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Do futuro, 

Dá-os em liberdade. 
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E vendo 
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És homem, não te esqueças! 

Só é tua a loucura 

Onde, com lucidez, te reconheças. 
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ABSTRACT 

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) 

have the capacity to differentiate into all three embryonic germ layers and give rise virtually 

to any cell type in the body. For this reason, they represent an exciting new approach to 

unravelling the mechanisms of human embryonic development, for drug discovery and 

disease modelling in vitro. The unique ability to generate relevant cell types from human 

pluripotent stem cells (hPSCs) opens the possibility of creating inexhaustible sources of cells 

that are otherwise not open to study in the human body, especially those from the central 

nervous system. In line with this, the successful specification of human motor neurons from 

hPSCs has opened new avenues for the study of motor neuron disorders like ALS, a fatal 

neurodegenerative disease characterized by progressive demise of motor neurons in the 

cortex, brainstem and anterior horn of the spinal cord. However, the motor neuron yields 

from existing differentiation protocols are suboptimal, leading to the generation of 

populations of mixed progenitor cells and postmitotic neurons. In addition, the current 

understanding on the survival requirements of human motor neurons remains limited. These 

are significant hurdles for the generation of neuronal cells in quantities that will allow the 

prosecution of innovative studies based on motor neurons generated from human 

pluripotent stem cells.  

Here, we initially used spinal motor neuron cultures specified from hESCs following 

an optimized protocol and demonstrated a remarkably high level of ongoing birth of new 

motor neurons during the ensuing 15 days after the regular 31-day period of motor neuron 

differentiation. Based on previous rodent studies this finding was unexpected and could 

represent a significant potential confound for some published studies using cultures 

differentiated in similar conditions to reveal determinants that alter motor neuron survival. 

We envisioned taking advantage of the ongoing genesis of motor neurons in two distinct 

ways. On one hand, to address the problem of insufficient motor neuron yields, we 

conducted a low-throughput screening study by testing a small collection of 160 bioactive 

molecules to discover small molecules capable of increasing motor neuron numbers in 

culture, either by enhancing neurogenesis and/or increasing survival. The Rho-kinase (ROCK) 

inhibitor Y-27632 was the only tested compound shown to be capable of robustly increasing 

motor neuron numbers up to four-fold after 9 days in culture, an effect which was evident in 

both hESC- and hiPSC-derived motor neuron cultures. The increase in motor neuron 

numbers was later demonstrated to be associated with the enhancement of progenitor 
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proliferation and motor neuron survival. These effects were likely induced through an 

unknown ROCK-independent mechanism, since other seven small molecules in the family 

could not elicit comparable increases in motor neuron numbers. 

On the other hand, to overcome the potential confound effect of ongoing 

neurogenesis on motor neuron survival studies we used FACS sorting to purify human motor 

neurons derived from a HB9::GFP hESC reporter line, based on their cellular characteristics 

and GFP expression. The resulting nearly pure populations of human motor neurons were 

used to create an assay for agents with direct effects on motor neuron survival. Y-27632 was 

successfully applied to expand hESC-derived motor neuron cultures before the FACS sorting 

procedures, leading to a final increase in total motor neuron yields. Similarly to previous 

studies employing purified populations of chick and rodent embryonic motor neurons, the 

purified human motor neurons were demonstrated to be responsive to the survival-

promoting actions of specific neurotrophic factors (GDNF, BDNF and CNTF), as well as Y-

27362 itself. Therefore, we successfully developed original strategies that allow us to 

significantly increase motor neuron yields from hPSC-derived cultures and to create a robust 

survival assay using a pure population of human motor neurons specified from hPSCs. Our 

findings reveal that Y-27632 might constitute a new powerful tool with invaluable 

contributions to the study of pluripotent stem-cell derived human motor neurons. 

Human adipose tissue constitutes an appealing alternative source of stem cells 

which capture the genetic background of the person from which they are obtained. From fat 

tissue one can easily isolate adult human adipose-derived stem cells (hADSCs) which can be 

cultivated in vitro and differentiated to other cell types, though with a more restricted 

potential than hPSCs. The current knowledge on the survival and expansion requirements of 

hADSCs is limited and protocols to efficiently drive these cells towards a neuronal lineage 

still need to be developed. Here, we expanded the study of the effects of Y-27632 on human 

stem cells and were able to show that Y-27632 does not robustly increase the survival and 

proliferation of hADSCs, a novel finding which demonstrates that the effects of Y-27632 are 

likely to be cell-specific. 

In summary, the different methodological advances reported in this thesis should 

be of general interest for the preparation of human motor neurons on a large scale and for 

studies addressing the molecular processes underlying motor neuron genesis, survival and 

degeneration. The body of knowledge reported in this thesis should be of general 

importance for researchers using human stem cells to study other neuronal populations and 

other diseases. 
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RESUMO 

As células estaminais embrionárias humanas (hESCs) e as células estaminais 

pluripotentes induzidas humanas (hiPSCs) têm a capacidade de se diferenciar nos três 

folhetos germinativos embrionários e dar origem virtualmente a qualquer tipo celular 

existente no organismo. Dessa forma, constitutem uma nova abordagem na descoberta dos 

mecanismos que regulam o desenvolvimento embrionário humano, na descoberta de novos 

fármacos e na modelação de patologias in vitro. A capacidade única de gerar tipos celulares 

de interesse a partir destas células estaminais pluripotentes humanas (hPSCs) cria a 

possibilidade de serem geradas fontes ilimitadas de células que dificilmente estão acessíveis 

para estudo no corpo humano, sendo o caso das células do sistema nervoso central. Nesse 

sentido, a criação com sucesso de neurónios motores humanos a partir de hPSCs tem 

conduzido a novas avenidas no estudo de doenças do neurónio motor, sendo o caso da 

Esclerose Lateral Amiotrófica (ELA), uma doença neurodegenerative fatal caracterizada pela 

morte progressiva de neurónios motores no córtex cerebral, tronco cerebral e corno 

anterior da medula espinhal. No entanto, o resultado final dos protocolos de diferenciação 

existentes não são ainda os ideiais, dando origem à formação de populações mistas de 

células progenitoras neuronais e neurónios motores pós-mitóticos. Para além disso, o 

conhecimento sobre os requisitos destes neurónios motores para se manterem vivos é ainda 

escasso. Estes factos no seu conjunto constituem importantes barreiras para a produção de 

células neuronais em quantidades suficientes que permitam o desenvolvimento de estudos 

inovadores tendo por base os neurónios motores criados a partir de células estaminais 

pluripotentes humanas. 

Neste trabalho, começamos inicialmente por usar culturas de neurónios motores da 

espinhal medula criados a partir de hESCs, seguindo um protocolo optimizado; e 

demonstramos níveis consideráveis de génese contínua de neurónios motores durante 15 

dias após o período habitual de 31 dias para a diferenciação de neurónios motores. Tendo 

por base os estudos anteriores usando modelos animais, este achado não era expectável e 

constituía, de facto, um importante factor de confundimento em estudos onde eram 

utilizadas culturas de neurónios motores geradas em condições semelhantes para estudar 

factores que possam afectar a sobrevivência dos neurónios motores. Consideramos então 

que seria possível tirar partido da criação contínua de neurónios motores através de duas 
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abordagens distintas. Por um lado, no sentido de responder ao problema de produção de 

neurónios motores em quantidades insuficientes, conduzimos um teste de screening de 

moléculas em pequena escala, usando cerca de 160 compostos, para tentar encontrar 

alguma que fosse capaz de aumentar o número de neurónios motores em cultura, através 

da potenciação do efeito de neurogénese contínua e/ou aumento da sobrevivência 

neuronal. O inibidor da cinase Rho (ROCK) Y-27632 foi descrito como o único composto 

testado capaz de aumentar de forma significativa o número de neurónio motores em 

cultura, com efeito máximo de quadruplicação do número de neurónio motores ao fim de 9 

dias em cultura, estando o efeito presente em culturas de neurónios motores geradas a 

partir de hESCs e hiPSCs. Este aumento no número de neurónios motores em cultura foi 

mais tarde demonstrado estar associado a uma potenciação da proliferação de células 

progenitoras, bem como, ao aumento da sobrevivência dos neurónios motores. Estes efeitos 

alegadamente ocorrem através de um mecanismo desconhecido, muito provavelmente 

independente da inibição de ROCK, na medida em que, outras sete moléculas da mesma 

família foram testadas e não foram capazes de originar aumentos semelhantes no número 

de neurónios motores. 

Por outro lado, de forma a contornar o potencial efeito de confundimento nos 

estudos de sobrevivência dos neurónios motores inerente à neurogénese contínua, usamos 

a tecnologia FACS para isolar neurónios motores humanos criados a partir de uma linha 

reporter HB9::GFP, com base nas suas características celulares e expressão de GFP. As 

populações de neurónios motores praticamente puras resultantes foram então usadas para 

desenvolver um ensaio com o objectivo de testar agentes com efeito directo na 

sobrevivência dos neurónios motores humanos. Antes do procedimento de FACS, o 

composto Y-27632 foi usado com sucesso na expansão das culturas de neurónios motores, 

levando a números mais elevados de neurónios motores obtidos com este procedimento. 

Em linha com estudos anteriores envolvendo o uso de populações purificadas de neurónios 

motores embrionários de pinto e roedor, os neurónios motores humanos purificados neste 

trabalho demonstraram ter capacidade de responder às acções pró-sobrevivência de 

factores neurotróficos específicos (GDNF, BDNF e CNTF), bem como ao composto Y-27632. 

Deste modo, consegui desenvolver com sucesso algumas estratégias que permitem 

aumentar de forma significativa a produção de neurónios motores a partir de culturas 

derivadas de hPSCs, bem como, criar um ensaio de sobrevivência neuronal robusto, com 
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base em neurónios motores humanos purificados a partir de culturas de neurónios motores. 

Os nossos achados sugerem que o composto Y-27632 pode constituir uma nova ferramenta 

poderosa no estudo de neurónios motores humanos criados a partir de células estaminais 

pluripotentes. 

O tecido adiposo constitui uma fonte alternativa interessante de células estaminais 

que retêm o património genético da pessoa de onde são obtidas. A partir da gordura 

podemos isolar com facilidade células estaminais humanas adultas derivadas da gordura 

(hADSCs), que podem ser cultivadas in vitro e se diferenciar noutros tipos celulares, apesar 

do potencial mais restrito quando comparadas com as hPSCs. O conhecimento actual sobre 

os requisitos de sobrevivência e expansão destas células é ainda limitado e protocolos para a 

geração eficiente de neurónios a partir destas ainda não foram desenvolvidos. Neste 

trabalho, ampliamos o estudo dos efeitos da molécula Y-27632 nas células estaminais 

humanas e fomos capazes de demonstrar que a aplicação do composto Y-27632 não 

aumenta a proliferação e sobrevivência das hADSCs, um novo achado que ajuda a 

demonstrar que os efeitos de Y-27632 serão provavelmente específicos consoante o tipo 

celular em estudo.  

Em suma, os diferentes avanços metodológicos documentados nesta tese deverão 

ser de interesse geral na geração de neurónios motores humanos em grande quantidades, 

bem como, na condução de estudos  com vista ao melhor conhecimento dos mecanismos da 

motoneurogénese, sobrevivência e degeneração. O conjunto de conhecimentos cristalizados 

nesta tese poderão vir a constituir-se como importantes para outros investigadores que 

usam células estaminais humanas para estudar outras populações neuronais e outras 

patologias. 
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1. INTRODUCTION 

Human pluripotent stem cells (hPSCs), through their capacity to differentiate into all 

three embryonic germ layers and give rise to virtually all cell types in the body, have opened 

unprecedented possibilities to generate in vitro nearly inexhaustible sources of cells which 

are normally inaccessible to study in the human body (Han et al., 2011; Nizzardo et al., 

2010). This holds special promise in neurodegenerative disorders like amyotrophic lateral 

sclerosis (ALS) or spinal muscular atrophy (SMA), where healthy or patient-specific motor 

neurons are not available due to numerous ethical and technical constraints (Han et al., 

2011; Nizzardo et al., 2010; Palmer et al., 2001; Silani et al., 1998). Thus, human embryonic 

and patient-specific induced pluripotent stem cells (hESCs and hiPSCs, respectively) 

represent a new potential powerful tool for studying human development, disease modeling 

and drug discovery (Daley and Scadden, 2008; Ebert and Svendsen, 2010a; Han et al., 2011; 

Lukovic et al., 2012; Marchetto and Gage, 2012; Mattis and Svendsen, 2011; Rubin and 

Haston, 2011). 

 

1.1. The motor neuron 

Motor neurons are specialized cells of the central nervous system (CNS) whose cell 

bodies are located in the motor cortex, in nuclei in the mid- and hind-brain and in columns 

that cover the full length of the ventral horns of the spinal cord (Elliott, 1945; Romanes, 

1941, 1951). Motor neurons relay information from the brain to the periphery enabling the 

finely tuned contraction of muscles in the body (Grillner and Jessell, 2009; Kanning et al., 

2010). In this manner, motor neurons are vital to the control of actions on which life 

depends, including swallowing and breathing (Grillner and Jessell, 2009; Jessell et al., 2011). 

The nearly 120,000 motor neurons in the spinal cord innervate the almost 300 bilateral pairs 

of muscles present in the human body (Kanning et al., 2010). In spite of their well-known 

shared functions, motor neurons constitute in fact a complex heterogeneous population of 

nerve cells (Kanning et al., 2010). From a clinical viewpoint, we can group the human motor 

neurons into upper and lower motor neurons. Upper motor neurons are situated in the 

motor region of the cerebral cortex and carry motor information  to the appropriate level in 

the brain stem (corticobulbar tracts) and spinal cord (corticospinal tracts), from where nerve 

signals proceed to the muscles by means of the lower motor neurons, in some cases through 
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intervening spinal interneurons (Snell, 2010; Standring and Gray, 2008). The cortical motor 

neurons, known as Betz cells, are giant cells in the brain and are located in the layer V of the 

primary motor cortex (Rivara et al., 2003; Snell, 2010; Standring and Gray, 2008). Their axons 

project to the brainstem to form the lateral corticospinal tract on each side of the spinal 

cord, if they decussate and cross the midline; or the anterior corticospinal tracts, in the 

absence of decussation (Snell, 2010; Standring and Gray, 2008). Clinically, upper motor 

neuron lesions can cause paralysis, spasticity or hypertonicity, exaggerated deep tendon 

reflexes, an extensor plantar response known as Babinski’s sign or absence of superficial 

abdominal and cremasteric reflexes (Snell, 2010; Standring and Gray, 2008). In contrast, 

lower motor neuron lesions lead to flaccid paralysis, atrophy, loss of reflexes in the afflicted 

areas, muscle fasciculation and contracture (Snell, 2010; Standring and Gray, 2008). 

At the level of the spinal cord, which is the main focus of the current work, human 

motor neurons are grouped into distinct columns, divisions and pools (Arber, 2012; Dasen 

and Jessell, 2009; Dasen et al., 2003; Dasen et al., 2005; Routal and Pal, 1999). Such 

anatomical/functional organization is critical for the exquisitely coordinated contraction of 

the several muscle types in the body (Dalla Torre di Sanguinetto et al., 2008; Dasen and 

Jessell, 2009; Dasen et al., 2003). In terms of functionality, we can identify at least three 

main different subtypes of motor neurons, which are found at all levels of the spinal cord: 

alpha (α), gamma (γ) and beta (β) (Kanning et al., 2010). Alpha (α) motor neurons are the 

most abundant and drive muscle contraction by innervating extrafusal fibers (Hunt and 

Kuffler, 1951; Kanning et al., 2010; Kuffler et al., 1951). Gamma (γ) motor neurons innervate 

the intrafusal fibers of the muscle spindle and play complex roles in the control of the motor 

system by modulating the sensitivity of muscle spindles to stretch (Hunt and Kuffler, 1951; 

Kanning et al., 2010; Kuffler et al., 1951). Beta (β) motor neurons innervate both intra and 

extrafusal muscle and constitute a population of motor neurons which is less well studied 

and understood (Kanning et al., 2010). In terms of target innervation a fundamental 

distinction can be made: somatic motor neurons, the most abundant, which project their 

axons directly to the peripheral skeletal muscle (Dasen and Jessell, 2009); and the visceral 

preganglionic motor neurons, which synapse onto neuronal populations in the ganglia of the 

autonomic nervous system (sympathetic and parasympathetic), which in turn innervate 

cardiac and visceral smooth muscles (Dasen and Jessell, 2009). These visceral preganglionic 

motor neurons are clustered in a dorsal column called the preganglionic motor column (PGC) 
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and are found essentially at the thoracic levels (Dasen and Jessell, 2009; Prasad and 

Hollyday, 1991). On the other hand, somatic motor neurons are organized mainly into three 

distinct columns throughout the rostrocaudal length of the spinal cord (Dasen and Jessell, 

2009). The median motor column (MMC) is a continuous column of somatic motor neurons 

in the medial-ventral aspect of the spinal cord whose motor neurons innervate the epaxial 

muscles of the dorsal body wall (Dasen and Jessell, 2009; Fetcho, 1987; Gutman et al., 1993). 

The hypaxial motor column (HMC) is located laterally to the MMC and is restricted to the 

thoracic spinal cord (Dasen and Jessell, 2009). Motor neurons in the HMC innervate 

intercostal and abdominal muscles of the ventral body wall (Dasen and Jessell, 2009; 

Gutman et al., 1993). Finally, the limb-innervating lateral motor columns (LMCs) are clusters 

of motor neurons located dorsally and laterally to the MMC and are found only at the level 

of the limbs (Dasen and Jessell, 2009). For these LMC columns a subsequent division into 

medial and lateral groups exists. Medial LMC motor neurons innervate muscles derived from 

the ventral primordial muscle of the limb, whereas the lateral LMC innervates the dorsal 

counterpart (Dasen and Jessell, 2009; Landmesser, 1978a, b). The clustering of motor 

neurons in these columns occurs during embryonic development due to a combination of 

factors expressed along the neural tube and transcriptional interactions which occur within 

those columns (Dasen and Jessell, 2009; Kanning et al., 2010). Each column is also 

characterized by the expression of a specific set of transcription factors: PGC motor neurons 

express Islet 1 (ISL1) and low levels of forkhead box protein P1 (FOXP1); HMC normally 

express ISL1, Islet 2 (ISL2) and ER81; MMC express ISL1, ISL2 and LIM/homeobox protein 3 

(LHX3); whereas medial LMC motor neurons express ISL1, ISL2 and increased levels of 

FOXP1; and lateral LMC express ISL2, LIM/homeobox protein 1 (LHX1) and high levels of 

FOXP1 (Dasen and Jessell, 2009; Kanning et al., 2010). Within a given column, motor neurons 

are further organized into motor pools, which constitute clusters of motor neurons having 

similar molecular and morphological properties, which innervate a particular skeletal muscle 

(Dasen and Jessell, 2009). Therefore, an apparent correlation exists between the peripheral 

motor neuron targets and a hierarchical clustering of motor neurons in the spinal cord, 

characterized by the reproducible anatomical position of a given motor neuron group, as 

well its expression of a characteristic set of molecular markers (Arber, 2012; Dasen et al., 

2008; Dasen and Jessell, 2009; Demireva et al., 2011; Livet et al., 2002; Surmeli et al., 2011). 
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1.2. Spinal motor neuron ontogeny in vertebrates 

Embryonic development is characterized by a series of well-ordered events taking 

place with fine precision and which involve the accurate interaction of cells and molecules at 

a given spot and time in the embryo to allocate a particular cell fate (Davis-Dusenbery et al., 

2014). The sequence of events leading to the generation of motor neurons in the spinal cord 

has started to be unraveled in the past couple of decades through numerous embryological 

studies and genetic analyses involving predominantly model organisms (Allodi and Hedlund, 

2014; Briscoe and Ericson, 1999, 2001; Davis-Dusenbery et al., 2014; Jessell, 2000; Placzek 

and Briscoe, 2005). Prospective neural cells emerge initially at the neural plate level after 

neural induction (Jessell, 2000). Under the influence of extrinsic factors secreted by cells in 

the primitive streak of the gastrula and posterior paraxial mesoderm some future neural 

cells acquire a caudal character (Jessell, 2000). The mechanisms involved in the caudalization 

of these prospective neural cells are complex and comprise the concerted actions of 

fibroblast growth factors (FGFs), bone morphogenic proteins (BMPs), Wnts, retinoids and 

the so called caudalizing activity of the prospective paraxial mesoderm (Doniach, 1995; 

Jessell, 2000; Muhr et al., 1999). Indeed, the specification of neural cells of spinal cord 

identity seems to critically depend on the retinoids synthesized by the caudal paraxial 

mesoderm, which expresses specifically the enzyme retinaldehyde dehydrogenase-2 

(RALDH-2) (Allodi and Hedlund, 2014; Jessell, 2000; Muhr et al., 1999).  

The specification of motor neurons and all the other neuronal populations in the 

ventral neural tube is then determined by the graded expression of sonic hedgehog (SHH), 

which is released by the notochord and floor plate cells (Jessell, 2000; Roelink et al., 1995). 

Five distinctive domains of progenitor cells (p0, p1, p2, pMN, and p3) arise in the ventral 

aspect of the spinal cord due to a progressive ventral-high/dorsal-low SHH gradient (Briscoe 

and Ericson, 1999, 2001; Ericson et al., 1997; Jessell, 2000). From the p0-p3 progenitor 

domains four distinct classes of ventral interneurons are generated, whereas motor neurons 

arise from pMN neuronal progenitor cells which selectively express the oligodendrocyte 

transcription factor 2 (Olig2) (Briscoe and Ericson, 2001; Ligon et al., 2006; Marquardt and 

Pfaff, 2001; Mizuguchi et al., 2001; Novitch et al., 2001). The exact mechanisms underlying 

the emergence of these unique cellular domains in response to graded SHH signals are not 

yet fully understood, but several experiments in the last couple of decades suggest a model 

where all these five progenitor domains are generated after the balanced expression of a 
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defined set of homeodomain (HD) proteins (Briscoe and Ericson, 2001; Jessell, 2000). Class II 

(HD) homeobox proteins NK2 homeobox 2 (Nkx2.2) and NK6 homeobox 1 (Nkx6.1) are 

induced by SHH, whereas class I HD proteins paired box protein 7 (Pax7), developing brain 

homeobox protein 1 (Dbx1,) developing brain homeobox protein 2 (Dbx2), leucine-rich 

repeat extensin-like protein 3 (Lrx3) and paired box protein 6 (Pax6) are repressed (Briscoe 

and Ericson, 2001; Jessell, 2000). In addition, each unique domain arises from a complex 

array of cross-repressive interactions between HD proteins expressed in adjacent domains, 

preventing the development of progenitor domains with hybrid identities and defining sharp 

boundaries between the domains (Briscoe and Ericson, 2001; Jessell, 2000).  

The generation of motor neurons is restricted to the pMN progenitor domain due to 

the combined actions of the HD proteins Nkx6.1, Nkx2.2 and Lrx3 (Briscoe et al., 2000; 

Briscoe et al., 1999; McMahon, 2000; Sander et al., 2000). The activity of Nkx6.1, free from 

the opposing effects of Nkx2.2 and Lrx3, induces the expression of downstream factors 

which finally direct cells in this progenitor domain toward a motor neuron fate (Briscoe et 

al., 2000; Vallstedt et al., 2001). Among those factors, there is the homeodomain protein 

MNR2, whose expression is restricted to the pMN domain and which begins after the final 

cycle of division of the motor neuron progenitors starts (Briscoe and Ericson, 2001; Tanabe 

et al., 1998). This transcription factor, which positively regulates its own expression, induces 

downstream the production of the transcription factor set characteristically present in all 

recently born spinal motor neurons, namely homeobox gene HB9 (HB9), ISL1, ISL2 and LHX3 

(Arber et al., 1999; Dasen and Jessell, 2009; Ericson et al., 1992; Pfaff et al., 1996; Sharma et 

al., 1998; Tanabe et al., 1998). The period of motor neuron production is relatively brief in 

rodents, occurring between embryonic days 9 and 11 (Arber et al., 1999; Nornes and Carry, 

1978). Motor neurons are uninterruptedly produced from a short-lived pool of committed 

Olig2-positive progenitor cells, which are located ventrally in the spinal cord (Mukouyama et 

al., 2006).  

After initially establishing this motor neuron progenitor domain, the transcription 

factor Olig2 later promotes progenitor cell cycle exit and neuronal differentiation (Mizuguchi 

et al., 2001; Novitch et al., 2001; Zhou and Anderson, 2002). Following the critical period of 

motor neuron generation, the pool of motor neuron determining progenitors is exhausted or 

converted to oligodendroglial progenitors (Mukouyama et al., 2006). Apparently, there is an 

intrinsic loss of the potential to generate additional motor neurons beyond this exclusive 
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period, because Olig2 progenitor cells when isolated from late embryos and transplanted to 

the early neural tube were shown to produce only oligodendrocytes (Mukouyama et al., 

2006). Indeed, later in development Olig2 has been demonstrated to drive the formation of 

oligodendrocyte precursors and mature oligodendrocytes (Fu et al., 2002; Lu et al., 2002; 

Zhou and Anderson, 2002; Zhou et al., 2001). The mechanisms underlying these unique 

temporal effects of the same transcription factor Olig2 during embryonic development only 

recently started to be unraveled (Gaber and Novitch, 2011; Li et al., 2011; Rabadan et al., 

2012; Sun et al., 2011). Mounting evidence suggests that the activity of Olig2 during the 

development of the nervous system is regulated by distinct phosphorylation events (Gaber 

and Novitch, 2011; Yates, 2011). In the early embryo, Olig2 is phosphorylated at the residue 

serine-147, which leads to the formation of Olig2 homodimers that promote the expression 

of motor neuron-specific genes (Li et al., 2011). Later, there is dephosphorylation of serine-

147, facilitating the transition to an oligodendrogenic fate by allowing Olig2 to form 

heterodimers with basic helix-loop-helix (bHLH) proteins that induce the expression of 

oligodendrocyte progenitor-specific genes and suppress neurogenesis (Li et al., 2011). In 

humans, the period of motor neuron production is considerably longer, and spans 

approximately twenty days from embryonic days 31 to 51 (Altman and Bayer, 2001; Bayer 

and Altman, 2002). Less is known about the molecular mechanisms underlying human motor 

neuron generation during embryonic development and whether similarly to rodents the 

progenitors in human motor neuron lineage are also pre-determined to generate limited 

numbers of motor neurons. 

 

1.3. Newborn motor neurons rely on neurotrophic support for their survival  

During the embryonic development of the vertebrate nervous system, neurons and 

glial cells are initially produced in excess and then undergo a process of massive naturally-

occurring programmed cell death, which reduces cell numbers to nearly half of the number 

initially generated (Burek and Oppenheim, 1996; Buss et al., 2006; Henderson, 1996). 

Programmed cell death is particularly evident and well-documented in the embryonic spinal 

cord (Banker, 1982; Chu-Wang and Oppenheim, 1978; Hamburger, 1975; Henderson, 1996; 

Lance-Jones, 1982; O'Connor and Wyttenbach, 1974). For example, in the chick nearly 

20,000 motor neurons are present in the spinal cord by embryonic day 5, but almost 8000 

cells undergo programmed death by the end of the embryonic period (Hamburger, 1975; 
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Sendtner et al., 1996). Both pro-survival factors and pro-cell death pathways seem to be 

regulated in a finely orchestrated manner such that the magnitude of cell death is 

reproducible, not only in the spinal cord, but also across different neuronal populations 

(Burek and Oppenheim, 1996; Buss et al., 2006). Thus, programmed cell death might have 

evolved as a neuronal plasticity mechanism to exactly match the number of neurons and 

their targets (McLennan, 1982). Even though this suggests that a pre-defined genetic 

program is at the core of the naturally occurring cell death during spinal cord development, 

several classical experiments unequivocally demonstrated that spinal motor neurons that 

innervate the skeletal muscle critically depend on the presence of a target to correctly 

survive (Hamburger, 1958; Hollyday and Hamburger, 1976). Those pioneer experiments 

demonstrated that during the period of programmed motor neuron death, removal of target 

territories leads to enhanced demise of motor neurons, whereas the presence of an extra 

limb increases the pool of surviving motor neurons (Hamburger, 1958; Hollyday and 

Hamburger, 1976). Altogether, these data showed that target tissues are vital for the 

survival of motor neurons and implied that molecules derived from the target tissues act on 

motor neurons and render them resistant to cell death (Gould and Enomoto, 2009; Gould 

and Oppenheim, 2011). In support of this view, ensuing studies reported that extracts of 

purified muscle could significantly attenuate motor neuron cell death in vitro and in vivo, 

lending further support to the view that skeletal muscle mediated those effects on motor 

neuron survival (Calof and Reichardt, 1984; Dohrmann et al., 1986; Oppenheim et al., 1988). 

This landmark neurotrophic hypothesis was coined by Purves (Purves, 1988) and became the 

driving force for the subsequent quest initiated in the early 1990´s to find candidate motor 

neuron trophic factors (Gould and Enomoto, 2009). These are proteins capable of keeping 

motor neurons alive and were envisioned since the early days as tremendous therapeutic 

hopes for motor neuron degenerative disorders, which are characterized by motor neuron 

loss (Appel and Smith, 1993; Ekestern, 2004; Henderson, 1995; Henderson et al., 1993a; 

Henriques et al., 2010; Sendtner, 1996).  

The initial discoveries relied on the reductionist method of adding a candidate 

neurotrophic factor to the medium of cultured motor neurons undergoing programmed cell 

death, or removing it from motor neurons maintained by muscle extract, counting surviving 

neurons over time to evaluate its effects on motor neuron survival (Bar, 2000; Gould and 

Oppenheim, 2011; Henderson et al., 1998; Sendtner et al., 2000). These in vitro motor 
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neuron survival assays using purified embryonic motor neurons from both chick and rodent 

spinal cord played a major role in the identification of several prospective neurotrophic 

factors (Bar, 2000; Henderson et al., 1998; Sendtner et al., 2000). From the early days of 

brain-derived neurotrophic factor (BDNF) (Henderson et al., 1993b; Koliatsos et al., 1993; 

Oppenheim et al., 1992; Sendtner et al., 1992; Yan et al., 1992), neurotrophin-3 (NT-3) 

(Henderson et al., 1993b; Li et al., 1994; Yan et al., 1993), neurotrophin-4/5 (NT-4/5) 

(Friedman et al., 1995; Hughes et al., 1993; Koliatsos et al., 1994; Li et al., 1994; Schmalbruch 

and Rosenthal, 1995), ciliary neurotrophic factor (CNTF) (Arakawa et al., 1990; Oppenheim 

et al., 1991; Sendtner et al., 1991; Sendtner et al., 1990), insulin-like growth factor 1 (IGF-1) 

(Ang et al., 1992; Lewis et al., 1993; Li et al., 1994; Neff et al., 1993) or glial-derived 

neurotrophic factor (GDNF) (Henderson et al., 1994; Li et al., 1995; Oppenheim et al., 1995; 

Yan et al., 1995; Zurn et al., 1994) identification up to the most recently discovered 

progranulin (Van Damme et al., 2008) and growth differentiation factor 15 (GDF-15) (Strelau 

et al., 2009), more than 20 proteins have been proposed as motor neuron trophic factors 

(Gould and Oppenheim, 2011; Kanning et al., 2010).  

Most of these discoveries required the isolation of motor neurons from the complex 

environment of the spinal cord, an approach which allowed for the identification of factors 

that act directly on motor neurons, significantly facilitated direct quantification of motor 

neuron survival, and opened the door to a myriad of biochemical studies. These invaluable 

experiments would not have been possible if other cell types were present in the cultures; 

indeed without motor neuron purification, the field had previously struggled for many years 

to identify the neurotrophic factors. Although this might be considered a simplistic strategy, 

conclusions about both survival factors and cell death mechanisms were subsequently 

validated in vivo, demonstrating that the advantages of motor neuron purification prevail 

over concerns about the artificial nature of the assay. Interestingly, knockout mice for many 

of these factors or their receptors were demonstrated to have decreased total numbers of 

spinal motor neurons at the end of embryogenesis (Gould and Enomoto, 2009; Kanning et 

al., 2010). Yet, none of the knockout strains exhibited total motor neuron loss (Gould and 

Enomoto, 2009; Kanning et al., 2010). One possible explanation for this finding is that 

different motor neuron subtypes respond to a distinct neurotrophic factor or combination of 

neurotrophic factors, reflecting the heterogeneity of transcriptional identity, target 

innervation and physiological function discussed above (Henderson et al., 1998; Kanning et 
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al., 2010). However, for most neurotrophic factors the specific subtype of motor neurons on 

which they act on and specifically promote survival has not been identified (Kanning et al., 

2010). One exception is GDNF, whose secretion by the muscle spindle has been 

demonstrated to be critical for the postnatal survival of gamma (γ) motor neurons (Shneider 

et al., 2009). GDNF was shown to be capable to regulate pool-specific, cell migration, axonal 

growth and synaptic connectivity by inducing PEA3-dependent transcriptional programs 

(Haase et al., 2002). Interestingly, the absence of GDNF in embryonic mice was shown to 

alter the location of developing spinal motor neurons which innervate the limbs (Haase et 

al., 2002; Kramer et al., 2006). Motor neurons in the postnatal period still depend on the 

surrounding cell types for neurotrophic support and recent work has shown that ablation of 

muscle cells leads to increases in spinal motor neuron death (Grieshammer et al., 1998; 

Holtmann et al., 2005; Kablar and Rudnicki, 1999; Phelan and Hollyday, 1991; Strelau et al., 

2009). This suggests that neurotrophic factors from skeletal muscle continue to prevent the 

death of motor neurons normally expected to persist after the embryonic period (Gould and 

Oppenheim, 2011). 

In humans, the survival requirements of motor neurons remain largely unexplored 

and the mechanisms responsible for motor neuron cell death remain to be systematically 

dissected, especially because human motor neurons are hard to obtain from patients and to 

grow appropriately in vitro (Nizzardo et al., 2010; Silani et al., 1998). This limitation can 

possibly be circumvented through the use of hPSCs to create human motor neurons. Those 

nervous cells created from hPSCs have been exposed to cocktails of neurotrophic factors to 

extend their survival in vitro, based on the knowledge gathered from the previous chick and 

rodent-based research. However, studies addressing the response of human motor neurons 

to individual neurotrophic factors have not been pursued. Thus, robust survival assays 

similar to the ones developed for chick and rodents using purified populations of motor 

neurons would help to gather important knowledge on human motor neuron survival needs 

and death-inducing mechanisms. Yet, assays with such characteristics have not been 

developed; standard protocols for hPSC differentiation generate mixed populations of spinal 

neurons of which motor neurons constitute a minority; and to date survival of purified 

human motor neurons has necessitated generally co-culture with other cell types. Therefore, 

there is a need to develop a robust survival assay using purified human motor neurons.  
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1.4. Neurodegenerative motor neuron disorders  

The motor neuron disorders are a group of neurodegenerative conditions that 

selectively affect motor neurons, leading progressively to motor impairment and ultimately 

death (McDermott and Shaw, 2008; Talbot and Marsden, 2008; Talbot and Oxford University 

Press., 2010; Worms, 2001). Collectively, they can be divided into three categories: those 

with combined upper motor neuron and lower motor neuron involvement [e.g. amyotrophic 

lateral sclerosis (ALS)]; those with exclusive upper motor neuron degeneration [e.g. primary 

lateral sclerosis (PLS)] or those with specific lower motor neuron involvement [e.g. spinal 

muscular atrophy (SMA)] (McDermott and Shaw, 2008; Nizzardo et al., 2010; Talbot and 

Marsden, 2008).  

The most common motor neuron degenerative disorder is ALS, also known as Lou 

Gehrig’s disease, which was described in the scientific literature for the first time in 1869 by 

the French neurologist and anatomical pathologist Jean-Marie Charcot (Kiernan et al., 2011; 

Rowland, 2001). Amyotrophic lateral sclerosis is an invariably fatal disease characterized by 

progressive degeneration and death of motor neurons in the motor cortex, brainstem and 

anterior horn of the spinal cord (Kiernan et al., 2011; Leblond et al., 2014; Rowland and 

Shneider, 2001). Clinically, ALS normally presents as a progressive muscular weakness 

leading to paralysis and death (Kiernan et al., 2011; Wijesekera and Leigh, 2009). Generally, 

there is a delay of 1 to 2 years between the initial symptoms and the diagnosis of ALS, which 

is essentially clinical due to the lack of a specific diagnostic test (Ludolph, 2011; Rowland and 

Shneider, 2001). The time course of the disease can be markedly heterogeneous, however 

the prognosis is poor for all patients, most of whom die within 3 to 5 years after the initial 

diagnosis (Rowland and Shneider, 2001; Wijesekera and Leigh, 2009). The median survival 

after symptom onset for ALS patients is 27.5 months and the 4-year survival rate is around 

40% (Hardiman et al., 2011; Su et al., 2014). Approximately 20% of patients survive longer 

than 5 years (Cooper-Knock et al., 2014). Nearly 10% of the patients are able to survive for 

more than 8 years (Hardiman et al., 2011; Kiernan et al., 2011).  

The ALS phenotype is highly heterogeneous and the survival of patients is 

influenced by many factors, including the clinical phenotype, rate of disease progression, 

nutritional status and the specialized management of respiratory failure (Jenkins et al., 2014; 

Vucic et al., 2014). ALS affects women and men equally and the risk of the disease increases 

with age, with the average age of onset being 61.8 years (Chio et al., 2013; Orrell, 2007; 
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Rowland and Shneider, 2001). The incidence of this neurodegenerative disease is 

approximately 2 per 100,000 persons per year and the prevalence is approximately 6 per 

100,000 persons (Chio et al., 2013; Dunckley et al., 2007; Orrell, 2007; Worms, 2001). The 

lifetime risk of developing the disease is 1:400 (Hardiman et al., 2011).  

Typically, the disease process starts in one area and spreads in an anatomically 

contiguous manner throughout the motor system (Kanouchi et al., 2012; Ravits, 2014; Ravits 

and La Spada, 2009). Generally, this involves insidious progression of weakness starting in 

one limb or the bulbar muscles (Kanouchi et al., 2012; Ravits et al., 2007; Ravits and La 

Spada, 2009). In extremely rare cases, the disease starts simultaneously in multiple areas or 

in the respiratory muscles (Kanouchi et al., 2012; Ravits, 2014; Ravits and La Spada, 2009). 

Extensive research has shown that different motor neuron groups show a differential 

vulnerability to neurodegeneration in ALS (Kanning et al., 2010; Ravits et al., 2013; Saxena 

and Caroni, 2011). In fact, the large α motor neurons are the first to degenerate and fast-

twitch motor units are preferentially affected in both ALS patients and mouse models 

(Gordon et al., 2010; Hegedus et al., 2007; Kanning et al., 2010; Pun et al., 2006). It is 

possible that the selective vulnerability of large motor neurons is linked to unmet higher 

energetic demands or the presence of enhanced oxidative stress (Schmitt et al., 2014). 

Interestingly, the motor neurons in the oculomotor nerves and those constituting the Onuf’s 

nucleus are resistant to degeneration in ALS (Gizzi et al., 1992; Mannen et al., 1977, 1982; 

Schroder and Reske-Nielsen, 1984).  

Another major hurdle in the field is the current lack of a definitive diagnostic test 

for ALS and, therefore, the diagnosis is mainly based on the presence of suggestive clinical 

signs coupled with negative laboratory tests and imaging studies for other differential 

diagnosis (Baumer et al., 2014; Vucic et al., 2014). To help in the diagnostic process and also 

to more accurately classify patients for research studies and clinical drug trials, increasing 

efforts have been undertaken in the last decades to unify patient symptoms and signs into a 

clinically well-defined entity (Wijesekera and Leigh, 2009). To this end, the Research Group 

on Motor Neuron Diseases from the World Federation of Neurology (WFN) developed the 

1994 El Escorial diagnostic criteria and recently the Arlie House criteria (Brooks, 1994; 

Brooks et al., 2000; Hardiman et al., 2011).  

The sporadic forms of the disease (sALS) are predominant, with only 5 to 10% of the 

cases having a familial genetic cause underlying (McDermott and Shaw, 2008; Rowland and 
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Shneider, 2001). These rare cases are called familial forms of ALS (fALS), resulting from 

highly penetrant monogenic mutations (Dunckley et al., 2007). Nonetheless, the clinical 

courses of fALS and sALS are virtually indistinguishable (Rowland and Shneider, 2001). 

Interestingly, in some cases thought to be sporadic one can also identify mutations in some 

of the genes known to be linked to the familial forms of the disease (Finsterer and 

Burgunder, 2014; Renton et al., 2014). The striking advances in genetics research over the 

past 20 years allowed the identification of mutations in more than 10 genes which seem to 

contribute to fALS onset, namely genes encoding the proteins superoxide dismutase 1 (SOD-

1) (Rosen et al., 1993), alsin (ALS2) (Hadano et al., 2001), dynactin (DCTN1) (Puls et al., 

2003), fused in sarcoma (FUS) (Kwiatkowski et al., 2009; Vance et al., 2009), optineurin 

(OPTN) (Maruyama et al., 2010), senataxin (SETX) (Chen et al., 2004), TAR DNA binding 

protein (TDP-43) (Sreedharan et al., 2008), ubiquilin 2 (UBQLN2) (Deng et al., 2011), vesicle-

associated membrane protein B (VAPB) (Nishimura et al., 2004), profilin (PFN1) (Wu et al., 

2012), valosin-containing protein (VCP) (Johnson et al., 2010), sequestosome 1 (SQSTM1) 

(Rubino et al., 2012; Teyssou et al., 2013) and Chromosome 9 open reading frame 72 

(C9ORF72) (DeJesus-Hernandez et al., 2011; Renton et al., 2011), among others (Andersen 

and Al-Chalabi, 2011; Leblond et al., 2014; Renton et al., 2014; Siddique and Ajroud-Driss, 

2011).  

In terms of fALS cases, nearly 12% show missense mutations in the Cu/Zn 

superoxide dismutase 1 (SOD1) gene on chromosome 21 (Renton et al., 2014; Wijesekera 

and Leigh, 2009). This was the first discovered pathogenic mutation associated with fALS 

(Rosen et al., 1993) and is the second most frequently identified cause of fALS (Renton et al., 

2014). Genetic research over the past 20 years has allowed the identification of more than 

170 mutations in the SOD1 gene, which are associated with diverse clinical phenotypes and 

courses (Su et al., 2014). For example, the D90A (aspartic acid to alanine substitution in 

codon 90) SOD1 mutation is recessive and patients homozygous for this SOD1 variant are 

mildly affected, with patient survival usually greater than 10 years (Andersen et al., 1996). In 

contrast, the A4V (alanine at codon 4 changed to valine) SOD1 dominant mutation causes a 

rapidly progressive form of ALS, with average survival of 1.4 years after symptoms onset 

(Juneja et al., 1997; Su et al., 2014). The discovery of SOD1 mutations in ALS led to the 

creation of the first animal and in vitro ALS disease models from which much of the current 



15 
 

knowledge on the disease has been gathered (McGoldrick et al., 2013; Turner and Talbot, 

2008). 

In 2011, a novel major breakthrough was reported in the field of ALS, with the 

identification of an expanded GGGGCC hexanucleotide repeat in C9ORF72, a newly identified 

predisposing factor to the sporadic forms of both ALS and frontotemporal lobar dementia 

(FTLD) (DeJesus-Hernandez et al., 2011; Renton et al., 2011). The C9ORF72 gene is located 

on the short (p) arm of chromosome 9 open reading frame 72 and no known functions have 

been ascribed to the C9ORF72 protein yet (Cooper-Knock et al., 2014). The dominantly 

inherited hexanucleotide repeat expansion intronic to C9ORF72 appears to be the most 

common cause of fALS, frontotemporal lobar dementia (FTLD) and ALS–FTLD (Cooper-Knock 

et al., 2014; Majounie et al., 2012; Vucic et al., 2014). In fact, these hexanucleotide 

expansions are associated with nearly 40% of fALS cases and almost 20% of sporadic ALS 

cases (Vucic et al., 2014). The understanding of ALS pathogenesis increased significantly with 

the discovery of C9ORF72 hexanucleotide expansions, given that these expansions are linked 

not only to ALS, but also to FTLD; which suggests that ALS is a neurodegenerative disorder 

affecting multiple systems rather than the classical view of a pure neuromuscular disorder 

(Cooper-Knock et al., 2014; Turner et al., 2013). A recently proposed neuropathological 

hallmark of C9ORF72-associated ALS and FTLD is the accumulation in hippocampal and 

cerebellar neurons of TDP-43 (TAR DNA-binding protein 43, TARDBP) together with p62-

positive TDP-43-negative inclusions (Al-Sarraj et al., 2011; Mann et al., 2013; Mori et al., 

2013), hinting at the existence of a common pathophysiological pathway (Yokoyama et al., 

2014). Interestingly, ALS and FTLD can now be proposed to join the exclusive club of 

expansion repeat disorders, a group of >22 inherited neurodegenerative diseases 

characterized by genomic expanded nucleotide repeat sequences (Ravits et al., 2013). The 

detailed mechanisms by which the C9ORF72 gene expansion leads to neurodegeneration in 

ALS remain elusive (Gendron et al., 2014), but current knowledge proposes a gain-of-

function related to RNA toxicity as the most likely pathogenic mechanism; instead of loss-of-

function of the associated protein (Cooper-Knock et al., 2014; Donnelly et al., 2013; Su et al., 

2014). 

The identification of ALS-linked mutations has permitted the generation of several 

animal and in vitro cellular models that have helped analyse the pathophysiological 

mechanisms contributing to ALS (Turner and Talbot, 2008). Nevertheless, an unifying model 
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of the molecular mechanisms accounting for motor neuron degeneration is still lacking 

(Ferraiuolo et al., 2011; Ravits et al., 2013; Turner et al., 2013). More importantly, no major 

therapeutic advances have been achieved in the last decades, meaning that ALS is still 

incurable (Aggarwal and Cudkowicz, 2008; Zinman and Cudkowicz, 2011). In fact, besides 

respiratory care and adequate nutritional support (Andersen et al., 2007; Diagnosis et al., 

2012; Goyal and Mozaffar, 2014; Jenkins et al., 2014), riluzole is still the only medication 

approved by the Food and Drug Administration (FDA) and the European Medicines Agency 

(EMA) showing some benefits in survival and quality of life for people with ALS (Miller et al., 

2007; Miller et al., 2012). However, recent reports show that riluzole may only slow disease 

progression and delay death by approximately 2 to 3 months (Miller et al., 2007; Miller et al., 

2012). Therefore, the development of new disease-modifying therapeutic strategies for both 

fALS and sALS is paramount and certainly one of the most difficult challenges in the field. 

 

1.5. Drug discovery using animal models of motor neuron disease has failed 

to translate into clinically applicable therapeutic strategies 

Valid and reproducible disease models to unravel pathogenic mechanisms and 

evaluate the utility of new therapies are fundamental to the development of novel 

pharmacological agents to halt the progression or cure motor neuron diseases. The 

identification of several disease-linked mutations in ALS has enabled the generation of a 

myriad of in vitro and in vivo models, not only to study disease mechanisms, but also to test 

promising new therapies that might show benefits when treating humans (Lanka and 

Cudkowicz, 2008; Su et al., 2014; Turner and Talbot, 2008). Among these, mouse models 

overexpressing mutant forms of the human SOD1 protein have been the most widely 

studied animal models of ALS (Jackson et al., 2002; Pasinelli and Brown, 2006; Turner and 

Talbot, 2008; Van Den Bosch, 2011). Much knowledge has been gained from studying these 

mutant mice and they have also served as the best available benchmark preclinical platforms 

to test numerous promising drug candidates, including antiepileptic agents, antibiotics, anti-

oxidants, anti-inflammatory drugs, anti-apoptotic small molecules, neurotrophic factors, 

protease inhibitors and genetic approaches (Lanka and Cudkowicz, 2008; Turner and Talbot, 

2008; Vincent et al., 2008). Invariably, over the past decades, promising studies using those 

animal models have failed to demonstrate solid benefits in human clinical trials (Berry and 



17 
 

Cudkowicz, 2011; Ludolph and Sperfeld, 2005; Su et al., 2014; Turner and Talbot, 2008). 

There are several possible explanations for this apparent mismatch between promising 

animal data and the lack of effective translatable human therapies for motor neuron disease 

(Benatar, 2007; Lanka and Cudkowicz, 2008; Turner and Talbot, 2008; Vincent et al., 2008). 

For example, taking the transgenic mutant SOD1 mouse models, it remains to be determined 

whether those mouse models can truthfully mimic both fALS and sALS or whether they can 

only model fALS, especially when the great majority of those models are created through 

expression of abnormally high copy numbers of the mutated gene (Benatar, 2007; Turner 

and Talbot, 2008; van der Worp et al., 2010). Another important concern is that in most of 

the animal trials the treatments begin to be implemented before the clinical onset of the 

disease, a strategy which is impossible to follow in human clinical trials because relevant 

biological markers to identify patients at high risk of developing motor neuron disease have 

not been developed (Aggarwal and Cudkowicz, 2008; Benatar, 2007; Berry and Cudkowicz, 

2011; Otto et al., 2012). Also to consider are questions regarding the numerous 

pharmacokinetic differences between mice and human, which makes it difficult to directly 

extrapolate to humans the dosage and pharmacokinetics of the mouse context (Benatar, 

2007; Lanka and Cudkowicz, 2008). There is also a frequent mismatch in terms of outcome 

measures among animal and human studies (Benatar, 2007). Furthermore, a recent 

systematic analysis of nearly 100 published animal studies pointed out that the great 

majority of studies published until today besides being of questionable methodological 

quality, did not involve randomization and blindness to treatment, which are standard 

obligatory conditions for a well-conducted human clinical trial (Benatar, 2007; Vincent et al., 

2008). In addition, errors in the design of clinical trials have also contributed to the current 

lack of success (Benatar, 2007; Berry and Cudkowicz, 2011).  

A common mistake observed in phase III clinical trials is the presence of improper 

information on drug dosage and its biological activity in humans (Benatar, 2007; Cudkowicz 

et al., 2010). In fact, this is a major hurdle if one anticipates that using high doses of a given 

drug can lead to an enhanced rate of side effects and poor tolerability with consequent 

increase in the number of patients abandoning the studies (Lanka and Cudkowicz, 2008). On 

the other hand, dosages that are too low may fail to reach biological activity and lead to 

misleading conclusions about a promising therapy (Lanka and Cudkowicz, 2008). Another 

major problem faced by researchers when conducting clinical trials are the difficulties to 
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estimate the number of patients required to demonstrate a statistically significant effect in 

the trial, given that ALS evolves differently from patient to patient; and control the 

confounding effects of prescription and non-prescription drugs taken by these patients when 

undergoing a clinical trial (Berry and Cudkowicz, 2011; Cudkowicz et al., 2010; Lanka and 

Cudkowicz, 2008). The ability to generate relevant human neuronal cell types from stem 

cells might open unprecedented paths towards meaningful drug discovery to treat motor 

neurodegenerative disorders like ALS and SMA. It is therefore important to create robust 

protocols and strategies to generate, grow and study those stem cell-derived human 

neuronal cells in vitro. By studying human cells and performing meaningful drugs tests 

directly on human cell types one could shorten the time of translation of interesting basic 

research findings towards clinical applicable strategies (Ebert and Svendsen, 2010a; Engle 

and Puppala, 2013; Engle and Vincent, 2014). 

 

1.6. Specification of spinal motor neurons from embryonic stem cells  

Embryonic stem cells (ESCs) are a unique group of cells isolated from the inner cell 

mass (ICM) of developing blastocysts which exhibit distinctive properties of self-renewal 

(capacity to generate more stem cells) and pluripotency [the ability to differentiate intro all 

three embryonic germ layers (endoderm, ectoderm and mesoderm)] (Evans, 2005, 2011; Yu 

and Thomson, 2008; Zwaka and Thomson, 2005). These particular stem cells can give rise 

virtually to any cell type in the body, and have been viewed as an exciting new tool to 

unravel the mechanisms of developmental biology, and for drug discovery, disease 

modelling and possibly cell replacement therapies (Evans, 2011; Evans and Kaufman, 1981; 

Gokhale and Andrews, 2009; Lerou and Daley, 2005; Martin, 1981). In 1981, the first ESCs 

were derived from mouse embryos independently by two research teams, first at the 

University of Cambridge (Evans and Kaufman, 1981) and six months later at the University of 

California, San Francisco (Martin, 1981). Initial successful attempts to isolate and culture in 

vitro human embryonic stem cells (hESCs) were reported in 1994 by Ariff Bongso and 

collaborators at the National University Kent Ridge in Singapore (Bongso et al., 1994). Those 

researchers employed human fallopian tube cells as a medium to grow hESCs and were able 

to maintain their pluripotent state for only two passages (Bongso et al., 1994). In 1998, 

James Thomson and collaborators at the University of Wisconsin made a major 
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breakthrough in the field of stem cell biology, by reporting a novel robust strategy to isolate 

and culture human embryonic stem cells (hESCs) involving the usage of a mitotically inactive 

mouse embryonic fibroblast feeder layer to guarantee continuous undifferentiated 

proliferation (Thomson et al., 1998). To generate the hESC lines the inner cell mass was 

isolated from the blastocyst (Thomson et al., 1998). This procedure leads almost inevitably 

to the destruction of a fertilized human embryo, which has caused considerable ethical 

discussions (de Wert and Mummery, 2003; Engels, 2002; Gavrilov et al., 2009; Landry and 

Zucker, 2004; Taylor, 2011; Walters, 2004). Mouse ESCs and hESCs derive from different 

embryonic stages, but are considered fundamentally equivalent in their inexhaustible 

capacity to give rise to any cell type of the embryonic germ layers (endoderm, ectoderm and 

mesoderm). Interesting differences can be rapidly exposed when their characteristics are 

assessed more thoroughly, namely different colony morphologies, growth factor 

requirements for self-renewal and pluripotency maintenance, expression of surface markers, 

epigenetic profile and resistance to apoptosis upon single cell dissociation (Ginis et al., 2004; 

Gokhale and Andrews, 2009; Ohgushi and Sasai, 2011; Sato et al., 2003; Schnerch et al., 

2010). While mESCs form clumps which are rounded and tight, the hESC colonies are flatter 

and looser and grow more slowly, with a population doubling time of nearly 36h (Friel et al., 

2005). In terms of self-renewal, mESCs benefit from supplementation with leukemia 

inhibitory factor (LIF) to sustain undifferentiated growth, while hESCs do not respond to LIF 

and commonly need a feeder cell layer and supplementation with basic fibroblast growth 

factor (bFGF) to grow undifferentiated (Bongso and Richards, 2004; Reubinoff et al., 2000; 

Thomson et al., 1998). In terms of markers of pluripotency, both mESCs and hESCs share the 

expression of some common markers, namely octamer-binding transcription factor 4 (OCT4), 

NANOG and alkaline phosphatase; but differ in the expression of stage-specific embryonic 

antigens (SSEA), which are surface antigens used in the early days to characterize murine 

embryonic development (Draper et al., 2002; Henderson et al., 2002). For example, mESCs 

express SSEA-1 in the undifferentiated state and SSEA-3 and SSEA-4 as they differentiate, 

which is essentially the reverse of what has been characterized in hESCs (Draper et al., 2002; 

Friel et al., 2005; Henderson et al., 2002). Interestingly, recent studies have suggested that 

hESCs are more similar to the pluripotent epiblast stem cells (EpiSCs), obtained from later 

embryonic stage post-implantation epiblasts; than mESCs, which are obtained from pre-

implantation blastocysts (Brons et al., 2007; Tesar et al., 2007). In fact, hESCs are also 
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obtained from early stage culture blastocysts, but it is conceivable that human blastocyst 

cells may proceed until the epiblast status from which EpiSCs are obtained (Nichols and 

Smith, 2009; Tesar et al., 2007). If the ultimate aim is to develop clinically translatable 

therapies, these differences between mESCs and hESCs highlight the importance of pursuing 

relevant studies using hESCs. Even though there are common mechanisms, the fundamental 

detailed downstream signalling pathways may differ significantly (Rao, 2004). 

A decade ago, for the first time Hynek Wichterle and collaborators at Columbia 

University demonstrated that embryonic stem cells could be robustly directed towards a 

specific cell fate by applying previously well-described developmental mechanisms 

(Wichterle et al., 2002). These authors demonstrated that spinal motor neurons could be 

specified from mESCs using known spinal cord developmental cues retinoic acid (RA) and 

SHH (Wichterle et al., 2002), considerably increasing the yield over earlier methods that 

relied on RA alone (Renoncourt et al., 1998). In brief, after an initial period of expansion in 

pluripotency and self-renewal-maintaining culturing conditions mESCs were allowed to 

differentiate by growing as free-floating aggregates termed embryoid bodies (EBs) 

(Wichterle et al., 2002). Both RA and SHH were applied in vitro in a logical and defined 

temporal window to match the regular in vivo mouse motor neurogenic period (Wichterle et 

al., 2002). The retinoic acid was initially used to commit neuroectodermal cells towards a 

spinal cord identity (Wichterle et al., 2002). Then, SHH was used to drive the previously 

caudalized prospective progenitor cells towards a motor neuron lineage (Wichterle et al., 

2002). After 7 days in culture, a population of neuronal cells positive for HB9, ISL and choline 

acetyltransferase (ChAT) was obtained (Wichterle et al., 2002). These mouse embryonic 

stem cell-derived motor neurons (mESC-MNs) shared many of the well-known molecular 

characteristics of spinal motor neurons and once transplanted to chick embryonic neural 

tube they were able to both incorporate in the ventral horn of the spinal cord and to project 

axons to muscle targets (Wichterle et al., 2002). Subsequent studies demonstrated that 

these mESC-MNs generated in vitro could recapitulate functional properties of embryonic 

motor neurons in vivo (Miles et al., 2004). In addition, the mESC-MNs were shown to express 

properly functioning receptors for excitatory and inhibitory neurotransmitters, they 

developed adequate electrophysiological properties to produce characteristic firing patterns 

and were also capable of establishing functional cholinergic synapses with C2C12 myotubes 

in culture (Miles et al., 2004).  
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All this work inspired the development of protocols to direct the differentiation of 

motor neurons from hESCs with the first successful attempts being reported in 2005 (Li et 

al., 2005; Singh Roy et al., 2005). Similarly to mESCs, the developmental cues RA and SHH 

were used to drive motor neuron specification, but the time required to generate human 

embryonic stem cell-derived motor neurons (hES-MNs) increased up to nearly 5 weeks (Li et 

al., 2005; Singh Roy et al., 2005). After this extended period of culture mixed populations of 

progenitor cells and cells expressing putative motor neuron markers HB9, ISL and ChAT was 

obtained (Li et al., 2005; Singh Roy et al., 2005). In line with the knowledge gathered from 

the mESC-MNs, the human embryonic stem cell-derived motor neurons (hESC-MNs) were 

shown to be electrophysiologically active and to develop functional synapses with muscle 

cells in vitro (Li et al., 2005; Singh Roy et al., 2005). Since these pioneer publications, several 

attempts to improve these protocols have been made, including more efficient strategies to 

induce neuralization in hESCs and chemical substitutes of the expensive growth factor SHH 

(Boulting et al., 2011; Chambers et al., 2009; Karumbayaram et al., 2009; Patani et al., 2011). 

Nevertheless, it is still not possible to consistently generate populations of neuronal cells 

from hESCs containing more than 40% spinal cord motor neurons. Remarkably, reliable 

retinoid-free strategies to induce motor neuron generation from hESCs have also been 

reported (Patani et al., 2011). Human motor neurons specified this way seem to assume a 

caudal, medial motor column identity (Patani et al., 2011), contrary to the cells generated 

using the previously described classical protocol, which generates motor neurons biased to a 

cervical-brachial phenotype (Patani et al., 2011).  

The mechanisms underlying the specification of different subtypes of human motor 

neurons have only recently started being unraveled and much remains to be understood 

before we can robustly generate in vitro all the different subtypes of motor neurons present 

in the human spinal cord. Despite all these exciting methodological advances, large scale 

studies involving human spinal motor neurons are not yet practical to pursue, since major 

technical obstacles remain, including the suboptimal motor neuron yields from the existent 

differentiation protocols. In addition, the detailed mechanisms which underlie human motor 

neuron specification during embryonic development remain to be unraveled. Besides, it 

remains to be established if similarly to rodents (Mukouyama et al., 2006), the progenitors in 

human motor neuron lineage are also pre-determined to generate a limited number of 

motor neurons. It is also plausible that small molecules that enhance the proliferation of 
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progenitors in the motor neuron lineage might be used to increase the yield of human motor 

neurons generated from human pluripotent stem cells. 

 

1.7. Human induced pluripotent stem cells have allowed the generation of 

patient-specific spinal motor neurons  

The generation of individual-specific pluripotent stem cells has always been a major 

long-term goal of the stem cell scientific community due to the far-reaching therapeutic and 

regenerative possibilities of cells with such characteristics. First, personalized stem cells 

would lead to the creation of cells and tissues immunologically matched to the donor, 

decreasing theoretically the chances of rejection if regenerative strategies were attempted. 

Second, the ability to study any cell type with the genetic background of the donor opens 

the prospects of patient-specific in vitro studies of disease mechanisms and possibly patient-

directed drug therapies, a more realistic goal for personalized medicine. One initial strategy 

researchers envisioned to create personalized pluripotent stem cells was somatic cell 

nuclear transfer (SCNT), the methodology employed by Ian Wilmut and colleagues to clone 

Dolly the sheep from adult mammary cells (Campbell et al., 1996; Schnieke et al., 1997). 

SCNT is a conceptually simple and experimentally demanding technique through which the 

nucleus of a somatic cell is inserted into a recipient oocyte from which the original genetic 

material has been removed (Niemann and Lucas-Hahn, 2012; Pan et al., 2012). The fused 

donor nucleus-recipient oocyte is then induced to start the normal process of embryonic 

development, which is entirely supported by factors existent in the recipient oocyte 

(Niemann and Lucas-Hahn, 2012; Pan et al., 2012). However, not only has SCNT been 

technically difficult to accomplish in humans, but also the widespread ethical concerns 

regarding human cloning have considerably reduced the efforts towards human SCNT over 

the years (Clausen, 2010; Hyun, 2011; Skene et al., 2009; Wilmut, 1998). The first successful 

attempts to robustly use SCNT to generate personalized pluripotent stem cells have been 

reported in the last three years (Chung et al., 2014; Noggle et al., 2011; Tachibana et al., 

2013; Yamada et al., 2014). These pioneer studies demonstrated that human therapeutic 

cloning to create personalized pluripotent stem cells is now possible, not only using donor 

nucleus from healthy donors, but also using cells from patients, as shown with the 

generation of embryonic stem cells derived by nuclear transfer (NT-ESCs) from a Type I 
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diabetic patient (Yamada et al., 2014). Therefore, these new SCNT methods open novel 

promising avenues for the use of patient-specific stem cells to study disease and to develop 

personalized therapies. 

While many researchers were dealing with the technical and ethical obstacles to 

working with hESCs and SCNT, others were actively trying to understand the mechanisms 

underlying self-renewal and maintenance of pluripotency in embryonic stem cells (Chen and 

Daley, 2008; Noggle et al., 2005; Palmqvist et al., 2005; Suzuki et al., 2006; Wang et al., 

2006). The advances achieved in this field led to the breakthrough successful derivation of 

induced pluripotent stem cells (iPSC) from adult mouse fibroblasts by Yamanaka’s group 

from Kyoto University, in 2006 (Takahashi and Yamanaka, 2006). After a screen to test 24 

genes that were linked to pluripotency, this group of researchers demonstrated that the 

combined overexpression of only four of the 24 factors tested [octamer 3/4 (Oct3/4), sex 

determining region Y-box 2 (Sox2), kruppel-like factor 4 (Klf4) and cellular myelocytomatosis 

oncogene (c-Myc)] could revert an adult fibroblast into a stem-cell like state (Takahashi and 

Yamanaka, 2006). These induced pluripotent stem cells (iPSC) not only invalidated one of the 

central dogmas of cell biology, but also paved the way for the development of 

straightforward methods to generate the long-aimed-for personalized patient-specific stem 

cells (Takahashi and Yamanaka, 2006). This approach was rapidly transferred to human 

fibroblasts leading to the historic generation of human induced pluripotent stem cells 

(hiPSCs) in 2007 by two independent research teams (Takahashi et al., 2007; Yu et al., 2007). 

Whereas Yamanaka’s group used the same methodology and reprogrammed human 

fibroblasts by applying the same four factors (Takahashi et al., 2007); the group of James 

Thomson reported the generation of hiPSCs by overexpressing OCT4, SOX2, NANOG and 

LIN28 using a lentiviral system (Yu et al., 2007). These two milestone reports started a new 

era in stem cell biology and motivated a myriad of follow-up studies. First, scientists aimed 

to demonstrate that other cell types as well could be reprogrammed using these methods 

(Robinton and Daley, 2012; Stadtfeld and Hochedlinger, 2010). Soon, hiPSCs were being 

generated from keratinocytes, hepatocytes, adipose-derived stem cells, peripheral blood, 

among others (Pan et al., 2012; Robinton and Daley, 2012; Stadtfeld and Hochedlinger, 

2010). Second, since reprogramming methods were non-efficient and involved the usage of 

two oncogenic transcription factors (c-Myc and Klf4), in addition to viral transduction to 

overexpress the four transcription factors, numerous studies have also aimed to investigate 
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methods to generate hiPSC lines in a more efficient and safer manner (Gonzalez et al., 2011; 

Robinton and Daley, 2012). In the meantime, others have studied the mechanisms 

underlying reprogramming and in numerous other studies researchers have compared hESCs 

with hiPSCs to confirm or refute their biological equivalence, a question without definitive 

answers so far (Amabile and Meissner, 2009; Bilic and Izpisua Belmonte, 2012; Puri and 

Nagy, 2012; Robinton and Daley, 2012). Remarkably, the earlier published studies hinted 

that hiPSCs were similar to hESCs in terms of morphology, maintenance requirements, 

surface antigens, capacity to differentiate into cell types representative of the three 

embryonic germ layers, gene expression and also epigenetic status of pluripotent cell-

specific genes (Mallon et al., 2014; Takahashi et al., 2007; Yu et al., 2007). However, the past 

5 years have witnessed an exponential increase in the number of studies that report 

numerous differences between hiPSCs and bona fide hESCs, raising fundamental questions 

regarding the clinical relevance of hiPSCs and their clinical applicability in the future (Bilic 

and Izpisua Belmonte, 2012; Cahan and Daley, 2013; Christodoulou and Kotton, 2012; 

Narsinh et al., 2011). Predictably, the advent of human induced pluripotent stem cells 

(hiPSCs) was also accompanied by a scientific boom in disease-applied research, aiming to 

model different types of diseases in vitro (Grskovic et al., 2011; Han et al., 2011; Robinton 

and Daley, 2012; Tiscornia et al., 2011). Thus, numerous studies have been published 

demonstrating the ability to robustly generate hiPSCs from innumerable diseases and 

proposing novel and promising in vitro disease phenotypes (Grskovic et al., 2011; Han et al., 

2011; Robinton and Daley, 2012). In terms of neurological disorders, hiPSCs have made 

possible the generation of different neuronal cell types carrying the constellation of genetic 

traits associated with neurodegeneration in a given individual, which otherwise would not 

be accessible. Thus, hiPSCs have enabled the study of early events in disease onset and other 

degenerative processes otherwise hard to observe in post-mortem tissues. Regarding motor 

neuron degenerative disorders, the landmark study of Dimos and colleagues reported in 

2008 not only demonstrated for the first time the differentiation of motor neurons from 

hiPSCs, using a protocol that was nearly identical to the one previously described to 

generate hESC-MNs (Dimos et al., 2008); but also showed that this method could be applied 

with success to fibroblasts derived even from aged patients with ALS (Dimos et al., 2008). 

Accordingly, using the innovative reprogramming technology developed originally by 

Yamanaka’s lab, these researchers were able to create patient-specific ALS-hiPSCs and to 



25 
 

differentiate in vitro human motor neurons capturing the genetic background of the original 

patient, which immediately raised the hope to create models of human motor neuron 

disease in vitro (Dimos et al., 2008). Since this pioneer study, researchers have 

reprogrammed fibroblasts from several patients with motor neuron degenerative disorders 

and aimed to demonstrate that motor neurons derived from those cells could exhibit a 

relevant phenotype in vitro (Chen et al., 2014; Ebert and Svendsen, 2010b; Ebert et al., 2009; 

Egawa et al., 2012; Grskovic et al., 2011; Kiskinis et al., 2014; Sareen et al., 2012; Wainger et 

al., 2014). Even though some prospective motor neuron phenotypes have already been 

proposed, much remains to be done before one can claim to have a robust in vitro model of 

human motor neuron disease from both sporadic and genetic forms of the diseases. In fact, 

we lack comprehensive knowledge on the survival requirements of human motor neurons. 

Moreover, it is also mandatory to clearly define cellular phenotypes in vivo and translate 

them precisely to the in vitro context. The current inefficient motor neuron differentiation 

protocols lead to suboptimal yields and this is a topic of major concern regarding the 

development of appropriate in vitro models of motor neuron diseases using hiPSCs. 

Ultimately, the absence of robust assays and other adequate platforms to study the relevant 

features of the in vitro-generated motor neurons has constituted a major obstacle for the 

advancement of the field. 

 

1.8. Are human adult stem cells a reliable alternative source of patient-

specific stem cells to study neurological disorders?  

The generation of individual-specific cell types from stem cells has been a long term 

goal in the field of regenerative medicine given the unlimited possibilities regarding drug 

discovery, disease modelling in vitro and personalized regenerative therapies. Besides 

human pluripotent stem cells, an alternative strategy which has been explored to achieve 

the goal of personalized regenerative medicine involves the use of human adult stem cells, 

which retain the capacity for self-renewal and to differentiate into specific cell types 

(Verfaillie, 2002; Wagers and Weissman, 2004). However, when compared with human 

pluripotent stem cells, they are able to give rise to only a limited number of cell types and 

therefore exhibit a smaller differentiation potential (Roobrouck et al., 2008; Sohni and 

Verfaillie, 2011). Human adult or somatic stem cells can be found at different levels in the 
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organism and their fundamental function is to maintain and renew the different tissues 

where they are located (Roobrouck et al., 2008; Temple, 2001; Wagers, 2012). An adult stem 

cell type which has increasingly attracted the interest of the scientific community are the 

human adult adipose-derived stem cells (hADSCs), which constitute a population of adult 

stem cells easily isolated from body tissues containing fat, under local anesthesia with 

minimal patient discomfort (Gimble and Guilak, 2003; Gimble et al., 2007). Strategies for 

efficient culture of these stem cells have been explored, rendering the procedures for stem 

cell culture less complex over time (Gimble et al., 2013). Human ADSCs retain the capacity to 

self-renew and to differentiate into different cell types, namely adipocytes, osteoblasts, 

chondrocytes, myocytes, cardiomyocytes and neuron-like cells (Bunnell et al., 2008; Gimble 

et al., 2013; Gimble et al., 2007; Lindroos et al., 2011). Therefore, due to their differentiation 

potential, simplicity to isolate and ability to proliferate in vitro, the hADSCs have been 

considered an attractive alternative source of patient-specific stem cells (Aguena et al., 

2012; Mizuno et al., 2012; Salgado et al., 2010). The generation of neuronal cells from 

hADSCs has already been reported (Ahmadi et al., 2012; Jang et al., 2010), including the 

specification of motor neuron-like cells (Liqing et al., 2011). However, it remains to be 

determined whether hADSCs can actually differentiate into fully functional neuronal relevant 

cell types (Franco Lambert et al., 2009; Ross and Verfaillie, 2008). In fact, the great majority 

of the studies relied on morphology and immunophenotyping to characterize the generated 

neuronal and glial cells; thus, failing to convincingly demonstrate that the human adipose 

stem cell-derived neuronal cells have fully functional features in vitro (Franco Lambert et al., 

2009). In addition, the yields are low, which is possibly linked to the scarce knowledge on the 

cues that can efficiently drive human adult stem cells toward a neuronal fate. It is 

conceivable that one can get better knowledge on how to specify different neuronal cell 

types from hADSCs if we could gain a better insight on the mechanisms that regulate the 

proliferation, survival and differentiation of hADSCs. The advent of strategies to efficiently 

generate relevant neuronal cell types from these human adult stem cells could greatly 

expand the possibilities of using human stem cells towards personalized medicine strategies 

aimed at treating neurological disorders. 
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2. AIMS 

Human pluripotent stem cells (hPSCs; hESCs or hiPSCs) have opened unprecedented 

opportunities to study previously inaccessible neuronal populations from healthy controls 

and patients. In the particular case of motor neuron diseases, hPSCs represent a promising 

platform through which to increase our understanding of the mechanisms involved in 

keeping human motor neurons alive. In addition, the possibility of studying human motor 

neurons that capture the genetic background of patients opens new avenues towards a 

more comprehensive understanding of motor neuron degeneration, newer and better 

diagnostic tools, and ultimately more effective therapeutic strategies. In order to conduct 

these fundamental studies large quantities of human motor neurons, and robust survival 

assays to study them, are needed. However, the motor neuron yields obtained from existing 

protocols are far from optimal and robust survival assays using populations of hPSC-derived 

spinal cord motor neurons have not been developed. A potential additional source of 

personalized neuronal cells are the human adipose-derived stem cells (hADSCs), easily 

obtained from fat containing human tissues. However, the current knowledge on factors 

regulating their survival, proliferation and commitment towards a neuronal lineage is scarce. 

 

Therefore, the main aims of this thesis work were:  

1. To devise strategies to increase the yield and abundance of spinal cord motor neurons 

generated from human pluripotent stem cell lines.  

 

2. To create a robust and reliable in vitro survival assay to study human spinal cord motor 

neurons differentiated from pluripotent stem cells lines. 

 

3. To study the response of human spinal motor neurons to neurotrophic factors identified 

for rodent spinal motor neurons. 

 

4. To study factors that might affect the survival and proliferation of hADSCs. 
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ABSTRACT 

The ability to efficiently generate large quantities of human motor neurons from 

human embryonic stem cells (hESCs) under defined conditions opens the prospect of 

conducting relevant studies using standard batches of those treasurable neuronal cells. 

Current protocols for motor neuron differentiation from hESC are lengthy, costly and result 

in the generation of mixed populations of neurons of interest and other non-neuronal cells. 

We have previously demonstrated that the supplementation of dissociated Day 31+ hESC-

derived cultures with Y-27632 leads to increases in human motor neuron numbers peaking 

at Day 31+9, through enhancement of proliferation of motor neuron progenitors and 

increased human motor neuron survival. Less is known about the effects of Y-27632 on 

motor neuron yields when added during critical periods of motor neuron differentiation 

from hESCs. In order to determine if Y-27632 supplementation during motor neuron 

differentiation and prior to dissociation is able to impact final motor neuron yields, we used 

the Hb9::GFP hESC reporter line and employed a standard optimized motor neuron 

differentiation protocol relying on retinoic acid (RA) and recombinant sonic hedgehog (SHH). 

Cells were cultivated under three differentiation conditions: CONTROL (standard protocol), 

Y-27632 treatment from day 11 until day 31 (Y-27632 D11-D31) and Y-27632 

supplementation from day 22 until day 31 (Y-27632 D22-D31). Final motor neuron 
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abundance was determined through quantification of the GFP-positive fraction using 

optimized FACS sorting conditions. The addition of Y-27632 to the motor neuron-committed 

hESC cultures from day 11 onwards or Y-27632 supplementation during the last 10 days of 

motor neuron differentiation (day 22 until day 31) did not change significantly the motor 

neuron differentiation yield. Together, our data suggests that Y-27632 supplementation 

during critical periods of motor neuron differentiation is not a robust strategy to enhance 

final motor neuron yields. 

 

We are grateful to NINDS, P2ALS, Project A.L.S., NYSTEM, FCT and FLAD for supporting this 

work. 

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

 
 

FIGURE 1. The presence of 10 µM Y-27632 during critical periods of motor neuron 

specification from the Hb9::GFP hESC line did not lead to enhanced motor neuron yields. 

Continuous 10 µM Y-27632 supplementation of motor neuron-committed hESC cultures 

during 10 (Y-27632 D22-D31) or 20 days (Y-27632 D11-D31) did not significantly impact on 

the overall motor neuron percentages at Day 31, as quantified using FACS sorting. The 

Hb9::GFP hESC reporter line was used to facilitate Hb9 motor neuron visualization in culture. 

A standard optimized differentiation protocol using retinoic acid (RA) and recombinant sonic 

hedgehog (SHH) was used to drive motor neuron differentiation from hESCs. Cells were 

cultivated under three differentiation conditions: CONTROL (standard protocol), 10 µM Y-

27632 treatment from day 11 until day 31 (Y-27632 D11-D31) and 10 µM Y-27632 

supplementation from day 22 until day 31 (Y-27632 D22-D31). Values are mean ± s.e.m., n=3 

(t-test, p>0.05). 
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ABSTRACT 

Human embryonic stem cells (hESCs) offer the possibility to create in vitro unlimited 

sources of cell types that are hard to obtain by biopsy, including the spinal cord motor 

neurons. Rho-ROCK is a conserved cellular pathway involved in crucial aspects of cell 

behaviour like motility, division, apoptosis and neurite outgrowth. ROCK inhibitor small 

molecules are promising compounds displaying interesting features in different neuronal 

cells types, including cell proliferation, survival and neurite outgrowth. We previously 

demonstrated that Y-27632, a widely-studied member of this family of compounds, was 

capable to enhance motor neuron generation and motor neuron survival in dissociated Day 

31+ hESC-derived motor neuron cultures. Here, to better understand whether the inhibition 

of the Rho-ROCK pathway was responsible for the effects induced by Y-27632 on hESC-MN 

cultures we tested if other compounds belonging to the ROCK inhibitor family could induce 

similar effects in hESC-derived motor neuron cultures. Eight different ROCK inhibitor 

molecules (Y-27632, Fasudil, HA-1100, H-1152, Y-39983, GSK429286, SR3677 and 

Thiazovivin) were for the first time tested side-by-side using three newly developed assays 

involving hESC-derived motor neurons: mixed culture survival/proliferation assay, survival 

assay and neurite outgrowth assay using purified human motor neurons. Each compound 

was tested at serial dilutions in the 0.1 μM–100 μM concentration range. We observed that 
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Y-27632 was the only ROCK inhibitor molecule tested to display the capacity to significantly 

increase motor neuron numbers in mixed hESC-derived motor neuron cultures, in a dose-

dependent manner. In addition, Y-27632 could also significantly increase the survival of 

purified human motor neurons deprived of neurotrophic factors for nearly 7 days. Y-39983, 

GSK429286 and Thiazovivin also showed a mild motor neuron survival-inducing effect, but 

the significant effects were only registered in three out of the seven concentrations tested. 

Interestingly, all eight molecules were capable of significantly boosting motor neuron axonal 

outgrowth, in line with previous studies showing that ROCK inhibition enhances neurite 

outgrowth. Taken together, our data suggest that Y-27632 is capable of promoting robust 

motor neuron generation and motor neuron survival in hESC-derived motor neurons likely 

by a ROCK-independent mechanism. 

 

We are grateful to NINDS, P2ALS, Project A.L.S., NYSTEM, FCT and FLAD for supporting this 
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FIGURE 1. Y-27632 promotes motor neuron generation and motor neuron survival in hESC-

derived motor neuron cultures likely by a ROCK-independent mechanism. 

(A) Survival/proliferation assay using a mixed culture of progenitor cells and post-mitotic 

hESC-MNs dissociated at Day 31. Different ROCK inhibitors where tested for their capacity to 
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increase human MNs in culture. Readouts were performed at Day 31 + 9. Per compound, 

data is normalized to the average number of cells with significant outgrowth in control 

conditions (absence of drug). The best effect in human motor neuron number increase per 

compound is shown. Each compound was tested at different serial dilutions in the 0.1 μM–

100 μM concentration range. Only Y-27632 showed the capacity to significantly increase 

human motor neuron numbers in culture. Values are Mean ± SEM, for n≥3 (t-test, *p<0.05). 

(B) Survival assay using a FACS-purified population of human motor neurons. Different ROCK 

inhibitors where tested for their capacity to increase the survival of human motor neurons in 

culture. Readouts were performed seven days after cell seeding. Per compound, data is 

normalized to the average number of cells with significant outgrowth in control conditions 

(absence of drug). The best effect in motor neuron survival per compound is shown. Each 

compound was tested at different dilutions in the 0.1 μM–30 μM concentration range. Only 

Y-27632 showed the capacity to significantly increase the survival of human motor neurons 

submitted to neurotrophic deprivation for nearly 7 days (significant results in 5 out of the 7 

concentrations tested). Three other small molecules (Y-39983, GSK429286 and Thiazovivin) 

also displayed a mild motor neuron survival-inducing effect (significant effects in 3/7 

concentrations tested). Values are Mean ± SEM, for n≥3 (t-test, **p<0.01; ***<p<0.001). 

(C) Effects of the indicated ROCK inhibitors on axonal outgrowth from purified human motor 

neurons at Day 31+2, stained using the vital dye calcein-AM that fills all processes. Scale bar 

= 50 µm. 

(D) Neurite outgrowth using FACS-purified post-mitotic hESC-MNs. Neurite outgrowth is 

known to be enhanced by ROCK inhibition. Different ROCK inhibitors where tested for their 

capacity to increase neurite outgrowth as a proof of principle for ROCK inhibition. Readouts 

were performed two days after cell seeding. Per compound, data is normalized to the 

average mean outgrowth per cell in control conditions (absence of drug). The best effect in 

motor neuron neurite outgrowth increase is shown per compound. Each compound was 

tested at different dilutions in the 0.1 μM–30 μM concentration range. All the compounds to 

a lesser or greater extent induced a significant increase in the neurite outgrowth of human 

motor neurons. This suggests that all ROCK compounds tested are active at inhibiting the 

ROCK pathway, even though only Y-27632 robustly increased motor neuron numbers in 

culture. Values are Mean ± SEM, for n≥4 (t-test, **p<0.01; ***<p<0.001).  
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The axons that connect motor neurons to their target muscles are among the 

longest single structures in the adult body. Even in the embryo, to innervate a muscle in the 

distal part of the limb a motor neuron needs to generate a process that is >200 cell 

diameters in length. The quantitative challenge is greater still for an injured adult axon that 

may need to regenerate over tens of centimeters. Therefore identifying mechanisms that 

make motor axons longer is critical both for understanding how the neuromuscular system is 

initially wired and, potentially, for enhancing its regeneration. We are studying intrinsic 

mechanisms that stimulate motor axon outgrowth. 

Classical transplantation studies show that, even if the order of segments in the 

limb is surgically altered, axons from a given motor pool grow out the same distance as they 

would in control embryos. This, and other data for cranial sensory ganglia, suggests that 

there are intrinsic determinants of axon length but the underlying molecular code has not 

been elucidated. We found that in mouse embryos the transcription factor POU3F1/SCIP is 

selectively expressed in motor neurons innervating distant muscle targets (diaphragm, distal 

forelimb and distal hindlimb) but not in pools innervating more proximal muscles. 

In pou3f1 null embryos, whereas all proximal muscles were normal, none of the targets of 

the POU3F1-expressing motor neurons ever became fully innervated, and motor 

neurons whose axons failed to reach their target subsequently died. POU3F1 therefore 

triggers a program for innervation of distant muscle targets that is common to motor pools 

at multiple rostrocaudal levels. 

To define the signaling pathways underlying axonal growth, we screened a 50,000-

compound library using an in vitro assay in which mouse or human ES cell-derived motor 

neurons are grown on inhibitory substrata. The most potent hits were the cholesterol-

lowering drugs statins. When applied to human ES cell-derived motor neurons they induce a 

5-fold increase in axon growth over the first 20 h. In vivo, they enhance optic nerve 

regeneration 5-fold over controls. Statins stimulate motor axon growth by inhibiting HMG-

CoA reductase and thereby downstream protein prenylation. Since HMG-CoA reductase is 

expressed in motor neurons at high levels, it may potentially play a role in inhibiting axonal 

growth in multiple contexts. 

Overall, these studies show that a combination of transcriptional and post-

translational mechanisms govern motor axon length and suggest that they may be potential 

therapeutic targets in situations requiring stimulation of axonal growth. 
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4. DISCUSSION 

The successful specification of many different cell types from human embryonic 

stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) represents an exciting 

new approach to unravelling the mechanisms of human embryonic development, and for 

drug discovery and modelling of diseases in vitro. Importantly, the ability to generate a 

specific cell type from human pluripotent stem cells (hPSCs) opens the possibility of creating 

inexhaustible sources of key cells that are otherwise inaccessible to study in the human body 

(Han et al., 2011; Nizzardo et al., 2010). This is the case of cells from the central nervous 

system, which have been classically hard to obtain due to ethical and technical constraints 

and hard to culture even when isolated (Faravelli et al., 2014; Han et al., 2011; Nizzardo et 

al., 2010; Palmer et al., 2001; Silani et al., 1998). Therefore, the differentiation of hPSCs into 

relevant human motor neuron populations has allowed mechanistic analysis of neuronal cell 

death and survival, as well as drug testing in human cellular models of motor neuron disease 

(Dimos et al., 2008; Ebert and Svendsen, 2010; Egawa et al., 2012; Faravelli et al., 2014; Han 

et al., 2011; Sareen et al., 2012; Wichterle and Przedborski, 2010). However, significant 

obstacles need to be overcome before the full potential of hPSCs to establish biochemical 

and screening approaches can be realized. On one hand, current protocols for motor neuron 

specification are lengthy and rely on costly recombinant growth factors, while motor neuron 

yields are suboptimal (Faravelli et al., 2014). On the other hand, our knowledge of the 

survival requirements of human motor neurons remains in its infancy. One appealing 

alternative source of stem cells capturing the genetic background of the donor is the human 

adipose tissue, from which human adipose-derived stem cells (hADSCs) can be easily isolated 

(Gimble and Guilak, 2003). However, current knowledge of the survival and expansion 

requirements of hADSCs is scarce and the ability to drive these cells efficiently towards a 

neuronal lineage remains to be developed.  

In this work some of these problems were revisited and original strategies that 

allow us to significantly increase motor neuron yields from hPSC-derived cultures and to 

create a robust survival assay using human motor neurons specified from hPSCs were 

developed. Our initial studies involving hPSC-derived spinal motor neuron cultures revealed 

high levels of ongoing birth of new motor neurons. This finding was unexpected, and we 

decided to take the ongoing neurogenesis into account in two different ways. First, we 
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addressed the problem of insufficient motor neuron yields and screened a small collection of 

160 bioactive molecules to find small molecules capable of increasing motor neuron 

numbers in culture. We identified the Rho-kinase (ROCK) inhibitor Y-27632 as an agent 

which could reliably increase motor neuron numbers up to four-fold after 9 days in culture. 

Second, to overcome the potential confound effect of ongoing neurogenesis on motor 

neuron survival studies we purified human motor neurons by FACS sorting and used them to 

create an assay for agents with direct effects on motor neuron survival. In line with previous 

studies in purified populations of chick and rodent embryonic motor neurons (Gould and 

Enomoto, 2009; Gould and Oppenheim, 2011; Henderson et al., 1998; Kanning et al., 2010; 

Thoenen and Sendtner, 2002), the human motor neurons were responsive to the survival-

promoting actions of specific neurotrophic factors (GDNF, BDNF and CNTF), as well as the hit 

compound Y-27362 itself.  

 

4.1. Human motor neurons are continuously generated in cultures derived from                      

differentiated human induced pluripotent stem cells  

During embryonic spinal cord development, motor neurons are generated from a 

limited pool of committed ventral spinal neuronal progenitors which express the 

transcription factor Olig2 (Marquardt and Pfaff, 2001; Mizuguchi et al., 2001; Novitch et al., 

2001). In rodents, these cells seem to be rapidly exhausted or converted to oligodendroglial 

progenitors (Marquardt and Pfaff, 2001; Mizuguchi et al., 2001; Novitch et al., 2001; Zhou et 

al., 2001). In fact, Olig2-positive cells isolated from late embryos and transplanted to early 

chick neural tube were demonstrated to produce only oligodendrocytes (Mukouyama et al., 

2006). Therefore, these motor neuron progenitors lose their potential to generate motor 

neurons over time and seem to be intrinsically programmed to generate only limited 

numbers of motor neurons (Mukouyama et al., 2006). Here, we discovered nearly incessant 

motor neuron production in cultures specified from hPSCs after 31 days of culture (Chapter 

3.1 – Figure 1). Constant motor neuron birth was even present when external trophic factor 

support was not present, leading to a considerable fraction of newborn human motor 

neurons over the course of 15 days (neurogenesis was also present beyond this 15-day 

period; Chapter 3.1 – Figure 1). This protracted duration of human motor neuron genesis in 

culture contrasts with the short <24-hour period of motor neuron production in 

differentiated mouse ES cell cultures (Peljto et al., 2010). These findings likely reflect in part 
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biological differences in the development of motor systems in rodent and human embryos, 

since human motor neurons are produced over an extended three-week period in vivo 

(Altman and Bayer, 2001; Bayer and Altman, 2002). Moreover, it remains to be determined 

whether during human spinal cord development the disappearance of motor neuron 

progenitors after the normal period of motor neurogenesis parallels what has been 

demonstrated in mouse (Mukouyama et al., 2006).  

Interestingly, lower vertebrates display a capacity to continuously generate new 

motor neurons in response to injury throughout their life (Bhatt et al., 2004; Campbell et al., 

2011; McHedlishvili et al., 2012; Monaghan et al., 2007; Reimer et al., 2009; Reimer et al., 

2008; Seifert et al., 2012). These regenerative mechanisms have only recently started to be 

unravelled. For example, in the zebrafish a marked increase has been demonstrated in the 

proliferation of Olig2-positive ependymoradial glial progenitor cells in the ventricular zone 

following lesion of the spinal cord (Reimer et al., 2008). Subsequent studies showed that a 

subset of these progenitor cells maintain their capacity to produce large numbers of motor 

neurons into adulthood, a process which seems to be dependent on SHH signalling (Reimer 

et al., 2009) and inhibition of the NOTCH signalling (Dias et al., 2012). Those motor neurons 

become ChAT-positive cells nearly 6-8 weeks after lesion and seem to complete their full 

maturation and integration into the spinal circuitry (Reimer et al., 2008). In a similar manner, 

the Mexican salamander (also known as Axolotl) also displays the capacity to fully 

regenerate the spinal cord following lesion (Clarke et al., 1988; McHedlishvili et al., 2007). 

These amphibians have played an important role in the understanding of the regenerative 

abilities of the CNS and how it may be improved. The Axolotl is the only tetrapod known to 

fully functionally reconstitute a lesioned spinal cord and all the constituent tissues of the 

adult limb (McHedlishvili et al., 2012). The reconstitution of the repertoire of different cells 

present in the spinal cord can be accomplished through the amplification of single cells 

which display multipotency features typical of neural stem cells (Fei et al., 2014; 

McHedlishvili et al., 2012). The process is dependent on the presence of SOX2-positive 

neural stem cells, since the ablation of SOX2 expression after tail amputation halted neural 

stem cell proliferation and, thus, prevented spinal-cord specific regeneration (Fei et al., 

2014). It is possible that comparable mechanisms might play a role in the ongoing 

motorneurongenesis observed in our hPSC motor neuron cultures (Chapter 3.1 – Figure 1). 
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The differences between human and mouse ESC-derived motor neuron cultures can 

also be linked to different culture conditions across both systems and/or the current inability 

to efficiently specify motor neurons from hPSCs, which leads to the generation from hPSCs 

of cellular populations constituted by a mixture of post-mitotic neurons and actively dividing 

neuronal progenitor cells, among other cell types (Boulting et al., 2011; Hu et al., 2010; Li et 

al., 2005; Nizzardo et al., 2010; Patani et al., 2011; Sareen et al., 2012; Takazawa et al., 

2012). Uninterrupted motor neuron birth in hPSC-specified cultures may reflect a failure to  

to efficiently drive early progenitors towards a specific cell fate, since the dual SMAD 

signalling neuralization protocol used for most of this work led to a nearly 70-80% 

conversion of hPSCs into PAX6-positive neural progenitor cells (Roybon et al., 2013); but the 

final motor neuron yield at day 31 ranged from 5 until 45% (Chapters 3.1 and 3.2). 

Consequently, at the end of each differentiation period the incomplete conversion of hPSCs 

into spinal cord motor neurons yields other cell types, including actively dividing neuronal 

progenitors, which later give rise to new-born motor neuron populations. Interestingly, 

following our original findings, some collaborators (e.g. Kevin Eggan, personal 

communication) have investigated the ongoing motorneurogenesis in hPSC-derived motor 

neuron cultures and described lower levels of continuous motor neuron birth, which could 

be explained by different experimental conditions and quantification procedures across the 

two laboratories.  

Ultimately, in a broader perspective the neurogenic phenomenon reported here 

imposes caution in the interpretation of studies involving the evaluation of human motor 

neuron numbers over time in experiments using mixed neuronal cultures specified in similar 

conditions. Many published studies, based on the experience with rodent systems, have 

assumed that the only human motor neurons present in the culture are the postmitotic cells 

that were seeded originally. This constitutes a major potential confound for some recently 

published studies describing conditions that affect “motor neuron survival”, as the addition 

of new neurons cannot be clearly dissociated from pure survival promoting effects (Di 

Giorgio et al., 2008; Ebert et al., 2009; Sareen et al., 2012). In 2008, Di Giorgio and colleagues 

studied the influence of glial cells carrying ALS mutations on the survival of human spinal 

motor neurons (Di Giorgio et al., 2008). They established co-culture assays by seeding non-

purified human spinal ESC-derived motor neurons on top of primary murine glial cells 

overexpressing SOD1G93A or derived from non-transgenic mice (Di Giorgio et al., 2008). The 
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cultures were followed for several days, with the authors showing reduced number of Hb9-

positive motor neurons at day 10 and day 20 post-dissociation when cultivated in the 

presence of SOD1G93A glia comparatively to wild-type glia (Di Giorgio et al., 2008). This led 

to the conclusion that glial cells overexpressing a specific ALS mutation were toxic to human 

spinal motor neurons (Di Giorgio et al., 2008). However, the data presented shows nearly 

similar levels of Hb9-positive motor neurons at day 10 and day 20 when cultured in the 

presence of SOD1G93A; and increased number of motor neurons at day 20 comparatively to 

day 10 when human motor neurons where grown in the presence of wild-type glia (Di 

Giorgio et al., 2008). Together, these results point to the possible presence of ongoing 

motorneurogenesis in this co-culture system and open the door to alternative explanations, 

including different rates of motor neuron formation in the presence or absence of 

apparently toxic glial cells (Di Giorgio et al., 2008). In line with this, the Svendsen lab has 

studied hiPSC-derived motor neurons generated from SMA patients and proposed a 

degenerative phenotype for those motor neurons having a SMA background (Ebert et al., 

2009). However, in their studies non-purified human motor neuron cultures were used and 

thus the survival decreasing effect they report cannot formally be distinguished from an 

altered pattern of motor neuron genesis (Ebert et al., 2009). 

Overall, the reported uninterrupted birth of human motor neurons in specified-

hPSC cultures supports the need for a thorough characterization of the cellular types present 

in culture after submitting hPSCs to a differentiation protocol. Our data reinforce the need 

for more efficient differentiation protocols and more robust ways to isolate cells of interest 

from mixed neuronal/neural progenitor cultures (Allodi and Hedlund, 2014).  

 

4.2. Screening for small molecules able to increase human motor neuron yields 

In the past decade, numerous technological developments have made practical the 

idea of testing large collections of compounds on particular cellular populations under 

clearly defined and robust conditions (Carpenter, 2007a, b; Dragunow, 2008; Macarron et 

al., 2011; Mayr and Bojanic, 2009; Mitsumoto et al., 2006; Pepperkok and Ellenberg, 2006; 

Pruss, 2010). In this work we took advantage of these advances to further exploit the 

remarkably high level of continuous motor neuron birth in spinal cord-specified hPSC 

cultures. We followed an automated small-scale phenotypic screening approach to find 

compounds that display the capacity to increase the numbers of motor neurons in culture, 
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either by increasing neurogenesis or enhancing survival (Chapter 3.1 – Figure 2). We thought 

such molecules would be of value especially in light of the practical limitations in the yields 

of motor neurons specified from hPSCs. To facilitate the visualization of human motor 

neurons in culture, an assay was developed using mixed neuronal cultures specified from the 

reporter line HB9::GFP (HBG1 hESC line) (Di Giorgio et al., 2008). While conditions of 

neurotrophic deprivation were used as negative control, a cocktail of neurotrophic factors 

was used as positive control (Chapter 3.1 – Figure 2), taking into consideration their well-

described pro-survival and pro-neurogenic effects during embryonic development (Gould 

and Enomoto, 2009; Gould and Oppenheim, 2011; Sendtner et al., 2000; Tovar et al., 2014). 

Using this assay we tested nearly 160 small molecules. The positive and negative controls 

chosen for this assay proved to be fairly consistent and reliable, because for each plate there 

was no overlap between the 6 positive and 6 negative control wells. This allowed running a 

first pass on a subset of the Microsource and Tocris collections, to check whether there were 

any human motor neuron relevant compounds. The only compound that was clearly above 

the rest was Y-27632 (Chapter 3.1 – Figure 2), a widely studied inhibitor of the Rho kinase 

(ROCK) (Ishizaki et al., 2000), whose activity was subsequently validated and is therefore not 

a false positive (discussed below). Thus, using this strategy we successfully identified a small 

molecule displaying robust capacity to enhance human motor neurons numbers in culture.  

Interestingly, several compounds were shown to perform more poorly than the 

negative control and others were toxic for motor neurons and neuronal progenitors present 

in the cultures (Chapter 3.1 – Figure 2). However, these were not further explored. Even 

though the results obtained from this drug screening approach can be regarded as 

satisfactory and relevant, certain technical aspects of the methodology employed merit 

analysis and discussion. One aspect to discuss is the day 13 readout, which represents an 

unusually late time point for drug screening studies. Yet, during the optimization stage, the 

cultures were followed for 15 days and day 31+13 was demonstrated to be the time-point 

when the greatest differences in motor neuron numbers between positive and negative 

control conditions were registered. We reasoned that more active compounds would be 

captured if motor neuron counts could be performed at the point where the peak difference 

between control conditions was registered. Nevertheless, a late readout time-point raises 

concerns over drug stability in culture, and intrinsic variability of the readout; and it is 

therefore possible that some relevant hits could have been missed. If the assay could be 



111 
 

shortened it would be worth expanding this screening strategy to a larger compound 

collection. To increase the validity of the results obtained from the small-scale screen, we 

chose to test drugs in quadruplicate, using four sister testing plates. Our data demonstrated 

that controls and the great majority of compounds behaved consistently across the different 

plates. However, the use of so many replicates would not be economically feasible for larger 

screens, meaning that it would be important to further optimize the Z-score of the assay 

(Zhang et al., 1999). Taken together, we took advantage of the ongoing motor neurogenesis 

and successfully set up a low-throughput screening strategy which allowed us to identify the 

ROCK inhibitor Y-27632 as a relevant compound to help culturing hPSC-derived motor 

neuron cultures (Chapter 3.1 – Figure 2). 

 

4.3. The hit compound Y-27632 increases motor neuron numbers in hPSC-derived cultures 

through enhancement of progenitor proliferation and motor neuron survival 

The small-scale screening approach we developed following the observation of 

ongoing motor neuron birth in day 31+ hPSC-cultures allowed the identification of Y-27632 

as a compound capable of robustly increasing the number of human motor neurons in 

culture. This molecule was originally described as an inhibitor of the Rho-associated kinase 

(ROCK) (Ishizaki et al., 2000), although subsequent studies showed that above a certain 

concentration it can also inhibit other kinases with similar potency (discussed below) (Davies 

et al., 2000; Nichols et al., 2009). ROCK belongs to a family of serine/threonine kinases, has a 

molecular mass of about 160 kDa and is one of the main downstream effector arms of the 

Rho pathway, namely the small GTPase RhoA (Riento and Ridley, 2003). Two isoforms of 

ROCK have been characterized so far: ROCK1 (also known as ROKβ) and ROCK2 (also known 

as ROKα) (Julian and Olson, 2014; Nakagawa et al., 1996; Pearce et al., 2010; Riento and 

Ridley, 2003). The ROCK1 gene is located on chromosome 18 and encodes a 1354-amino acid 

protein, whose expression is ubiquitous (Ishizaki et al., 1996; Matsui et al., 1996). The ROCK2 

gene is located on chromosome 2 and encodes a 1388-amino acid polypeptide mainly 

expressed in the brain, muscle and heart (Matsui et al., 1996; Nakagawa et al., 1996). In 

terms of ultrastructure, ROCK1 and ROCK2 have an N-terminal kinase domain, a central 

coiled-coil-forming region containing a Rho-binding domain (RBD) and a pleckstrin homology 

(PH) motif with a C-terminal cysteine-rich domain (CRD) (Julian and Olson, 2014; Olson, 

2008; Riento and Ridley, 2003). In the resting state, both ROCK1 and ROCK2 are essentially 



112 
 

cytosolic, but they are rapidly translocated to the membrane upon Rho activation (Olson, 

2008; Riento and Ridley, 2003). ROCK has an auto-inhibitory activity, since in the inactive 

form its carboxyl terminal PH domain and RBD interact with the kinase domain, forming an 

auto-inhibitory loop (Olson, 2008; Riento and Ridley, 2003). This interaction is disrupted by 

binding of active Rho and thus kinase activity is increased (Amano et al., 1999; Julian and 

Olson, 2014). The two isoforms of ROCK have a global homology of 65% in their amino acid 

sequences and 92% homology in their kinase domains (Riento and Ridley, 2003; Tonges et 

al., 2011). ROCKs are also homologous to other members of the AGC kinase family, such as 

myotonic dystrophy kinase-related CDC42-binding kinase (MRCK), myotonic dystrophy 

kinase (DMPK) and citron kinase (Pearce et al., 2010). The Rho-ROCK pathway is a conserved 

cellular pathway that plays vital roles in diverse aspects of cell behaviour, including motility, 

cell division, apoptosis and neurite outgrowth, among other processes (Coleman and Olson, 

2002; Coque et al., 2014; Etienne-Manneville and Hall, 2002; Hall and Lalli, 2010; Ohgushi 

and Sasai, 2011; Olson, 2008; Riento and Ridley, 2003; Vega and Ridley, 2008). After detailed 

characterization, we could demonstrate that Y-27632 increased motor neuron numbers not 

only by boosting progenitor proliferation in hPSC-specified motor neuron cultures, but also 

by promoting the survival of those motor neurons present in culture (Chapter 3.1 – Figures 

2, 3 and 5). However, we were not able to determine whether Y-27632 could also exert any 

influence on the survival of progenitors in motor neuron lineage. 

Regarding the pro-proliferative properties of Y-27632 in these cultures (Chapter 3.1 

– Figures 2, 3 and 5), it is interesting to learn from the current literature that this small 

molecule is paradoxically linked to both pro-proliferative and anti-proliferative effects. On 

one hand, Y-27632 is a strong promoter of the survival and proliferation of hESCs and hiPSCs 

(Chen et al., 2010; Ohgushi et al., 2010; Ohgushi and Sasai, 2011; Watanabe et al., 2007), the 

immortalization and proliferation of keratinocytes (Chapman et al., 2010; Chapman et al., 

2014; McMullan et al., 2003; van den Bogaard et al., 2012), proliferation of hPSC-derived 

retinal pigmental epithelium (Croze et al., 2014), proliferation of murine astrocytes (Yu et al., 

2012), proliferation of human neuroblastoma cells (Street et al., 2010) and adipogenesis 

(Noguchi et al., 2007). For example, in the particular case of hPSC-derived retinal pigmental 

epithelium, Y-27632 was shown to significantly alter gene expression towards a profile 

associated with enhanced cell cycle progression (Croze et al., 2014). Among the different 

genes altered, there was an upregulation of Cyclin-dependent kinase 1 (CDK-1), Proliferating 
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cell nuclear antigen (PCNA) and Cyclin A2 (CCNA2); with concomitant decrease in Cyclin-

dependent kinase inhibitor 2B (CDKN2B) (Croze et al., 2014). In human neuroblastoma cells, 

Y-27632 treatment was shown to induce a more rapid progression through the cell cycle 

and, therefore, enhanced proliferative rates (Street et al., 2010). It is plausible that similar 

mechanisms could play a role in the Y-27632-induced increase in proliferation observed in 

our hPSC-derived motor neuron cultures, which resulted in increased motor neuron 

numbers at day 31+9 (Chapter 3.1 – Figures 2 and 3).  

On the other hand, it has been reported that Y-27632 is also able to induce strong 

anti-proliferative effects in various types of cancer cells (Burthem et al., 2007; Routhier et 

al., 2010; Zohrabian et al., 2009), cord blood-derived CD34+ hematopoietic progenitor cells 

(Bueno et al., 2010), hepatic stellate cells (Iwamoto et al., 2000), cardiac myocytes (Zhao and 

Rivkees, 2003) and smooth muscle cells (Rees et al., 2003; Sawada et al., 2000). In line with 

this, we extended the observation of anti-proliferative effects for Y-27632 by showing in this 

Thesis the non-benefitial use of Y-27632 for the expansion of human adipose-derived stem 

cells (hADSCs; Chapter 3.5; discussed below). These differences in the proliferative effects of 

Y-27632 might be related to cell type-specific profiles or depend on the maturational stage 

of the cells. In our hESC-motor neuron system, the pro-proliferative effects of Y-27632 seem 

to promote a “pro-motorneurogenic profile” since supplementation of spinal hPSC cultures 

with Y-27632 led to remarkable increases in the numbers not only of motor neurons, but 

also Olig2-positive progenitors. These effects were detected in both hESC- and hiPSC-derived 

cultures, strengthening the general relevance of our findings (Chapter 3.1 – Figure 3). 

However, the effects induced by Y-27632 in the hPSC-derived motor neuron cultures most 

likely are not motor neuron restricted and, therefore, it would be interesting to test the 

effect of the compound in other cultures specified from hPSCs, including dopaminergic 

neurons (Kriks et al., 2011), cardiomyocytes (Dambrot et al., 2011; Davis et al., 2012) or 

pancreatic β-cells (Pagliuca et al., 2014). The increase in motor neuron progenitor numbers 

induced by Y-27632 could also be related to interactions with pathways implicated in the 

regular maintenance of neuronal progenitors or in triggering particular CNS regenerative 

mechanisms similar to the ones already described for lower vertebrates in response to injury 

(McHedlishvili et al., 2012; Monaghan et al., 2007). It also remains to be established whether 

the addition of Y-27632 to mixed motor neuron cultures induces changes in other non-spinal 

motor neuron and non-motor neuron progenitor cell types present in the cellular mixture. 
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Indeed, it is possible that Y-27632 causes other cells in the microenvironment to secrete 

factors that later act on motor neuron progenitors or motor neurons, leading ultimately to 

the effects we observed during our study. Even though we have not fully characterized the 

hPSC-cultures in this work, human astrocytes are likely to be present in culture in limited 

amounts (Dimos et al., 2008; Li et al., 2005) and we have recently shown that that hPSC-

derived astrocytes express and secret both BDNF and GDNF (Roybon et al., 2013). 

Interestingly, in primary murine astrocyte cultures the presence of Y-27632 induces the 

expression of the pro-neurogenic and pro-survival factor BDNF, among other pro-survival 

molecules (Lau et al., 2012). Future studies should address this possibility more thoroughly.  

The purification of human motor neurons using FACS technology allowed us to 

exclude the indirect effects on motor neurons of non-motor neuron cells present in hPSC-

derived motor neuron cultures (Chapter 3.1). Using this approach we demonstrated that Y-

27632 not only promotes human motor neuron axonal outgrowth (Chapter 3.3), but also 

increases the survival of human motor neurons cultured in the absence of neurotrophic 

factors for 7 days (Chapter 3.1 – Figure 6). While motor axon outgrowth enhancement in the 

presence of Y-27632 was an expected result based in several previous reports (Bito et al., 

2000; Dergham et al., 2002; Duffy et al., 2009; Fournier et al., 2003; Monnier et al., 2003; 

Watzlawick et al., 2014), the survival promoting effect of Y-27632 is a novel finding with 

potential clinical implications. Even though Y-27632 was not able to rescue patient-specific 

hiPSC-derived dopaminergic neurons from different oxidative insults (Nguyen et al., 2011), 

increasing evidence proposes Y-27632 as a robust neuroprotective agent for different types 

of neuronal populations (Gisselsson et al., 2010; James et al., 2008; Jeon et al., 2012; Julien 

et al., 2008), including spinal motor neurons. A recent report demonstrated that Y-27632 is 

capable of protecting murine hippocampal neurons in vitro from glutamate-induced 

excitotoxicity and in vivo from kainic acid-induced neurodegeneration (Jeon et al., 2012, 

2013), which adds to a previous report showing neuroprotective effects of Y-27632 in CA1 

hippocampal cells in an in vitro cerebral ischemia model employing organotypic hippocampal 

slice cultures (Gisselsson et al., 2010). Cerebellar Purkinje cells (Julien et al., 2008) and 

retinal ganglion cells (Lingor et al., 2008; Yang et al., 2009) are also among neuronal cell 

types shown to be protected by Y-27632 in injury contexts. In addition, Y-27632 has been 

explored as a strategy against chemotherapy-induced neuropathy, displaying promising 

neuroprotective effects (James et al., 2008; James et al., 2010).  
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In terms of spinal motor neurons, Y-27632 was shown to increase the survival and 

promote the neurite outgrowth of primary motor neurons in vitro, but failed to extend the 

survival of SOD1(G93A) mice (Gunther et al., 2014). Other recent studies documented an 

increase in the lifespan of an intermediate mouse model of SMA when mice were given Y-

27632 for a prolonged time (Bowerman et al., 2010). The compound was shown not to be 

capable to halt motor neuron loss in the ventral horn of the spinal cord, which is not a key 

feature of this model; but showed positive effects on the maturation of the neuromuscular 

junction (NMJ) and muscle fiber size (Bowerman et al., 2010). Interestingly, Fasudil, another 

small molecule in the ROCK inhibitor family, was also shown to slow disease progression, 

increase survival time and reduce motor neuron loss in a SOD1G93A mouse model of ALS; 

and improve the survival of SMA mice, not by halting motor neuron loss, but by inducing 

beneficial effects on the muscle with preservation of the neuromuscular junction. In the 

particular case of SMA mice the effect on survival was more pronounced with Fasudil than 

with Y-27632 (Bowerman et al., 2010; Bowerman et al., 2012). In our study, Fasudil was able 

to increase axonal outgrowth, but could not increase the survival of neurotrophically-

deprived hESC-motor neurons (Chapter 3.3; discussed below). 

In terms of molecular mechanisms, blockade of the Rho-ROCK pathway is a 

molecular approach demonstrated to enhance the neurite outgrowth of spinal motor 

neurons (Dergham et al., 2002; Forgione and Fehlings, 2014; Fournier et al., 2003; 

Watzlawick et al., 2014; Wu et al., 2009). The activation of the Rho-ROCK pathway leads to 

the collapse of the growth cone and neurite retraction, not only by inducing microtubule 

destabilization through activation of collapsin response mediator protein 2 (CRMP2) 

(Watzlawick et al., 2014); but also by interfering with the actin cytoskeleton through 

activation of myosin light chain (MLC) and LIM kinase (LIMK), which in addition causes cell 

contraction and stress fiber formation (Tonges et al., 2011; Watzlawick et al., 2014). Another 

potential target of ROCK activation is phosphatase and tensin homologue (PTEN), whose 

activity has been linked to axonal outgrowth abrogation (Park et al., 2008). The blockade of 

these pathways counteracts the Rho-ROCK-induced inhibition of axonal regeneration 

following spinal cord nerve injury (Watzlawick et al., 2014). 

While the mechanisms underlying increased axonal outgrowth upon ROCK 

inhibition are in part established, the pathways accounting for the survival inducing effect of 

Y-27632 remain elusive. Increased ROCK activation is linked to the activation of cell death 
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pathways and to the cellular events leading to apoptosis, including cell contraction, 

membrane blebbing, nuclear disentanglement and the final fragmentation of apoptotic cells 

into apoptotic bodies (Coleman and Olson, 2002; Shi and Wei, 2007). These mechanisms 

involve the activation of MLC phosphorylation, and actomyosin contraction and seem to be 

caspase-3 dependent (Coleman and Olson, 2002; Julian and Olson, 2014). Thus, Y-27632 

could be contributing to enhanced human motor neuron survival by disrupting some of 

these mechanisms, similarly to its ability to halt the hESC dissociation-induced apoptosis 

(Chen et al., 2010; Ohgushi et al., 2010; Watanabe et al., 2007). However, it remains an open 

question whether Y-27632 is able to induce the survival of hESC-purified motor neuron in a 

ROCK-dependent manner (discussed below). Some pioneer studies have demonstrated 

beneficial effects upon combining Y-27632 with other neurotrophic factors and small 

molecules (Ahmed et al., 2009; Bermel et al., 2009; Lingor et al., 2008). One of those studies 

showed the synergistic actions of Y-27632 combined with CNTF to enhance survival and 

regeneration of retinal ganglion cells under in vitro injury paradigms (Lingor et al., 2008). It 

would be interesting to pursue similar studies involving Y-27632 and other neurotrophic 

factors in hPSC-derived motor neuron cultures. Taken together, the data reported here add 

further evidence for the neuronal protective roles of Y-27632.  

 

4.4. Y-27632 increases human motor neuron numbers likely through a                                     

ROCK-independent mechanism 

Among the eight different small molecules belonging to the ROCK Inhibitor family 

tested (Fasudil, HA-1100, H-1152, GSK429286, SR3677, Thiazovivin, Y-27632 and Y-39983) 

the only compound capable of significantly increasing the number of human motor neurons 

in culture was Y-27632 (mixed survival/proliferation assay and FACS-purified motor neuron 

assay; Chapter 3.3). These results raised questions about the molecular mechanisms 

underlying the effects we observed, especially because Y-39983 is a newer and allegedly 

improved version of Y-27632 and has been linked to a more effective inhibition of the Rho-

ROCK pathway (Tokushige et al., 2007). To address this question further we set up a 

phenotypic 48-hour neurite outgrowth assay given that inhibition of the Rho-ROCK pathway 

has been unequivocally recognized to stimulate neurite elongation in motor axons (Bito et 

al., 2000; Dergham et al., 2002; Fournier et al., 2003; Monnier et al., 2003; Wu et al., 2009). 

Our data showed that all tested ROCK inhibitor molecules stimulated in vitro axonal 
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outgrowth by motor neurons, in agreement with the data from the literature demonstrating 

that all eight molecules inhibit the Rho-ROCK pathway at the concentrations tested (Chapter 

3.3). Our results raise the possibility that the increase in human motor neuron numbers 

induced by Y-27632 is not predominantly linked to the inhibition of the Rho-ROCK pathway. 

A similar conclusion may be extended to the present discovery that Y-27632 is a motor 

neuron survival factor. The observations of Kobayashi and colleagues are striking in this 

context (Kobayashi et al., 2004). They created transgenic mice expressing a dominant-

negative form of ROCK to study the role of the Rho-ROCK pathway in the embryonic 

development of motor neurons in the spinal cord (Kobayashi et al., 2004). They observed 

enhanced motor neuron death both during early and late embryonic stages (Kobayashi et al., 

2004). This suggested that the Rho-ROCK signaling pathway plays a critical role in the 

survival of spinal motor neurons during embryonic development (Kobayashi et al., 2004), 

which is in clear contrast with our observation of the survival promoting effects induced by 

Y-27632 on human embryonic motor neurons. Therefore, it is possible that unknown cellular 

targets or other kinases inhibited by Y-27632 in this concentration range may be involved. 

Two groups have tested in vitro Y-27632 and other protein kinase inhibitors against large 

panels of protein kinases and showed that at 10 μM, besides ROCK, the compound Y-27632 

can robustly inhibit other kinases, namely protein kinase C-related kinase 2 (PRK2), mitogen- 

and stress-activated protein kinase-1 (MSK1), leucine-rich repeat protein kinase-2 (LRRK2) 

and MAP kinase interacting kinase 1 (MNK1) (Davies et al., 2000; Nichols et al., 2009). This 

suggests a third scenario, in which the observed effects of Y-27632 could be linked to the 

concomitant inhibition of several kinases in an exclusive combination. Studies using P8 

mouse cerebellar neurons seem to support this interpretation, since the Y-27632 molecule 

alone elicited a more powerful stimulation of neurite elongation than the siRNA knockdown 

of ROCK1 and ROCK2 alone, PRK2 alone or ROCK1 and ROCK2 in parallel (Darenfed et al., 

2007). Altogether, our results add to the current literature and reinforce the need for a more 

thorough understanding of the molecular pathways affected by Y-27632. If one could 

unravel the detailed plethora of actions of Y-27632 on hPSC-derived motor neurons and 

their progenitor populations we could possibly find ways to more rigorously drive motor 

neuron amplification in vitro.  
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4.5. Translating Y-27632 into the clinic? 

The Rho kinase inhibitors are a class of small molecules displaying pleiotropic and 

wide-ranging beneficial effects across different cell types. As a result, these drugs have been 

explored as therapeutic agents for a panoply of pathologic conditions, including 

hypertensive vascular disease (Antoniu, 2012; Hirooka et al., 2004; Lohn et al., 2009; 

Nishikimi et al., 2007; Satoh et al., 2011), stroke (Li et al., 2009; Rikitake et al., 2005; Satoh et 

al., 2007; Shibuya et al., 2005; Yano et al., 2008), heart failure (Fukui et al., 2008; Satoh et al., 

2011; Wang et al., 2011), cerebral vasospasm associated with subarachnoid haemorrhage 

(Liu et al., 2012; Satoh et al., 2012; Velat et al., 2011; Zhao et al., 2006; Zhao et al., 2011), 

glaucoma (Fukunaga et al., 2009; Waki et al., 2001; Watabe et al., 2011), different forms of 

cancer (Deng et al., 2010; Itoh et al., 1999; Takamura et al., 2001; Takeba et al., 2012), 

erectile dysfunction (Chitaley et al., 2001; Guagnini et al., 2012; Saito et al., 2012) or 

diabetes mellitus (Hammar et al., 2009; Komers, 2011), multiple sclerosis (Sun et al., 2006), 

Parkinson’s disease (Borrajo et al., 2014; Tonges et al., 2012), ALS (Gunther et al., 2014; 

Takata et al., 2013), SMA (Bowerman et al., 2012; Coque et al., 2014), among others. One of 

the compounds belonging to this family is Fasudil, which has been in clinical use in Japan 

since 1995 with promising results in the prevention of the vasospasm associated with 

subarachnoid hemorrhage (Zhao et al., 2006; Zhao et al., 2011). Fasudil was demonstrated 

to be at least as effective as the gold-standard treatment using the putative L-type voltage-

gated calcium channel blocker agent nimodipine (Zhao et al., 2006; Zhao et al., 2011). 

Follow-up surveillance studies have revealed that Fasudil was well tolerated and safe in 

patients with subarachnoid hemorrhage (Zhao et al., 2006; Zhao et al., 2011). Recent clinical 

trials have evaluated whether Fasudil might be a useful therapeutic option for Reynaud's 

phenomenon (ClinicalTrials.gov Identifier: NCT00498615) or improvement of vascular 

function (ClinicalTrials.gov Identifier: NCT00120718, NCT00670202 and NCT01069042). In 

other clinical trials researchers have studied the novel ROCK Inhibitor SAR407899 for Erectile 

Dysfunction (ClinicalTrials.gov Identifier: NCT00914277) and Chronic Kidney Disease 

(ClinicalTrials.gov Identifier: NCT01485900). Together, these pioneer attempts to use this 

class of compounds clinically support the idea they are possibly safe and can be well 

tolerated by patients. Interestingly, a phase 1 clinical trial of safety and efficacy of Fasudil in 

subjects with ALS (ClinicalTrials.gov Identifier: NCT01935518) is actively recruiting patients. 

ALS patients involved in the trial will take Fasudil treatment for 14 days (30 mg twice a day, 
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intravenous); and 3 months later will repeat the same treatment. All the patients will be 

followed up for 6 months and the primary outcome will be the decline rate of ALSFRS-R. It 

remains to be determined whether Y-27632 has a similar safety profile, since it has not been 

tested clinically. The present data suggest that Y-27632 merits a more in-depth pre-clinical 

assessment as a possible therapeutic option in patients suffering from ALS or other forms of 

motor neuron disease. Rationale for this is provided by our observation that Y-27632 is 

capable of promoting the survival of human motor neurons deprived of neurotrophic factors 

for nearly one week and also some previous work using animal models. The already 

described effects of Y-27632 on motor neurons could help to pave the way for clinical trials 

in human patients. However, before one move to this stage comprehensive pre-clinical data 

on the molecular mechanisms, safety and efficacy of the strategy should be acquired. In 

addition, there will be a prerequisite to establish effective, minimally invasive and 

standardized approaches for adequate drug delivery. One concern is that the penetration of 

Y-27632 in the CNS is too low to achieve therapeutic levels and studies on this topic are 

scarce. Interestingly, when used in an in vitro model of blood-brain barrier (BBB), Y-27632 

helped to improve the integrity of the BBB (Allen et al., 2010; Persidsky et al., 2006).  

Together, we exploited ongoing generation of motor neurons in hPSC-specified 

cultures and found Y-27632, a compound that might open new avenues to the study of 

human motor neurons, not only at the bench, but also possibly at the bedside. 

 

4.6. A new robust survival assay using purified human motor neurons opens novel 

avenues for meaningful drug discovery 

The continuous generation of motor neurons in hPSC-derived motor neuron 

cultures described here raises fundamental concerns regarding the interpretation of studies 

relying solely on total cell counts to evaluate neuronal survival over time. We reasoned that 

the most accurate method to study motor neuron survival would be to isolate these cells 

from the non-motor neuron fraction present in the mixed cultures (Chapter 3.1 – Figure 4). 

Our initial attempts involved the direct usage of mitotic inhibitors to halt ongoing 

proliferation in mixed cultures. In our hands, the strategy was demonstrated not to be 

feasible since the compounds would induce toxic effects in the mixed cultures: cytosine 

arabinoside (AraC) was shown to be toxic to human motor neurons, while the less toxic 

uridine/fluorodeoxyuridine (U/FDU) led to clumping of neuronal cells on remaining islands of 
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dying proliferative cells (not shown). Therefore, we took advantage of the HB9::GFP reporter 

line (Di Giorgio et al., 2008) and used FACS to purify the GFP-positive motor neurons 

(Placantonakis et al., 2009; Singh Roy et al., 2005). In each experiment, the pool of cells 

utilized was maximized beforehand through amplification of motor neuron numbers using Y-

27632 supplementation for nearly 3 days (Chapter 3.1 – Figure 4). Using this approach we 

could develop a robust 7-day motor neuron survival assay and for the first time show that 

well-established neurotrophic factors (GDNF, BDNF and CNTF; Chapter 3.1 – Figure 5), 

similarly to rodent and chick neurons, can enhance the survival of human motor neurons 

(Gould and Enomoto, 2009; Gould and Oppenheim, 2011; Henderson et al., 1998; Kanning et 

al., 2010). Also, in line with previous studies we could demonstrate that supplementation of 

the cultures with compounds like Forskolin and IBMX (Hanson et al., 1998; Montoya et al., 

2009), which induce an increase in the endogenous levels of cAMP, could strongly potentiate 

the effect of all neurotrophic factors tested [significant effects for GDNF and IGF-1 (not 

shown)] and improve the survival of human motor neurons Chapter 3.1 – Figure 5). In 

addition, using this novel survival assay we could demonstrate a motor neuron survival-

promoting effect for Y-27632 Chapter 3.1 – Figure 6). Only by adopting a purification 

strategy can the confounding effects of ongoing neurogenesis and other indirect signalling 

mechanisms be overcome. Indeed, historically, the discovery of motor neuron survival 

factors was a slow process and the first discoveries were only made once purified 

preparations of primary motor neurons became available. To our knowledge this is the first 

motor neuron survival assay utilizing an almost pure population of human motor neurons.  

During the preparation of this Thesis, other groups published human motor neuron 

survival assays based on purified human motor neurons (Egawa et al., 2012; Yang et al., 

2013). One survival assay that has captured the attention of the scientific community was 

developed by the Rubin group at Harvard University (Yang et al., 2013). They used FACS-

purified motor neurons to conduct survival experiments, however those experiments 

required a mouse astrocyte monolayer as substrate and blockage of cell proliferation with 

AraC (Yang et al., 2013), which was demonstrated to be cytotoxic in our hands. The purified 

hPSC-derived motor neurons were cultivated for nearly 20 days after purification: the first 6 

days supplemented with a cocktail of neurotrophic factors (20 ng/mL BDNF, GDNF and CNTF) 

and the remaining 14 days in the absence of neurotrophic factor supplementation (Yang et 

al., 2013). This assay led to the discovery of kenpaullone, a dual inhibitor of GSK-3 and HGK 
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kinases, which was shown to promote the survival of both hESC-derived motor neurons and 

patient-specific hiPSC-derived motor neurons harbouring SOD1 mutations (Yang et al., 

2013). However, the effects of the drug on the astrocyte monolayer could not be isolated, in 

contrast to the survival assay developed in this Thesis (Chapter 3.1 – Figure 4). Nevertheless, 

the work by the Rubin group represented one of the first successful attempts to use human 

pluripotent stem cells to find candidate drugs to treat motor neuron disorders (Yang et al., 

2013). In addition, their approach is a remarkable example of future “preclinical testing in 

the dish”, since they tested other candidate drugs like dexapramipexole, which showed 

promising results in mouse models, but failed to increase the survival of human motor 

neurons carrying SOD1 mutations in their study (Yang et al., 2013). 

One important challenge for in vitro studies involving hPSC-derived motor neurons 

is to characterize the maturity of the cells used in the assays. It is anticipated that the 

generation of human cells which more closely resemble the cell type of interest will possibly 

yield data which is more relevant from the biological point of view. The dependence on 

neurotrophic factors is acquired over time during embryogenesis (Mettling et al., 1995). The 

amplified and purified human motor neurons we used in this work were responsive to 

neurotrophic factors and, therefore the stage of maturation of those motor neurons is 

comparable to mid-embryonic period in mice. Therefore, novel strategies to efficiently 

enhance the maturation of hPSC-motor neurons are needed to generate human motor 

neurons which are alike adult motor neurons. Nevertheless, we anticipate that the survival 

assay we developed during this Thesis based on purified human motor neurons might soon 

constitute a powerful tool for drug screens to identify compounds which are 

neuroprotective for human motor neurons.  

In this regard, a parallel can be established with the experience using rodent and 

chick primary motor neuron cultures during the 1990’s. Nearly two decades ago in a rather 

similar approach motor neuron researchers used purified chick and rodent primary motor 

neurons to identify a myriad of neurotrophic factors which could keep embryonic motor 

neurons alive and which were later shown to have protective roles in animal models of the 

motor neurodegenerative disease ALS (Bar, 2000; Beck et al., 2001; Gouin et al., 1993; 

Henderson et al., 1993a; Henderson et al., 1993b; Henderson et al., 1993c; Henderson et al., 

1994; Pennica et al., 1996; Sendtner et al., 2000). To add further to the relevance of the 

human motor neuron survival assay we developed here, a few years ago the French-based 



122 
 

biopharmaceutical company Trophos using primary rodent motor neurons developed a 

similar assay and tested tens of thousands of small molecules to find neuroprotective 

compounds for motor neurons (Bordet et al., 2007). TRO19622 (Olexosime) was the most 

promising small molecule identified in that large-scale screen (Bordet et al., 2007). The 

preclinical studies showed that through interactions with the mitochondrial permeability 

transition pore (mPTP) the compound was capable of eliciting robust survival effects in 

neuronal populations under injury conditions (Bordet et al., 2007; Martin, 2010). The drug 

was further developed and clinical trials were conducted recently in Europe for ALS and SMA 

(ClinicalTrials.gov Identifier: NCT00868166 and NCT01285583 for ALS; NCT01302600 for 

SMA). In a phase III clinical trial for ALS the compound failed to demonstrate a significant 

increase in survival versus placebo (ClinicalTrials.gov Identifier: NCT00868166 and 

NCT01285583). However, this year the company announced promising results regarding the 

possible use of Olexosime as a therapeutic strategy in SMA patients. The data gathered from 

the phase II clinical trial conducted for type II and type III SMA patients (ClinicalTrials.gov 

Identifier: NCT01302600) demonstrated an enhanced preservation of motor function upon 

Olexosime treatment, combined with fewer adverse events when compared to placebo. 

Together, these results have raised the hope that Olexosime could soon become the first 

ever available treatment developed specifically for SMA patients. We therefore succeeded in 

developing a strategy and an assay based on an almost pure population of motor neurons 

which allow us not only to study survival of human motor neurons, but also to possibly test 

thousands of compounds under optimized conditions.  

 

4.7. Purification of hPSC-motor neurons allows the development of robust assays to 

study pathological and non-pathological conditions involving human motor neurons 

The strategy developed in this work to maximize motor neuron yields from hPSC-

derived motor neuron cultures coupled with the capacity to safely purify human motor 

neurons to create robust conditions to develop reproducible assays has opened far-reaching 

possibilities regarding the study of conditions which affect motor neurons. In collaborative 

experiments performed with other colleagues in the laboratory we were able to 

demonstrate the marked axonal outgrowth promoting capacities of statins to human motor 

neurons (Chapter 3.4), even in the presence of well-known inhibitory substrates for 

regeneration (myelin and chondroitin sulfate proteoglycans) (Domeniconi and Filbin, 2005; 
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Filbin, 1995; Gopalakrishnan et al., 2008; Grados-Munro and Fournier, 2003; Monnier et al., 

2003; Morgenstern et al., 2002; Nash et al., 2009). These human studies followed the initial 

identification of simvastatin as the most robust hit compound from a 50,000 small molecule 

screen performed using mESC-motor neurons to find new compounds that promote motor 

axon elongation (Chapter 3.4).  

Epidemiological studies have proposed the organophosphate pesticides as motor 

neuron death triggering agents in patients (Kamel et al., 2012; Malek et al., 2012; McGuire et 

al., 1997; Saeed et al., 2006; Slowik et al., 2006) and the survival assay we developed here 

has allowed the evaluation of this association in vitro using human motor neurons derived 

from hPSCs (Prissette, M. et al., in preparation). We took advantage of the robust assay we 

developed in the current work to study the direct and indirect toxic effects of pesticides in 

an almost pure population of human motor neurons.  

Finally, we were able to further amplify the usage of the assay and develop a robust 

co-culture platform with hPSC-astrocytes, which we predict will translate into insights 

regarding the role of motor neuron-astrocyte interactions in physiologic and disease 

contexts (Roybon et al., 2013). 

Thus, the purification strategy for human motor neurons and the assay developed 

during this work has allowed not only studies on the survival of human motor neurons, but 

also to perform a panoply of other relevant experiments which we hope will lead to a better 

understanding of physiologic/disease contexts involving human motor neurons and also 

opens the prospect of identifying drugs with real clinical impact on motor neuron disease.  

On the disease modelling perspective, if better strategies of motor neuron 

purification could be coupled with the proposed Y-27632 expansion of hiPSC-motor neuron 

cultures, larger pools of human motor neurons from healthy and diseased donors could be 

studied. The possibility of using hiPSC-derived cells to compare healthy controls and patient 

specific-purified motor neurons will possibly lead to the establishment of robust in vitro 

disease-related phenotypes (for example, altered survival, shorter neurites, increased 

protein aggregation), which can easily be explored in robust assays to be assessed in 

unbiased, high-throughput drug screening campaigns. However, it remains to be determined 

if the pro-neurogenic and pro-survival capacities displayed by Y-27632 can possibly mask in 

vitro disease phenotypes in cultures derived from patients with motor neuron disease. In the 

case of motor neurodegenerative disorders, the relevant molecular hits resulting from here 
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will possibly be more clinically meaningful, because they are tested in human cells; which 

could result into a more rapid translation into effective therapeutic strategies. It is important 

to highlight that some of the compounds available in the libraries are already approved by 

FDA and EMA for human use, opening the prospect for a more rapid translation into an 

effective strategy in case the in vitro data is shown to be promising. In addition, the access to 

large quantities of purified motor neurons from controls and patients allow the investigation 

of disease mechanisms which cannot be revealed by studying postmortem samples, 

including cellular events that maybe take place before overt disease is evident. 

Ultimately, it is possible that the body of work generated using these purified motor 

neurons can soon be translated to other neuronal populations and to the study of other 

neurological disorders.  

 

4.8. Human ADSCs are potentially an alternative source of patient-specific stem 

cells, whose cultivation is not enhanced upon exposure to Y-27632 

Human ADSCs have been proposed in the past decade as an accessible potential 

source of personalized stem cells, especially because these stem cells are simple to isolate 

and to grow in vitro (Gimble and Guilak, 2003). Here, in order to better understand the 

mechanisms that regulate their survival and proliferation, we studied the effect of Y-27632 

on the cultivation of those multipotent stem cells (Chapter 3.5). Unlike the pro-proliferative 

and pro-survival effects described for hPSC-derived motor neuron cultures and other stem 

cell types (discussed above), the supplementation of hADSCs cultures with Y-27632 was 

shown not to increase the plating efficiency of hADSCs and also failed to enhance the 

expansion of this type of human adult stem cells (Chapter 3.5). Interestingly, we were able 

to propose a novel stem cell type in which Y-27632 supplementation does not constitute a 

successful strategy to improve its culture. It will be interesting to further unravel thoroughly 

the cellular mechanisms accounting for the heterogeneous behavior of different stem cell 

types upon Y-27632 treatment. In light of the new knowledge on how to efficiently commit 

hPSCs into neural tissue, one can anticipate that parallel strategies can possibly be explored 

to drive hADSCs towards a neural fate. Ultimately, these fat-derived stem cells can 

constitute a reliable novel source of personalized human motor neurons.  
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5.1. CONCLUSION 

Human pluripotent stem cells (hPSCs) have opened new paths of innovation and 

enthusiasm in developmental biology, drug discovery and disease modelling. However, much 

work remains to be done before we can exploit the complete potential of these unique cells. 

Here, we showed that Y-27632 can be utilized to amplify the ongoing birth of motor neurons 

in hPSC cultures and considerably increase the production of human spinal cord motor 

neurons specified from hPSCs. Combining the Y-27632-induced increase in motor neuron 

numbers with FACS purification we could develop a robust assay to test survival promoting 

molecules in a refined population of human motor neurons. It is our hope that the work 

reported in this thesis will lead to reliable and robust human motor neuron assays to 

evaluate survival and toxicity, electrophysiological studies and analysis of disease 

phenotypes using patient-specific hiPSC-derived motor neurons.  

Contrarily, in hADSCs, which constitute a possible new source of personalized stem 

cells, the supplementation of cultures with Y-27632 was not linked to a pro-survival and pro-

proliferation effect. Accordingly, Y-27632 was demonstrated to be detrimental to the culture 

of these multipotent stem cells and, thus, we could propose hADSCs as a cell type 

uncommonly negatively affected by the presence of Y-27632. 

Finally, the methods developed in the current work and reported here should be of 

global interest and general application for everyone using human stem cells to study healthy 

and disease-specific cell types.  

 

In brief, the novel aspects reported here are: 

> Ongoing motor neuron birth in spinal cord cultures specified from hESCs/hiPSCs. 

 

> The continuous generation of motor neurons is a potential confound for motor neuron 

survival studies using mixed post-mitotic/neuronal progenitor cultures. 

 

> Y-27632 increases the yield of human motor neurons from hESCs and hiPSCs lines, 

probably through the enhanced stimulation of proliferation of motor neuron progenitors.  

 

> Y-27632 is likely to enhance motor neuron generation through a ROCK-independent 

mechanism. 
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> Y-27632 promotes the survival and neurite outgrowth of purified hESC-motor neurons. 

 

> Human motor neurons amplified with Y-27632 can be purified by FACS and used in 

reproducible survival assays to reveal a marked response to well-known neurotrophic 

factors. 

 

> The survival and proliferation of the multipotent human ADSCs is unexpectedly not 

enhanced upon Y-27632 supplementation.  

 

 

 

5.2. OUTSTANDING QUESTIONS AND FUTURE PERSPECTIVES 

In addition to the findings summarized above this thesis opened novel research 

avenues and raised many outstanding questions worth thoroughly pursuing in future 

studies. Some that merit a comprehensive evaluation are: 

 

1. We documented continuous motor neuron birth in dissociated Day 31+ hPSC-derived 

motor neuron cultures. Is this a consequence of the extended period of neurogenesis in 

humans? Or is this a consequence of the current inability of protocols to efficiently specify a 

pure motor neuron population and/or mature cell types from hPSCs? Or does it reflect an 

unintentional aspect of the specific culture conditions used? Longer periods of motor neuron 

differentiation from hPSCs will possibly help addressing some of these questions. On the 

other hand, we could aim to conduct successive passaging experiments and assess whether 

we can exhaust progenitor populations in the cultures differentiated from hPSCs. Another 

interesting and fundamental experiment would be the purification of progenitors from 

mouse and human to compare their intrinsic properties in identical conditions. 

 

2. The 160-compound screening approach employed here using mixed cultures led to the 

discovery of Y-27632, which displayed a marked capacity to increase human motor neuron 

numbers in culture. If it were possible to devise a shorter, more robust assay, it would be 

interesting to increase the number and range of compounds to screen in single wells, so that 

we could possibly find other small molecules displaying relevant characteristics in hPSC-

derived motor neuron cultures. 
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3. We have demonstrated that the number of Olig2-positive progenitor cells increases over 

time in the presence of Y-27632. Does Y-27632 help to drive the specification of Olig2 

lineage from an early precursor? Does the compound increase the survival of Olig2 cells over 

time? Does Y-27632 enhance self-renewal mechanisms in these neural progenitor cells? 

Detailed characterization of the mechanism underlying the expansion of Olig2 populations in 

the presence of Y-27632 is of major developmental relevance and might origin clinical 

translatable knowledge. One can answer several of these questions by taking advantage of 

the recently developed Olig2::GFP hESC line (Liu et al., 2011). 

 

4. The exact molecular mechanisms through which Y-27632 induces an increase in the 

number of human motor neurons remain elusive. The comprehensive characterization of the 

underlying molecular mechanisms will be of fundamental value to design newer drugs that 

can more rigorously drive motor neuron generation. Is it possible that Y-27632 is leading 

other cell types to secrete molecules that later act in motor neurons and their progenitors? 

It would be relevant to analyse the secretome (Pavlou and Diamandis, 2010; Salgado et al., 

2010; Suk, 2010) of these cultures in the presence and absence of Y-27632. 

 

5. Supplementation of cultures with EGF and FGF-2 is a well-established procedure and has 

been the gold standard approach to expand several populations of neuronal progenitors 

(Caldwell et al., 2004; Ciccolini and Svendsen, 1998; Conti et al., 2005; Ostenfeld and 

Svendsen, 2004; Pastrana et al., 2011; Pollard et al., 2009). However, it remains unclear 

whether EGF + FGF-2 are able to robustly expand human motor neuron progenitors; and if Y-

27632 is a more reliable strategy than EGF + FGF-2 at expanding those motor neuron 

progenitor cells. 

 

6. Human motor neurons grown in the absence of neurotrophic factors were rescued from 

death upon supplementation with Y-27632 in a dose-dependent manner. What are the 

mechanisms behind the survival effect induced by Y-27632? Is it the same mechanism 

already proposed for the survival promoting effects of Y-27632 in dissociated hPSCs? (Chen 

et al., 2010; Ohgushi et al., 2010; Ohgushi and Sasai, 2011) Detailed characterization of these 

mechanisms with metabolomic and genomic profiling of motor neurons grown with and 
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without Y-27632 will be of fundamental value to design newer drugs that can halt motor 

neuron death.  

 

7. While all eight ROCK inhibitor molecules tested elicited axonal outgrowth, only Y-27632 

was capable of inducing motor neuron increases in mixed cultures and promote survival of 

purified and neurotrophically deprived human motor neurons. This suggests that the motor 

neuron increasing effects of Y-27632 are ROCK-independent. Can we test other specific 

inhibitors of the kinases that Y-27632 is likely to be inhibiting at the concentration used and 

evaluate whether the effects observed are induced through other signalling pathways? 

 

8. In the current work 8 different commercially available ROCK inhibitor molecules were 

tested under identical conditions and using the same assays, which is probably the most 

complete study performed so far using this class of compounds. It would be interesting to 

additionally test other molecules in the family which have recently become publicly 

available, namely SAR407899, GSK269962, SB772077B dihydrochloride, RKI 1447 

dihydrochloride, AS 1892802 and SLX-2119.  

 

9. The effects induced by Y-27632 in the hPSC-derived motor neuron cultures can be of 

potential relevant application in other forms of neuronal and non-neuronal cultures 

specified from hPSCs. It would be pertinent to evaluate whether Y-27632 can lead to similar 

results in hPSC-derived cultures of dopaminergic neurons, cardiomyocytes or pancreatic β-

cells, for example. 
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