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omAbstra
tMeasuring tail dependen
e is an important issue in many applied s
i-en
es in order to quantify the risk of simultaneous extreme events. A usualmeasure is given by the tail dependen
e 
oe�
ient. The 
hara
teristi
sof events behave quite di�erently as these be
ome more extreme, whereaswe are in the 
lass of asymptoti
 dependen
e or in the 
lass of asymptoti
independen
e. The literature has emphasized the asymptoti
 dependent
lass but wrongly infer tail dependen
e will result in the over-estimationof extreme value dependen
e and 
onsequently of the risk. In this paperwe analyze this issue through simulation based on a heuristi
 pro
edure.keywords: tail dependen
e, asymptoti
 independen
e, extreme value theoryAMS 2000 Subje
t Classi�
ation Primary: 60G70; Se
undary: 62G321 Introdu
tionThe degree of asso
iation between 
on
urrent rainfall extremes at di�erent lo-
ations may lead to a better understanding of extreme rainfall events, a veryimportant matter due to their severe impa
ts on the e
onomy and the envi-ronment. The globalization and an absen
e of market regulation in
reased thedependen
e between �nan
ial asset returns and thus the risk of simultaneous
rashes. Pearson's 
orrelation is not an appropriate measure of dependen
ewhenever extreme realizations are important. It gives the same weight to ex-treme values as for all of the other observations and the dependen
e 
hara
-teristi
s for extreme realizations may di�er from all others in the sample. Formore details, see e.g. Embre
hts et al. ([5℄, 2002). The most used measure of1



2tail dependen
e is the so 
alled tail dependen
e 
oe�
ient (TDC), a 
on
eptintrodu
ed by Sibuya ([18℄, 1960), whi
h is de�ned as follows:
λ = lim

t↓0
P (F2(X2) > 1− t|F1(X1) > 1− t), (1)where F1 and F2 are the distribution fun
tions (d.f.'s) of the random variables(r.v.'s) X1 and X2, respe
tively, whi
h are 
onsidered 
ontinuous. Observe thatthe TDC 
an also be formulated through the 
opula fun
tion introdu
ed bySklar ([19℄, 1959). A 
opula fun
tion C is a d.f. whose marginals are standarduniform, i.e., if C is the 
opula fun
tion of (X1, X2), having joint d.f. F , then

F (x1, x2) = P (F1(X1) ≤ F1(x1), F2(X2) ≤ F2(x2)) = C(F1(x1), F2(x2))and thus
λ = 2− lim

t↓0

1− C(1 − t, 1− t)

t
. (2)If 0 < λ ≤ 1, the r.v.'s X1 e X2 are said to be tail dependent whose degreeof dependen
e is measured through λ (λ = 1 means total dependen
e in thetail). The 
ase λ = 0, 
orresponds to asymptoti
 independen
e in the tail.However, as noti
ed in Ledford and Tawn ([12, 13℄, 1996/1997), it may o

ur aresidual tail dependen
e 
aptured through the 
onvergen
e rate of P (F1(X1) >

1− t, F2(X2) > 1− t) towards zero, as t ↓ 0. More pre
isely, 
onsidering
P (F1(X1) > 1− t, F2(X2) > 1− t) = t1/ηL(t), (3)where L is a slow varying fun
tion at 0, i.e., L(tx)/L(t) → 1, as t ↓ 0 and x > 0.The parameter η ∈ (0, 1], known as Ledford and Tawn 
oe�
ient, measures theresidual tail dependen
e and the fun
tion L the relative strength of dependen
egiven a parti
ular value of η. Observe that η = 1 and L(t) 
onverging tosome positive 
onstant 
orresponds to tail dependen
e (λ > 0), whilst η < 1means tail independen
e. If η = 1/2 we have (almost) perfe
t independen
e(perfe
t if L(t) = 1), and for 0 < η < 1/2 or 1/2 < η < 1 we have asso
iation,respe
tively, negative (i.e., P (F1(X1) > 1 − t, F2(X2) > 1 − t) < P (F1(X1) >

1− t)P (F2(X2) > 1− t)) or positive (i.e., P (F1(X1) > 1− t, F2(X2) > 1− t) >
P (F1(X1) > 1− t)P (F2(X2) > 1− t)).Relation (3) also means that the fun
tion q(t) = P (F1(X1) > 1−t, F2(X2) >
1− t) is regularly varying (of �rst order) with index 1/η. In Draisma et al. ([4℄,2004), it is 
onsidered a re�nement of this relation under a se
ond order regularlyvarying 
ondition. More pre
isely, it is assumed that the limit
lim
t↓0

(
P (F1(X1) > 1− tx, F2(X2) > 1− ty)

q(t)
− c(x, y)

)
/q1(t) = c1(x, y) (4)exists, for all x, y ≥ 0 and x+ y > 0, with q1(t) → 0, as t ↓ 0, being a regularlyvarying fun
tion of index τ ≥ 0 and c1 a non-
onstant fun
tion and non-multipleof c. It is also assumed that the 
onvergen
e is uniform in {(x, y) ∈ [0,∞[2:

x2+y2 = 1}, that l = limt↓0 q(t)/t exists and, without loss of generality, c(1, 1) =
1. In addition, the fun
tion c is homogeneous of order 1/η, i.e., c(tx, ty) =
t1/ηc(x, y).



3Now observe that,
P (F1(X1) > 1− t, F2(X2) > 1− t) = P

(
W1 >

1

t
,W2 >

1

t

)
,with Wj = (1− Fj(Xj))

−1, j = 1, 2, and hen
e we 
an write
P (W1 > t,W2 > t) = t−1/ηL(t−1). (5)Therefore, η 
orresponds to the tail index of

T = min (W1,W2) , (6)and thus it 
an be estimated as so. This will be addressed in Se
tion 2.An alternative measure for the residual tail dependen
e was introdu
ed inColes et al. ([3℄, 1999). By 
onsidering
P (F1(X1) > 1−t, F2(X2) > 1−t) = [P (F1(X1) > 1− t)P (F2(X2) > 1− t)]1/(2η) ,and applying logarithms to both members, we derive

1

2η
=

logP (F1(X1) > 1− t, F2(X2) > 1− t)

logP (F1(X1) > 1− t) + logP (F2(X2) > 1− t)
,or

χ = 2η − 1 =
2 log t

logC(1− t, 1− t)
− 1, (7)with χ ∈ [−1, 1] and C 
orresponding to the survival 
opula, i.e.,

F (x1, x2) = P (F1(X1) > F1(x1), F2(X2) > F2(x2)) = C(F1(x1), F2(x2)).Observe that χ < 1 means tail independen
e (λ = 0) and if χ = 1, we have taildependen
e (λ > 0). We also have positive and negative asso
iation whenever
χ > 0 and χ < 0, respe
tively, with χ = 0 
orresponding to (almost) exa
tindependen
e. Estimators for λ and χ based on the expressions (2) and (7),respe
tively, will be also presented in Se
tion 2.The behavior of events within the 
lass of asymptoti
 dependen
e is quitedi�erent from the one dete
ted in the 
lass of asymptoti
 independen
e. Bothforms allow dependen
e between moderately large values of ea
h variable, butonly when the variables exhibit tail dependen
e the very largest values fromea
h variable 
an o

ur together. If we wrongly infer tail dependen
e, an over-estimation of the extreme value dependen
e takes pla
e and 
onsequently ofthe risk. This over-estimation is related to the degree of residual dependen
ewhi
h is measured through η or χ. Therefore, it is important to assess whereasa data set presents tail dependen
e or independen
e and to quantify the degreeof dependen
e for the appropriate dependen
e 
lass. This 
an be done throughthe estimation of λ and of η (or χ) together with tests for tail independen
e.These topi
s 
an be found in many referen
es su
h as Huang ([9℄, 1992), Joe([10℄, 1997), Coles et al. ([3℄, 1999), Frahm et al. ([7℄, 2005) and S
hmidt and



4Stadtmüller ([17℄, 2006) for the TDC estimation, Ledford and Tawn ([12, 13℄,1996/1997) and Peng ([15℄, 1999) 
on
erning the estimation of η and Coles etal. ([3℄, 1999) for the χ estimation. The tail independen
e tests 
an be seen in,e.g., Poon et al. ([16℄, 2004) and Draisma et al. ([4℄, 2004).Most of the non parametri
 estimation of extremal parameters requires the
hoi
e of the number k of upper order statisti
s to be used in it. A paradigmati
example is the univariate tail index estimation of regularly varying distributions(for a survey, see Beirlant et al. [1℄ 2012 and referen
es therein). A similarproblem exists for tail dependen
e estimation. In pra
ti
e, we have to deal witha trade-o� between varian
e and bias, sin
e small values of k 
orrespond to largervarian
e whilst large values of k in
rease the bias of the estimators. Figure 1illustrates this issue. Observe that the true value (horizontal line) 
an be inferredfrom a kind of �rst stability region within the sample path of estimators. Inorder to over
ome this problem, Frahm et al. ([7℄, 2005) developed a heuristi
pro
edure where k is estimated based on a simple plateau-�nding algorithmafter smoothing the latter plot by some box kernel. They proposed some valuesfor the bandwidth but no study was 
arried out in order to evaluate possible
hoi
es. In this paper we address this issue through a simulation study, byapplying the heuristi
 pro
edure to nonparametri
 estimators of the TDC. Inaddition, we also analyze the performan
e of the pro
edure when applied tothe estimation of η and χ, as well as, within the 
ontext of the referred tailindependen
e tests (Se
tion 3). An illustration with �nan
ial data is presentedin Se
tion 4. We end with some �nal remarks (Se
tion 5).2 Inferen
e on the extremal (in)dependen
eConsider (X(1)
1 , X

(1)
2 ), . . . , (X

(n)
1 , X

(n)
2 ) independent and identi
ally distributed(i.i.d.) 
opies of the random pair (X1, X2). From (2), it is possible to dedu
ethe estimator (Joe et al., [11℄ 1992):

λ̂SEC = 2− 1− Ĉ(1− k/n, 1− k/n)

k/n
, 1 ≤ k < n. (8)By using log(1 − t) ∼ −t, with t ≈ 0, it 
an be derived the estimator (Coles etal. 1999):

λ̂LOG = 2− log Ĉ(1− k/n, 1− k/n)

log (1− k/n)
, 1 ≤ k < n, (9)where Ĉ denotes the empiri
al 
opula given by

Ĉ(1 − k/n, 1− k/n) =
1

n

n∑

i=1

1
{F1(X

(i)
1 )≤1− k

n ,F2(X
(i)
2 )≤1− k

n }
, 1 ≤ k < n, (10)with 1 denoting the indi
ator fun
tion. If the marginal d.f.'s Fj , j = 1, 2, areunknown, we 
an repla
e them by the empiri
al d.f.'s F̂j , j = 1, 2, respe
tively.For more a

urate estimates, it is 
onsidered

F̂j(u) =
1

n+ 1

n∑

i=1

1
{X

(i)
j ≤u}

, j = 1, 2. (11)



5See Beirlant et al. ([2℄, 2004; Se
tion 9.4.1) for more details. Note that bothestimators depend on the parameter k, the number of upper order statisti
sinvolved in the estimation. The 
hoi
e of k is of major di�
ulty within theseestimators be
ause of the 
ompromise between varian
e and bias explained inthe introdu
tion. To ensure properties as asymptoti
 normality and 
onsisten
yit is ne
essary to assume that k ≡ kn is an intermediate sequen
e, i.e.,
k → ∞ and k/n → 0, as n → ∞(see Huang [9℄ 1992 and S
hmidt and Stadtmüller [17℄ 2006).
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k/nFigure 1: Sample path of estimator λ̂LOG (left) and estimator λ̂SEC (right), plottedagainst k/n, 1 ≤ k < n, 
onsidering n = 1000 realizations of a bivariate Student-t. The horizontal lines 
orrespond to the true values.We have already seen that, by 
onsidering (5), 
oe�
ient η 
orrespondsto the tail index of the r.v. T de�ned in (6). The tail index estimation hasbeen largely exploited in literature and a survey on this topi
 
an be seen in,e.g., Beirlant et al. ([2℄, 2004). The most used estimator within positive tailindexes is the Hill estimator (Hill [8℄ 1975). More pre
isely, 
onsidering in (6)the respe
tive empiri
al 
ounterparts, we have
T

(n)
i = min

(
Ŵ1,i, Ŵ2,i

)
, i = 1, . . . , n (12)with Ŵj,i = (1 − F̂j(Xj,i))

−1 and F̂j given in (11), j = 1, 2, i = 1, . . . , n.Thus, 
onsidering the order statisti
s, T (n)
n:n ≥ T

(n)
n:n−1 ≥ . . . ≥ T

(n)
n:n−k, the Hillestimator for 
oe�
ient η is given by

η̂ =
1

k

k∑

i=1

log
T

(n)
n:n−i+1

T
(n)
n:n−k

, 1 ≤ k < n. (13)Observe that η̂ is also a fun
tion of the parameter k, under the same 
onditionsdes
ribed above and thus, su�ering from the same problem involving the biasand varian
e.



6 Observe that, from the �rst equality in (7), we 
an derive the estimator
χ̃ = 2η̂ − 1,with η̂ given in (13). From the se
ond equality in (7), it is obtained the estimator(Coles et al. 1999)

χ̂ =
2 log(k/n)

log Ĉ(1− k/n, 1− k/n)
− 1, 1 ≤ k < n, (14)where Ĉ denotes the empiri
al survival 
opula,

Ĉ(1 − k/n, 1− k/n) =
1

n

n∑

i=1

1
{F1(X

(i)
1 )>1− k

n ,F2(X
(i)
2 )>1− k

n }
, 1 ≤ k < n. (15)In 
ase the margins are unknown, we 
an repla
e Fj by F̂j , j = 1, 2, given in(11). On
e again, we have dependen
y on the parameter k.In most of the 
ases, the TDC estimators do not behave well under asymp-toti
 independen
e, i.e., whenever λ = 0 (see, e.g., Frahm et al. [7℄ 2005 andFerreira [6℄ 2013). A possible way to deal with this problem is to 
onsiderpreliminar tests for tail independen
e. Poon et al. [16℄ (2002) suggest to test

H0 : η = 1 versus H1 : η < 1, that is, dependen
e versus independen
e, basedon estimator η̂ in (13). Considering k ≡ kn an intermediate sequen
e and un-der some quite general additional 
onditions, we have √k(η− η̂) approximately
N(0, η2), as n → ∞. Thus, we reje
t H0 in favor of H1, at the signi�
an
e level
α, if

η̂ + z1−α
η̂√
k
< 1 (16)where z1−α denotes the (1− α)-quantile of N(0, 1).An analogous test was developed in Draisma et al. ([4℄, 2004), based onrelation (4). More pre
isely, assuming that (4) holds for a fun
tion c with �rstderivatives cx = ∂c(x, y)/∂x and cy = ∂c(x, y)/∂y, and 
onsidering k ≡ knan intermediate sequen
e su
h that √

kq1(q
−1(k/n)) → 0, with n → ∞, then√

k(η̂ − η) is asymptoti
ally Normal with null mean value and varian
e
σ2 = η2(1 − l)(1− 2lcx(1, 1)cy(1, 1)).Consider

l̂ = k
nT

(n)
n:n−k, ĉx(1, 1) =

k̂5/4

n

(
T

(n,k̂5/4)
n:n−k − T

(n)
n:n−k

)with k̂ = k/l̂ and T
(n,u)
n:i , i = 1, . . . , n, the ordinal statisti
s of

T
(n,u)
i = min

(
Ŵ1,i(1 + u), Ŵ2,i

)
, i = 1, . . . , n.De�ning similarly ĉy(1, 1), if (4) holds under the above mentioned 
onditions,then l̂

P→ l, where P→ denotes 
onvergen
e in probability. Moreover, if η = 1,then
ĉx(1, 1)

P→ cx(1, 1), ĉy(1, 1)
P→ cy(1, 1) and σ̂

P→σ,



7where
σ̂2 = η̂ 2(1− l̂ )(1− 2l̂ ĉx(1, 1)ĉy(1, 1)). (17)with η̂ 
orresponding to the Hill estimator of η, given in (13). Therefore, forthe same test hypotheses, we reje
t H0 if

η̂ + z1−α
η̂√
k

√
(1 − l̂ )(1 − 2l̂ ĉx(1, 1)ĉy(1, 1)) < 1. (18)Observe that the varian
e in test (18) in
ludes a 
orre
tness fa
tor when
ompared with the one in (16). This will render its value slightly smaller, mak-ing the test more a

urate under tail independen
e, as shall be seen in thesimulations afterwards.3 SimulationsIn this se
tion we analyze the �plateau-�nding" heuristi
 pro
edure presented inFrahm et al. ([7℄, 2005). A stability on the sample path of the graph (k, λ̂(k)),

1 ≤ k < n, for high thresholds (small values of k) is observed on
e the diagonalse
tion of the 
opula is expe
ted to be smooth in the neighborhood of 1 and the�rst derivative approximately 
onstant. However, in order to de
rease varian
e,
k 
annot be too small. The algorithm proposed in Frahm et al. ([7℄, 2005)aims to identify the plateau, i.e., the stability region whi
h is indu
ed by thehomogeneity. More pre
isely, �rst we smooth the graph (k, λ̂(k)) by a box kernelwith bandwidth w = ⌊bn⌋ ∈ N 
onsisting of the means of 2w + 1 su

essivepoints of λ̂(i), i = 1, . . . , n. Now, in the smoothed moving average values,
λ̂(1), . . . , λ̂(n − 2w), the plateaus with length m = ⌊

√
n− 2w⌋ are de�ned as

pk = (λ̂(k), . . . , λ̂(k +m− 1)), k = 1, . . . , n− 2w −m+ 1. The algorithm stopsat the �rst plateau ful�lling the 
riterium
k+m−1∑

i=k+1

∣∣∣λ̂(i)− λ̂(k)
∣∣∣ ≤ 2σ,with σ 
orresponding to the standard deviation of λ̂(1), . . . , λ̂(n− 2w), and theTDC estimate 
orresponds to

λ̂ =
1

m

m∑

i=1

λ̂(k + i− 1).If no plateau ful�lls the stopping 
ondition, the TDC is estimated as zero.Observe that, if the diagonal se
tion of the 
opula follows a power law, thehomogeneity of λ̂LOG still holds for larger k and larger bandwidths may be 
hosenin order to redu
e the varian
e.We simulate 1000 independent random samples of sizes n = 250, 1000, 2500,from the models:



8
• bivariate Normal with ρ = 0.5 and ρ = 0.85 (λ = 0; η = 0.75, 0.925,respe
tively);
• bivariate Student-t with ρ = 0.5, ν = 1.5 and ρ = 0, ν = 2 (λ =
0.4406, 0.2254, respe
tively; η = 1);

• Logisti
 with dependen
e parameter r = 1/1.56 (λ = 0.4406; η = 1)(Ledford and Tawn [12, 13℄, 1996/1997) ;
• Asymmetri
 Logisti
 with dependen
e parameter r = 1/2.78 and asym-metry parameters t1 = 0.5 and t2 = 0.9 (λ = 0.4406; η = 1) (Ledford andTawn [12, 13℄, 1996/1997);
• Morgenstern with dependen
e parameter r = 0.75 (λ = 0; η = 0.5) (Led-ford and Tawn [12, 13℄, 1996/1997);We apply the algorithm des
ribed above to the tail dependen
e 
oe�
ientsestimated by λ̂SEC, λ̂LOG, η̂ and χ̂, de�ned in, respe
tively, (8), (9), (13) and(14), as well as, to the tail independen
e tests (16) and (18). In the sequel wedenote (16) as test 1 and (18) as test 2. The varian
es within test 1 and test 2,respe
tively, σ̂2

1 = η̂2/k and σ̂2
2 = σ̂2/k with σ̂2 given in (17), are estimated byapplying the algorithm to the plots (k, σ̂2

i (k)), i = 1, 2, but we pi
k the plateauat the same lo
ation of the one given by the respe
tive 
oe�
ient estimation. Inall the 
ases we 
onsider the values b = 0.0025, 0.005, 0.01, 0.015. The boundary
ases of a bivariate Normal with ρ = 0.85 (tail independent model but with
η = 0.925 ≈ 1), and a bivariate Student-t with ρ = 0 and ν = 2 (tail dependentmodel with a very low TDC of 0.2254) are in
luded in simulations in order toassess the robustness of the method.Observe in Figures 2 and 3 that estimators λ̂LOG and λ̂SEC behave quite similar,although the former seems slightly better. The largest bias o

urring for thesmallest sample size is around 0.1 but for the largest one it is 
lose to zero, whi
hindi
ates a good performan
e. The ex
eption relates to the Normal model, inparti
ular the boundary 
ase of ρ = 0.85. In the Normal model with ρ = 0.5, thelargest bias is about 0.2. For small samples is preferably to 
hoose bandwidthswith b = 0.005 or b = 0.01. In all the other simulation results presented here,there are no signi�
ant di�eren
es between the 
onsidered bandwidths.In what 
on
erns estimators η̂ and χ̂, the �rst one is 
learly better (Figures4 and 5). It is also robust within the boundary 
ases of Student-t(ρ = 0,ν = 2)and Normal(ρ = 0.85), for large sample sizes. Observe that the bias and theroot mean squared error results are very 
lose of the ones obtained in Draismaet al. ([4℄, 2004), where k was 
hosen in a range where the overall performan
eseems best through an intensive simulation study. Estimator χ̂ only slightlyoutperforms η̂ in the Normal model for n = 250. The proportion of samples inwhi
h tail dependen
e (η = 1) is reje
ted at a 5% signi�
an
e level is plottedin Figure 6. The heuristi
 pro
edure has an overall good performan
e in bothtests for large sample sizes. We 
an see that, under tail independen
e, test 2outperforms test 1 as expe
ted (see Se
tion 2), whereas in the tail dependent
ase, test 1 is slightly better. However, they do not seem to be robust given theresults within the above mentioned boundary 
ases, parti
ularly in the Normal
ase.



94 An appli
ation: dependen
e of large losses withinsto
k marketsWe 
onsider �ve years of negative daily log-returns (from 1996 to 2000) of Intel(INTC), Mi
rosoft (MSFT) and General Ele
tri
 (GE) sto
ks, whi
h amountsto a sample size n = 1262. These data were analyzed in M
Neil et al. ([14℄,2005; Chapter 5). We aim to quantify the degree of a 
ontagious risk of largelosses within (INTC,MSFT), (INTC,GE) and (MSFT,GE), i.e., to investigate ifthe pairs (INTC,MSFT), (INTC,GE) and (MSFT,GE) present tail dependen
eor independen
e and quantify the respe
tive degree of extremal dependen
e.As a preliminary step, we analyze the s
atter plots in Figure 7. Observe thatthe largest values for one variable 
orrespond to moderately large values of thesame sign for the other variable, insinuating the variables are asymptoti
allyindependent but not perfe
tly. In Table 1 are the estimates of η̂, σ̂1, σ̂2, χ̂, λ̂SECand λ̂LOG. The results 
orrespond to b = 0.005, whi
h are very 
lose to the onesobtained with the other bandwidths (b = 0.0025, 0.01, 0.015) and thus omitted.Both tests reje
t dependen
y in (INTC,MSFT) and (INTC,GE). Observe thesmall values provided by the TDC estimators. In the 
ase (MSFT,GE), test 2reje
ts the dependen
e 
ondition and test 1 does not reje
t it for very little. Thevalues of λ̂SEC and λ̂LOG are also small indi
ating that tail independen
e may bea more plausible 
on
lusion. Therefore, we �nd that the 
ontagious risk of largelosses is residual, parti
ularly in the 
ase (INTC,GE).Table 1: Estimates of η̂, σ̂1, σ̂2, χ̂, λ̂SEC and λ̂LOG, for (INTC,MSFT), (INTC,GE)and (MSFT,GE), with b = 0.005.
η̂ σ̂1 σ̂2 χ̂ λ̂SEC λ̂LOG(INTC,MSFT) 0.7321 0.0224 0.0149 0.5741 0.2629 0.2489(INTC,GE) 0.5549 0.0065 0.0042 0.3040 0.0551 0.0372(MSFT,GE) 0.7300 0.0321 0.0241 0.3808 0.1762 0.16135 Final remarksIn this paper we address the tail dependen
e inferen
e problem sin
e it is im-portant to distinguish the type of tail dependen
e in order to 
orre
tly evaluatethe risk of simultaneous extreme events. Most of the non parametri
 estimatorshave to deal with the 
hoi
e of the number k of order statisti
s to 
onsider inthe produ
tion of an estimate. This is not an easy task sin
e it requires a trade-o� between varian
e and bias (small values of k 
ause large varian
e and largevalues of k in
rease the bias). An optimal 
hoi
e of k that leads to the smallestmean squared error is di�
ult to derive and in pra
ti
e, this is frequently solvedthrough intensive simulation studies (see, e.g., Draisma et al. [4℄, 2004). Thisis also a very 
ommon problem in the estimation of the tail index, a parame-ter of major importan
e within extreme value theory (see, e.g., Beirlant et al.[1℄ 2012 and referen
es therein). Sin
e the non parametri
 estimators yield a
hara
teristi
 plateau while plotting the estimates for su

essive k, Frahm et al.



10([7℄, 2005) introdu
ed a simple plateau-�nding algorithm after smoothing thelatter plot by some box kernel in order to �nd the optimal threshold k. Here wehave applied this heuristi
 pro
edure to estimators of the TDC in (1), as wellas estimators of the tail independen
e su
h as the Ledford and Tawn 
oe�
ient
η in (3) and 
oe�
ient χ in (7), for several box kernel bandwidths. We havealso analyzed this methodology in two tests for tail independen
e given in (16)and (18). We 
on
lude that the pro
edure has an overall good performan
e,spe
ially for large samples. Some 
are must be given to the tests as they mightnot be robust, in parti
ular for boundary 
ases within the Normal model. We
all the attention for the very good performan
e of η estimation. We re
all thatit is based on a tail index estimator (Hill estimator) whi
h may be an indi
ationthat this pro
edure 
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Figure 2: Absolute bias of estimator λ̂LOG (�rst 
olumn) and estimator λ̂SEC(se
ond 
olumn). The four values plotted in ea
h line 
orrespond to b =
0.0025, 0.005, 0.01, 0.015, respe
tively.
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Figure 3: Root mean squared error (rmse) of estimator λ̂LOG (�rst 
olumn) andestimator λ̂SEC (se
ond 
olumn). The four values plotted in ea
h line 
orrespondto b = 0.0025, 0.005, 0.01, 0.015, respe
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Figure 4: Absolute bias of estimator η̂ (�rst 
olumn) and estimator χ̂ (se
-ond 
olumn). The four values plotted in ea
h line 
orrespond to b =
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tively.
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Figure 5: Root mean squared error (rmse) of estimator η̂ (�rst 
olumn) andestimator χ̂ (se
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olumn). The four values plotted in ea
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h η = 1 is reje
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