Enhancing Reasoning Approaches to Diagnose
Functional and Non-Functional Errors

"Nuno Cardoso and "Rui Abreu

TDepartment of Informatics Engineering
Faculty of Engineering of University of Porto

Porto, Portugal

‘HASLab / INESC Tec
Campus de Gualtar
Braga, Portugal

nunopcardoso @ gmail.com, rui@computer.org

Abstract

Most approaches to automatic software diagno-
sis abstract the system under analysis in terms
of component activity and correct/incorrect be-
haviour (colectivelly known as spectra). While
this binary error abstraction has been shown to
be capable of diagnosing functional errors, when
diagnosing non-functional errors it yields sub-
optimal accuracy. The main reason for this lim-
itation is related to the lack of mechanisms for
encoding error symptoms (such as performance
degradation) in such a binary schema. In this pa-
per, we propose a novel approach to diagnose
both functional and non-functional errors by in-
corporating into the classic, bayesian reasoning
approaches to error diagnosis concepts from the
fuzzy logic domain. The empirical evaluation on
27000 synthetic scenarios demonstrates that the
proposed fuzzy logic-based approach consider-
ably improves the diagnostic accuracy (20% on
average, with 99% statistical significance) when
compared to the classic, state-of-the-art approach.

1 Introduction

Reasoning approaches to automated error diagnosis work
by abstracting the run-time behavior of the system under
analysis in terms of two general concepts: components and
transactions. A component is an element of the system
that, for diagnostic purposes, is considered to be atomic!,
whereas a transaction is a set of component activations
that (1) share a common goal, and (2) the correctness of
the output can be verified. Using such abstraction, existent
reasoning-based diagnostic algorithms use a ndive Bayes
classifier to detect the patterns in the components’ activ-
ity that most resemble the error behavior of the system [1;
2].

A limitation of such approaches is related to the assump-
tion that any transaction behavior can be categorized in
terms of correct/incorrect [1; 2; 3; 4]. While a binary error
abstraction works well when diagnosing functional errors
(i.e., the output value differs from the expected value), such
abstraction is unable to accurately represent non-functional
errors (e.g., performance degradation errors).

'In a software environment, a component can be for instance a
statement, a function, a class, or a service.

The presence of non-functional errors in a system implies
that the distinction between correct and incorrect states is of-
ten fuzzy, existing instead a gradual transition between such
states. In such scenarios, it is often the case that a system
does not break down recognizably but rather deteriorates
over time [5]. Using a binary abstraction to the system cor-
rectness implies that the perceived deterioration of the sys-
tem (i.e., the error symptoms) is completely overlooked by
the diagnostic algorithm and, as a consequence, the diagnos-
tic quality is negatively affected.

The challenge of solving this limitation is thereby
twofold. First, it is necessary to define an appropriate
method for both detecting and abstracting non-functional er-
rors and the associated error symptoms. Second, it is neces-
sary to integrate the additional knowledge in the diagnos-
tic process. To overcome this limitation we propose an ex-
tension of existing error detection mechanisms (e.g., [3]) to
detect/encode non-functional errors using fuzzy logic. Fur-
thermore, we generalize over the classical reasoning-based
diagnostic framework to take advantage of additional infor-
mation encoded by the improved abstraction.

Results on 27000 synthetic test scenarios showed that our
generalization improved the classical reasoning approach in
65% of the cases and achieved at least equal performance
in 94% of the cases. The overall relative improvement in
the diagnostic quality was of 20% on average, with a 99%
confidence interval.

This paper makes the following contributions:

e We discuss the limitations imposed by the classical bi-
nary error abstraction;

e We propose a generalization of the classical reasoning-
based diagnostic framework aimed at improving its ac-
curacy when diagnosing non-functional errors;

e We compare the accuracies of the classical and our
novel approaches using a simulation-based setup,
which has been shown to be able to generate realistic
scenarios.

This paper is organized as follows. In Section 2 we in-
troduce the relevant details of the classical reasoning-based
diagnostic framework. In Section 3 we motivate and present
our approach. In Section 4 we discuss the results of the
benchmark. Finally, in Sections 5 and 6, we present the re-
lated work and draw some conclusions about the paper.

2 Reasoning-based Diagnosis

In this section we introduce concepts and definitions used
throughout the paper, as well as the reasoning-based ap-

proach to diagnosis.

Definition 1 (Diagnosing System). A diagnostic system
DS is defined as the triple DS = (SD, COMPS, OBS) ,
where:

e SD is a propositional theory describing the behavior
of the system

o COMPS = {ci,..
SD

e OBS is a set of observable variables in SD

Definition 2 (h-literal). An h-literal, h; or —h; for c; €
COMPS, denotes the component’s health. Under an ob-
servation term obs over variables in OBS, a component is
considered healthy if it performed nominally and unhealthy
otherwise.

Definition 3 (Diagnostic Candidate). Let S—;, C COMPS
be a set of unhealthy components and S, = COMPS \
S_p, the corresponding set of healthy components. We define
d(S-p) to be the conjunction

(A ~h)ACA Bm) 1)

meS_p, meSh

.,CM} is a set of components in

Given an observation term obs over variables in OBS, a
diagnostic candidate for DS is a conjunction d(S-y) such
that SD A obs N\ d(S-p,) is consistent.

In the remainder we refer to d(S-y,) simply as d, which we
identify with the set S—, of indices of the negative literals.

A problem with the above definition is that the hypothe-
sis that all the system is unhealthy always holds. To apply
the concept of a diagnosis candidate to real systems with
success, one must refine the definition so that the candi-
date contains the minimum number of components while
still restoring consistency to SD A obs A d. Even though
the minimality constraint is not strictly required, it is useful
in most real-world problems to decrease the computational
overhead of the diagnostic process.

Definition 4 (Minimal Diagnostic Candidate). A candidate
d is minimal iff Ad' : d' C d such that d' is a diagnostic
candidate.

Definition 5 (Diagnostic Report). A diagnosis D =

(di,...,dg,...,dk) is an ordered set of K diagnostic can-
didates, such that
Vdy, € D : Pr(di|obs) > Pr(dy+1|0bs) 2)

The calculation of a diagnostic report can be broadly di-
vided in two sub-problems: diagnostic candidate generation
and ranking.

The candidate generation problem is typically solved by
using search algorithms [6; 7; 8; 9; 10] to produce candi-
dates that, heuristically, have a higher chance of being cor-
rect.

In the remainder of this section we describe the relevant
aspects of the classical reasoning-based diagnostic approach
to address the ranking problem [1; 2]. We assume that a set
of run-time observations have been collected using the so-
called hit spectra abstraction [11].

Definition 6 (Hit Spectra). The hit spectra encodes the
activity of each ¢; € COMPS in transaction i in terms
of hit/not hit as well as the outcome of each transac-
tion in terms of pass/fail. Formally, let A; be a set con-
taining the components involved in transaction i. A =

{A1,..., A;, ..., AN} represents thereby the collection of
the components’ activity in each of the N transactions of the
system. Additionally, let e denote the error vector, defined as

e; = 0,
1 T 1,

The hit spectra is composed of the pair (A, e).

if transaction i performed nominally
otherwise

3)

Under a set of observations (A, e), the posterior probabil-
ities are calculated according to naive® Bayes rule as

Pr(d | A,e) = Pr(d) - Pr(A;)
i€1..N ¢

The denominator Pr(A;) is a normalizing term that is iden-
tical for all d € D and needs not to be calculated for ranking
purposes as it does not alter the rank order.

Pr(d) estimates the probability that a candidate, without
further evidence, is responsible for the system’s malfunc-
tion. To define Pr(d), let p;* denote the prior probability
that a component ¢; is at fault. Assuming that components
fail independently, the prior probability for a particular can-
didate d € D is given by

Pr(d)=[]r;-]

jed FJECOMPS\d

(1—-p)) (5)

By using equal values for all p; it follows that the larger the
candidate the smaller its a priori probability is.

To bias the prior probability taking run-time information
(i.e., observations) into account, Pr(4;,e; | d) (referred to
as likelihood) is defined as

G(d, A;)
1 - G(d, A;)

G(d, A;) (referred to as transaction goodness) is used to ac-
count for the fact that components may fail intermittently,
estimating the probability of nominal system behavior un-
der an activation pattern A; and a diagnostic candidate d.
Let g; (referred to as component goodness) denote the
probability that a component ¢; performs nominally. Con-
sidering that all components must perform nominally to ob-
serve a nominal system behavior, G(d, A;) is defined as

G, A)= [%

JE(dNA;)

ife; =0
otherwise

In scenarios where the values for g; are not otherwise
available, those values can be estimated by maximizing
Pr(A,e | d) (Maximum Likelihood Estimation (MLE) for
naive Bayes classifier) under parameters {g; | j € d A0 <

3 Approach

In this section we discuss how non-functional errors (also
referred to as fuzzy errors) can be more accurately de-
tected/represented and how the diagnostic framework pre-
sented in Section 2 can be enhanced to more accurately di-
agnose such kind of errors.

’In order to maintain the problem tractable, conditional inde-
pendence is assumed throughout the process.

3The value of p; is application dependent. In the context of
development-time fault localization it is often approximated as
p; = 1/1000, i.e., 1 fault for each 1000 lines of code [12].

Fuzzy Error Detection

The first challenge in diagnosing fuzzy errors is related
to their detection. Existent approaches to error detection
(e.g., [3]) make use of first-order logic descriptions of the
correct behavior of the system (weak-fault models) to assign
transactions to one of two possible sets: the pass set and the
fail set (P and F' respectively, where F' = P). A conse-
quence of such fault models is the crisp distinction between
correct and incorrect system states. While this crisp logic
description enables an accurate representation of functional
errors, it is unable to accurately represent a large variety
of non-functional errors. Take for instance a type of non-
functional error that, informally, can be described by the
statement “The system is slow”. Even though we can easily
relate the slowness of the system to an appropriate metric
(e.g., response time), it is not easy to define a crisp bound-
ary in this same metric to distinguish acceptable and slow
transactions. By setting a crisp boundary at, for instance, 1
second, a response time of 0.9999 seconds would be consid-
ered to be correct whereas a marginally superior response
time would be considered incorrect. Also, a response time
of 0.9999 seconds would result in the same type of error in-
formation (pass) as a smaller response time even though the
larger response time may represent an error symptom.

To overcome the expressiveness limitation of crisp logic
error detection mechanisms, we propose the generalization
of such mechanisms using fuzzy logic [13]. Fuzzy logic ex-
tends the notion of binary set membership by introducing
the concept of membership functions, denoted 14 (mem-
bership function for set A), that map a particular domain on
the real continuous interval [0, 1], where the endpoints of 0
and 1 conform to no membership and full membership, re-
spectively. In the context of error detection, the concept of
fuzzy membership enables the representation of 3 types of
system states: correct (up(2z) = 0), incorrect (up(z) = 1)
and degraded (0 < pup(x) < 1). Since F = P, and as
a consequence of the new fuzzy error model, a degraded
transaction exhibits both correct and incorrect behaviors si-
multaneously, however with different degrees.

As an example, consider the crisp fail set containing all
response times (rt) above 1 second. This same set could be
represented in terms of a membership function as

0 ,rt<1
”F@“__{l rt>1

To achieve the goal of representing non-functional errors
(and implicitly the degraded state), consider that all re-
sponse times below 0.5 seconds could be considered correct
and all times above 1 second incorrect. Furthermore, con-
sider that the amount of degradation follows a linear pattern
between those two thresholds. The fuzzy fail set represent-
ing this particular type of error could be defined as

®)

0 , rt < 0.5
pp(rt)=92-rt—-1 ,05<rt <1 ©)
1 ,rt>1

Both membership functions are presented in Figure 1.

To conclude the illustration of the fuzzy error detection
process, consider the spectra presented in Table 1, which
also contains the run-times for each transaction (marked in
Figure 1). From this spectra we can see that, in particular
for t,, the crisp error vector neglected an error symptom

1 P
0.8 > i
891 R P Ur ,,’
A1]---p= e
021 L ;
0 Ttl 0.5 Ttg 1 Ttg

rt

Figure 1: Crisp vs. fuzzy sets

. €;

Ll A pr(rti) pp(rt:)
1103 {2} 0 0
2109 {c1} 0 0.8

3 1.5 {Cl, CQ} 1 1

Table 1: Fuzzy error hit spectra example

whereas the fuzzy error vector categorized that same trans-
action as being 80% degraded.

Fuzzy Error Diagnosis

Using fuzzy logic to detect errors, it is possible to assert
that a particular transaction is 80% degraded (i.e., 1z = 0.8
and consequently iz = 0.2). The remaining challenge con-
sists in integrating this additional knowledge in the diagnos-
tic process.

As an example consider again the spectra depicted in Ta-
ble 1. Using the approach explained in Section 2 (i.e., us-
ing e = pp), it follows that the candidates d; = {¢1}
and do = {co} are ranked equally. However, intuitively we
would expect d; to be ranked ahead of ds since transaction
t2, in which component c; was involved, shows error symp-
toms whereas t; doesn’t.

To solve this limitation we make use of the concept of
probability of a fuzzy event [14]. The probability of a fuzzy
event is defined as

Pr(a) =Y pa(a) - Pr(z) (10)
e

where « is an arbitrary event, and (2 is a set representing all
the possible outcomes of o. Mapping this definition to the
problem at hands, we generalize Equation 6 as

z=F
Pr(A;, e [d) =e;- (1 —-G(d, A;))
=P

1)

PI’(AZ', €; | d)

€i

G(d, 4;)

Figure 2: Likelihood function plot

where the first part of the equation (z = F’) accounts for the
incorrect behavior and the second part (z = P) for the cor-
rect behavior. In contrast to Equation 6, this generalization
is valid for fuzzy error values (i.e., e =). Figure 2 shows
the plot of the Equation 11 with respect to e; and G(d, A;).
For comparison, we also plot Equation 6 with thick black
lines.

Using the above generalization, the probabilities of the
two candidates* are calculated as follows

Pr(A,e|di) = (0.8 (1—g1)+(1-0.8)g1)
X(1-1-g1)+(1—-1)-g1)

t3

12)

Pr(A,e | dz) = (0- (1 —g2) + (1 -0)-g2)
X(1-(1=g2)+(1—-1)-g2)

ts

13)

By performing an MLE for both functions it follows that
Pr(A,e | dy) is maximized for g; = 0 and Pr(A,e | d3)
for go = 0.5. Applying the maximizing values to both ex-
pressions, it follows that Pr(d; | A,e) ~ 8 x 10~* and
Pr(dy | A e) ~ 2.5 x 107%. Such probabilities entail the
ranking (d1, d2), which breaks the ambiguity between d;
and do, thus improving the diagnostic accuracy.

4 Benchmark

In this section we describe our benchmark approach and dis-
cuss results.

Simulator

Performing benchmarks on real applications requires exten-
sive adaptation and is therefore a very time consuming en-
deavor. Furthermore, the use of a limited set of applications
limits the generalization of the conclusions taken from such
observations.

To overcome such issues we make use of a simulator
as proposed in [4] 3. Such simulator provides functions to
describe and execute a probabilistic model of an arbitrary
system, thereby gathering the required spectra. The authors
showed that the benchmark results for both real and syn-
thetic data are comparable.

Concretely, the probabilistic model is created by defining
a number of components, which are identified by their re-
spective numeric IDs and a list of links to other components.
Whenever a component is activated all the links belonging
to that particular component are sequentially activated. A
link is an abstraction to the components’ interaction that
contains a set of component IDs with their respective call
probabilities. With the activation of a link, the current com-
ponent and link list position are pushed onto a call stack
and a component is randomly selected to continue the exe-
cution. At the end of the component’s execution, an element
is popped from the call stack, returning the control to the
caller component. Using this model, a transaction can be

“The candidates for the fuzzy approach were calculated by
setting a threshold for p to discretize transactions in terms of
pass/fail. In this paper we use the threshold pz = 1.

Shttps://github.com/SERG-Delft/sfl-simulator

generated by pushing a component marked as an entry point
onto the call stack.

To emulate the error behavior, components may be in-
jected with faults which are parameterized over 3 variables
(pe» Pd, and p;) corresponding to the probabilities of correct,
degraded, and incorrect behavior, respectively. During the
simulation, whenever a faulty component is activated, the
outcome of such activation (in terms of correct, degraded,
or incorrect) is randomly determined using such probabili-
ties.

To determine the transaction’s fuzzy error value, we apply
the following rules:
pg = 1, if at least one component performed erroneously;

pg = 0, if all components performed correctly;

pz = rand(0,1), otherwise®.

Setup

To generate the spectra required for our benchmark we un-
dergo a two-step process. In the first stage we randomly gen-
erate a set of system models while in the second we use such
models to generate the required spectra.

We generate system models that comply with a N-tier ser-
vice architecture. The system generation is parameterized
by setting the minimum and maximum values for two dif-
ferent intervals: number of tiers (nt), and number of com-
ponents per tier (nc). Systems are created by randomly se-
lecting the number of tiers (I' € nt) as well as gener-
ating a list with the number of components in each tier
(C : C; € nc,0 < i < T). All components in each tier
are connected to all the components of the next tier with
equal probability. To exhibit erroneous behavior, a number
of faults (nf) is randomly injected (in terms of position) in
the systems.

For our benchmark setup, we generated 100 systems for
each value nf € [2,4], totaling 300 systems. The generation
of such systems was done with both the number of levels and
components per level comprised in the interval [3, 10]. The
injected faults had 90% and 10% probabilities of degraded,
and erroneous behavior, respectively.

The spectra generation is parameterized with a single
variable ne, representing the number of errors at the end
of which the simulation stops. For each generated system,
we ran 10 simulations for each value ne € [1, 9], totaling 90
spectra per system. Overall, our benchmark is composed of
300 x 90 = 27000 test cases.

Metrics

The wasted effort metric evaluates how many components
need to be inspected before all faulty components are found
[15]. To calculate this metric one must undergo an iterative
process. Starting with the first candidate, all of the candi-
date’s components are inspected to determine whether or
not that particular component was responsible for the erro-
neous behavior. Depending on the result of such inspection
two outcomes may occur. On the one hand, if the compo-
nent is found to be faulty, that particular component is re-
moved from all other candidates in the ranking. On the other
hand, if the component is found to be healthy, all candidates
in the ranking containing that particular component are re-
moved. This process is repeated until all faulty components

%This happens if no component performed erroneously, but at
least one exhibited a degraded performance.

are found. In the case of the last inspected candidate being
tied with other candidates, it is assumed that, on average,
half of the healthy components are examined.

During this iterative process, we keep track of two coun-
ters: inspected components (/) and faulty components (C).
Using these two counters, the wasted effort metric is calcu-
lated as

W=I-C (14)

\ d
{c1,¢4}
{erresrenty
{eseres)t
{er,c2}
{037 05}

Table 2: Example diagnostic report

|Rank | I | C
211

B W=
BN O N S

42

As an example consider the diagnostic report presented
in Table 2 for which the correct diagnostic candidate is
d = {c1,c2}. In order to calculate the wasted effort, we
start by examining c¢; and ¢4 finding that ¢, is faulty while
¢4 is healthy. Due to ¢4 being healthy, candidates ds and d3
are not examined. Examining d4 we observe that the only
unexplored component (c3) is faulty. Additionally, we see
that both system’s faults were discovered. However, as d5
is tied with d4, we must inspect half of the healthy com-
ponents. The wasted effort of this diagnosis is therefore
W = 4 — 2 = 2, meaning that 2 healthy components (cy4
and c3/c5) were examined in the process of finding the root
cause of the system errors.

A normalized version of the wasted effort is called diag-
nostic quality and is defined as

Q=1-W/(M-C) (15)

where M is the number of system components. The diag-
nostic quality value is contained between zero and one and
estimates the fraction of system’s healthy components that
need to be examined before all faulty components are found.

In this paper we refine the diagnostic quality metric to
take into account the fact that, for a specific spectra, not
all components of the systems can be at fault. As an exam-
ple consider a system with 1000 components with a spectra
consisting of a single failing transaction activating 2 com-
ponents. Assuming the diagnostic algorithm only proposes
plausible’ candidates, the quality is contained in the interval
between 1 and %. Instead of calculating the diagnostic
quality using the M components of the system, we use M,
the number of “suspicious’” components to calculate the new
metric, which shall be referred to as “fair quality” (Q). A
component is said to be suspicious if it was activated in a
failing transaction. A consequence of using () is that the
diagnostic qualities of all possible permutations of the rank-
ing always have a lower bound quality of 0.

Results

In this section, we compare the performance of the crisp
diagnostic approach, presented in Section 2, with our fuzzy
approach for the generated spectra.

In Figure 3, we compare the average () ¢ for each test sce-
nario. From the analysis of the plot we can see that the crisp

"By plausible we mean that all the candidate’s components
were at least activated once in an erroneous transaction.

approach is always (on average) outperformed by the fuzzy
approach. This is due to the fact that the fuzzy approach is
able to successfully take advantage of the extra fuzzy error
information to break the ties in the ranking (as shown in the
example from Table 1) that occur when dealing with small
numbers of erroneous transactions.

Number of faults — 2 ---- 3 ---4

Diagnosis — Crisp — Fuzzy

Number of errors
Figure 3: Benchmark Averages

A more detailed analysis of the data (Figure 4) shows that
our approach outperformed the crisp approach in 65% of the
test cases. Moreover, in 94% of the cases our approach was
at least as accurate as the classical approach. In the remain-
ing 6% of the test cases the accuracy loss was due to (1) lack
of observations, and (2) marginal variations in the posteriori
probability, still enough to make the relative ranking change.
The overall average improvement of quality introduced by
our algorithm was of AQ) s = 0.153, representing a relative
improvement of 21%. By performing a paired one-tailed T-
test, we can ascertain that our approach introduced a relative
improvement of 20%, with a 99% confidence interval.

: Average: 0.153
1
4 |
1
> 1
‘U:; Crisp > Fuzzy: 6% 1 Fuzzy > Crisp: 65%
1
E |
1 — Fp.
24 \ Fuzzy >= Crisp: 94%
0 44—"}
1

-1.0 ~05 0.0 0.5 1.0
Qy(Fuzzy) — Q(Crisp)

Figure 4: Quality improvement density plot

In Figure 5, we present a set of boxplots® comparing the

8For each test scenario, the box corresponds to 2" and 3"¢
quartiles (i.e., 50% of the cases), the vertical lines correspond to
the 1°¢ and 4" quartiles, and the small dashes correspond to test
cases categorized as outliers. A test case is considered to be an
outlier if its distance from the box is greater that 1.5 * QR (inter-
quartile range, i.e., the height of the box).

quality distributions of both approaches for each test sce-
nario. From the analysis of the plots we can see that not
only the fuzzy approach has a better performance than the
crisp approach, but also that the fuzzy approach distribu-
tion is much more skewed towards better quality results than
the crisp approach. Additionally, we can see that the fuzzy
approach exhibits a higher consistency (i.e., smaller inter-
quartile range) than the crisp approach.

Diagnosis E Crisp . Fuzzy

1.00

0.75

0.50

0.25

0.00
1.00

0.75

ity

0.50

Quial

[N TR T IIIII\IIIIIIII.\IIIIl-l

0.25

0.00 -
1.00

0.75 -+

0.50 -+

0.25

0.00 -

1 2 3 4 5 6 7 8 9
Number of errors

Figure 5: Benchmark Boxplots

A final remark is that, with the increase of erroneous
transactions, it appears that the crisp approach quality seems
to converge towards to the same average quality as the fuzzy
approach. This happens due to the fact that the information
introduced by the occurrence of errors eventually compen-
sates the limitations imposed by the crisp error abstraction.

5 Related Work

In addition to the approach presented in Section 2, there is a
wide set of different approaches to error diagnosis.

In the scope of lightweight fault localization techniques,
we can highlight examples such as Pinpoint [16], and Taran-
tula [17], Ochiai [18]. While extremely efficient, such ap-
proaches do not consider multiple faults.

In the scope of run-time diagnosis, Kahuna [19] is an
approach that aims at diagnosing performance problems in
Map-Reduce systems through the usage of peer similarity.
In [20], the authors apply the same concept to the diagno-
sis of failures in distributed file systems, such as PVFS or

Lustre.

In the scope of candidate generation, [6], [7], [8], [9; 211,
[22], and [10] propose different approaches to compute the
minimal diagnostic candidates.

In the scope of candidate ranking, [1; 23; 241, [2], and
[25] propose different methods for estimating the g; param-
eters.

As opposed to our fuzzy approach, such diagnostic ap-
proaches are not able to appropriately encode and effec-
tively diagnose non-functional errors.

6 Conclusions

We presented a generalization to the classical reasoning-
based diagnostic approach that not only guarantees equal
diagnostic quality when diagnosing functional errors but
also improves the diagnostic quality when diagnosing non-
functional errors.

The conducted synthetic benchmark showed that, for our
setup with 27000 test cases, our approach improved the di-
agnostic quality in 65% of the cases and performed at least
as good as the classical approach in 94% of the test cases.
On average, the relative improvement introduced by our ap-
proach was of 20%, with a 99% confidence interval.

Future work includes the extension of existent error de-
tection frameworks to include the fuzzy error abstraction
proposed in this paper. The existence of such a framework
would enable a real-world validation of the proposed ap-
proach.

Acknowledgements

We would like thank Ligia Massena, André Silva, and
Alexandre Perez for the useful discussions about this work.
This material is based upon work supported by the National
Science Foundation under Grant No. CNS 1116848, by
the scholarship number SFRH/BD/79368/2011 from Fun-
dacdo para a Ciéncia e Tecnologia (FCT), and by the
ERDF through the Programme COMPETE, the Portuguese
Government through FCT - Foundation for Science and
Technology, project reference FCOMP-01-0124-FEDER-
020484.

References

[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van
Gemund. A new bayesian approach to multiple inter-
mittent fault diagnosis. In Proceedings of the 21st In-
ternational Joint Conference on Artificial Intelligence,
IJCAT’ 09, pages 653-658, 2009.

[2] Johan de Kleer. Diagnosing multiple persistent and
intermittent faults. In Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence, 1]-
CAI’09, pages 733-738, 2009.

[3] Paulo Casanova, David Garlan, Bradley Schmerl, and
Rui Abreu. Diagnosing architectural run-time failures.
In Proceedings of the 8th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, SEAMS’13, pages 103-112, 2013.

[4] Cuiting Chen, Hans-Gerhard Gross, and Andy Zaid-
man. Improving service diagnosis through increased
monitoring granularity. In Proceedings of the 7th In-

ternational Conference on Software Security and Reli-
ability, SERE’13, 2013.

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and
Shambhu Upadhyaya. Self-healing systems - survey
and synthesis. Decis. Support Syst., 42(4):2164-2185,
2007.

Johan de Kleer and Brian C. Williams. Readings in
model-based diagnosis. In Readings in model-based
diagnosis, chapter Diagnosing multiple faults, pages
100-117. 1992.

Franz Wotawa. A variant of Reiter’s hitting-set algo-
rithm. Information Processing Letters, 79(1):45-51,
2001.

Alexander Feldman, Gregory Provan, and Arjan J. C.
van Gemund. Computing minimal diagnoses by
greedy stochastic search. In Proceedings of the 23rd
national conference on Artificial intelligence - Volume
2, AAAT08, pages 911-918, 2008.

Rui Abreu and Arjan J. C. van Gemund. A low-cost
approximate minimal hitting set algorithm and its ap-
plication to model-based diagnosis. In Proceedings of
the 8th Symposium on Abstraction, Reformulation, and
Approximation, SARA’09, 2009.

Nuno Cardoso and Rui Abreu. MHS2: A map-reduce
heuristic-driven minimal hitting set search algorithm.
In Proceedings of the International Conference on

Multicore Software Engineering, Performance, and
Tools, MUSEPAT" 13, 2013.

Mary Jean Harrold, Gregg Rothermel, Rui Wu, and
Liu Yi. An empirical investigation of program spectra.
In Proceedings of the 1998 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, PASTE’98, pages 83-90, 1998.

John Carey, Neil Gross, Marcia Stepanek, and Otis
Port. Software hell. In Business Week, pages 391-411,
1999.

Lotfi A Zadeh. Fuzzy sets. Information and control,
8(3):338-353, 1965.

Lotfi Asker Zadeh. Probability measures of fuzzy
events. Journal of mathematical analysis and appli-

cations, 23(2):421-427, 1968.

Friedrich Steimann, Marcus Frenkel, and Rui Abreu.
Threats to the validity and value of empirical assess-
ments of the accuracy of coverage-based fault locators.
In Proceedings of the 2013 International Symposium
on Software Testing and Analysis, ISSTA’2013, pages
314-324, 2013.

Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Ar-
mando Fox, O Fox, and Eric Brewer. Pinpoint: Prob-
lem determination in large, dynamic internet services.

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

In Proceedings of the 2002 International Conference
on Dependable Systems and Networks, DSN 2002,
pages 595-604, 2002.

James A. Jones and Mary Jean Harrold. Empirical
evaluation of the tarantula automatic fault-localization
technique. In Proceedings of the 20th IEEE/ACM in-
ternational Conference on Automated software engi-
neering, ASE °05, pages 273-282, 2005.

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van
Gemund. On the accuracy of spectrum-based fault

localization. In Testing: Academic and Industrial
Conference Practice and Research Techniques, TAIC-

PART’07, pages 89-98, 2007.

Jiagi Tan, Xinghao Pan, Eugene Marinelli, Soila
Kavulya, Rajeev Gandhi, and Priya Narasimhan.
Kahuna: Problem diagnosis for mapreduce-based
cloud computing environments. In Proceedings of
the 12th Network Operations and Management Sym-
posium, NOMS, pages 112-119, 2010.

Michael P. Kasick, Jiaqi Tan, Rajeev Gandhi, and Priya
Narasimhan. Black-box problem diagnosis in paral-
lel file systems. In Proceedings of the 8th Conference
on File and Storage Technologies, FAST, pages 43-56,
2010.

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van
Gemund. Diagnosing multiple intermittent failures us-
ing maximum likelihood estimation. Artificial Intelli-
gence, 174(18):1481-1497, 2010.

Roni Tzvi Stern, Meir Kalech, Alexander Feldman,
and Gregory M Provan. Exploring the duality in
conflict-directed model-based diagnosis. In Proceed-
ings of the 26st National Conference on Artificial In-
telligence, AAAI’12, pages 548-555, 2012.

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van
Gemund. A dynamic modeling approach to software
multiple-fault localization. In Proceedings of the 19th
International Workshop on Principles of Diagnosis,
DX’08, pages 7—-14, 2008.

Rui Abreu, Wolfgang Mayer, Markus Stumptner, and
Arjan J. C. van Gemund. Refining spectrum-based
fault localization rankings. In Proceedings of the 2009
ACM Symposium on Applied Computing, SAC’09,
pages 409414, 2009.

Nuno Cardoso and Rui Abreu. A kernel density
estimate-based approach to component goodness mod-
eling. In Proceedings of the 27th AAAI Conference on
Artificial Intelligence, AAAT’ 13, 2013.

