
Nuno Miguel Almeida Luz

January 2015

U
M

in
ho

|2
01

5

Ontology-based Representation and
Generation of Workflows for Micro-Task
Human-Machine Computation

O
n

to
lo

g
y-

b
a

se
d

 R
e

p
re

se
n

ta
ti

o
n

 a
n

d
G

e
n

e
ra

ti
o

n
 o

f 
W

o
rk

fl
o

w
s 

fo
r 

M
ic

ro
-T

a
sk

H
u

m
a

n
-M

a
ch

in
e

 C
o

m
p

u
ta

ti
o

n
N

un
o 

M
ig

ue
l A

lm
ei

da
 L

uz

Universidade do Minho

Escola de Engenharia

 

 

 

 

 

The MAP Doctoral Program in Computer Science
of the Universities of Minho, Aveiro and Porto

Universidade do Minho

universidade de aveiro

This work is funded by the ERDF (European Regional Development Fund) through

the COMPETE Programme and by the Portuguese Government through the FCT (Por-

tuguese Foundation for Science and Technology) within the doctoral grant

SFRH/BD/ 70302/2010.



January 2015

Thesis submitted at the University of Minho for the degree of

Doctor of Philosophy (PhD) in Computer Science, under the

supervision of

Paulo Jorge Freitas de Oliveira Novais

and

Nuno Alexandre Pinto da Silva

Nuno Miguel Almeida Luz

Ontology-based Representation and
Generation of Workflows for Micro-Task
Human-Machine Computation

Universidade do Minho

Escola de Engenharia

 

 

 

 

 

The MAP Doctoral Program in Computer Science
of the Universities of Minho, Aveiro and Porto

Universidade do Minho

universidade de aveiro



 

 

 

STATEMENT OF INTEGRITY 

 

 

I hereby declare having conducted my thesis with integrity. I confirm that I have not used plagiarism or any 

form of falsification of results in the process of the thesis elaboration.                                                                             

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho. 

 

University of Minho, _____________________________ 

 

 

Full name: _____________________________________________________________________ 

 

Signature: ______________________________________________________________________ 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The more I read, the more I acquire, the more certain I am that I know nothing.

— Voltaire

A C K N O W L E D G M E N T S

This research represents a long process of acquiring new skills and reaching for an-

swers and questions alike in many different ways. Such a journey could never have

led to the research presented in this thesis without the gracious support, patience and

collaboration of several people. To all the people involved over the last four years, I am

sincerely grateful.

I am most thankful to my supervisors Nuno Silva and Paulo Novais for their support

and dedication. To Nuno Silva, for his interest and eagerness to question and under-

stand even the smallest details. Our enlightening discussions and his advice and active

participation were invaluable factors in the concretization of this thesis. To Paulo No-

vais for his constant attention to the progress of this research and for always pushing

me towards reaching new milestones.

I would also like to thank all the friends that shared this journey with me. To Ricardo

Anacleto and Carlos Pereira, for our multiple more and less productive but refreshing

discussions, and to Nuno Oliveira for his invaluable advice in subjects I was trying

to grasp. Also, to my parents, Belmiro and Glória, for their amazing efforts in always

providing the best conditions for me and my brother, even in the most difficult circum-

stances.

The presented evaluation scenarios would never have been achieved without the

participation of several people. Their effort and feedback are an important part of this

work.

Finally, I would like to thank Soraia Ferreira, for her unconditional support. There

are not enough words of appreciation for her patience, love and understanding during

this long academic endeavour.

iii



Nuno Miguel Almeida Luz: Ontology-based Representation and Generation of Workflows

for Micro-Task Human-Machine Computation © January 2015

This work is funded by the ERDF (European Regional Development Fund) through

the COMPETE Programme and by the Portuguese Government through the FCT (Por-

tuguese Foundation for Science and Technology) within the doctoral grant

SFRH/BD/70302/2010.



R E S U M O

A crescente popularidade das plataformas de crowdsourcing de micro-tarefas levou ao

aparecimento de novas abordagens baseadas em fluxos e workflows de micro-tarefas.

Juntamente com estas novas abordagens, surgem novos desafios. A falta de estrutu-

ração dos dados das micro-tarefas torna difícil, por parte de quem solicita as tarefas,

a inclusão de participantes máquina no processo de execução dos workflows. Outro

desafio deve-se á falta de componentes que permitam o controlo do fluxo em work-

flows de micro-tarefas, embora estes componentes sejam comuns em abordagens de

workflow tradicionais e em processos de negócio.

Nesta tese, é proposto um método para a representação, construção, instanciação

e execução de workflows de tarefas em ambientes de computação pessoa-máquina,

baseado em ontologias. A representação é capaz de capturar a estrutura e a semântica

das operações e dos seus dados, ao mesmo tempo que se mantém próxima do nível

conceptual humano. Os workflows são construidos em duas dimensões: a dimensão

de domínio estático e a dimensão (da tarefa) dinâmica. Isto permite que os dados de

entrada e de saída dos workflows possam ser descritos exclusivamente de acordo com

uma ontologia de domínio, de forma completamente independente da representação

do workflow. Para que possa ser efetuada a instanciação e a execução da representação

do workflow, foi implementado um motor de workflows baseado no método proposto.

Para facilitar o papel do solicitador (ou requester) na criação de novas representações

de workflows (ou workflow-definitions), um processo de construção semi-automático

baseado em ontologias de domínio é também proposto. O processo foi implementado

numa ferramenta de construção que permite a construção assistida, iterativa e visual

de representações de workflows.

O método de representação e o processo de construção propostos são avaliados

através de múltiplos cenários de aplicação em diferentes domínios.

v





A B S T R A C T

The growing popularity of micro-task crowdsourcing platforms has led to new ap-

proaches based on workflows of micro-tasks. Along with these new approaches, new

challenges have emerged. The unstructured nature of micro-tasks in terms of domain

representation makes it difficult for task requesters to include machine workers in the

workflow execution process. Also, the representation of these human-machine compu-

tation workflows lack the flow control components often found in traditional workflow

and business process approaches.

In this thesis, a method for the representation, construction, instantiation and execu-

tion of human-machine computation task workflows through ontologies is proposed.

The representation captures the structure and semantics of the tasks and their domain,

while remaining close to the human conceptual level. Workflows are built according to

two dimensions: the static domain dimension and the dynamic (task) dimension. This

allows the input and the output of workflows to be described according to a domain

ontology, completely independent from the workflow representation. The instantiation

and execution of the represented workflow can be performed through the implemented

workflow engine.

To aid the requester in the creation of new workflow representations (or workflow-

definitions), a semi-automatic construction process based on domain ontologies is also

proposed. The process has been implemented into a construction framework that al-

lows the aided, iterative and visual construction of workflow-definitions.

The proposed method and construction process is evaluated through several appli-

cation scenarios in different domains.

vii





C O N T E N T S

i preamble 1

1 introduction 3

1.1 Problem Statement and Motivations . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Hypothesis and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 background 11

2.1 Human Computation and the Wisdom of Crowds . . . . . . . . . . . . . . 12

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Role and Application Domains . . . . . . . . . . . . . . . . . . . . . 15

2.2 Workflows, Ontologies and the Semantic Web . . . . . . . . . . . . . . . . 17

2.2.1 Activity-based Workflows . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Ontologies and Semantics in Workflows . . . . . . . . . . . . . . . 20

2.3 Systematization of Human Computation Approaches . . . . . . . . . . . . 22

2.3.1 Entities and Relationships . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 The Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Task-oriented Approaches . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.4 Workflow-oriented Approaches . . . . . . . . . . . . . . . . . . . . 30

2.3.5 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Ontology of Task-oriented Systems . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Nature of Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Worker Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.4 Worker Assessment and Quality Control . . . . . . . . . . . . . . . 40

2.4.5 Worker Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.6 Task Creation and Configuration . . . . . . . . . . . . . . . . . . . . 41

2.4.7 Task Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.8 Task Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.9 Task Result Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ix



x contents

ii the compflow approach 49

3 approach overview 51

3.1 Static and Dynamic Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Construction of the Workflow-Definition . . . . . . . . . . . . . . . . . . . 52

3.3 Instantiation and Execution of the Workflow-Definition . . . . . . . . . . . 53

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 ontologies 55

4.1 Ontologies in Description Logics . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Definition of Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Definition of Knowledge Base . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 Interpretation of the DL Language . . . . . . . . . . . . . . . . . . . 58

4.1.4 Domain Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 The CompFlow Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.4 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.5 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 a method for the construction of workflow-definitions 71

5.1 The Workflow-Definition Ontology . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Task-Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.3 Cardinalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.4 Example No. 1: Creating Individuals . . . . . . . . . . . . . . . . . 78

5.2.5 Example No. 2: Optional Input or Output . . . . . . . . . . . . . . 79

5.2.6 Example No. 3: Concept Hierarchies . . . . . . . . . . . . . . . . . . 81

5.2.7 Example No. 4: Selecting or Filtering Individuals . . . . . . . . . . 82

5.2.8 Example No. 5: Updating Individuals . . . . . . . . . . . . . . . . . 84

5.3 Event-Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Transition-Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.3 Example No. 1: Flow Synchronization . . . . . . . . . . . . . . . . . 91



contents xi

5.4.4 Example No. 2: Flow Merge . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.5 Example No. 3: Flow Parallelization . . . . . . . . . . . . . . . . . . 92

5.4.6 Example No. 4: Flow Disjunction . . . . . . . . . . . . . . . . . . . . 92

5.4.7 Example No. 5: Flow Conditions . . . . . . . . . . . . . . . . . . . . 93

5.5 Workflow-Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.2 Dependencies on Task-Definitions . . . . . . . . . . . . . . . . . . . 96

5.5.3 Inferring Transition-Definitions from Dependencies . . . . . . . . . 97

5.5.4 Aggregation of Redundant Results . . . . . . . . . . . . . . . . . . . 98

5.5.5 Example No. 1: Aggregation of Task-Definition Results . . . . . . . 99

5.5.6 Example No. 2: Text Partition and Translation . . . . . . . . . . . . 102

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 instantiation and execution of workflow-definitions 107

6.1 Task-Definition Instantiation and Execution . . . . . . . . . . . . . . . . . . 107

6.1.1 Definition of Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.2 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Event-Definition Instantiation and Execution . . . . . . . . . . . . . . . . . 113

6.2.1 Definition of Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.2 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Transition-Definition Instantiation and Execution . . . . . . . . . . . . . . 115

6.3.1 Definition of Transition . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.2 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Workflow-Definition Instantiation and Execution . . . . . . . . . . . . . . 117

6.4.1 Definition of Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.2 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.3 Event-Driven Instantiation . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.4 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 assisted construction of workflow-definitions 129

7.1 The Layered Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.1.1 Command Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.1.2 Command Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Atomic Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



xii contents

7.2.1 The Task-Definition Context . . . . . . . . . . . . . . . . . . . . . . 134

7.2.2 The Event-Definition Context . . . . . . . . . . . . . . . . . . . . . . 143

7.2.3 The Transition-Definition Context . . . . . . . . . . . . . . . . . . . 147

7.2.4 The Workflow-Definition Context . . . . . . . . . . . . . . . . . . . 147

7.3 Pattern Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3.1 Follow-Role-CreateAndFill Pattern Commands . . . . . . . . . . . 151

7.3.2 Partition Pattern Commands . . . . . . . . . . . . . . . . . . . . . . 154

7.3.3 Assembler Pattern Commands . . . . . . . . . . . . . . . . . . . . . 158

7.3.4 Other Pattern Commands . . . . . . . . . . . . . . . . . . . . . . . . 161

7.4 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

iii postamble 163

8 evaluation and use case scenarios 165

8.1 CompFlow Construction Framework . . . . . . . . . . . . . . . . . . . . . . 165

8.1.1 Visual Workflow-Definitions . . . . . . . . . . . . . . . . . . . . . . 165

8.1.2 Construction Framework Architecture . . . . . . . . . . . . . . . . . 167

8.2 CompFlow Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.2.1 Engine Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.2.2 The Ontology Module . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.2.3 The Extensible Interface Module . . . . . . . . . . . . . . . . . . . . 171

8.2.4 The Interface Management Module . . . . . . . . . . . . . . . . . . 175

8.2.5 The Workflow and Task Modules . . . . . . . . . . . . . . . . . . . 175

8.2.6 The Job Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.2.7 External Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.3 Use Case Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.3.1 The Document Translation Scenario . . . . . . . . . . . . . . . . . . 177

8.3.2 The Ontology Alignment and Construction Scenario . . . . . . . . 185

8.3.3 The Catalan Constitution Refinement Scenario . . . . . . . . . . . . 196

8.3.4 Integration with External Projects . . . . . . . . . . . . . . . . . . . 202

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9 conclusions 205

9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

bibliography 211



L I S T O F F I G U R E S

Figure 1 Integration of the dynamic (task) dimension and the static do-

main dimension in a workflow-definition. . . . . . . . . . . . . . . 6

Figure 2 Research areas involved in the presented survey and state of the

art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 3 Workflow management layers of action . . . . . . . . . . . . . . . 18

Figure 4 Business process definition components according to the BPMN

2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 5 Relationships between the concepts Micro-Task, Task and Com-

plex Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 6 Entity relationship diagram of a common (complex) task CS and

HC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 7 Process diagram of a common (complex) task CS and HC system 26

Figure 8 Overview of the CompFlow approach . . . . . . . . . . . . . . . . 51

Figure 9 The document ontology (TBox only) with a possible example

ABox (or instantiation) . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 10 Overview of the CompFlow ontology . . . . . . . . . . . . . . . . 62

Figure 11 Actors in the CompFlow ontology . . . . . . . . . . . . . . . . . . 64

Figure 12 Abstract representation of a task according to the CompFlow

ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 13 Types of tasks in the CompFlow ontology . . . . . . . . . . . . . . 66

Figure 14 Events in the CompFlow ontology . . . . . . . . . . . . . . . . . . 67

Figure 15 Example of the operational TBox and ABox of a workflow . . . . 68

Figure 16 Transitions in the CompFlow ontology . . . . . . . . . . . . . . . . 68

Figure 17 Operational DL representation of a task-definition that creates

new individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 18 Operational DL representation of a task-definition with optional

input and output data . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 19 Operational DL representation of a task-definition with hierar-

chies of input and output concepts . . . . . . . . . . . . . . . . . . 81

Figure 20 Operational DL representation of a task-definition with a filter

operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xiii



xiv List of Figures

Figure 21 Operational DL representation of a task-definition with an up-

date operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 22 Operational DL representation of an event-definition . . . . . . . 88

Figure 23 Operational DL representation of a dependent task-definition

that filters the assignments of a previous task-definition . . . . . 100

Figure 24 Operational DL representation of a workflow-definition for par-

titioning and translating sections according to the document on-

tology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 25 Overview of the task-definition instantiation and execution pro-

cess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 26 Overview of the RunningEvent event-definition instantiation

and execution process . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 27 Overview of the transition-definition instantiation and execu-

tion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 28 Overview of the workflow-definition instantiation and execu-

tion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 29 Evolution of the operational ABox during the instantiation and

execution of T1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 30 Evolution of the operational ABox during the instantiation and

execution of T2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 31 New data in the operational ABox after the domain concept to

input concept mapping step of T3 . . . . . . . . . . . . . . . . . . 125

Figure 32 New data in the operational ABox after the unit and context

association process of T3 . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 33 New data in the operational ABox after the execution of T3 . . . 126

Figure 34 Overview of the CompFlow assisted construction process . . . . 129

Figure 35 Layered architecture of the operations in the assisted workflow-

definition construction process . . . . . . . . . . . . . . . . . . . . 130

Figure 36 Example of a workflow-definition context hierarchy . . . . . . . . 131

Figure 37 Transitions between contexts in the assisted workflow-definition

construction process . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 38 Result of the execution of a partition pattern command with

four partition steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Figure 39 Result of the execution of an assembler pattern command . . . . 159

Figure 40 The visual workflow-definition construction environment pro-

totype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



List of Figures xv

Figure 41 Implementation architecture of the CompFlow construction

framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Figure 42 Deployment-dependent and workflow-definition-dependent

concepts in the CompFlow ontology . . . . . . . . . . . . . . . . . 168

Figure 43 Implementation architecture of the CompFlow engine . . . . . . . 170

Figure 44 TaskInterface mapping example . . . . . . . . . . . . . . . . . . . . 172

Figure 45 Screenshot of the LocalWebCrowdInterface . . . . . . . . . . . . . 172

Figure 46 Overview of the document translation workflow-definition . . . . 178

Figure 47 Task-definitions in the document translation workflow-definition 178

Figure 48 Example assignment with the UI template of T2 in the document

translation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Figure 49 Example assignment with the UI template of T3 in the document

translation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Figure 50 Example assignment with the UI template of T4 in the document

translation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Figure 51 Answers to T3Q1, T3Q2, T3Q3 and T3Q4 in the document trans-

lation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Figure 52 Answers to T4Q1, T4Q2, T4Q3 and T4Q4 in the document trans-

lation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Figure 53 Overview of the ontology alignment and construction work-

flow-definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Figure 54 Additional concepts in the ontology alignment and construction

domain ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Figure 55 Task-definitions in the ontology alignment and construction

workflow-definition (part 1) . . . . . . . . . . . . . . . . . . . . . . 187

Figure 56 Task-definitions in the ontology alignment and construction

workflow-definition (part 2) . . . . . . . . . . . . . . . . . . . . . . 188

Figure 57 Assignment with the UI template of T1 in the ontology align-

ment and construction scenario . . . . . . . . . . . . . . . . . . . . 191

Figure 58 Assignment with the UI template of T2 in the ontology align-

ment and construction scenario . . . . . . . . . . . . . . . . . . . . 192

Figure 59 Assignment with the UI template of T3 in the ontology align-

ment and construction scenario . . . . . . . . . . . . . . . . . . . . 192

Figure 60 Assignment with the UI template of T4 in the ontology align-

ment and construction scenario . . . . . . . . . . . . . . . . . . . . 193

Figure 61 Overview of the Catalan constitution refinement process . . . . . 198

Figure 62 Partial TBox of the Constitute project ontology . . . . . . . . . . . 198



xvi List of Figures

Figure 63 Task-definitions in the constitution refinement workflow-defini-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Figure 64 Assignment with the UI template of T1 in the Catalan constitu-

tion refinement scenario . . . . . . . . . . . . . . . . . . . . . . . . 200

Figure 65 Assignment with the UI template of T2 in the Catalan constitu-

tion refinement scenario . . . . . . . . . . . . . . . . . . . . . . . . 201

Figure 66 Assignment with the UI template of T3 in the Catalan constitu-

tion refinement scenario . . . . . . . . . . . . . . . . . . . . . . . . 202



L I S T O F TA B L E S

Table 1 Comparison of CS systems . . . . . . . . . . . . . . . . . . . . . . . 35

Table 2 Terminologies employed by CS systems . . . . . . . . . . . . . . . 36

Table 3 Classification of CS and HC systems . . . . . . . . . . . . . . . . . 38

Table 4 Classification of CS systems according to the worker selection

dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 5 Classification of CS systems according to the worker assessment

and quality control dimension . . . . . . . . . . . . . . . . . . . . . 40

Table 6 Classification of CS systems according to the task creation and

configuration dimension . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 7 Classification of CS systems according to the task management

dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 8 Classification of CS systems according to the task execution di-

mension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 9 Classification of CS systems according to the task result aggre-

gation dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 10 Syntax rule of the employed description logic language . . . . . . 56

Table 11 Additional expressions in the ontology definition . . . . . . . . . 57

Table 12 The DL interpretation function definitions . . . . . . . . . . . . . . 59

Table 13 Additional functions for task-definitions . . . . . . . . . . . . . . . 74

Table 14 Additional functions for event-definitions . . . . . . . . . . . . . . 86

Table 15 Additional functions for transition-definitions . . . . . . . . . . . 89

Table 16 Additional functions for transitions . . . . . . . . . . . . . . . . . . 116

Table 17 Command sequence for the construction of the document trans-

lation workflow-definition . . . . . . . . . . . . . . . . . . . . . . . 179

Table 18 Distribution of workers and assignments throughout each task

in the document translation workflow . . . . . . . . . . . . . . . . 181

Table 19 Command sequence for the construction of the ontology align-

ment and construction workflow-definition (part 1) . . . . . . . . 189

Table 20 Command sequence for the construction of the ontology align-

ment and construction workflow-definition (part 2) . . . . . . . . 190

Table 21 Distribution of workers and assignments throughout each task

in the ontology alignment and construction workflow . . . . . . . 193

xvii



xviii List of Tables

Table 22 Resulting alignment between the CMT and Conference ontolo-

gies in the ontology alignment and construction workflow . . . . 194

Table 23 Reference alignment between the CMT and Conference ontolo-

gies in the ontology alignment and construction workflow . . . . 195

Table 24 T4 results in the ontology alignment and construction workflow . 197



L I S T O F A L G O R I T H M S

Algorithm 1 The assignment aggregation task-definition automatic construc-

tion process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Algorithm 2 The domain concept to input concept mapping process in the

task-definition instantiation. . . . . . . . . . . . . . . . . . . . . . . 110

Algorithm 3 The unit association process in the task-definition instantiation. . 111

Algorithm 4 The context association process in the task-definition instantiation.111

Algorithm 5 The assignment cloning process in the task-definition instantiation.112

Algorithm 6 Suggestion of Create-Input-Concept commands in a task-defini-

tion context: sub-set no. 1. . . . . . . . . . . . . . . . . . . . . . . . 135

Algorithm 7 Suggestion of Create-Input-Concept commands in a task-defini-

tion context: sub-set no. 2. . . . . . . . . . . . . . . . . . . . . . . . 136

Algorithm 8 Suggestion of Create-Input-Concept commands in a task-defini-

tion context: sub-set no. 3. . . . . . . . . . . . . . . . . . . . . . . . 136

Algorithm 9 Suggestion of Create-Input-Concept commands in a task-defini-

tion context: sub-set no. 4. . . . . . . . . . . . . . . . . . . . . . . . 136

Algorithm 10 Suggestion of Create-Input-Concept commands in a task-defini-

tion context: sub-set no. 5. . . . . . . . . . . . . . . . . . . . . . . . 137

Algorithm 11 Suggestion of Create-Input-Concept commands in a task-defini-

tion context: sub-set no. 6. . . . . . . . . . . . . . . . . . . . . . . . 137

Algorithm 12 Suggestion of Create-Output-Concept commands in a task-def-

inition context: sub-set no. 1. . . . . . . . . . . . . . . . . . . . . . 139

Algorithm 13 Suggestion of Create-Output-Concept commands in a task-def-

inition context: sub-set no. 2. . . . . . . . . . . . . . . . . . . . . . 139

Algorithm 14 Suggestion of Create-Output-Concept commands in a task-def-

inition context: sub-set no. 3. . . . . . . . . . . . . . . . . . . . . . 140

Algorithm 15 Suggestion of Create-Relation commands in a task-definition

context: sub-set no. 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xix



xx List of Algorithms

Algorithm 16 Suggestion of Create-Relation commands in a task-definition

context: sub-set no. 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Algorithm 17 Suggestion of Create-Internal-Dependency commands in a task-

definition context: sub-set no. 1. . . . . . . . . . . . . . . . . . . . . 142

Algorithm 18 Suggestion of Create-Internal-Dependency commands in a task-

definition context: sub-set no. 2. . . . . . . . . . . . . . . . . . . . . 142

Algorithm 19 Suggestion of Create-External-Dependency commands in a task-

definition context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Algorithm 20 Suggestion of Create-Input-Concept commands in an event-def-

inition context: sub-set no. 1. . . . . . . . . . . . . . . . . . . . . . 144

Algorithm 21 Suggestion of Create-Input-Concept commands in an event-def-

inition context: sub-set no. 2. . . . . . . . . . . . . . . . . . . . . . 145

Algorithm 22 Suggestion of Create-Input-Concept commands in an event-def-

inition context: sub-set no. 3. . . . . . . . . . . . . . . . . . . . . . 145

Algorithm 23 Suggestion of Create-Relation commands in an event-definition

context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Algorithm 24 Suggestion of Create-Internal-Dependency commands in an

event-definition context. . . . . . . . . . . . . . . . . . . . . . . . . 147

Algorithm 25 Suggestion of Create-Transition-Definition commands in a work-

flow-definition context: sub-set 1. . . . . . . . . . . . . . . . . . . . 149

Algorithm 26 Suggestion of Create-Transition-Definition commands in a work-

flow-definition context: sub-set 2. . . . . . . . . . . . . . . . . . . . 150

Algorithm 27 Execution of a Follow-Role-CreateAndFill pattern command in

a workflow-definition context. . . . . . . . . . . . . . . . . . . . . . 152

Algorithm 28 Suggestion of Follow-Role-CreateAndFill pattern commands in

a workflow-definition context. . . . . . . . . . . . . . . . . . . . . . 153

Algorithm 29 Execution of a partition pattern command in a workflow-defini-

tion context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Algorithm 30 Suggestion of partition pattern commands in a workflow-defini-

tion context: lexical verification. . . . . . . . . . . . . . . . . . . . . 156

Algorithm 31 Suggestion of partition pattern commands in a workflow-defini-

tion context: lexical and structural verification. . . . . . . . . . . . 157



List of Algorithms xxi

Algorithm 32 Execution of an assembler pattern command in a workflow-def-

inition context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Algorithm 33 Usage example of the Freemarker template engine data structure. 173

Algorithm 34 Usage example of the JavaScript data structure with the jQuery

API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174



A C R O N Y M S

ABox Assertion Box

API Application Programming Interface

AnBox Annotation Box

BDO Business Domain Ontology

BOWL Business-OWL

BPDM Business Process Definition Meta-model

BPMI Business Process Management Initiative

BPMN Business Process Modelling Notation

BPMNO Business Process Modelling Notation Ontology

BPMO Business Process Modelling Ontology

BPQL Business Process Query Language

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans

Apart

CML CrowdFlower Markup Language

CMT Conference Management Toolkit

CRUD Create, Read, Update, Delete

CS Crowdsourcing

CSV Comma Separated Values

DL Description Logics

DoCO Document Components Ontology

DOM Document Object Model

DynEaaS Dynamic Evaluation as a Service

EDOAL Expressive and Declarative Ontology Alignment Language

GUI Graphical User Interface

HC Human Computation

xxii



acronyms xxiii

HIT Human Intelligence Task

HTML Hyper-Text Markup Language

IP Internet Protocol

JAR Java ARchive

KB Knowledge Base

LOD Linked Open Data

OAEI Ontology Alignment Evaluation Initiative

OASIS Organization for the Advancement of Structured Information Standards

OWL Web Ontology Language

OWL-S OWL Semantic Markup for Web Services

OWL-T OWL Task

OWLIM OWL In Memory

RBox Role Box

REST REpresentational State Transfer

RMIT Royal Melbourne Institute of Technology

SBO Semantic Bridge Ontology

SDB SPARQL Database

TBox Terminological Box or Taxonomy

TDB Tuple Database

UI User Interface

UML Unified Modelling Language

W3C World Wide Web Consortium

WfMC Workflow Management Coalition

WS-BPEL Web Services Business Process Execution Language

XPDL XML Process Definition Language

YAWL Yet Another Workflow Language





Part I

P R E A M B L E





1
I N T R O D U C T I O N

Over the last decade, human computation has re-emerged as a relevant research field

and as a form of collective intelligence. A relatively recent and popular form of hu-

man computation is micro-task crowdsourcing [23], which consists in assembling really

small tasks and distributing them through a crowd of workers.

Several experiments in different domains have shown that micro-task crowdsourcing

has great potential for solving large scale problems that are often difficult for comput-

ers to solve automatically, on their own [76]. These problems usually require a degree

of creativity or just common sense plus some background knowledge [8, 67].

More recently, a special interest in employing crowdsourcing towards solving com-

plex tasks has emerged [1, 27, 32, 37, 39, 62]. Following the trend of the current crowd-

sourcing platforms, which feature the execution of single micro-tasks, this interest has

led to the emergence of new approaches built upon workflows of micro-tasks. The

modelling of such workflows allows the crowdsourcing of a new kind of more com-

plex tasks, which require the ordered and controlled execution of multiple types of

micro-tasks.

Micro-task workflows present new challenges at different dimensions of the human-

machine computation process. These challenges include micro-task specification in

a way understandable to both human and machine workers, control of the micro-

task flow, selection and assessment of worker performance, quality control, visual-

ization, and reporting [1, 27]. While some of these challenges can be tackled through

adapted solutions found in traditional workflow approaches (e. g. business processes

and web service composition), others are specific to human-machine computation en-

vironments.

1.1 problem statement and motivations

While some of the micro-tasks in a workflow are better performed by humans, others

are better performed by a machine [35]. Besides their focus on exclusively human

groups of workers, current micro-task workflow and non-workflow approaches rely

3



4 introduction

on unstructured (e. g. in natural language) or lightly structured (e. g. in the form of

spreadsheets) input and output data. Furthermore, micro-task interfaces are built using

mark-up languages that contain little or no meta-data. The unstructured nature of

micro-tasks in terms of domain representation, therefore, makes it difficult for task

requesters to include machine workers in the workflow execution process [59].

As shown from the recent developments in traditional workflow approaches and

business process management, there is also a need for semantically-enriched repre-

sentations of workflows and tasks that are shareable, extensible and allow the easy

integration and assembly of different workflows and tasks [47, 49, 55]. However, al-

though the dynamic (e. g. activities and tasks) and static (e. g. data objects) dimensions

involved in workflows are conceptually entwined, the current approaches result in

mostly separate and distinct representations for each of these dimensions.

In a broad sense, human-machine micro-task workflow challenges can be character-

ized in terms of four dimensions: (i) representation, (ii) human-machine interaction,

(iii) quality control and (iv) management. Of particular interest, in the context of this

thesis, are the challenges presented in:

• The representation of micro-task workflows (i), namely:

– Full structure and semantics of the operations, input, and output of micro-

tasks;

– Partitioning and establishing different granularities for micro-tasks;

– Controlling the flow of micro-tasks;

– Achieving understandable and interpretable representations for both hu-

mans and machines;

– Fully integrating the dynamic and the static domain dimensions;

– Providing flexible, extensible and shareable representations;

• Human-machine interaction (ii), namely:

– Specifying worker selection requirements for different phases of the work-

flow;

– Identifying workers and requesting their participation in multiple micro-

tasks;

– Providing relevant contextual information.



1.2 hypothesis and objectives 5

1.2 hypothesis and objectives

Several research issues were raised in the context of micro-task workflows in human-

machine environments. This thesis, however, focuses on the particular aspects of rep-

resentation, construction and execution of micro-task workflows with an emphasis on

human-machine interaction. The overarching goal and hypothesis is therefore to inves-

tigate if:

Workflows of micro-tasks can be represented and semi-automatically built through a formal

and seamless full integration of semantically-enriched dynamic and static domain dimensions,

in such a way that they are interpretable and executable by both human and machine actors in

a human-machine execution environment.

This hypothesis raises several research questions and establishes multiple require-

ments.

research question no.1 : Can the structure and semantics of micro-tasks and micro-

task workflows be fully represented in terms of their dynamic and static domain dimensions?

Current micro-task representations lack the ability to properly describe the seman-

tics of the operations and their full domain of impact. This mostly occurs because

of the reduced complexity of opting for disconnected and partial input and output

representations.

In this sense, one of the objectives is to devise a method that allows the formal

representation of micro-task workflows through a seamless integration of both the

dynamic (task) dimension and the static domain dimension, as depicted in Figure 1.

More precisely, abstract structures in the dynamic dimension are associated with a

particular domain of knowledge (given by the static domain dimension) through a

new conceptualization that becomes the workflow-definition (i. e. the representation of

the workflow). The method must:

• Fully represent the structure and the semantics of Create, Read, Update, Delete

(CRUD) micro-task operations, avoiding the need for specific implementations for

each task;

• Fully represent the structure and the semantics of micro-task input and output

data;



6 introduction

Task

Assignment

Unit

Response

D
o

cu
m

en
t

P
ar

ag
ra

p
h

Te
xt

Se
n

te
n

ce

Review

Dynamic (Task)
Dimension

Workflow-Definition
(Workflow Representation or Specification)

Static Domain
Dimension

TranslatedText

Translation

OriginalText

Figure 1: Integration of the dynamic (task) dimension and the static domain dimension in a
workflow-definition.

• Provide an expressive mechanism for the representation of transitions (similar to

those found in traditional business process approaches).

Overall, the proposed method must satisfy the overall requirements established for

traditional workflow representations and provide a full semantic and structural rep-

resentation of the micro-task operations, which is both interpretable by machines and

close to the human conceptual level.

Another objective is to formally establish the automatic or semi-automatic instan-

tiation and execution of workflow-definitions, by following the rules and semantics

established by the proposed representation and construction method.

The proposed representation and construction method, along with all instantiation

and execution processes, will be evaluated through the implementation of a workflow-

definition instantiation and execution engine.

research question no.2 : Is there a way to incrementally build the micro-task work-

flow dynamic dimension based on the static domain dimension?

Since the full representation of the dynamic and static nature of micro-tasks and

micro-task workflows will most likely increase the complexity of manually construct-

ing new workflow-definitions, new approaches that aid the requester and the creators

of the workflow-definition are required.

The main objective is the definition of a process that facilitates (or assists in) the

construction of workflow-definitions. More precisely, the process must:



1.2 hypothesis and objectives 7

• Focus on the iterative and assisted creation of the workflow-definition through

an existing domain representation (the static domain dimension);

• Automate the construction process while still providing a high level of control to

the creator of the workflow-definition;

• Provide a flexible approach to the construction of workflow-definitions that can

be adapted to particular domains.

To evaluate the proposed construction process, a workflow-definition construction

framework will be implemented.

research question no.3 : Can a workflow of micro-tasks, and the involved actors and

interfaces, be represented through an unique and platform-independent representation mecha-

nism, understandable and interpretable to both humans and machines?

Both traditional workflow approaches and human-machine computation approaches

have already established several requirements regarding the integration of computa-

tional efforts between humans and machines. However, the lack of semantics and the

use of different representation mechanisms for the domain data and the workflow

structure (the latter often with structurally and semantically weak relationships to the

first), has led to several approaches that either tend to be far from the human concep-

tual level or too unstructured (far from being interpretable by machines).

From this research question, the following objectives regarding the micro-task and

micro-task workflow representations are established:

• They must be shareable and extensible;

• They must be close to the human conceptual level, while retaining the necessary

characteristics that make them interpretable and understood by machines;

• They must allow an expressive representation of the workers involved on each

micro-task;

• They must allow an expressive representation of the interfaces that deliver the

micro-tasks to each worker.

The implementation of both the instantiation and execution engine, along with the

implementation of the construction framework, will provide relevant data for the as-

sessment of this research question. Furthermore, several experiments in different sce-

narios will be conducted using these implementations.



8 introduction

1.3 approach

As stated by Obrst et al. [52], ontologies “represent the best answer to the demand

for intelligent systems that operate closer to the human conceptual level”. Domain

ontologies are not only able to describe the domain knowledge, but also to describe

micro-task workflows and the data flowing through them in a way understandable

to both humans and machines. Furthermore, ontologies are flexible, extensible and

shareable representations of knowledge.

The growing popularity of ontologies in the context of the Linked Open Data (LOD)

and the Semantic Web has led to the emergence of multiple ontologies in several dif-

ferent domains. These ontologies are mostly used to establish a consensus about a

particular domain of knowledge and can be used in different application scenarios

such as the integration and alignment of enterprise data [2, 46]. The structure and se-

mantics found in domain ontologies can also be used to represent the data involved in

the execution of micro-task workflows, i. e. to represent the static domain dimension.

In this sense, the use of Description Logics (DL) ontologies is proposed for the rep-

resentation of workflows. Each workflow-definition is an ontology that seamlessly in-

tegrates the dynamic and static domain dimensions. Micro-tasks are defined as exten-

sions of the static domain dimension that provide a full representation of the data

involved in the micro-task.

The extensible nature of ontologies allows the static domain dimension to be re-

used in several workflow-definitions. Also, the wide set of domain ontologies found

throughout the Web can be used to iteratively build new workflow-definitions.

1.4 outline

The defined objectives of this thesis are addressed throughout the document, which is

structured as follows:

• Part I (Preamble):

– Chapter 1 (the current chapter) outlines the work presented in this thesis

document, along with the motivations and research questions;

– Chapter 2 presents an analysis of the current state of the art, identifying

challenges regarding human-computation systems, micro-task and work-

flow representations for human-machine computation;



1.4 outline 9

• Part II (The CompFlow Approach):

– Chapter 3 provides an overview of the proposed approach, entitled

CompFlow;

– Chapter 4 introduces DL ontologies and their role in the CompFlow ap-

proach;

– Chapter 5 describes the proposed method for building workflow-definitions;

– Chapter 6 formally defines the workflow-definition instantiation and execu-

tion process;

– Chapter 7 introduces the semi-automatic iterative workflow-definition con-

struction process based on the previously described method;

• Part III (Postamble):

– Chapter 8 provides a description of the implemented workflow construc-

tion, instantiation and execution environment, along with three evaluation

scenarios;

– Chapter 9 presents the conclusions, which include a summary of the contri-

butions, a discussion of the obtained results, and future work directions.





2
B A C K G R O U N D

Since the advent of artificial intelligence, researchers have been trying to create ma-

chines that emulate human behaviour. This has led to multiple branches of artificial

intelligence such as multi-agent systems, reasoning and negotiation. Back in the 1960s

however, Licklider [35] believed that machines and computers were just part of a scale

which weights humans on one side, and machines on the other. His vision was that

machines and humans should work together performing complementary roles [35, 59].

It was only recently that relevant research emerged and brought humans into ma-

chine affairs. The early contributors to this retake on Lickliders’ vision might as well

be the social Web and the harnessing of collective intelligence [19]. These proved that

humans have great complementary abilities that are relative to machines, and that they

can act as guided computational units.

As a part of collective intelligence [59], human computation [76] re-emerged as a

relevant research field. Shortly after, the term crowdsourcing was coined [23], leading

to yet another field of research that is highly connected to human computation.

After almost one decade of active research into human computation and crowdsourc-

ing, several approaches and business models based on crowdsourcing have emerged,

managing and distributing work to the crowd [11, 59, 79]. In this sense, crowdsourc-

ing (currently the most popularized term) can be seen from two different perspectives:

a business domain-specific perspective, and a technical domain-independent perspec-

tive.

Regardless of the research and development perspective, the application of human-

machine computation to several domains is spreading. Alongside emerges a special

interest in employing crowdsourcing towards solving more complex tasks, which estab-

lish requirements regarding the representation of tasks that cannot be satisfied through

single and independent micro-tasks. This interest has led to several approaches being

built upon workflows of micro-tasks [1, 27, 32, 37, 39, 62].

As depicted in Figure 2, this chapter presents a survey of crowdsourcing human

computation systems from a technical domain-independent perspective, with a focus

on solving micro-tasks and complex tasks. Since an emphasis is given to workflows

11



12 background

Human Computation Crowdsourcing

Workflow Systems

Figure 2: Research areas involved in the presented survey and state of the art. The analysed
systems belong to the gray area.

of micro-tasks, an overview of workflow representation approaches is also given. First,

a discussion of the concepts of collective intelligence, human-machine computation

and crowdsourcing is presented, along with their role and applications in several dif-

ferent domains. Afterwards, an overview of workflow representation approaches is

presented, followed by a detailed analysis of several micro-task and workflow-based

crowdsourcing systems. This analysis is given according to scientific publications and

the empirical analysis of the respective online system, if available. Finally, a systemati-

zation of the micro-task and complex task crowdsourcing systems along with current

challenges is presented.

2.1 human computation and the wisdom of crowds

Humans are innately social and the intrinsic aspects of human cooperation have been

the subjects of great research efforts [58]. Humans not only tend to form a clustered

structure of relationships (social circle), but also extract individual benefits from them

[34]. Social circles have a great impact on our lives, influencing our ideas and behaviour

[31]. Not so long ago, the information that a person had access to was mostly the

information flowing inside his/her social circle. Nowadays, our social circle also acts

as a filter for all the vast amounts of information and choices delivered to us every day

[45] by other means (e. g. social media, internet).

The emergence of the social Web has brought new powerful Web applications that

connect people on a global scale, and allow them to reap the benefits of social life

from online virtual environments in a global scale. Along with their huge popularity,

online social networks allow the retrieval of significant amounts of important social

data, which can be used to promote social benefits [34].

One of the most straightforward benefits we extract from society comes from asking

our friends for an opinion or advice [45]. It is possible to apply a similar mechanism to



2.1 human computation and the wisdom of crowds 13

online social networks by automatically filtering data, and providing the user with rel-

evant and personalized results according to the opinions coming from his/her online

social circle. The difference is that, unlike humans alone, the introduction of machines

allows that procedure to be performed for millions of items, covering a wide social

circle.

Online social networks also destroy geographical barriers, thus promoting the combi-

nation of behaviours and ideas on a global scale [58]. This combination is often referred

to as collective intelligence [38].

An interesting example of the importance of collective intelligence is what Porter [58]

regards as the Amazon Effect. To explain the Amazon Effect, he describes a usability

study where people were asked to buy a product at a certain online store. A lot of

people wanted to go to Amazon first, and when they were asked why, they answered

that they would like to do some research on the product, even if they were not buying

it on Amazon.

2.1.1 Definitions

Brabham [5] follows Surowieckis’ [70] view on the wisdom of crowds (often referred

to in the context of the Web as collective intelligence), which states that it emerges

from aggregating individual solutions, instead of averaging them (as in the case of

Amazons’ review system). This view is particularly relevant in the context of problem

solving, where aggregating individual solutions often leads to a better solution than

any of the best originally proposed individual solutions. Following this view, Brabham

argues that crowdsourcing is a model achieved through the Web that is “capable of ag-

gregating talent, leveraging ingenuity while reducing costs and time formerly needed

to solve problems”.

Crowdsourcing is a term popularized by Howe [23, 24] that emerged in the context

of a paradigm shift in business models. This shift originated from companies that

started to provide outsourcing services relying on anonymous communities or crowds

throughout the Web (e. g. iStockPhoto1, InnoCentive2 and Amazons’ Mechanical Turk3).

By 2006, these communities were growing into incredible valuable work forces capable

of performing several specific tasks in exchange for small monetary rewards.

1http://www.istockphoto.com
2http://www.innocentive.com
3https://www.mturk.com

http://www.istockphoto.com
http://www.innocentive.com
https://www.mturk.com


14 background

Since then, several similar definitions for the term crowdsourcing have been given.

According to Howe [24], “crowdsourcing is the act of taking a task traditionally per-

formed by a designated agent (such as an employee or a contractor) and outsourcing

it by making an open call to an undefined but large group of people”. Doan et al.

[11] define crowdsourcing as a system that “enlists a crowd of humans to help solve a

problem defined by the system owners, and if in doing so, it addresses” the challenges

of recruiting and retaining users, defining which contributions can be made by users,

combining these contributions and evaluating user performance.

Quinn and Bederson [59] not only provide a definition for crowdsourcing, but also

compare it to terms such as human computation, social computing and collective in-

telligence. They aggregate several definitions found in literature and state that crowd-

sourcing is a form of collective intelligence that overlaps human computation.

The term human computation dates back to the early years of artificial intelligence,

in the 1960s, where it was envisioned that machines and humans should work together

performing complementary roles [35, 59]. Still, the vision of human-machine collabora-

tion only started to be properly explored after 2005, the year Von Ahn [76] published

his doctoral thesis entitled Human Computation. Von Ahn [76] proposes the use of

human algorithm games to harness the distributed processing power of humans to

perform specific tasks. In accordance, human computation can be defined as a compu-

tational process that involves humans and their cooperation in order to solve problems

that computers cannot yet solve [59]. This definition is complemented by stating that

“human computation does not encompass online discussions or creative projects where

the initiative and flow of activity are directed primarily by the participants’ inspiration,

as opposed to a predetermined plan designed to solve a computational problem”.

Quinn and Bederson [59] argue that while human computation requires humans

to act as managed units that merely perform a computation, crowdsourcing requires

several humans to cooperate in a process by performing a computation or a creative

task that is not always managed by computers (e. g. Wikipedia).

Crowds have an important role in human computation. Besides providing good

amounts of computational power, applicable in tasks that machines can barely solve

with efficiency and efficacy, they can also be used for redundancy.

With the evolution and absorption of crowdsourcing and human computation into

market-places and businesses, it can be observed that while Human Computation (HC)

is a term that is mostly used by the scientific community, Crowdsourcing (CS) is a term

highly employed in the business world.



2.1 human computation and the wisdom of crowds 15

2.1.2 Role and Application Domains

Several experiments in different domains have shown that CS and HC have great po-

tential for solving large-scale problems that are often difficult for computers to solve

automatically, on their own [76]. These problems usually require a degree of creativity

or just common sense plus some background knowledge [8, 67]. The interpretation

and recognition of images and natural language are two examples of these kinds of

problems.

One of the applications of CS lies in harnessing geographical information. Recently,

the production of geo-referenced data, maps, and atlases has moved from mapping

agencies and corporations to non-expert users [18]. Some of the services that allow

this include Flickr, Googles’ MyMaps, OpenStreetMap, and Wikimapia. Following this

trend, Goodchild and Glennon [18] discuss the applications of CS to the harnessing

of geographical information for disaster response. They argue about the importance

of quality in harnessing geographical information and present an analysis of non-

expert user generated geographical information from occurrences of wildfires in Santa

Barbara, California. Although further research is needed, there is great potential for

quickly generating and spreading disaster-related information through a CS system.

The potential and importance of CS in harnessing geographical information has also

been successfully noted and put into practice by Safecast4, a project that emerged one

week after the earthquake that led to the Fukushima Japanese nuclear accident. Safe-

cast is a “global sensor network for collecting and sharing radiation measurements to

empower people with data about their environments”. In order to collect data, differ-

ent types of radiation sensors are distributed through volunteers that later use them

to collect geo-referenced radiation measurements during their travels. The results are

collected and published by Safecast, which provides free access to the data.

Several CS-based businesses have emerged since the advent of CS platforms. While

some maintain their own community of workers (e. g. MicroWorkers5, ShortTask6), oth-

ers interact with one or more CS platforms (e. g. CrowdFlower7) offering their services

in designing and managing projects and tasks, and obtaining reliable results. Brabham

[5] discusses several successful applications of CS as business models, which include

Threadless, InnoCentive, and iStockPhoto. Threadless crowdsources the design pro-

cess of t-shirts by promoting online competition. InnoCentive has a different focus, as

4http://blog.safecast.org/
5https://microworkers.com
6http://www.shorttask.com
7http://crowdflower.com

http://blog.safecast.org/
https://microworkers.com
http://www.shorttask.com
http://crowdflower.com


16 background

it crowdsources the research and development of scientific problems as challenges. The

last, iStockPhoto, sells photographs, animation, and video clips produced by its crowd

of artists. Interestingly, surveys of the iStockPhoto crowd show that the main motiva-

tions behind their time and effort are not only monetary but also enjoyment and the

development of individual skills [6].

In 2010, Dawson and Alexandrov published a diagram depicting the landscape of

CS8. They distinguish CS systems through thirteen categories, enumerating several do-

mains where CS has been applied. The presented categories are: crowdsourcing ag-

gregators (e. g. CrowdFlower), content markets (e. g. iStockPhoto), prediction markets

(e. g. Crowdcast), question answering (e. g. Yahoo! Answers), innovation prizes (e. g.

XPrize), service marketplaces (e. g. Freelancer), distributed innovation (e. g. InnoCen-

tive), crowdfunding (e. g. KickStarter), competition platforms (e. g. 99 Designs), content-

rating (e. g. Delicious), idea platforms (e. g. IdeaScale), data sharing (e. g. Dead Cell-

zones), reference content (e. g. Wikipedia), cycle sharing (e. g. SETI@Home) and micro-

tasks (e. g. Mechanical Turk and ShortTask). Among the application domains featured

by these CS systems are business ideas, 3D and graphic design, data analysis, research,

tagging, translation, writing and editing, reviewing and software development.

From all the CS systems and common types of CS tasks enumerated by Dawson

and Alexandrov, only some qualify as HC systems. This is the case for CS systems

under the micro-tasks category. However, although CS systems like Mechanical Turk

and ShortTask provide a platform for building any type of tasks, some specific types

of tasks have become widely popular for being particularly adequate for micro-task

representation, and for being easily accepted by workers. These specific types of tasks

are often (as presented in CloudCrowd9) writing, editing, categorization, searching,

data entry and translation tasks.

In this sense, most CS micro-task systems feature the creation of task templates that

can be used to request multiple similar tasks. These systems often provide a prede-

fined set of templates for commonly requested types of tasks. Some of the predefined

templates provided by Mechanical Turk and ShortTask include:

• Categorization and classification;

• Data verification (e. g. provide the correct spelling);

• Data extraction (e. g. finding a website address);

8http://crowdsourcingresults.com/competition-platforms/crowdsourcing-landscape-discussion
9http://www.cloudcrowd.com

http://crowdsourcingresults.com/competition-platforms/crowdsourcing-landscape-discussion
http://www.cloudcrowd.com


2.2 workflows , ontologies and the semantic web 17

• Moderation and tagging of multimedia content (e. g. tagging images or videos

with adult content);

• Transcription from multimedia content (e. g. audio, video and images);

• Sentiment analysis and surveys;

• Search relevance (e. g. evaluate the relevance of search results).

Around these CS systems that manage their own community of workers, CS-oriented

businesses have started to emerge. Although these businesses tend to provide services

with a tendency towards solving complex tasks, they still share many similarities with

common CS micro-task system templates. For instance, MobileWorks10, a CS-oriented

company, groups its services into categories such as digitalization of documents, cate-

gorization and classification, researching, and harnessing feedback (e. g. through sur-

veys).

Some of these application domains can be easily modelled and managed with single

and independent CS micro-tasks. Recently, however, a special interest in employing CS

towards solving more complex tasks has emerged [1, 27, 32, 37, 39, 62]. This interest

has led to several approaches being built upon workflows of micro-tasks.

2.2 workflows , ontologies and the semantic web

Workflow approaches are often a typical manifestation of human-machine computa-

tion, where humans are guided to act as computational units and their efforts are

integrated with the effort of machine algorithms and routines.

The Workflow Management Coalition (WfMC) defines a workflow as “the automation

of a business process, in whole or part, during which documents, information or tasks

are passed from one participant to another for action, according to a set of procedural

rules” [33, 75]. Similar definitions describe a workflow as “a collection of tasks organ-

ised to accomplish some business process” [50] and even as a process that “supports

the coordination and collaboration of people that implement a process” [17].

A common classification of workflows (or business processes) fits them into three

different categories: material processes, information processes and business processes

[17]. Material processes represent human tasks that are rooted in the physical world.

Information processes relate to automated or partially automated tasks (performed

by humans and machines). Finally, business processes represent business activities

10https://www.mobileworks.com

https://www.mobileworks.com


18 background

implemented as material or information processes. Notice that information processes,

in particular but not exclusively, fit into the description of human computation since

they can be guided by machines and seen as multiple small human computation steps.

2.2.1 Activity-based Workflows

Workflow and workflow management approaches can be classified as communication-

based (modelling the communication steps and commitments between humans), activ-

ity-based (modelling work) and hybrid (those that can be classified into both the for-

mer categories) [50]. In the context of this work, the focus is given to activity-based

approaches since they are closely related to CS workflows.

Extensive studies and surveys have been published regarding activity-based work-

flows and business processes [17, 29, 50, 75]. Georgakopoulos et al. [17] describe the

workflow management process as involving three main layers of action analogous to

those presented in Figure 3. The layers of action are (1) process conceptualization, (2)

workflow specification and (3) workflow implementation.

The conceptualization of a workflow or process (1) is the act of analyzing a particular

domain and understanding the inherent workflow at the conceptual level. The work-

flow specification (2) consists in the representation of the workflow through a model

or specification language. The resulting workflow-definition is the structured and con-

crete specification of the process. Finally, the implementation (3) is the act of creating

and executing a workflow according to a particular workflow-definition.

Following (more or less) this definition and management layers of action, a variety

of ways to formal and informal workflow representations have been approached so

far. These include the representation of workflows through Petri nets and high-level

Petri nets [73, 72], event-driven process chains [66], Unified Modelling Language (UML)

activity diagrams [12] and, lately, workflow patterns [61]. While event-driven process

chains and UML activity diagrams share many similarities to Petri nets and usually

depend on a representation language, the workflow pattern approach is closer to the

1. Process
(Conceptual Level)

2. Workflow-Definition
(Model Level)

3. Workflow (Instantiation and 
Execution Level)

specification

implementation

Figure 3: Workflow management layers of action.



2.2 workflows , ontologies and the semantic web 19

conceptual level, focusing on the structural and semantic aspects of workflows. This

latter approach emerged from the necessity to deal with the diversity of languages for

workflow-definitions [13].

In terms of representation and execution standards, several approaches have been

developed by consortia such as the WfMC, the Business Process Management Initiative

(BPMI), the Organization for the Advancement of Structured Information Standards

(OASIS) and the World Wide Web Consortium (W3C). Overall, they are classified into

four different categories [29]:

• Graphical standards - allow the visual representation of business processes with

diagrams;

• Execution standards - represent the deployment and automation of business pro-

cesses;

• Interchange standards - facilitate the portability of business process definitions;

• Diagnosis standards - provide administrative and monitoring capabilities.

Amongst graphical standards are the UML and the Business Process Modelling No-

tation (BPMN). The BPMN, in particular, has been proposed by the BPMI and establishes

a set of components and a notation for the representation of business processes (see

Figure 4). According to the BPMN 2.0, the main workflow components are events, ac-

tivities (representing tasks and processes) and gateways (control the flow convergence

and divergence). They are connected through flow control components and usually fit

into swimlanes. Swimlanes organize flow objects and may represent the set (role) of

participants that must perform the contained set of activities.

Languages such as the Business Process Definition Meta-model (BPDM) and the XML

Process Definition Language (XPDL) are able to represent business processes using the

BPMN.

The Web Services Business Process Execution Language (WS-BPEL) has been pro-

posed by OASIS as a workflow execution standard. The WS-BPEL is a Web service compo-

sition language that describes interactions between a given service and its environment

as a composition of communication actions [53]. Alternatively, Yet Another Workflow

Language (YAWL) [74] is an academic execution standard based on Petri nets with

formal semantics that focuses on the representation of workflows. YAWL follows a

pattern-based approach, including several control flow patterns (some analogous to

the components present in the BPMN) classified into six different categories: basic con-

trol flow patterns, structural patterns, state-based patterns, advanced branching and

synchronization patterns, cancellation patterns and multiple instance patterns.



20 background

Artifacts and DataSwimlanesFlow ControlFlow Objects

Activity

Gateway

Message

Sequence

Association P
O

O
L LA

N
E

LA
N

E

Event

Data Association

P
O

O
L Group

Text Annotation

Data Object

Data Store

Figure 4: Business process definition components according to the BPMN 2.0.

In order to interchange workflows, standards such as the BPDM and the XPDL [13] are

available. In terms of diagnosis, there are standards such as the Business Process Query

Language (BPQL). The BPQL is a real-time language for querying business process in-

stances that provides an infrastructure for the execution and deployment of business

processes.

Despite the amount of different approaches to activity-based workflows (or business

processes), standards and representations tend to rely on the same conceptual view of

a workflow.

2.2.2 Ontologies and Semantics in Workflows

As mentioned by Ko et al. [30], current standards are not able to describe the seman-

tics of how tasks are linked, how they can be decomposed, their relationships to busi-

ness documents or domain data, and which actors may participate in tasks. These

drawbacks can all be tackled through the use of ontologies for the representation of

workflow definitions.

The use of ontologies in workflow specifications emerged along with the growing

popularity of the semantic Web and the migration of multiple services to the cloud.

Consequently, several approaches that regard tasks as semantic Web service operations

have emerged.

Semantic Web services provide an “agent-independent declarative API capturing

the data and metadata associated with a service together with specifications of its

properties and capabilities, the interface for its execution, and the prerequisites and



2.2 workflows , ontologies and the semantic web 21

consequences of its use” [49]. Since semantic Web services are described using ontolo-

gies or an ontology-based language, their description shares the common properties

of ontologies to facilitate sharing, re-use, composition and mapping. This enables the

integration of automated agents in the processes of service discovery, execution, com-

position, interoperation, orchestration and choreographies [49, 10].

Several ontologies have been proposed to satisfy the demand for semantic Web ser-

vice representations [55]. One of the most popular is the OWL Semantic Markup for

Web Services (OWL-S). OWL-S is based on the Web Ontology Language (OWL) and de-

scribes Web services in terms of their profiles (what they do), model (how they work)

and groundings (how they can be accessed) [47].

Another approach is that of Di Francescomarino et al. [10], which propose the use

of semantic annotations on top of already existing business process specifications. The

workflow representation is formalized as business process knowledge base through

two ontologies: the Business Process Modelling Notation Ontology (BPMNO) and the

Business Domain Ontology (BDO). The BPMNO provides a structural formalization of

the BPMN. The BDO represents any domain ontology describing the typical operations

found in a particular domain of knowledge. Additional constraints, that establish the

correspondences between the two ontologies, are also part of the business process

knowledge base. The aim is not the execution of workflows, but to allow formal and

automated reasoning on top of the elements of business processes (e. g. checking for

consistency violations and building domain-specific queries).

Natschläger [51] propose an ontology that provides a thorough representation of the

BPMN 2.0 specification. Although it can be easily extended, due to the inherent features

of ontologies, it is intended for the representation of workflows through individuals of

the defined concepts. I.e., the concrete representations of workflows are typically found

at the instance level, instead of at the model/ontological level. Since it provides a con-

ceptual view of the BPMN 2.0 specification, it also “allows a much faster understanding

of BPMN”.

Cabral et al. [7] propose the use of the Business Process Modelling Ontology (BPMO)

in order to represent workflows. The ontology captures domain-independent aspects

and provides a set of concepts and roles inspired on standards such as the BPMN and

the WS-BPEL.

Notice that the BPMO focuses on pure domain-independent aspects and does not in-

tegrate the semantics of the domain into the representation. Capturing these semantics



22 background

seamlessly remains a complex achievement. The Business-OWL (BOWL) [30], however,

provides some inspiration towards capturing these semantics.

The BOWL is an ontology for the representation of hierarchical task networks that

gets closer to the domain-oriented conceptual view of a workflow-definition. It de-

scribes business processes as hierarchies of decomposable business tasks, focusing on

the domain-specific aspects while capturing at the same time the dynamic aspects of a

task.

Following the same conceptual view, the OWL Task (OWL-T) [71] is an ontology and

language for defining task templates (or task-definitions) that is placed at the top of the

semantic Web Service stack. OWL-T contemplates four types of tasks: (i) atomic tasks

(directly completed by an operation of a service), (ii) composite tasks (completed by

a composition of several operations or services), (iii) simple tasks (either an atomic or

composite task) and (iv) complex tasks (a set of one or more simple tasks).

Each task template in OWL-T has several attributes and properties such as hasInput,

hasPreCondition, hasOutput and hasPostCondition. The hasInput and hasOutput property

typically links to a domain ontology concept. Although the OWL-T allows the repre-

sentation of task-definitions at the schema-level, it remains decoupled from domain

representations since they rely on different languages. Furthermore, the specification

of input and output is limited to the scope of a concept.

Overall, OWL-T provides an abstraction on top of the current semantic Web service

representations and ontologies.

2.3 systematization of human computation approaches

From a business perspective, there is great interest in accomplishing specific business

tasks efficiently and effectively in terms of time and monetary costs. Studies in this

context tend to focus on the domain-specific details of the task, giving special concern

to user motivation and quality-control aspects [6, 18, 25, 26, 54, 78].

A technical and domain-independent perspective, on the other hand, puts the em-

phasis on methods, techniques and frameworks for solving problems (in general) that

machines alone are not yet able to solve [59, 76]. In some cases, problem-solving can

be achieved by replacing machines with humans in certain computation steps where

humans usually perform better (human computation). In this context, the focus is on

the creation and deployment of mechanisms that efficiently and effectively facilitate

the crowdsourcing and human computation process.



2.3 systematization of human computation approaches 23

So far, most work on providing a survey and classification of crowdsourcing systems

[11, 59, 79] adopted a business and user perspective. This section presents a system-

atization of task-oriented CS and HC systems from a technical domain-independent

perspective.

2.3.1 Entities and Relationships

Throughout this thesis, the terms micro-task, task and complex task will be heavily

employed. In order to reduce ambiguity, Figure 5 defines the relationships between

each concept.

Two types of tasks are considered: micro-tasks and complex tasks. While micro-tasks

are atomic computation operations, complex tasks are (linked) sets of micro-tasks (e. g.

workflows of micro-tasks) with a specific purpose.

Depending on the HC or CS system, several terms from different terminologies may

be employed. These terminologies refer to the entities that are present in the CS and

HC process. For this systematization the following terms and entities are considered:

• Worker - a person that solves tasks;

• Community - a set of workers;

• Requester - an entity that submits jobs;

• Job - a complex task or workflow of tasks;

• Task - the specification of a task or micro-task, which may be instantiated a mul-

tiple number of times;

• Unit - an instance of a task;

• Reference Unit - an instance of a task with a known answer;

• Assignment - an assignment of a unit to a single worker;

• Answer - the given solution of a worker to a specific assignment;

Task

Complex TaskMicro-Task

+formedBy 1..*

Figure 5: Relationships between the concepts Micro-Task, Task and Complex Task. Both Micro-
Task and Complex Task are sub-concepts of Task.



24 background

• Qualification - a validated worker skill or expertise in a specific domain;

• Credibility - a measurement of worker performance in completed assignments;

• Workflow - the continuity of work by passing the output of one task as the input

of another.

Regardless of their application domain, several subtypes of tasks were identified:

• Partition Task - a task that consists in the partitioning of a complex task into a

workflow of simpler tasks;

• Aggregation Task - a task that consists in the aggregation of multiple answers

given to another task or job;

• Qualification Task - a task that must be successfully completed in order to obtain

a qualification;

• Grading Task - a task that consists of assessing the results of qualification tasks

and usually given to highly credible and qualified workers.

The relationships between these entities are represented in the relational diagram in

Figure 6. Notice that this diagram represents a generalization and a conceptual model

of the analysed systems. It does not take into account implementation details.

Job

Task

1

1..*

1

1..*

Unit

Reference Unit

Worker

Assignment

Answer

Community

Workflow

Qualification

Worker Qualification

Qualification Task

Partition Task

Aggregation Task

Grading Task

Machine Task

1

1..*

1 *

1

*

*
*

* *

1 *

0..1

*

1

1..*
*

*

Figure 6: Entity relationship diagram of a common (complex) task CS and HC system.



2.3 systematization of human computation approaches 25

2.3.2 The Process

There are three active entities in a task-oriented CS and HC process: the requester, the

worker, and the system itself. Each of these entities has a different role in the process.

The worker selects a task, solves it, and later receives (or not) a reward according

to his/her performance. The requester and system flow of actions, however, is more

complex. In Figure 7, a systematization of the whole process is provided for each

of the three active entities. The depicted process is the result of the analysis of the

presented state of the art CS and HC systems. Notice that when solving complex human

computation tasks, current systems focus on managing workflows of simple tasks.

The overall process has three phases: the design phase, the online phase, and the

conclusion phase. For each of these phases, the job can be found in different states. In

the case of the design phase, the job is always in the not ordered state. During the online

phase, the job may be either running or paused. Finally, during the conclusion phase,

the job reaches its final state, which can be either finished or cancelled.

The design phase is an exclusive interaction between the requester and the system,

where the requester must configure the job, design each task, and build the task work-

flow.

In the online phase the job is set to run. It is during this phase that the worker must

act and solve the task. The requester, on the other hand, can pause the job to modify

its configuration and change parts of the workflow (as in the crash and rerun strategy),

resuming its execution afterwards.

Just like the job, each worker task in the workflow has an associated state. Before it is

reached, the worker task is set as not ordered. When its execution starts, the worker task

is set to running with the possibility of being paused. Finally, it can be either cancelled

or finished.

Five main steps are performed during the execution of a worker task: (i) task dis-

tribution and worker selection, (ii) assignment to workers, (iii) assignment assessment,

and optionally, (iv) result aggregation and (v) worker rewarding. The first three steps

are executed in a loop, where the task may be re-assigned to a specific group of work-

ers in the same community. Also, for each task, multiple assignments can be given to

several workers, each requiring an assessment. When all the required assignments are

solved, workers can be optionally rewarded automatically according to the results in

the assignment assessment. All assignments of the same task may also be aggregated

in order to provide a final answer.



26 background

W
o

rke
r

Syste
m

P
aralle

l Tasks (Lo
o

p
)

R
e

q
u

e
ste

r

C
reate an

d
 

C
o

n
figu

re Jo
b

O
rd

er Jo
b

V
isu

alize an
d

 M
an

age Jo
b

D
istrib

u
te Task 

an
d

 Filter 
W

o
rkers

G
et Fin

al R
esu

lts

Execu
te M

ach
in

e Task
A

ggregate 
R

esu
lts

R
ew

ard
 W

o
rkers

G
et R

ew
ard

R
ew

ard
 W

o
rkers

Jo
b

 Fin
ish

ed
 

o
r C

an
celed

N
o

t O
rd

e
re

d
R

u
n

n
in

g, P
au

se
d

C
an

ce
lle

d
, Fin

ish
e

d

D
istrib

u
te Task 

th
ro

u
gh

 
M

ach
in

es

n
o

yes

n
o

W
o

rker o
r 

M
ach

in
e?

ye
s; th

e
n

 fo
r e

ach
 p

aralle
l task…

 (lo
o

p
)

Fo
llo

w
in

g 
Seq

. Tasks?

w
o

rker

m
ach

in
e

Exe
cu

te
 W

o
rke

r Task (Lo
o

p
)

Select an
d

 
A

ccep
t Task

So
lve 

A
ssign

m
en

t

A
ssess 

A
ssign

m
en

t
C

reate 
A

ssign
m

en
t

Figure
7:Process

diagram
of

a
com

m
on

(com
plex)

task
C

S
and

H
C

system
.D

ashed
steps

m
ay,or

m
ay

not,exist
in

different
system

s.



2.3 systematization of human computation approaches 27

For each task in the workflow, the previously described process is followed. More

specifically, these tasks can run either concurrently, for parallel tasks in the workflow, or

sequentially. If the output of two parallel tasks is required as the input of the following

task, the system must synchronize and wait for both parallel tasks to be completed

before advancing to the next task.

After the workflow is finished, the conclusion phase starts, in which the requester

can review and reward workers according to their performance. The complete results

of the execution of the workflow are also made available to the requester.

2.3.3 Task-oriented Approaches

The following analysis describes micro-task CS systems that overlap with HC. The anal-

ysis is empirical since there are no available publications describing these systems.

Mechanical-Turk

Mechanical Turk is an online labour market and pioneer of the CS platforms that

specialize in micro-tasks. Each requester (employer) can create Human Intelligence

Task (HIT), which represent multiple micro-tasks that will be executed by workers in

exchange for a small monetary reward [54].

Requesters can specify several qualification requirements for workers. These require-

ments often contain test forms that workers must complete in order to assess their

qualifications. Additionally, profile-related requirements can be enforced such as the

country of residence and accuracy in previously solved tasks.

In order to use Mechanical Turks’ work force, a requester must create a new project

that will wrap all the data regarding the task. A project represents a HIT template,

containing common parameters (e. g. name, description, keywords, rewards per as-

signment, assignments per HIT, allotted time per assignment) and the layout design in

Hyper-Text Markup Language (HTML). A project can be created from scratch or from a

pre-defined project template.

Afterwards, a set of HIT can be submitted to Mechanical Turk using the created

project. Along with this request, a Comma Separated Values (CSV) file must be up-

loaded. Each row of the CSV represents a HIT and contains the required data to present

the HIT using the layout design defined in the project. Finally, the requester can approve



28 background

(the reward is given) or disapprove (the reward is not given) the results of worker as-

signments.

Mechanical Turk does not include an aggregation mechanism. According to the

project configuration, the assignment results given directly to the requester may con-

tain multiple answers to each HIT.

As a worker, several assignments for the same HIT can be accepted. If a specific

qualification is required for the HIT, the corresponding qualification test must be passed

first.

CrowdFlower

CrowdFlower is a micro-task CS platform that distributes micro-tasks over several CS

channels such as Mechanical Turk and Crowd Guru. Currently, more than fifty chan-

nels are supported.

A requester starts by submitting a job to CrowdFlower. Similarly to projects in Me-

chanical Turk, a job is a template and an aggregation of multiple micro-tasks. These

micro-tasks, instead of HIT, are called units.

Several workers can work on the same unit. The result of this work for a single

unit is called judgement. In this sense, one unit can have multiple judgements given

by multiple workers (even one worker can give two or more judgements to the same

unit).

Some of these units can be gold units. Gold units come with a reference judgement

(correct answer) and are used to validate the work done by workers. If a worker gives

a wrong judgement to a gold unit, their confidence degree will decrease until their

judgements are not accounted for in the aggregated job results.

Besides the specification of common parameters (e. g. keywords, judgements per

worker, judgements per Internet Protocol (IP) address, allowed countries, judgements

per unit), a CrowdFlower job contains the user interface layout defined in CrowdFlower

Markup Language (CML). The CML is a language that provides an abstraction over

HTML objects and allows interaction with the unit data, which is also uploaded to

CrowdFlower through a CSV file.

After supplying all the required data (units, gold units, CML form, and other con-

figuration parameters) the requester can order judgements. In this order, one or more

distribution channels can be selected (e. g. Mechanical Turk, Crowd Guru, SurveyHunt,

Earn The Most).



2.3 systematization of human computation approaches 29

When the job is finished, a full report is given. Additionally, aggregated, source,

gold unit and worker reports are supplied in CSV format. The aggregation mechanism

of CrowdFlower is based on a majority voting scheme that may exclude judgements

according to the supplied gold units.

A worker participates in a job by giving judgements over sets of units presented on

a single page. If allowed, a single worker can submit as many judgements as units.

Taking into account the existence of gold units, this amount may even exceed the

amount of units.

ShortTask

ShortTask is an online labour market similar to Mechanical Turk. The terminology,

however, is slightly different. Workers are called solvers, and requesters are called

seekers.

A seeker can create a task template, which can be used to order multiple tasks

(equivalent to HIT in Mechanical Turk). These tasks will then be assigned to solvers.

Although the terms task and assignment are used, their application is not coherent.

Furthermore, even though there is a parameter for selecting the amount of assignments

in the task template, requesting multiple answers for one task when ordering was not

possible while experimenting with ShortTask.

MicroWorkers

MicroWorkers is a CS platform that focuses solely on the distribution of a micro-task

amongst multiple workers. Unlike in Mechanical Turk and CrowdFlower, the process

of building the job is significantly less structured and simpler.

Instead of an interface for solving tasks structured with a markup language, the

worker is given a set of instructions in natural language. These instructions are fixed

for each job, meaning that submission will result in multiple workers performing the

same task.

Given these limitations, jobs in MicroWorkers mostly involve work such as filling

surveys, searching, rating, clicking, bookmarking, commenting, downloading, and in-

stalling applications. These are often associated with forums and websites such as

Google, YouTube, Facebook and Twitter.



30 background

Probably due to the nature of its jobs, MicroWorkers does not implement any specific

worker selection mechanism besides the possibility of targeting specific countries. Also,

no automatic worker assessment is performed. Employers may instead ask for the

submission of proof regarding the task completion.

CloudCrowd

CloudCrowd is a CS platform originally implemented as a Facebook application. Unlike

the previously described platforms, users can only register as workers.

Comparatively, CloudCrowd is more selective regarding workers and their exper-

tise. In order to work on projects, workers need to get credentials. These credentials

are given after successfully solving specific tests with multiple levels of difficulty. Ad-

ditionally, a credibility score is given to the worker. The credibility score value can

increase or decrease according to the worker credentials and work feedback (e. g. in-

correct answers).

In order to assess the credibility of workers, CloudCrowd uses check tasks. Check

tasks are tasks with known answers, similar to gold units in CrowdFlower.

Workers can browse a list of projects and credentials, grouped by the following types:

writing, editing, categorization, research, data entry, translation, and other. For each

project, the required credibility and credentials are presented, along with the monetary

reward and availability. The availability represents the amount of tasks available to be

solved in the project.

From the analysis of the CloudCrowd worker interface, it is unknown if the same

task is given to multiple workers or if there is any aggregation mechanism available to

requesters.

2.3.4 Workflow-oriented Approaches

The following analysis describes systems that perform the CS of complex tasks. For

some of these systems the implementation was not available, leading to a study based

only on related scientific publications.



2.3 systematization of human computation approaches 31

Turkit

Mechanical Turk focuses on independent tasks that can be executed in parallel. How-

ever, it does not support the creation of workflows of dependent tasks. TurKit is an

Application Programming Interface (API), built on top of Mechanical Turk, for running

iterative tasks that provides an environment for the creation of workflows that connect

multiple dependent tasks [37].

Using the crash and rerun model, it provides an abstraction over the specificities

and synchronization issues of Mechanical Turk, allowing the developer to focus on

imperative ordinary function calls.

The crash and rerun model follows the premise that it is cheap to rerun an entire

program up to the point where it crashed, as long as it runs locally. For remote and

costly operations (e. g. HIT requests) the results must be stored in a database so that

they will be accessible in future reruns.

The TurKit API is implemented in Java and allows the implementation of Mechan-

ical Turk workflows in a JavaScript crash and rerun environment. This environment

features a set of function directives for an easy and incremental implementation of

scripts.

The TurKit provides a development environment that is available both as a stand-

alone application and as a Web application. The Web application runs on the Google

App Engine.

Turkomatic

Turkomatic follows a divide-and-conquer approach to plan work featuring micro-task

workflows partially designed by workers. It works over Mechanical Turk and is defined

as “a crowdsourcing interface that consults the crowd to design and execute workflows

based on user requests” [32].

Workers start by dividing the requested task into subtasks that will be solved by

other workers. This process can be iterative, generating a tree of subtasks. The final

results are later combined by workers into an adequate solution.

Turkomatic allows the requester to manage the generated workflow and its execution

through a visual workflow editor.



32 background

CrowdForge

CrowdForge is a general purpose framework for distributed processing that provides

scaffolding for complex human computation tasks [27]. The approach features a set of

task coordination strategies that allow multi-level and dynamic partitioning of tasks,

the specification of task workflows, quality control tasks and aggregation of results.

Finding inspiration in Googles’ Map Reduce framework, CrowdForge defines three

types of subtasks: (i) partition tasks, (ii) map tasks and (iii) reduce tasks. Partition tasks

divide a larger task into smaller subtasks. In map tasks, one or more workers process

a task. Finally, in reduce tasks the processing results of multiple workers are merged

into a single output.

The CrowdForge prototype presented in [27] consists in a Web application allowing

the design of complex tasks, along with a back-end server that interacts with Mechan-

ical Turk. The system manages a workflow of Mechanical Turk HIT templates, which

can represent partition map or reduce tasks.

CrowdWeaver

TurKit, CrowdForge and Jabberwocky provide an environment for the design and ex-

ecution of complex CS tasks through structured languages and non-visual representa-

tions. With the current trend on micro-task workflows, work on their management and

visualization has started to emerge. Kittur et al. [28] state that one of the major issues

faced by employers working with crowds lies in the complexity of linking tasks and

forming workflows. In this sense, they identify several challenges in visually manag-

ing CS workflows and present a system for visualization and management of complex

tasks, entitled CrowdWeaver.

CrowdWeaver works on top of CrowdFlower and features the creation and moni-

toring of task workflows, the management and reuse of templates with human and

machine tasks, the tracking and notification of crowd factors such as price and quality,

and support for real-time experimentation. The interface provides a mental represen-

tation of the task workflow, which can be saved and re-used in further instantiations

of the workflow.

Several machine tasks, which mainly manipulate input and output, are supported.

These include divide, concatenate, pair, and permute. Additionally, custom machine

tasks are allowed.



2.3 systematization of human computation approaches 33

Jabberwocky

Similarly, Jabberwocky [1] also employs the MapReduce approach in a framework fea-

turing a high-level abstraction task modelling language. It allows the modelling of

complex tasks and workflows in which the advantages of multiple worker communi-

ties can be harnessed. These communities can be local or found in social networks and

other CS systems. In the case of local communities, workers can be identified during

the CS process. For social network communities, expertise data may be extracted from

the social network API.

Jabberwocky is formed by three layers: the (i) base layer is called Dormouse, followed

by the (ii) ManReduce layer, with the (iii) Dog layer on top. The Dormouse layer pro-

vides an abstraction over human (crowd workers) and machine computational units.

Unlike other CS frameworks such as Mechanical Turk and CrowdFlower, each compu-

tational unit registered under Dormouse can be uniquely identified during workflow

executions. Besides featuring its own worker community, Dormouse can crowdsource

tasks to external CS platforms.

The ManReduce layer is a programming framework, written in Ruby, responsible for

facilitating complex data processing tasks in Dormouse. It features map and reduce

steps which can be computed by either humans or machines.

The top layer, called Dog, represents an abstraction scripting language for modelling

tasks. Dog works over the low-level ManReduce framework and focuses on reusability,

maintainability and ease-of-use.

2.3.5 Comparative Analysis

While featuring the integration of a wide range of CS platforms, CrowdFlower also

features the CML, an abstraction language for building task graphical user interfaces.

Other analysed platforms only support direct HTML usage.

According to our analysis, Jabberwocky represents a highly complete CS platform

compared to the others. It adds several features to CrowdForge, such as:

• Worker profiles and social networks;

• Abstraction over human and machine computational units;

• Multiple worker sources (e. g. e-mail groups, social networks, external CS plat-

form communities).



34 background

CloudCrowd has a rigorous and complete assessment system compared to most CS

platforms, incorporating the benefits of both Mechanical Turks’ and CrowdFlowers’

assessment systems.

Table 1 contains an overview and comparison of the analysed CS systems. The re-

lies on column indicates if the system is able to relay the CS process to other systems.

The complex tasks column describes, if available, how complex tasks are formed and

handled. The third column, task methodologies, enumerates different methodologies em-

ployed by the system in designing, maintaining, and executing tasks. The worker assess-

ment column refers to how the CS system evaluates the quality of the work performed

by workers. Finally, the aggregation column describes, if available and applicable, auto-

matic result aggregation procedures that merge the work of several workers.

The terminology employed in the CS domain often varies from platform to platform.

Table 2 wraps the terminology used in four different CS platforms.

The first concept found in Table 2 represents a wrapper of the whole CS process. It

contains all the data required for the execution of the task or task workflow, including

the input and output data. A task (e. g. tag an image) can have several units of work

(e. g. the actual images to be tagged). This concept is represented in the second row

of Table 2. The following concept depicts assignments of specific units to workers (the

ones who solve the task). For each assignment, the worker must submit an answer

(fourth row concept).

In some cases, for quality control purposes, units are submitted by the requester

with an already known correct answer. This kind of unit is present in the fifth row of

Table 2. Furthermore, the requester (the one who requires a certain task to be solved)

can specify expertise requirements that workers must satisfy in order to be electable

for solving the task. The terminology for this concept can be found in the last row of

Table 2.

2.4 ontology of task-oriented systems

Although classifications of CS systems already exist [11, 59, 79], they often focus on

dimensions that are domain-specific or of interest from a business standpoint. In this

sense, a new systematization of these classifications is provided, integrating an analysis

of the previously described systems.

The presented classification, in Table 3, focuses on technical and domain-inde-

pendent dimensions of systems that fit under both the CS and HC definitions. It is built



2.4 ontology of task-oriented systems 35

s
y

s
t

e
m

r
e

l
i
e

s
o

n
c

o
m

p
l

e
x

t
a

s
k

s
t

a
s

k
m

e
t

h
o

d
s

w
o

r
k

e
r

a
s

s
e

s
s

m
e

n
t

a
g

g
r

e
g

a
t

i
o

n

M
Tu

rk
Se

lf
N

o
Te

m
pl

at
es

Q
ua

lifi
ca

ti
on

Te
st

s
M

an
ua

l
C

ro
w

dF
lo

w
er

Se
ve

ra
l

N
o

Te
m

pl
at

es
G

ol
d

U
ni

ts
Ye

s
Sh

or
tT

as
k

Se
lf

N
o

Te
m

pl
at

es
M

an
ua

l
M

an
ua

l
M

ic
ro

W
or

ke
rs

Se
lf

N
o

Te
m

pl
at

es
M

an
ua

l
N

/A
C

lo
ud

C
ro

w
d

Se
lf

-
-

C
re

de
nt

ia
lT

es
ts

an
d

C
re

di
bi

lit
y

-
C

ro
w

dF
or

ge
M

Tu
rk

W
or

kfl
ow

s
M

ap
R

ed
uc

e
(M

Tu
rk

s’
)

Ye
s

Ja
bb

er
w

oc
ky

Se
ve

ra
l

W
or

kfl
ow

s
M

ap
R

ed
uc

e
U

se
r

Pr
ofi

le
s

Ye
s

Tu
rk

om
at

ic
M

Tu
rk

W
or

kfl
ow

s
D

iv
id

e
an

d
C

on
qu

er
(M

Tu
rk

s’
)

Ye
s

(W
or

ke
rs

)
Tu

rk
it

M
Tu

rk
W

or
kfl

ow
s

C
ra

sh
an

d
R

er
un

(M
Tu

rk
s’

)
Ye

s
(W

or
ke

rs
)

Ta
bl

e
1

:C
om

pa
ri

so
n

of
C

S
sy

st
em

s.



36 background

m
e

a
n

i
n

g
m

t
u

r
k

c
r

o
w

d
f

l
o

w
e

r
s

h
o

r
t

t
a

s
k

c
l

o
u

d
c

r
o

w
d

m
i
c

r
o

w
o

r
k

e
r

s

W
rapper

of
C

S
data

and
tasks

Project
Job

Task
Tem

plate
Project

C
am

paign
or

Job
U

nit
of

the
task

to
be

solved
H

IT
U

nit
Task

Task
Task

A
ssignm

ent
of

a
unit

to
a

w
orker

A
ssignm

ent
-

A
ssignm

ent
-

-
A

nsw
er

given
to

an
assignm

ent
A

nsw
er

Judgem
ent

-
A

nsw
er

-
R

eference
unit

w
ith

correct
answ

er
N

/A
G

old
U

nit
N

/A
C

heck
Task

N
/A

T
he

w
orker

W
orker

W
orker

Solver
W

orker
W

orker
T

he
requester

R
equester

R
equester

Seeker
-

Em
ployer

W
orker

expertise
requirem

ent
Q

ualification
N

/A
N

/A
C

redentials
N

/A

Table
2:Term

inologies
em

ployed
by

C
S

system
s.



2.4 ontology of task-oriented systems 37

as a poly-hierarchy of categories, meaning that a CS system can fit under a number

of these categories. As a reference for the classification, the following dimensions for

task-oriented systems were identified:

• Nature of collaboration [11];

• Architecture [11];

• Worker selection;

• Worker assessment and quality control;

• Worker motivation;

• Task creation and configuration;

• Task management;

• Task execution;

• Task result aggregation.

2.4.1 Nature of Collaboration

The explicit and implicit categories present in the nature of collaboration dimension are

introduced by Doan et al. [11]. In explicit CS systems the users are aware that they are

working towards solving specific tasks. Some examples of explicit CS systems include

Mechanical Turk, CrowdFlower and ShortTask.

Implicit CS systems usually retrieve work behind a system with a different purpose.

These include games such as the ESP Game [76], Tag-a-Tune [59], and Foldit [9]. Re-

CAPTCHA [36] is also an example of an implicit CS system where users work as book

and document digitizers by filling Completely Automated Public Turing test to tell

Computers and Humans Apart (CAPTCHA) forms. Since CS games fit under the implicit

category, the game sub-category has been included in the classification.

2.4.2 Architecture

The architecture dimension encompasses the stand-alone and piggyback categories,

which are also introduced by Doan et al. [11]. A stand-alone CS system is independent

of other CS systems. It has its own worker community and does not require the

distribution of tasks among other systems (e. g. Mechanical Turk).



38 background

dimension category sub-category

Nature of Collaboration Explicit
Implicit Game

Architecture Stand-alone
Piggyback

Worker Selection

Community Scope Multiple Community
Single Community

Worker Scope

Assessment Filtering
Expertise Test Filtering
Profile (Social) Filtering
↖ Demographic Filtering

Worker Assessment
and Quality Control

Manual

Automatic Reference Units
Assessment Tasks

Worker Motivation
Monetary
Enjoyment
Reputation

Task Creation and
Configuration

Instantiation Manual
Templates

UI Construction
Plain Text
HTML
Proprietary Language

Data Structure Plain Text
CSV, JSON (No Schema)

Task Management
Non-Visual

Visual Construction
Monitoring

Task Execution

Simple

Complex (Workflows)
Crash and Rerun
Divide and Conquer
↖ Partition-Map-Reduce

Task Result Aggregation

Manual

Automatic
Voting Scheme
Assessment-based
Crowdsourced

Table 3: Classification of CS and HC systems according to different dimensions (↖ means that
the following is a sub-category of the above category).



2.4 ontology of task-oriented systems 39

A piggyback CS system relies on external worker communities. They usually focus

on the process of building the task and distributing work between other CS systems.

One of the best examples of such a system is CrowdFlower.

The given definition for these two categories is not disjoint. In this sense, a CS system,

such as Jabberwocky, fits under both categories.

2.4.3 Worker Selection

When a task is published, it becomes available to a certain amount of workers. These

workers usually belong to at least one community, and may be filtered according to

different characteristics such as their profile information, demographics (e. g. country

of residence), or expertise. In this sense, six types of worker selection strategies that act

in two different scopes (the community scope, and the worker scope) were identified

(see Table 4).

The community scope encompasses CS systems that either rely on multiple commu-

nities of workers or on a single worker community. These two categories are disjoint.

In the worker scope there are four categories: assessment filtering, expertise test filtering,

demographic filtering, and profile (social) filtering. In assessment-based filtering, the task

is distributed between workers that satisfy requirements regarding reputation and per-

formance in previously solved tasks. Expertise test filtering consists in providing test

tasks that assess worker expertise in a specific domain of knowledge, or in perform-

ing a specific type of task. The measurement of expertise allows the enforcement of a

minimum expertise value for the worker to be able to participate.

category sub-category examples

Community Scope
Multiple Communities Jabberwocky
Single Community MTurk, ShortTask

Worker Scope

Assessment Filtering MTurk, CloudCrowd
Expertise Test Filtering MTurk, CloudCrowd
Profile (Social) Filtering
↖ Demographic Filtering CrowdFlower

Table 4: Classification of CS systems according to the worker selection dimension (↖ means
that the following is a sub-category of the above category).



40 background

Demographic filtering selects workers that satisfy certain statistical characteristics

of attributes such as age and country of residence. Profile (social) filtering represents

a superset of demographic filtering. It enforces requirements regarding the worker

personal and social profile, which may include demographic attributes. One example

is the enforcement of a minimum or maximum value for social worker relationship

closeness [77].

2.4.4 Worker Assessment and Quality Control

Assessing the performance of workers in specific tasks or in general is an important

dimension of CS. Worker assessment can be employed in different phases and in other

dimensions of the CS process such as in worker selection and task result aggregation,

often having a significant impact on the quality of the final task results.

According to the current state of the art, assessment strategies are either manual

(performed by the requester) or automatic (performed by the CS system).

As presented in Table 5, two automatic assessment strategies were identified: refer-

ence units, and assessment tasks. An assessment through reference units consists of using

test tasks with known answers to evaluate worker performance. Another strategy is to

crowdsource the assessment of the answers to other workers through an assessment

task.

2.4.5 Worker Motivation

For users to participate and remain as workers, they require some kind of motivation,

usually given by the CS system or the requester.

category sub-category examples

Manual ShortTask, MicroWorkers

Automatic
Reference Units CrowdFlower
Assessment Tasks Turkomatic, CrowdForge

Table 5: Classification of CS systems according to the worker assessment and quality control
dimension.



2.4 ontology of task-oriented systems 41

Most HC and CS systems provide small monetary rewards. Others, however, use

different means of motivating workers. While in CS games the motivational aspect is

usually recreation and enjoyment, reputation has also been proven a viable source of

motivation [58].

In this sense, three worker motivation strategies are identified as the following non-

disjoint categories:

• Monetary (e. g. MTurk and CrowdFlower);

• Enjoyment (e. g. Tag-a-Tune and the ESP Game);

• Reputation (not so widely exploited since workers often remain in anonymity).

2.4.6 Task Creation and Configuration

The task creation and configuration dimension encloses all the special characteristics of

the task creation and configuration process. So far, it mainly consists of the definition

of the User Interface (UI), the upload of data, and the configuration of the task request

through parameters such as monetary reward per unit and target worker residence

countries.

Referring to this dimension, a classification is presented in Table 6 that takes into

account how the task instance is created, how the construction of the worker UI is

performed, and which data structures are consumed by the CS system. None of the

included categories and sub-categories are disjoint.

Most CS systems allow both the manual and template-based instantiation of the task.

Also, the CSV format is commonly used in CS systems to allow requesters to upload

task data.

2.4.7 Task Management

So far, the management of tasks has been performed through simple, mostly textual,

Web UI. With the advent of several complex task CS systems, however, a need for visu-

ally building and managing task workflows has emerged.

Turkomatic is one of the first CS systems introducing task visualization by presenting

a complex task construction environment where the requester is able to visually build

a workflow of tasks. More recently, CrowdWeaver takes complex task visualization a



42 background

category sub-category examples

Instantiation
Templates MTurk, ShortTask
Manual CrowdFlower, MTurk

UI Construction
Proprietary Language CrowdFlower
HTML MTurk
Plain Text MicroWorkers

Data Structure
CSV, JSON (No Schema) CrowdFlower, MTurk
Plain Text MicroWorkers

Table 6: Classification of CS systems according to the task creation and configuration dimen-
sion.

step further by providing an environment not only for visually building workflows of

tasks but also for monitoring their progress.

Taking into account the current state of the art, four categories for the task manage-

ment dimension are presented in Table 7.

In this dimension, only the non-visual and visual categories are disjoint. The construc-

tion category refers to CS systems that provide a visual UI for building tasks. The moni-

toring category, on the other hand, refers to CS systems that allow the visual monitoring

of the task progress in real time.

2.4.8 Task Execution

The task execution dimension refers to how the task is structured and processed by the

CS system. Under this dimension, a task can either be simple or complex (a workflow

of simple tasks). For complex tasks, several strategies are employed. These are present

in the classification with the sub-categories shown in Table 8.

category sub-category examples

Non-Visual CrowdFlower, MTurk

Visual
Construction CrowdWeaver, Turkomatic
Monitoring CrowdWeaver

Table 7: Classification of CS systems according to the task management dimension.



2.4 ontology of task-oriented systems 43

category sub-category examples

Simple CrowdFlower, MTurk

Complex
Crash and Rerun Turkit
Divide and Conquer Turkomatic
↖ Partition-Map-Reduce CrowdForge, Jabberwocky

Table 8: Classification of CS systems according to the task execution dimension (↖ means that
the following is a sub-category of the above category).

The crash and rerun category includes systems that allow modifying and restarting

the execution of the workflow without additional CS costs. Divide and conquer ap-

proaches try to split the task into smaller units before requesting a final solution.

Partition-map-reduce are a specific case of divide and conquer approaches that include

a result aggregation phase.

2.4.9 Task Result Aggregation

Often, the same task is solved by multiple workers, leading to several solutions for the

same task. Despite providing redundancy, it requires the aggregation and processing

of the resulting data in order to reach a final and unique solution.

The aggregation of results can be either manual (performed by the requester of

the task) or performed automatically using an aggregation strategy. Commonly used

aggregation strategies include the application of voting schemes and filtering through

worker assessment. CrowdFlower employs both of these aggregation strategies. It uses

a majority voting scheme to select results that are most likely to be correct, excluding

workers with poor assessment values (those that gave wrong answers to check tasks).

The results of the algorithms employed during worker selection can also provide

important data for result aggregation. Both CloudCrowd and Mechanical Turk imple-

ment mechanisms to assess expertise (qualifications or credentials) in order to filter

workers. Giving more prominence to the answers of workers with higher degrees of

expertise could lead to better results.

Another approach is to crowdsource the result aggregation as an aggregation task.

This strategy is employed in systems that use the partition-map-reduce task execution

strategy.

Table 9 presents the categories identified for the task result aggregation dimension.



44 background

category sub-category examples

Manual ShortTask

Automatic
Voting Scheme CrowdFlower
Assessment-based CrowdFlower, CloudCrowd
Crowdsourced CrowdForge, Jabberwocky

Table 9: Classification of CS systems according to the task result aggregation dimension.

2.5 challenges

Since the appearance of the first CS systems for micro-tasks, many more have emerged.

Their continuous use has led to several experiments and studies that often focus on

user motivation and quality control [80].

User motivation has been addressed in several ways, from providing enjoyment and

relying on altruism, to giving monetary rewards [15]. The latter has been the subject

of some criticism, due to the creation of cheap labour marketplaces [21]. In the specific

case of task CS systems, the current monetary rewards are not sufficient to be a primary

source of income, and often they are not enough to serve as a motivational factor

[48, 54]. In these cases, workers actually participate out of altruism, curiosity, or simply

to keep themselves busy. Still, motivating and retaining workers over time remains a

challenge for any CS system.

The advent of CS of complex tasks has brought new challenges to different dimen-

sions of the CS process, including specification, flow control, quality control, and visu-

alization. In the specific case of quality control, and due to the presence of a micro-task

workflow structure, a deviation or error in one task can accumulate with those of the

following tasks.

Besides quality control, the flow control assumes special relevance. In fact, the CS of

complex tasks establishes requirements regarding worker selection that are often dis-

carded in simple micro-task CS systems. One of these requirements is worker identity.

The fact that most CS systems regard the micro-task as the top-level unit of work, leads

to loss of identity information from one micro-task to the other. This can easily become

a challenge when the worker, as an identifiable individual, is required to participate in

different steps of the task workflow.

Another challenge when dealing with complex tasks is the aggregation and visual-

ization of results. At some point, since multiple micro-tasks are involved in a workflow,



2.5 challenges 45

tracing a specific result and asserting the causes and facts that led to it becomes a neces-

sity. Currently, both the results presented by most CS systems and the input requested

from workers are poorly structured and, in some cases, in natural language. Since the

output of a micro-task might be the input given to the execution of a computer algo-

rithm micro-task, both the specifications (structure) of the task and the task domain of

knowledge must be understandable and interpretable by both humans and machines.

Furthermore, there is a necessity for a specification that is able to capture iterative steps

formed by complex flow conditions.

Enforcing structured machine-readable data also facilitates the implementation of

strategies for tracing workflow results. Still, special care is needed so that such a struc-

ture does not increase the complexity and cumbersome nature of solving tasks from

the worker’s perspective.

Overall, the following main challenges were identified:

• The representation of micro-task workflows, namely:

– Full structure and semantics of the operations, input and output of micro-

tasks;

– Partitioning and establishing different granularities for micro-tasks;

– Controlling the flow of micro-tasks;

– Understandable and interpretable representations for both humans and ma-

chines;

– Fully integrated dynamic and static domain dimensions;

– Flexible, extensible and shareable representations;

• Human-machine interaction, namely:

– Specifying worker selection requirements for different phases of the work-

flow;

– Identifying workers and requesting their participation in multiple micro-

tasks;

– Providing relevant contextual information;

• Quality control, namely:

– Assessing and reducing the impact of low quality answers across the work-

flow;



46 background

– Using (social) profile information to assess the worker’s expertise and rele-

vance to a particular micro-task;

– Defining metrics and measures to assess the performance of workers;

• Visualization and reporting, namely:

– Providing visual representations of micro-task and workflow structures;

– Assembling the final results and providing graphically represented statis-

tics.

2.6 summary

Over the last decade, HC and CS have been merged to create multiple systems for prob-

lem solving on a wide scale. These systems are starting to facilitate the man-computer

symbiosis envisioned by Licklider [35] in the 1960s.

The increasing popularity of CS has led to a variety of commercial and non-

commercial applications in different domains. Among these applications, a small set

of CS platforms oriented towards problem (task) solving has emerged. These platforms

regard the problem (or job) as sets of micro-tasks that can be solved redundantly

in one step by multiple users. In complex jobs where a workflow of micro-tasks is

required, new challenges emerge. This new trend in CS has led to some interesting

workflow-oriented systems such as CrowdForge and Jabberwocky.

Despite the fact that workflow and CS approaches have emerged from different de-

mands and requirements, an analysis of the current state of the art leads to the conclu-

sion that they share many commonalities and tendencies.

While workflow-definition approaches started with highly structured and strict rep-

resentations of activities and processes easily handled by machines and execution en-

gines, crowdsourcing is popular for its relatively loose and unstructured representation

of tasks and their input and output data. Although this later representation is prefer-

able to humans, it is difficult to interpret and understand by machines. The trend,

however, for both crowdsourcing and workflow activity-based approaches has been

to provide a workflow representation mechanism that is both understandable by ma-

chines and as closer to the human conceptual level as possible.

Ontologies as a formal representation mechanism are currently “the best answer to

the demand for intelligent systems that operate closer to the human conceptual level”

[52]. While providing structure and semantics, ontologies can also leverage:



2.6 summary 47

• Template re-use and extensibility;

• Semi-automatic generation of worker interfaces;

• Contextual information in complex workflows (tackling flow and quality control);

• Justifications for results using common reasoning algorithms (tackling result

traceability in flow control);

• Semantics for further automatic processing of data (tackling complex task speci-

fication of the task and the task domain).

Detailed representations (ontologies) of micro-tasks and their dependencies through

the specification of their domain (input, output and context) can be analysed to

present relevant contextual information to workers and detailed structured reports to

requesters [43]. Although this is not particularly interesting in single task CS systems,

it is relevant when dealing with complex task workflows and their input/output

dependencies.





Part II

T H E C O M P F L O W A P P R O A C H





3
A P P R O A C H O V E RV I E W

Analogous to the analysed CS and HC background, an approach to the ontology-based

representation, instantiation and execution of workflows of micro-tasks (simply re-

ferred to as tasks from now on) is proposed. This approach is entitled, CompFlow.

As depicted in Figure 8, the CompFlow approach envisages two steps:

i) Task-definition (the task representation) and workflow-definition (the workflow

representation) construction (i. e. the conceptualization and implementation

step);

ii) The workflow-definition instantiation and execution.

During the workflow-definition construction (i), the creator (i. e. the actor build-

ing the representation) must clearly represent the activities involved in the workflow

through a semantic model of the input and output data, i. e. a workflow-definition on-

tology must be created. The workflow-definition ontology is built as an extension of

both a domain ontology and the CompFlow ontology.

During the workflow-definition instantiation and execution (ii), workflow-definition

ontologies can be instantiated multiple times and executed by any workflow engine

that is able to interpret the CompFlow ontology and apply the ground rules established

(I) (Assisted) Workflow-
Definition Construction

«extends»

(II) Workflow-Definition 
Instantiation and Execution

Crowd Interface
Templates

Output
Data

CrowdFlower Facebook

Web Interface

...

Input Data
Domain

Ontology

CompFlow
Ontology

«extends»

type

Deployment
Ontology

«extends»

«extends»

Workflow-Definition
Ontology

type

Figure 8: Overview of the CompFlow approach (dashed connections are optional).

51



52 approach overview

by the proposed method. Besides the workflow-definition ontology, this step is fed

with an input dataset and a set of crowd interface templates (required only for human

workers).

3.1 static and dynamic ontologies

There are three main ontologies in the CompFlow approach: the domain ontology

(representing the static domain dimension), the CompFlow ontology (representing the

dynamic task and workflow dimension), and the workflow-definition ontology (inte-

grating both of the previous dimensions).

A workflow-definition ontology is the representation or model of a workflow, which

must always extend the CompFlow ontology and any available domain ontology.

The domain ontology, on the one hand, represents static knowledge about a partic-

ular domain (e. g. the input and output of tasks), typically lacking the representation

of actions or processes that modify or increase this knowledge. A great and growing

amount of these kind of ontologies can be found throughout the Semantic Web.

The CompFlow ontology, on the other hand, contains a high-level abstract repre-

sentation of the dynamic features that can be associated with any domain of knowl-

edge. More specifically, the CompFlow captures the abstract structure and semantics

required to represent elements such as workflows, tasks, events and transitions.

As exemplified in Figure 1, dynamic features can be attributed to static domain con-

cepts such as Text through the concepts found in the CompFlow ontology, i. e. Unit and

Response. Thus, the two dimensional concepts OriginalText and TranslatedText emerge

with additional semantics: OriginalText represents the input of a translation task and

TranslatedText represents its output.

3.2 construction of the workflow-definition

The construction of a workflow-definition ontology can be completely manual or per-

formed by the creator with the assistance of a semi-automatic construction process.

In order to create workflow-definitions, a method that establishes a set of ground

rules based on DL is proposed. This method is referred to as the workflow-definition

method. The workflow-definition method exploits the expressiveness and semantics of

DL to represent tasks, workflows, and their input and output data, using a single rep-



3.3 instantiation and execution of the workflow-definition 53

resentation language. Consequently, the construction of a workflow-definition is the

construction of an ontology, following the workflow-definition method.

The semi-automatic construction process employs the workflow-definition method.

It analyses the structure and semantics of the current workflow-definition ontology

and its domain ontology to assist and propose further construction steps to the creator.

3.3 instantiation and execution of the workflow-definition

The instantiation and execution of a workflow-definition requires a CompFlow-based

workflow engine implementation.

CompFlow-based workflow engines may integrate and dispatch the execution of

the tasks to external micro-task execution communities such as Mechanical Turk and

CrowdFlower. Alternatively, they can provide their own task resolution interfaces,

which may interact with external social networks such as Facebook and LinkedIn.

Optionally, an extension of the CompFlow ontology, associated with the instantia-

tion and execution engine deployment (i. e. a deployment ontology) may be used by

workflow-definition ontologies to represent the dynamic task and workflow dimension.

The main purpose of the deployment ontology is to extend the CompFlow ontology

with new concepts (e. g. new types and groups of workers and interfaces) that are

dependent on a particular deployment of the instantiation and execution engine.

For workflow-definitions containing task representations that must be solved by hu-

man workers, crowd interface templates must be supplied along with the workflow-

definition ontology. These templates are used to (i) present the task data to the worker,

and (ii) to retrieve the submitted response.

3.4 summary

This chapter provides an overview of the CompFlow approach, which is fully described

in the following chapters. In this sense, the presentation of the CompFlow approach

starts with a formal introduction to ontologies and DL. Afterwards, each of the steps

considered in the CompFlow approach are analysed and discussed in detail.





4
O N T O L O G I E S

Although several definitions have been given to ontology, in the context of this work

an ontology is defined as “a formal, explicit specification of a shared conceptualiza-

tion” [69]. A conceptualization is a set of entities (e. g. objects, concepts, relations or

roles) presumed to exist in a particular domain. It is formal because it is supported

by unambiguous formal logics, explicit since it makes domain assumptions explicit for

reasoning and understanding, and shared for its ability to provide consensus.

Notice that some of the benefits of using ontologies as a workflow representation

mechanism are already explicitly mentioned in this definition, i.e.:

• They allow the application of reasoning algorithms;

• They are easily shared;

• They provide consensus;

• They capture the structure and semantics of data while retaining the ability to be

interpretable by both humans and machines.

This chapter defines ontologies through DL and establishes all the related formalisms

required to define the CompFlow approach. According to this formal representation,

a domain ontology example is given. Finally, a discussion and overview of the

CompFlow ontology is presented.

4.1 ontologies in description logics

The CompFlow approach is formally defined through a DL language that is able to

express role subsumptions and role transitive closures. Concept descriptors (C, D),

role descriptors (R) and nominal descriptors (a, b) are defined according to the syntax

rule in Table 10.

55



56 ontologies

C, D −→ A | (atomic concept)
> | ⊥ | (universal and bottom concepts)
a, b, . . . | (one-of concept)
C t D | (union)
∀R.C | (universal quantification)
∃R.C | (existential quantification)
= nR.C | ≥ nR.C | ≤ nR.C | (quantified cardinality restriction)
R : a (fills nominal restriction)

R, S −→ AR | (atomic role)
R+ | (role transitive closure)
R− | (inverse role)
R t S (role union)

a, b −→ n | (individual)
v (datatype value)

Table 10: Syntax rule of the employed description logic language.

4.1.1 Definition of Ontology

An ontology is defined as a 4-tuple O := (DL, TBox, RBox, AnBox), containing descrip-

tors according to the syntax rule in Table 10, where:

• DL is the set of all concept, role and nominal descriptors;

– DLC ⊆ DL is the set of all concept descriptors;

– DLAC ⊆ DLC is the set of all atomic concept descriptors, C −→ A;

– DLR ⊆ DL is the set of all role descriptors;

– DLAR ⊆ DLR is the set of all atomic role descriptors, R −→ AR;

– DLn ⊆ DL is the set of all individual descriptors, a −→ n;

– DLv ⊆ DL is the set of all datatype value descriptors, a −→ v;

• TBox is the terminological box containing equivalence and subsumption relation-

ships between concept descriptors, X −→ C v D | C ≡ D, where C ∈ DLC and

D ∈ DLC;

• RBox is the role box containing equivalence and subsumption relationships be-

tween role descriptors, X −→ R v S | R ≡ S, where R ∈ DLR and S ∈ DLR;



4.1 ontologies in description logics 57

• AnBox is an annotation box containing assertions of the form X −→ R(C, v),

where C ∈ DL, R ∈ DLR and v ∈ DLv.

The Terminological Box or Taxonomy (TBox) and the Role Box (RBox) contain the

vocabulary of the knowledge domain, consisting on concepts and roles. The vocabu-

lary is defined through terminological and role axioms such as subsumptions (v) and

equalities (≡). The Annotation Box (AnBox) contains assertions about concept and role

descriptors.

The expressions in Table 11 are part of this definition, where bXeρ is a DL axiom X

in the TBox ρ.

Likewise, the expression bXeρ can also be used to represent axioms inside a RBox ρ

(where X must follow the syntax allowed in the RBox) or inside an AnBox ρ (where X

must follow the syntax allowed in the AnBox).

(C R−→ D)ρ ⇒
bC v ∃R.Deρ ∨ bC v ∀R.Deρ ∨ (∃n : bC v= nR.Deρ ∨ bC v≥ nR.Deρ ∨ bC v≤
nR.Deρ), which defines if a role R restriction with domain C and range D exists

(C R−→
X

D)ρ ⇒

bC v Xeρ ∧ (bX ≡ ∃R.Deρ ∨ bX ≡ ∀R.Deρ ∨ (∃n : bX ≡= nR.Deρ ∨ bX ≡≥
nR.Deρ ∨ bX ≡≤ nR.Deρ))

minC(C R−→ D)ρ =

n : bC v= nR.Deρ ∨ bC v≥ nR.Deρ ∨ (bC v ∃R.Deρ ∧ n = 1) ∨ n = 0

maxC(C R−→ D)ρ =

n : bC v= nR.Deρ ∨ bC v≤ nR.Deρ ∨ n = ∞

exactC(C R−→ D)ρ =

n : bC v= nR.Deρ ∨ (bC v≥ nR.Deρ ∧ bC v≤ nR.Deρ) ∨ n = 0

sameR(C1 RC−→ C2, D1 RD−→ D2)(ρC,ρD) ⇒
If bC1 v ∀RC.C2eρC then bD1 v ∀RD.D2eρD and
If bC1 v ∃RC.C2eρC then bD1 v ∃RD.D2eρD and
∀n : bC1 v= nRC.C2eρC then bD1 v= nRD.D2eρD and
∀n : bC1 v≥ nRC.C2eρC then bD1 v≥ nRD.D2eρD and
∀n : bC1 v≤ nRC.C2eρC then bD1 v≤ nRD.D2eρD and
∀a : bC1 v RC : aeρC then bD1 v RD : aeρD,
which defines a set of rules that enforce the same role restrictions between two
pairs of concepts in different TBoxes

Table 11: Additional expressions in the ontology definition.



58 ontologies

If an ontology, O1, extends or imports (B) another ontology, O2, then O2 is contained

in O1, i. e. if O1 B O2 then DLO2 ⊆ DLO1, TBoxO2 ⊆ TBoxO1, RBoxO2 ⊆ RBoxO1 and

AnBoxO2 ⊆ AnBoxO1. The relation B is transitive.

4.1.2 Definition of Knowledge Base

A knowledge base is an ontology with an Assertion Box (ABox). It is defined as a 3-tuple

KB := (ADL, ABox, O), where:

• ADL is a set of nominals according to the syntax rule in Table 10;

– ADLn ⊆ ADL is the subset of individuals, a −→ n;

– ADLv ⊆ ADL is the subset of datatype values, a −→ v;

• ABox is the ABox, containing assertions of the form X −→ C(n) | R(n, a), where

C ∈ DLCO, R ∈ DLRO, n ∈ ADLn, and a ∈ ADL;

• O is the ontology of the knowledge base.

The expression bXeρ may be used to represent axioms inside an ABox ρ, where X

must follow the syntax allowed in the ABox.

The ABox contains “assertions about named individuals in terms of” the TBox [3],

such as C(a) and R(a, b). C(a) means that a belongs to the interpretation of C (i. e. a is

an individual of C). R(a, b) means that b is a filler of the role R for a (i. e. a is related to

b through R).

An ABox can be considered as a possible instantiation of the TBox. In analogy to

relational databases, the TBox would be the relational database schema and the ABox

would be the rows or data inside each table. However, unlike relational databases,

which follow a closed-world assumption, the interpretation of an ABox follows an open-

world assumption. Thus, it cannot be assumed that the knowledge in a Knowledge

Base (KB) is complete.

4.1.3 Interpretation of the DL Language

A DL interpretation is a tuple I := (∆I , ·I) where ∆I is a non-empty set, defining

the domain of the interpretation, and ·I is an interpretation function that assigns to

every atomic concept A a set AI ⊆ ∆I , and to every atomic role R a binary relation



4.1 ontologies in description logics 59

RI ⊆ ∆I × ∆I . The interpretation function is extended to concept and role descriptors

by the inductive definitions shown in Table 12.

An interpretation I is a model of an ontology O if it satisfies the axioms in the TBox,

the RBox, and the AnBox, of O, i.e.:

• If C v D then CI ⊆ DI ;

• If R v S then RI ⊆ SI ;

• If C ≡ D then CI = DI ;

• If R ≡ S then RI = SI ;

• If R(C, a) then (CI , aI) ∈ RI .

A model of an ontology is also a model of the ontology’s TBox, RBox and AnBox.

A concept, C, is satisfiable (i. e. non-contradictory) with respect to a TBox, ρ, if there

exists a model of ρ, such that C is non-empty (i. e. does not subsume ⊥) [3].

An interpretation I is a model of a knowledge base KB with an ontology O, if it is a

model of O and if it satisfies the axioms in the ABox of KB, i.e.:

• If C(n) then nI ∈ CI ;

• If R(n, a) then (nI , aI) ∈ RI .

AI ⊆ ∆I

RI ⊆ ∆I × ∆I

(R+)I =
⋃

n>0(Rn)I , (Rn)I = {(a, b)|∃b : (b, c) ∈ RI ∧ (a, b) ∈ (Rn−1)I}
(R−)I = {(b, a) ∈ ∆I × ∆I |(a, b) ∈ RI}
(R t S)I = RI ∪ SI

>I = ∆I

⊥I = ∅
({a, b, . . .})I ⊆ ∆I

(C t D)I = CI ∪ DI

(∀R.C)I = {a ∈ ∆I |∀b : (a, b) ∈ RI ⇒ b ∈ CI}
(∃R.C)I = {a ∈ ∆I |∃b : (a, b) ∈ RI ∧ b ∈ CI}
(= nR.C)I = {a ∈ ∆I |

∣∣{b|(a, b) ∈ RI ∧ b ∈ CI}
∣∣ = n}

(≥ nR.C)I = {a ∈ ∆I |
∣∣{b|(a, b) ∈ RI ∧ b ∈ CI}

∣∣ ≥ n}
(≤ nR.C)I = {a ∈ ∆I |

∣∣{b|(a, b) ∈ RI ∧ b ∈ CI}
∣∣ ≤ n}

aI ∈ ∆I

(R : a)I = {d ∈ ∆I |(d, aI) ∈ RI}

Table 12: The DL interpretation function definitions.



60 ontologies

An ABox, A, is consistent with respect to a TBox, T, and a RBox, R, if there is an

interpretation that is a model of A, T and R [3].

4.1.4 Domain Ontologies

The static structure and semantics of a particular domain of knowledge are captured

by domain ontologies in the form of concepts, their relations and constraints. These can

be analysed and employed in the semi-automatic construction of workflow-definition

ontologies.

Consider the document ontology and example ABox presented in Figure 9 as a knowl-

edge base. The graph structure of the TBox defines the known concepts and roles of

individuals in the ABox. Following the restrictions specified in this structure, the incre-

mental filling of the ABox is possible through the execution of several atomic operations

represented through task-definitions. In the specific case of the document ontology, an

initial ABox with English sections may be supplied as input to the workflow, resulting

in translated Portuguese sections. Since the ontology contains the semantics for the

sub-division of sections, some of the task-definitions may consider their sub-division

into smaller units (e. g. paragraphs, sentences).

The ontology in Figure 9 contains the following TBox:

ABox Example

∃ contains ∃ contains

type type

Text

Section Paragraph Sentence

String=1 hasText

Sub-class of
(⊑)

paper_s1p1paper_s1

Concept

Datatype

instance
RoleRole

Restriction

paper_s1p2

type

contains

contains

TBox

Integer

=1 hasOrdinal

Figure 9: The document ontology (TBox only) with a possible example ABox (or instantiation).
The TBox is an adaptation from the DoCO1.

1DoCO: http://purl.org/spar/doco/

http://purl.org/spar/doco/


4.2 the compflow ontology 61

• Text v= 1hasText.String;

• Text v= 1hasOrdinal.Integer;

• Section v Text;

• Section v ∃contains.Paragraph;

• Paragraph v Text

• Paragraph v ∃contains.Sentence;

• Sentence v Text.

The ABox, on the other hand, contains the following axioms:

• Section(paper_s1);

• Paragraph(paper_s1p1);

• Paragraph(paper_s1p2);

• contains(paper_s1, paper_s1p2);

• contains(paper_s1, paper_s1p1).

4.2 the compflow ontology

The CompFlow ontology, as depicted in Figure 10, defines the basic concepts and roles

required to represent workflows. It captures concepts and lessons learnt from widely

known workflow specification languages and approaches such as the XPDL and BPMN

[22]. Furthermore, it incorporates concepts that aid in the crowdsourcing, distribution

and delivery of tasks.

Formally, the CompFlow ontology or its extension (the deployment ontology) is

defined as OCF = (DLOCF, TBoxOCF, RBoxOCF, AnBoxOCF), which includes:

• DDTOCF ⊆ DLOCF = {Unit, Response, UnitContext, ResponseContext}, i. e. the set

of abstract concepts that represent the domain (input and output) of an activity

(the domain definition types);

• DDROCF ⊆ DLOCF = {hasUnit, hasUnitContext, hasResponse, hasResponseContext},
i. e. the set of top-level roles that restrict the domain (input and output) of an

activity (the domain definition roles);

• TDTOCF ⊆ DLOCF = {CreateAndFillTask, FillTask, SelectionTask, MajorityVotingFil-

terTask}, which is a set of task types;



62 ontologies

Task

Workflow Activity

Ǝ hasStartActivity
Ǝ hasCurrentActivity

Ǝ hasActivity
∀ transitionTo

Worker

Ǝ performedBy
Ǝ acceptedBy

Deliverable

Event

Interface

EventInterface

TaskInterface

∀ executedThrough

∀ executedThrough

Transition

=1 hasState

StatePriority

=1 hasPriority

Loop

Job Requester Actor (Person ⊔ Machine)

Ǝ hasWorkflow

Ǝ ownedBy

Ǝ executedThrough

∀ to∀ from

Extensible Workflow-Definition TBox

Assignment

∃ hasOperationalization

=1 performedBy

=1 executedThrough

Figure 10: Overview of the CompFlow ontology.

• EDTOCF ⊆ DLOCF = {InstantiationEvent, RunningEvent}, which is a set of event

types;

• RDTOCF ⊆ DLOCF = {BasicTransition, ConditionalTransition, SynchronizationTransi-

tion, MergeTransition, ParallelTransition, DisjunctTransition}, which is a set of tran-

sition types;

• PDOCF ⊆ DLOCF = {lowest, low, medium, high, highest}, i. e. the set of priority

values;

• SDOCF ⊆ DLOCF = {notStarted, inProgress, paused, cancelled, finished, withError},
i. e. the set of state values.

4.2.1 Jobs

The Job concept represents a workflow execution environment created and owned by

a Requester, which may contain more than one Workflow. Each job has an operational

ABox, OABox ⊆ ABoxKBJ , inside a knowledge base, KBJ = (ADLKBJ , ABoxKBJ , OKBJ),

shared by all its workflows, where OKBJ is an ontology that imports all the workflow-

definition ontologies of the job. The partial TBox that describes the contents inside the

operational ABox is called an operational TBox.



4.2 the compflow ontology 63

4.2.2 Interfaces

The execution of a workflow requires interaction with external actors and services

during the execution of Event and Task activities. While an Event is typically listened

for, and arrives through an EventInterface, a Task must be delivered to and retrieved

from workers through a TaskInterface. Thus, interfaces represent logical and/or physical

components through which the interaction with workers (machine or person/human)

is performed (e. g. a Web service interface, a graphical user Web interface).

The ability to represent different types of interfaces enables the specification of dis-

tinct interfaces, commonly used on user-centric environments [41]:

• Simple, where a single medium or modality is used. For instance, tasks can be

delivered to workers through a visual interface, a sound interface, or simply

through a Web interface (the common case for crowdsourcing applications);

• Multi-modal, i. e. capable of merging and coordinating multiple mediums and

modalities in a single interface.

Accordingly, and of particular interest in the crowdsourcing scenario, different types

of user interface implementations (such as a game interface or a mobile interface) can

be used to distribute tasks through human workers.

Likewise, an event occurrence can arrive through different types of interfaces, such

as publish-subscribe interfaces [14], or event queues.

4.2.3 Actors

Two main types of actors are considered by the CompFlow ontology: the Requester and

the Worker. Also, actors are either Person (human) or Machine (see Figure 11 for an

illustration).

Each Actor may belong to several ActorGroup. Actor groups allow requesters to asso-

ciate and filter groups of actors for participation in particular tasks. An ActorGroup may

include a wide set of attributes, including social network analysis clustering measure-

ments (e. g. clusterability), improving the control of the requester over the selection

of workers. Inclusively, each ActorGroupMembership may feature a wide set of actor

specific attributes and measurements (e. g. centrality and prestige measures).



64 ontologies

Actor ≡ (Person ⊔ Machine)

MachinePerson

Requester

Worker TaskInterfaceƎ accessibleThrough

JobƎ owns

ActorGroup

ActorGroupMembership

=1 group

=1 actor

Figure 11: Actors in the CompFlow ontology.

4.2.4 Activities

Activities are the inter-connected components that form a workflow. There are three

main types of activities: the Workflow, the Task and the Event. Among these, Deliverables,

which include Task and Event, represent a group of activities that require worker or

external interaction through some kind of Interface.

Each activity has a State and a Priority. The State of the activity is established during

the execution of the workflow it belongs to. The possible state values are notStarted,

inProgress, paused, finished, cancelled and withError. The Priority is assigned by the re-

quester or the creator of the workflow-definition, and provides the instantiation and

execution engine with a measure that can be employed to schedule activities in situ-

ations of concurrency. The possible priority values are lowest, low, medium, high and

highest.

4.2.4.1 Tasks

A task is a set of assignments and operations on top of operational input data (ABox),

which must be performed by workers.

All the operations involved in the execution of a task are performed on top of the

data in the operational ABox. Thus, the input of the tasks comes from the operational

ABox and the output of the tasks goes into the operational ABox. Analogously, the op-

erations involved in a task, along with its input and output data, are described by its

operational TBox.

As depicted in Figure 12, the representation of a task involves multiple concepts and

roles in the CompFlow ontology.

The concepts inside the operational TBox of the task representation include:



4.2 the compflow ontology 65

ResponseResponseContextUnitContextUnit

Task

Assignment

∀ hasResponseContext∀ hasUnitContext

∀ hasResponse∀ hasUnit

∃ hasOperationalization

DomainThing

InputThing OutputThing

Operational TBox

OperationalThing

Figure 12: Abstract representation of a task according to the CompFlow ontology.

• The Assignment concept, which represents the actual operationalization of the

task;

• Input concepts:

– The Unit concepts, which represent the input unit of work given to the

worker;

– The UnitContext concepts, which represent relevant contextual input data

that must be presented along with the unit (and possibly related to it);

• Output concepts:

– The Response concepts, which represent the top-level response or output

given by the worker;

– The ResponseContext concepts, which represent additional output given by

the worker, usually related to the response.

Each work unit (represented by the Unit concept) is assigned to a worker through an

Assignment. The same unit may be assigned to different workers, resulting in different

solutions to the same problem.

A task is classified, as depicted in Figure 13, according to its inherent atomic opera-

tions.



66 ontologies

Task Worker
Ǝ performedBy
Ǝ acceptedBy

Assignment =1 performedBy

Ǝ hasOperationalization

CreateAndFillTask

FillTask SelectionTask

FilterTask MajorityVotingFilterTask

Figure 13: Types of tasks in the CompFlow ontology.

The type of the task captures the semantics, the structure, and many operational

features of the task. The two main types of tasks are SelectionTask and FillTask. While a

FillTask fills or updates datatype values of individuals in the operational ABox, a Selec-

tionTask consists in selecting or pinpointing individuals inside the operational ABox.

The FilterTask is a special SelectionTask that applies a filtering or voting strategy and

removes the least selected or unselected individuals from the operational ABox.

Different types of FilterTask may be represented through different sub-concepts. Cur-

rently, a majority voting strategy, which can be applied by either or both human and

machine workers, is included. FilterTask are particularly important for tasks that con-

tain more than one assignment per unit, i. e. where the same unit is assigned to more

than one worker. In these situations, the execution of the task may result in the incon-

sistency (see Section 4.1.3) of the operational ABox. In order to avoid these situations,

tasks with more than one assignment per unit are often followed by an associated

FilterTask.

A FillTask only fills datatype role values for already existent individuals of a given

concept. A CreateAndFillTask, on the other hand, is a special type of FillTask that creates

a new individual, for a given concept, and fills its datatype role values.

Workers are associated with assignments and tasks through the acceptedBy and per-

formedBy roles. The acceptedBy role associates a worker that has accepted to participate

in a particular task. The performedBy role associates a worker that has performed a

particular assignment.

4.2.4.2 Events

An Event, as depicted in Figure 14, is an external occurrence that either triggers the

continuation of a running workflow (a RunningEvent) or triggers the execution of a

new workflow (an InstantiationEvent).



4.2 the compflow ontology 67

Event

InstantiationEvent RunningEvent

UnitContextUnit

∀ hasUnitContext∀ hasUnit

Operational TBox

OperationalThing

Figure 14: Events in the CompFlow ontology.

Events are listened and received through an EventInterface. They may bring and re-

sult in additional domain data inside the operational ABox, which can be used by the

following activities. These data, as in the representation of a task, are represented

through Unit and UnitContext concepts. Thus, the whole event representation (or event-

definition) belongs to the operational TBox.

4.2.4.3 Workflows

Workflows are graphs of activities linked through transitions, which establish a process

that delivers, for a given input dataset, a specific result dataset.

Each workflow contains one or more start activities. Workflows that are part of (or

activities of) another workflow are called sub-workflows.

In some cases, the iterative execution of a certain group of activities is required. In

these situations, the activities are grouped into a sub-workflow defined as a Loop. The

representation of a Loop requires that a condition for stopping the iterative process is

given through either a constant integer value that establishes the maximum amount of

iterations, or a rule that is executed on top of the operational ABox.

The operational TBox of a workflow (its partial representation) is the union of the

operational TBoxes of all its activities. Notice that the operational ABox, as depicted in

Figure 15, only contains individuals of domain concepts and operational TBox concepts.

4.2.5 Transitions

The flow of activities in a workflow is established through transitions. Transitions es-

tablish a connection between origin activities (through the from role) and destination

activities (through the to role). As illustrated in Figure 16, there are six main types of



68 ontologies

transitions. According to the set of incoming activities, a transition is classified as a

BasicTransition, a MergeTransition or a SynchronizationTransition. According to the set of

outgoing activities, a transition is classified as a ParallelTransition or a DisjunctTransition.

Furthermore, if a transition establishes one or more conditions onto the operational

ABox that must be fulfilled in order to continue its execution, then it is a Conditional-

Transition.

A transition is a BasicTransition if it has a single incoming activity and no enforced

conditions. A SynchronizationTransition, on the other hand, waits for two or more in-

coming activities before proceeding. A MergeTransition is a transition where there is a

set of incoming activities from which only one of those activities needs to be finished in

order to proceed. The expressivity of DL allows situations where a transition contains

both synchronizations and merges (see the DL definition in Section 5.4).

A ParallelTransition triggers all activities in a set of outgoing activities. On the other

hand, a transition is a DisjunctTransition if there is a set of outgoing activities from

which only one of those activities is triggered.

EventY Operational TBox

Operational ABox

uA1
rB1

TaskX Operational TBox

AssignmentX

UnitA

ResponseB

EventY

UnitC

UnitContextD

TaskZ Operational TBox

AssignmentZ

UnitE

ResponseF

uA2
uC1

ucD1

ucD2&uE1

type
type type

aX1

hasUnit

rB2 aX2

hasUnit

hasResponse

type

eY1

hasUnit

p1

p1

hasUnitContext

hasUnitContext

type
type

type

type
aZ1

rF1

hasUnit

...

=1 hasResponse

=1 hasUnit

=1 hasUnit

∃ hasUnitContext

∃ p1

type

type

type

type

hasResponse

=1 hasResponse

=1 hasUnit

hasResponse

Figure 15: Example of the operational TBox and ABox of a workflow.

Transition

MergeTransitionBasicTransition

SynchronizationTransition

DisjunctTransitionParallelTransition

ConditionalTransition

Activity

∀ to∀ from

Figure 16: Transitions in the CompFlow ontology.



4.3 summary 69

4.3 summary

Since ontologies, as a formal representation mechanism, are currently “the best answer

to the demand for intelligent systems that operate closer to the human conceptual

level” [52], they are appropriate for the definition of workflows and tasks that must be

handled by both human and machine workers.

In order to formally define the CompFlow approach, the language and interpretation

of an expressive family of DL was established. Through this language, an example

domain ontology and the CompFlow ontology have been presented.

The CompFlow ontology is the result of the analysis of state of the art CS and

HC approaches, plus workflow and business process representation and execution ap-

proaches. It defines the basic concepts and roles required to handle and represent

workflow-definitions. Furthermore, it considers scenarios where multiple types of in-

terfaces are used to interact with external human or machine actors. This is useful not

only in the context of CS environments, where many Web platforms have emerged, but

also in user-centric environments where several physical interfaces are used to interact

with multiple actors.





5
A M E T H O D F O R T H E C O N S T R U C T I O N O F

W O R K F L O W- D E F I N I T I O N S

Tasks (whether they involve physical actions or not) can be seen as a process that, in

a particular context, results in the emergence of new data (i. e. responses) from the

presentation of particular pieces of data (i. e. units) to a worker or actor. A workflow

of tasks is, thus, the continuous ordered increment of new (different types of) data, in

a specific context or domain.

With the assumption that domain ontologies represent the structure and semantics

of the data (i. e. the static dimension) that must be presented and retrieved from work-

ers during the execution of a task, a method for the definition and representation of

ontology-based workflows of tasks (i. e. the construction of workflow-definition ontolo-

gies) is proposed.

The proposed method suggests that the task’s input and output data, namely units

and responses, correspond to (likely related) individuals of domain ontology concepts.

Therefore, and more concretely, the execution of a task can be considered to be an

operation on top of individuals and their relationships, according to the domain on-

tology. The execution of a workflow of tasks is then considered to be the incremental

instantiation of the domain ontology according to its structure and semantics.

5.1 the workflow-definition ontology

A workflow-definition ontology contains one, and only one, top-level workflow-

definition (i. e. a non-sub-workflow-definition), which may contain multiple activity-

definitions:

• Sub-workflow-definitions, i. e. representations of sub-workflows;

• Task-definitions, i. e. representations of tasks;

• Event-definitions, i. e. representations of events.

Activity-definitions are connected through transition-definitions, which represent tran-

sitions between activities.

71



72 a method for the construction of workflow-definitions

Task-definitions and event-definitions define the operational TBox, which describes

and represents the contents inside the operational ABox. The operational TBox, OTBox,

of a workflow-definition ontology, OWF, is defined as a partial TBox inside the

workflow-definition ontology, i. e. OTBox ⊆ TBoxOWF.

The workflow-definition ontology, defined as OWF = (DLOWF, TBoxOWF, RBoxOWF,

AnBoxOWF), is a:

• Domain extension (BOD) of a domain ontology, OD = (DLOD, TBoxOD, RBoxOD,

AnBoxOD), through ∆OD (see Section 5.2.1 and Section 5.3.1), i. e. OWF BOD OD;

• CompFlow extension (BOCF) of a CompFlow (or deployment) ontology, OCF =

(DLOCF, TBoxOCF, RBoxOCF, AnBoxOCF), through ∆OCF (see Section 5.2.1 and Sec-

tion 5.3.1), i. e. OWF BOCF OCF.

5.2 task-definitions

Task-definitions are representations of (i) a set of atomic operations, (ii) their input

data and (iii) their output data (i. e. of tasks). They are augmented partial replicas of

the domain ontology’s TBox. In fact, a task-definition can be resumed to the represen-

tation of a process of obtaining a consistent ABox with respect to the task-definition’s

operational TBox, which fully follows role restrictions involving input and output con-

cepts through a closed-world assumption (i. e. all restrictions must be satisfied by the

ABox).

5.2.1 Definition

Formally, a task-definition is a structure TDe f (OWF) := (AT, T, AA, IO, IOBox, AR,

ARBox, ∆OD, ∆OCF, W, I, p, l, d, au), where:

• AT ∈ DLACOWF is the atomic task concept;

• T ⊆ TDTOCF is the set of atomic concepts that define the type of the task-

definition;

• AA ∈ DLACOWF is the atomic assignment concept;

• IO ⊆ DLOWF is a set of input and output concept descriptors;

– IOI ⊆ IO ∩ DLACOWF is the set of atomic input concepts;



5.2 task-definitions 73

– IOO ⊆ IO ∩ DLACOWF is the set of atomic output concepts;

– IOI ∪ IOO = IO ∩ DLACOWF;

• IOBox ⊆ OTBox is a partial operational TBox that establishes the role restrictions

between all input and output concepts in IO (a refinement of those present in the

domain ontology). It does not contain any concept descriptor from DLOCF, DLOD

or from any other subset besides IO;

– DTBox ⊆ IOBox is the partial IOBox that establishes all datatype role re-

strictions onto input and output concepts;

• AR ⊆ DLROWF is a set of custom input and output roles that establish the role

restrictions between AA and each atomic input and output concept;

• ARBox ⊆ OTBox is the partial operational TBox that establishes all input and

output role restrictions and cardinalities onto AA (using the roles in AR and in

DDROCF);

• ∆OD : (IOI ∪ IOO)× DLACOD is a type-of relation that associates each atomic

input or output concept to a domain concept;

• ∆OCF : (IOI ∪ IOO)× DDTOCF is a type-of relation that associates each atomic

input or output concept to its type in the OCF ontology;

• W ∈ DLACOWF is the atomic worker concept;

• I ∈ DLACOWF is the atomic task interface concept;

• p ∈ PDOCF is the individual indicating the priority of the task-definition;

• l ∈ DLvOWF is the datatype value containing the label of the task-definition;

• d ∈ DLvOWF is the datatype value containing the description of the task-

definition;

• au ∈ DLvOWF is the datatype value corresponding to the amount of assignments

per unit (i. e. assignments with the same input data) of the task-definition.

Accordingly, the functions in Table 13 are considered for this definition.

In the context of the task-definition, the relations ∆OD and ∆OCF can be expressed in

pure DL. For two concepts C and D with (C, D) ∈ ∆OD, then C v D. Similarly, for two

concepts, C and D with (C, D) ∈ ∆OCF, then C v D.

The IOBox represents all the data involved in a single assignment. It must be inter-

preted using a closed-world assumption (where all unknown knowledge is presumed

to be false) during the execution of tasks. On the one hand, input concepts and their



74 a method for the construction of workflow-definitions

function description

isTDe f : DLACOWF → {0, 1} indicates if an atomic concept represents a
task-definition

f TDe fOP : DLACOWF → 2DLACOWF given AT returns its set of operational atomic
concepts,
i. e. f TDe fOP(AT) = {AA} ∪ IOI ∪ IOO

f TDe fAA : DLACOWF → DLACOWF given AT returns its AA,
i. e. f TDe fAA(AT) = AA

f TDe f IO : DLACOWF → 2DLCOWF given AT returns its IO,
i. e. f TDe f IO(AT) = IO

f TDe f IOI : DLACOWF → 2DLACOWF given AT returns its IOI,
i. e. f TDe f IOI(AT) = IOI

f TDe f IOO : DLACOWF → 2DLACOWF given AT returns its IOO,
i. e. f TDe f IOO(AT) = IOO

f TDe f IOBox : DLACOWF → 2OTBox given AT returns its IOBox,
i. e. f TDe f IOBox(AT) = IOBox

f TDe f∆OD given AT returns its ∆OD,
i. e. f TDe f∆OD(AT) = ∆OD

f TDe f∆OCF given AT returns its ∆OCF,
i. e. f TDe f∆OCF(AT) = ∆OCF

Table 13: Additional functions for task-definitions.

role restrictions represent the input data that must be selected from the operational

ABox. Since a closed-world assumption is followed, all DL restrictions must be satisfied

by the selected data. On the other hand, output concepts represent new data that will

be added to the operational ABox. Similarly, the new data must also satisfy all the re-

strictions enforced by the IOBox. For instance, if a cardinality role restriction of exactly

one exists between an assignment concept A1, and an unit context concept UC1, then

exactly one individual of type UC1 must be explicitly associated with each assignment

of type A1, in such a way that it satisfies the role restriction.

The structure TDe f is a valid task-definition if it satisfies the following conditions:

• All of its concepts are satisfiable with respect to TBoxOWF;

• T 6= ∅;

• ∃C : C ∈ IOO ∧ (C, Response) ∈ ∆OCF;

• ∀C ∈ (IOI ∪ IOO)⇒ |{D|(C, D) ∈ ∆OCF}| = 1;



5.2 task-definitions 75

• ∀C, D : C ∈ IOO∧D ∈ IOI ∧ bC v DeIOBox ⇒ {X|(C, X) ∈ ∆OD} = {Y|(D, Y) ∈
∆OD};

• ∀R ∈ AR⇒ bR v SeRBoxOWF ∧ S ∈ DDROCF;

• ∀C ∈ (IOI ∪ IOO)⇒ ∃R : (AA R−→ C)ARBox ∧ (R ∈ AR ∨ R ∈ DDROCF);

• ∀C, R : C ∈ (IOI ∪ IOO) ∧ (AA R−→ C)ARBox ⇒ (R = S ∨ bR v SeRBoxOWF) and:

– S = hasUnit ∧ exactC(AA R−→ C) = 1 if (C, Unit) ∈ ∆OCF;

– S = hasUnitContext if (C, UnitContext) ∈ ∆OCF;

– S = hasResponse if (C, Response) ∈ ∆OCF;

– S = hasResponseContext if (C, ResponseContext) ∈ ∆OCF;

• ∀C, D, R : C ∈ (IOI ∪ IOO) ∧ D ∈ (IOI ∪ IOO) ∧ (C R−→ D)IOBox ⇒ C 6= D;

• bW vWorkereTBoxOWF ;

• bI v TaskInter f aceeTBoxOWF .

The structure TDe f also results in the following additional expressions in the

TBoxOWF and AnBoxOWF:

• ∀C ∈ T ⇒ bAT v CeTBoxOWF ;

• bAA v AssignmenteTBoxOWF ;

• bAT v ∀hasOperationalization.AAeTBoxOWF ;

• bAT v ∀acceptedBy.WeTBoxOWF ;

• bAT v ∀executedThrough.IeTBoxOWF ;

• bAT v hasPriority : peTBoxOWF ;

• bAT v hasAssignmentsPerUnit : aueTBoxOWF ;

• blabel(AT, l)eAnBoxOWF ∧ bdescription(AT, d)eAnBoxOWF .

5.2.2 Types

A task-definition is classified according to its operational structure and semantics.

Consequently, three main types of task-definitions are proposed: the FillTask, the

SelectionTask, and the CreateAndFillTask. FillTask and SelectionTask task-definitions are

structurally distinguished from CreateAndFillTask task-definitions through the existence

(or non-existence) of a subsumption between an output concept and an input concept.



76 a method for the construction of workflow-definitions

More precisely, if there is an output concept C that subsumes an input concept D

(C v D), then all output individuals of C must also be input individuals of D (i. e.

the inherent task-definition operation does not result in new individuals). In such sit-

uations, the task-definition is either a FillTask or a SelectionTask. Otherwise, if there is

an output concept that does not subsume an input concept, then the inherent task-

definition operation will result in new individuals. In this case, the task-definition has

the type CreateAndFillTask.

The structural distinction between FillTask and SelectionTask task-definitions depends

on the cardinality role restrictions of the input and output concepts in the ARBox. If

there is an output concept C that subsumes an input concept D (C v D) and at most

one individual of D can belong to the input of each assignment (i. e. ∀R : maxC(AA R−→
D)ARBox ≤ 1), then at most one (the same) individual of D can be part of the output of

each assignment. In this case, no selection can be performed and the task-definition is

of type FillTask. Otherwise, it is a SelectionTask task-definition, since a selection of the

multiple individuals of D must be performed.

Accordingly, a task-definition is:

• A CreateAndFillTask if it leads to new individuals of an output concept, i. e.

CreateAndFillTask ∈ T if:

∃C@D : C ∈ IOO ∧ D ∈ IOI ∧ bC v DeIOBox

• A FillTask is it fills or updates the datatype role values of an already existent

individual, i. e. FillTask ∈ T if:

∃C∃D∀R : C ∈ IOO ∧ D ∈ IOI ∧ bC v DeIOBox ∧ (AA R−→ D)ARBox∧

maxC(AA R−→ D)ARBox ≤ 1

• A SelectionTask if it picks from or filters a set of already existent individuals, i. e.

SelectionTask ∈ T if:

∃C∃D∀R : C ∈ IOO ∧ D ∈ IOI ∧ bC v DeIOBox ∧ (AA R−→ D)ARBox∧

maxC(AA R−→ D)ARBox > 1

5.2.3 Cardinalities

Role restrictions in the ARBox establish the cardinalities of the input and output data

for each assignment. The cardinality of the role restrictions in the IOBox must not



5.2 task-definitions 77

contradict those in the ARBox. Otherwise, the instantiation of the task-definition and

associated creation of assignments will result in an inconsistent operational ABox.

In the particular case of subsumptions between concepts in the IOBox, D v C, the

role cardinality values of D in the ARBox must be less or equal than the role cardinality

values of C, i.e.:

∀C, D,R, S : C ∈ (IOI ∪ IOO) ∧ D ∈ (IOI ∪ IOO) ∧ bD v+ CeIOBox∧

(AA R−→ C)ARBox ∧ (AA S−→ D)ARBox ⇒

maxC(AA S−→ D)ARBox ≤ maxC(AA R−→ C)ARBox∧

exactC(AA S−→ D)ARBox ≤ exactC(AA R−→ C)ARBox∧

minC(AA S−→ D)ARBox ≤ minC(AA R−→ C)ARBox

This condition is enforced to allow the execution of a closed-world reasoning process

during the instantiation of the task-definition and association of the input data. I.e., if

D v C, then all D are C. Thus, following a closed-world assumption, the dataset can

never contain more individuals of D than those of C.

On the other hand, if there is a relationship between two concepts in the IOBox,

(D R−→ C)IOBox, the role cardinality values of the relationship in the IOBox must be less

or equal than the role cardinality values of C in the ARBox, i.e.:

∀C, D,R, S : C ∈ (IOI ∪ IOO) ∧ D ∈ (IOI ∪ IOO) ∧ (D R−→ C)IOBox∧

(AA S−→ C)ARBox ⇒

maxC(D R−→ C)IOBox ≤ maxC(AA S−→ C)ARBox∧

exactC(D R−→ C)IOBox ≤ exactC(AA S−→ C)ARBox∧

minC(D R−→ C)IOBox ≤ minC(AA S−→ C)ARBox

Not meeting this condition results in an invalid closed-world interpretation of the

task-definition. For instance, the role restriction (AA S−→ C)ARBox may demand for at

most two individuals of C, and the IOBox may contain a role restriction (D R−→ C)ARBox

demanding that for each individual of D there are exactly three of C. In this situation,

for each assignment and its data, one of these axioms can never be satisfied.

If the role restriction is applied between an output concept and an input concept, an

additional optional condition may be enforced regarding role cardinality restrictions



78 a method for the construction of workflow-definitions

inside the ARBox, i. e. the role cardinality of one of the concepts in the ARBox must

be less or equal than one:

∀C, D,R, S, T : ((C ∈ IOI ∧ D ∈ IOO) ∨ (C ∈ IOO ∧ D ∈ IOI))∧

(D R−→ C)IOBox ∧ (AA T−→ D)ARBox ∧ (AA S−→ C)ARBox ⇒

maxC(AA S−→ C)ARBox ≤ 1∨maxC(AA T−→ D)ARBox ≤ 1

If this condition is enforced, the relationship R between C and D can be automatically

established during the execution of the task. Otherwise, a combinatorial problem may

arise due to the need to relate multiple instances of C with multiple instances of D,

through R.

5.2.4 Example No. 1: Creating Individuals

The DL representation of a task-definition that creates new individuals is presented in

Figure 17. The depicted task-definition is defined as TDe f 1 = (AT, T, AA, IO, IOBox,

AR, ARBox, ∆OD, ∆OCF, A1TW, A1TI, medium, l, d, 1), where:

• AT = A1T;

• T = {CreateAndFillTask};

• AA = A1;

• IOI = {A′, B′};

• IOO = {C′};

• bA′ v ∃p1.B′eIOBox, bA′ v= 1p2.C′eIOBox, bA′ v p5 : “abc”eDTBox

and bC′ v p6 : 3eDTBox;

• AR = ∅;

• bA1 v= 1hasUnit.A′eARBox, bA1 v ∃hasUnitContext.B′eARBox

and bA1 v= 1hasResponse.C′eARBox;

• ∆OD = {(A′, A), (B′, B), (C′, C)};

• ∆OCF = {(A′, Unit), (B′, UnitContext), (C′, Response)};

• bA1TW ≡WorkereTBoxOWF (all workers);

• bA1TI ≡ TaskInter f aceeTBoxOWF (all task interfaces).



5.2 task-definitions 79

A

B

C

D

E

A’

B’

C’

Ǝ p1

Ǝ p1

=1 p2

=1 p2 =1 p3

Ǝ p4

Unit UnitContext Response

ΔOCF ΔOCF
ΔOCF

ΔODΔODΔOD
Domain Ontology (OD)

IOBox

CompFlow Ontology (OCF)

...

Assignment

A1

Ǝ hasUnitContext

=1 hasUnit

ARBox

A’ B’ C’

p5

“abc” p63

=1 hasResponse

Figure 17: Operational DL representation of a task-definition that creates new individuals.

Notice how the IOBox, in terms of DL, is an independent partial replica of the

TBoxOD. An augmentation of the TBoxOD is achieved by adding new role restrictions

to the IOBox that are not present in TBoxOD.

The interpretation of this task-definition in terms of its instantiation and execution

(as defined in Section 6.1) is performed, through a closed-world assumption, as follows.

Workers have to provide an individual of C′ (along with its datatype role values) for

each individual of A′. Also, all individuals of C′ must have the value 3 for the role p6,

i. e. ∀z : bC′(z)eOABox ⇒ bp6(z, 3)eOABox.

Individuals of A′ are those of A that have the value “abc” for the role p5 and

are related to at least one individual of B through p1, i. e. ∀x∃y : bA(x)eOABox ∧
bp5(x, “abc”)eOABox ∧ bB(y)eOABox ∧ bp1(x, y)eOABox ⇒ bA′(x)eOABox. Individuals of

A′ and C′ must be related through the role p2.

Individuals of B′ are presented to workers as contextual information. These indi-

viduals are those of B that are related to an individual of A′ through p1, i. e. ∀y∃x :

bB(y)eOABox ∧ bA′(x)eOABox ∧ bp1(x, y)eOABox ⇒ bB′(y)eOABox.

5.2.5 Example No. 2: Optional Input or Output

The DL representation of the task-definition TDe f 2, presented in Figure 18 is very

similar to the previous example. However, since B′ and C′ are exclusively the target

of role restrictions with a minimum cardinality of zero, the existence of individuals

of both B′ and C′ (the response) are optional. This means that (i) individuals of A′



80 a method for the construction of workflow-definitions

without any related individuals of B′ are still eligible as units, and (ii) that the worker

may choose not to submit any response for the assignment of TDe f 2.

The task-definition in this example is defined as TDe f 2 = (AT, T, AA, IO, IOBox,

AR, ARBox, ∆OD, ∆OCF, A1TW, A1TI, medium, l, d, 1), where:

• AT = A1T;

• T = {CreateAndFillTask};

• AA = A1;

• IOI = {A′, B′};

• IOO = {C′};

• bA′ v≥ 0p1.B′eIOBox and bA′ v≥ 0p2.C′eIOBox;

• AR = ∅;

• bA1 v= 1hasUnit.A′eARBox, bA1 v≥ 0hasUnitContext.B′eARBox and

bA1 v≥ 0hasResponse.C′eARBox;

• ∆OD = {(A′, A), (B′, B), (C′, C)};

• ∆OCF = {(A′, Unit), (B′, UnitContext), (C′, Response)};

• bA1TW ≡WorkereTBoxOWF (all workers);

• bA1TI ≡ TaskInter f aceeTBoxOWF (all task interfaces).

A

B

C

D

E

A’

B’

C’

Ǝ p1

≥0 p1

≥0 p2

=1 p2 =1 p3

Ǝ p4

Unit UnitContext Response

ΔOCF ΔOCF ΔOCF

ΔODΔODΔOD
Domain Ontology (OD)

IOBox

CompFlow Ontology (OCF)

...

Assignment

A1=1 hasUnit

ARBox

A’ B’ C’

≥0 hasUnitContext

≥0 hasResponse

Figure 18: Operational DL representation of a task-definition with optional input and output
data.



5.2 task-definitions 81

5.2.6 Example No. 3: Concept Hierarchies

Hierarchies of input and output concepts are formed when a subsumption exists be-

tween two or more concepts. Although the semantics remain that of DL, the opera-

tional interpretation is special regarding output concepts. The task-definition TDe f 3,

depicted in Figure 19, exemplifies such a scenario.

In this scenario, the worker must provide an individual of C′ (the response) for

every individual of A′ (the unit). However, since output sub-concepts of C′ exist in the

representation, the worker must also pick the type of the response individual, which

may be either CI′ or CII′. A relationship, p1, to AI′ is established only if the response

is of type CI′.

The task-definition in this example is defined as TDe f 3 = (AT, T, AA, IO, IOBox,

AR, ARBox, ∆OD, ∆OCF, A1TW, A1TI, medium, l, d, 1), where:

• AT = A1T;

• T = {CreateAndFillTask};

• AA = A1;

• IOI = {A′, AI′, AII′};

• IOO = {C′, CI′, CII′};

A

B

C

D

E

A’

Ǝ p1

=1 p2 =1 p3

Ǝ p4

Unit UnitContext Response

ΔOCF ΔOCF
ΔOCF

ΔOD
ΔODΔOD Domain Ontology (OD)

IO
B

o
x

CompFlow Ontology (OCF)

...

Assignment

A1

≥0 hasResponseContext

=1 hasUnit

ARBox

AI’

ΔOD

CI’

C’

ΔODΔOD

ΔOCF

AII’

ResponseContext

ΔOCF ΔOCF

CII’
C’ CI’ CII’

A’AI’AII’

≥0 hasResponseContext
=1 hasResponse

≥0 hasUnitContext

Ǝ p1

≥0 hasUnitContext

Figure 19: Operational DL representation of a task-definition with hierarchies of input and
output concepts.



82 a method for the construction of workflow-definitions

• bAI′ v A′eIOBox, bAII′ v A′eIOBox, bCI′ v C′eIOBox, bCII′ v C′eIOBox and

bCI′ v ∃p1.AI′eIOBox;

• AR = ∅;

• bA1 v= 1hasUnit.A′eARBox, bA1 v= 1hasUnitContext.AI′eARBox,

bA1 v= 1hasUnitContext.AII′eARBox, bA1 v= 1hasResponse.C′eARBox, bA1 v=
1hasResponseContext.CI′eARBox and bA1 v= 1hasResponseContext.CII′eARBox;

• ∆OD = {(A′, A), (AI′, A), (AII′, A), (C′, C), (CI′, C), (CII′, C)};

• ∆OCF = {(A′, Unit), (AI′, UnitContext), (AII′, UnitContext), (C′, Response),

(CI′, ResponseContext), (CII′, ResponseContext)};

• bA1TW ≡WorkereTBoxOWF (all workers);

• bA1TI ≡ TaskInter f aceeTBoxOWF (all task interfaces).

5.2.7 Example No. 4: Selecting or Filtering Individuals

The previous examples have focused on operations that lead to the emergence of new

individuals. However, other operations (e.g. update or delete) on already existent indi-

viduals are also available. In these cases, a subsumption relationship from an output

concept to an input concept must be established. Such a situation is depicted in Fig-

ure 20, and defined through the task-definition TDe f 4 = (AT, T, AA, IO, IOBox, AR,

ARBox, ∆OD, ∆OCF, A1TW, A1TI, medium, l, d, 1), where:

• AT = A1T;

• T = {MajorityVotingFilterTask};

• AA = A1;

• IOI = {A′, B′};

• IOO = {A′′};

• bA′′ v A′eIOBox and bA′ v ∃p1.B′eIOBox;

• AR = ∅;

• bA1 v ∃hasUnitContext.A′eARBox, bA1 v ∃hasUnitContext.B′eARBox and

bA1 v= 1hasResponse.A′′eARBox;

• ∆OD = {(A′, A), (A′′, A), (B′, B)};

• ∆OCF = {(A′, UnitContext), (B′, UnitContext), (A′′, Response)};



5.2 task-definitions 83

• bA1TW ≡ PersoneTBoxOWF (only human workers);

• bA1TI ≡ TaskInter f aceeTBoxOWF (all task interfaces).

TDe f 4 depicts an operation where all output individuals must be a subset of (al-

ready existent) input individuals. Notice that there are no unit concepts in this task-

definition. Since task-definitions of type FilterTask have an enforced cardinality restric-

tion of exactly one onto unit concepts (otherwise they are not valid), multiple individu-

als of A′ would not be able to be associated with a single assignment if A′ was defined

as a unit concept.

When a unit concept exists, the total amount of assignments is defined by the amount

of units, times the amount of assignments per unit (au). In the case of TDe f 4, however,

the amount of units is assumed to be equal to one, as long as unit context data are

available. The total amount of assignments is, thus, equal to au.

TDe f 4 is a SelectionTask, which means that workers have to select or vote on the

best or most appropriate individual of A′. The selected or voted individuals will also

become individuals of A′′ (i. e. A′′ is the class of selected individuals of A′). However,

since TDe f 4 is also of type FilterTask, and in particular of type MajorityVotingFilterTask,

a majority voting strategy will be employed in obtaining the most selected individual

of A′. The remaining individuals of A′ are then removed (filtered) from the underlying

operational ABox.

A

B

C

D

E

A’

B’

A’’

Ǝ p1

Ǝ p1

=1 p2 =1 p3

Ǝ p4

UnitContext Response

ΔOCF ΔOCF ΔOCF

ΔODΔOD

ΔOD

Domain Ontology (OD)
IOBox

CompFlow Ontology (OCF)

...

Assignment

A1

=1 hasResponse
Ǝ hasUnitContext

Ǝ hasUnitContext

ARBox

A’ B’ A’’

Figure 20: Operational DL representation of a task-definition with a filter operation.



84 a method for the construction of workflow-definitions

5.2.8 Example No. 5: Updating Individuals

As with selection operations, the definition of an update operation requires a

subsumption relationship from an output concept to an input concept. Figure 21

depicts a task-definition with an update operation, TDe f 5 = (AT, T, AA, IO,

IOBox, AR, ARBox, ∆OD, ∆OCF, A1TW, A1TI, medium, l, d, 1), where:

• AT = A1T;

• T = {FillTask};

• AA = A1;

• IOI = {A′, B′};

• IOO = {A′′};

• bA′′ v A′eIOBox and bA′ v ∃p1.B′eIOBox;

• AR = ∅;

• bA1 v= 1hasUnit.A′eARBox, bA1 v ∃hasUnitContext.B′eARBox and

bA1 v= 1hasResponse.A′′eARBox;

• ∆OD = {(A′, A), (A′′, A), (B′, B)};

• ∆OCF = {(A′, Unit), (B′, UnitContext), (A′′, Response)};

• bA1TW ≡WorkereTBoxOWF (all workers);

• bA1TI ≡ TaskInter f aceeTBoxOWF (all task interfaces).

A

B

C

D

E

A’

B’

A’’

Ǝ p1

Ǝ p1

=1 p2 =1 p3

Ǝ p4

UnitContext Response

ΔOCF ΔOCF
ΔOCF

ΔOD

ΔOD

ΔOD

Domain Ontology (OD)
IOBox

CompFlow Ontology (OCF)

...

Assignment

A1

=1 hasResponseƎ hasUnitContext=1 hasUnit

ARBox

A’ B’ A’’

Unit

Figure 21: Operational DL representation of a task-definition with an update operation.



5.3 event-definitions 85

In this case, workers have to fill the datatype role values of each individual of A′. Af-

ter the values (and the assignment) are successfully submitted, the individuals become

part of A′′.

5.3 event-definitions

An event-definition is a representation of events and constitutes a waiting point inside

the workflow-definition. Since event-definitions do not represent operations, the arrival

or occurrence of an event (an instance of the event-definition) is the only requirement

in order to proceed to the following activities.

5.3.1 Definition

Formally, an event-definition is a structure EDe f (OWF) := (AE, T, IO, IOBox, AR,

ARBox, ∆OD, ∆OCF, I, p, l, d), where:

• AE ∈ DLACOWF is the atomic event concept;

• T ∈ EDTOCF is the atomic concept that defines the type of event-definition;

• IO ⊆ DLOWF is a set of data concept descriptors;

– IOI = IO ∩ DLACOWF is the set of atomic data concepts;

• IOBox ⊆ OTBox is a partial operational TBox that establishes the role restrictions

between all data concepts in IO (a refinement of those present in the domain

ontology). It does not contain any concept descriptor from DLOCF, DLOD or from

any other subset besides IO;

– DTBox ⊆ IOBox is the partial IOBox that establishes all datatype role re-

strictions onto data concepts;

• AR ⊆ DLR is a set of custom roles that establish the role restrictions between AE

and each atomic data concept;

• ARBox ⊆ OTBox is the partial operational TBox that establishes all atomic data

concept role restrictions onto AE (using the roles in AR and in DDROCF);

• ∆OD : IOI × DLACOD is a type-of relation that associates each atomic data con-

cept to a domain concept;



86 a method for the construction of workflow-definitions

• ∆OCF : IOI×{Unit, UnitContext} is a type-of relation that associates each atomic

data concept to its type in the OCF ontology;

• I ∈ DLACOWF is the atomic event interface concept;

• p ∈ PDOCF is the individual indicating the priority of the event-definition;

• l ∈ DLvOWF is the datatype value containing the label of the event-definition;

• d ∈ DLvOWF is the datatype value containing the description of the event-

definition.

Accordingly, the functions in Table 14 are considered for this definition.

In the context of the event-definition, the relations ∆OD and ∆OCF can be expressed

in pure DL. For two concepts C and D with (C, D) ∈ ∆OD, then C v D. Similarly, for

two concepts, C and D with (C, D) ∈ ∆OCF, then C v D.

The structure EDe f is a valid event-definition if it satisfies the following conditions:

• All of its concepts are satisfiable with respect to TBoxOWF;

• ∀C ∈ IOI ⇒ |{D|(C, D) ∈ ∆OCF}| = 1;

• ∀C ∈ IOI ⇒ ∃X : (C, X) ∈ ∆OD;

function description

isEDe f : DLACOWF → {0, 1} indicates if an atomic concept represents an
event-definition

f EDe fOP : DLACOWF → 2DLACOWF given AE returns its set of operational atomic
concepts,
i. e. f EDe fOP(AE) = {AE} ∪ IOI

f EDe f IO : DLACOWF → 2DLCOWF given AE returns its IO,
i. e. f EDe f IO(AE) = IO

f EDe f IOI : DLACOWF → 2DLACOWF given AE returns its IOI,
i. e. f EDe f IOI(AE) = IOI

f EDe f IOBox : DLACOWF → 2OTBox given AE returns its IOBox,
i. e. f EDe f IOBox(AE) = IOBox

f EDe f∆OD given AE returns its ∆OD,
i. e. f EDe f∆OD(AE) = ∆OD

f EDe f∆OCF given AE returns its ∆OCF,
i. e. f EDe f∆OCF(AE) = ∆OCF

Table 14: Additional functions for event-definitions.



5.3 event-definitions 87

• ∀R ∈ AR⇒ bR v SeRBoxOWF ∧ S ∈ {hasUnit, hasUnitContext};

• ∀C ∈ IOI ⇒ ∃R : (AE R−→ C)ARBox ∧ R ∈ AR ∪ {hasUnit, hasUnitContext};

• ∀R, C : (AE R−→ C)ARBox ∧ C ∈ IOI ⇒ (R = S ∨ bR v SeRBoxOWF and:

– S = hasUnit ∧ bAE v= 1R.CeARBox if (C, Unit) ∈ ∆OCF;

– S = hasUnitContext if (C, UnitContext) ∈ ∆OCF;

• ∀C, D, R : C ∈ IOI ∧ D ∈ IOI ∧ (C R−→ D)IOBox ⇒ C 6= D;

• bI v EventInter f aceeTBoxOWF .

The structure EDe f also results in the following additional expressions in the

TBoxOWF and AnBoxOWF:

• bAE v TeTBoxOWF ;

• bAE v ∀executedThrough.IeTBoxOWF ;

• bAE v hasPriority : peTBoxOWF ;

• blabel(AE, l)eAnBoxOWF ∧ bdescription(AE, d)eAnBoxOWF .

5.3.2 Example

An event-definition representing events with data that trigger the instantiation and ex-

ecution of a workflow-definition (i. e. an InstantiationEvent), can be defined as EDe f 1 =

(AE, T, IO, IOBox, AR, ARBox, ∆OD, ∆OCF, E1I, medium, l, d), where:

• AE = E1;

• T = InstantiationEvent;

• IOI = {A′, B′};

• bA′ v ∃p1.B′eIOBox;

• bE1 v= 1hasUnit.A′eARBox and bE1 v ∃hasUnitContext.B′eARBox;

• ∆OD = {(A′, A), (B′, B)};

• ∆OCF = {(A′, Unit), (B′, UnitContext)};

• bE1I ≡ EventInter f aceeTBoxOWF (all event interfaces).

This structure translates into the operational DL TBox presented in Figure 22.



88 a method for the construction of workflow-definitions

A

B

C

D

E

A’ B’

Ǝ p1

Ǝ p1

=1 p2 =1 p3

Ǝ p4

Unit

ΔOCF ΔOCF

ΔODΔOD Domain Ontology (OD)

IOBox

CompFlow Ontology (OCF)

...

Event

E1

Ǝ hasUnitContext

=1 hasUnit

ARBox

A’ B’

UnitContext

Figure 22: Operational DL representation of an event-definition.

5.4 transition-definitions

A transition-definition (see Section 4.2.5) features the capabilities established by most

flow control components in languages such as the XPDL. Using DL concept descriptors,

transition-definitions are specified either through a transitionTo role restriction onto

Activity concepts or through Transition concepts.

5.4.1 Definition

Formally, a transition-definition is a structure RDe f (OWF) := (AR, T, CI, CO, Cond),

where:

• AR ∈ DLACOWF is the atomic transition concept;

• T ⊆ RDTOCF is the set of atomic concepts that define the type of the transition-

definition;

• CI ⊆ DLCOWF is the set of concepts representing incoming activity-definitions,

according to the syntax C, D −→ A | C t D;

• CO ⊆ DLCOWF is the set of concepts representing the outgoing activity-defini-

tions, according to the syntax C, D −→ A | C t D;

• Cond ⊆ DLvOWF is a set of conditions onto the operational ABox.

Accordingly, the functions in Table 15 are considered for this definition.

A RDe f is a valid transition-definition if it satisfies the following conditions:

• All of its concepts are satisfiable with respect to TBoxOWF;



5.4 transition-definitions 89

function description

isRDe f : DLACOWF → {0, 1} indicates if an atomic concept represents a
transition-definition

f RDe fT : DLACOWF → 2RDTOCF given AR returns its T,
i. e. f RDe fT(AR) = T

f RDe fCI : DLACOWF → 2DLCOWF given AR returns its CI,
i. e. f RDe fCI(AR) = CI

f RDe fCO : DLACOWF → 2DLCOWF given AR returns its CO,
i. e. f RDe fCO(AR) = CO

f RDe fCond : DLACOWF → 2DLvOWF given AR returns its Cond,
i. e. f RDe fCond(AR) = Cond

Table 15: Additional functions for transition-definitions.

• T 6= ∅;

• |CI| ≥ 1∨ |CO| ≥ 1;

• ∀C ∈ CI ⇒ bC v ActivityeTBoxOWF ∧ (C ∈ DLACOWF ∨ (∃D : D ∈ DLACOWF∧
∧D ∈ CI ∧ bD v CeTBoxOWF));

• ∀C ∈ CO⇒ bC v ActivityeTBoxOWF ∧ (C ∈ DLACOWF ∨ (∃D : D ∈ DLACOWF∧
∧D ∈ CO ∧ bD v CeTBoxOWF)).

The structure RDe f also results in the following additional expressions in the

TBoxOWF:

• ∀C ∈ T ⇒ bAR v CeTBoxOWF ;

• ∀C ∈ CI ⇒ bAR v ∃ f rom.CeTBoxOWF ;

• ∀C ∈ CO⇒ bAR v ∃to.CeTBoxOWF ;

• ∀c ∈ Cond⇒ bAR v hasCondition : ceTBoxOWF .

5.4.2 Types

A transition-definition is classified according to its operational structure and semantics.

A transition-definition is a BasicTransition if it has no conditions and exactly one

input path, i. e. BasicTransition ∈ T if:

|CI| = 1∧ Cond = ∅ ∧ |CI ∩ DLACOWF| = 1



90 a method for the construction of workflow-definitions

A transition-definition is a SynchronizationTransition if it waits for (synchronizes) the

flow of multiple input paths, i. e. SynchronizationTransition ∈ T if:

|CI| > 1

A transition-definition is a MergeTransition if it waits for a single incoming path from

a set of possible multiple input paths, i. e. MergeTransition ∈ T if:

∃C ∈ CI ∧ C /∈ DLACOWF

Notice that, according to the syntax definition of the concept descriptors in CI, Merge-

Transition transition-definitions establish incoming paths through a union. This means

that the flow from only one of the incoming paths in the union is required to arrive in

order to continue the execution of the transition.

A transition-definition is a ParallelTransition if it spawns two or more parallel output

paths, i. e. ParallelTransition ∈ T if:

|CO| > 1

A transition-definition is a DisjunctTransition if it picks a single output path from a

set of possible output paths, i. e. DisjunctTransition ∈ T if:

∃C ∈ CO ∧ C /∈ DLACOWF

Similarly to MergeTransition transition-definitions, DisjunctTransition transition-

definitions establish outgoing paths through a union. This means that the flow must

continue through only one of the possible set of output paths in the union.

Finally, a transition-definition is a ConditionalTransition if it establishes at least one

condition, i. e. ConditionalTransition ∈ T if:

|Cond| ≥ 1

If the transition-definition is a BasicTransition, then it can be reduced to the following

representation in the TBoxOWF, which does not require the existence of an AR (but a

role restriction instead), i.e.:

∀C, D : C ∈ CI ∧ D ∈ CO⇒ bC v ∃transitionTo.DeTBoxOWF



5.4 transition-definitions 91

5.4.3 Example No. 1: Flow Synchronization

A transition-definition for synchronizing two incoming activity-definitions can be de-

fined as RDe f 1 = (AR, T, CI, CO, Cond), where:

• AR = TR1;

• T = {SynchronizationTransition};

• CI = {IncomingActivity1, IncomingActivity2};

• CO = {OutgoingActivity};

• Cond = ∅.

This structure would translate to the following TBox, ρ:

• bTR1 v SynchronizationTransitioneρ;

• bTR1 v ∃ f rom.IncomingActivity1eρ;

• bTR1 v ∃ f rom.IncomingActivity2eρ;

• bTR1 v ∃to.OutgoingActivityeρ.

Because RDe f 1 is of type SynchronizationTransition, the instantiation and execution

of both incoming activity-definitions must be concluded so that the outgoing activity-

definitions can be instantiated and executed.

5.4.4 Example No. 2: Flow Merge

A transition-definition for merging two incoming activity-definitions can be defined as

RDe f 2 = (AR, T, CI, CO, Cond) in a TBox ρ, where:

• AR = TR2;

• T = {MergeTransition};

• CI = {X} with bX ≡ IncomingActivity1t IncomingActivity2eρ;

• CO = {OutgoingActivity};

• Cond = ∅.

This structure would translate to the following TBox, ρ:

• bTR2 v MergeTransitioneρ;

• bTR2 v ∃ f rom.(IncomingActivity1t IncomingActivity2)eρ;



92 a method for the construction of workflow-definitions

• bTR2 v ∃to.OutgoingActivityeρ.

Because RDe f 2 is of type MergeTransition, the instantiation and execution of only one

of the incoming activity-definitions must be concluded so that the outgoing activity-

definitions can be instantiated and executed.

5.4.5 Example No. 3: Flow Parallelization

A parallel transition-definition for two outgoing activity-definitions can be defined as

RDe f 3 = (AR, T, CI, CO, Cond), where:

• AR = TR3;

• T = {ParallelTransition, BasicTransition};

• CI = {IncomingActivity};

• CO = {OutgoingActivity1, OutgoingActivity2};

• Cond = ∅.

This structure would translate to the following TBox, ρ:

• bTR3 v ParallelTransitioneρ;

• bTR3 v BasicTransitioneρ;

• bTR3 v ∃ f rom.IncomingActivityeρ;

• bTR3 v ∃to.OutgoingActivity1eρ;

• bTR3 v ∃to.OutgoingActivity2eρ.

Since this is a BasicTransition, alternatively, the following TBox, ρ, can be formed:

• bIncomingActivity v ∃transitionTo.OutgoingActivity1eρ;

• bIncomingActivity v ∃transitionTo.OutgoingActivity2eρ.

Because RDe f 3 is of type ParallelTransition, both outgoing activity-definitions will be

instantiated and executed.

5.4.6 Example No. 4: Flow Disjunction

A disjunct transition-definition for two outgoing activity-definitions can be defined as

RDe f 4 = (AR, T, CI, CO, Cond) in a TBox ρ, where:



5.4 transition-definitions 93

• AR = TR4;

• T = {DisjunctTransition, BasicTransition};

• CI = {IncomingActivity};

• CO = {X} with bX ≡ OutgoingActivity1tOutgoingActivity2eρ;

• Cond = ∅.

This structure would translate to the following TBox, ρ:

• bTR4 v DisjunctTransitioneρ;

• bTR4 v BasicTransitioneρ;

• bTR4 v ∃ f rom.IncomingActivityeρ;

• bTR4 v ∃to.(OutgoingActivity1tOutgoingActivity2)eρ.

Since this is a BasicTransition, alternatively, a TBox, ρ with bIncomingActivity v
∃transitionTo.(OutgoingActivity1tOutgoingActivity2)eρ can be formed.

Because RDe f 4 is of type DisjunctTransition, only one of the outgoing activity-defini-

tions will be instantiated and executed.

5.4.7 Example No. 5: Flow Conditions

A conditional transition-definition between two activity-definitions can be defined as

RDe f 5 = (AR, T, CI, CO, Cond), where:

• AR = TR5;

• T = {ConditionalTransition};

• CI = {IncomingActivity};

• CO = {OutgoingActivity};

• Cond = {“∀x, y : C(x) ∧ D(y)⇒ R(x, y)”}.

This structure would translate to the following TBox, ρ:

• bTR5 v ConditionalTransitioneρ;

• bTR5 v ∃ f rom.IncomingActivityeρ;

• bTR5 v ∃to.OutgoingActivityeρ;

• bTR5 v hasCondition : “∀x, y : C(x) ∧ D(y)⇒ R(x, y)”eρ.



94 a method for the construction of workflow-definitions

Because RDe f 5 is of type ConditionalTransition, the outgoing activity-definition will

be instantiated and executed only if the specified conditions are satisfied. For instance,

in RDe f 5, the OutgoingActivity activity-definition will only be instantiated if the condi-

tion ∀x, y : C(x) ∧ D(y) ⇒ R(x, y) applied on top of the operational ABox evaluates to

true (i. e. all individuals of C and D must be related through R).

5.5 workflow-definitions

A workflow-definition is the representation of a workflow. It is a graph of activity-

definitions (i. e. task-definitions, event-definitions and sub-workflow-definitions)

linked by transition-definitions.

5.5.1 Definition

Formally, a workflow-definition is a structure W f De f (OWF) := (AW, T, AD, TRD,

IED,♦WF, Cond, p, l, d), where:

• AW ∈ DLACOWF is the atomic workflow-definition concept;

• T ∈ {Work f low, Loop} is the atomic concept that defines the type of the work-

flow-definition;

• AD ⊆ DLACOWF is the set of atomic concepts representing the activity-defini-

tions;

– SAD ⊆ AD is the subset of atomic concepts representing the activity-defini-

tions that start the workflow-definition;

– TD ⊆ AD is the subset of atomic concepts representing the task-definitions;

– ED ⊆ AD is the subset of atomic concepts representing the event-defini-

tions;

– WD ⊆ AD is the subset of atomic concepts representing the sub-workflow-

definitions;

• TRD ⊆ DLACOWF is the set of atomic concepts representing transition-defini-

tions between activity-definitions;



5.5 workflow-definitions 95

• IED ⊆ DLACOWF is the set of atomic concepts representing event-definitions of

type InstantiationEvent that trigger the instantiation and execution of the work-

flow-definition;

• ♦WF : DLACOWF × DLACOWF is a transitive dependency relation that associates

an atomic input concept of a task-definition to an atomic operational concept

(event, assignment, input or output) of an activity-definition;

• Cond ⊆ DLvOWF is a set of exit conditions, required only for loops;

• p ∈ PDOCF is the individual indicating the priority of the workflow-definition;

• l ∈ DLvOWF is the individual containing the label of the workflow-definition;

• d ∈ DLvOWF is the individual containing the description of the workflow-defini-

tion.

The function isW f De f : DLACOWF → {0, 1} indicates if an atomic concept repre-

sents a workflow-definition.

The structure W f De f is a valid workflow-definition if the dependencies between

activity-definitions are valid and it satisfies the following conditions:

• All of its concepts are satisfiable with respect to TBoxOWF;

• ∀C ∈ AD ⇒ bC v ActivityeTBoxOWF ;

• ∀C ∈ TD ⇒ bC v TaskeTBoxOWF ;

• ∀C ∈ ED ⇒ bC v EventeTBoxOWF ;

• ∀C ∈WD ⇒ bC vWork f loweTBoxOWF ;

• ∀C ∈ TRD ⇒ bC v TransitioneTBoxOWF ;

• ∀C ∈ IED ⇒ bC v InstantiationEventeTBoxOWF ;

• SAD 6= ∅;

• ∀C ∈ AD ⇒ C ∈ SAD+, where SAD+ =
⋃

n>0 SADn, SAD1 = SAD and

SADn ={
D|∃C, X : C ∈ SADn−1 ∧ X ∈ TRD ∧ C ∈ f RDe fCI(X) ∧ D ∈ f RDe fCO(X)

}
;

• ∀A1, C : A1 ∈ TD ∧ C ∈ f TDe f IOI(A1) ⇒ ∃X : (C, X) ∈ f TDe f∆OD(A1) ∨
(C, X) ∈ ♦WF;

• ∀A1, C : A1 ∈ TD ∧ C ∈ f TDe f IOO(A1) ⇒ ∃X : (C, X) ∈ f TDe f∆OD(A1) ∨ (∃D :

bC v DeTBoxOWF ∧ D ∈ f TDe f IOI(A1));

• T = Loop if Cond 6= ∅.



96 a method for the construction of workflow-definitions

The structure W f De f also results in the following additional expressions in the

TBoxOWF and AnBoxOWF:

• bAW v TeTBoxOWF ;

• ∀X ∈ SAD ⇒ bAW v ∃hasStartActivity.XeTBoxOWF ;

• bAW v ∃hasInstantiationEvent.DeTBoxOWF ∧ bD ≡
⊔
∀C∈IED(C)eTBoxOWF if IED 6=

∅;

• bAW v hasPriority : peTBoxOWF ;

• ∀ec ∈ Cond⇒ bAW v hasExitCondition : eceTBoxOWF ;

• blabel(AW, l)eAnBoxOWF ∧ bdescription(AW, d)eAnBoxOWF .

5.5.2 Dependencies on Task-Definitions

The input concepts of a task-definition represent all the data associated with each

instantiation (and each assignment), prior to any inherent operations. In this sense,

any data dependencies to other task/event-definitions must be established onto input

concepts. Output concepts can only rely on (and be related to) the input concepts of

their task-definition. Thus, they cannot be dependent on the operational concepts of

other task/event-definitions.

The relation ♦WF establishes dependencies between the input concepts of a task-

definition, and the operational concepts of task/event-definitions. For instance, if C is

an output concept of the task-definition A, D is an input concept of a task-definition

B, and (D, C) ∈ ♦WF, then all individuals of D must also be individuals of C. I.e. the

input individuals of D, of a task represented by B, must always be output individuals

of C, of a task represented by A. Thus, in the context of the workflow-definition, the

relation ♦WF can be expressed in pure DL through a subsumption. For two concepts C

and D with (C, D) ∈ ♦WF, then C v D.

Given the set of atomic concepts representing task-definitions and event-definitions

in the workflow-definition, dependencies in ♦WF can only be established between an

atomic input concept of a task-definition and an atomic operational concept of a task-

definition or event-definition, i.e.:

∀C, D : (C, D) ∈ ♦WF ⇒

∃A1, A2 : A1 ∈ TD ∧ A2 ∈ (TD ∪ ED) ∧ C ∈ f TDe f IOI(A1)∧

((isTDe f (A2) ∧ D ∈ f TDe fOP(A2)) ∨ (isEDe f (A2) ∧ D ∈ f EDe fOP(A2)))



5.5 workflow-definitions 97

For such a dependency, the domain mappings, ∆OD, between dependent operational

concepts must be the same, i.e.:

∀C, D,A1, A2 : (C, D) ∈ ♦WF ∧ A1 ∈ TD ∧ A2 ∈ (TD ∪ ED) ∧ C ∈ f TDe f IOI(A1)∧

((isTDe f (A2) ∧ D ∈ f TDe fOP(A2)) ∨ (isEDe f (A2) ∧ D ∈ f EDe fOP(A2)))⇒

{X|(C, X) ∈ f TDe f∆OD(A1)} = {Y|(isTDe f (A2) ∧ (D, Y) ∈ f TDe f∆OD(A2))∨

(isEDe f (A2) ∧ (D, Y) ∈ f EDe f∆OD(A2))}

Consequently, two dependent operational concepts must have the same domain type

in ∆OD. This ensures the satisfiability of all operational concepts when the relations

∆OD and ♦WF are interpreted as DL subsumptions.

If the previous conditions are satisfied, the dependencies in ♦WF are valid and a

special dependency is also established between the atomic concepts that represent both

activity-definitions, A1 and A2. This special dependency is denoted by A2 ≺ A1 (A1

depends on A2), where ≺ is a transitive relation:

∀A1, A2∃C, D : (C, D) ∈ ♦WF ∧ A1 ∈ TD ∧ A2 ∈ (TD ∪ ED) ∧ C ∈ f TDe f IOI(A1)∧

((isTDe f (A2) ∧ D ∈ f TDe fOP(A2)) ∨ (isEDe f (A2) ∧ D ∈ f EDe fOP(A2)))⇒

A2 ≺ A1

A task-definition may depend on itself, i. e. (A1, A1) ∈≺+, where ≺+ is the transitive

closure of the ≺ relation. In such situations, a flow loop must be established in order

to provide an exit condition. This can be achieved either through a Loop sub-workflow-

definition or through a ConditionalTransition transition-definition.

5.5.3 Inferring Transition-Definitions from Dependencies

Basic transition-definitions in TRD can be inferred from dependencies between

task/event-definitions as follows:

∀C, D : (C, D) ∈≺− ∧C 6= D ⇒ ∃X : X ∈ DLACOWF ∧ X ∈ TRD ∧ isRDe f (X)∧

BasicTransition ∈ f RDe fT(X) ∧ f RDe fCI(X) = {C} ∧ f RDe fCO(X) = {D}∧

f RDe fCond = ∅



98 a method for the construction of workflow-definitions

Where ≺− is the transitive reduction on the ≺ relation.

5.5.4 Aggregation of Redundant Results

The instantiation and execution of a task-definition may result in new output data to

the operational ABox. Thus, when au > 1 (i. e. when there is more than one assignment

per unit), the instantiation and execution of a task-definition may result in redundant

and possibly inconsistent data in the operational ABox. In order to merge and aggregate

these data and remove inconsistencies and redundancy from the operational ABox, a

FilterTask task-definition must be specified.

A FilterTask task-definition (represented by the atomic concept ATα) for the aggre-

gation of assignments from a target task-definition (represented by the atomic concept

AT) always satisfies the special dependency AT ≺ ATα. Given a target task-definition,

TDe f , its assignment aggregation FilterTask task-definition, TαDe f , can be automat-

ically derived through an augmented replica of the operational TBox of TDe f . The

required steps are presented in Algorithm 1, where:

• TDe f = (AT, T, AA, IO, IOBox, AR, ARBox, ∆OD, ∆OCF, W, I, p, l, d, au);

• TαDe f = (ATα, Tα, AAα, IOα, IOBoxα, ARα, ARBoxα, ∆αOD, ∆αOCF, Wα,

Iα, pα, lα, dα, auα).

Algorithm 1: The assignment aggregation task-definition automatic construction process.� �
New Task-Definition TαDe f

Set Tα = {MajorityVotingFilterTask}
Set ARα = AR

Set pα = p

// create the unit context concept of the previous assignment in TαDe f

New UnitContext concept AAE ∈ IOIα such that (AAE, UnitContext) ∈ ∆αOCF

AAE depends on AA: (AAE, AA) ∈ ♦WF

Rel. AAα to AAE: bAAα v ∃hasUnitContext.AAEeARBoxα

// create unit concepts in TαDe f

∀C, R : C ∈ IOI ∧ (C, Unit) ∈ ∆OCF ∧ (AA R−→ C)ARBox

New Unit concept D ∈ IOIα such that (D, Unit) ∈ ∆αOCF

D depends on C: (D, C) ∈ ♦WF

Rel. AAα to D: exactC(AAα
R−→ D)ARBoxα = 1

Rel. AAE to D: exactC(AAE R−→ D)IOBoxα = 1



5.5 workflow-definitions 99

// create remaining unit context concepts in TαDe f

∀C, R : C ∈ (IOI ∪ IOO) ∧ (C, Unit) /∈ ∆OCF ∧ (AA R−→ C)ARBox

New UnitContext concept D ∈ IOIα such that (D, UnitContext) ∈ ∆αOCF

D depends on C: (D, C) ∈ ♦WF

Rel. AAα to D: (AAα
R−→ D)ARBoxα∧

minC(AAα
R−→ D)ARBoxα = minC(AA R−→ C)ARBox

Rel. AAE to D: sameR(AA R−→ C, AAE R−→ D)(ARBox,IOBoxα)

// establish remaining relationships in the IOBoxα present in the IOBox

∀C1, D1 : C1 ∈ (IOI ∪ IOO) ∧ D1 ∈ (IOIα ∪ IOOα) ∧ (D1, C1) ∈ ♦WF

∀C2, D2 : C2 ∈ (IOI ∪ IOO) ∧ D2 ∈ (IOIα ∪ IOOα) ∧ (D2, C2) ∈ ♦WF

∀R : sameR(C1 R−→ C2, D1 R−→ D2)(IOBox,IOBoxα)

// create the response concept in TαDe f

New Response concept AAO ∈ IOOα such that (AAO, Response) ∈ ∆αOCF

AAO depends on AAE: bAAO v AAEeIOBoxα

Rel. AAα to AAO: bAAα v= 1hasResponse.AAOeARBoxα� �
The remaining attributes of the TαDe f task-definition must be manually established.

The au value, in particular, is important, since it establishes the amount of different

votes that must be given to a set of redundant assignments.

5.5.5 Example No. 1: Aggregation of Task-Definition Results

Operational concepts from other task-definitions may be used as part of the input speci-

fication of a new task-definition, which leads to a dependency. These dependencies can

be used to specify a filter task-definition that aggregates the redundant assignments

(those with the same units and unit context) of another task-definition. The workflow-

definition, partially depicted in Figure 23, contains a sequence of two task-definitions

that illustrate this scenario.

The workflow-definition is defined as W f De f 1 = (AW, T, AD, TRD, IED,♦WF, Cond,

medium, l, d), where:

• AW = WF1;

• T = Work f low;

• AD = {A1T, A2T};

• SAD = {A1T};



100 a method for the construction of workflow-definitions

A

B

C

D

E

A’’

A1’’

C’’

Ǝ p1

=1 p2 =1 p3

Ǝ p4

Unit UnitContext Response

ΔOCF ΔOCF
ΔOCF

◊WF◊WF

Domain Ontology (OD)

IOBox

CompFlow Ontology (OCF)

...

Assignment

A1A’

◊WF

C’

ΔOD

=1 hasResponse=1 hasUnit

TBox (Operational OWF)

...

A2Ǝ hasUnitContext
=1 hasUnit

ARBox

A’’ A1’’ C’’

=1 hasResponse
=1 hasUnit

A1O

ΔOD

=1 hasResponse

ΔOCF

A1O

Ǝ hasUnitContext

Figure 23: Operational DL representation of a dependent task-definition that filters the assign-
ments of a previous task-definition.

• TRD = {T1T2} where RDe fT1T2 = (T1T2, {BasicTransition}, {A1T}, {A2T}, ∅);

• IED = ∅;

• ♦WF = {(A1′′, A1), (A′′, A′), (C′′, C′)};

• Cond = ∅.

The two task-definitions represented by A1T and A2T are:

• T1De f 1 (with the assignment concept A1), which demands eight redundant as-

signments per unit;

• T2De f 1 (with the assignment concept A2), which merges and aggregates the

redundant assignments of T1De f 1 through the application of a majority voting

strategy that demands six votes for each redundant set of T1De f 1 assignments.

The task-definition T1De f 1 is defined as T1De f 1 = (AT, T, AA, IO, IOBox, AR,

ARBox, ∆OD, ∆OCF, A1TW, A1TI, medium, l, d, 8), where:

• AT = A1T;

• T = {CreateAndFillTask};

• AA = A1;

• IOI = {A′};

• IOO = {C′};

• IOBox = ∅;



5.5 workflow-definitions 101

• AR = ∅;

• bA1 v= 1hasUnit.A′eARBox and bA1 v= 1hasResponse.C′eARBox;

• ∆OD = {(A′, A), (C′, C)};

• ∆OCF = {(A′, Unit), (C′, Response)};

• bA1TW ≡WorkereTBoxOWF (all workers);

• bA1TI ≡ TaskInter f aceeTBoxOWF (all task interfaces).

The task-definition T2De f 1 is defined as T2De f 1 = (AT, T, AA, IO, IOBox, AR,

ARBox, ∆OD, ∆OCF, A2TW, A2TI, medium, l, d, 6), where:

• AT = A2T;

• T = {MajorityVotingFilterTask};

• AA = A2;

• IOI = {A1′′, A′′, C′′};

• IOO = {A1O};

• bA1′′ v= 1hasResponse.C′′eIOBox, bA1′′ v= 1hasUnit.A′′eIOBox and bA1O v
A1′′eIOBox;

• AR = ∅;

• bA2 v= 1hasUnit.A′′eARBox, bA2 v ∃hasUnitContext.A1′′eARBox,

bA2 v ∃hasUnitContext.C′′eARBox and bA2 v= 1hasResponse.A1OeARBox;

• ∆OD = {(A′′, A), (C′′, C)};

• ∆OCF = {(A′′, Unit), (A1′′, UnitContext), (C′′, UnitContext), (A1O, Response)};

• bA2TW ≡WorkereTBoxOWF (all workers);

• bA2TI ≡ TaskInter f aceeTBoxOWF (all task interfaces).

The T2De f 1 task-definition defines a task where, given a set of redundant assign-

ments (with the same unit) from T1De f 1, the worker will be asked to select the assign-

ment with the best or most appropriate response.

An instance of T2De f 1 must have six assignments per unit (six votes for each unit).

However, since T2De f 1 is a FilterTask task-definition, its assignments will be the subject

to the application of a filter or voting strategy in order to remove the least selected or

unselected assignments of T1De f 1 from the operational ABox.



102 a method for the construction of workflow-definitions

5.5.6 Example No. 2: Text Partition and Translation

The workflow-definition depicted in Figure 24 represents a more concrete example,

where a workflow-definition for partitioning and translating (sections of) a document

is defined. Such a workflow-definition, according to the document ontology in Figure 9,

requires at least three task-definitions:

1. Partitions sections into paragraphs;

2. Translates paragraphs;

3. Assembles translated paragraphs into translated sections.

The text partition and translation workflow-definition is defined as W f De f 2 =

(AW, T, AD, TRD, IED,♦WF, Cond, medium, l, d), where:

• AW = TranslationWork f low;

• T = Work f low;

• AD = {T1, T2, T3};

• TRD = {TR12, TR23};

• IED = ∅;

• T1De f = (T1, {CreateAndFillTask}, T1Assignment, IO, IOBox, ∅, ARBox, ∆OD,

∆OCF, W, I, p, l, d, 1);

– IO = {SectionUnit_T1, ParagraphResponse_T1};

– bSectionUnit_T1 v ∃contains.ParagraphResponse_T1eIOBox;

– bT1Assignment v= 1hasUnit.SectionUnit_T1eARBox and

bT1Assignment v ∃hasResponse.ParagraphResponse_T1eARBox;

– ∆OD = {(SectionUnit_T1, Section), (ParagraphResponse_T1, Paragraph)};

– ∆OCF = {(SectionUnit_T1, Unit), (ParagraphResponse_T1, Response)};

• T2De f = (T2, {CreateAndFillTask}, T2Assignment, IO, ∅, ∅, ARBox, ∆OD,

∆OCF, W, I, p, l, d, 1);

– IO = {ParagraphUnit_T2, ParagraphResponse_T2};

– bT2Assignment v= 1hasUnit.ParagraphUnit_T2eARBox and

bT2Assignment v= 1hasResponse.ParagraphResponse_T2eARBox;

– ∆OD = {(ParagraphUnit_T2, Paragraph),

(ParagraphResponse_T2, Paragraph)};



5.5 workflow-definitions 103

– ∆OCF = {(ParagraphUnit_T2, Unit), (ParagraphResponse_T2, Response)};

• T3De f = (T3, {CreateAndFillTask}, T3Assignment, IO, IOBox, ∅, ARBox, ∆OD,

∆OCF, W, I, p, l, d, 1);

– IO = {SectionUnit_T3, SectionResponse_T3, T2AssignmentUC_T3,

OrigParagUC_T3, TransParagUC_T3};

– bT2AssignmentUC_T3 v= 1hasUnit.OrigParagUC_T3eIOBox,

bT2AssignmentUC_T3 v= 1hasResponse.TransParagUC_T3eIOBox,

bSectionUnit_T3 v ∃contains.OrigParagUC_T3eIOBox and

bSectionResponse_T3 v ∃contains.TransParagUC_T3eIOBox;

– bT3Assignment v= 1hasUnit.SectionUnit_T3eARBox,

bT3Assignment v= 1hasResponse.SectionResponse_T3eARBox,

bT3Assignment v ∃hasUnitContext.T2AssignmentUC_T3eARBox,

bT3Assignment v ∃hasUnitContext.OrigParag_T3eARBox and

bT3Assignment v ∃hasUnitContext.TransParagUC_T3eARBox;

– ∆OD = {(SectionUnit_T3, Section), (SectionResponse_T3, Section),

(OrigParagUC_T3, Paragraph), (TransParagUC_T3, Paragraph)};

– ∆OCF = {(SectionUnit_T3, Unit), (SectionResponse_T3, Response),

(OrigParagUC_T3, UnitContext), (TransParagUC_T3, UnitContext),

(T2AssignmentUC_T3, UnitContext)};

• TR12De f = (TR12, {BasicTransition}, {T1}, {T2}, ∅);

• TR23De f = (TR23, {BasicTransition}, {T2}, {T3}, ∅);

• ♦WF = {(ParagraphUnit_T2, ParagraphResponse_T1),

(T2AssignmentUC_T3, T2Assignment)};

• W = WPart and bWPart ≡WorkereTBoxOWF (all workers);

• I = IPart and bIPart ≡ TaskInter f aceeTBoxOWF (all task interfaces).

Notice that in T3, the assignments of T2 are included as contextual information. This

allows workers to translate sections by assembling previously translated paragraphs.

The transitions between tasks are inferred from the dependencies between task-

definitions.



104 a method for the construction of workflow-definitions

SectionUnit_T1

ParagraphResponse_T1

CompFlow Ontology (OCF)

CreateAndFillTask

T1

T1Assignment

Section

∃ hasResponse

∀ hasOperationalization

ΔODΔODDomain Ontology (OD)

Assignment

Paragraph

∃ contains

Unit

Response

ΔOCFΔOCF

=1 hasUnit

T2

T2Assignment

CompFlow Ontology (OCF)

Unit

ParagraphUnit_T2

ParagraphResponse_T2

=1 hasResponse

ΔOCF

ΔOCF

ΔOD
Domain Ontology (OD)

Response

Paragraph

∀ hasOperationalization

CreateAndFillTask

Assignment

=1 hasUnit

ΔOD

◊WF

SectionUnit_T3

SectionResponse_T3

CompFlow Ontology (OCF)

CreateAndFillTask

T3

T3Assignment

Section

=1 hasResponse

∀ hasOperationalization

ΔOD ΔODDomain Ontology (OD)

Assignment

Paragraph

∃ contains

Unit Response

ΔOCF

ΔOCF

=1 hasUnit
T2AssignmentUC_T3

OriginalParagUC_T3

TransParagUC_T3∃ contains

UnitContext

=1 hasResponse

=1 hasUnit

ΔOCF

ΔOD ΔOD∃ hasUnitContext

◊WF

Figure 24: Operational DL representation of a workflow-definition for partitioning and trans-
lating sections according to the document ontology. Role restrictions to and from
dashed groups apply to all contained concepts.

5.6 summary

In order to represent workflows of tasks as ontologies, a workflow-definition construc-

tion method is proposed and formally defined. The method is built upon the aspects of

extensibility and flexibility provided by ontologies, defining workflows as extensions

of a particular domain of knowledge. Analogously, these extensions result in new op-

erational dimensions added on top of the domain dimension. Furthermore, the oper-

ational dimension is detachable from the domain dimension, meaning that datasets

can be filtered after the execution of a workflow in order to remove any operational

assertions related to a particular workflow-definition.



5.6 summary 105

Activity-definitions and transition-definitions are specified in an ontology that

represents a top-level workflow-definition. These definitions (in the TBox, RBox and

AnBox) fully represent workflows and can be instantiated multiple times (in an ABox).

Workflow-definitions import and extend an already existent domain ontology, which

partially describes the input and output data flowing throughout the workflow. This

allows the re-usability of already existent domain ontologies.

The full semantics of the operations that must be performed for each task are cap-

tured by task-definitions through augmented extensions of the domain ontology. The

type of each task-definition depends on how these extensions are modelled. This al-

lows the automatic instantiation and execution of task-definitions without the need for

a specific implementation for each task-definition.





6
I N S TA N T I AT I O N A N D E X E C U T I O N O F

W O R K F L O W- D E F I N I T I O N S

A top-level workflow-definition (found in a workflow-definition ontology) can

be instantiated and executed multiple times inside a job. The instantiation of a

workflow-definition follows a closed-world assumption and creates workflows (in-

stances of the workflow-definition) that fully satisfy the restrictions present in the

workflow-definition ontology.

The instantiation and execution of a workflow-definition leads to the incremental

instantiation and execution of (as the workflow execution progresses):

• Sub-workflow-definition instances, called sub-workflows;

• Task-definition instances, called tasks;

• Event-definition instances, called events;

• Transition-definition instances, called transitions.

These instances are created in the ABox of the job’s knowledge base, defined as KBJ =

(ADLKBJ , ABoxKBJ , OKBJ), where:

• OWF is the workflow-definition ontology imported by OKBJ , i. e. OKBJ B OWF;

• OABox ⊆ ABoxKBJ is the operational ABox of the job.

The job’s ontology is the union of all the workflow-definition ontologies that must

be instantiated and executed in the job. The operational ABox contains the input and

output data, shared and accessible by all the workflows in the job.

6.1 task-definition instantiation and execution

The instantiation and execution of a task-definition (or the creation and execution of a

task) imply several steps. Figure 25 depicts the flow diagram of the proposed process.

107



108 instantiation and execution of workflow-definitions

1. Initial Instantiation
of Task-Definition

2. Map Domain Concepts to Input 
Concepts through ΔOD

5. Broadcast Task to all available 
and applicable Task Interfaces

yes

yes

Are there unsolved
assignments?

no

yes

9. Finish Task Execution

3. Instantiate Assignments

6. Receive Task Acceptance
from a Task Interface and Worker

8. Send Unsolved Assignment to 
the Task Interface and Worker

7. Receive Assignment Solution
from a Task Interface and Worker

Are there unsolved
assignments?

no

Task is “inProgress”?

no

4. Clean-up Inconsistencies

Are all of these
assignments clones of those 

already solved by
this worker?

no

yes

Figure 25: Overview of the task-definition instantiation and execution process.

6.1.1 Definition of Task

Formally, a task is a structure TDInst(KBJ) := (t, s, p, l, d, au, AI, DI, DIBox, RIBox, TI,

AW, PW, TDe f ), where:

• t ∈ ADLnKBJ is the task individual;

• s ∈ SDOCF is the individual in OCF indicating the current state of the task;

• p ∈ PDOCF is the individual in OCF indicating the priority of the task;

• l ∈ ADLvKBJ is the datatype value containing the label of the task;

• d ∈ ADLvKBJ is the datatype value containing the description of the task;

• au ∈ ADLvKBJ is the datatype value containing the amount of assignments per

unit of the task;

• AI ⊆ ADLnKBJ is the set of assignment individuals;

• DI ⊆ ADLnKBJ is the set of input and output individuals;

– DII ⊆ DI is the subset of input individuals;

– DIO ⊆ DI is the set of output individuals;

• DIBox ⊆ OABox is the set of assertions that relate and establish each input and

output individual;



6.1 task-definition instantiation and execution 109

– DIIBox ⊆ DIBox is the set of assertions that relate and establish input

individuals;

– DIOBox ⊆ DIBox is the set of assertions that relate and establish output

individuals;

• RIBox ⊆ OABox is the set of assertions that relate each assignment to each input

and output individual;

• TI ⊆ ADLnKBJ is the set of task interfaces that received the task;

• AW ⊆ ADLnKBJ is the set of workers that accepted the task;

• PW ⊆ ADLnKBJ is the set of workers that solved at least one assignment;

• TDe f = (AT, T, AA, IO, IOBox, AR, ARBox, ∆OD, ∆OCF, W, I, pTDe f , lTDe f , dTDe f ,

auTDe f ) is the task-definition.

TDInst is an instance of TDe f if it establishes a consistent ABox with respect to the

TBox established by TDe f , plus:

• bAT(t)eABoxKBJ ;

• bhasState(t, s)eABoxKBJ ;

• bhasPriority(t, p)eABoxKBJ ;

• blabel(t, l)eABoxKBJ ;

• bdescription(t, d)eABoxKBJ ;

• bhasAssignmentsPerUnit(t, au)eABoxKBJ ;

• ∀a ∈ AI ⇒ bAA(a)eOABox ∧ bhasOperationalization(t, a)eABoxKBJ ;

• ∀x ∈ DI ⇒ ∃X : X ∈ (IOI ∪ IOO) ∧ bX(x)eOABox;

• The DIBox must be consistent with respect to the IOBox;

• ∀x, X, R : x ∈ DI ∧ X ∈ (IOI ∪ IOO) ∧ bX(x)eOABox ∧ (AA R−→ X)ARBox ⇒
∃a ∈ AI : bR(a, x)eOABox;

• The RIBox must be consistent with respect to the ARBox;

• ∀i ∈ TI ⇒ I(i) ∧ bexecutedThrough(t, i)eABoxKBJ∧
∃a ∈ AI : bexecutedThrough(a, i)eOABox;

• ∀aw ∈ AW ⇒ bW(aw)eABoxKBJ ∧ bacceptedBy(t, aw)eABoxKBJ ;

• ∀pw ∈ PW ⇒ bW(pw)eABoxKBJ ∧ bper f ormedBy(t, pw)eABoxKBJ∧
∃a ∈ AI : bexecutedThrough(a, pw)eOABox.



110 instantiation and execution of workflow-definitions

6.1.2 Instantiation

The task-definition instantiation process is divided into four steps: (1) initial instantia-

tion, (2) domain concept to input concept mapping, (3) assignment instantiation, and

(4) inconsistency clean-up.

initial instantiation (1): Given a task-definition, TDe f , an initial instanti-

ation TDInst = (t, s, p, l, d, au, AI, DI, DIBox, RIBox, TI, AW, PW, TDe f ) can be per-

formed automatically as follows:

• Create an individual t ∈ ABoxKBJ ;

• s = notStarted;

• p = pTDe f ;

• l = lTDe f ;

• d = dTDe f ;

• au = auTDe f .

domain concept to input concept mapping (2): Afterwards, a mapping

between domain concepts and input concepts of TDe f , onto the operational ABox is

also performed automatically through ∆OD.

The mapping process classifies domain individuals that fulfil the conditions speci-

fied by the input concepts of the task-definition and the role restrictions between them.

This process, presented in Algorithm 2, is performed onto the operational ABox.

Algorithm 2: The domain concept to input concept mapping process in the task-definition in-

stantiation.� �
// it. all individuals, x, in the operational ABox, and all input concepts, C

∀x, C : C ∈ IOI ∧ x ∈ OABox

// check if the individual has the domain type of C

// and if it has as type all the dependencies of C

If (∀X : (C, X) ∈ ∆OD ⇒ bX(x)eOABox) and (∀X : (C, X) ∈ ♦WF ⇒ bX(x)eOABox) and

// also check if all the role restrictions of C are satisfied by x(
∀X : bC v XeIOBox ∧ X /∈ IOO ∧ (@R, D : D ∈ IOO ∧ (C R−→

X
D)IOBox)⇒ bX(x)eOABox

)
then

// if all these conditions are satisfied, then x is of type C

bC(x)eDIBox and x ∈ DI� �



6.1 task-definition instantiation and execution 111

assignment instantiation (3): From the previous mapping and classification,

the assignment instantiation of TDInst is performed in three sub-steps, (a) unit associ-

ation, (b) context association, (c) assignment cloning.

The unit association process (a) creates one assignment per unit as presented in

Algorithm 3.

Algorithm 3: The unit association process in the task-definition instantiation.� �
// CList is initialized with all unit concepts

Init. the list CList = (≤, X), X =
{

C|C ∈ IOI ∧ (C, Unit) ∈ ∆OCF ∧ (AA R−→ C)ARBox

}
Init. the list IList = (≤, ∅)

Invoke CreateAssignments (CList, 0, IList)

/* this routine creates assignments all possible combinations of individuals of

the unit concepts in CList */

Start of routine CreateAssignments (CList, Lvl, IList)

If Lvl ≥ size of CList then

Init. i = 0

While i < Lvl

Create new assignment a ∈ AI

∀R : (AA R−→ CList[i])ARBox ⇒ bR(a, IList[i])eRIBox

Exit CreateAssignments

For each individual x of concept CList[Lvl]

Set IList[Lvl] = x

Invoke CreateAssignments (CList, Lvl + 1, IList)

End of routine CreateAssignments� �
The context association process (b), presented in Algorithm 4, defines the input con-

text of each assignment.

Algorithm 4: The context association process in the task-definition instantiation.� �
∀a ∈ AI

/* TODO is initialized with all input concepts (the order prioritizes top-

level concepts) */

Init. the list TODO = (≤, X), X = {C|C ∈ IOI} ordered ascendantly by

am =
∣∣∣{D|∃R : (D R−→ C)IOBox}

∣∣∣
Init. DONE = ∅

// associate all individuals related to the assignment’s unit individuals

∀C : C ∈ IOI ∧ (C, Unit) ∈ ∆CFO



112 instantiation and execution of workflow-definitions

Invoke FillAssignment (a, C, TODO ∪ {C}, DONE)

/* if TODO is not empty, then there are some unit context individuals,

unrelated to unit individuals, that must be associated */

While size of TODO > 0

Init. C to the first concept in TODO

∀c : (AA RC−→ C)ARBox ∧ bC(c)eDIBox ⇒ bRC(a, c)eRIBox

Invoke FillAssignment (a, C, TODO, DONE)

/* this routine associates individuals related to the already associated input

individuals (of C) in a */

Start of routine FillAssignment (a, C, TODO, DONE)

If C not in TODO then Exit FillAssignment

Remove C from TODO

Set DONE = DONE ∪ {C}
If size of TODO is 0 then Exit FillAssignment

∀RC, c : (AA
RC−→ C)ARBox ∧ bC(c)eOABox ∧ bRC(a, c)eRIBox

∀D : D ∈ TODO

∀R, RD, d : (C R−→ D)IOBox ∧ (AA
RD−→ D)ARBox∧

∧bD(d)eDIBox ∧ bR(c, d)eOABox ⇒ bRD(a, d)eRIBox

∀R, RD, d : (D R−→ C)IOBox ∧ (AA
RD−→ D)ARBox∧

∧bD(d)eDIBox ∧ bR(d, c)eOABox ⇒ bRD(a, d)eRIBox

Invoke FillAssignment (a, D, TODO, DONE)

End of routine FillAssignment� �
Finally, as presented in Algorithm 5, each assignment is cloned (c) to satisfy the

amount of assignments per unit in au.

Algorithm 5: The assignment cloning process in the task-definition instantiation.� �
Init. AI′ = ∅

∀a ∈ AI

Init. i = au− 1

While i > 0

Clone a into a′ ∈ AI′

Set i = i− 1

Set AI = AI ∪ AI′� �
inconsistency clean-up (4): Assignments that result in an inconsistent oper-

ational ABox must be removed and all domain individuals not related to at least one

assignment must be unmapped (reverse of step 2). Also, if any of the new assignments



6.2 event-definition instantiation and execution 113

is equivalent to an assignment of a previous task (i. e. its task-definition is the same

and it has exactly the same input data), then it must be removed. This allows new tasks

in loops to consider only new assignments, instead of also considering those that have

already been solved.

6.1.3 Execution

The task-definition execution process starts with the broadcast of the task through all

available and applicable task interfaces (step 5). Afterwards, all allowed workers will

be able to accept the task, which leads to step 6. When a worker accepts a task, an

unsolved assignment (if available) will be sent to the worker (step 8). When the worker

submits a solved assignment (leading to step 7), another unsolved assignment is sent to

the worker until no further assignments are available. An unsolved assignment is only

available to a worker if the worker has not previously solved a clone of the assignment

(containing the same input data).

6.2 event-definition instantiation and execution

The instantiation and execution of an event-definition (or the creation and execution of

an event) is performed differently according to its type (RunningEvent or Instantiation-

Event).

The instantiation and execution of InstantiationEvent event-definitions is integrated

into the instantiation and execution of workflow-definitions, which is described in

Section 6.4.

RunningEvent event-definitions, however, are components in the flow of the

workflow-definition. The steps involved in the instantiation and execution of a

RunningEvent event-definition are presented in Figure 26.

The execution consists in waiting for an event occurrence (or instance of the event-

definition) to arrive through an event interface. After the arrival of an event, the event

is stored in the operational ABox and the workflow execution continues.



114 instantiation and execution of workflow-definitions

1. Instantiate Event-Definition

2. Subscribe all available and applicable 
Event Interfaces for the Event

3. Receive Event
from an Event Interface and Subscription

4. Unsubscribe Event Interfaces
for the Event

5. Save Event Data and Finish Event 
Execution

Figure 26: Overview of the RunningEvent event-definition instantiation and execution process.

6.2.1 Definition of Event

Formally, an event is a structure EDInst(KBJ) := (e, s, p, l, d, i, DI, DIBox, RIBox,

EDe f ), where:

• e ∈ ADLnKBJ is the event individual;

• s ∈ SDCF is the individual in OCF indicating the current state of the event;

• p ∈ PDCF is the individual in OCF indicating the priority of the event;

• l ∈ ADLvKBJ is the datatype value containing the label of the event;

• d ∈ ADLvKBJ is the datatype value containing the description of the event;

• i ∈ ADLnKBJ is event interface individual that triggered the event;

• DI ⊆ ADLnKBJ is the set of data individuals;

• DIBox ⊆ OABox is the set of assertions that relate each data individuals;

• RIBox ⊆ OABox is the set of assertions that relate e to each input and output

individuals;

• EDe f = (AE, T, IO, IOBox, AR, ARBox, ∆OD, ∆OCF, I, pEDe f , lEDe f , dEDe f ) is the

event-definition.

EDInst is an instance of EDe f if it establishes a consistent ABox with respect to the

TBox established by EDe f , plus:

• bAE(e)eOABox;

• bhasState(e, s)eOABox ∧ bhasPriority(e, p)eOABox;

• blabel(e, l)eOABox ∧ bdescription(e, d)eOABox;

• bI(i)eOABox ∧ bexecutedThrough(e, i)eOABox;



6.3 transition-definition instantiation and execution 115

• ∀x ∈ DI ⇒ ∃X ∈ IOI : bX(x)eOABox;

• The DIBox must be consistent with respect to the IOBox;

• ∀x, X, R : x ∈ DI ∧ X ∈ IOI ∧ bX(x)eOABox ∧ (AE R−→ X)ARBox ⇒ bR(e, x)eOABox;

• The RIBox must be consistent with respect to the ARBox.

6.2.2 Instantiation

Given an event-definition EDe f , a partial instantiation (1) EDInst = (e, s, p, l, d, i, DI,

DIBox, RIBox, EDe f ) can be performed automatically as follows:

• Create an individual e ∈ OABox;

• s = notStarted;

• p = pEDe f ;

• l = lEDe f ;

• d = dEDe f .

6.2.3 Execution

The execution of an event consists in five main steps. First, a subscription to all appli-

cable event interfaces is performed (2). Afterwards, the execution process must wait

for an occurrence of the event-definition to arrive (3). Since only one occurrence of the

event-definition is desired for a RunningEvent, the previously performed subscriptions

must be cancelled (4). Finally, the event occurrence and its data must be added to the

operational ABox (5), completing the initial instantiation of the event.

6.3 transition-definition instantiation and execution

The instantiation and execution of a transition-definition (or the creation and execution

of a transition) depends on how it is classified. Accordingly, the steps involved in the

instantiation and execution of a transition-definition are presented in Figure 27.



116 instantiation and execution of workflow-definitions

1. Instantiate
Transition-Definition

yes

Type of Transition?

Otherwise

2. Wait for all Incoming 
Activity-Definitions

Synchronization
Transition

3. Trigger Outgoing
Activity-Definitions

Satisfied conditions?

no

Figure 27: Overview of the transition-definition instantiation and execution process.

6.3.1 Definition of Transition

Formally, a transition is a structure RDInst(KBJ) := (r, CI, CO, Cond, RDe f ), where:

• r ∈ ADLnOWF is the transition individual;

• CI ⊆ ADLnOWF is the set of incoming activity individuals;

• CO ⊆ ADLnOWF is the set of outgoing activity individuals;

• Cond ⊆ ADLvOWF is the set of conditions that must be satisfied for this transition

to be performed;

• RDe f = (AR, T, CIRDe f , CORDe f , CondRDe f ) is the transition-definition.

Accordingly, the functions in Table 16 are considered for this definition.

RDInst is an instance of RDe f if it establishes a consistent ABox with respect to the

TBox established by RDe f , plus:

• bAR(r)eABoxKBJ ;

• ∀c ∈ CI ⇒ ∃C ∈ CIRDe f : bC(c)eABoxKBJ ∧ b f rom(r, c)eABoxKBJ ;

• ∀c ∈ CO⇒ ∃C ∈ CORDe f : bC(c)eABoxKBJ ∧ bto(r, c)eABoxKBJ ;

• ∀c ∈ Cond⇒ bhasCondition(r, c)eABoxKBJ ;

function description

f RDInstCI : ADLnOWF → 2ADLnOWF given r returns its CI,
i. e. f RDInstCI(r) = CI

f RDInstCO : ADLnOWF → 2ADLnOWF given r returns its CO,
i. e. f RDInstCO(r) = CO

Table 16: Additional functions for transitions.



6.4 workflow-definition instantiation and execution 117

• ∀D : (AR
f rom−−→ D)TBoxOWF ∧ D ∈ CI ⇒ ∃d : bD(d)eABoxKBJ ∧ b f rom(r, d)eABoxKBJ ;

• ∀D : (AR to−→ D)TBoxOWF ∧ D ∈ CO⇒ ∃d : bD(d)eABoxKBJ ∧ bto(r, d)eABoxKBJ .

6.3.2 Instantiation

Given a transition-definition RDe f , a partial instantiation (1) RDInst = (r, CI, CO,

Cond, RDe f ) can be performed automatically as follows:

• Create an individual r ∈ ABoxKBJ ;

• Cond = CondRDe f .

6.3.3 Execution

During the execution of a transition, the execution process must wait for an incom-

ing activity for each of the activity-definitions defined in CIRDe f . Since at least one

of these activities is already finished when the transition-definition instantiation and

execution process is triggered, the transition execution process must only wait if the

transition is a SynchronizationTransition (step 2). A similar process happens for outgoing

activity-definitions in CORDe f (step 3). Each activity-definition defined in CORDe f will

be instantiated and executed only once. If a union concept is present in CORDe f , one of

the activity-definitions represented in the union concept will be randomly selected for

instantiation and execution.

The instantiation and execution of outgoing activity-definitions is only triggered if

all the conditions of the transition are satisfied.

6.4 workflow-definition instantiation and execution

The instantiation of a workflow-definition is performed incrementally, i. e. activity-

definitions are instantiated only when they are reached and their execution is immi-

nent. In this sense, a partial initial instantiation of the workflow-definition is performed

when its execution starts (see Figure 28).

The instantiation and execution of workflow-definitions can be triggered by a special

kind of events called instantiation events.



118 instantiation and execution of workflow-definitions

The partial initial instantiation consists in (i) creating an individual of the workflow-

definition’s atomic concept and (ii) setting all role values for this individual, according

to the role restrictions and annotations in the workflow-definition ontology, i. e. state,

priority, label, description and the exit condition (if applicable).

6.4.1 Definition of Workflow

Formally, a workflow is a structure W f Inst(KBJ) := (w f , s, p, l, d, ec, ie, AC, RAC,

W f De f ), where:

• w f ∈ ADLnOWF is the workflow individual;

• s ∈ SDOCF is the individual in OCF indicating the current state of the workflow;

• p ∈ PDOCF is the individual in OCF indicating the priority of the workflow;

• l ∈ ADLvOWF is the datatype value containing the label of the workflow;

• d ∈ ADLvOWF is the datatype value containing the description of the workflow;

• ec ∈ ADLvOWF is the datatype value exit condition of the loop (if applicable);

1. Partially Instantiate
Workflow-Definition (excluding 

Activity-Definitions)

2. Instantiate and Execute Start 
Activity-Definitions

3. Instantiate and Execute 
Subsequent Activity-Definitions

Are there subsequent
Activity-Definitions?

yes

no

Are there other unfinished 
execution threads in the 

workflow?

yes (leave the rest to other execution threads)

no

4. Finish Workflow Execution

6. Receive Event
from an Event Interface and 

Subscription in 5

Has an InstantiationEvent
Event-Definition?

no

yes

5. Subscribe all available and 
applicable Event Interfaces for the 

Event-Definition

Figure 28: Overview of the workflow-definition instantiation and execution process.



6.4 workflow-definition instantiation and execution 119

• ie ∈ ADLnOWF is the event individual that triggered the creation and execution

of the workflow (if applicable);

• AC ⊆ ADLnOWF is the set of activity individuals in the workflow;

– SAC ⊆ ABoxKBJ is the set of activity individuals that start the workflow;

– CAC ⊆ ABoxKBJ is the set of activity individuals with state inProgress;

• RAC ⊆ ABoxKBJ is the set of transition individuals;

• W f De f = (AW, T, AD, TRD, IED,♦WF, CondW f De f , pW f De f , lW f De f , dW f De f ) is the

workflow-definition.

W f Inst is an instance of W f De f if it establishes a consistent ABox with respect to the

TBox established by W f De f , plus:

• bAW(w f )eABoxKBJ ;

• bhasState(w f , s)eABoxKBJ ∧ bhasPriority(w f , p)eABoxKBJ ;

• blabel(w f , l)eABoxKBJ ∧ bdescription(w f , d)eABoxKBJ ;

• bhasExitCondition(w f , ec)eABoxKBJ if there is an ec;

• bhasInstantiationEvent(w f , ie)eABoxKBJ if IED 6= ∅;

• ∀a ∈ AC ⇒ ∃A : A ∈ AD ∧ bA(a)eABoxKBJ ∧ bhasActivity(w f , a)eABoxKBJ ;

• ∀a, b, r : r ∈ RAC ∧ a ∈ f RDInstCI(r) ∧ b ∈ f RDInstCO(r) ⇒ ∃A, B, R : A ∈
AD ∧ B ∈ AD ∧ R ∈ TRD ∧ A ∈ f RDe fCI(R) ∧ B ∈ f RDe fCO(R);

• ∀a ∈ SAC ⇒ ∃A : A ∈ SAD ∧ bA(a)eABoxKBJ ∧ bhasStartActivity(w f , a)eABoxKBJ ;

• ∀a ∈ CAC ⇒ ∃A : A ∈ AD ∧ bA(a)eABoxKBJ∧
∧bhasCurrentActivity(w f , a)eABoxKBJ ∧ bhasState(a, inProgress)eABoxKBJ .

6.4.2 Instantiation

Given a workflow-definition W f De f , an initial partial instantiation W f Inst = (w f , s,

p, l, d, ec, ie, AC, RAC, W f De f ) can be performed automatically as follows:

• Create an individual w f ∈ ABoxKBJ ;

• s = notStarted;

• p = pW f De f ;

• l = lW f De f ;



120 instantiation and execution of workflow-definitions

• d = dW f De f ;

• ec = ecW f De f .

6.4.3 Event-Driven Instantiation

If the workflow-definition has an associated InstantiationEvent, the instantiation and

execution process will be triggered for each occurrence of the InstantiationEvent. Con-

sequently, all applicable event interfaces must be subscribed (step 5) and the execution

engine must wait for the occurrence of events, which will lead to step 6.

6.4.4 Execution

The execution of a workflow starts with the instantiation and execution of all activity-

definitions that start its workflow-definition (step 2). This step is repeated for all follow-

ing activity-definitions once the execution of the previous activity-definition instance

is finished (step 3). The workflow is only finished if there are no running parallel exe-

cution threads (4). This condition ensures that no activities are running and that there

are no more activity-definitions left to instantiate and execute.

6.4.5 Example

Consider a job’s knowledge base, KB1 = (ADLKB1, ABoxKB1, OKB1), where:

• OWF is the workflow-definition ontology presented in Section 5.5.6 and imported

by OKB1 (i. e. OKB1 B OWF);

• OABoxKB1 ⊆ ABoxKB1 is the operational ABox of the job.

The input dataset inside the OABoxKB1 contains:

• bSection(s1)eOABoxKB1 ;

• bSection(s2)eOABoxKB1 ;

• bSection(s3)eOABoxKB1 ;

• bhasText(s1, “...”)eOABoxKB1 ;

• bhasText(s2, “...”)eOABoxKB1 ;



6.4 workflow-definition instantiation and execution 121

• bhasText(s3, “...”)eOABoxKB1 ;

Also, there is a set of available worker individuals w1, w2 and w3 of WPart, and a

set of available task interfaces ti1 and ti2, where only ti1 is an individual of IPart. Both

w1 and w2 worker individuals are accessibleThrough the task interface individual ti1.

The instantiation and execution of the top-level workflow-definition, repre-

sented by the concept TranslationWorkflow, starts with its initial instantiation

W f Inst1 = (w f 1, s, p, l, d, ec, ie, AC, RAC, W f De f 2):

• s = notStarted;

• p = medium;

• l =“Translation Workflow”;

• d =“Please translate the given text from English to Portuguese”;

• ec = ∅;

• No ie;

• AC = ∅ and RAC = ∅;

Afterwards, the execution of w f 1 starts, and the first activity-definition (T1) must be

instantiated and executed.

As activity-definitions are instantiated, the activity individuals will be added to AC.

The workflow-definition W f De f 2 contains only basic transition-definitions. Thus

the instantiation of each transition is represented through the transitionTo relationship

between activities.

instantiation and execution of t1 : The evolution of the OABox during the

instantiation and execution of T1 is depicted in Figure 29.

The initial instantiation of T1 is given by TInst1 = (t1, s, p, l, d, au, AI, DI, DIBox,

RIBox, TI, AW, PW, T1De f ) in the ABoxKB1, where:

• t1 ∈ SAC;

• s = notStarted;

• p = medium;

• l =“Section Partition”;

• d =“Please partition the given text into paragraphs”;

• au = 1;



122 instantiation and execution of workflow-definitions

cba

SectionUnit_T1

s1 s2 s3

ttt

s1 s2 s3

t1a1 t1a2 t1a3

hasUnit hasUnit hasUnit

T1Assignment

t t t

p11 p21 p31

t1a1 t1a2 t1a3

p33

hasResponse hasResponse hasResponse

s1 s2 s3

contains contains

contains

contains

Paragraph

tt t t
t

t
t

p32p22p12
t

t
t

t
t

tt

ParagraphResponse_T1

Figure 29: Evolution of the operational ABox during the instantiation and execution of T1 (only
new data is represented at each stage a, b and c; t is an abbreviation for type).

• AI = ∅;

• DI = ∅, DIBox = ∅ and RIBox = ∅;

• TI = ∅, AW = ∅ and PW = ∅.

The initial instantiation of t1 is followed by the domain concept to input concept

mapping step. Thus, the Algorithm 2 is employed, leading to DI = {s1, s2, s3} and all

of its individuals classified as SectionUnit_T1 (a).

The assignment instantiation step begins with the unit association process, which

creates one (au = 1) assignment for each individual of SectionUnit_T1, i. e. AI =

{t1a1, t1a2, t1a3} and the relationship hasUnit is established between each assignment

and its unit in the RIBox (b). Due to the lack of UnitContext concepts the context

association process is skipped. Also, the assignments are not cloned since only one

assignment per unit is required.

Finally, since all assignments are consistent with respect to the operational TBox, t1

can be executed by broadcasting the task through all applicable interfaces, i. e. ti1. Sim-

ilarly, only workers that are individuals of WPart may participate in this task, i. e. w1

and w2. The worker individual w3 cannot participate since it is not accessible through

an applicable task interface.

As specified in the task-definition T1De f , for each assignment in AI, workers must

provide one or more individuals of ParagraphResponse_T1 (i. e. Paragraph) along with

their datatype role values (i. e. hasText and hasOrdinal). These assignments are submit-

ted through ti1 and the relationship contains is established automatically.

If, meanwhile, the task t1 is accepted by the workers w1 and w2, then AW =

{w1, w2}. Consequently, an unsolved assignment will be sent to both w1 and w2.



6.4 workflow-definition instantiation and execution 123

Assuming that the assignments are submitted as follows:

• w1 solves t1a1 and submits the paragraphs p11 and p12 through ti1;

• w1 solves t1a2 and submits the paragraphs p21 and p22 through ti1;

• w2 solves t1a3 and submits the paragraphs p31, p32 and p33 through ti1.

Then, DI = {s1, s2, s3, p11, p12, p21, p22, p31, p32, p33}, TI = {ti1} and PW = {w1,

w2}. Furthermore, all the submitted paragraphs become individuals of both Para-

graphResponse_T1 and Paragraph in the DIBox. The relationships hasResponse (with the

corresponding assignment) and contains (with the corresponding section) are automat-

ically established for each paragraph (c).

After all assignments are solved, t1 is finished and the workflow continues to the

instantiation and execution of T2.

instantiation and execution of t2 : The evolution of the OABox during the

instantiation and execution of T2 is depicted in Figure 30.

The initial instantiation of T2 is given by TInst2 = (t2, s, p, l, d, au, AI, DI, DIBox,

RIBox, TI, AW, PW, T2De f ) in the ABoxKB1, where:

• t2 ∈ AC

• s = notStarted;

c

b

a

p11 p21 p31 p33

tt t t
t

t
t

p32p22p12

ParagraphUnit_T2

p11 p21 p31 p33

p32p22p12

t2a11

t2a12

t2a21

hasUnit

hasUnit

hasUnit

T2Assignment

t
t

t
t2a22

hasUnit

t

t2a31

hasUnit

t2a32

hasUnit

t
t

t2a33

hasUnit

t

tp11 tp21

hasR

hasR

hasR hasR

hasRhasR
hasR

Paragraph

tt t t
t

t
t

tp32tp22tp12

t
t

t
t

t
tt

ParagraphResponse_T2

t2a11

t2a12

t2a21

t2a22

t2a31

t2a32

t2a33

tp31 tp33

Figure 30: Evolution of the operational ABox during the instantiation and execution of T2 (only
new data is represented at each stage a, b and c; t is an abbreviation for type and
hasR is an abbreviation for hasResponse).



124 instantiation and execution of workflow-definitions

• p = medium;

• l =“Paragraph Translation”;

• d =“Please translate the given paragraph from English to Portuguese”;

• au = 1;

• AI = ∅;

• DI = ∅, DIBox = ∅ and RIBox = ∅;

• TI = ∅, AW = ∅ and PW = ∅.

The initial instantiation of t2 is followed by the domain concept to input concept

mapping step. This leads to DI = {p11, p12, p21, p22, p31, p32, p33}, with all the para-

graphs in DI becoming individuals of ParagraphUnit_T2 in the DIBox (a). Notice that

only individuals of ParagraphResponse_T1 are electable as the units of t2 (as established

by the dependency in ♦WF).

Afterwards, the assignment instantiation step begins with the unit association pro-

cess, which creates one (au = 1) assignment for each individual of ParagraphUnit_T2,

i. e. AI = {t2a11, t2a12, t2a21, t2a22, t2a31, t2a32, t2a33} and the relationship hasUnit is

established between each assignment and its unit in the RIBox (b).

The task t2 is then executed following the same execution process described for t1.

Thus, the completion of t2 leads to new translated paragraphs tp11, tp12, tp21, tp22,

tp31, tp32 and tp33 in DI and classified as ParagraphResponse_T2 inside the DIBox (c).

instantiation and execution of t3 : The initial instantiation of T3 is

given by TInst3 = (t3, s, p, l, d, au, AI, DI, DIBox, RIBox, TI, AW, PW, T3De f ) in the

ABoxKB1, where:

• t3 ∈ AC;

• s = notStarted;

• p = medium;

• l =“Section Translation”;

• d =“Please assemble the translated paragraphs into a revised translated section”;

• au = 1;

• AI = ∅;

• DI = ∅, DIBox = ∅ and RIBox = ∅;



6.4 workflow-definition instantiation and execution 125

• TI = ∅, AW = ∅ and PW = ∅.

The initial instantiation of t3 is followed by the domain concept to in-

put concept mapping step. This, as depicted in Figure 31, leads to DI =

{s1, s2, s3, p11, p12, p21, p22, p31, p32, p33, t2a11, t2a12, t2a21, t2a22, t2a31, t2a32, t2a33,

tp11, tp12, tp21, tp22, tp31, tp32, tp33}, with all:

• Sections becoming individuals of SectionUnit_T3 in the DIBox;

• Original paragraphs becoming individuals of OriginalParagUC_T3 in the DIBox;

• Translated paragraphs becoming individuals of TransParagUC_T3 in the DIBox;

• Assignments of T2 becoming individuals of T2AssignmentUC_T3 in the DIBox.

At this stage, and since all input individuals are mapped, the assignment instan-

tiation step begins with the unit association process, which creates one (au = 1) as-

signment for each individual of SectionUnit_T3, i. e. AI = {t3a1, t3a2, t3a3} and the

relationship hasUnit is established between each assignment and its unit in the RIBox

(see Figure 32).

Since t3 contains UnitContext concepts, the context association process is also re-

quired. Thus, the assignment t3a1, with the unit s1, will have the contextual individu-

als (related through hasUnitContext) p11, p12, t2a11, t2a12, tp11 and tp12. Similarly, the

assignment t3a2 will have the contextual individuals p21, p22, t2a21, t2a22, tp21 and

tp22. Finally, the assignment t3a3 will have the contextual individuals p31, p32, p33,

t2a31, t2a32, t2a33, tp31, tp32 and tp33 (see Figure 32).

The task t3 is then executed following the same execution process described for t1

and t2. This execution results in three translated sections ts1, ts2 and ts3 in DI, which

are classified as SectionResponse_T3 inside the DIBox (see Figure 33).

a

p11 p21 p31 p33

tt t t
t

t
t

p32p22p12

OriginalParagUC_T3

SectionUnit_T3

s1 s2 s3

ttt

t2a11

t2a12

t2a21

T2AssignmentUC_T3

t
t

t
t2a22

t

t2a31

t2a32
t

t

t2a33

t

tp11 tp21 tp31 tp33

tt t t
t

t
t

tp32tp22tp12

TransParagUC_T3

Figure 31: New data in the operational ABox after the domain concept to input concept map-
ping step of T3 (t is an abbreviation for type).



126 instantiation and execution of workflow-definitions

b

s1 s2 s3t3a1 t3a2
hasUnit hasUnit

T3Assignment

t t

t3a3
hasUnit

t

p11

p12

t2a11

t2a12

hasUnitContext

p21

p22

t2a21

t2a22

hasUnitContext

p31 p33

p32

t2a31

t2a32

t2a33

hasUnitContext

tp11

tp12

tp21

tp22

tp31 tp33

tp32

Figure 32: New data in the operational ABox after the unit and context association process of T3

(t is an abbreviation for type; relationships to dashed groups represent relationships
to all its members).

c

tp11

tp22 tp33

t3a1 t3a2 t3a3

tp31

hasResponse hasResponse hasResponse
ts1 ts2 ts3

contains

contains contains

contains
contains

contains
contains

Section

t t t

tp32

tp21

tp12

ttt

SectionResponse_T3

Figure 33: New data in the operational ABox after the execution of T3 (t is an abbreviation for
type).

6.5 summary

Workflow-definition ontologies (representing a top-level workflow-definition) can be

instantiated and executed multiple times inside a job. The job is a container of work-

flows, and their shared input and output data. Analogously, all workflows are executed

in the scope of a job.

Through the application of a closed-world assumption, workflow-definitions can

be automatically instantiated and executed without the need of specific implementa-

tions for each activity-definition. Furthermore, since the instantiation and execution of

activity-definitions is incremental and performed only as the workflow execution pro-

gresses, the real-time modification of the workflow-definition with immediate effect in

the instantiation and execution of the remaining part of the workflow is possible.

A distinction between the input and output data (inside the operational ABox), and

workflow-related individuals is made to allow the domain data to be extracted without



6.5 summary 127

any assertions dependent on the workflow-definition. This is important for environ-

ments where the output of the workflow needs to be pipelined into another entity that

is only familiar with the domain ontology.





7
A S S I S T E D C O N S T R U C T I O N O F W O R K F L O W- D E F I N I T I O N S

The CompFlow workflow-definition method establishes the ground rules required

to build workflow-definition ontologies. Following these ground rules, a workflow-

definition can be built using a construction tool that allows CRUD operations on top

of the different types of activity-definitions and transition-definitions found in a

workflow-definition. Simply allowing direct atomic CRUD operations (such as those

supported by the Protégé ontology editor1), however, would leave the process of

building and defining activity-definitions a highly specialized process, requiring an

expert in ontology representations. While the structure and semantics of domain

ontologies are the main reason behind this drawback, they also offer several solutions.

Using the relations between domain concepts, established by role restrictions, it is

possible to create workflow-definitions through a series of iterations that follow these

relations and establish several atomic operations (task-definitions) on top of domain

concepts. As illustrated in Figure 34, and in order to reduce the degree of expertise

required to create workflow-definitions, a semi-automatic construction environment

for micro-task workflow-definitions from domain ontologies is proposed.

«extends»

Assited Workflow-Definition 
Construction Process

Workflow-Definition
Ontology

CompFlow
Ontology

Domain
Ontology

«extends»

«extends»

Deployment
Ontology

«extends»

Figure 34: Overview of the CompFlow assisted construction process (dashed connections are
optional).

1http://protege.stanford.edu/

129

http://protege.stanford.edu/


130 assisted construction of workflow-definitions

7.1 the layered architecture

The CompFlow construction process is driven by the domain expertise of the creator

(the actor building the workflow-definition) to supervise the automatic interpretation

of the domain ontology. This is achieved through a layered architecture that defines, for

a workflow-definition and its current state, the set of operations that can be performed

to further refine the workflow-definition (see Figure 35 for an illustration).

7.1.1 Command Layers

As presented in Figure 35, the assisted workflow-definition construction process relies

on three command layers: (1) the atomic command layer, (2) the pattern command

layer, and (3) the strategic command layer.

The atomic command layer defines the set of possible atomic operations that can be

performed to create and define activity-definitions and transition-definitions. In this

layer, a low-level structural analysis of the domain and workflow-definition ontologies

is performed.

A pattern command, in the pattern command layer, is a set of atomic commands

associated with a particular ontological pattern [16, 20]. These patterns may depend

on the employed ontology construction methodology [4] and on the domain of the

ontology. In the pattern command layer, a high-level structural and low-level semantic

analysis of the domain and workflow-definition ontologies is performed.

The strategic command layer is an abstraction over the previous layers. Each strat-

egy represents a set of atomic and pattern commands. They automate the construc-

tion process by restricting the set of possible choices presented to the creator dur-

ing the workflow-definition construction process. For instance, a strategy for building

workflow-definitions that result in recommendations (recommendation workflow-def-

1. Atomic Command Layer

2. Pattern Command Layer

3. Strategic Command Layer

Activity-Definition 
Context

Workflow-Definition 
Context

In
cr

ea
se

d
A

u
to

m
at

io
n

In
cr

ea
se

d
C

o
n

tr
o

l

Figure 35: Layered architecture of the operations in the assisted workflow-definition construc-
tion process.



7.1 the layered architecture 131

initions) could restrict the possible choices of the creator through its set of possible

patterns and atomic operations. Through the strategic command layer, a high-level

semantic analysis of the domain and workflow-definition ontologies is performed.

7.1.2 Command Contexts

The workflow-definition construction process moves between different types of con-

texts inside the workflow-definition. For each type of context, there is an associated set

of possible atomic and pattern commands. The different types of contexts are directly

related to transition-definitions and to each type of activity-definition. Therefore, the

types of contexts are:

• The workflow-definition context;

• The task-definition context;

• The event-definition context;

• The transition-definition context.

Workflow-definition contexts may contain sub-workflow-definition contexts, form-

ing a structure resembling a tree. Other types of contexts can only become leafs in such

a tree. Thus, a task-definition context is always defined inside a workflow-definition

context, which may actually be the sub-workflow-definition context of another

workflow-definition context (see Figure 36 for an example). The construction process

is in one of these contexts at any given time.

The creation of an activity-definition or transition-definition typically starts with a

create or update atomic command in a workflow-definition context. From this point

onward, commands of the types present in the new child context will be available to

the creator. Suggested commands only include those that add or increment data to the

workflow-definition.

Top-Level
Workflow-Definition Context

Sub-Workflow-Definition 
Context A

Event-Definition Context A1

Task-Definition Context A2Task-Definition Context B

Figure 36: Example of a workflow-definition context hierarchy. The creator is currently found
in the Task-Definition Context B.



132 assisted construction of workflow-definitions

An illustration of the transitions between contexts and their available commands is

presented in Figure 37.

7.2 atomic commands

An activity-definition or transition-definition results from the execution of a set of

atomic commands suggested to, or manually defined by, the creator. Multiple types

of atomic commands can be performed in the context of a workflow-definition, task-

definition, event-definition or transition-definition.

Each type of atomic command becomes applicable only if a set of conditions are satis-

fied. These conditions typically involve assessing if the structure is complete and valid.

Thus, the selection and further triggering of a particular atomic command depends on

the current context and in the state of the workflow-definition.

In a workflow-definition context, atomic commands allow creating, removing and

updating task-definitions, event-definitions, sub-workflow-definitions and transition-

definitions.

Once an atomic command to create or update a task-definition is performed, the pro-

cess switches to the task-definition context. In this context, there are atomic commands

for creating, removing and updating input and output concepts, role restrictions be-

tween input and output concepts, and dependencies.

Similarly, if an atomic command to create or update an event-definition is performed,

the process switches to an event-definition context. In this context, atomic commands

to create, delete and update data concepts and their role restrictions are also included.

An atomic command is only suggested if it adds new ontological data (e. g. an inexis-

tent input or output concept in a task-definition) to the workflow-definition. Otherwise,

its suggestion becomes redundant and unnecessary.

Workflow-definitions are always built in the scope of a top-level workflow-definition

context. Thus, each context has two associated definitions: (i) the activity-definition or

transition-definition of the context and (ii) the parent workflow-definition (non-existent

in the top-level workflow-definition context). The parent workflow-definition (ii) of

a context is defined as WD(OWF) = (AWWD, TWD, ADWD, TRDWD, IEDWD,♦WDWF,

CondWD, pWD, lWD, dWD). Similarly, the top-level workflow-definition is defined as

TWD(OWF) = (AWTWD, TTWD, ADTWD, TRDTWD, IEDTWD,♦TWDWF, CondTWD,

pTWD, lTWD, dTWD).



7.2 atomic commands 133

To
p

-L
e

ve
l

W
o

rk
fl

o
w

-D
e

fi
n

it
io

n
 C

o
n

te
xt

Su
b

-W
o

rk
fl

o
w

-D
e

fi
n

it
io

n
 

C
o

n
te

xt

C
re

at
e

-S
u

b
-W

o
rk

fl
o

w
-D

e
fi

n
it

io
n

 (
C
W
D
W

) 
o

r
U

p
d

at
e

-S
u

b
-W

o
rk

fl
o

w
-D

e
fi

n
it

io
n

 (
U
W
D
W

) 
**

D
is

ca
rd

-E
xi

t-
C

o
n

te
xt

 (
D
EC
W

) 
o

r
Sa

ve
-E

xi
t-

C
o

n
te

xt
 (
SE
C
W

) 
**

*

Ta
sk

-D
e

fi
n

it
io

n
 C

o
n

te
xt

Ev
e

n
t-

D
e

fi
n

it
io

n
 C

o
n

te
xt

Tr
an

si
ti

o
n

-D
e

fi
n

it
io

n
 C

o
n

te
xt

C
re

at
e

-E
ve

n
t-

D
e

fi
n

it
io

n
 (
C
ED

W
)

o
r 

U
p

d
at

e
-E

ve
n

t-
D

e
fi

n
it

io
n

 (
U
ED

W
)

D
is

ca
rd

-E
xi

t-
C

o
n

te
xt

 (
D
EC
E)

o
r 

Sa
ve

-E
xi

t-
C

o
n

te
xt

 (
SE
C
E)

C
re

at
e

-T
ra

n
si

ti
o

n
-D

e
fi

n
it

io
n

 (
C
R
D
W

)
o

r 
U

p
d

at
e

-T
ra

n
si

ti
o

n
-D

e
fi

n
it

io
n

 (
U
R
D
W

)

D
is

ca
rd

-E
xi

t-
C

o
n

te
xt

 (
D
EC
R

)
o

r 
Sa

ve
-E

xi
t-

C
o

n
te

xt
 (
SE
C
R

)

C
re

at
e

-T
as

k-
D

e
fi

n
it

io
n

 (
C
TD

W
)

o
r 

U
p

d
at

e
-T

as
k-

D
e

fi
n

it
io

n
 (
U
TD

W
)

D
is

ca
rd

-E
xi

t-
C

o
n

te
xt

 (
D
EC
T)

o
r 

Sa
ve

-E
xi

t-
C

o
n

te
xt

 (
SE
C
T)

C
re

at
e-

In
p

u
t-

C
o

n
ce

p
t 

(C
IC
T)

, U
p

d
at

e-
In

p
u

t-
C

o
n

ce
p

t 
(U
IC
T)

, D
el

et
e-

In
p

u
t-

C
o

n
ce

p
t 

(D
IC
T)

, C
re

at
e-

O
u

tp
u

t-
C

o
n

ce
p

t 
(C
O
C
T)

, U
p

d
at

e-
O

u
tp

u
t-

C
o

n
ce

p
t 

(U
O
C
T)

,
D

el
et

e-
O

u
tp

u
t-

C
o

n
ce

p
t 

(D
O
C
T)

, C
re

at
e-

R
el

at
io

n
 (
C
R
T)

, D
el

et
e-

R
el

at
io

n
 (
D
R
T)

, C
re

at
e-

In
te

rn
al

-D
ep

en
d

en
cy

 (
C
ID
T)

, D
el

et
e-

In
te

rn
al

-D
ep

en
d

en
cy

 (
D
ID
T)

,
C

re
at

e-
Ex

te
rn

al
-D

ep
en

d
en

cy
 (
C
ED

T)
 o

r 
D

el
et

e-
Ex

te
rn

al
-D

ep
en

d
en

cy
 (
D
ED

T)

C
re

at
e-

In
p

u
t-

C
o

n
ce

p
t 

(C
IC
E)

, U
p

d
at

e-
In

p
u

t-
C

o
n

ce
p

t 
(U
IC
E)

, D
el

et
e-

In
p

u
t-

C
o

n
ce

p
t 

(D
IC
E)

,
C

re
at

e-
R

el
at

io
n

 (
C
R
E)

, D
el

et
e-

R
el

at
io

n
 (
D
R
E)

, C
re

at
e-

In
te

rn
al

-D
ep

en
d

en
cy

 (
C
ID
E)

 o
r 

D
el

et
e-

In
te

rn
al

-D
ep

en
d

en
cy

 (
D
ID
E)

D
el

et
e-

Ta
sk

-D
ef

in
it

io
n

 (
D
TD

W
),

 D
el

et
e-

Ev
en

t-
D

ef
in

it
io

n
 (
D
ED

W
),

D
el

et
e-

Tr
an

si
ti

o
n

-D
ef

in
it

io
n

 (
D
R
D
W

) 
o

r 
D

el
et

e-
Su

b
-W

o
rk

fl
o

w
-D

ef
in

it
io

n
 (
D
W
D
W

) 
*

C
re

at
e

-T
ra

n
si

ti
o

n
-D

e
fi

n
it

io
n

 (
C
R
D
W

)
o

r 
U

p
d

at
e

-T
ra

n
si

ti
o

n
-D

e
fi

n
it

io
n

 (
U
R
D
W

)

D
is

ca
rd

-E
xi

t-
C

o
n

te
xt

 (
D
EC
R

)
o

r 
Sa

ve
-E

xi
t-

C
o

n
te

xt
 (
SE
C
R

)

C
re

at
e

-T
as

k-
D

e
fi

n
it

io
n

 (
C
TD

W
)

o
r 

U
p

d
at

e
-T

as
k-

D
e

fi
n

it
io

n
 (
U
TD

W
)

D
is

ca
rd

-E
xi

t-
C

o
n

te
xt

 (
D
EC
T)

o
r 

Sa
ve

-E
xi

t-
C

o
n

te
xt

 (
SE
C
T)

C
re

at
e

-E
ve

n
t-

D
e

fi
n

it
io

n
 (
C
ED

W
)

o
r 

U
p

d
at

e
-E

ve
n

t-
D

e
fi

n
it

io
n

 (
U
ED

W
)

D
is

ca
rd

-E
xi

t-
C

o
n

te
xt

 (
D
EC
E)

o
r 

Sa
ve

-E
xi

t-
C

o
n

te
xt

 (
SE
C
E)

*,
 *

*,
 *

**

Fi
gu

re
3

7
:T

ra
ns

it
io

ns
be

tw
ee

n
co

nt
ex

ts
in

th
e

as
si

st
ed

w
or

kfl
ow

-d
efi

ni
ti

on
co

ns
tr

uc
ti

on
pr

oc
es

s.



134 assisted construction of workflow-definitions

7.2.1 The Task-Definition Context

The construction process enters a task-definition context after the execution of a

create or update task-definition command. A task-definition context always contains

an associated task-definition TD(OWF) = (ATTD, TTD, AATD, IOTD, IOBoxTD, ARTD,

ARBoxTD, ∆TDOD, ∆TDOCF, WTD, ITD, pTD, lTD, dTD, auTD).

7.2.1.1 Create-Input-Concept Commands

A Create-Input-Concept command in a task-definition context is a structure

CICT(TD) := (I, T, RT, RTBox, IBox, DC, WC, SC, p), where:

• I ∈ DLACOWF is the atomic input concept;

• T ∈ {Unit, UnitContext} is the type of the input concept;

• RT ∈ DLAROWF is the atomic role that relates AATD to I;

• RTBox ⊆ TBoxOWF is the set of role restrictions relating AATD to I;

• IBox ⊆ TBoxOWF is the set of role restrictions involving I;

• DC ⊆ DLACOD is a set of mapped atomic domain concepts;

• WC ⊆ DLACOWF is a set of external operational concepts in which I depends;

• SC ⊆ IOITD is a set of internal operational concepts in which I depends;

• p ∈ [1, 5] is the priority value of the command.

The execution of a CICT results in:

• I ∈ IOITD;

• RT ∈ ARTD ∪ {hasUnit, hasUnitContext};

• RTBox ⊆ ARBoxTD;

• IBox ⊆ IOBoxTD;

• ∀D ∈ DC ⇒ (I, D) ∈ ∆TDOD;

• (I, T) ∈ ∆TDCFO;

• ∀D ∈WC ⇒ (I, D) ∈ ♦WDWF;

• ∀D ∈ SC ⇒ bI v DeTBoxOWF .

A set of Create-Input-Concept commands, ΦCICT, is suggested through the execution

of several algorithms. These algorithms exploit the ∆TDOD relation to suggest the



7.2 atomic commands 135

addition of new concepts and role restrictions to the IOBoxTD, based on the concepts

and role restrictions established in the domain ontology.

Algorithm 6 suggests new input concepts related to other, already existent, input or

output concepts in TD. For an already existent concept inside the IOBoxTD, the role

restrictions associated its representation in the domain ontology are followed in order

to suggest new domain input concepts.

Algorithm 6: Suggestion of Create-Input-Concept commands in a task-definition context: sub-

set no. 1.� �
Do for T = Unit and T = UnitContext

// it. all already existent input/output concepts, C, with the domain type X

// and it. all domain concepts Y

∀C, X, Y : C ∈ (IOITD ∪ IOOTD) ∧ (C, X) ∈ ∆TDOD ∧Y ∈ DLACOD

// it. rels. from X to Y and suggest new input concept dependent on Y

∀R : (X R−→ Y)TBoxOD

Create new (I, T, RT, RTBox, IBox, {Y}, ∅, ∅, 4) in ΦCICT

// include the relationship

If T = Unit or (C ∈ IOOTD and

∃S : (AATD
S−→ C)ARBoxTD ∧maxC(AATD

S−→ C)ARBoxTD > 1) then

exactC(C R−→ I)IBox = 1

Else

sameR(X R−→ Y, C R−→ I)(TBoxOD ,IBox)

sameR(C R−→ I, AATD
RT−→ I)(IBox,RTBox)

// it. rels. from Y to X and suggest new input concept dependent on Y

∀R : (Y R−→ X)TBoxOD

Create new (I, T, RT, RTBox, IBox, {Y}, ∅, ∅, 4) in ΦCICT

// include the relationship

sameR(Y R−→ X, I R−→ C)(TBoxOD ,IBox)

Adjust card. of I R−→ C from AATD
S−→ C (see Section 5.2.3)

If T = Unit or (C ∈ IOOTD and

∃S : (AATD
S−→ C)ARBoxTD ∧maxC(AATD

S−→ C)ARBoxTD > 1 then

exactC(AATD
RT−→ I)RTBox = 1

Else

sameR(Y R−→ X, AATD
RT−→ I)(TBoxOD ,RTBox)� �

Algorithm 7 suggests new input concepts from the set of domain concepts present

in the domain ontology that represent a sub-concept of another, already existent, input

concept in TD. Although the process is similar to that of Algorithm 6, instead of follow-



136 assisted construction of workflow-definitions

ing role restrictions between concepts in the domain ontology, it follows subsumption

relations between concepts.

Algorithm 7: Suggestion of Create-Input-Concept commands in a task-definition context: sub-

set no. 2.� �
Do for T = Unit and T = UnitContext

// it. all already existent input concepts, C, with the domain type X

// and it. all sub-concepts, D, of X

∀C, X, D : C ∈ IOITD ∧ (C, X) ∈ ∆TDOD ∧ D ∈ DLACOD ∧ bD v XeTBoxOD

// suggest a new input concept from D and include the subsumption

Create new (I, T, RT, RTBox, IBox, {D}, ∅, {C}, 3) in ΦCICT

If T = Unit then exactC(AATD
RT−→ I)RTBox = 1

Else (AATD
RT−→ I)RTBox ∧minC(AATD

RT−→ I)RTBox = 0� �
Algorithm 8 suggests new input concepts from the set of domain concepts present

in the domain ontology, unrelated to other already existent input or output concepts

in TD. This algorithm simply suggests new input concepts for each available concept

in the domain ontology.

Algorithm 8: Suggestion of Create-Input-Concept commands in a task-definition context: sub-

set no. 3.� �
Do for T = Unit and T = UnitContext

// it. all domain concepts D and suggest a new input concept from D

∀D ∈ DLACOD

Create new (I, T, RT, RTBox, ∅, {D}, ∅, ∅, 2) in ΦCICT

If T = Unit then exactC(AATD
RT−→ I)RTBox = 1

Else minC(AATD
RT−→ I)RTBox = 1� �

Algorithm 9 suggests new input concepts related to other, already existent, input

concepts in TD that are dependent on an event or assignment concept. The process is

similar to that of Algorithm 6. However, the already existent concept does not contain

a representation in the domain ontology. Thus, instead of performing an analysis of the

domain ontology, this algorithm follows the concepts and role restrictions established

by the depended upon task-definition.

Algorithm 9: Suggestion of Create-Input-Concept commands in a task-definition context: sub-

set no. 4.� �
Do for T = Unit and T = UnitContext

// it. all already existent input concepts, C

∀C : C ∈ IOITD



7.2 atomic commands 137

// it. all task/event-definitions X, as long as C is dependent on their

assignment/event concept

∀X : X ∈ ADWD ∧ ((C, f TDe fAA(X)) ∈ ♦WDWF ∨ (isEDe f (X) ∧ (C, X) ∈ ♦WDWF))

// it. and suggest input/output concepts of X as new input concepts

∀D : D ∈ ( f TDe f IOI(X) ∪ f TDe f IOO(X)) ∨ D ∈ f EDe f IOI(X)

Init. DEP = X

If isTDe f (X) then Set DEP = f TDe fAA(X)

Create new (I, T, RT, RTBox, IBox, DC, {D}, ∅, 3) in ΦCICT

sameR(DEP R−→ D, C R−→ I)(TBoxOWF ,IBox)

If T = Unit then exactC(AATD
RT−→ I)RTBox = 1

Else sameR(DEP R−→ D, AATD
RT−→ I)(TBoxOWF ,RTBox)� �

Algorithm 10 suggests new input concepts dependent on an assignment or event

concept and related to other, already existent, input concepts in TD. This is a com-

plement to Algorithm 9. For each of the already existent task/event-definition in the

workflow-definition (excluding the current one), the algorithm suggests input concepts

dependent on their operational concepts that do not possess a representation in the do-

main ontology (i. e. event and assignment concepts). The suggestion is only made if

the new dependent input concept is also related to an already existent input concept

in the IOBoxTD.

Algorithm 10: Suggestion of Create-Input-Concept commands in a task-definition context: sub-

set no. 5.� �
Do for T = Unit and T = UnitContext

// it. all already existent input concepts, C, dependent on D

∀C, D : C ∈ IOITD ∧ (C, D) ∈ ♦WDWF

// get the task/event-definition X containing the input/output concept D

∀X ∈ ADWD ∧ (D ∈ ( f TDe f IOI(X) ∪ f TDe f IOO(X)) ∨ D ∈ f EDe f IOI(X))

// suggest new input concept dependent on the event concept X...

Init. DEP = X

// ...or in the assignment concept of X

If isTDe f (X) then Set DEP = f TDe fAA(X)

Create new (I, T, RT, RTBox, IBox, ∅, {DEP}, ∅, 3) in ΦCICT

sameR(DEP R−→ D, I R−→ C)(TBoxOWF ,IBox)

If T = Unit then exactC(AATD
RT−→ I)RTBox = 1

Else minC(AATD
RT−→ I)RTBox = 1� �

Algorithm 11 suggests new input concepts dependent on an assignment or event

concept, unrelated to other already existent input or output concepts in TD.



138 assisted construction of workflow-definitions

Algorithm 11: Suggestion of Create-Input-Concept commands in a task-definition context: sub-

set no. 6.� �
Do for T = Unit and T = UnitContext

// it. all task/event-definitions, X (excluding the current)

∀X : X ∈ ADWD ∧ X 6= ATTD ∧ (isTDe f (X) ∨ isEDe f (X))

// suggest new input concept dependent on the event concept X...

Init. DEP = X

// ...or in the assignment concept of X

If isTDe f (X) then Set DEP = f TDe fAA(X)

Create new (I, T, RT, RTBox, ∅, ∅, {DEP}, ∅, 2) in ΦCICT

If T = Unit then exactC(AATD
RT−→ I)RTBox = 1

Else minC(AATD
RT−→ I)RTBox = 1� �

7.2.1.2 Create-Output-Concept Commands

A Create-Output-Concept command in a task-definition context is a structure

COCT(TD) := (O, T, RT, RTBox, OBox, DC, SC, p), where:

• O ∈ DLACOWF is the atomic output concept;

• T ∈ {Response, ResponseContext} is the type of the output concept;

• RT ∈ DLAROWF is the atomic role that relates AATD to O;

• RTBox ⊆ TBoxOWF is the set of role restrictions relating AATD to O;

• OBox ⊆ TBoxOWF is the set of role restrictions involving O;

• DC ⊆ DLACOD is a set of mapped atomic domain concepts;

• SC ⊆ IOITD ∪ IOOTD is a set of internal operational concepts in which O de-

pends;

• p ∈ [1, 5] is the priority value of the command.

The execution of a COCT results in:

• O ∈ IOOTD;

• RT ∈ ARTD ∪ {hasResponse, hasResponseContext};

• RTBox ⊆ ARBoxTD;

• OBox ⊆ IOBoxTD;

• ∀D ∈ DC ⇒ (O, D) ∈ ∆TDOD;

• (O, T) ∈ ∆TDCFO;



7.2 atomic commands 139

• ∀D ∈ SC ⇒ bO v DeTBoxOWF .

A set of Create-Output-Concept commands, ΦCOCT, is suggested through the execu-

tion of several algorithms. These algorithms exploit the ∆TDOD relation to suggest the

addition of new concepts and role restrictions to the IOBoxTD, based on the concepts

and role restrictions established in the domain ontology.

Algorithm 12 suggests new output concepts related to other, already existent, input

or output concepts in TD. The process is similar to the one outlined in Algorithm 6.

Algorithm 12: Suggestion of Create-Output-Concept commands in a task-definition context:

sub-set no. 1.� �
Do for T = Response and T = ResponseContext

// it. all already existent input/output concepts, C, with the domain type X

// and it. all domain concepts Y

∀C, X, Y : C ∈ (IOITD ∪ IOOTD) ∧ (C, X) ∈ ∆TDOD ∧Y ∈ DLACOD

// it. rels. from X to Y and suggest new output concept dependent on Y

∀R : (X R−→ Y)TBoxOD

Create new (O, T, RT, RTBox, OBox, {Y}, ∅, 4) in ΦCOCT

// include the relationship

If C ∈ IOITD ∧ ∃S : (AATD
S−→ C)ARBoxTD ∧maxC(AATD

S−→ C)ARBoxTD > 1 then

exactC(C R−→ O)OBox = 1

Else

sameR(X R−→ Y, C R−→ O)(TBoxOD ,OBox)

sameR(C R−→ O, AATD
RT−→ I)(OBox,RTBox)

// it. rels. from Y to X and suggest new output concept dependent on Y

∀R : (Y R−→ X)TBoxOD

Create new (O, T, RT, RTBox, OBox, {Y}, ∅, 4) in ΦCOCT

// include the relationship

sameR(Y R−→ X, O R−→ C)(TBoxOD ,OBox)

Adjust card. of O R−→ C from AATD
S−→ C (see Section 5.2.3)

If C ∈ IOITD ∧ ∃S : (AATD
S−→ C)ARBoxTD ∧maxC(AATD

S−→ C)ARBoxTD > 1 then

exactC(AATD
RT−→ O)RTBox = 1

Else

sameR(Y R−→ X, AATD
RT−→ O)(TBoxOD ,RTBox)� �

Algorithm 13 suggests new output concepts from the set of domain concepts present

in the domain ontology that represent a sub-concept of another, already existent, input

or output concept in TD. The process is similar to the one outlined in Algorithm 7.



140 assisted construction of workflow-definitions

Algorithm 13: Suggestion of Create-Output-Concept commands in a task-definition context:

sub-set no. 2.� �
Do for T = Response and T = ResponseContext

// it. all already existent input/output concepts, C, with the domain type X

// and it. all sub-concepts, D, of X

∀C, X, D : C ∈ (IOITD ∪ IOOTD) ∧ (C, X) ∈ ∆TDOD ∧ D ∈ DLACOD

If bD v XeTBoxOD then

// suggest a new output concept from D and include the subsumption

Create new (O, T, RT, RTBox, OBox, {D}, {C}, 3) in ΦCOCT

(AATD
RT−→ O)RTBox ∧minC(AATD

RT−→ O)RTBox = 0

exactC(AATD
RT−→ O)RTBox = 0� �

Algorithm 14 suggests new output concepts from the set of domain concepts present

in the domain ontology, unrelated to other already existent input or output concepts

in TD. The process is similar to the one outlined in Algorithm 8.

Algorithm 14: Suggestion of Create-Output-Concept commands in a task-definition context:

sub-set no. 3.� �
Do for T = Response and T = ResponseContext

// it. all domain concepts D and suggest a new output concept from D

∀D ∈ DLACOD

Create new (O, T, RT, RTBox, ∅, {D}, ∅, 2) in ΦCOCT

minC(AATD
RT−→ O)RTBox = 1� �

7.2.1.3 Create-Relation Commands

A Create-Relation command in a task-definition context is a structure CRT(TD) :=

(RRBox, p), where:

• RRBox ⊆ TBoxOWF is the set of role restrictions between two input or output

concepts;

• p ∈ [1, 5] is the priority value of the command.

The execution of a CRT results in RRBox ⊆ IOBoxTD.

A set of Create-Relation commands, ΦCRT, is suggested through the execution of

Algorithm 15 and Algorithm 16. These algorithms exploit the ∆TDOD relation to sug-

gest the addition of new role restrictions to the IOBoxTD, based on the role restrictions

established in the domain ontology.



7.2 atomic commands 141

Algorithm 15 suggests role restrictions between two already existent input concepts,

or between two already existent output concepts.

Algorithm 15: Suggestion of Create-Relation commands in a task-definition context: sub-set no.

1.� �
// it. all pairs of input/output concepts, C and D, with domain types X and Y

∀C, D, X, Y : ((C ∈ IOITD ∧ D ∈ IOITD) ∨ (C ∈ IOOTD ∧ D ∈ IOOTD))

If (C, X) ∈ ∆TDOD ∧ (D, Y) ∈ ∆TDOD then

// it. rels., R, from X to Y, in the domain ontology

∀R : (X R−→ Y)TBoxOD

// suggest new role restrictions from R

Create new (RRBox, 5) in ΦCRT

sameR(X R−→ Y, C R−→ D)(TBoxOD ,RRBox)

Adjust card. of C R−→ D from AATD
S−→ D (see Section 5.2.3)� �

Algorithm 16 suggests role restrictions between an input concept and an output

concept, and vice-versa.

Algorithm 16: Suggestion of Create-Relation commands in a task-definition context: sub-set no.

2.� �
// it. all output concepts, C, and all input concepts, D...

∀C, D, X, Y : ((C ∈ IOOTD ∧ D ∈ IOITD) ∨ (C ∈ IOITD ∧ D ∈ IOOTD))

// ...with domain types X and Y

If (C, X) ∈ ∆TDOD ∧ (D, Y) ∈ ∆TDOD then

// ...where either C or D has a maximum assignment cardinality of 1

If ∀S : maxC(AATD
S−→ C)ARBoxTD ≤ 1 or ∀S : maxC(AATD

S−→ D)ARBoxTD ≤ 1 then

// it. rels., R, from X to Y, in the domain ontology

∀R : (X R−→ Y)TBoxOD

// suggest new role restrictions from R

Create new (RRBox, 5) in ΦCRT

sameR(X R−→ Y, C R−→ D)(TBoxOD ,RRBox)

Adjust card. of C R−→ D from AATD
S−→ D (see Section 5.2.3)� �

7.2.1.4 Create-Internal-Dependency Commands

A Create-Internal-Dependency command establishes a dependency between input or

output concepts inside the task-definition.

A Create-Internal-Dependency command in a task-definition context is a structure

CIDT(TD) := (OC, DC, p), where:



142 assisted construction of workflow-definitions

• OC ∈ (IOITD ∪ IOOTD) is the atomic origin (dependent) concept;

• DC ∈ (IOITD ∪ IOOTD) is the atomic destination (depended upon) concept;

• p ∈ [1, 5] is the priority value of the command.

The execution of a CIDT results in bOC v DCeIOBoxTD .

A set of Create-Internal-Dependency commands, ΦCIDT, is suggested through the

execution of Algorithm 17 and Algorithm 18.

Algorithm 17 suggests internal dependencies between two input concepts and be-

tween two output concepts. The algorithm exploits the ∆TDOD relation to suggest the

addition of new internal dependencies, based on the subsumptions found in the do-

main ontology.

Algorithm 17: Suggestion of Create-Internal-Dependency commands in a task-definition con-

text: sub-set no. 1.� �
// it. all pairs of input/output concepts, C and D...

∀C, D : ((C ∈ IOOTD ∧ D ∈ IOOTD) ∨ (C ∈ IOITD ∧ D ∈ IOITD))

// ...with domain types X and Y (where X subsumes Y)

If ∀X, Y : (C, X) ∈ ∆TDOD ∧ (D, Y) ∈ ∆TDOD ∧ bX v YeTBoxOD then

/* ...where the interval of values denoting the possible amount of C per

assignment is within the interval of values denoting the possible amount

of D per assignment */

If card. of ∀R : AATD
R−→ C are contained in card. ∀S : AATD

S−→ D then

Create new (C, D, 2) in ΦCIDT� �
Algorithm 18 suggests internal dependencies between an output concept and an

input concept. In general, these suggestions are only made if the concepts have the

same domain type in ∆TDOD.

Algorithm 18: Suggestion of Create-Internal-Dependency commands in a task-definition con-

text: sub-set no. 2.� �
// it. all output concepts, C, and all input concepts, D...

∀C, D : C ∈ IOOTD ∧ D ∈ IOITD

// ...with the same domain type

If ∀X, Y : (C, X) ∈ ∆TDOD ∧ (D, Y) ∈ ∆TDOD ∧ X = Y then

/* ...where the interval of values denoting the possible amount of C per

assignment is within the interval of values denoting the possible amount

of D per assignment */

If card. of ∀R : AATD
R−→ C are contained in card. ∀S : AATD

S−→ D then

Create new (C, D, 3) in ΦCIDT� �



7.2 atomic commands 143

7.2.1.5 Create-External-Dependency Commands

A Create-External-Dependency command establishes a dependency between an input

concept inside the task-definition and an operational concept of another task-definition

or event-definition.

A Create-External-Dependency command in a task-definition context is a structure

CEDT(TD) := (OC, DC, p), where:

• OC ∈ (IOITD ∪ IOOTD) is the atomic origin (dependent) input concept in TD;

• DC ∈ DLACOWF is the atomic destination (depended upon) operational concept;

• p ∈ [1, 5] is the priority value of the command.

The execution of a CEDT results in (OC, DC) ∈ ♦WDWF.

A set of Create-External-Dependency commands, ΦCEDT, is suggested through the

execution of Algorithm 19, which suggests external dependencies for concepts with

the same ∆OD.

Algorithm 19: Suggestion of Create-External-Dependency commands in a task-definition con-

text.� �
// it. all input concepts, C, of the current task-definition and

// it. all operational concepts, D, of all other task/event-definitions, X...

∀C, D, X : C ∈ IOITD ∧ X ∈ ADWD ∧ (D ∈ f TDe fOP(X) ∨ D ∈ f EDe fOP(X))

If X 6= ATTD then

// ...with the same domain type

If {E|(C, E) ∈ ∆TDOD} =
{

E|(D, E) ∈ f TDe f∆OD (X) ∨ (D, E) ∈ f EDe f∆OD (X)
}

then

Create new (C, D, 2) in ΦCEDT� �
7.2.2 The Event-Definition Context

The construction process enters an event-definition context after a create or update

event-definition command. An event-definition context always contains an associated

event-definition ED(OWF) = (AEED, TED, IOED, IOBoxED, ARED,

ARBoxED, ∆EDOD, ∆EDOCF, IED, pED, lED, dED).



144 assisted construction of workflow-definitions

7.2.2.1 Create-Input-Concept Commands

An Create-Input-Concept command in an event-definition context is a structure

CICE(ED) := (I, T, RT, RTBox, IBox, DC, SC, p), where:

• I ∈ DLACOWF is the atomic input concept;

• T ∈ {Unit, UnitContext} is the type of the input concept;

• RT ∈ DLAROWF is the atomic role that relates AEED to I;

• RTBox ⊆ TBoxOWF is the set of role restrictions relating AEED to I;

• IBox ⊆ TBoxOWF is the set of role restrictions involving I;

• DC ⊆ DLACOD is a set of mapped atomic domain concepts;

• SC ⊆ IOIED is a set of internal operational concepts in which I depends;

• p ∈ [1, 5] is the priority value of the command.

The execution of a CICE results in:

• I ∈ IOIED;

• RT ∈ ARED ∪ {hasUnit, hasUnitContext};

• RTBox ⊆ ARBoxED;

• IBox ⊆ IOBoxED;

• ∀D ∈ DC ⇒ (I, D) ∈ ∆EDOD;

• (I, T) ∈ ∆EDCFO;

• ∀D ∈ SC ⇒ bI v DeTBoxOWF .

A set of Create-Input-Concept commands, ΦCICE, is suggested through the execution

of several algorithms. These algorithms are an adaptation of those found in the task-

definition context. However, since event-definitions do not represent operations on top

of data, a distinction between input and output concepts is not made.

Algorithm 20 suggests new data concepts related to other, already existent, data

concepts in ED.

Algorithm 20: Suggestion of Create-Input-Concept commands in an event-definition context:

sub-set no. 1.� �
Do for T = Unit and T = UnitContext

// it. all already existent data concepts, C, with the domain type X

// and it. all domain concepts Y



7.2 atomic commands 145

∀C, X, Y : C ∈ IOIED ∧ (C, X) ∈ ∆EDOD ∧Y ∈ DLACOD

// it. rels. from X to Y and suggest new input concept dependent on Y

∀R : (X R−→ Y)TBoxOD

Create new (I, T, RT, RTBox, IBox, {Y}, ∅, ∅, 4) in ΦCICE

// include the relationship

If T = Unit then exactC(C R−→ I)IBox = 1

Else sameR(X R−→ Y, C R−→ I)(TBoxOD ,IBox)

sameR(C R−→ I, AEED
RT−→ I)(IBox,RTBox)

// it. rels. from Y to X and suggest new input concept dependent on Y

∀R : (Y R−→ X)TBoxOD

Create new (I, T, RT, RTBox, IBox, {Y}, ∅, ∅, 4) in ΦCICE

// include the relationship

sameR(Y R−→ X, I R−→ C)(TBoxOD ,IBox)

Adjust card. of I R−→ C from AEED
S−→ C (see Section 5.2.3)

If T = Unit then exactC(AEED
RT−→ I)RTBox = 1

Else sameR(Y R−→ X, AEED
RT−→ I)(TBoxOD ,RTBox)� �

Algorithm 21 suggests new data concepts from the set of domain concepts present

in the domain ontology that represent a sub-concept of another, already existent, data

concept in ED.

Algorithm 21: Suggestion of Create-Input-Concept commands in an event-definition context:

sub-set no. 2.� �
Do for T = Unit and T = UnitContext

// it. all already existent data concepts, C, with the domain type X

// and it. all sub-concepts, D, of X

∀C, X, D : C ∈ IOIED ∧ (C, X) ∈ ∆EDOD ∧ D ∈ DLACOD ∧ bD v XeTBoxOD

// suggest a new input concept from D and include the subsumption

Create new (I, T, RT, RTBox, IBox, {D}, ∅, {C}, 3) in ΦCICE

If T = Unit then exactC(AEED
RT−→ I)RTBox = 1

Else (AEED
RT−→ I)RTBox ∧minC(AEED

RT−→ I)RTBox = 0� �
Algorithm 22 suggests new data concepts from the set of domain concepts present

in the domain ontology, unrelated to other already data concepts in ED.

Algorithm 22: Suggestion of Create-Input-Concept commands in an event-definition context:

sub-set no. 3.� �
Do for T = Unit and T = UnitContext

// it. all domain concepts D and suggest a new input concept from D

∀D ∈ DLACOD



146 assisted construction of workflow-definitions

Create new (I, T, RT, RTBox, ∅, {D}, ∅, ∅, 2) in ΦCICE

If T = Unit then exactC(AEED
RT−→ I)RTBox = 1

Else minC(AEED
RT−→ I)RTBox = 1� �

7.2.2.2 Create-Relation Commands

A Create-Relation command in an event-definition context is a structure CRE(ED) :=

(RRBox, p), where:

• RRBox ⊆ TBoxOWF is the set of role restrictions between two data concepts;

• p ∈ [1, 5] is the priority value of the command.

The execution of a CRE results in RRBox ⊆ IOBoxED.

A set of Create-Relation commands, ΦCRE, is suggested through the execution of

Algorithm 23, which suggests role restrictions between two data concepts.

Algorithm 23: Suggestion of Create-Relation commands in an event-definition context.� �
// it. all pairs of data concepts, C and D, with domain types X and Y

∀C, D, X, Y : C ∈ IOIED ∧ D ∈ IOIED ∧ (C, X) ∈ ∆EDOD ∧ (D, Y) ∈ ∆EDOD

// it. rels., R, from X to Y, in the domain ontology

∀R : (X R−→ Y)TBoxOD

// suggest new role restrictions from R

Create new (RRBox, 5) in ΦCRE

sameR(X R−→ Y, C R−→ D)(TBoxOD ,RRBox)

Adjust card. of C R−→ D from AEED
S−→ D (see Section 5.2.3)� �

7.2.2.3 Create-Internal-Dependency Commands

A Create-Internal-Dependency command in an event-definition context is a structure

CIDE(ED) := (OC, DC, p), where:

• OC ∈ (IOITD ∪ IOOTD) is the atomic origin (dependent) concept;

• DC ∈ (IOITD ∪ IOOTD) is the atomic destination (depended upon) concept;

• p ∈ [1, 5] is the priority value of the command.

The execution of a CIDE results in bOC v DCeIOBoxED .

A set of Create-Internal-Dependency commands, ΦCIDE, is suggested through the

execution of Algorithm 24, which suggests internal dependencies between two data

concepts.



7.2 atomic commands 147

Algorithm 24: Suggestion of Create-Internal-Dependency commands in an event-definition

context.� �
// it. all pairs of data concepts, C and D...

∀C, D : C ∈ IOIED ∧ D ∈ IOIED

// ...with domain types X and Y (where X subsumes Y)

If ∀X, Y : (C, X) ∈ ∆EDOD ∧ (D, Y) ∈ ∆EDOD ∧ bX v YeTBoxOD then

/* ...where the interval of values denoting the possible amount of C per

assignment is within the interval of values denoting the possible amount

of D per assignment */

If card. of ∀R : AEED
R−→ C are contained in card. ∀S : AEED

S−→ D then

Create new (C, D, 2) in ΦCIDE� �
7.2.3 The Transition-Definition Context

The construction process enters a transition-definition context after a create or update

transition-definition command. A transition-definition context always contains an as-

sociated transition-definition RD(OWF) = (ARRD, TRD, CIRD, CORD, CondRD).

Operations on top of transition-definitions are, currently, either manual or fully auto-

mated through some of the commands in the workflow-definition context. A transition-

definition may be automatically established between two activity-definitions if they are

dependent.

7.2.4 The Workflow-Definition Context

The construction process enters a workflow-definition context after the creation or up-

date of a top-level workflow-definition, or after a create or update sub-workflow-defini-

tion command. A workflow-definition context always contains an associated workflow-

definition WD(OWF) = (AWWD, TWD, ADWD, TRDWD, IEDWD,♦WF, CondWD, pWD,

lWD, dWD).

7.2.4.1 Create-Task-Definition Commands

A Create-Task-Definition command in a workflow-definition context is a structure

CTDW(WD) := (AT, AA, W, I, tp, l, d, au, p), where:



148 assisted construction of workflow-definitions

• AT ∈ DLACOWF is the new task-definition atomic concept (name derived from

AA);

• AA ∈ DLACOWF is the new task-definition atomic assignment concept;

• W ∈ DLACOWF is the new task-definition atomic worker concept;

• I ∈ DLACOWF is the new task-definition atomic task interface concept;

• tp ∈ PDOCF is the new task-definition priority (defaults to medium);

• l ∈ DLvOWF is the new task-definition label;

• d ∈ DLvOWF is the new task-definition description;

• au ∈ DLvOWF is the new task-definition assignments per unit value (defaults to

1);

• p ∈ [1, 5] is the priority value of the command.

The execution of a CTDW results in a new task-definition TDe f = (AT, TTDe f , AA,

IOTDe f , IOBoxTDe f , ARTDe f , ARBoxTDe f , ∆OD, ∆OCF, W, I, tp, l, d, au) in OWF. With the

creation of a new task-definition, the context of the construction process changes to

the new task-definition context.

A Create-Task-Definition command is always suggested in each step of the construc-

tion process in the workflow-definition context (with p = 4). The creator must manu-

ally supply AA, W, I, l and d.

7.2.4.2 Create-Event-Definition Commands

A Create-Event-Definition command in a workflow-definition context is a structure

CEDW(WD) := (AE, T, I, ep, l, d, p), where:

• AE ∈ DLACOWF is the new event-definition atomic concept;

• T ∈ EDTOCF is the new event-definition type (defaults to RunningEvent);

• I ∈ DLACOWF is the new event-definition atomic event interface concept;

• ep ∈ PDOCF is the new event-definition priority (defaults to medium);

• l ∈ DLvOWF is the new event-definition label;

• d ∈ DLvOWF is the new event-definition description;

• p ∈ [1, 5] is the priority value of the command.

The execution of a CEDW results in a new event-definition EDe f = (AE, T, IOEDe f ,

IOBoxEDe f , AREDe f , ARBoxEDe f , ∆OD, ∆OCF, I, ep, l, d) in OWF, where AE ∈ IEDWD if



7.2 atomic commands 149

T = InstantiationEvent. Consequently, the construction process context changes to the

new event-definition context.

A Create-Event-Definition command is always suggested in each step of the con-

struction process in the workflow-definition context (with p = 4). The creator must

manually supply AE, I, l and d.

7.2.4.3 Create-Transition-Definition Commands

A Create-Transition-Definition command in a workflow-definition context is a struc-

ture CRDW(WD) := (AR, CI, CO, p), where:

• AR ∈ DLACOWF is the new transition-definition atomic concept;

• CI ⊆ DLCOWF is the new transition-definition set of incoming activity-definition

concepts;

• CO ⊆ DLCOWF is the new transition-definition set of outgoing activity-definition

concepts;

• p ∈ [1, 5] is the priority value of the command.

The execution of a CRDW results in a new transition-definition RDe f = (AR, TRDe f ,

CI, CO, CondRDe f ) in OWF, where AR ∈ TRDWD. Consequently, the construction pro-

cess context changes to the new transition-definition context.

Create-Transition-Definition commands are suggested for each activity-definition

in OWF and not in ADWD, i. e. for each activity-definition that is not linked to the

workflow-definition through a transition-definition or as a start activity-definition. The

set of suggested Create-Transition-Definition commands, ΦCRDW , is built through the

execution of Algorithm 25 and Algorithm 26. The creator must manually supply AR.

The type, TRDe f , is inferred (see Section 5.4).

Algorithm 25 suggests transition-definitions for all existing activity-definitions that

are not yet linked to a workflow-definition.

Algorithm 25: Suggestion of Create-Transition-Definition commands in a workflow-definition

context: sub-set 1.� �
// it. all activity-definitions C and D...

∀C, D : C ∈ ADWD ∧ D ∈ DLACOWF ∧ D /∈ ADWD

// ...where D is not linked to the wf-def. and is not an InstantiationEvent

If bD v ActivityeTBoxOWF ∧ bD 6v InstantiationEventeTBoxOWF then

Create new (AR, {C}, {D}, 3) in ΦCRDW // suggest transition-def. from C to D� �



150 assisted construction of workflow-definitions

Algorithm 26 suggests transition-definitions according to the operational dependen-

cies in ♦WF, i. e. between dependent activity-definitions.

Algorithm 26: Suggestion of Create-Transition-Definition commands in a workflow-definition

context: sub-set 2.� �
// it. all distinct and dependent activity-definitions C and D

// the transitive reduction ensures that all dependencies are satisfied

∀C, D : (C, D) ∈≺− ∧C 6= D ∧ C /∈ IEDWD

// suggest transition-definition from C to D, since D depends on C

Create new (AR, {C}, {D}, 3) in ΦCRDW� �
7.2.4.4 Create-Sub-Workflow-Definition Commands

A Create-Sub-Workflow-Definition command in a workflow-definition context is a

structure CWDW(WD) := (AW, ec, wp, l, d, p), where:

• AW ∈ DLACOWF is the new sub-workflow-definition atomic concept;

• ec ∈ DLnOWF is the new sub-workflow-definition loop exit condition (optional);

• wp ∈ PDOCF is the new sub-workflow-definition priority (defaults to medium);

• l ∈ DLvOWF is the new sub-workflow-definition label;

• d ∈ DLvOWF is the new sub-workflow-definition description;

• p ∈ [1, 5] is the priority value of the command.

The execution of a CWDW results in a new sub-workflow-definition WDe f = (AW,

TWDe f , ADWDe f , TRDWDe f , IEDWDe f ,♦WF, Cond, wp, l, d) in OWF. Consequently, the

construction process context changes to the new sub-workflow-definition context.

A Create-Sub-Workflow-Definition command is always suggested in each step of the

construction process in the workflow-definition context (with p = 4). The creator must

manually supply AW, l and d. Additionally, the creator may choose to supply ec and

p.

7.3 pattern commands

Pattern commands are sets of atomic commands triggered by the existence of a partic-

ular pattern in the domain and workflow-definition ontologies. As with atomic com-



7.3 pattern commands 151

mands, pattern commands are suggested in the context of an activity-definition or

transition-definition.

Currently, three pattern commands are proposed in the workflow-definition context:

the Follow-Role-CreateAndFill, the Partition, and the Assembler pattern commands.

7.3.1 Follow-Role-CreateAndFill Pattern Commands

The iterative acceptance of Follow-Role-CreateAndFill pattern commands allows the

creator to build a workflow-definition that incrementally instantiates the domain on-

tology.

The Follow-Role-CreateAndFill pattern command exists in the workflow-definition

context. It creates a new task-definition by following the role restrictions from or to a

domain concept in the output of another task-definition.

A situation where this pattern command would be useful is found in the docu-

ment partition and translation workflow-definition presented in Figure 24. For instance,

after the construction of T1, and according to the domain ontology, a Follow-Role-

CreateAndFill command is suggested. This command builds a task-definition that fol-

lows the contains role restriction onto Paragraph, and further partitions the paragraphs

(those that belong to the output of T1) into sentences.

A Follow-Role-CreateAndFill pattern command in a workflow-definition context is

a structure FRCF(WD) := (OA, CD, SBox, DC, AT, AA, W, TI, l, d, au, I, O, p), where:

• OA ∈ DLACOWF is the dependent upon activity-definition atomic concept;

• CD ∈ DLACOWF is an input or output concept in OA;

• SBox ⊆ TBoxOD is a set of role restrictions that associate the domain concepts of

CD with the domain concept DC;

• DC ⊆ DLACOD is the domain atomic concept, linked to the response concept of

the new task-definition;

• AT ∈ DLACOWF is the new task-definition atomic concept (name derived from

AA);

• AA ∈ DLACOWF is the new task-definition atomic assignment concept;

• W ∈ DLACOWF is the new task-definition atomic worker concept;

• TI ∈ DLACOWF is the new task-definition atomic task interface concept;



152 assisted construction of workflow-definitions

• tp ∈ PDOCF is the new task-definition priority (defaults to medium);

• l ∈ DLvOWF is the new task-definition label;

• d ∈ DLvOWF is the new task-definition description;

• au ∈ DLvOWF is the new task-definition assignments per unit value (defaults to

1);

• I ∈ DLACOWF is the new task-definition unit concept dependent on CD;

• O ∈ DLACOWF is the new task-definition response concept linked to DC;

• p ∈ [1, 5] is the priority value of the pattern command.

The structure FRCF is a valid Follow-Role-CreateAndFill pattern command if it sat-

isfies the following conditions:

• bOA v ActivityeTBoxOWF ;

• bOA 6v InstantiationEventeTBoxOWF ;

• |SBox| ≥ 1;

• Regarding CD:

– CD ∈ ( f TDe f IOI(OA) ∪ f TDe f IOO(OA)) if isTDe f (OA);

– CD ∈ f EDe f IOI(OA) if isEDe f (OA);

• ∀C, D, R : (C R−→ D)SBox ⇒ ∃X : ((C = DC ∧ (CD, D) ∈ X) ∨ (D = DC ∧
(CD, C) ∈ X)) ∧ ((isTDe f (OA) ∧ X = f TDe f∆OD(OA)) ∨ (isEDe f (OA) ∧ X =

f EDe f∆OD(OA))).

7.3.1.1 Execution

As presented in Algorithm 27, the execution of a FRCF results in the execution of a

sequence of atomic commands.

Algorithm 27: Execution of a Follow-Role-CreateAndFill pattern command in a workflow-def-

inition context.� �
// create a new (partial) task-def. and move onto the task-def. context

Init. Create-Task-Definition δCTDW = (AT, AA, W, TI, tp, l, d, au, p)

Exec. δCTDW

// get the domain type of the input/output concept, CD,

// in the task/event-definition, OA

Init. IDC = ∅



7.3 pattern commands 153

If isTDe f (OA) then IDC =
{

Y|(CD, Y) ∈ f TDe f∆OD (OA)
}

If isEDe f (OA) then IDC =
{

Y|(CD, Y) ∈ f EDe f∆OD (OA)
}

// create the new unit concept dependent on CD, with the same domain type

Init. Create-Input-Concept δCICT = (I, {Unit}, ∅, RTBox, ∅, IDC, {CD}, ∅, p)

Exec. δCICT

Init. S = hasResponse

// create OBox, with the role restrictions that will be added to the IOBox

Init. OBox such that ∀C, R : C ∈ IDC ∧ R ∈ DLROWF and:

sameR(C R−→ DC, I R−→ O)(SBox,OBox)

sameR(DC R−→ C, O R−→ I)(SBox,OBox)

// create RTBox, with the role restrictions that will be added to the ARBox

Init. RTBox such that (AA S−→ O)RTBox and:

minC(AA S−→ O)RTBox = 1∧ exactC(AA S−→ O)RTBox = 0

maxC(AA S−→ O)RTBox = ∞

If ∃R : (I R−→ O)OBox then minC(AA S−→ O)RTBox = max∀R(minC(I R−→ O)OBox)

If ∃R : (I R−→ O)OBox then exactC(AA S−→ O)RTBox = exactC(I R−→ O)OBox

If ∃R : (I R−→ O)OBox then maxC(AA S−→ O)RTBox = min∀R(maxC(I R−→ O)OBox)

// create the new response concept dependent on DC, with the OBox and RTBox

Init. Create-Output-Concept δCOCT = (O, {Response}, ∅, RTBox, OBox, {DC}, ∅, p)

Exec. δCOCT

Init. and Exec. Save-Exit-Context Command� �
7.3.1.2 Suggestion

A Follow-Role-CreateAndFill pattern command can only be suggested or executed if

at least one task-definition exists in the current workflow-definition context. A set of

Follow-Role-CreateAndFill pattern commands, ΦFRCF, is suggested through the exe-

cution of Algorithm 28, which, according to the domain ontology, suggests new task-

definitions dependent on the currently existent task-definitions.

Algorithm 28: Suggestion of Follow-Role-CreateAndFill pattern commands in a workflow-def-

inition context.� �
// it. all task/event-defs., X, with output/data concepts, C, of domain type D

// also it. all domain concepts, E

∀X, C, D, E : X ∈ ADWD ∧ E ∈ DLACOD∧
∧((isTDe f (X) ∧ C ∈ f TDe f IOO(X) ∧ (C, D) ∈ f TDe f∆OD (X))∨
∨(isEDe f (X) ∧ C ∈ f EDe f IOI(X) ∧ (C, D) ∈ f EDe f∆OD (X)))

// it. rels., R, from D to E in the domain ontology



154 assisted construction of workflow-definitions

∀R : (D R−→ E)TBoxOWF

// suggest command with unit concept dependent on C

Init. SBox: sameR(D R−→ E, D R−→ E)(TBoxOWF ,SBox)

Create new (X, C, SBox, E, AT, AA, W, I, l, d, au, I, O, 5) in ΦFRCF

// it. rels., R, from E to R in the domain ontology

∀R : (E R−→ D)TBoxOWF

// suggest command with unit concept dependent on C

Init. SBox: sameR(E R−→ D, E R−→ D)(TBoxOWF ,SBox)

Create new (X, C, SBox, E, AT, AA, W, I, l, d, au, I, O, 5) in ΦFRCF� �
7.3.2 Partition Pattern Commands

The partition pattern command creates several new task-definitions, incrementally ask-

ing for the parts of given domain objects by following meronymic role restrictions from

and to domain concepts (see Figure 38 for an illustration). For instance, consider the

document domain ontology in Figure 9. A Section is formed by one or more Paragraph,

which are formed by one or more Sentence. These are related through the meronymic

role contains. For this domain ontology, a partition pattern command that creates two

task-definitions, of type CreateAndFillTask, would be suggested. The first task-definition

would ask for the paragraphs of a given section. The second task-definition would ask

for the sentences of the previously submitted paragraphs.

A partition pattern command in a workflow-definition context is a structure PW :=

(r, SBox, W, TI, tp, au, p), where:

• r ∈ DLROD is the meronymic role;

• SBox ⊆ TBoxOD is a set of restrictions on the role r that associate two domain

concepts;

• W ∈ DLACOWF is the atomic worker concept for new task-definitions;

• TI ∈ DLACOWF is the atomic task interface concept for new task-definitions;

• tp ∈ PDOCF is the priority for new task-definitions (defaults to medium);

• au ∈ DLvOWF is the assignments per unit value for new task-definitions (defaults

to 1);

• p ∈ [1, 5] is the priority value of the pattern command.

The structure PW is a valid partition pattern command if |SBox| ≥ 1.



7.3 pattern commands 155

T3

T3Assignment

CompFlow Ontology (OCF)

Unit

PartA_T3

PartASubPart1_T3

∃ hasResponse

ΔOCF

ΔOCF

ΔOD Domain Ontology (OD)

Response

PartA

∀ hasOperationalization

CreateAndFillTask

Assignment

=1 hasUnit

ΔOD

PartASubPart1

∃ part

DomainThing_T1

PartA_T1

CompFlow Ontology (OCF)

CreateAndFillTask

T1

T1Assignment

DomainThing

∃ hasResponse

∀ hasOperationalization

ΔOD

ΔODDomain Ontology (OD)

Assignment

PartA

∃ part

Unit

Response

ΔOCF

ΔOCF

=1 hasUnit

◊WF

DomainThing_T2

PartB_T2

CompFlow Ontology (OCF)

CreateAndFillTask

T2

T2Assignment

DomainThing

∃ hasResponse

∀ hasOperationalization

ΔOD
ΔODDomain Ontology (OD)

Assignment

PartB

∃ part

Unit

Response

ΔOCF

ΔOCF

=1 hasUnit

T4

T4Assignment

CompFlow Ontology (OCF)

Unit

PartA_T4

PartASubPart2_T4

∃ hasResponse

ΔOCF

ΔOCF

ΔOD Domain Ontology (OD)

Response

PartA

∀ hasOperationalization

CreateAndFillTask

Assignment

=1 hasUnit

ΔOD

PartASubPart2

∃ part

◊WF

∃ part ∃ part

∃ part ∃ part

Figure 38: Result of the execution of a partition pattern command with four partition steps.
Notice that T1 and T2 can start concurrently. T3 and T4 can also start concurrently,
but only after T1 is finished.

7.3.2.1 Execution

As presented in Algorithm 29, the execution of a PW results in the execution of a

sequence of atomic commands.

Algorithm 29: Execution of a partition pattern command in a workflow-definition context.� �
// it. all meronymic rels. between two concepts, C and D and

// build a new partition task-definition (C must be at the top of the tree)

∀C, D : (C r−→ D)SBox ∧ @E : (E R−→ C)SBox

Invoke BuildPartition (∅, C, D)

// this routine builds a new task-definition that partitions C into D



156 assisted construction of workflow-definitions

Start of routine BuildPartition (WC, C, D)

Init. AT and AA with unique names derived from C and D

Init. l and d with the unique name of AT

// create the new partial task-definition

Init. Create-Task-Definition δCTDW = (AT, AA, W, TI, tp, l, d, au, p)

Exec. δCTDW

// create the unit concept with domain type C

Init. I with unique name derived from C

Init. Create-Input-Concept δCICT = (I, {Unit}, ∅, RTBox, ∅, {C}, WC, ∅, p)

Exec. δCICT

// create the response concept with domain type D

Init. O with unique name derived from D

// include the meronymic relationship from C

Init. OBox such that sameR(C r−→ D, I r−→ O)(SBox,OBox)

Init. RTBox such that (AA
hasResponse−−−−−−→ O)RTBox and:

minC(AA
hasResponse−−−−−−→ O)RTBox = minC(C r−→ D)SBox

exactC(AA
hasResponse−−−−−−→ O)RTBox = exactC(C r−→ D)SBox

maxC(AA
hasResponse−−−−−−→ O)RTBox = maxC(C r−→ D)SBox

Init. Create-Output-Concept δCOCT = (O, {Response}, ∅, RTBox, OBox, {D}, ∅, p)

Exec. δCOCT

Init. and Exec. Save-Exit-Context Command

// continue following the meronymic relationships to other concepts

// and build new partition task-definitions for them

∀E : (D r−→ E)SBox

Invoke BuildPartition ({O}, D, E)

End of routine BuildPartition� �
7.3.2.2 Suggestion

Partition pattern commands are suggested to the creator in a workflow-definition con-

text if a meronymic role structure is detected in the domain ontology. A set of partition

pattern commands, ΦPW , is suggested through two different strategies: (i) lexical veri-

fication and (ii) lexical and structural verification. The first (i) performs a purely lexical

verification of the roles present in the domain ontology (see Algorithm 30), while the

latter (ii) performs both a lexical and a structural verification (see Algorithm 31).



7.3 pattern commands 157

Algorithm 30: Suggestion of partition pattern commands in a workflow-definition context: lex-

ical verification.� �
// it. all meronymic roles, R, in the domain ontology

∀R : R ∈ DLROD ∧ isMeronymicRole(R)

// create the partial SBox with all the R role restrictions

Init. SBox = ∅

∀C, D : C ∈ DLACOD ∧ D ∈ DLACOD ∧ (C R−→ D)TBoxOD

sameR(C R−→ D, C R−→ D)(TBoxOD ,SBox)

// if the partial SBox is not empty, suggest the command

If SBox 6= ∅ then

Create new (R, SBox, W, TI, tp, au, 3) in ΦPW� �
The structural verification performed by Algorithm 31 restricts the meronym rela-

tionship to concepts with a common hypernym (super-concept).

Algorithm 31: Suggestion of partition pattern commands in a workflow-definition context: lex-

ical and structural verification.� �
// it. all meronymic roles, R, in the domain ontology, which

// relate individuals of E to smaller and contained individuals (still) of E

∀R : R ∈ DLROD ∧ isMeronymicRole(R) ∧ ∃E : (E R−→ E)TBoxOD

// create the partial SBox with all the R role restrictions

Init SBox = ∅

∀C, D : C ∈ DLACOD ∧ D ∈ DLACOD ∧ bC v EeTBoxOD∧
∧bD v EeTBoxOD ∧ (C R−→ D)TBoxOD

sameR(C R−→ D, C R−→ D)(TBoxOD ,SBox)

// if the partial SBox is not empty, suggest the command

If SBox 6= ∅ then

Create new (R, SBox, W, TI, tp, au, 4) in ΦPW� �
This type of partition pattern command does not include higher-level parts (e. g.

sections) as contextual information of task-definitions that partition smaller parts (e. g.

sentences). For instance, as illustrated in Figure 38, a DomainThing is not present as the

UnitContext of task-definitions that partition PartA into PartASubPart1 and PartASub-

Part2. However, a type of partition pattern command that considers such a scenario

may be formulated as an extension of this partition pattern command.



158 assisted construction of workflow-definitions

7.3.3 Assembler Pattern Commands

The assembler pattern command creates several new task-definitions, which incremen-

tally assemble the given parts into new domain objects according to meronymic role

restrictions from and to domain concepts (see Figure 39 for an illustration). It pro-

vides the inverse set of operations of the partition pattern command. For instance,

once again considering the document domain ontology in Figure 9, an assembler pat-

tern command that creates two task-definitions of type CreateAndFillTask are suggested.

The first task-definition asks for paragraphs that assemble sets of given sentences. The

second task-definition asks for sections that assemble the previously submitted para-

graphs.

An assembler pattern command in a workflow-definition context is a structure

AW := (r, SBox, W, TI, tp, au, p), where:

• r ∈ DLROD is the meronymic role;

• SBox ⊆ TBoxOD is a set of restrictions on the role r that associate two domain

concepts;

• W ∈ DLACOWF is the atomic worker concept for new task-definitions;

• TI ∈ DLACOWF is the atomic task interface concept for new task-definitions;

• tp ∈ PDOCF is the priority for new task-definitions (defaults to medium);

• au ∈ DLvOWF is the assignments per unit value for new task-definitions (defaults

to 1);

• p ∈ [1, 5] is the priority value of the pattern command.

The structure AW is a valid assembler pattern command if |SBox| ≥ 1.

7.3.3.1 Execution

As presented in Algorithm 32, the execution of an AW results in the execution of a

sequence of atomic commands.

Algorithm 32: Execution of an assembler pattern command in a workflow-definition context.� �
// do a bottom-up recursive construction of assembly task-definitions for all

// meronymic trees of concepts with the top-level concept C

∀C@E : (E r−→ C)SBox

Invoke BuildAssembler (∅, C,
{

D|(C r−→ D)SBox

}
)



7.3 pattern commands 159

DomainThing_T2

CompFlow Ontology (OCF)

CreateAndFillTask

T2

T2Assignment

PartA

∃ hasResponse

∀ hasOperationalization

ΔOD

ΔODDomain Ontology (OD)

Assignment

DomainThing

UnitContextResponse

ΔOCF
ΔOCF

∃ hasUnitContext

ResponseContext

ΔOD

ΔOCF

PartB_T2U

∃ part

PartB

PartB_T2R

ΔOD

ΔOD

∃ part

∃ hasUnitContext

∃ hasResponseContext

∃ hasResponseContext

PartA_T1

CompFlow Ontology (OCF)

CreateAndFillTask

T1

T1Assignment

PartASubPart1

∃ hasResponse

∀ hasOperationalization

ΔOD

ΔODDomain Ontology (OD)

Assignment

PartA

UnitContextResponse

ΔOCF ΔOCF

∃ hasUnitContext

ResponseContext

ΔOD

ΔOCF

PartASubPart2_T1U

∃ part

PartASubPart2

PartASubPart2_T1R

ΔOD

ΔOD

∃ part

∃ hasUnitContext

∃ hasResponseContext

∃ hasResponseContext

◊WF

ΔOCF

PartASubPart1_T1R

ΔOCF

PartASubPart1_T1U

ΔOCF

PartA_T2R

ΔOCF

PartA_T2U

∃ part

∃ part

∃ part

∃ part

Figure 39: Result of the execution of an assembler pattern command.

// this routine builds a new task-def. that assembles all parts in DS into C

Start of routine BuildAssembler (C, DS)

Init. AT and AA with unique names derived from C and DS

Init. l and d with the unique name of AT

// create the new partial task-definition

Init. and Exec. Create-Task-Definition δCTDW = (AT, AA, W, TI, tp, l, d, au, p)

// create the response concept with domain type C

Init. O with unique name derived from C



160 assisted construction of workflow-definitions

Init. ARB such that bAA v ∃hasResponse.OeARB

Init. Create-Output-Concept δCOCT = (O, {Response}, ∅, ARB, ∅, {C}, ∅, p)

Exec. δCOCT

// it. all parts (concepts), D, and create a unit context concept

// and a dependent response context concept, which filters the input parts

∀D ∈ DS

// first build the depended upon (lower-level) task-definitions and

// retrieve their response concept in WC

Init and Exec. Save-Exit-Context Command

Invoke WC = BuildAssembler (D,
{

E|(D r−→ E)SBox

}
)

Init. and Exec. Update-Task-Definition of AT

// create the unit context concept from D, dependent on the concept in WC

Init. I with unique name derived from D

Init. RTBox such that (AA hasUnitContext−−−−−−−−→ I)RTBox and:

minC(AA hasUnitContext−−−−−−−−→ I)RTBox = minC(C r−→ D)SBox

exactC(AA hasUnitContext−−−−−−−−→ I)RTBox = exactC(C r−→ D)SBox

maxC(AA hasUnitContext−−−−−−−−→ I)RTBox = maxC(C r−→ D)SBox

Init. and Exec. Create-Input-Concept

δCICT = (I, {UnitContext}, ∅, RTBox, ∅, {D}, WC, ∅, p)

// create the response context concept from D, dependent on I

Init. P with unique name derived from D

Init. OBox such that sameR(C r−→ D, O r−→ P)(SBox,OBox)

Init. RTBox such that (AA
hasResponseContext−−−−−−−−−−−→ P)RTBox and:

minC(AA
hasResponseContext−−−−−−−−−−−→ P)RTBox = minC(C r−→ D)SBox

exactC(AA
hasResponseContext−−−−−−−−−−−→ P)RTBox = exactC(C r−→ D)SBox

maxC(AA
hasResponseContext−−−−−−−−−−−→ P)RTBox = maxC(C r−→ D)SBox

Init. and Exec. Create-Output-Concept

δCOCT = (P, {ResponseContext}, ∅, RTBox, OBox, {D}, {I}, p)

Init. and Exec. Save-Exit-Context Command

Return {O}
End of routine BuildAssembler� �
7.3.3.2 Suggestion

Similarly to partition pattern commands, assembler pattern commands are suggested

to the creator in a workflow-definition context if a meronymic role structure is detected

in the domain ontology. A set of assembler pattern commands, ΦAW , is also suggested



7.4 strategies 161

through two different strategies: lexical verification and lexical and structural verifica-

tion. The algorithms are the same as those used in the suggestion of partition pattern

commands.

This assembler pattern command does not include smaller parts as contextual in-

formation of task-definitions that assemble higher-level parts. For instance, a PartA-

SubPart1 is not present as the UnitContext of task-definitions that assemble PartA and

PartB into the DomainThing. Regardless, a type of assembler pattern command that

considers such a scenario may be formulated as an extension of this assembler pattern

command.

7.3.4 Other Pattern Commands

Any type of pattern command may be included in the CompFlow assisted construction

process. In the specific case of the document ontology presented in Figure 9, the pro-

cess of translating text to another language can be seen as a transformation operation,

which leads to the emergence of a new modified instance of the same concept. Such

an abstraction can be modelled as a new, more complex and complete, transformation

pattern command.

Other patterns may be highly domain specific and applicable to scenarios where

the application domain or the domain ontology remains the same for several different

workflow-definitions.

7.4 strategies

Strategies represent sets of atomic and pattern commands. Strategies can be defined in

the context of a particular ontology construction methodology or in the context of a par-

ticular domain. In order to facilitate the construction of workflow-definition ontologies

using a particular domain ontology, a strategy composed of several atomic and pat-

tern commands that result in common task-definitions and sub-workflow-definitions

for that domain can be defined. By using a particular strategy, creators can easily build

workflow-definitions by composing and mixing these common task-definitions and

sub-workflow-definitions.

Further abstractions from the domain of the workflow-definition can also be consid-

ered when defining strategies. For instance, the structural patterns employed in the con-



162 assisted construction of workflow-definitions

text of a particular ontology construction method may define common task-definitions

and sub-workflow-definitions that employ general processes such as partitioning and

assembling (as represented by the partition and assembler pattern commands).

More concrete possibilities are the definition of strategies according to change mod-

els or ontology evolution methods such as the ones proposed by Stojanovic [68] and

Pittet et al. [57]. These approaches capture the possible atomic operations that can be

performed to modify and evolve an ontology.

The CompFlow assisted construction process always provides a base strategy that

includes all available atomic and pattern commands.

7.5 summary

Although the CompFlow workflow-definition method demands a certain amount of

ontology engineering expertise from the creator, a construction process that aids cre-

ators and orients their focus towards the application domain has been proposed.

The proposed construction process relies on the structural and semantic analysis

of the domain ontology to iteratively suggest workflow-definition construction com-

mands. The set of possible commands can be extended and enriched with custom

commands. Also, construction commands can be triggered by patterns in the domain

and workflow-definition ontologies and aggregated into construction strategies.

A relatively small set of pattern commands is proposed. However, the amount of

patterns found in the construction and alignment of ontologies [63] suggests that the

potential growth of the pattern command and strategy sets is high.



Part III

P O S TA M B L E





8
E VA L U AT I O N A N D U S E C A S E S C E N A R I O S

To evaluate the proposed workflow-definition method and assisted construction pro-

cess, an environment for the workflow-definition construction, instantiation and execu-

tion has been implemented. The prototype implementation includes two main compo-

nents: a construction framework, and an instantiation and execution engine. Further-

more, the implementation has been tested through three use case scenarios in different

application domains.

In this chapter, an overview of the implemented construction, instantiation and exe-

cution environment is given along with a detailed description of each use case scenario

and the obtained results.

8.1 compflow construction framework

The CompFlow construction framework provides a visual environment and an API for

the assisted construction of workflow-definitions. It relies in the CompFlow iterative

construction process to suggest construction commands to the creator through the

analysis of the given domain ontology.

8.1.1 Visual Workflow-Definitions

The visual environment of the CompFlow construction framework features four differ-

ent views (see Figure 40): (i) the definition view, (ii) the definition detail view, (iii) the

suggested command view and (iv) the command detail view.

The definition view (i) provides a visual representation of the current activity-

definition. This view adapts to the current construction context, i. e. it differs for each

type of workflow-definition component (activity-definition or transition-definition). If

the creator is building an activity-definition inside another workflow-definition, both

the workflow-definition and the activity-definition will be presented by the definition

view.

165



166 evaluation and use case scenarios

Figure 40: The visual workflow-definition construction environment prototype. Definition view
(i) at the top-left area, definition detail view (ii) at the top-right area, suggested
command view (iii) at the bottom-left area, and command detail view (iv) at the
bottom-right area.

The definition detail view (ii) presents the attributes of the selected activity-

definition or transition-definition.

The suggested command view (iii) provides a set of suggested commands to the

creator. These commands are ordered according to their priority values and depend

on the current construction context. Before accepting and executing a command, the

creator may choose to set or modify the command attributes through the command

detail view (iv).



8.1 compflow construction framework 167

8.1.2 Construction Framework Architecture

The implementation architecture of the CompFlow construction environment is pre-

sented in Figure 41. It is built on top of the Apache Jena framework for Semantic Web

applications1 and contains the following modules:

• The Ontology Module - provides a set of tools that allow the structural analysis

of OWL ontologies and provides a DL-based handling API;

• The Command Module - handles all available commands and suggestions;

– The Atomic Command Module - contains the set of implemented atomic

commands;

– The Pattern Command Module - contains the set of implemented pattern

commands;

• The Strategy Module - contains the set of implemented strategies;

• The Context Management Module - handles the context hierarchy and timelines

(for undo and redo operations);

• The Graphical User Interface (GUI) Module - provides a graphical interface to

allow the construction of workflow-definitions.

Command

Ontology

Context Management

Jena API

Import and Export Graph Analysers

Atomic Commands Pattern Commands

Context Manager

GUI

Strategy

Context Timeline

Figure 41: Implementation architecture of the CompFlow construction framework.

1https://jena.apache.org/

https://jena.apache.org/


168 evaluation and use case scenarios

Notice that the construction framework may be used as a library (without the GUI

module), allowing, amongst other applications, the development of new back-end and

alternative GUI implementations.

The ontology module analyses the structure of ontologies and provides a DL-based

graph-oriented API to access and read the workflow-definition and domain ontologies.

It also imports and exports workflow-definition projects from and to OWL ontology

files.

The implementation of any kind of command is possible through the command

module. The currently implemented commands correspond exactly to those specified

in the assisted construction process (see Chapter 7).

Each context instance in the CompFlow construction framework provides a com-

plete representation of the current state of the workflow-definition construction envi-

ronment. In order to provide undo and redo actions, a timeline of contexts is kept. This

timeline stores incremental changes to the workflow-definition.

8.2 compflow engine

The CompFlow engine is a workflow-definition instantiation and execution engine and

service, based on the CompFlow workflow-definition method (see Chapter 5).

Among the concepts found in the CompFlow ontology, two categories can be found:

(i) concepts that affect and depend on the workflow-definition and (ii) concepts that

affect and depend on the deployment of the instantiation and execution engine. Fig-

ure 42 denotes these categories.

Analogously, since each deployment of the instantiation and execution engine may

interact with different workers and services through different types of interfaces, each

deployment may contain its own extension of the CompFlow ontology: the deployment

ontology. Since the possible types of Job, State and Priority are fixed for the instantiation

Job Actor

Interface

State

Priority

Activity

Transition

Dependent on 
the Deployment

Dependent on the 
Workflow-Definition

Assignment

Figure 42: Deployment-dependent and workflow-definition-dependent concepts in the
CompFlow ontology.



8.2 compflow engine 169

and execution engine, the purpose of the deployment ontology is to extend the Actor

and Interface concepts accordingly.

A deployment of the CompFlow engine must include:

• The engine configuration file;

• The deployment ontology, with additional custom Interface sub-concepts, along

with all its imported ontologies;

• A Java ARchive (JAR) file with the Java implementation for the custom types of

interfaces declared in the deployment ontology;

• The interface mappings between TaskInterface sub-concepts in the deployment

ontology and the corresponding Java class implementations in the JAR file;

• A location-mapping file, which maps the deployment ontology and its imported

ontologies to a specific location.

While deployment-dependent concepts are typically extended in deployment on-

tologies, workflow-definition-dependent concepts are extended in workflow-definition

ontologies.

8.2.1 Engine Architecture

The implementation architecture of the CompFlow engine is presented in Figure 43. It

consists of a base layer of external libraries and frameworks that include the Apache

Jena framework, the Restlet framework2 and the Freemarker template engine3. On top

of these libraries, several modules with different purposes exist:

• The Ontology Module - allows the analysis of workflow-definition ontologies;

• The Extensible Interface API Module - allows new types of interfaces to be imple-

mented and deployed;

• The Interface Management Module - handles all registered task and event inter-

faces;

• The Task Module - handles the state and execution of tasks;

• The Workflow Module - handles the state and execution of workflows;

• The Job Module - handles the top-level container of workflows (jobs);

2http://restlet.com/
3http://freemarker.org/

http://restlet.com/
http://freemarker.org/


170 evaluation and use case scenarios

• The Engine Context - aggregates (and allows the access to) all the shareable com-

ponents that form a CompFlow engine instance.

The interaction with the CompFlow engine is performed through REpresentational

State Transfer (REST)ful endpoints, which can be used to perform operations over jobs,

job templates, workflows, tasks, interfaces and actors (workers or requesters).

Each of the modules found in the CompFlow engine architecture are further de-

scribed in the following sub-sections.

8.2.2 The Ontology Module

The ontology module, as presented in the CompFlow construction framework,

provides the necessary features to perform the structural and semantic analysis

of workflow-definition ontologies according to the CompFlow workflow-definition

method.

Ontology

Interface Management

Extensible Interface API

Task InterfacesEvent Interfaces

Jena API

Triple Store

Task

Workflow

Task EngineTask Commands

Workflow Commands

Job

Instantiators

Workflow Engine

Input Finders

Graph Analysers

Restlet API

Job 
Engine

Inst. Event 
Manager

Job 
Restlet

Workflow Restlet

Task Restlet

Actor Restlet

Job Template 
Manager

Task Interface Restlet

Event Interface Restlet

Task Interface Manager

Event Interface Manager

Job Template 
Restlet

Resource Restlet

Triple Store

Engine Context

Freemarker API

Figure 43: Implementation architecture of the CompFlow engine.



8.2 compflow engine 171

Additionally, the ontology module contains activity-definition and transition-

definition instantiators. Instantiators perform an in-depth analysis of the workflow-

definition ontology, and are responsible for the instantiation of activity-definitions and

transition-definitions. They are used by the CompFlow engine to create new activities

and establish transitions as the workflow execution progresses.

8.2.3 The Extensible Interface Module

The Extensible Interface module allows the integration of different types of custom

interfaces. This is achieved by mapping a Java class implementation to an Interface sub-

concept in the deployment ontology. These mappings define the implementation for a

particular type of interface.

For each Interface sub-concept in the deployment ontology, multiple interface individ-

uals can be registered in the engine. These individuals have an associated Java instance

of the mapped Java class, which handle all interface related operations.

Java interface classes implement either:

• A type of interface itself, which directly interacts with machine or human workers

(e. g. a Web interface);

• The interaction with a particular type of external interface (e. g. a speech interface

or remote terminal interface) [41].

An Interface sub-concept in the deployment ontology must always have a direct or in-

direct mapping to a Java class implementation. For instance, as presented in Figure 44,

all MyWebInterface individuals will be handled by instances of the Java MyWebInter-

face.java class. Since a mapping does not exist for any of the MyMobileWebInterface

and MyInGameWebInterface sub-concepts, the indirect mapping through MyWebInter-

face is considered. Consequently, all MyMobileWebInterface and MyInGameWebInterface

individuals will also be handled by instances of the Java MyWebInterface.java class.

In the case of both MyEnglishSpeechInterface and MyPortugueseSpeechInterface sub-

concepts, a direct mapping exists and overrides all the mappings of any parent TaskIn-

terface sub-concept.



172 evaluation and use case scenarios

CompFlow Java ExtensionDeployment Ontology
(CompFlow Ontology Extension)

MyWebInterface

MyMobileWebInterface

MyInGameWebInterface

MySpeechInterface

MyEnglishSpeechInterface

MyPortugueseSpeechInterface

TaskInterface
TaskInterface.java

«Interface»

MyWebInterface.java
«Class»«mapping»

MyEnglishSpeechInterface.java
«Class»

MyPortugueseSpeechInterface.java
«Class»

«mapping»

«mapping»

Figure 44: TaskInterface mapping example.

8.2.3.1 The LocalWebCrowdInterface

The current implementation of the CompFlow engine includes a single task interface

implementation: the LocalWebCrowdInterface. The LocalWebCrowdInterface is a task in-

terface similar to those of CrowdFlower and Mechanical Turk, i. e. it allows human

workers to solve tasks and assignments in a Web environment. Figure 45 shows a

screenshot of an instance of the LocalWebCrowdInterface with a list of available tasks

presented to the worker.

The LocalWebCrowdInterface requires each task-definition to have an associated Free-

marker template file with the task-definition interface. This template must output HTML

and is used to present and collect data to and from the worker.

In the Freemarker template, all the task data and meta-data are available as a bundle

of key-value pairs. Alternatively, the task data and meta-data can be accessed through

a JavaScript object. Regardless of the approach, the data in these structures include the:

Figure 45: Screenshot of the LocalWebCrowdInterface.



8.2 compflow engine 173

• interfaceUri - the identifier of the interface;

• workerUri - the identifier of the worker;

• jobUri - the identifier of the job;

• taskUri - the identifier of the task;

• assignmentUri - the identifier of the assignment;

• unitUris - the list of unit identifiers;

• unitContextUris - the list of unit context identifiers;

• responseTypeUris - the list of response concept identifiers;

• responseContextTypeUris - the list of response context concept identifiers;

• objs - a key-value bundle of individuals (the data);

• types - a key-value bundle of concepts (meta-data).

The Freemarker template engine data structure can be used as presented in Algo-

rithm 33.

Algorithm 33: Usage example of the Freemarker template engine data structure.� �
<!--to list all unit individuals-->

<#list unitUris as unitUri>

<div class="unitItem ${objs[unitUri].friendlyUri}">

<#if objs[unitUri].label??> ${objs[unitUri].label[0]}

<#else> ${objs[unitUri].shortUri} </#if>

</div>

</#list>

<!--to present text fields for each datatype role of the first response concept-->

<div class="responseItem ${types[responseTypeUris[0]].friendlyUri}">

<#list types[responseTypeUris[0]].dataTypeProperties as dataTypeProperty>

<label>

<#if dataTypeProperty.label??> ${dataTypeProperty.label[0]}

<#else> ${dataTypeProperty.shortUri} </#if>

</label>

<input type="text" class="responseItemProperty ${dataTypeProperty.friendlyUri}" />

</#list>

</div>� �
The same can be achieved through JavaScript and the jQuery API, as presented in

Algorithm 34.



174 evaluation and use case scenarios

Algorithm 34: Usage example of the JavaScript data structure with the jQuery API.� �
// to list all unit individuals

var unitContainerDiv = $(’#unitContainer’);

var unitUrisLen = data.unitUris.length;

for(var i=0; i<unitUrisLen; i++) {

var unitUri = data.unitUris[i];

var unitItemDiv = $(’<div>’, { class: ’unitItem ’ +

data.objs[unitUri].friendlyUri });

if(data.objs[unitUri].label)

unitItemDiv.text(data.objs[unitUri].label[0]);

else unitItemDiv.text(data.objs[unitUri].shortUri);

unitContainerDiv.append(unitItemDiv);

}

// to present text fields for each datatype role of the first response concept

var responseItemDiv = $(’.’ + data.types[responseTypeUris[0]].friendlyUri);

var propLen = data.types[data.responseTypeUris[0]].dataTypeProperties.length;

for(var i=0; i<propLen; i++) {

var prop = data.types[data.responseTypeUris[0]].dataTypeProperties[i];

var propLabel = $(’<label>’);

if(prop.label) propLabel.text(prop.label[0]);

else propLabel.text(prop.shortUri);

responseItemDiv.append(propLabel);

var propInput = $(’<input>’, { type: ’text’,

class: ’responseItemProperty ’ + prop.friendlyUri });

responseItemDiv.append(propInput);

}� �
Using one of these approaches, the UI creator can build HTML interfaces with access

to all the assignment data and meta-data.

The submission of the assignment triggers a JavaScript algorithm that analyses the

id, name and class attributes of the elements in the Document Object Model (DOM), and

searches for annotations that may link these elements to the output concepts (and their

roles) found in the JavaScript data structure. If these annotations are present (e. g. in

input and select elements), their values are loaded into a data structure that is sent to

the CompFlow engine restlet responsible for receiving assignment results.



8.2 compflow engine 175

8.2.3.2 The RESTfulEventInterface

A single type of event interface, the RESTfulEventInterface, is also available. The

RESTfulEventInterface is a simple REST publish-subscribe interface implementation for

events.

8.2.4 The Interface Management Module

Since each registered interface individual must have its own Java class instance, a

manager that analyses the interface mappings between Interface sub-concepts and Java

classes and provides the appropriate Java class instances for a given interface indi-

vidual is necessary. In order to fulfil this purpose, the interface management module

features a task interface manager and an event interface manager.

When the engine requires interaction with a particular interface, it retrieves a Java

class instance from the appropriate interface manager.

CRUD-like operations on top of interface individuals can be performed through a

RESTful interface provided by the task and event interface restlets. These operations

allow new interfaces to be registered or updated in run-time.

8.2.5 The Workflow and Task Modules

The CompFlow engine handles the execution of workflows through two main sub-

engines: the Workflow engine and the Task engine. The Workflow engine handles the

execution of all types of activities. However, due to their increased complexity, the

execution of tasks is delegated to the Task engine.

The Task engine can be deployed independently from the Workflow engine in order

to exclusively execute tasks. The Workflow engine, however, requires a Task engine

in order to dispatch and execute tasks. The operations performed by these two sub-

engines are executed through asynchronous commands that run in a thread pool.

In order to analyse the task-definition and define the input of each assignment, the

engine requires an InputFinder. The InputFinder is a component that heavily relies on

the CompFlow workflow-definition method. It extracts the input data from the job’s

operational ABox and associates these data with each assignment.



176 evaluation and use case scenarios

8.2.6 The Job Module

The Job module handles jobs and job templates. A job template is a predefined set

of workflow-definitions to be instantiated and executed in a new job. A job template

contains:

• The job template configuration and descriptor;

• An optional input dataset;

• One or more workflow-definitions with:

– The workflow-definition ontology;

– All required imported ontologies;

– The location mappings for each ontology;

– A human interface Freemarker template for each task-definition (only re-

quired for human worker interfaces such as a LocalWebCrowdInterface).

A job template may be public or private. If it is private, the job template can only be

accessed and used by its owner.

A job always belongs to a requester and can only be instantiated and executed from

a previously created job template. In order to instantiate a job, the requester must

select a job template and supply an input dataset (if one does not exist inside the job

template).

Jobs are handled by the job sub-engine. The job sub-engine is slightly different from

the workflow and task sub-engines since it does not deal with an activity, but instead

with an environment that establishes the execution context for a set of workflows. Once

a job is started, the execution of all its workflows is delegated to the workflow engine.

8.2.7 External Libraries

The Apache Jena and the Restlet frameworks have been chosen for their high flexibility

and integration with multiple technologies.

The Jena framework for building Semantic Web applications is able to interact with

triple stores through different persistence technologies such as SPARQL Database (SDB)

for relational databases, Tuple Database (TDB) for single machine triple stores, and

OWL In Memory (OWLIM) for high-performance semantic repositories. Also, it features



8.3 use case scenarios 177

an extensible node API, which allows the implementation of domain-specific models

(analogous to data access layers).

The Restlet framework for Web APIs features a wide variety of extensions and allows

the deployment of the implemented web services through several technologies such as

an Apache Tomcat container.

The Freemarker Java Template Engine is used to process interface templates associ-

ated with each task-definition.

8.3 use case scenarios

The CompFlow construction framework and engine implementations have been used

and tested through three different use case scenarios: the document translation sce-

nario, the ontology alignment scenario and the Catalan constitution refinement sce-

nario.

8.3.1 The Document Translation Scenario

The document translation scenario considers common applications of crowdsourcing

such as translation, edition and proofing of text documents. Through the document

domain ontology presented in Figure 9, a divide-and-conquer strategy was employed

to the translation problem, resulting in the sequence of task-definitions presented in

Figure 46:

• T1 - partitions documents into paragraphs, and is performed by machine work-

ers;

• T2 - partitions paragraphs into sentences, and is performed by human workers;

• T3 - translates sentences, and is performed by human or machine workers capable

of translating sentences;

• T4 - assembles previously translated sentences into paragraphs, and is performed

by human workers;

• T5 - assembles previously translated paragraphs into a text document, and is

performed by machine workers.



178 evaluation and use case scenarios

T1. Partition 
TextDocument 
into Paragraph

T2. Partition 
Paragraph 

into Sentence

T3. Translate 
Sentence

T4. Assemble 
Paragraph

T5. Assemble 
TextDocument

Figure 46: Overview of the document translation workflow-definition.

8.3.1.1 The Workflow-Definition

Taking into account the requirements and the conceptualization of the translation pro-

cess, a workflow-definition was built using the CompFlow construction framework.

To achieve the workflow-definition depicted in Figure 47, the sequence of commands

presented in Table 17 were executed from the set of suggested commands.

Each task-definition has an assignment per unit value of one (i. e. au = 1).

T2

T2Assignment

Paragraph_T2

Sentence_T2

∃ hasResponse

∀ hasOperationalization=1 hasUnit
∃ part

TextDocument_T1

Paragraph_T1

T1

T1Assignment

∃ hasResponse

∀ hasOperationalization
∃ part

=1 hasUnit

◊WF

OriginalParagraph_T4

TranslatedParagraph_T4

T4T4Assignment

=1 hasResponse

∀ hasOperationalization

∃ part

=1 hasUnit

T3 T3Assignment OriginalSentence_T3 TranslatedSentence_T3

=1 hasResponse
∀ hasOperationalization

=1 hasUnit

◊WF

T3Assignment_T4

TranslatedSentence_T4

OriginalSentence_T4

◊WF

◊WF
◊WF

=1 hasUnit

=1 hasResponse
∃ part

∃ hasUnitContext

∃ hasUnitContext

OriginalTextDoc_T5

TranslatedTextDoc_T5

T5T5Assignment

=1 hasResponse

∀ hasOperationalization

∃ part

=1 hasUnit

T4Assignment_T5

TranslatedParagraph_T5

OriginalParagraph_T5

=1 hasUnit

=1 hasResponse
∃ part

∃ hasUnitContext

∃ hasUnitContext

∃ hasUnitContext

◊WF

◊WF

∃ hasUnitContext
◊WF

∃ transitionTo

∃ transitionTo

∃ transitionTo
∃ transitionTo

Figure 47: Task-definitions in the document translation workflow-definition.



8.3 use case scenarios 179

#
c

m
d

n
e

w
c

o
n

c
e

p
t

s
d

e
p

e
n

d
e

n
c

i
e

s
(♦

W
F

)
IO

B
ox

,
w

o
r

k
e

r
s

a
n

d
t

a
s

k
i
n

t
e

r
f

a
c

e
s

1
P

W

T
1,

T
1

A
ss

ig
n

m
en

t
-

T
1

M
ac

hi
n

eW
or

ke
r,

T
1T

as
kI

n
te

r
fa

ce
T

ex
tD

oc
u

m
en

t_
T

1
-

-
P

ar
ag

ra
ph

_T
1

-
T

ex
tD

oc
u

m
en

t_
T

1
v
∃h

as
P

ar
t.

P
ar

ag
ra

ph
_T

1
T

2,
T

2
A

ss
ig

n
m

en
t

-
T

2P
er

so
n

W
or

ke
r,

T
4

L
oc

al
W

eb
T

as
kI

n
te

r
fa

ce
P

ar
ag

ra
ph

_T
2

P
ar

ag
ra

ph
_T

1
-

S
en

te
n

ce
_T

2
-

P
ar

ag
ra

ph
_T

2
v
∃h

as
P

ar
t.

S
en

te
n

ce
_T

2
2

C
T

D
W

T
3,

T
3

A
ss

ig
n

m
en

t
-

T
3W

or
ke

r,
T

3T
as

kI
n

te
r

fa
ce

3
C

IC
T

O
S

en
te

n
ce

_T
3

S
en

te
n

ce
_T

2
-

4
C

O
C

T
T

S
en

te
n

ce
_T

3
-

-
5

S
E

C
T

-
-

-
6

C
T

D
W

T
4,

T
4

A
ss

ig
n

m
en

t
-

T
4P

er
so

n
W

or
ke

r,
T

4
L

oc
al

W
eb

T
as

kI
n

te
r

fa
ce

7
C

IC
T

O
P

ar
ag

ra
ph

_T
4

P
ar

ag
ra

ph
_T

1
-

8
C

O
C

T
T

P
ar

ag
ra

ph
_T

4
-

-
9

C
IC

T U
C

T
3

A
ss

ig
n

m
en

t_
T

4
T

3
A

ss
ig

n
m

en
t

-
10

C
IC

T U
C

O
S

en
te

n
ce

_T
4

O
S

en
te

n
ce

_T
3

T
3

A
ss

ig
n

m
en

t_
T

4
v
=

1h
as

U
n

it
.O

S
en

te
n

ce
_T

4
11

C
IC

T U
C

T
S

en
te

n
ce

_T
4

T
S

en
te

n
ce

_T
3

T
3

A
ss

ig
n

m
en

t_
T

4
v
=

1h
as

R
es

po
n

se
.T

S
en

te
n

ce
_T

4
12

C
R

T
-

-
O

P
ar

ag
ra

ph
_T

4
v
∃h

as
P

ar
t.

O
S

en
te

n
ce

_T
4

13
C

R
T

-
-

T
P

ar
ag

ra
ph

_T
4
v
∃h

as
P

ar
t.

T
S

en
te

n
ce

_T
4

14
S

E
C

T
-

-
-

15
C

T
D

W
T

5,
T

5
A

ss
ig

n
m

en
t

-
T

5
M

ac
hi

n
eW

or
ke

r,
T

5T
as

kI
n

te
r

fa
ce

16
C

IC
T

O
ri

gi
n

al
T

ex
tD

oc
_T

5
-

-
17

C
O

C
T

Tr
an

sl
at

ed
T

ex
tD

oc
_T

5
-

-
18

C
IC

T U
C

T
4

A
ss

ig
n

m
en

t_
T

5
T

4
A

ss
ig

n
m

en
t

-
19

C
IC

T U
C

O
P

ar
ag

ra
ph

_T
5

O
P

_T
4

T
4

A
ss

ig
n

m
en

t_
T

5
v
=

1h
as

U
n

it
.O

P
ar

ag
ra

ph
_T

5
20

C
IC

T U
C

T
P

ar
ag

ra
ph

_T
5

T
P

_T
4

T
4

A
ss

ig
n

m
en

t_
T

5
v
=

1h
as

R
es

po
n

se
.T

P
ar

ag
ra

ph
_T

5
21

C
R

T
-

-
O

ri
gi

n
al

T
ex

tD
oc

_T
5
v
∃h

as
P

ar
t.

O
P

ar
ag

ra
ph

_T
5

22
C

R
T

-
-

Tr
an

sl
at

ed
T

ex
tD

oc
_T

5
v
∃h

as
P

ar
t.

T
P

ar
ag

ra
ph

_T
5

23
S

E
C

T
-

-
-

Ta
bl

e
1

7
:C

om
m

an
d

se
qu

en
ce

fo
r

th
e

co
ns

tr
uc

ti
on

of
th

e
do

cu
m

en
t

tr
an

sl
at

io
n

w
or

kfl
ow

-d
efi

ni
ti

on
.U

C
st

an
ds

fo
r

U
ni

tC
on

te
xt

,O
Se

nt
en

ce
fo

r
O

ri
gi

-
na

lS
en

te
nc

e,
TS

en
te

nc
e

fo
r

Tr
an

sl
at

ed
Se

nt
en

ce
,O

Pa
ra

gr
ap

h
fo

r
O

ri
gi

na
lP

ar
ag

ra
ph

an
d

TP
ar

ag
ra

ph
fo

r
Tr

an
sl

at
ed

Pa
ra

gr
ap

h



180 evaluation and use case scenarios

8.3.1.2 The Task-Definition UI Templates

The construction of task-definition UI templates is only required for task-definitions

with human workers. In this sense, UI templates were built for T2 (exemplified in

Figure 48), T3 (exemplified in Figure 49) and T4 (exemplified in Figure 50).

The T2 template asks the worker to split a paragraph into sentences. The amount

of sentences may vary for each paragraph. Thus, new sentences must be added as

deemed necessary.

The T3 template asks the worker for a translation of a given sentence. The presented

instructions are partially taken from the description and label of the task-definition.

For instance, the title, which indicates the translation language, is the label of the task-

definition.

Finally, the T4 template asks for an assembled paragraph, given a set of previously

translated sentences. The worker must validate the translation and submit a refined

translated paragraph.

Figure 48: Example assignment with the UI template of T2 in the document translation sce-
nario.



8.3 use case scenarios 181

Figure 49: Example assignment with the UI template of T3 in the document translation sce-
nario.

8.3.1.3 Instantiation and Execution

Through the translation workflow-definition, the paper entitled “A Survey of Task-

oriented Crowdsourcing” [44] was translated from English to Portuguese4. The parti-

tioning of the paper resulted in 215 paragraphs and 566 sentences.

The execution of the workflow included the participation of 16 different workers

(one of them a machine worker using the Google Translator tool). The distribution of

workers and assignments throughout each task is presented in Table 18.

task # assignments

# workers # assignments per worker

human machine mean std. deviation

T1 1 0 1 1 0
T2 215 1 0 215 0
T3 566 14 1 37.73 59.43
T4 215 9 0 23.89 17.38
T5 1 0 1 1 0

Table 18: Distribution of workers and assignments throughout each task in the document trans-
lation workflow.

4The translated document can be found at http://mobaton.com/nluz/CS_AIR_PT.pdf

http://mobaton.com/nluz/CS_AIR_PT.pdf


182 evaluation and use case scenarios

Figure 50: Example assignment with the UI template of T4 in the document translation sce-
nario.

The execution of the translation workflow was performed successfully. Not only was

the given input described according to the document ontology, but also the output was

retrieved and described according to the document ontology.

However, in this particular scenario, several improvements are required in terms

of the provided data and the UI templates. In particular, workers have indicated that

T3 (the sentence translation task) does not provide enough contextual information.

Furthermore, given the scientific and specialized nature of the translated text, many

terms were translated differently and ambiguously.

In order to assess the overall opinion of the workers for T3 and T4, an enquiry was

performed.



8.3 use case scenarios 183

Regarding T3, the following set of questions were placed to all of its workers (14)

and answered by 6 of them:

• T3Q1 - How confident are you in the quality of your translations (in a scale from

1 to 5)?

• T3Q2 - How strongly did you feel the need to get more contextual information

(in a scale from 1 to 5)?

• T3Q3 - What kind of contextual information do you think would be useful (mul-

tiple choices)? The possible answers to this question are:

– A1 - A glossary of domain-specific terms;

– A2 - A fixed set of translations for domain-specific terms;

– A3 - Translating sentences is not worth it; paragraphs should be translated

directly;

– A4 - Other (free input answer).

• T3Q4 - Did you use any external translation tool (e. g. Google Translator)?

Figure 51 provides an illustration of the answers given to T3Q1, T3Q2, T3Q3 and

T3Q4.

Answers to T3Q1 suggest that workers were positively confident of their translations.

However, answers to T3Q2 show that most workers felt the need for additional contex-

tual information. Also, as shown by the answers to T3Q4, most workers felt the need

to resort to external translation tools.

Answers to T3Q3 suggest that much can be done in order to provide additional

contextual information.

4

3,5

3,2
3,3
3,4
3,5
3,6
3,7
3,8
3,9

4
4,1

T3Q1 T3Q2

Answer Avg. (1 to 5)

4

3 3

0
0

0,5
1

1,5
2

2,5
3

3,5
4

4,5

A1 A2 A3 A4

Amount per Answer

4

2

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

T3Q4

Yes (Google
Translator)

No

Figure 51: Answers to T3Q1 and T3Q2 (left), T3Q3 (center), and T3Q4 (right) in the document
translation scenario.



184 evaluation and use case scenarios

Regarding T4, the following questions were placed to all of its workers (9) and an-

swered by 5 of them:

• T4Q1 - How do you rate the quality of the originally presented paragraph trans-

lations (in a scale from 1 to 5)?

• T4Q2 - How do you rate the amount of effort spent editing and fixing the para-

graph translations (in a scale from 1 to 5)?

• T4Q3 - Did you feel the need for more contextual information?

• T4Q4 - Did you use any external translation tool (e. g. Google Translator)?

Figure 52 provides an illustration of the answers given to T4Q1, T4Q2, T4Q3 and

T4Q4.

Answers to T4Q1 and T4Q2 show that the quality of the translated sentences is

mediocre and required some improvement effort. This is expected, since answers to

questions regarding T3 establish a need for more contextual information and support

from external translation tools.

Answers to T4Q3 show that regardless of providing a broader translation context

through paragraphs (instead of sentences), most workers still felt the need for more

contextual information. This is likely related to the required technical and scientific

background knowledge for the understanding and interpretation of the document.

Since there are no prior conditions demanding that workers must possess this knowl-

edge, adding additional background information (e. g. an initial coherent translated

terminology, definitions for key concepts) becomes an important requirement.

0

5

0

1

2

3

4

5

6

T4Q4

Yes (Google
Translator)

No

1

2 2

0

0,5

1

1,5

2

2,5

T4Q3

Yes Yes, but better than T3 No

3,4 3,4

0
0,5

1
1,5

2
2,5

3
3,5

4

T4Q1 T4Q2

Answer Avg. (1 to 5)

Figure 52: Answers to T4Q1 and T4Q2 (left), T4Q3 (center), and T4Q4 (right) in the document
translation scenario.



8.3 use case scenarios 185

Finally, answers to T4Q4 show that none of the enquired workers resorted to external

translation tools. This is also expected, since the inherent operations performed while

solving an assignment of T3 are quite different from those performed while solving

an assignment of T4. More precisely, while T3 is a typical translation task, T4 is an

assembly and refinement task, where the translation work is assumed to be mostly

complete.

8.3.2 The Ontology Alignment and Construction Scenario

The ontology alignment and construction scenario is not common in crowdsourcing

applications. Since it typically involves checking all possible concept and role combina-

tions between two ontologies, a high recall value can be achieved through crowdsourc-

ing. However, the number of assignments easily scales to impractical amounts. For big

ontologies, this drawback can be tackled with the aid of machine algorithms that pick

likely candidates for a match [62].

In order to build an ontology alignment and construction workflow, the OWL meta-

model was used as domain ontology. Through the OWL meta-model ontology, the work-

flow of tasks presented in Figure 53 was executed for the creation of a new ontology

that represents the alignment and refinement of two ontologies, onto1 and onto2:

• T1 - asks if two top-level concepts (or classes) are equivalent or sub-concepts (if

one subsumes the other);

• T2 (loop) - asks if two next-level concepts (or classes) are equivalent or sub-

concepts (if one subsumes the other);

• T3 - asks if two roles (or properties) are equivalent;

• T4 - asks if two concepts are related through a new role (or property) restriction,

i. e. if one is a meronym of the other.

To reduce the amount of possible matches and assignments in this scenario, a divide-

and-conquer approach is employed. First, only the top-level concepts in the hierarchy

are matched (in T1 with four assignments per unit). From the resulting top-level con-

cept matches, sub-concepts are matched in subsequent tasks, up to the fourth level of

the hierarchy (in the T2 loop with four assignments per unit). Finally, the properties

of the previously matched concepts are also matched (in T3 with four assignments per

unit).



186 evaluation and use case scenarios

An additional (construction) task with the purpose of establishing new roles and

restrictions between concepts of the two ontologies (T4 with one assignment per unit)

runs in parallel with T1, T2 and T3.

8.3.2.1 The Workflow-Definition

In order to make the distinction between concepts and roles of onto1 and those of

onto2, the concepts O1Class and O2Class (sub-concepts of Class), and O1Property and

O2Property (sub-concepts of Property) were created. The concepts Match and Property-

Match were also added to the domain ontology in order to represent matches between

two concepts and two roles. The additional concepts in the domain TBox are presented

in Figure 54.

The domain ontology also contains the RBox axioms matchFrom ≡ f rom− and

matchTo ≡ to−, which establish the inverse roles of f rom and to.

The workflow-definition for the ontology alignment and construction process was

built using the CompFlow construction framework and the Protégé ontology editor

(to establish role restriction unions). The resulting workflow-definition is presented in

Figure 55 and Figure 56.

LoopT2. x3 (i.e. 3 hierarchic levels)

T4. Get New Relationships 
between Classes

T2. Sub-Concept Matching
T1. Concept Matching T3. Property/Role Matching

Figure 53: Overview of the ontology alignment and construction workflow-definition.

ClassMatch

PropertyMatch

O1Class O2Class= 1 to= 1 from

O1Property O2Property= 1 to=1 from

Match = 1 rel
{subsumes, subsumedBy, 

equivalentTo}

owl:Class

rdf:Property

Figure 54: Additional concepts in the ontology alignment and construction domain ontology.



8.3 use case scenarios 187

LoopT2 3x (i.e. 3 hierarchic levels)

O1Class_T1

Match_T1

T1

T1Assignment

≤ 1 hasResponse

∀ hasOperationalization

∀ from=1 hasUnit

O2Class_T1=1 hasUnit

∀ to ∀ matchTo

∀ matchFrom

O1SClass_T1

O2SClass_T1= 0 subClassOf

= 0 subClassOf

= 0 hasUnitContext

= 0 hasUnitContext

O1Class_T2

Match_T2

T2

T2Assignment

≤ 1 hasResponse

∀ hasOperationalization

∀ from=1 hasUnit

O2Class_T2=1 hasUnit

∀ to ∀ matchTo

∀ matchFrom

O1SClass_T2

O2SClass_T2
∃ subClassOf

∃ subClassOf

= 0 hasUnitContext

= 0 hasUnitContext

Match_T1_T2

≥ 3 matchFrom

≥ 3 matchTo

∃ transitionTo

T3

∃ transitionTo

Figure 55: Task-definitions in the ontology alignment and construction workflow-definition
(part 1).

T1 provides an assignment for each pair of concepts, C1 in onto1 and C2 in onto2. The

assignment consists in asking the worker to select if two concepts are related through

a subsumption or equivalence relationship (i. e. a match). Matching the two concepts is

optional, meaning that the worker may opt not to establish a relationship. Also, both

C1 and C2 cannot have atomic super-concepts (i. e. they must be top-level concepts in

their hierarchies).

T2 is very similar to T1 since the worker must also establish a match between two

concepts, C1 in onto1 and C2 in onto2. However, these concepts must be sub-concepts

of previously matched concepts. Notice that C1 and C2 must be sub-concepts of previ-

ously matched concepts. A match between the two super-concepts is only considered

in T2, if at least three (out of four) workers have previously established the match.

T2 is instantiated and executed three times, thus covering possible matches between

three hierarchic levels (under the root level) of both input ontologies. The covered hier-

archic depth can be easily broadened by increasing the amount of iterations performed

by the LoopT2.



188 evaluation and use case scenarios

T4

T4Assignment O1Class_T4 O2Class_T4O

≥ 0 hasResponseRange

∀ hasOperationalization

= 1 hasUnit

O2Class_T4 ObjectProperty_T4Restriction_T4

∃ hasUnitContext

≥0 hasResponse

≥ 0 hasResponseProperty

∃ subClassOf

∃ onProperty

∃ (onClass ⊔ someValuesFrom ⊔
allValuesFrom)

∀ hasO1Range

T3

T3Assignment

O1Property_T3

PMatch_T3

≤ 1 hasResponse

=1 hasUnit

O2Property_T3 ∃ hasUnitContext

O1Range_T3

O2Range_T3

O1Domain_T3

O2Domain_T3∀ range

∀ range

∃ domain

∃ domain

Match_T3

=1 hasUnit

∃ hasUnitContext

∀ hasO2Range

∀ from

∀ matchFrom

∀ to ∀ matchTo

≥ 3 matchFrom

≥ 3 matchTo

∃ hasUnitContext

∀ hasOperationalization

LoopT2 3x (i.e. 3 hierarchic levels)

∃ transitionTo

Figure 56: Task-definitions in the ontology alignment and construction workflow-definition
(part 2).

In T3, the worker may establish an equivalence relationship between two roles, R1 in

onto1 and R2 in onto2. Only roles from previously matched concepts (specified during

the execution of T1 and the T2 loop) are presented to the worker. This substantially

reduces the amount of assignments.

T4 is not typically found in ontology alignment processes. It represents an ontology

construction operation rather than an ontology alignment operation. The definition of

such a task is possible since the OWL meta-model is used as domain ontology.

The workflow-definition was built through the execution of the command sequence

presented in Table 19 and Table 20.

8.3.2.2 The Task-Definition UI Templates

Each task-definition in the ontology alignment and construction workflow-definition

has an UI template. The UI template of T1 is depicted in Figure 57. To allow non-expert

workers to participate in the matching process, straightforward natural language sen-

tences are presented to workers. Workers must then indicate if they are true or false.



8.3 use case scenarios 189

#
c

m
d

n
e

w
c

o
n

c
e

p
t

s
d

e
p

e
n

d
e

n
c

i
e

s
(♦

W
F

o
r
v

)
n

e
w

i
n

T
B

ox
,

w
o

r
k

e
r

s
a

n
d

t
a

s
k

i
n

t
e

r
f

a
c

e
s

1
C

TD
W

T
1,

T
1

A
ss

ig
n

m
en

t
-

T
1W

or
ke

r,
T

1T
as

kI
n

te
r

fa
ce

2
C

IC
T

O
1C

la
ss

_T
1

-
-

3
C

IC
T

O
2C

la
ss

_T
1

-
-

4
C

O
C

T
M

at
ch

_T
1

-
M

at
ch

_T
1
v
∀

fr
om

.O
1C

la
ss

_T
1

5
C

R
T

-
-

M
at

ch
_T

1
v
∀t

o.
O

2C
la

ss
_T

1
6

C
R

T
-

-
O

1C
la

ss
_T

1
v
∀m

at
ch

F
ro

m
.M

at
ch

_T
1

7
C

R
T

-
-

O
2C

la
ss

_T
1
v
∀m

at
ch

T
o.

M
at

ch
_T

1
8

C
IC

T U
C

O
1S

C
la

ss
_T

1
-

O
1C

la
ss

_T
1
v
=

0s
u

bC
la

ss
O

f.
O

1S
C

la
ss

_T
1

9
C

IC
T U

C
O

2S
C

la
ss

_T
1

-
O

2C
la

ss
_T

1
v
=

0s
u

bC
la

ss
O

f.
O

2S
C

la
ss

_T
1

10
S

E
C

T
-

-
-

11
C

W
D

W
L

oo
pT

2
-

-
12

C
TD

W
T

2,
T

2
A

ss
ig

n
m

en
t

-
T

2W
or

ke
r,

T
2T

as
kI

n
te

r
fa

ce
13

C
IC

T
O

1C
la

ss
_T

2
-

-
14

C
IC

T
O

2C
la

ss
_T

2
-

-
15

C
O

C
T

M
at

ch
_T

2
-

M
at

ch
_T

2
v
∀

fr
om

.O
1C

la
ss

_T
2

16
C

R
T

-
-

M
at

ch
_T

2
v
∀t

o.
O

2C
la

ss
_T

2
17

C
R

T
-

-
O

1C
la

ss
_T

2
v
∀m

at
ch

F
ro

m
.M

at
ch

_T
2

18
C

R
T

-
-

O
2C

la
ss

_T
2
v
∀m

at
ch

T
o.

M
at

ch
_T

2
19

C
IC

T U
C

O
1S

C
la

ss
_T

2
-

O
1C

la
ss

_T
2
v
∃s

u
bC

la
ss

O
f.

O
1S

C
la

ss
_T

2
20

C
IC

T U
C

O
2S

C
la

ss
_T

2
-

O
2C

la
ss

_T
2
v
∃s

u
bC

la
ss

O
f.

O
2S

C
la

ss
_T

2
21

C
IC

T U
C

M
at

ch
_T

1_
T

2
-

O
1S

C
la

ss
_T

2
v
≥

3m
at

ch
F

ro
m

.M
at

ch
_T

1_
T

2
22

C
R

T
-

-
O

2S
C

la
ss

_T
2
v
≥

3m
at

ch
T

o.
M

at
ch

_T
1_

T
2

23
S

E
C

T
-

-
-

24
S

E
C

W
-

-
-

Ta
bl

e
1

9
:C

om
m

an
d

se
qu

en
ce

fo
r

th
e

co
ns

tr
uc

ti
on

of
th

e
on

to
lo

gy
al

ig
nm

en
t

an
d

co
ns

tr
uc

ti
on

w
or

kfl
ow

-d
efi

ni
ti

on
(p

ar
t

1
).

U
C

st
an

ds
fo

r
U

ni
tC

on
-

te
xt

an
d

R
C

st
an

ds
fo

r
R

es
po

ns
eC

on
te

xt
.



190 evaluation and use case scenarios

#
c

m
d

n
e

w
c

o
n

c
e

p
t

s
d

e
p

e
n

d
e

n
c

i
e

s
(♦

W
F

o
r
v

)
n

e
w

i
n

T
B

ox,
w

o
r

k
e

r
s

a
n

d
t

a
s

k
i
n

t
e

r
f

a
c

e
s

25
C

TD
W

T
3,T

3
A

ssign
m

en
t

-
T

3W
orker,T

3T
askIn

ter
face

26
C

IC
T

O
1P

roperty_T
3

-
-

27
C

IC
T

O
2P

roperty_T
3

-
-

28
C

O
C

T
P

M
atch_T

3
-

P
M

atch_T
3
v
∀

from
.O

1P
roperty_T

3
29

C
R

T
-

-
P

M
atch_T

3
v
∀

to.O
2P

roperty_T
3

30
C

R
T

-
-

O
1P

roperty_T
3
v
∀

m
atch

F
rom

.P
M

atch_T
3

31
C

R
T

-
-

O
2P

roperty_T
3
v
∀

m
atchT

o.P
M

atch_T
3

32
C

IC
T

U
C

O
1R

an
ge_T

3
-

O
1P

roperty_T
3
v
∀

ran
ge.O

1R
an

ge_T
3

33
C

IC
T

U
C

O
2R

an
ge_T

3
-

O
2P

roperty_T
3
v
∀

ran
ge.O

2R
an

ge_T
3

34
C

IC
T

U
C

O
1D

om
ain_T

3
-

O
1P

roperty_T
3
v
∃

dom
ain

.O
1D

om
ain_T

3
35

C
IC

T
U

C
O

2D
om

ain_T
3

-
O

2P
roperty_T

3
v
∃

dom
ain

.O
2D

om
ain_T

3
36

C
IC

T
U

C
M

atch_T
3

-
O

1D
om

ain_T
3
v
≥

3m
atch

F
rom

.M
atch_T

3
37

C
R

T
-

-
O

2D
om

ain_T
3
v
∃
≥

3m
atchT

o.M
atch_T

3
38

S
E

C
T

-
-

-
39

C
TD

W
T

4,T
4

A
ssign

m
en

t
-

T
4W

orker,T
4T

askIn
ter

face
40

C
IC

T
O

1C
lass_T

4
-

-
41

C
IC

T
U

C
O

2C
lass_T

4
-

-
42

C
O

C
T

O
2C

lass_T
4O

O
2C

lass_T
4

-
43

C
O

C
T

R
C

R
estriction_T

4
-

O
1C

lass_T
4
v
∃

su
bC

lassO
f.R

estriction_T
4

44
C

R
T

-
-

R
estriction_T

4
v
∃

R
.O

2C
lass_T

4O
w

ith
R
≡

on
C

lasst
som

eV
alu

esF
rom

t
allV

alu
esF

rom
45

C
O

C
T

R
C

O
bjectP

roperty_T
4

-
R

estriction_T
4
v
∃

on
P

roperty.O
bjectP

roperty_T
4

46
S

E
C

T
-

-
-

47
C

R
D

W
-

-
T

1
v
∃

tran
sition

T
o.L

oopT
2

48
S

E
C

R
-

-
-

49
C

R
D

W
-

-
L

oopT
2
v
∃

tran
sition

T
o.T

3
50

S
E

C
R

-
-

-

Table
2

0:C
om

m
and

sequence
for

the
construction

of
the

ontology
alignm

ent
and

construction
w

orkflow
-definition

(part
2).U

C
stands

for
U

nitC
on-

text
and

R
C

stands
for

R
esponseC

ontext.



8.3 use case scenarios 191

Their truthfulness establishes if a subsumption relationship exists between the two

concepts.

Similarly, the UI template of T2 (depicted in Figure 58) asks workers to establish a

match through the evaluation of natural language sentences.

The UI template of T3 (depicted in Figure 59) provides a similar interface to that

of the UI template of T1. However, instead of concepts, it asks workers to establish

equivalences between two roles of onto1 and onto2. Additional information on roles,

such as their domain is also presented to the worker.

Finally, the UI template of T4 (depicted in Figure 60) allows the worker to submit

and add new relationships between the concepts of onto1 and onto2.

8.3.2.3 Instantiation and Execution

The ontology alignment and construction workflow starts with an ABox filled with the

concepts and roles of both onto1 and onto2. In this execution, two ontologies from the

conference track of the Ontology Alignment Evaluation Initiative (OAEI) were used.

These are the Conference Management Toolkit (CMT) ontology (onto1) and the Confer-

ence ontology (onto2).

The initial ABox was built by merging both ontologies and classifying their concepts

and roles according to O1Class, O2Class, O1Property and O2Property.

Figure 57: Assignment with the UI template of T1 in the ontology alignment and construction
scenario.



192 evaluation and use case scenarios

Figure 58: Assignment with the UI template of T2 in the ontology alignment and construction
scenario.

Figure 59: Assignment with the UI template of T3 in the ontology alignment and construction
scenario.



8.3 use case scenarios 193

Figure 60: Assignment with the UI template of T4 in the ontology alignment and construction
scenario.

The execution of the workflow counted with 16 different workers. The distribution

of workers and assignments throughout each task is presented in Table 21.

The workflow was executed successfully and resulted in a new ontology that merged

both the CMT and the Conference ontologies. The new ontology not only represents an

alignment, but also a refinement with new roles and relationships between the concepts

of both ontologies.

task # assignments

# workers # assignments per worker

human machine mean std. deviation

T1 448 8 0 56 43.71
T2.1 176 7 0 25.14 12.72
T2.2 72 6 0 12 6.81
T2.3 0 0 0 0 0
T3 144 4 0 36 0
T4 29 5 0 5.8 7.36

Table 21: Distribution of workers and assignments throughout each task in the ontology align-
ment and construction workflow.



194 evaluation and use case scenarios

alignment tasks : The resulting assignment, extracted from the output data of

T1, T2 and T3, is presented in Table 22. These matches are compared to the matches of

the reference alignment5 found in Table 23.

Notice that incorrect (or lack of) matches in the initial tasks have a great impact in

the following tasks. Thus, the lack of matches in the second iteration of T2 (T2.2), led

to the non-existence of assignments in the third iteration of T2 (T2.3).

Overall, the root-level concepts were successfully matched according to the reference

alignment. However, several improvements are necessary to properly establish matches

at the lower hierarchic levels.

One of the drawbacks of this approach is the impossibility of establishing matches

for previously matched concepts, and between concepts in different hierarchic lev-

els. For instance, the match, ProgramCommittee v Committee was correctly established,

since ProgramCommittee ≡ Program_committee belongs to the reference alignment and

Program_committee v Committee. However, the proper direct match, found in the ref-

task cmt concept match conference concept

T1

SubjectArea 3x ≡, 1x w Topic
Person 4x ≡ Person
Preference 3x ≡, 1x w Review_preference
Document 3x ≡, 1x w Conference_document
ProgramCommittee 4x v Committee
Conference 4x ≡ Conference

T2.1

ExternalReviewer 4x v Reviewer
Paper 3x v Conference_contribution
Chairman 3x v Committee_member
Review 4x ≡ Review
ConferenceMember 4x w Reviewer
Chairman 4x w Track-workshop_chair
ConferenceMember 1x w, v, ≡ Conference_participant
Chairman 3x v Conference_participant
ProgramCommitteeMember 4x v Committee_member

T3 email 3x ≡ has_an_email

Table 22: Resulting alignment between the CMT and Conference ontologies in the ontology
alignment and construction workflow.

5part of the conference track dataset of the OAEI



8.3 use case scenarios 195

cmt concept match conference concept in result

SubjectArea ≡ Topic 3

Person ≡ Person 3

Document ≡ Conference_document 3

ProgramCommittee ≡ Program_committee F

Conference ≡ Conference 3

Conference ≡ Conference_volume 7

Chairman ≡ Chair F

Review ≡ Review 3

Preference ≡ Review_preference 3

Author ≡ Regular_author 7

Co-author ≡ Contribution_co-author 7

PaperAbstract ≡ Abstract 7

email ≡ has_an_email 3

assignedByReviewer ≡ invited_by 7

assignExternalReviewer ≡ invites_co-reviewers 7

Table 23: Reference alignment between the CMT and Conference ontologies in the ontology
alignment and construction workflow. F means that an incomplete or partial match
was established.

erence alignment, is never formulated as an assignment because concepts of different

hierarchic levels are never considered.

Abstract concepts, such as Conference_contributor, Conference_participant and Confer-

enceMember, were particularly hard to match. For instance, most of the workers were

sure that a match between ConferenceMember and Conference_participant exists, however,

they did not agree on the type of match between the two concepts.

Other matches that should have been established, such as between ConferenceMember

and Conference_contributor were not established by the majority. This led to the exclu-

sion of all of their possible lower-level matches, which included some of those present

in the reference alignment.

construction task : As presented in Table 24, the construction task, T4, led to

39 new role restrictions established between the concepts of the CMT ontology, and the

concepts of the Conference ontology. These new role restrictions were not submitted

to any verification or validation process.



196 evaluation and use case scenarios

Although the majority of the role restrictions are already represented in at least one

of the ontologies, the results were properly structured according to the OWL meta-

model, demonstrating that ontology construction tasks can be modelled through the

CompFlow workflow-definition method.

8.3.2.4 Alternative Alignment Workflow-Definitions

There are several ways available to model an ontology alignment workflow. For in-

stance, these may be based on different domain ontologies such as the Expressive and

Declarative Ontology Alignment Language (EDOAL) [63] or the Semantic Bridge Ontol-

ogy (SBO) [46]. Also, a pattern-based approach can be followed instead of the traditional

concept-to-concept or role-to-role matching approach [60, 64, 65].

The SBO, in particular, already defines several complex ontology alignment patterns,

represented by semantic bridges (concept and property bridges). For instance, in the

workflow-definition depicted in Figure 55, T1 could ask workers to submit new concept

bridges between two concepts, while T3 would establish the related property bridges

for the previously submitted concept bridges. Furthermore, the expressiveness of the

SBO allows workers to establish mappings that are not possible to establish through

the OWL meta-model (e. g. mappings that need the transformation and manipulation

of datatype values).

The EDOAL is another alternative to the construction of ontology alignment

workflow-definitions. Following a very similar approach to the one presented in

the previous alignment and construction workflow-definition, the EDOAL establishes

mappings through equivalence and subsumption relationships between concepts and

roles. Since this format is used by automatic alignment approaches, each mapping is

typically accompanied by a confidence value.

In order to use these ontologies to represent the static domain dimension of

workflow-definitions they must be built as a DL ontology artefact.

8.3.3 The Catalan Constitution Refinement Scenario

The Catalan constitution refinement scenario aims to take an initial ontology-based

dataset containing the Catalan constitution and crowdsource its refinement effort. The

construction of this scenario is an ongoing joint effort with Marta Poblet from the Royal

Melbourne Institute of Technology (RMIT) University and the Universitat Autónoma de



8.3 use case scenarios 197

cmt concept role restriction to conference concept (v)

Reviewer

∃ hasReviewed.Paper
∃ hasExpertise.Review_expertise
∃ hasReviewed.Conference_document
≥ 1 hasReviewed.Conference_document
≥ 1 hasReviewed.Paper

PaperFullVersion

≥ 1 has.Topic
∃ isContained.Conference_proceedings
∃ has.Review
≥ 1 has.Contribution_1th-author
= 1 contains.Abstract

ProgramCommittee

≥ 1 reviewsPapersFrom.Track
≤ 1 belongsTo.Organizing_committee
≥ 1 acceptedA.Camera_ready_contribution
≥ 1 makes.Review
≥ 1 reviewed.Reviewed_contribution
≥ 1 hasReviewPreference.Review_preference
= 1 reviewsA.Conference_contribution
∃ reviewed.Extended_abstract
≤ 1 gives.Invited_talk
≥ 1 accepted.Accepted_contribution
≥ 1 hasPreference.Topic
= 1 belongsTo.Committee
= 1 fromConference.Conference
≥ 1 issuedA.Call_for_participation
≥ 1 reviews.Paper
≥ 1 hasReviewExpertise.Review_expertise
≤ 1 belongsTo.Organization
= 1 issuedA.Call_for_paper
≤ 1 makes.Presentation

Meta-Review ∃ contains.Review

ConferenceMember ∃ memberOf.Conference

Paper = 1 contains.Abstract

Person
∃ memberOf.Organization
∃ memberOf.Committee
∃ partOf.Conference

ProgramCommitteeChair ∃ belongsTo.Program_committee

Decision = 1 givenTo.Paper
∃ basedOn.Review

Document = 1 Contains.Abstract

Table 24: T4 results in the ontology alignment and construction workflow.



198 evaluation and use case scenarios

Barcelona. In this scenario, the Constitute project ontology6 is used as the static domain

dimension. The Constitute project7 provides ontology-based datasets with the consti-

tutions of several countries according to a single ontology. The resulting refinement

process, as depicted in Figure 61, contemplates the following tasks, which are all per-

formed by human workers:

• T1 - evaluates sections of the current constitution document, and is performed by

any human worker;

• T2 - revises and updates sections of the current constitution document marked

in the previous task, and is performed by expert workers;

• T3 - selects the best version of a section from the set of proposed sections in the

previous task, and is performed by any human worker.

The Constitute project ontology represents the constitution document through sec-

tions. A partial TBox of the Constitute project ontology is presented in Figure 62. An

additional evaluation TBox was added to the static domain dimension in order to rep-

resent the opinion and the assessment of the constitution sections.

8.3.3.1 The Workflow-Definition

The constitution refinement workflow-definition was built using both the CompFlow

construction framework prototype implementation and the Protégé ontology editor.

The Protégé ontology editor was used to establish some common axioms that are not

yet featured by the construction framework, such as the union of input and output con-

T1. Evaluate 
Sections

T2. Revise and 
Update 
Sections

T3. Select the 
Best Version 
of a Section

Figure 61: Overview of the Catalan constitution refinement process.

∃ isConstitutionOf

Section

Constitution Country

String
≥0 header
≥0 text

Constitute TBox

Integer

=1 sectionID

∃ section

∀ parent

Evaluation

Keep Update Remove

String=1 obs

Evaluation TBox

=1 object

Figure 62: Partial TBox of the Constitute project ontology.

6https://www.constituteproject.org/ontology
7https://www.constituteproject.org/

https://www.constituteproject.org/ontology
https://www.constituteproject.org/


8.3 use case scenarios 199

cepts, and inverse roles. A detailed illustration of the workflow-definition is presented

in Figure 63.

Notice that in T2, X represents the amount of evaluations that request an update

of a section. Thus, for any section to be possibly considered a unit of T2, the amount

of assignments per unit (au) of T1 must be greater or equal to X. Otherwise, there

will never be enough evaluations, and T2 will not have assignments since the role

restriction is never satisfied.

The use of the role transitive closure onto the parent role allows all descendant sec-

tions of the unit section to be included in the assignment and shown to the worker.

Also, regular expressions may be used to restrict the value of datatype roles. Such is

the case of the value of the header role in T1 (Section_T1 v header : “/^Article/”).

T3 has the particularity of establishing the concept Y, which represents the union

of Section_T3 and ProposedSection_T3. Since the response concept is dependent on Y,

the worker will have to select one section from the set of sections that are either a

Section_T3 or a ProposedSection_T3. That is, the original constitution section will remain

eligible as the best section.

Section_T1

Evaluation_T1OT1

T1Assignment

=1 hasResponse

∀ hasOperationalization

=1 hasUnit

ParentSection_T1=1 hasUnitContext

=1 object

=1 parent

ChildSection_T1

∃ (parent–)+

∃ hasUnitContext

header‘/^Article/’

T2

T2Assignment

Section_T2

RevisedSection_T2O

=1 hasResponse

∀ hasOperationalization

=1 hasUnit

Update_T2 ∃ hasUnitContext

ChildSection_T2

∃ (parent–)+

ParentSection_T2

=1 parent

=1 hasUnitContext

∃ hasUnitContext

≥X object–

◊WF

RevChildSection_T2O
∃ (parent–)+

T3

T3Assignment Section_T3 SelectedSection_T2O

=1 hasResponse

∀ hasOperationalization

=1 hasUnit

∃ hasUnitContext

ChildSection_T2

ParentSection_T2
=1 hasUnitContext

∃ (parent–)+ =1 parent

T2Assignment_T3

ProposedSection_T3

=1 hasResponse

PropChildSection_T3

=1 hasUnit

Y ≡ Section_T3 ⊔ 
ProposedSection_T3

∃ hasUnitContext

∃ hasUnitContext

∃ hasUnitContext
∃ hasUnitContext

◊WF

∃ (parent–)+

◊WF
◊WF

Update_T1Keep_T1Remove_T1

≥0 hasResponseContext

∃ hasResponseContext

∃ transitionTo

∃ transitionTo

Figure 63: Task-definitions in the constitution refinement workflow-definition.



200 evaluation and use case scenarios

8.3.3.2 The Task-Definition UI Templates

Since they are solved by human workers, all the task-definitions in the Catalan consti-

tution refinement workflow-definition must include an UI template.

The UI template of T1, as depicted in Figure 64, presents the unit section, its parent

section, and all its descendant sections to the worker. The worker is then asked to

evaluate the contents of the section and assess if the section needs to be updated,

removed or does not need any modifications.

The UI template of T2 presents the unit section in the same way as T1 (see Figure 65

for an illustration). Additionally, the observations given by workers during T1 are also

presented. The expert worker is then asked to submit a new revised section that takes

into account the observation given during T1.

Finally, the UI template of T3, as depicted by Figure 66, presents each of the pre-

viously submitted sections (during T2), along with the original section, and asks the

worker to select the best version.

Figure 64: Assignment with the UI template of T1 in the Catalan constitution refinement sce-
nario.



8.3 use case scenarios 201

Figure 65: Assignment with the UI template of T2 in the Catalan constitution refinement sce-
nario.



202 evaluation and use case scenarios

Figure 66: Assignment with the UI template of T3 in the Catalan constitution refinement sce-
nario.

8.3.3.3 Instantiation and Execution

The Catalan constitution refinement scenario is still an ongoing work. Thus, and since

the execution of the workflow has not yet been performed, no instantiation results are

presented.

8.3.4 Integration with External Projects

The core implementation of the CompFlow instantiation and execution engine was

part of a joint effort with Carlos Pereira from the University of Aveiro [41]. The en-

gine is being used in the context of the Dynamic Evaluation as a Service (DynEaaS) [56]

evaluation platform, which is “capable of evaluating user performances in dynamic

environments by allowing evaluation teams to create and conduct context-aware eval-

uations”. The instantiation and execution engine is used to run evaluation workflows,

and distribute and retrieve tasks through several user interfaces.



8.4 summary 203

8.4 summary

The construction framework and engine implementations show that practical applica-

tions of the proposed CompFlow workflow-definition method and assisted construc-

tion process are possible. Furthermore, the described implementations provide a flexi-

ble and extensible API and are oriented toward distributed architectures where humans

and machines alike can fulfil the role of workers.

The implementation of the command architecture and the suggestion of commands

in the CompFlow construction framework reduces the amount of steps that the cre-

ator must perform in order to build workflow-definitions. In particular, the potential

growth of the strategic and the pattern command layers suggests that the construction

of workflow-definitions can be further automated, while retaining all the choices that

provide control to the creator.

The ability to add an unrestricted amount of different types of interfaces to the

CompFlow engine yields several application scenarios where:

• Web services are considered as machine workers;

• External CS platforms (e. g. CrowdFlower) are used to dispatch tasks;

• External worker communities (e. g. Facebook) are used to solve tasks;

• Multi-modal interfaces exist.





9
C O N C L U S I O N S

This thesis presents an ontology-based approach to representing, building, instantiat-

ing, and executing workflows of tasks, capable of harnessing the full domain static and

dynamic semantics of the workflows. This approach is entitled, CompFlow.

The CompFlow approach considers two steps (see Chapter 3): (i) the representation

of the workflow and construction of the workflow-definition, and (ii) the instantiation

and execution of the workflow-definition.

The first step (i) is tackled through (a) the definition structures and processes found

in the workflow-definition method (see Chapter 5), and through (b) the assisted con-

struction process (see Chapter 7). The workflow-definition method (a) establishes a for-

mal method of building workflow representations. Rooted on the workflow-definition

method, an assisted construction process (b) is proposed. This process reduces the

amount of steps and expertise required to build workflow-definitions.

The second step (ii) is tackled through the instantiation and execution structures and

processes found in the workflow-definition method (see Chapter 6).

In order to evaluate the proposed approach the CompFlow assisted construction

framework, and the CompFlow instantiation and execution engine have been imple-

mented (see Chapter 8). The CompFlow assisted construction framework features the

representation of workflows and the assisted construction of workflow-definitions. The

CompFlow instantiation and execution engine features the instantiation and execution

of workflow-definitions. Three different scenarios that rely on these implementations

have been presented, demonstrating that practical applications of the CompFlow ap-

proach are possible.

In this chapter, it is argued that this thesis answers the research questions presented

in Chapter 1. Furthermore, an overview of the contributions is presented along with a

discussion of the future directions and work.

205



206 conclusions

9.1 contributions

The overarching goal of this thesis is to investigate if:

Workflows of micro-tasks can be represented and semi-automatically built through a formal

and seamless full integration of semantically-enriched dynamic and static domain dimensions,

in such a way that they are interpretable and executable by both human and machine actors in

a human-machine execution environment.

This goal raises several research questions and establishes multiple requirements.

research question no.1 : Can the structure and semantics of micro-tasks and micro-

task workflows be fully represented in terms of their dynamic and static domain dimensions?

It has been demonstrated by the CompFlow workflow-definition method that the

operations and data involved in a micro-task can be modelled and fully represented

through DL ontologies in terms of their dynamic and static domain dimensions [42, 41].

Consequently, the specific implementation of the dynamic and procedural dimension

of each task through programming languages is not required.

The workflow-definition method, and in particular the CompFlow ontology, absorbs

concepts and lessons learnt by traditional workflow and business process approaches

to represent different types of activities and transitions.

Although the CompFlow workflow-definition method establishes relationships not

present in the DL language, these relationships can be reduced to DL subsumptions

and equivalences, providing a unified and a full DL representation of the workflow-

definition.

The automatic instantiation and execution of workflow-definitions is also possible

through the proposed set of algorithms.

research question no.2 : Is there a way to incrementally build the micro-task work-

flow dynamic dimension based on the static domain dimension?

The proposed assisted construction process makes it possible to incrementally build

workflow-definitions based on domain ontologies [43]. This process harnesses the in-



9.1 contributions 207

creasing amount of domain ontologies present in the Semantic Web and re-uses their

semantics in establishing the workflow-definition.

The command-based architecture allows the creator of the workflow-definition to in-

creasingly automate its construction while retaining the control provided by the atomic

commands. It also provides a highly extensible approach that can be adapted to multi-

ple domains of knowledge and construction methodologies.

research question no.3 : Can a workflow of micro-tasks, and the involved actors and

interfaces, be represented through an unique and platform-independent representation mecha-

nism, understandable and interpretable to both humans and machines?

The enriched structure and semantics of workflow-definitions built using the

CompFlow method provides a detailed representation of the involved data and the

operations that must be performed by workers. Also, its formal core based in DL

establishes a representation and semantics that are both interpretable by machines and

close to the human conceptual level. These aspects of CompFlow workflow-definitions

provide a better integration of the operations performed by both humans and

machines in a seamless execution environment.

Overall, the requirements for this research question are fulfilled, since an unique and

platform-independent representation of workflows is proposed, which features:

• The expressive representation of the workers involved in micro-tasks through

concepts and roles (i. e. types of workers);

• The similarly expressive representation of the interfaces involved in each micro-

task through concepts and roles.

Following the CompFlow method, a construction, instantiation and execution envi-

ronment for workflows has been implemented. The implementation includes a con-

struction framework that employs the presented construction process in order to incre-

mentally build workflow-definitions. A workflow-definition instantiation and execu-

tion engine is also included in the implementation. It interprets a workflow-definition,

creating new instances of the workflow-definition (or workflows) and executing them

on top of a domain knowledge base.

The CompFlow method and construction process, along with the presented imple-

mentation, can be used to build and execute workflows in multiple application do-

mains and scenarios [39, 40]. Its application can be oriented towards crowdsourcing,

towards internal organizational workflows or even both.



208 conclusions

9.2 limitations

There are several limitations to the current CompFlow approach, which are mainly

related to the following aspects:

• Lack of features often found in traditional workflow or business process approaches. For

instance, the timed execution of activities (i. e. the execution with timeouts);

• Required expertise in order to build workflow-definitions. Although the construction

process aids the creator in establishing workflow-definitions, the complexity of

the process remains complex compared to simple and single-task crowdsourcing

platforms, and still requires some degree of expertise in ontology engineering;

• Expressiveness of the DL language. The great expressiveness of domain ontologies

and of the wide set of available DL languages also demand for the continuous

revision and evolution of the CompFlow workflow-definition method. This will

allow its expressiveness to grow alongside the developments and expressiveness

of DL ontologies. Thus, the expressiveness of the workflow-definition method is

currently limited in terms of the base DL language;

• Complexity and scalability of the proposed algorithms. The analysis of domain ontolo-

gies often requires algorithms with high computational complexity. The current

implementation does not scale well when domain ontologies of significant size

are used.

Since the expressiveness of the DL language is still to be fully exploited, several

aspects can be added or improved in the workflow-definition method. These include:

• The proper distinction, inside loops, of unit individuals that have been assigned

in previous tasks;

• Establishing restrictions that match role values of two different concepts (e. g. the

role value of R1 for the unit concept C1 must be the same as the role value of R2

for the unit context concept C2);

• Supporting negations (this is mostly an implementation issue since negations are

already well established in DL languages);

• Distinguishing between individuals with different namespaces (such a feature

would be useful, for instance, in the ontology alignment scenario in order to

distinguish between the concepts and roles of the two ontologies).

Other aspects that are currently limited and should be further explored are:



9.3 future work 209

• The use of assignment sub-concepts to represent output data (e. g. through data-

type roles);

• Adding other required commands to the construction framework and creating a

command-based construction language;

• Creating new strategies that harness multiple construction patterns.

9.3 future work

Besides the continuous evolution of the proposed method and implementation, this

research opens several paths that are analogous to the general research directions of

crowdsourcing platforms and applications and traditional workflow approaches.

The CompFlow method requires continuous research in the expressiveness of

workflow-definitions. Furthermore, new types of transitions, events and tasks can be

added to the CompFlow ontology. In particular, new types of filter tasks that employ

different filter strategies are necessary.

The conditions applied onto Loop workflow-definitions and conditional transitions

also need to be formalized. Currently, the representation of these conditions depends

exclusively on the implementation of the instantiation and execution engine.

Further research in ontology patterns and construction methods may reveal multiple

patterns that can be used in the construction of workflow-definitions. In this sense, new

pattern commands and strategies need to be established.

Further research directions not explored in this work are also present. These include:

• The automatic or semi-automatic generation of UI templates through the analysis

of the workflow-definition ontology;

• The application of quality control mechanisms and their representation in the

CompFlow ontology;

• The generation of reports with global and quality indicators;

• A distributed architecture for instantiation and execution engines.

Finally, a refined implementation of the instantiation and execution engine, and of

the construction framework is required. In particular, the construction framework re-

quires significant work in usability and in the visual representation of the workflow-

definition. A friendly user interface is needed in order to further aid the creator in the

construction of workflow-definitions.



210 conclusions

Also of particular interest, is to feature a distributed architecture where multiple

CompFlow instantiation and execution engines can be deployed with the ability to

connect to multiple remote triple stores (operational ABoxes). This steers the imple-

mentation towards fitting the vision of the Semantic Web and of Linked Open Data.



B I B L I O G R A P H Y

[1] Salman Ahmad, Alexis Battle, Zahan Malkani, and Sepander Kamvar. The jabber-

wocky programming environment for structured social computing. In Proceedings

of the 24th Annual ACM Symposium on User Interface Software and Technology, pages

53–64, Santa Barbara, CA, USA, 2011. URL http://dl.acm.org/citation.cfm?

id=2047203.

[2] Bernd Amann, Catriel Beeri, Irini Fundulaki, and Michel Scholl. Ontology-

based integration of XML web resources. In The Semantic Web-ISWC 2002,

pages 117–131. Springer, 2002. URL http://link.springer.com/chapter/10.

1007/3-540-48005-6_11.

[3] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-

ter F. Patel-Schneider. The Description Logic Handbook: Theory, Implementation, and

Applications. Cambridge University Press, 2 edition, 2007. ISBN 9780521781763.

[4] Eva Blomqvist. OntoCase - a pattern-based ontology construction approach.

In Robert Meersman and Zahir Tari, editors, On the Move to Meaningful Inter-

net Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, number 4803 in LNCS,

pages 971–988. Springer, 2007. ISBN 978-3-540-76846-3, 978-3-540-76848-7. URL

http://link.springer.com/chapter/10.1007/978-3-540-76848-7_64.

[5] Daren C. Brabham. Crowdsourcing as a model for problem solving an intro-

duction and cases. Convergence: the international journal of research into new media

technologies, 14(1):75–90, 2008. URL http://con.sagepub.com/content/14/1/75.

short.

[6] Daren C. Brabham. Moving the crowd at iStockphoto: The composition of the

crowd and motivations for participation in a crowdsourcing application. First Mon-

day, 13(6):1–22, 2008. URL http://firstmonday.org/htbin/cgiwrap/bin/ojs/

index.php/fm/article/viewArticle/2159.

[7] Liliana Cabral, Barry Norton, and John Domingue. The business process mod-

elling ontology. In Proceedings of the 4th international workshop on semantic business

process management, pages 9–16. ACM, 2009. URL http://dl.acm.org/citation.

cfm?id=1944971.

211

http://dl.acm.org/citation.cfm?id=2047203
http://dl.acm.org/citation.cfm?id=2047203
http://link.springer.com/chapter/10.1007/3-540-48005-6_11
http://link.springer.com/chapter/10.1007/3-540-48005-6_11
http://link.springer.com/chapter/10.1007/978-3-540-76848-7_64
http://con.sagepub.com/content/14/1/75.short
http://con.sagepub.com/content/14/1/75.short
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/2159
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/2159
http://dl.acm.org/citation.cfm?id=1944971
http://dl.acm.org/citation.cfm?id=1944971


212 bibliography

[8] Timothy Chklovski. Learner: A system for acquiring commonsense knowledge

by analogy. In Proceedings of the 2nd ACM International Conference on Knowledge

Capture, pages 4–12, Sanibel Island, FL, USA, 2003. URL http://dl.acm.org/

citation.cfm?id=945650.

[9] Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee, Michael

Beenen, Andrew Leaver-Fay, David Baker, Zoran Popović, and Foldit Players. Pre-

dicting protein structures with a multiplayer online game. Nature, 466(7307):

756–760, August 2010. ISSN 0028-0836. doi: 10.1038/nature09304. URL http:

//www.nature.com/nature/journal/v466/n7307/full/nature09304.html.

[10] Chiara Di Francescomarino, Chiara Ghidini, Marco Rospocher, Luciano Serafini,

and Paolo Tonella. Reasoning on semantically annotated processes. In Service-

Oriented Computing–ICSOC 2008, pages 132–146. Springer Berlin Heidelberg, 2008.

[11] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. Crowdsourcing systems

on the world-wide web. Communications of the ACM, 54(4):86–96, 2011. URL http:

//dl.acm.org/citation.cfm?id=1924442.

[12] Marlon Dumas and Arthur HM Ter Hofstede. UML activity diagrams as a

workflow specification language. In UML 2001 - The Unified Modeling Language.

Modeling Languages, Concepts, and Tools, pages 76–90. Springer, 2001. URL http:

//link.springer.com/chapter/10.1007/3-540-45441-1_7.

[13] Marlon Dumas, Wil M. Van der Aalst, and Arthur H. Ter Hofstede. Process-aware

information systems: bridging people and software through process technology. John

Wiley & Sons, 2005. URL http://www.google.com/books?hl=pt-PT&lr=&id=

ZENNdQq8p74C&oi=fnd&pg=PR7&dq=process+aware+information+systems&ots=

ZhQK4PMRfK&sig=tA60QS-mBJKINo9RzT4sAjjVH9A.

[14] Patrick Th Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-

rec. The many faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):

114–131, 2003. URL http://dl.acm.org/citation.cfm?id=857078.

[15] Siamak Faridani, Björn Hartmann, and Panagiotis G. Ipeirotis. What’s the right

price? pricing tasks for finishing on time. In Proceedings of AAAI Workshop on Hu-

man Computation, 2011. URL http://www.aaai.org/ocs/index.php/WS/AAAIW11/

paper/download/3994/4269.

[16] Aldo Gangemi. Ontology design patterns for semantic web content. In The Seman-

tic Web - ISWC 2005, number 3729 in LNCS, pages 262–276. Springer, 2005. URL

http://link.springer.com/chapter/10.1007/11574620_21.

http://dl.acm.org/citation.cfm?id=945650
http://dl.acm.org/citation.cfm?id=945650
http://www.nature.com/nature/journal/v466/n7307/full/nature09304.html
http://www.nature.com/nature/journal/v466/n7307/full/nature09304.html
http://dl.acm.org/citation.cfm?id=1924442
http://dl.acm.org/citation.cfm?id=1924442
http://link.springer.com/chapter/10.1007/3-540-45441-1_7
http://link.springer.com/chapter/10.1007/3-540-45441-1_7
http://www.google.com/books?hl=pt-PT&lr=&id=ZENNdQq8p74C&oi=fnd&pg=PR7&dq=process+aware+information+systems&ots=ZhQK4PMRfK&sig=tA60QS-mBJKINo9RzT4sAjjVH9A
http://www.google.com/books?hl=pt-PT&lr=&id=ZENNdQq8p74C&oi=fnd&pg=PR7&dq=process+aware+information+systems&ots=ZhQK4PMRfK&sig=tA60QS-mBJKINo9RzT4sAjjVH9A
http://www.google.com/books?hl=pt-PT&lr=&id=ZENNdQq8p74C&oi=fnd&pg=PR7&dq=process+aware+information+systems&ots=ZhQK4PMRfK&sig=tA60QS-mBJKINo9RzT4sAjjVH9A
http://dl.acm.org/citation.cfm?id=857078
http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/download/3994/4269
http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/download/3994/4269
http://link.springer.com/chapter/10.1007/11574620_21


bibliography 213

[17] Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of work-

flow management: From process modeling to workflow automation infrastructure.

Distributed and parallel Databases, 3(2):119–153, 1995. URL http://link.springer.

com/article/10.1007/BF01277643.

[18] Michael F. Goodchild and J. Alan Glennon. Crowdsourcing geographic infor-

mation for disaster response: a research frontier. International Journal of Digital

Earth, 3(3):231–241, 2010. URL http://www.tandfonline.com/doi/abs/10.1080/

17538941003759255.

[19] Tom Gruber. Collective knowledge systems: Where the social web meets the

semantic web. Web Semantics: Science, Services and Agents on the World Wide

Web, 6(1):4–13, 2008. URL http://www.sciencedirect.com/science/article/

pii/S1570826807000583.

[20] Karl Hammar and Kurt Sandkuhl. The state of ontology pattern research: A sys-

tematic review of ISWC, ESWC and ASWC 2005-2009. In Workshop on Ontology

Patterns: Papers and Patterns from the ISWC Workshop, pages 5–17, Shangai, China,

2010. URL http://hj.diva-portal.org/smash/record.jsf?pid=diva2:370448.

[21] Christopher G. Harris. Dirty deeds done dirt cheap: A darker side to crowd-

sourcing. In IEEE International Conference on Privacy, Security, Risk and Trust,

pages 1314–1317, 2011. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=6113302.

[22] Thomas Hornung, Agnes Koschmider, and Jan Mendling. Integration of heteroge-

neous BPM schemas: The case of XPDL and BPEL. In CAiSE Forum, volume 231,

2006. URL http://ww.w.mendling.com/publications/TR-Caise06.pdf.

[23] Jeff Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006. URL http:

//sistemas-humano-computacionais.wikidot.com/local--files/capitulo:

redes-sociais/Howe_The_Rise_of_Crowdsourcing.pdf.

[24] Jeff Howe. Crowdsourcing: Why the Power of the Crowd is Driving the Future of Busi-

ness. Century, 2008.

[25] Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Quality management on

amazon mechanical turk. In Proceedings of the ACM SIGKDD Workshop on Hu-

man Computation, pages 64–67, 2010. URL http://dl.acm.org/citation.cfm?id=

1837906.

http://link.springer.com/article/10.1007/BF01277643
http://link.springer.com/article/10.1007/BF01277643
http://www.tandfonline.com/doi/abs/10.1080/17538941003759255
http://www.tandfonline.com/doi/abs/10.1080/17538941003759255
http://www.sciencedirect.com/science/article/pii/S1570826807000583
http://www.sciencedirect.com/science/article/pii/S1570826807000583
http://hj.diva-portal.org/smash/record.jsf?pid=diva2:370448
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6113302
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6113302
http://ww.w.mendling.com/publications/TR-Caise06.pdf
http://sistemas-humano-computacionais.wikidot.com/local--files/capitulo:redes-sociais/Howe_The_Rise_of_Crowdsourcing.pdf
http://sistemas-humano-computacionais.wikidot.com/local--files/capitulo:redes-sociais/Howe_The_Rise_of_Crowdsourcing.pdf
http://sistemas-humano-computacionais.wikidot.com/local--files/capitulo:redes-sociais/Howe_The_Rise_of_Crowdsourcing.pdf
http://dl.acm.org/citation.cfm?id=1837906
http://dl.acm.org/citation.cfm?id=1837906


214 bibliography

[26] Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing user studies with

mechanical turk. In Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems, pages 453–456, 2008. URL http://dl.acm.org/citation.cfm?id=

1357127.

[27] Aniket Kittur, Boris Smus, Susheel Khamkar, and Robert E. Kraut. Crowdforge:

Crowdsourcing complex work. In Proceedings of the 24th Annual ACM Symposium

on User Interface Software and Technology, pages 43–52, Santa Barbara, CA, USA,

2011. URL http://dl.acm.org/citation.cfm?id=2047202.

[28] Aniket Kittur, Susheel Khamkar, Paul André, and Robert Kraut. CrowdWeaver:

visually managing complex crowd work. In Proceedings of the ACM 2012 Conference

on Computer Supported Cooperative Work, pages 1033–1036, 2012. URL http://dl.

acm.org/citation.cfm?id=2145357.

[29] Ryan KL Ko, Stephen SG Lee, and Eng Wah Lee. Business process manage-

ment (BPM) standards: a survey. Business Process Management Journal, 15(5):

744–791, 2009. URL http://www.emeraldinsight.com/journals.htm?articleid=

1811155&show=abstract.

[30] Ryan KL Ko, Eng Wah Lee, and S. G. Lee. Business-OWL (BOWL)-a hierar-

chical task network ontology for dynamic business process decomposition and

formulation. Services Computing, IEEE Transactions on, 5(2):246–259, 2012. URL

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5989787.

[31] Ioannis Konstas, Vassilios Stathopoulos, and Joemon M. Jose. On social networks

and collaborative recommendation. In Proceedings of the 32nd international ACM

SIGIR conference on Research and development in information retrieval, pages 195–202,

Boston, MA, USA, 2009. ACM. ISBN 978-1-60558-483-6. doi: 10.1145/1571941.

1571977. URL http://portal.acm.org/citation.cfm?id=1571977.

[32] Anand P. Kulkarni, Matthew Can, and Bjoern Hartmann. Turkomatic: Automatic

recursive task and workflow design for mechanical turk. In Proceedings of the

2011 Annual Conference on Extended Abstracts on Human Factors in Computing Sys-

tems, pages 2053–2058, Vancouver, BC, Canada, 2011. URL http://dl.acm.org/

citation.cfm?id=1979865.

[33] Peter Lawrence. Workflow handbook 1997. John Wiley & Sons, Inc., 1997. URL

http://dl.acm.org/citation.cfm?id=272945.

http://dl.acm.org/citation.cfm?id=1357127
http://dl.acm.org/citation.cfm?id=1357127
http://dl.acm.org/citation.cfm?id=2047202
http://dl.acm.org/citation.cfm?id=2145357
http://dl.acm.org/citation.cfm?id=2145357
http://www.emeraldinsight.com/journals.htm?articleid=1811155&show=abstract
http://www.emeraldinsight.com/journals.htm?articleid=1811155&show=abstract
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5989787
http://portal.acm.org/citation.cfm?id=1571977
http://dl.acm.org/citation.cfm?id=1979865
http://dl.acm.org/citation.cfm?id=1979865
http://dl.acm.org/citation.cfm?id=272945


bibliography 215

[34] Sheen S. Levine and Robert Kurzban. Explaining clustering in social networks:

Towards an evolutionary theory of cascading benefits. SSRN eLibrary, 27(2-3). URL

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=890232.

[35] Joseph Carl Robnett Licklider. Man-computer symbiosis. IRE Transactions on Hu-

man Factors in Electronics, (1):4–11, 1960. URL http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber=4503259.

[36] Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. Exploring

iterative and parallel human computation processes. In Proceedings of the ACM

SIGKDD Workshop on Human Computation, pages 68–76, 2010. URL http://dl.

acm.org/citation.cfm?id=1837907.

[37] Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. Turkit: Human

computation algorithms on mechanical turk. In Proceedings of the 23rd Annual

ACM Symposium on User Interface Software and Technology, pages 57–66, New York,

NY, USA, 2010. URL http://dl.acm.org/citation.cfm?id=1866040.

[38] Shuangling Luo, Haoxiang Xia, Taketoshi Yoshida, and Zhongtuo Wang. To-

ward collective intelligence of online communities: A primitive conceptual model.

Journal of Systems Science and Systems Engineering, 18(2):203–221, 2009. URL

http://link.springer.com/article/10.1007/s11518-009-5095-0.

[39] Nuno Luz, Nuno Silva, Paulo Maio, and Paulo Novais. Ontology alignment

through argumentation. In 2012 AAAI Spring Symposium Series, Palo Alto,

CA, USA, 2012. URL http://www.aaai.org/ocs/index.php/SSS/SSS12/paper/

download/4335/4692.

[40] Nuno Luz, Nuno Silva, and Paulo Novais. Social networked multi-agent nego-

tiation in ontology alignment. In Web Intelligence and Intelligent Agent Technology

(WI-IAT), 2012 IEEE/WIC/ACM International Conferences on, volume 2, pages 310–

315. IEEE, 2012.

[41] Nuno Luz, Carlos Pereira, Nuno Silva, Paulo Novais, António Teixeira, and

Miguel Oliveira e Silva. An ontology for human-machine computation workflow

specification. In Lecture Notes in Artificial Intelligence, volume 8480, Salamanca,

Spain, 2014. Springer.

[42] Nuno Luz, Nuno Silva, and Paulo Novais. A method for defining human-machine

micro-task workflows for gathering legal information. In AI Approaches to the

Complexity of Legal Systems, pages 275–289. 2014.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=890232
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4503259
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4503259
http://dl.acm.org/citation.cfm?id=1837907
http://dl.acm.org/citation.cfm?id=1837907
http://dl.acm.org/citation.cfm?id=1866040
http://link.springer.com/article/10.1007/s11518-009-5095-0
http://www.aaai.org/ocs/index.php/SSS/SSS12/paper/download/4335/4692
http://www.aaai.org/ocs/index.php/SSS/SSS12/paper/download/4335/4692


216 bibliography

[43] Nuno Luz, Nuno Silva, and Paulo Novais. Generating human-computer micro-

task workflows from domain ontologies. In Human-Computer Interaction. Theories,

Methods, and Tools, pages 98–109. Springer, 2014. URL http://link.springer.com/

chapter/10.1007/978-3-319-07233-3_10.

[44] Nuno Luz, Nuno Silva, and Paulo Novais. A survey of task-oriented crowdsourc-

ing. Artificial Intelligence Review, pages 1–27, 2014. URL http://link.springer.

com/article/10.1007/s10462-014-9423-5.

[45] Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King. Recom-

mender systems with social regularization. In Proceedings of the fourth ACM in-

ternational conference on Web search and data mining, pages 287–296, 2011. URL

http://dl.acm.org/citation.cfm?id=1935877.

[46] Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. Mafra - a map-

ping framework for distributed ontologies. In Knowledge engineering and knowledge

management: ontologies and the semantic web, pages 235–250. Springer, 2002. URL

http://link.springer.com/chapter/10.1007/3-540-45810-7_23.

[47] David Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,

S. Narayanan, M. Paolucci, B. Parsia, T. Payne, and others. OWL-s: seman-

tic markup for web services. w3c member submission (2004). Retreived from

http://www. w3. org/Submission/OWL-S, 2012.

[48] Winter Mason and Duncan J. Watts. Financial incentives and the performance

of crowds. ACM SigKDD Explorations Newsletter, 11(2):100–108, 2010. URL http:

//dl.acm.org/citation.cfm?id=1809422.

[49] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic web services.

IEEE intelligent systems, 16(2):46–53, 2001. URL http://www.computer.org/csdl/

mags/ex/2001/02/x2046.pdf.

[50] Gregory Mentzas, Christos Halaris, and Stylianos Kavadias. Modelling busi-

ness processes with workflow systems: an evaluation of alternative approaches.

International Journal of Information Management, 21(2):123–135, 2001. URL http:

//www.sciencedirect.com/science/article/pii/S0268401201000056.

[51] Christine Natschläger. Towards a bpmn 2.0 ontology. In Business Process Model

and Notation, pages 1–15. Springer, 2011.

http://link.springer.com/chapter/10.1007/978-3-319-07233-3_10
http://link.springer.com/chapter/10.1007/978-3-319-07233-3_10
http://link.springer.com/article/10.1007/s10462-014-9423-5
http://link.springer.com/article/10.1007/s10462-014-9423-5
http://dl.acm.org/citation.cfm?id=1935877
http://link.springer.com/chapter/10.1007/3-540-45810-7_23
http://dl.acm.org/citation.cfm?id=1809422
http://dl.acm.org/citation.cfm?id=1809422
http://www.computer.org/csdl/mags/ex/2001/02/x2046.pdf
http://www.computer.org/csdl/mags/ex/2001/02/x2046.pdf
http://www.sciencedirect.com/science/article/pii/S0268401201000056
http://www.sciencedirect.com/science/article/pii/S0268401201000056


bibliography 217

[52] Leo Obrst, Howard Liu, and Robert Wray. Ontologies for corporate web appli-

cations. AI Magazine, 24(3):49, 2003. URL http://www.aaai.org/ojs/index.php/

aimagazine/article/viewArticle/1718.

[53] Chun Ouyang, Eric Verbeek, Wil M. P. van der Aalst, Stephan Breutel, Marlon

Dumas, and Arthur H. M. ter Hofstede. Formal semantics and analysis of control

flow in WS-BPEL. Science of Computer Programming, 67(2-3):162–198, July 2007.

ISSN 0167-6423. doi: 10.1016/j.scico.2007.03.002. URL http://www.sciencedirect.

com/science/article/pii/S0167642307000500.

[54] Gabriele Paolacci, Jesse Chandler, and Panagiotis Ipeirotis. Running experiments

on amazon mechanical turk. Judgment and Decision Making, 5(5):411–419, 2010.

URL http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1626226.

[55] Carlos Pedrinaci, John Domingue, and Amit P. Sheth. Semantic web services. In

Handbook of semantic web technologies, pages 977–1035. Springer, 2011. URL http:

//link.springer.com/10.1007/978-3-540-92913-0_22.

[56] Carlos Pereira, António J. S. Teixeira, and Miguel Oliveira e Silva. Live evalua-

tion within ambient assisted living scenarios. In 7th ACM Conference on Pervasive

Technologies Related to Assistive Environments - PETRA, Rhodes, Greece, May 2014.

[57] Perrine Pittet, Christophe Cruz, and Christophe Nicolle. A structural\ mathcal

{SHOIN (D)} ontology model for change modelling. In On the Move to Meaningful

Internet Systems: OTM 2013 Workshops, pages 442–446. Springer, 2013.

[58] J. Porter. Designing for the Social Web. Peachpit Press, 2008. ISBN 0321534921,

9780321534927.

[59] Alexander J. Quinn and Benjamin B. Bederson. Human computation: a survey

and taxonomy of a growing field. In Proceedings of the 2011 Annual Conference on

Human Factors in Computing Systems, pages 1403–1412, 2011. URL http://dl.acm.

org/citation.cfm?id=1979148.

[60] Dominique Ritze, Johanna Völker, Christian Meilicke, and Ondrej Šváb-Zamazal.

Linguistic analysis for complex ontology matching. Ontology Matching, 1, 2010.

[61] Nick Russell, Arthur HM Ter Hofstede, David Edmond, and Wil MP van der

Aalst. Workflow data patterns: Identification, representation and tool support. In

Conceptual Modeling-ER 2005, pages 353–368. Springer, 2005. URL http://link.

springer.com/chapter/10.1007/11568322_23.

http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1718
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1718
http://www.sciencedirect.com/science/article/pii/S0167642307000500
http://www.sciencedirect.com/science/article/pii/S0167642307000500
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1626226
http://link.springer.com/10.1007/978-3-540-92913-0_22
http://link.springer.com/10.1007/978-3-540-92913-0_22
http://dl.acm.org/citation.cfm?id=1979148
http://dl.acm.org/citation.cfm?id=1979148
http://link.springer.com/chapter/10.1007/11568322_23
http://link.springer.com/chapter/10.1007/11568322_23


218 bibliography

[62] Cristina Sarasua, Elena Simperl, and Natalya F. Noy. CrowdMap: Crowdsourcing

ontology alignment with microtasks. In The Semantic Web - ISWC 2012, number

7649 in LNCS, pages 525–541. Springer, 2012. URL http://link.springer.com/

chapter/10.1007/978-3-642-35176-1_33.

[63] François Scharffe, Ondˇ rej Zamazal, and Dieter Fensel. Ontology alignment de-

sign patterns. Knowledge and Information Systems, 40(1):1–28, 2014. URL http:

//link.springer.com/article/10.1007/s10115-013-0633-y.

[64] François Scharffe. Correspondence patterns representation. PhD thesis, University of

Innsbruck, 2009.

[65] François Scharffe and Dieter Fensel. Correspondence patterns for ontology align-

ment. In Knowledge Engineering: Practice and Patterns, pages 83–92. Springer, 2008.

[66] August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Process

modeling using event-driven process chains. Process-Aware Information

Systems, pages 119–146, 2005. URL http://www.google.com/books?hl=

pt-PT&lr=&id=ZENNdQq8p74C&oi=fnd&pg=PA119&dq=event+process+chains&ots=

ZhQK3YRZdJ&sig=3VEwyDU9f0g0OsclKROvTQq77FQ.

[67] Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim, Travell Perkins, and

Wan Li Zhu. Open mind common sense: Knowledge acquisition from the gen-

eral public. In On the Move to Meaningful Internet Systems 2002: CoopIS, DOA,

and ODBASE, number 2519 in LNCS, pages 1223–1237. Springer, 2002. URL

http://link.springer.com/chapter/10.1007/3-540-36124-3_77.

[68] Ljiljana Stojanovic. Methods and tools for ontology evolution. 2004.

[69] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge engineering:

principles and methods. Data & knowledge engineering, 25(1):161–197, 1998. URL

http://www.sciencedirect.com/science/article/pii/S0169023X97000566.

[70] James Surowiecki. The wisdom of crowds: Why the many are smarter than the

few and how collective wisdom shapes business, economies, societies and nations.

New York: Doubleday, 2004.

[71] Vuong Xuan Tran and Hidekazu Tsuji. OWL-t: an ontology-based task tem-

plate language for modeling business processes. In Software Engineering Research,

Management & Applications, 2007. SERA 2007. 5th ACIS International Conference

on, pages 101–108. IEEE, 2007. URL http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=4296924.

http://link.springer.com/chapter/10.1007/978-3-642-35176-1_33
http://link.springer.com/chapter/10.1007/978-3-642-35176-1_33
http://link.springer.com/article/10.1007/s10115-013-0633-y
http://link.springer.com/article/10.1007/s10115-013-0633-y
http://www.google.com/books?hl=pt-PT&lr=&id=ZENNdQq8p74C&oi=fnd&pg=PA119&dq=event+process+chains&ots=ZhQK3YRZdJ&sig=3VEwyDU9f0g0OsclKROvTQq77FQ
http://www.google.com/books?hl=pt-PT&lr=&id=ZENNdQq8p74C&oi=fnd&pg=PA119&dq=event+process+chains&ots=ZhQK3YRZdJ&sig=3VEwyDU9f0g0OsclKROvTQq77FQ
http://www.google.com/books?hl=pt-PT&lr=&id=ZENNdQq8p74C&oi=fnd&pg=PA119&dq=event+process+chains&ots=ZhQK3YRZdJ&sig=3VEwyDU9f0g0OsclKROvTQq77FQ
http://link.springer.com/chapter/10.1007/3-540-36124-3_77
http://www.sciencedirect.com/science/article/pii/S0169023X97000566
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4296924
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4296924


bibliography 219

[72] W. M. P. Van der Aalst. Petri-net-based workflow management software. In Pro-

ceedings of the NFS Workshop on Workflow and Process Automation in Information Sys-

tems, pages 114–118. Citeseer, 1996.

[73] Wil MP van der Aalst. The application of petri nets to workflow manage-

ment. Journal of circuits, systems, and computers, 8(01):21–66, 1998. URL http:

//www.worldscientific.com/doi/abs/10.1142/S0218126698000043.

[74] Wil MP Van der Aalst and Arthur HM Ter Hofstede. YAWL: yet another

workflow language. Information systems, 30(4):245–275, 2005. URL http://www.

sciencedirect.com/science/article/pii/S0306437904000304.

[75] Wil MP Van Der Aalst, Arthur HM Ter Hofstede, and Mathias Weske.

Business process management: A survey. In Business process management,

pages 1–12. Springer, 2003. URL http://link.springer.com/chapter/10.1007/

3-540-44895-0_1.

[76] Luis Von Ahn. Human computation. In 46th ACM IEEE Design Automation Con-

ference, pages 418–419, 2009. URL http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=5227025.

[77] S Wasserman and K Faust. Social Network Analysis: Methods and Applications. Cam-

bridge University Press, 1994.

[78] Wesley Willett, Jeffrey Heer, and Maneesh Agrawala. Strategies for crowdsourc-

ing social data analysis. In Proceedings of the 2012 ACM Annual conference on Hu-

man Factors in Computing Systems, pages 227–236, 2012. URL http://dl.acm.org/

citation.cfm?id=2207709.

[79] Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. A survey of crowdsourc-

ing systems. In IEEE International Conference on Privacy, Security, Risk and Trust,

Boston, MA, USA, 2011. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=6113213.

[80] Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. Task matching in crowd-

sourcing. In Internet of Things (iThings/CPSCom), 2011 International Conference

on and 4th International Conference on Cyber, Physical and Social Computing, pages

409–412, 2011. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=

6142254.

http://www.worldscientific.com/doi/abs/10.1142/S0218126698000043
http://www.worldscientific.com/doi/abs/10.1142/S0218126698000043
http://www.sciencedirect.com/science/article/pii/S0306437904000304
http://www.sciencedirect.com/science/article/pii/S0306437904000304
http://link.springer.com/chapter/10.1007/3-540-44895-0_1
http://link.springer.com/chapter/10.1007/3-540-44895-0_1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5227025
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5227025
http://dl.acm.org/citation.cfm?id=2207709
http://dl.acm.org/citation.cfm?id=2207709
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6113213
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6113213
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6142254
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6142254

	Página 1
	Página 2
	Página 3
	Página 4
	thesis_phd.pdf
	Declaration
	Acknowledgments
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Preamble
	1 Introduction
	1.1 Problem Statement and Motivations
	1.2 Hypothesis and Objectives
	1.3 Approach
	1.4 Outline

	2 Background
	2.1 Human Computation and the Wisdom of Crowds
	2.1.1 Definitions
	2.1.2 Role and Application Domains

	2.2 Workflows, Ontologies and the Semantic Web
	2.2.1 Activity-based Workflows
	2.2.2 Ontologies and Semantics in Workflows

	2.3 Systematization of Human Computation Approaches
	2.3.1 Entities and Relationships
	2.3.2 The Process
	2.3.3 Task-oriented Approaches
	2.3.4 Workflow-oriented Approaches
	2.3.5 Comparative Analysis

	2.4 Ontology of Task-oriented Systems
	2.4.1 Nature of Collaboration
	2.4.2 Architecture
	2.4.3 Worker Selection
	2.4.4 Worker Assessment and Quality Control
	2.4.5 Worker Motivation
	2.4.6 Task Creation and Configuration
	2.4.7 Task Management
	2.4.8 Task Execution
	2.4.9 Task Result Aggregation

	2.5 Challenges
	2.6 Summary


	The CompFlow Approach
	3 Approach Overview
	3.1 Static and Dynamic Ontologies
	3.2 Construction of the Workflow-Definition
	3.3 Instantiation and Execution of the Workflow-Definition
	3.4 Summary

	4 Ontologies
	4.1 Ontologies in Description Logics
	4.1.1 Definition of Ontology
	4.1.2 Definition of Knowledge Base
	4.1.3 Interpretation of the DL Language
	4.1.4 Domain Ontologies

	4.2 The CompFlow Ontology
	4.2.1 Jobs
	4.2.2 Interfaces
	4.2.3 Actors
	4.2.4 Activities
	4.2.5 Transitions

	4.3 Summary

	5 A Method for the Construction of Workflow-Definitions
	5.1 The Workflow-Definition Ontology
	5.2 Task-Definitions
	5.2.1 Definition
	5.2.2 Types
	5.2.3 Cardinalities
	5.2.4 Example No. 1: Creating Individuals
	5.2.5 Example No. 2: Optional Input or Output
	5.2.6 Example No. 3: Concept Hierarchies
	5.2.7 Example No. 4: Selecting or Filtering Individuals
	5.2.8 Example No. 5: Updating Individuals

	5.3 Event-Definitions
	5.3.1 Definition
	5.3.2 Example

	5.4 Transition-Definitions
	5.4.1 Definition
	5.4.2 Types
	5.4.3 Example No. 1: Flow Synchronization
	5.4.4 Example No. 2: Flow Merge
	5.4.5 Example No. 3: Flow Parallelization
	5.4.6 Example No. 4: Flow Disjunction
	5.4.7 Example No. 5: Flow Conditions

	5.5 Workflow-Definitions
	5.5.1 Definition
	5.5.2 Dependencies on Task-Definitions
	5.5.3 Inferring Transition-Definitions from Dependencies
	5.5.4 Aggregation of Redundant Results
	5.5.5 Example No. 1: Aggregation of Task-Definition Results
	5.5.6 Example No. 2: Text Partition and Translation

	5.6 Summary

	6 Instantiation and Execution of Workflow-Definitions
	6.1 Task-Definition Instantiation and Execution
	6.1.1 Definition of Task
	6.1.2 Instantiation
	6.1.3 Execution

	6.2 Event-Definition Instantiation and Execution
	6.2.1 Definition of Event
	6.2.2 Instantiation
	6.2.3 Execution

	6.3 Transition-Definition Instantiation and Execution
	6.3.1 Definition of Transition
	6.3.2 Instantiation
	6.3.3 Execution

	6.4 Workflow-Definition Instantiation and Execution
	6.4.1 Definition of Workflow
	6.4.2 Instantiation
	6.4.3 Event-Driven Instantiation
	6.4.4 Execution
	6.4.5 Example

	6.5 Summary

	7 Assisted Construction of Workflow-Definitions
	7.1 The Layered Architecture
	7.1.1 Command Layers
	7.1.2 Command Contexts

	7.2 Atomic Commands
	7.2.1 The Task-Definition Context
	7.2.2 The Event-Definition Context
	7.2.3 The Transition-Definition Context
	7.2.4 The Workflow-Definition Context

	7.3 Pattern Commands
	7.3.1 Follow-Role-CreateAndFill Pattern Commands
	7.3.2 Partition Pattern Commands
	7.3.3 Assembler Pattern Commands
	7.3.4 Other Pattern Commands

	7.4 Strategies
	7.5 Summary


	Postamble
	8 Evaluation and Use Case Scenarios
	8.1 CompFlow Construction Framework
	8.1.1 Visual Workflow-Definitions
	8.1.2 Construction Framework Architecture

	8.2 CompFlow Engine
	8.2.1 Engine Architecture
	8.2.2 The Ontology Module
	8.2.3 The Extensible Interface Module
	8.2.4 The Interface Management Module
	8.2.5 The Workflow and Task Modules
	8.2.6 The Job Module
	8.2.7 External Libraries

	8.3 Use Case Scenarios
	8.3.1 The Document Translation Scenario
	8.3.2 The Ontology Alignment and Construction Scenario
	8.3.3 The Catalan Constitution Refinement Scenario
	8.3.4 Integration with External Projects

	8.4 Summary

	9 Conclusions
	9.1 Contributions
	9.2 Limitations
	9.3 Future Work

	Bibliography





