductions is
confluent. With minor changes this system is strongly normalising; we point to
Schwichtenberg’s [21] for a proof of this.

Our interest in these problems arises from the theory of logic programming,
regarded as in [15] as based on proof search in a cut-free system; if one asks
not just “What problems are solvable?” but “What solutions do these problems
have?” and “How many times is each solution obtained?”, one is led to analyse
[5] the many-one relationship between sequent calculus derivations (suitable for
proof search) and natural deductions (suitable for presenting solutions). In fact,
Herbelin’s sequent calculus (described below) is a much better basis for proof
search than LJ, so the original problem disappears; nevertheless, in view of the
historical importance of Gentzen’s calculus [9] (and Kleene’s variant [14] of it,
G3) the permutability theorem is of independent interest.

Mints’ paper [16] on the same topic came to our attention in October 1994,
when an early version of this paper was being distributed; we discuss the re-
lationship between his work and our own in §10. We thank Herbelin, Mints,
Schwichtenberg and Troelstra for advance copies of their [10, 16, 21, 22] respec-
tively. We are pleased to acknowledge that Herbelin’s papers [10, 11] filled the
gap between the usual definition of normal lambda-terms (representing natural
deductions) and Prawitz’ definition of p, our name for the right inverse of .

2 Background

2.1 Herbelin’s calculus M

Herbelin [10, 11] gives a non-standard description (with origins in [2, 12, 20])
of terms representing normal natural deductions. Consider first a standard
description of normal terms of the untyped lambda calculus:

A ap(A, N) | vr(V)
N = AV.N |an(A)

where V is a set of variables, N is the set of normal terms and A is the set of
application terms. We use explicit constructors an and vr to ensure consistency
with our type-checked implementations. The head variable of such a term 1s
(for a large term) buried deep inside: Herbelin’s representation brings it to the
surface. So, following Herbelin (who calls the calculus A), we make the following:

Definition 1 The set M of untyped deduction terms and the set Ms of lists of
such terms are defined simultaneously as follows:

M
Ms

(Vi;Ms) | A\V.M
| M:Ms



Note the use again of the same symbol A. The notation [Mjy, ..., M,] abbreviates
the term My ::...:: M, ::[]. The suggestion that such terms are lists is adequate
while we deal with implication alone, but not when we add the other connectives.
Terms are equal iff they are alpha-convertible; we use the symbol = for this
relation.

Adding type restrictions gives us a description of the typable deduction
terms. We call the associated typed system MJ, as it is intermediate between
LJ and NJ, rather than use Herbelin’s name LIT (already used in [4]).

There 1s a bijective translation between M and N, mentioned but not de-
tailed in [11]: (2;[My, ..., My)) translates into the term ap(...ap(x, N1)..., Np),
usually written as # Ny...N,, where NN; is the translation of M;, and abstraction
terms translate in the obvious way. The bijection extends to the typable terms:
elsewhere [6, 7] we have called such sequent calculus permutation-free, meaning
that there are no permutations, i.e. that the map from MJ to NJ is 1-1.

Further details of this calculus (covering all the connectives and several
proofs of admissibility of cut) can be found in [10, 11, 6, 7]. We shall im-
plicitly use the bijectiveness of the correspondences with N and NJ and not
trouble to give proofs that (e.g.) a result shown for M translates correctly to a
result claimed without proof for N.

2.2 The calculus LI

LI is a cut-free sequent calculus for intuitionistic implicational logic. First,
formulae A are built up from proposition variables p, q, ... using just O (for
implication). Second, contexts T are finite sets of variable : formula pairs, as-
sociating at most one formula to each (term) variable in V. Third, there are
terms, defined as in

Definition 2 The set L of terms in cut-free LI derivations is defined as follows:
L=war(V) |app(V,L,V.L) | AV.L

The notions of free and bound variable and of alpha-conversion are as usual:
there are two binding mechanisms, those at the occurrences of V.L in the above
definition. Two terms are said to be equal iff they are alpha-convertible; again,
we shall use = for this relation. Note again the overloaded use of A. We write
z & L for “x is not free in L”; similarly € L for “z is free in L”. Fourth, there
are judgments I'= L: A. Fifth, there are typing rules, inductively defining the
derivations of the calculus:

z: A, T=var(z): A Awiom

y: A l'=L:B R '=7L1:A y:B,I'=Ly:C
F'=My.L:ADB = T'=app(x, L1,y.L2):C

with the provisos: z: A D B belongs to I' in LD; and y is new, i.e. does not
appear in the context ', in both LD and RD.



From the term and context parts of the end-sequent of a derivation, one
can recover the entire derivation: the terms (modulo alpha conversion) are
really just a convenient notation for derivations. The rules about new variables
imply, for example, that bound variables are chosen so that the variable y in
app(x, L1,y.La) differs from the variable # and does not occur (freely) in L.
We make no distinction between the judgment I'= L: A and the assertion of its
derivability.

Weakening is an admissible rule of LI: any derivation can be transformed to
a weaker derivation by adding an assumption «: A to each antecedent, for new z.
The two derivations will be represented by the same term; also, if a derivation
does not use an assumption x: A then it can be strengthened by removing z: A
both from the end-sequent’s antecedent and inductively (with descendants) from
the premisses. In the following we use both the strengthening and the weakening
techniques without comment.

2.3 The correspondence from L to M

Prawitz’ description [18] (see also [23] §3.3.1) of the function ¢ from sequent
calculus derivations to natural deductions uses the ordinary notion [-/-]- of subs-
titution, recursively defined on the structure of the term being substituted into.
Using Herbelin’s definition of terms, we need a different version of the subs-
titution function. This should be based on his cut rules, as in §9; for ease of
exposition we now just introduce it in an ad hoc way. We do it just in the
untyped case; typing is not necessary for the functions to be well-defined.

Definition 3 The functions, of substitution of a variable x and a term M for
a variable y in a term (resp. terms), are defined as follows:

subst : VXxMxVxM-—M
subst(x, M, y, (y;Ms)) =det (2;M ::substs(x, M, y, M s))
subst(x, M,y, (z;Ms)) =det (z;5ubsts(z, M,y, Ms)) (if z#y)
subst(x, M,y, A\z.M1) =qet Az.subst(x, M,y, My)

substs : VxM xV x Ms — Ms

substs(z, M, y,[]) =def ]
substs(x, M,y, My:: Ms) =qet subst(x, M,y, My)::substs(x, M,y, Ms)

Care is taken as usual to avoid variable capture, i.e. in line 3 of the definition

for subst, z# x, 2 Zyand z & M.
Definition 4 The function g : L — M is defined as follows:

Plvar(z)) =daer  (23[])
Glapp(z, L1,y.L2)) =qet  subst(x,BL1,y,PLo)
E(Al‘[z) =def Az.PL

Our definition is for untyped terms; we can easily extend it to typed terms and
consider it as a map from cut-free sequent calculus derivations to normal natural
deductions (in Herbelin’s notation).



We say that L determines the term @L; and similarly for the derivation
represented by L and the deduction represented by ©L. We reserve the name
¢ (as in [24]) for the corresponding function (introduced but not named in [18],
p. 91, REMARK) from L to N, defined by

plvar(z)) =4 vr(z)
plapp(e,L1,y.L2)) =des [ap(x,oL1)/yleLs
p(Az.L) =4 Azl

Note that ¢ is just the composite of @ with the bijection from M to IN. Details
are in [1].

Definition 5 An equation Ly = Lo is e-trivial iff ¢(L1) = ¢(L2); similarly
for G-trivial, and similarly for permutations and transformations.

2.4 The correspondence from M to L

Definition 6 The function p: M — L is defined by recursion on the size of
terms of M as follows:

p(@ll) =der var(z)
plasMaMs) =g app(a, pM,z.0(z;Ms)) (z new)
ﬁ(/\l‘M) —def /\l‘ﬁM

where size(x;[Ma, ..., My]) = 1+ ;| size(M;) and size(Az. M) = 1+ size(M).
Lemma 1 B(p(M)) = M for any M. O

The definition is based on the construction in [18], which in fact described a
right inverse to ¢ rather than to ®. See §6.3 of [23] for a detailed account.
Our definition is for untyped terms; we can easily extend it to typed terms and
consider it as a map from normal natural deductions (in Herbelin’s notation) to
cut-free sequent calculus derivations.

3 Example

Consider the usual natural deduction (essentially the S combinator) of the se-
quent A D (B D C),A D B,A = C in intuitionistic logic, where the two
occurrences of A form an assumption class:

ADBDOC A ADB A
BOC B
C

This deduction is represented, in the context (z:A D> (B D C),y:AD B,z: A),
by the term ap(ap(vr(z), an(vr(z))), an(ap(vr(y), an(vr(xz))))) of N and by the

term (z[(;[]), ([ (z;[)1)]) of M.




Many different cut-free sequent calculus derivations determine this deduc-
tion: for example, those represented in the same context by the terms

S1 =det  app(z,x, w.app(w, app(y, ¥, v.v), u.u))

Sa =qef  app(z,x, w.app(w, app(y, z,v.v), u.app(y, x,v.u)))

Sz =qef  app(z,x, w.app(y, z,v.app(w, v, u.u)))
(
(

Q

Sy =det app(z, app(y, x,v.x), w.app(y, ¥, v.app(w, v, u.u)))
S5 =det  app(y, x,v.app(z, ¥, w.app(w,v, u.u)))

Commonly, these derivations are regarded as the same, because they are “per-
mutation variants” of each other. The terms are related in the following ways,
using the permutation reduction rules described in detail below:

Ss ) Sy (i) Ss > (i1) Sy (%) St

There are in fact infinitely many cut-free derivations with the same image ¢(5),
by use of the permutation rule ;) in reverse.

The purpose of this paper is to make such observations both precise and
general. Kleene [13] discussed such permutations in the context of LK and LJ,
without discussing the relationship with natural deductions. [23] gives a more
detailed presentation of the theory of permutations.

4 Normality

In this section we give an intrinsic definition of the notion of normality for
derivations, which will turn out to be equivalent both to irreducibility w.r.t. our
permutation reduction rules and to being “canonical” as elements of the fibres
of the mapping .

Definition 7 Let L be a term of L. L is normal ¢ff in any subterm, of the form
app(x, L1,y.La), Lo is either var(y) or of the form app(y, Ls, z.L4) withy & L3
and y & Ly.

Example: The term S; =q4ef app(z, @, w.app(w, app(y, , v.v), u.u)) of §3 is nor-
mal; the other terms in that section are not.

A normal term of the form app(z1,L1, xa.app(x2,La, x5.app(xs,Ls, x4.var(x,))))
is interpreted in N as x1 /Ny N2 N3, where N; interprets L;; similarly for longer
terms.

Lemma 2 (Normality Lemma) For each term M of M, p(M) is normal.
Proof: By induction on the size of M.
Case M is (;[]): then p(M) is just var(z), which is normal.

Case M is (#; My :: Ms): then g(M) is app(x, p(My), z.p(z;Ms)) (new z); by
induction p(M;) and p(z;M s) are normal. In fact, p(z; M s) is either var(z)
or of the form app(z, Lz, w.L4) with z (since it was new) not free in Lg or



L4. Any application subterm of p(M) must be 5(M) itself or a subterm
either of p(My) or of p(z;M s); in the first case, we have shown it has the
desired form, in the second case we use the normality of 5(M7); in the
third case we use the normality of 7(z; M s).

Case M is Az.My: then p(M) is Az.p(My); by induction p(M;) is normal and
obviously the abstraction of a normal term is normal. O

We will show the converse, that all normal terms L are of the form p(M). First,
we identify a set of (permutation) reduction rules for reducing terms I to normal
form.

5 Permutation reductions

Permutation reducibility is a relation between terms of L, formalised by means
of the new judgment form L; = Lo, read as “L; and Ls are terms of L and the
first reduces to the second by a single permutation reduction”. This relation is
inductively generated by

Ly > Ls

Ax.Li = Ax. Lo
Ly > Ly Ly > Ly

app(x, L1,y.L) > app(x, Lo, y.L) app(x, L,y.L1) = app(x, L, y.Lo)

and the following “permutation reduction rules”:

(1)  app(e, Ly, y.La) = La (if y & La)
(i1)  app(e, L1, y.app(z, Lo, w.L3)) =

app(z,app(x, L1,y.La), w.app(x, L1,y.L3)) (if y # 2)
(i) app(e, L1, y.app(y, Lo, w.L3)) =

app(x, L1,y .app(y’', app(x, L1, y.La), w.app(z, L1,y.L3)))
(i) app(e, L1, y.Az.La) = Az.app(x, L1, y.Lo)

with the constraint in (ii’) that ¢ is new, and the constraints that, in (ii) and
(ii"), y is free in Lg or in Lg, since otherwise app(z, La, w.L3) in the LHS of (ii)
matches Lo in the LHS of (i) or (respectively) the RHS of (ii’) reduces by (i)
back to the LHS.

Note: (i) and (ii) may be combined (when y # z and y ¢ Lo but y € L3) to
yield the elegant permutation:

(v) app(z, L1, y.app(z, Lo, w.Ls)) = app(z, Lo, w.app(x, L1,y.L3))

(The LHS reduces by (ii) to app(z,app(x, L1,y.La), w.app(z, L1, y.L3)), which
reduces by (i) to the RHS. Note that scope rules for the LHS imply that w # «
and w ¢ Ly, so, if w € L3, (v) can be used again (and again...).)

Note: We could also use the rule

(iv) app(x, L1,y.La2) = app(z, L1, y.app(x, L1, z.|2/y|L2))



where z is new and |z/y| Ly indicates Lo in which zero or more occurrences of y
are replaced by z. Using (iv), (ii), (i) and (ii) we obtain (ii’).

Although (iv) seems more primitive, our main theorem is most naturally proved
using (ii') (and establishes by induction that instances of (iv) are obtainable
using (i), (ii), (ii’) and (iii)).

From now on, we use the symbol > for the permutation reducibility relation
and < for its transpose. »=* and <* denote as usual the reflexive transitive
closures of the relations > and <. = denotes the reflexive symmetric transitive
closure of . We say that L, and Lo are interpermutable when Li =~ Ls. We
say that L; reduces* to Ls (or that L is reducible* to Lo) iff Ly =* La.

Rule (i) simplifies the derivation by removing an unnecessary step; (ii) per-
mutes instances of LD past each other, as in [13]; (ii') (roughly) achieves the
effect of (ii) when one principal formula originates in the other; (iii) permutes
LD past RD, as in [13]. Rules (i) and (i) are not “permutations” in Kleene’s
sense, because the principal formula of the top rule occurs as an active formula
of the lower rule. Kleene however allowed structural rules, of which we have
none. Rules (i) and (iv) (from which (ii’) can be derived) correspond to his
modification of derivations with structural rules.

Proposition 1 Fach of these permutation reduction rules is - (and @-) trivial.

Proof: Routine: consider, for example, (ii’), with (¢’ new)

p(app(x, L1, y.app(y, L2, w.L3)))

lap(x, ¢(L1))/yllap(y, p(L2))/w]e(Ls)

= [aplap(z,¢(L1)), [ap(z, p(L1))/yle(L2))/wl[ap(z, p(L1))/y]e(Ls)
lap(z, ( /Y lap(y, lap(z, o(L1))/yle(L2)) /w]lap(z, ¢(L1))/yle(Ls)

= so(app(x Ly, y .app(y, app(x Li,y.Lo),w.app(x, L1,y.L3)))). O

We shall see in §9 examples of permutation rules from [13] that involve disjunc-
tion and are not p-trivial.

6 Irreducibility

Here we show that normal terms are irreducible; later we show the converse.
Definition 8 L is irreducible iff no reduction is applicable to L.
Lemma 3 (Irreducibility Lemma) Each normal term L is irreducible.

Proof: Since subterms of normal terms are normal, we need only check, for
each rule, normal instances L of the LHS. We consider the cases in turn:

Rule (i): L is of the form app(z, L1,y.L2) for y € L. By normality, Ly is
either var(y) or app(y, Ls, z.L4), contrary to y & La.

Rule (ii): L is of the form app(z, L1, y.app(z, Ly, w.L3)) for y # z. By normal-
ity, y = z, a contradiction.



Rule (i1'): L is of the form app(z, L1, y.app(y, L2, w.L3)) with y free in Ly or
Ls. By normality, y is not free in Ls or L3, a contradiction.

Rule (iii): L is of the form app(z, L1, y.Az.L2). By normality, Az.L; must be
var(y) or an application, which are impossible. O

7 Normalisability

The argument here is based on Herbelin’s calculus, to make the induction easier.
One might also use the description AZ.(...((x N1)N2)...N,) of normal terms; but
this description is not so convenient in a mechanical verification [1] and it is not
easy to handle connectives such as disjunction.

Lemma 4 (Permutability Lemma) Let M, and Ms be terms of M. Then
app($a ﬁMla prZ) >’* p(SUbSt($a Mla Y, MZ))

Proof: By induction on the size of M;. When y is not free in pM>, the LHS
reduces by permutation (i) to M2, to which the RHS is identical by simplifica-
tion; so we may assume that y € pMs.

Case 0: size(My) = 1, so Mz is (z;[]) for some variable z, which by our as-
sumption must be y. So the LHS is app(z, oM, y.p(y;[]))

app(x, pMy, y.var(y)) (by definition of p)
pla;[Mi]) (by definition of p)
plsubst(xz, My, y, (y;[])) (by definition of subst)

which is the RHS. So, in this case the LHS and the RHS are identical.

Case 1: size(M;) > 1; we suppose the lemma is true for all My of lesser size.
Then, My is either of the form (z;M :: M's) or of the form Az.M, and in
the former case, two subcases arise according to whether z £ y or z = y:

Case 1(ii): M2 = (#;M :: Ms), when z # y; by assumption, y is free in M :: M's.
So the LHS is app(x, pMy, y.p(z; M :: M s))

= app(x,pMy, y.app(z, PM, 21.p(21;M 5)))
(by definition of g, where z; is new)

>~ app(z, app(x, pMy,y.pM), z1.app(x, pMy, y.p(z1;M s)))
(by permutation reduction rule (ii))

= Clpp(Z, ﬁ(SUbSt($a Mla Y, M))a Zl'app($a ﬁMla yp(zlaMS)))
(by induction, since size(M) < size(z;M :: M s))

=*  app(z, p(subst(x, My, y, M)), z1.p(subst(z, M1, y, (z1;Ms))))
(by induction, since size(z1;Ms) < size(z;M :: M s))

= app(z, p(subst(x, M1, y, M)), z1.p(z1;substs(x, My, y, M s)))
(by definition of p, using z; # y)



= p(z;subst(x, My, y, M) ::substs(x, My, y, M s))
(by definition of subst, since z; is new)
psubst(x, My, y, (2;M :: Ms)))

(by definition of subst, since z # y)

which 1s the RHS.

Case 1(ii'): My = (y;M :: Ms): Two subcases arise: y free in M :: M's and
otherwise. The first subcase is routine, similar to 1(ii) but using rule
(ii"). In the second subcase, where y is not free in M :: M's, by direct
computation,

app(x, pMy, y.p(y; M - M s)) = p(subst(x, M1, y, (y; M :: M s))).

Case 1(iii): My = Az.M; routine, using rule (iii). O

Theorem 1 For every term L of L, L »=* p(%(L)).

Proof: By induction on the structure of L. First, suppose L is a variable x;
then (trivially) the LHS and RHS are identical, using the definitions of % and 7.
Second, the case when L = Az.L; is a routine use of the induction hypothesis.
Third, if L = app(x, L1,y.La), then L is (by induction, twice) reducible* to
app(x, p(®(L1)), y.p(®(L2))) and by the permutability lemma this reduces* to

plsubst(z,8(L1),y,®(L2))), i.e. to p(@(app(x, L1,y.La))), which is just p(7(L)).
O

Corollary 1 For every term L of L, L = p(p(L)); and for every pair Ly, Lo
of terms of L, (1) B(L1)=%(La) iff L1 & Lo and (ii) ¢(L1)=@(La) iff L1 = La.
Proof: (i) (L1) = B(L2) implies that Ly =* p(®(L1)) = p(B(L2)) <* Lo; the

converse follows by Proposition 1. O

Theorem 2 Let L be a term of L. The following are equivalent:

1. L s normal;
2. L s irreducible;

3. L=p(®(L));
4. L is of the form p(M) for some M.

Proof: (1)=-(2) follows by the irreducibility lemma (3); (2)=(3) is from theo-
rem 1; (3)=(4) is trivial; (4)=(1) follows by the normality lemma (2). O

Thus theorem 1 is a weak normalisability result; every term L can be reduced*
to a normal form (and the normal forms are the irreducible terms).
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8 Confluence and Strong Normalisation
Theorem 3 The rewriting system (i), (i), (i), (iii) is confluent on L.

Proof: Suppose L »=* Ly and L »=* Ly. Then ¢(L) = ¢(L1) = ¢(L2), since
the reductions are @-trivial. So all of L, L1 and Lo reduce* to the same normal
form, p(p(L). O

Without further restrictions, the system of rules is non-terminating: e.g. rule (v)
can be used repeatedly, and (v) depends on (unrestricted) (ii) and (i). Note that
(ii) can be used repeatedly on its own, because e.g. (assuming y # 2z, w € L3
and y € Lg)

app(x, L1, y.app(z, Lo, w.L3)) >
app(z, app(x, L1,y.La), w.app(x, L1,y.Ls)) >
app(x, app(z, app(x, L1, y.La), w.L1), y.app(z, app(x, L1, y.|y/y|L2), w.L3z)) = ...

where the second reduction is allowed because @ # y (implicitly, because of
the scoping rules). To restrict this, while at the same time allowing enough
reductions for the proof of the permutability lemma to work, is tricky.

The instances of the permutation reduction rules used in the proof have their
L arguments of the form pM , which we saw in Theorem 2 to be exactly the nor-
mal terms. Thus the proof of the lemma incorporates an innermost reduction
strategy; this suggests one should conjecture that the system is strongly nor-
malising if one makes restrictions such as normality of the arguments of terms
being reduced. Let x be a variable; we say that a term L is z-normal iff L
is either var(z) or is app(x, L1,y.L2) with « € Ly and # € Ly and Ly being
y-normal. Clearly terms of the form p(z;Ms) are z-normal for =z ¢ Ms.

Conjecture 1 The rewriting system (i), (ii), (i), (iii) is SN if

(a) rules (ii), (ii' ) are restricted to cases where the argument L of the LHS
app(x, L1, y.app(z, L2, w.L3)) is w-normal; and

(b) rules (ii), (i) are restricted to cases where the arguments Ly, Ly and Ls
of the LHS app(x, L1, y.app(z, Lo, w.L3)) are normal.

Note that with these restrictions, the proof of the permutability lemma still
works.

Schwichtenberg [21] outlines a proof of this conjecture, strengthened by
omission of condition (b), as follows. He develops a new notation, binary se-
quent terms, in which M,{y, L} corresponds to our app(y, L,v.M), hinting at
the translation ° to natural deduction terms M,[yL] (which we would write as
lap(y, L) /v]e(M)). More generally there are multiary sequent terms such as
My{y, L1 L2} corresponding to our app(y, L1, w.app(w, Ly, v.M)) (where w & Ly
and w ¢ M), and similarly for vectors L of terms in place of Ly Ly. Our rule (ii)
(restricted by condition (a) and with, for ease of exposition, a very restricted
form app(w, N, wy.wq) of the argument L3) is translated to the reduction (6°)

(w1)y, {w, N} Az, Lo} {2, L} = (1), {w, N Az, Dn} Az, (L2) {2, Li}}
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in which N, Ly and Ly may in fact be vectors (and thus (w;),, {w, N} represents
the general form of the L3 argument allowed by the strengthened form of the
conjecture. The other rules are represented similarly, e.g. (ii") by (7’). For
example, our reduction by (ii) of S5 to Sy (from §3) is simulated by the reduction

uu{w, v}, {z, 2}, {y, 2} = wafw, o} {y, 2}, {7, 2 {y, 2}}.

Termination of the rule set { (1), (5) (6”), (7’) } (and of some similar rule sets)
is shown in [21] using a decreasing measure § on terms. The termination of our
rule set {(i), (ii), (i), (iii)} (with the restrictions mentioned above) therefore
follows, thus establishing the strengthened version of our conjecture. It would
be of interest to have a full and direct proof of this without using the multiary
notation (on which the measure function depends) of [21].

9 Extension to other logical constants

This section considers the extension of the theory to cover the other intuitionistic
logical constants. We refer to the full paper [8] for details. The main point of
interest is that some of the Kleene-style permutations [13] are not ¢-trivial.

Kleene’s analysis was for a system with primitive structural rules. We can
consider the following table, in which the intersection of the row R and the
column C refers to the permutable pair R/C' in which R lies above C and may
be permuted to below it:

LD| RO | LA| RN | LV | RV
LD | ee X ') — X —
RDO| o | XX | o | XX | X | XX
LA | ee — oo — — —
RAl o | XX | o | XX | X | XX
LV | ee N ' N N N
RV | ¢ | XX | o | XX | X | XX

In this table: e indicates that there is a single permutation reduction rule; ee
indicates that there is a pair of reduction rules; — indicates that there is a
permutable pair but it is not used in the proof of the permutability theorem,
because it is the reverse of a permutable pair that is used; X indicates that
the permutation is forbidden; XX that there is no permutable pair because
both R and C are right rules; and N indicates that the permutation is not
w-trivial, essentially because the notion of normality used in NJ does not allow
introduction rules to be permuted up into minor premisses of elimination rules.
Each permutation that is marked N in the table, e.g.

LV/RD  Ax.when(y, z1.L1,22.L2) & when(y, z1. A x. L1, z2. e. L) ©#y

(using the notation of [8]), is not ¢-trivial; if we apply ¢ to the two sides of
LV/RD, then we get normal terms representing DI- and V E-steps respectively.

12



10 Related work

Theorem 1 of §4 of [24], for the negative fragment of intuitionistic logic, is similar
to (ii) of our corollary 1, but for the systems with cut. Zucker’s argument,
showing that two derivations with the same image under ¢ are interpermutable,
1s a case analysis on the last steps of the two derivations; for example, the
case of both last steps being LD is dealt with by use of derivations with cut.
Thus his notion of “interpermutable” uses permutations involving the cut rule.
(Moreover, there is no reference in [24] to Kleene’s theory of permutations.) See
[17] for further discussion (but still for the systems with cut) of Zucker’s results.

Mints [16] (available to us after our own proof of an early version of theorem
1, using =~ rather than =*) proves the same theorem (but without clarifying
whether or not the permutations are directed and which permutations are re-
quired) by means of an induction on the structure of derivations, in the general
case (not just propositional logic); our use of the term notation for derivations
allows, in contrast, the nature of the permutations to be made precise and
amenable to mechanical treatment [1]. His work applies to Gentzen’s system
LJ with explicit weakening and contraction rules rather than, as in our case,
to Kleene’s G3, where these rules are built into the logical rules. Our (iv)
corresponds to his use of transformations to move contraction; similarly, our
(i) corresponds to his transformations to move weakening down towards the
root. He also describes the normal forms using constraints on the structure of
derivations, similar to ours.

Troelstra [22] has proved a similar weak normalisation theorem for a Gentzen
calculus based on G31i [23], with the normal derivations being in 1-1 correspon-
dence with natural deductions in long normal form under the complete discharge
convention. This calculus lacks the term labels that we have used both to fa-
cilitate the naming of derivations (and their permutations) and because of the
connections with logic programming viewed as a search for normal terms inhab-
iting formulae viewed as types. [22] also mentions some difficulties in Mints’
treatment of contraction.

Bellin and van de Wiele [3] prove a similar result for a multiplicative linear
logic without propositional constants, relating sequent calculus derivations to
proof nets. Andreoli’s work [2] on focusing proofs in linear logic seems to be
related, in its stringent normality conditions on proofs; but there is no per-
mutability theorem (yet). Pym and Wallen [19] prove a theorem (5.7), showing
how any derivation (maybe ill-typed) of the All-calculus can be permuted to
obtain a (well-typed) derivation.

Schwichtenberg [21] develops a new notation, multiary sequent terms, rep-
resenting derivations of LJ, a notion of multiary normal form, permutative
conversions and a measure function with respect to which the conversion rules
are decreasing. Our §8 discusses the use of this theory to prove a result about
strong termination for our rules.

13



11 Conclusion

We have made precise, for intuitionistic propositional logic, the idea that two
proofs are really the same iff they are interpermutable; moreover, we have pre-
sented a rewriting system, confluent and weakly normalising, for reduction of
terms (representing cut-free sequent calculus derivations) to normal form. That
this can be made SN by appropriate restrictions (for the implicational fragment)
follows from Schwichtenberg’s results in [21]. For all the propositional connec-
tives, we have identified precisely which of the Kleene-style permutations are
required (and pointed out some that are inappropriate). Our methods illus-
trate the utility of Herbelin’s representation of lambda-terms which brings the
head variable to the outside. We are confident that the methods generalise to
first-order logic: see [8] and its successors for details in due course.
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