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Abstract

Measuring tail dependence is an important issue in many applied sci-
ences in order to quantify the risk of simultaneous extreme events. A usual
measure is given by the tail dependence coefficient. The characteristics
of events behave quite differently as these become more extreme, whereas
we are in the class of asymptotic dependence or in the class of asymptotic
independence. The literature has emphasized the asymptotic dependent
class but wrongly infer tail dependence will result in the over-estimation
of extreme value dependence and consequently of the risk. In this paper
we analyze this issue through simulation based on a heuristic procedure.
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1 Introduction

The degree of association between concurrent rainfall extremes at different lo-
cations may lead to a better understanding of extreme rainfall events, a very
important matter due to their severe impacts on the economy and the envi-
ronment. The globalization and an absence of market regulation increased the
dependence between financial asset returns and thus the risk of simultaneous
crashes. Pearson’s correlation is not an appropriate measure of dependence
whenever extreme realizations are important. It gives the same weight to ex-
treme values as for all of the other observations and the dependence charac-
teristics for extreme realizations may differ from all others in the sample. For
more details, see e.g. Embrechts et al. ([5], 2002). The most used measure of



tail dependence is the so called tail dependence coefficient (TDC), a concept
introduced by Sibuya ([18], 1960), which is defined as follows:

A= 12&1P(F2(X2)>1—f|F1(X1) >1—7f), (]_)
where F; and F» are the distribution functions (d.f.’s) of the random variables
(r.v.’s) X7 and X», respectively, which are considered continuous. Observe that
the TDC can also be formulated through the copula function introduced by

Sklar ([19], 1959). A copula function C' is a d.f. whose marginals are standard
uniform, i.e., if C' is the copula function of (X1, X5), having joint d.f. F', then

F(x1,22) = P(F1(X1) < Fi(21), F2(X2) < Fa(x2)) = C(F1(71), Fa(z2))

and thus
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If0 < A <1, the r.v.’s Xy e X5 are said to be tail dependent whose degree
of dependence is measured through A (A = 1 means total dependence in the
tail). The case A\ = 0, corresponds to asymptotic independence in the tail.
However, as noticed in Ledford and Tawn ([12, 13], 1996/1997), it may occur a
residual tail dependence captured through the convergence rate of P(Fy(X1) >
1 —1t,F»(X2) > 1—1t) towards zero, as t | 0. More precisely, considering

P(F (X)) >1—t, Fy(Xy) > 1—1t) = tY/"L(t), (3)

where L is a slow varying function at 0, i.e., L(tz)/L(t) — 1,as t | 0 and = > 0.
The parameter 7 € (0, 1], known as Ledford and Tawn coefficient, measures the
residual tail dependence and the function L the relative strength of dependence
given a particular value of 1. Observe that n = 1 and L(t) converging to
some positive constant corresponds to tail dependence (A > 0), whilst n < 1
means tail independence. If n = 1/2 we have (almost) perfect independence
(perfect if L(t) = 1), and for 0 < n < 1/2 or 1/2 < n < 1 we have association,
respectively, negative (i.e., P(F1(X1) > 1 —t, F»(Xs) > 1—1t) < P(Fi(Xy) >
1—t)P(F»(X2) > 1—1t)) or positive (i.e., P(F1(X1) > 1 —t, Fa(X2) > 1—1t) >
P(Fl(Xl) >1— t)P(FQ(X2) >1-— f))

Relation (3) also means that the function ¢(t) = P(F1(X1) > 1—t, F5(X2) >
1 —t) is regularly varying (of first order) with index 1/7. In Draisma et al. (|4],
2004), it is considered a refinement of this relation under a second order regularly
varying condition. More precisely, it is assumed that the limit

; (P(Fl(Xl) S 1 —ta, Fy(Xa) > 1 — ty)
io q(t)

exists, for all z,y > 0 and x +y > 0, with ¢;(¢) — 0, as ¢t | 0, being a regularly
varying function of index 7 > 0 and ¢; a non-constant function and non-multiple
of ¢. It is also assumed that the convergence is uniform in {(z,y) € [0, 00[*:
x?4y? = 1}, that [ = limy o ¢(t)/t exists and, without loss of generality, ¢(1,1) =
1. In addition, the function ¢ is homogeneous of order 1/7, i.e., c(tz,ty) =
t/0¢(x,y).

~ ofa, y>) Jan(®) = er(ey) (@)



Now observe that,

1 1
P(Fl(Xl) >1 —f,FQ(Xg) >1 —f) =P (Wl > ?’W2 > ;) s
with W; = (1 — F;(X;))™1, j = 1,2, and hence we can write
P(Wy>t, Wy >t)=t"Y7L ). (5)
Therefore, 1 corresponds to the tail index of
T = min (Wl, Wg) 5 (6)

and thus it can be estimated as so. This will be addressed in Section 2.

An alternative measure for the residual tail dependence was introduced in
Coles et al. (|3], 1999). By considering

P(Fy(X1) > 1—t, Fy(Xa) > 1—t) = [P(F(X1) > 1 — ) P(Fy(X3) > 1 — )]/ "

and applying logarithms to both members, we derive

1 IOgP(Fl(Xl)>1—75,F2(X2)>1—t)

27 logP(F1(X1) > 1—1t) +1og P (Fa(X2) > 1 —¢)

or

B 2logt
ClogC(1—t,1—1)

L, (7)

X=2n-1

with ¥ € [~1,1] and C corresponding to the survival copula, i.e.,

F(x1,22) = P(F1(X1) > Fi(71), Fa(X2) > Fa(z2)) = C(F1(21), Fa(x2)).

Observe that ¥ < 1 means tail independence (A = 0) and if Y = 1, we have tail
dependence (A > 0). We also have positive and negative association whenever
X > 0 and Y < 0, respectively, with Y = 0 corresponding to (almost) exact
independence. Estimators for A and X based on the expressions (2) and (7),
respectively, will be also presented in Section 2.

The behavior of events within the class of asymptotic dependence is quite
different from the one detected in the class of asymptotic independence. Both
forms allow dependence between moderately large values of each variable, but
only when the variables exhibit tail dependence the very largest values from
each variable can occur together. If we wrongly infer tail dependence, an over-
estimation of the extreme value dependence takes place and consequently of
the risk. This over-estimation is related to the degree of residual dependence
which is measured through 7 or Y. Therefore, it is important to assess whereas
a data set presents tail dependence or independence and to quantify the degree
of dependence for the appropriate dependence class. This can be done through
the estimation of A and of 7 (or X) together with tests for tail independence.
These topics can be found in many references such as Huang ([9], 1992), Joe
([10], 1997), Coles et al. ([3], 1999), Frahm et al. ([7], 2005) and Schmidt and



Stadtmiiller ([17], 2006) for the TDC estimation, Ledford and Tawn ([12, 13],
1996/1997) and Peng ([15], 1999) concerning the estimation of 7 and Coles et
al. ([3], 1999) for the X estimation. The tail independence tests can be seen in,
e.g., Poon et al. ([16], 2004) and Draisma et al. ([4], 2004).

Most of the non parametric estimation of extremal parameters requires the
choice of the number k of upper order statistics to be used in it. A paradigmatic
example is the univariate tail index estimation of regularly varying distributions
(for a survey, see Beirlant et al. [1] 2012 and references therein). A similar
problem exists for tail dependence estimation. In practice, we have to deal with
a trade-off between variance and bias, since small values of k correspond to larger
variance whilst large values of k increase the bias of the estimators. Figure 1
illustrates this issue. Observe that the true value (horizontal line) can be inferred
from a kind of first stability region within the sample path of estimators. In
order to overcome this problem, Frahm et al. ([7], 2005) developed a heuristic
procedure where k is estimated based on a simple plateau-finding algorithm
after smoothing the latter plot by some box kernel. They proposed some values
for the bandwidth but no study was carried out in order to evaluate possible
choices. In this paper we address this issue through a simulation study, by
applying the heuristic procedure to nonparametric estimators of the TDC. In
addition, we also analyze the performance of the procedure when applied to
the estimation of 1 and %, as well as, within the context of the referred tail
independence tests (Section 3). An illustration with financial data is presented
in Section 4. We end with some final remarks (Section 5).

2 Inference on the extremal (in)dependence

Consider (Xl(l), Xz(l)), . (Xl(n), XQ(n)) independent and identically distributed
(i.i.d.) copies of the random pair (X7, X2). From (2), it is possible to deduce
the estimator (Joe et al., [11] 1992):

1-C(L—k/n,1—k/n)

\SEC _ o
k/n ’

1<k<n. (8)

By using log(1 — t) ~ —t, with ¢ = 0, it can be derived the estimator (Coles et
al. 1999):

_logC(1—k/n,1—k/n)
log (1 —k/n)

A6 — 9 L 1<k<n, (9)
where C' denotes the empirical copula given by

n

~ 1
C(L—k/n,1—k/n) =~ z;]l{Fl(X{i))Slfg)F2(Xéi>>§1,%}, 1<k<mn, (10)
with 1 denoting the indicator function. If the marginal d.f.’s F}, j = 1,2, are

unknown, we can replace them by the empirical d.f.’s ﬁj, 7 = 1,2, respectively.
For more accurate estimates, it is considered

~ - ,
=1



See Beirlant et al. ([2], 2004; Section 9.4.1) for more details. Note that both
estimators depend on the parameter k, the number of upper order statistics
involved in the estimation. The choice of k is of major difficulty within these
estimators because of the compromise between variance and bias explained in
the introduction. To ensure properties as asymptotic normality and consistency
it is necessary to assume that k = k,, is an intermediate sequence, i.e.,

k—oo and k/n—0, asn— oo

(see Huang [9] 1992 and Schmidt and Stadtmiiller [17] 2006).
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Figure 1: Sample path of estimator X (left) and estimator ASEC (right), plotted
against k/n, 1 < k < n, considering n = 1000 realizations of a bivariate Student-
t. The horizontal lines correspond to the true values.

We have already seen that, by considering (5), coefficient 7 corresponds
to the tail index of the r.v. T' defined in (6). The tail index estimation has
been largely exploited in literature and a survey on this topic can be seen in,
e.g., Beirlant et al. ([2], 2004). The most used estimator within positive tail
indexes is the Hill estimator (Hill [8] 1975). More precisely, considering in (6)
the respective empirical counterparts, we have

Tl(n) = min (/W\l,iv W\Qﬁi) 5 1= 1, ey n (12)

with W,; = (1 — F;(X,:))"" and Fj given in (11), j = 1,2, i = 1,...,n.
Thus, considering the order statistics, T,g"n) > T,gfln)_l > ... > Tr(:rsz, the Hill
estimator for coefficient 7 is given by
o 1 Tn'n—i+1
= — e e— < .
7 kZlog R 1<k<n (13)
i=1 nn—k
Observe that 7 is also a function of the parameter k, under the same conditions

described above and thus, suffering from the same problem involving the bias
and variance.



Observe that, from the first equality in (7), we can derive the estimator
% = 27/7\ - 15

with 7 given in (13). From the second equality in (7), it is obtained the estimator
(Coles et al. 1999)
2log(k
- og(k/n) 1, 1<k<n, (14)
logC(1 —k/n,1—k/n)

=D

where C denotes the empirical survival copula,

n

=~ 1
C(L—k/n,1—k/n) =~ Z]1{F1(X£i>)>l_§7F2(X§i>)>l_%}, 1<k<n. (15)

=1

In case the margins are unknown, we can replace F; by ﬁj, 7 = 1,2, given in
(11). Once again, we have dependency on the parameter k.

In most of the cases, the TDC estimators do not behave well under asymp-
totic independence, i.e., whenever A = 0 (see, e.g., Frahm et al. [7] 2005 and
Ferreira [6] 2013). A possible way to deal with this problem is to consider
preliminar tests for tail independence. Poon et al. [16] (2002) suggest to test
Hy:n =1 versus H; : n < 1, that is, dependence versus independence, based
on estimator 77 in (13). Considering k = k,, an intermediate sequence and un-
der some quite general additional conditions, we have \/E(n — 1) approximately
N(0,7?), as n — co. Thus, we reject Hy in favor of Hy, at the significance level
a, if

~ n
+2i—a—=<1 16
T2 N (16)
where z;_,, denotes the (1 — a)-quantile of N(0,1).

An analogous test was developed in Draisma et al. ([4], 2004), based on
relation (4). More precisely, assuming that (4) holds for a function ¢ with first
derivatives ¢, = dc(z,y)/0x and ¢, = dc(x,y)/dy, and considering k = k,
an intermediate sequence such that vkq(¢~'(k/n)) — 0, with n — oo, then
V(7 — ) is asymptotically Normal with null mean value and variance

o = n2(1 = 1)(1 — 2lea(1,1)ey (1,1)).
Consider

T=kr™ - Ea,1)=E2 (T("’EW) -1

n-nn—k’ n nin—k nin—k

with & = k/I and Tf:;’“), i=1,...,n, the ordinal statistics of

2

7" = min (Wl,i(l + U)awz,i) ;o= 1em.

Defining similarly ¢,(1,1), if (4) holds under the above mentioned conditions,

then lA£>l, where 5 denotes convergence in probability. Moreover, if n = 1,
then

(L) 5 1,1), 51,1)5¢1,1) and 750,



where
52 =021 —1)(1— 20 ¢,(1,1)¢,(1,1)). (17)

with 7} corresponding to the Hill estimator of 1, given in (13). Therefore, for
the same test hypotheses, we reject Hy if

~

%\/(1 — D)1 -2 e (1,1)8,(1,1)) < 1. (18)

Observe that the variance in test (18) includes a correctness factor when
compared with the one in (16). This will render its value slightly smaller, mak-
ing the test more accurate under tail independence, as shall be seen in the
simulations afterwards.

7/7\"' Zl—a

3 Simulations

In this section we analyze the “plateau-finding" heuristic procedure presented in
Frahm et al. ([7], 2005). A stability on the sample path of the graph (k, /\( ),
1 <k < n, for high thresholds (small values of k) is observed once the diagonal
section of the copula is expected to be smooth in the neighborhood of 1 and the
first derivative approximately constant. However, in order to decrease variance,
k cannot be too small. The algorithm proposed in Frahm et al. ([7], 2005)
aims to identify the plateau, i.e., the stability region which is induced by the
homogeneity. More precisely, first we smooth the graph (k, A(k)) by a box kernel
with bandwidth w = |[bn| € N consisting of the means of 2w + 1 successive
points of X(z), i = 1,...,n. Now, in the smoothed moving average values,
X(l), . ,X(n — 2w), the plateaus with length m = |v/n — 2w]| are defined as
e =k),...,A(k+m —1)), k=1,...,n— 2w —m + 1. The algorithm stops
at the first plateau fulfilling the criterium

k+m—1 _

Z ‘)\ ‘<2U,

1=k+1

with o corresponding to the standard deviation of X(l), e ,X(n —2w), and the
TDC estimate corresponds to

:%iik—i—z—l

If no plateau fulfills the stopping condition, the TDC is estimated as zero.

Observe that, if the diagonal section of the copula follows a power law, the
homogeneity of /\LDG still holds for larger k and larger bandwidths may be chosen
in order to reduce the variance.

We simulate 1000 independent random samples of sizes n = 250, 1000, 2500,
from the models:



e bivariate Normal with p = 0.5 and p = 0.85 (A = 0; n = 0.75,0.925,
respectively);

e bivariate Student-¢ with p = 0.5, v = 1.5 and p = 0, v = 2 (A =
0.4406,0.2254, respectively; n = 1);

e Logistic with dependence parameter r = 1/1.56 (A = 0.4406; n = 1)
(Ledford and Tawn [12, 13], 1996/1997) ;

e Asymmetric Logistic with dependence parameter » = 1/2.78 and asym-
metry parameters t1 = 0.5 and t2 = 0.9 (A = 0.4406; n = 1) (Ledford and
Tawn [12, 13], 1996/1997);

e Morgenstern with dependence parameter r = 0.75 (A = 0; n = 0.5) (Led-
ford and Tawn [12, 13], 1996/1997);

We apply the algorithm descﬁbed above to the tail dependence coefficients
estimated by ASEC) \L0G 77 and %, defined in, respectively, (8), (9), (13) and
(14), as well as, to the tail independence tests (16) and (18). In the sequel we
denote (16) as test 1 and (18) as test 2. The variances within test 1 and test 2,
respectively, o7 = 7)°/k and 63 = 52/k with 52 given in (17), are estimated by
applying the algorithm to the plots (k,52(k)), i = 1,2, but we pick the plateau
at the same location of the one given by the respective coefficient estimation. In
all the cases we consider the values b = 0.0025,0.005,0.01,0.015. The boundary
cases of a bivariate Normal with p = 0.85 (tail independent model but with
7 =0.925 = 1), and a bivariate Student-¢ with p = 0 and v = 2 (tail dependent
model with a very low TDC of 0.2254) are included in simulations in order to
assess the robustness of the method. R

Observe in Figures 2 and 3 that estimators AL% and ASEC behave quite similar,
although the former seems slightly better. The largest bias occurring for the
smallest sample size is around 0.1 but for the largest one it is close to zero, which
indicates a good performance. The exception relates to the Normal model, in
particular the boundary case of p = 0.85. In the Normal model with p = 0.5, the
largest bias is about 0.2. For small samples is preferably to choose bandwidths
with b = 0.005 or b = 0.01. In all the other simulation results presented here,
there are no significant differences between the considered bandwidths.

In what concerns estimators 77 and ?, the first one is clearly better (Figures
4 and 5). It is also robust within the boundary cases of Student-t(p = 0,v = 2)
and Normal(p = 0.85), for large sample sizes. Observe that the bias and the
root mean squared error results are very close of the ones obtained in Draisma
et al. ([4], 2004), where k was chosen in a range where the overall performance
seems best through an intensive simulation study. Estimator ? only slightly
outperforms 7 in the Normal model for n = 250. The proportion of samples in
which tail dependence (n = 1) is rejected at a 5% significance level is plotted
in Figure 6. The heuristic procedure has an overall good performance in both
tests for large sample sizes. We can see that, under tail independence, test 2
outperforms test 1 as expected (see Section 2), whereas in the tail dependent
case, test 1 is slightly better. However, they do not seem to be robust given the
results within the above mentioned boundary cases, particularly in the Normal
case.



4 An application: dependence of large losses within
stock markets

We consider five years of negative daily log-returns (from 1996 to 2000) of Intel
(INTC), Microsoft (MSFT) and General Electric (GE) stocks, which amounts
to a sample size n = 1262. These data were analyzed in McNeil et al. ([14],
2005; Chapter 5). We aim to quantify the degree of a contagious risk of large
losses within (INTC,MSFT), (INTC,GE) and (MSFT,GE), i.e., to investigate if
the pairs (INTC,MSFT), (INTC,GE) and (MSFT,GE) present tail dependence
or independence and quantify the respective degree of extremal dependence.
As a preliminary step, we analyze the scatter plots in Figure 7. Observe that
the largest values for one variable correspond to moderately large values of the
same sign for the other variable, insinuating the variables are asymptotically
independent but not perfectly. In Table 1 are the estimates of 7, 71, 72, X, ASEC
and AP¢. The results correspond to b = 0.005, which are very close to the ones
obtained with the other bandwidths (b = 0.0025,0.01,0.015) and thus omitted.
Both tests reject dependency in (INTC,MSFT) and (INTC,GE). Observe the
small values provided by the TDC estimators. In the case (MSFT,GE), test 2
rejects the dependence condition and test 1 does not reject it for very little. The
values of A\*¢ and AM9¢ are also small indicating that tail independence may be
a more plausible conclusion. Therefore, we find that the contagious risk of large
losses is residual, particularly in the case (INTC,GE).

Table 1: Estimates of 7, 51, 52, X, A°E° and AL for (INTC,MSFT), (INTC,GE)
and (MSFT,GE), with b = 0.005.

n o1 P! X
(INTC,MSFT) 0.7321 0.0224 0.0149 0.5741 0.2629 0.2489
(INTC,GE) 05549 0.0065 0.0042 0.3040 0.0551 0.0372
(MSFT,GE)  0.7300 0.0321 0.0241 0.3808 0.1762 0.1613

/):SEC /):LOG

5 Final remarks

In this paper we address the tail dependence inference problem since it is im-
portant to distinguish the type of tail dependence in order to correctly evaluate
the risk of simultaneous extreme events. Most of the non parametric estimators
have to deal with the choice of the number k of order statistics to consider in
the production of an estimate. This is not an easy task since it requires a trade-
off between variance and bias (small values of k cause large variance and large
values of k increase the bias). An optimal choice of k that leads to the smallest
mean squared error is difficult to derive and in practice, this is frequently solved
through intensive simulation studies (see, e.g., Draisma et al. [4], 2004). This
is also a very common problem in the estimation of the tail index, a parame-
ter of major importance within extreme value theory (see, e.g., Beirlant et al.
[1] 2012 and references therein). Since the non parametric estimators yield a
characteristic plateau while plotting the estimates for successive k, Frahm et al.
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([7], 2005) introduced a simple plateau-finding algorithm after smoothing the
latter plot by some box kernel in order to find the optimal threshold k. Here we
have applied this heuristic procedure to estimators of the TDC in (1), as well
as estimators of the tail independence such as the Ledford and Tawn coefficient
7 in (3) and coefficient X in (7), for several box kernel bandwidths. We have
also analyzed this methodology in two tests for tail independence given in (16)
and (18). We conclude that the procedure has an overall good performance,
specially for large samples. Some care must be given to the tests as they might
not be robust, in particular for boundary cases within the Normal model. We
call the attention for the very good performance of 7 estimation. We recall that
it is based on a tail index estimator (Hill estimator) which may be an indication
that this procedure can also work well within the tail index estimation. This
will be addressed in a future work.
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Figure 2: Absolute bias of estimator A% (first column) and estimator ASEC

(second column). The four values plotted in each line correspond to b =
0.0025,0.005,0.01,0.015, respectively.
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Figure 3: Root mean squared error (rmse) of estimator ALoc (first column) and

estimator ASE¢ (second column). The four values plotted in each line correspond
to b = 0.0025,0.005,0.01, 0.015, respectively.
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Figure 4: Absolute bias of estimator 7 (first column) and estimator X (sec-
ond column). The four values plotted in each line correspond to b =

0.0025,0.005,0.01,0.015, respectively.
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Figure 5: Root mean squared error (rmse) of estimator 7) (first column) and
estimator X (second column). The four values plotted in each line correspond
to b = 0.0025,0.005,0.01,0.015, respectively.
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6: Proportion of samples in which n = 1 is rejected by a 5% test for test

1 (first column) and for test 2 (second column). The horizontal solid lines cor-
respond to 95% confidence (black) and 5% significance (grey). The four values
plotted in each line correspond to b = 0.0025,0.005,0.01, 0.015, respectively.
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