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Abstract

Computing resources have been increasingly growing over the last decade. This fact leads to the increasing

amount of scientific data generated, reaching a I�O bottleneck and a storage problem. The solution of simply

increasing the storage space is not viable, and the I�O throughput can not cope with the increasing number

of execution cores on a system. The scientific community turns to the use of data compression, for both used

storage space reduction, and alleviating the pressure on the I�O by making best use of the computational

resources. We aim to do a comparative study of three distinct lossless compressors, using numeric scientific

data. Selecting gzip and L=4, both general compressors, and FPC a floating-point specific compressor, we

assess the performance achieved by the compressors and their respective parallel implementations. MAFISC

is a adaptive filtering for scientific data compressor, and is briefly put to the test. We present a rather thorough

comparison between the compressors parallel speedup and efficiency and the compression ratios. Using pigz

parallel compression can yield speedup values in an average of 12 for 12 threads, achieving an efficiency close

to one. gzip is the most complete compression algorithm, but L=4 can replace it for faster compression and

decompression, at the cost of compression ratio. FPC can achieve higher compression ratios and throughput

for certain datafiles. MAFISC accomplishes what it proposes to, higher compression ratios, but at the cost of

much increased compression time.
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Resumo

Na ~ltima dpcada tem-se vindo a assistir a um crescimento conttnuo do uso de recursos de computaomo.

Em consequrncia tem tambpm aumentado significativamente a quantidade de dados gerados, em particu-

lar de dados cienttficos, que no final se traduz no estrangulamento da E�S de dados e num problema de

armazenamento. O simples aumento do espaoo de armazenamento nmo p soluomo, nem p posstvel atingir

taxas de transferrncia E�S capazes de lidar com o aumento do n~mero de n~cleos de execuomo dos sistemas

atuais. Assim, a comunidade cienttfica inclina-se para a compressmo de dados, tanto para reduomo de espaoo

de armazenamento utilizado como para aliviar a pressmo sobre a E�S, atravps do melhor aproveitamento

dos recursos computacionais. Nesta dissertaomo fizemos um estudo comparativo de trrs compressores, sem

perdas (lossless), aplicados a dados cienttficos. Selecionados o gzip e L=4, ambos compressores gerais,

e o FPC, espectfico para dados em vtrgula flutuante, avaliamos o desempenho alcanoado pelos mesmos e

suas respetivas implementao}es paralelas. Um outro compressor, MAFISC, para dados cienttficos, baseado

em filtragem adaptativa, foi tambpm brevemente posto j prova. No final apresentamos uma comparaomo

bastante completa entre os ganhos obtidos em velocidade (speedup) e eficirncia dos compressores paralelos

e as taxas de compressmo. Utilizando compressmo paralela com pigz podem obter-se ganhos mpdios de 12

para o speedup, para 12 fios de execuomo (threads), e eficirncia pryxima da unidade. Do estudo desenvol-

vido parece poder-se concluir que o gzip p o algoritmo de compressmo mais abrangente, mas o L=4 pode

substitut-lo quando hi exigrncia de compressmo e descompressmo mais ripidas, j custa de menor taxa de

compressmo. O FPC pode alcanoar taxas de compressmo mais elevadas, para tipos de dados mais restritos.

Pelo seu lado o MAFISC parece cumprir os obMetivos de obter elevadas taxas de compressmo, mas j custa do

aumento significativo do tempo de compressmo.
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Introduction and related work
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1. Introducing the problem and the
motivation

Over this Chapter we introduce in Section 1.1 the current scenario and the problems that have become evident

in the last few years. The motivation in Section 1.2 takes an approach over the possible solutions that can be

created or applied to counter the difficulties, and we finish with Section 1.3 where the obMectives for this work

are written down.

1.1. Introduction

In the last decade the available computing power has been growing accordingly to Moore’s law predictions.

The supercomputing facilities are evolving from the Terascale to the Petascale >1@. As of November 2013 the

top 31 ranked machines in the top500 are above the measured 1 Petaflops1 mark, while four of them are

already past the 10 Petaflops mark. Based on the current expanding rate, it is expected that these systems

hit the 100 Petaflops mark around 2016, and the Exascale near 2020. Accordingly, the Exascale should be

expected to arrive in only six years from now. Due to the increased computing power the generated data

consequently increases, as ”virtual” scientific experiments>2@ are able to produce a larger quantity of numeric

data. Along with it an I�O bottleneck has become evident and it turned into a difficult problem to address,

because I�O throughput has not been able to comply with computing power growth. More and more data

needs to be read�written to and from the storage systems, but the devices that support it struggle to cope with

the demand. As the data also reaches Petascale it too becomes a problem to handle, besides the storage

challenges. Taking into consideration the current struggles faced in supercomputing, a different approach is

mandatory for the coming Exascale computing.

There is a very well-known technique that has been used for the past thirty years, and is now becoming a

prominent part of the solutions that aim to control the data growth problems, and its consequences. We refer

naturally to data compression, and more particularly to scientific-data compression. It can have a positive

impact over these problems as it allows to handle more data by making more effective use of the available

1Petaflop 1× 1015 floating-point operations per second.
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1. Introducing the problem and the motivation

storage space and I�O throughput. Nonetheless, applying compression requires extra computing resources

and time, and while the computing resources usually are readily available, the extra time can be a problem.

This cost depends on how the compression is explored, specifically parallelism can reduce the extra time

(making the best use of the available computation), dedicated hardware can take care of the (de)compression

phases, or in the opposite if the data is slow to decompress - it can be a problem in most of the situations. Using

compression in big portions of data can affect the performance unless it is possible to compress�decompress

progressively. If the data is split when it is going to be distributed, and by applying compression upon its

generation, it can lower the communication costs. In the end it will depend on the available resources, the

compressibility of the data, and the purposes of that same data (to be readily accessed or stored for longer

periods). There are metrics that can be measured to assess the usability, and the possible trade-off, of using

compression.

1.2. Motivation

The motivation for this work comes from the fact that the aforementioned problems are nowhere near being

handled, and that any extra research in them is a valuable addition. By becoming knowledgeable of recent

compression algorithms, such as L=4>3@ and FPC>4@, there is an interest of performing some tests in scientific

data to assess the performance. The interest to evaluate L=4 compressor in a scientific simulation domain

was one of the main motivations. No related work was found to use L=4, or pigz, lz4mt and pFPC (the parallel

versions of the three compressors tested) on a scientific context. The latter is only independently benchmarked

by the authors, i.e. it was not compared with any other compressor. The work in this field seems to be lacking

a comparative study of parallel compressors. The tests will take place using stored data (not in transit through

the network) in the traditional context of reading from the storage device, compressing, and storing it again.

The bottleneck problem worsens with the increasing amount of executing units on a CPU, or other computing

devices, such as GPUs. As more units execute, more data is requested to be accessed or stored concurrently,

but as the available I�O throughput reaches its limit the systems start to starve for data. By supplying the

execution units with compressed data the pressure on the I�O sub-system is alleviated. This happens because

there is less data being transferred to�from RAM, originating from the disk or the network. Additionally, while

the data circulates compressed, the useful data in transit can even be increased. The same happens in the

opposite way, the data compressed in RAM will take less time to be stored on the disk or transmitted to the

network. Therefore it also implies that the data needs to be decompressed before consumed, and that it is

faster than simply waiting for the same uncompressed data. Decompressing and consuming the data should

be the best approach to avoid the necessity of extra RAM memory. Again, in the opposite way, when producing

data and compressing it at the source will have benefits on its transfer to the RAM�disk, when compared to

3



1. Introducing the problem and the motivation

uncompressed data. Another advantage of using compressed data is the direct consequence, and original

purpose, of saving storage space. Even though the storage systems are cheaper every year, the amounts of

data imply a constant investment. Hypothetically, even by simply saving 10� of the storage space, the cut

in monetary costs should be very significant. In a very recent work >5@ the authors report that there could

be savings between 36k½ and 46k½ in tapes annually, by using their compression method in the evaluated

climate computer centre.

Multi-core compression can have a disadvantage of the extra I�O demand it puts on the system. Multiple

execution units (in this case CPU cores) will request to read�write data, putting more pressure on the I�O

sub-system than a single core machine. Nonetheless, it also means that when consuming data there is more

computing power to apply. Parallel execution is a scenario that can provide faster compression for larger input

files.

In this work we assess the usability and possible advantages of using compression when having average

sized volumes of data, with a scientific background, which usually translates to hard-to-compress floating-

point data. It is not in the scope of this work to perform algorithmic analysis, but to evaluate how different

compressors with different purposes can provide some advantages to the scientific computing community.

Our motivation is to focus on the lossless algorithms, as they are still best regarded by scientists than the lossy

counterparts. Nevertheless lossy compression can be one of the best solutions to deal with the increasing size

of data.

1.3. Objectives

The obMectives proposed in this work go in the direction of helping computation scientists that struggle to man-

age the data they produce as well as improve performance. To help with this cause we present a comparative

study of the performance of six, plus one, compressors using real samples of scientific data. The analysis

consists of the three serial implementations of the compressors, and their parallel versions. At the core of our

study is assessing their scalability on the growing multi-core architectures by measuring the parallel speedup

and efficiency, as also verifying the compression ratios achieved. We also briefly test a different approach

that has a stronger focus on data compression by using filters to reduce data entropy, therefore achieving

better compression. All the tested compressors produce recoverable data to the original form, i.e. lossless

compression.

As a first stage it is imperative to build a meaningful group of datasets, with a scientific source, and charac-

terize each file individually. The datafiles should all have the floating-point type, preferably in double precision.

The characterization will consist of statistical information such as number of elements, quantity of unique

4



1. Introducing the problem and the motivation

values, entropy and their randomness.

The second stage is to perform all the tests resultant from the interesting combinations of compressors with

different settings and the datafiles. The measurements should be methodical and performed on a well defined

execution test bench.

In a final stage we pretend to experiment a filtering compressor, that focuses on compression rather than

speed. The tests should be performed using the same datasets and execution hardware. However, this

experiment is somewhat isolated from the other tests because this compressor works on top of a data library.

The last obMective is to do an overall assessment of the tests we are able to execute. Some conclusions should

be achieved from possible advantages or disadvantages of using the tested compressors, their scalability and

compression ratios. The datasets can give us a clue of the best study disciplines to bet on compression.

Future work will be based on the conclusions achieved.

5



2. Related work

Data compression has evolved in different directions since the time where compression ratio was the maMor

metric. Nowadays some favour compression ratio, others compression throughput, and others even opt

for a lossy approach to maximise both ends. The scientific community is very pedantic when it comes to

floating-point data, therefore lossy algorithms are frowned upon and lossless algorithms are the usual choice.

Commonly lossy compression can be applied to visualization data, where the user will not be able do distinguish

between full precision or a integer in a CG (Computer Graphics) animation for example. Even though and as

far as our knowledge goes, parallel data compression has not been frequently used in scientific computations.

The solution for the data growth has been to simply expand storage space, but that is not a viable long-term

approach. Data must be controlled in some way, specially with so much computational resources available

that can help.

Throughout this chapter we cover some of the related work in the area of data compression, usually with

scientific data. The covered works provide algorithms for floating-point data compression, with different pur-

poses, or new ways of using it. Focus goes to lossless implementations, but we still cover the lossy approaches

for two of the compressors. The chapter is organized as follows: lossless compression implementations are

covered in Section 2.2, followed by lossy in Sec.2.3, and by other more unconventional approaches in Section

2.4.

2.1. Compression concepts

Compression ratio (CR) used to be one of the most important characteristic of a compressor. Nowadays

the paradigm is changing substantially, with the arrival of super-fast compression algorithms that sacrifice some

CR for faster execution times. This potentially paves the way for real-time compression, an invisible use of

compression to the user. ProMects such as the Linux kernel module =RAM (formerly known as compcache)

compresses a portion of the data in the RAM memory, and are specially useful for small devices such as

embedded devices (implemented in Android 4.4) and netbooks. L=4, being so fast decompressing, allows for

a real-time utilization, and is used in the most diverse domains. For example, it is used in file systems, operating

systems, search engines, computer games and even in =RAM caching, among others. In-situ compression

6



2. Related work

techniques are on the rise, specially useful in complex computing systems with many shared resources, such

as scientific computing clusters.

Lossy compression can be a very interesting approach to deal with data that does not require full precision.

Scientific data can have multiple purposes depending on the domain and the obMective of the study. While

some data is kept in storage for long periods of time (years) for historical comparison, such as climatic data,

other data can be erased after it goes through filtering and post-processing steps until it reaches the desired

results (i.e. raw data versus meaningful information). This data, after being processed, can have the sole

purpose of visualization, which does not require the full precision as the data that is used for the numeric

calculations. This is a situation that is really dependant on the field and the preferences of the scientists

themselves. With lossy compression still keeping a high level of accuracy, some scientists might be able to

embrace it and end up saving important resources (mostly storage space).

Symmetric or asymmetric compression defines a concept of how the algorithms performs when de-

compressing compared to the compression level used. An algorithm is symmetric when its decompression

time depends on the compression level, or asymmetric when it decompresses independently from the com-

pression parameters used. Choosing higher levels of compression will make the compression slower, which

in turns makes the decompression take more time on a symmetric algorithm. On the opposite, using a higher

level of compression does not increase the decompression time of an asymmetric algorithm, and in fact it can

even accelerate it.

Compression schemes usually refer to a common three step procedure >5@. Many compressors omit

one of these three steps, but when present they are always applied in the following order. Step 1 is a filtering of

the data, and could also be called a redundancy transformation phase. In this step there is a transformation

of the input data, prior to the other phases, that try to lower the entropy of the data and therefore increase

the efficacy of the following phases. General compression algorithms, such as gzip or lzma, do not apply this

transformation phase because they do not know the input data that is fed to them. The second step is the

repetition elimination, in which the algorithms try to identify recurring patterns in the input data and replace

them with small references to previous occurrences of those patterns. Both gzip and L=4 apply this phase,

but FPC does not (it uses a prediction scheme). The third and last phase is the entropy coding, and it is where

each symbol size is reduced by representing the more frequent symbols with the smaller bit representations.

A widely used entropy coder if the Huffman algorithm, which is used in gzip, but not in L=4 or FPC.
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2.2. Lossless compression

In this Section we cover some works using or implementing lossless algorithms, ordered chronologically. We

focus only on the most relevant algorithms for scientific data, or that are novel approaches to compression

ratio and�or speed. Independently of the implementation for each work, being lossless means that the de-

compression is guaranteed to recover all the original bytes, i.e. no information is lost in the compression

process.

DEFLATE is a general lossless data compression algorithm>6@, implemented in gzip, and it uses a com-

bination of the L=77>7@ algorithm and Huffman coding. The decompression algorithm is known as inflate. The

L=77 part of the compressor is responsible for the duplicate string elimination, when looking for the matches

within a sliding window, it stores a match as a back-reference linking to the previous location of that identical

string. An encoded match to an earlier string consists of a length and a distance. The second phase of the

compression is the construction of the Huffman trees, one for the literal�length codes and other for the dis-

tance codes. The Huffman coding is an entropy coder which replaces commonly used symbols with shorter

representations and less commonly used symbols with longer representations. The more likely a symbol has

to be encoded, the shorter its bit-sequence will be.

The ROOT framework specification by Brun and Rademakers >8@, Brun et al. >9@, already contem-

plated support for file compression. It is a framework for data processing, born at CERN, at the heart of the

research on high-energy physics (huge datasets), and was originally designed for particle physics data analysis

and contains several features specific to this field. The approach taken was to compress each ROOT obMect

before being written to a file. The compression is based on a gzip algorithm with nine different levels, being 1

the fastest, set by default, and 9 the highest compression setting. Since gzip is an asymmetric algorithm the

decompression time can be very small compared to the compression time, because it is independent from

the selected compression level. ROOT allows the use of different compression levels per each obMect within a

ROOT file, which gives the users the ability to leverage the compression ratio and compression time. If the data

is hard-to-compress (high random entropy levels) it can be chosen to not compress at all (level 0). Because

a ROOT file is structured like a tree, very much like directories in a file system containing many types of data,

using compression makes sense and allows for good results.

The use of a gzip based compressor, that in turn implements the DEFLATE algorithm (which is an evolution

of original L=77 =iv and Lempel >7@), plus a form of entropy encoding (Huffman coding), did not present

anything new on compression itself. But offering the scientific community a data analysis framework that

applies data compression at its core, while allowing for compression level control, was an important step.
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Delta-compression is implemented by Engelson et al. >10@ as part of a lossless algorithm that packs the

higher-order differences between adMacent data elements. This algorithm focus on the fact that many scientific

datasets represent ever-changing particles properties, therefore it takes into account varying domain steps

(typically time or position). It is described as a simple algorithm that has high performance and delivers high

compression ratio for datasets that change smoothly. In this delta-compression implementation both lossless

and lossy (Sec.2.3) variants can be used. Because it uses correlation between adMacent floating-point values,

it is considered as an alternative to text compressors. Nonetheless it only achieves considerable compression

ratio for smooth data sequences. An array is called smooth if it can be well approximated by the extrapolating

polynomial based on previous values. In the simplest case, a function that has very small changes like a

polynomial of low order, or a constant in the extreme case, will be greatly compressed by the algorithm, for

the extreme case by a single constant value.

For the implementation it is considered how numerical data is represented in memory. A double floating-

point is represented as a 64-bit integer, therefore the arithmetic is made integer. The leading bit-sequences of

the difference result get truncated, being them zeroes for positive or ones for negative numbers, thus reducing

the size by the number of truncated bits. As an example, zeroes in 00000101 can be truncated and only

0101 is stored, effectively saving 4 bits. This approach takes advantage of the fact that the difference between

the elements is small relatively to their own value.

The ALICE experiment>11@ at CERN has one of its main detectors, Time ProMection Chamber (TPC),

producing big amounts of data. Worried to keep the complexity and cost of data storage as low as possible,

Nicolaucig et al. >12@ intended to reduce the volume of data using suitable compression methods. Both lossless

and lossy implementations were tested. The compression applies entropy coding to the differences of the

times in two consecutive bunches (group of adMacent samples coming from the sensor pad), thus reducing the

entropy from the source by exploiting the time correlation present in the TPC data. The compression achieves

practically a compression ratio (CR) of 2, i.e., half the size of the original data. When compared to the general

compressor gzip, this achieves only 1.25 CR using maximum compression level 9. The compression was

tested for a real-time implementation in the system when fully operational. Nicolaucig et al. >12@ report that

the compression system can be easily implemented in real-time, either in DSPs (Digital Signal Processors),

FPGAs (Field-Programmable Gate Array) or ASICs (Application-Specific Integrated Circuit), all specific purpose

hardware. An implementation at the time, using general CPUs, would probably not be effective.

FPC is a lossless compression algorithm for linear streams of 64-bit floating-point data. Its origins come

from Ratanaworabhan et al. >13@ work that implements a differential-finite-context-method (dfcm) prediction

compressor (DFCM), subsequently used in FPC. In >14@ the DFCM algorithm is integrated in a message-passing
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interface (MPI) library1, compressing the messages at the sender and decompressing at the receiver. Tests

achieved between 3� and 98� faster execution times of scientific numeric programs, in the cluster used for

the experiment. In >15, 4@ the FPC compressor is well defined and explained adopting another complementing

predictor (fcm) besides the first dfcm. This compressor faces the specific problem of scientific floating-point

data and proposes an implementation for a fast, lossless, compression algorithm tailored for high-performance

environments where low latencies and high throughput are essential. It is single-pass (i.e. can be used as a

streaming compressor), and delivers good average compression ratio on hard-to-compress 1D numeric data.

The limitation on the input data reduces the chances of adoption in scientific simulations because multi-

dimensional datasets are widely used. A simple and direct approach to this limitation is to convert the multi-

dimensional data to a single dimension, i.e. a single line or column in a text file, or the correspondent binary

stream (covered in Chapter 3). FPC represents a simple algorithm that can be implemented entirely with fast

integer operations, resulting in a compression and decompression time one to two orders of magnitude faster

than other more generic algorithms. The algorithm is designed for 64-bit floating-point values and was stated

to be fast enough to support software-based real-time compression and decompression.

The steps for the algorithm compression are described as follows: it starts by predicting each value in the

sequence and performing an exclusive-or operation (xor) with the actual value. FPC uses two predictors,

dfcm and fcm (both perform table lookups that contain values from previous predictions), which are initialized

with zeroes before starting to be populated in compression or decompression. The best predicted value (i.e.

closer to the actual value) is selected to be used in the xor operation. The closer the prediction is to the

actual value the more sign, exponent and significand bits will be the same (leftmost bits, see Figure 2.1). After

each prediction the predictor tables are updated with the actual double value to ensure that the sequence

of predictions are the same during both compression and decompression. A good prediction results in a

substantial number of leading-zeroes in the calculated difference, which are then encoded by simply using a

fixed-width count. The remaining uncompressed bits are output in the end, after the count of leading-zeroes.

Both the prediction and the xor operation are really fast to compute. The first is a fast hash-table lookup

while the xor is a low level instruction implemented by the CPU. This allows for a very fast compression and

decompression algorithm.

The first iteration, the DFCM>13@ compressor, implements a more sophisticated predictor that stores two

difference values in each table entry, against only one as FPC do, and uses a more elaborate hash function.

However FPC can outperform DFCM on the maMority of the tested scientific datasets used in >13, 15, 4@,

because FPC contains the second predictor that often complements the first. Also it is possible to vary the

predictors table sizes, allowing a trade off between throughput and compression ratio. The scientific datasets

tested by the authors are publicly available, and therefore are used in conMunction with our own datasets in

1Message-passing libraries are used in parallel systems to exchange data between the multiple CPUs executing a given program
(e.g. OpenMPI, MPICH)
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Part II.

In the decompression stage the algorithm starts by reading the predictor identifier and leading-zeros count.

Then the remainder bytes are read and the sequence is extended with the zeroes to reach a full 64-bit length.

Based on the predictor bit specifier this number is xored with the correct prediction to recreate the original

value.

pFPC is the parallel approach by Burtscher and Ratanaworabhan >16@ to their original FPC algorithm. In >17@

the authors also introduce gFPC, a self-tuning implementation of FPC that provides better compression ratio

and decompression speed. For the latest iteration O’Neil and Burtscher >18@ describe a GPU implementation of

FPC, named GFC, with the capacity to reach 75Gb�s compressing and more than 90Gb�s on decompression,

while providing a slightly lower compression ratio.

LZ4 by Collet >3@ is a very fast lossless compressor based on the well-known =iv and Lempel >7@ algorithm.

Unlike the former FPC, and because it is a general compressor, it is not designed to address only floating-point

data. What makes L=4 stand out from other L= dictionary coders is the fact that it can be really fast. When

compressing it can reach throughputs of more than 400MB�s, while that during decompression it is even

faster with speeds up and beyond 1.8GB�s (running a single thread on an Intel Core i5-3340M#2.7GHz).

Consequently it can reach RAM speed limits on multi-core systems. With this characteristics it is a very good

candidate to perform real-time compression, as the compression and decompression times can be hidden by

memory accesses.

The algorithm works by finding matching sequences and then saving them in a L=4 sequence using a token,

that stores the literals (uncompressed bytes) length and the match length, followed by the literals themselves

and the offset to the position of the match to be copied from (i.e. a repetition). There are optional fields for

additional literals and match length if necessary, and the offset can refer up to 64.B. With the offset and the

length of the match the decoder is able to proceed and copy the repetitive data from the already decoded

bytes. This decompression is so fast due to its simplicity along with the fact that entropy coding is not used.

Regarding the way that the algorithm search and finds matches there are various possibilities, and in fact it is

not restricted as long as the format is kept. The author suggests that it can be a full search, using advanced

structures such as MMC (Morphing Match Chain), BST (Binary Search Tree) or standard hash chains, among

exponent

(11 bit)sign

signi�cand

(52 bit)

63 52 0

Figure 2.1.: IEEE 754 double-precision binary floating-point format
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others. Some sort of advanced parsing, such as lazy matching, can also be achieved while respecting full

format compatibility (achieved by L=4hc, the high compression variant of L=4). To achieve higher compression

ratios more computing time can be spend on finding the best matches. This results in both a smaller datafile

as well as faster decompression.

The fast version (L=4) uses a fast scan strategy, implemented as a wide single-cell hash table. The size

of the hash table can be modified and still maintain format compatibility. The ability to modify the size of

the table is important because of some restricted memory systems. Consequently, the smaller the table the

more collisions occur (false-positives), reducing the compression ratio. The bigger the table the better the

compression possibilities, while also making it slower. The decoder, similarly to gzip, is asymmetric which

means it does not need to know about the method used to find matches and requires no additional memory.

L=4hc, with higher compression ratio along with its super fast decompression speed, can have increased

interest in write-once read-many scenarios.

MAFISC (Multidimensional Adaptative Filtering Improved Scientific data Compression) lossless compressor

by H�bbe and .unkel >5@ focus the effort on storage reduction for climate data while overlooking time of ex-

ecution. The goal of this research, as a direct consequence of better compression ratio, was to cut down

the expenses on magnetic tapes for backup data storage at the D.R=2. The algorithm performs compression

by first applying some developed filters to the data (expectedly reducing entropy), which then goes through a

dictionary and entropy coder.

Similarly with previous works >10, 4@, it uses fixed point arithmetic for performing calculations between

floating-point values, with the purpose of reversible operations. This conversion happens implicitly before any

other filter is used. The developed algorithm itself is not performing compression as it delegates that function

to L=MA, which is a general compressor, such as gzip and L=4, from the L= family. This compressor is known

for having some of the best compression ratios, while keeping decompression speed relatively similar to the

other algorithms in the family, namely gzip. Hence MAFISC compresses more than gzip (and consequently

than L=4), but is much slower, especially during compression.

The filters that MAFISC applies on the data are responsible for facilitating the work of lzma. Nonetheless,

as the algorithm always falls back to lzma, that is the minimum expected compression. One of the filters

computes and replaces the values by the linear differences between each consecutive value in the dataset,

leading to small values that should lower entropy. Thus, it exposes very repetitive differences for datasets that

are smooth, a scenario already explored by other compressors. There is also a bit-sorting filter that reorders

the internal bits of the values, by distributing the most significant bits across the bytes that compose the

value, which distributes the entropy and enhances its compressibility for entropy coders. Other two filters

2Deutsches .limarechenzentrum - German Climate Computing Centre.
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implemented in >5@ are a prefix transformation filter and an adaptive filter. Not all the filters are applied� the

decision happens accordingly to the best CR resulting out of two different combinations tested in a chunk

of data (or none, if data gets inflated by the filters). The filter chain order must be stored together with the

compressed data allowing for the data to be read and decompressed.

While not working towards the reduction of execution times, the authors still take it into account. They realize

it is possible to cut the storage costs greatly (between 36k½ and 46k½) with a relatively minimal investment

on computing machines to solely compress the data.

2.3. Lossy compression

In this section we briefly analyse two lossy implementations of algorithms from Sec.2.2. Despite not being

the main scope of this work, they are important and interesting for a state-of-the-art overview. The two lossy

coders also deal with scientific floating-point data.

Delta-compression based algorithm, by Engelson et al. >10@, has a lossy variant with the main obMective

to address scientific smoothly changing data. When the purpose of the simulation results is to be visualized,

in the form of 2D or 3D graphics, or images�animations, the full data precision is no longer necessary. The

lossy implementation is an extension of the basic algorithm and it can be parametrized to adMust the trade-

off between CR and precision. The actual approach simply consists of truncating some bits at the end of

the bit string representation. With less bits in the stream the compression is achieved. To compensate the

propagation of error introduced, one exact value (i.e. with full precision) is used for every p lossy compressed

values.

ALICE datasets originated by the TPC detector were tested with lossy compression >12@. These datasets

contain many samples, each with different quantities, some of them more important for the traMectories re-

construction than others. For the important Centre of Mass (CoM) positions, a quantization is applied before

compressing. This reduces the range of values it can take, hence reducing the entropy. This lossy approach

understandably achieves higher compression ratio than the lossless implementation. The same compression

process is applied, but at this stage the values already have lower entropy. With the coarser quantization level

selected the compression yields a CR of approximately 4.3 (i.e. 4.3 times smaller than the original size).
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2.4. Other approaches

Besides the more conventional approaches presented before (in a sense that they take an input stream of

data, compress it and then save it on a storage device), this subsection succinctly refers to some distinct

methodologies that use compression to improve overall performance.

<ang et al. >19@, =ukowski et al. >20@ implement compression directly on RAM memory and in-between RAM

and Cache memory to improve the system performance. In >19@ a very fast high-quality compression algorithm

for working data set pages on RAM is described. The algorithm, named PBPM (Pattern-Based Partial Match),

explores the frequent patterns that occur within each word of memory, and takes advantage of the similarities

among words by keeping a small hashed two-way set associative dictionary. The dictionary is managed with

a LRU (least-recently used) replacement policy. Reducing the used memory space allows for an overall better

scalability of the system. The approach in >20@ is to use super-scalar compression algorithms between the

RAM and CPU cache, rather than the common idea to apply the compression between RAM and storage. By

super-scalar it means that the CPU can achieve an Instruction Per Cycle (IPC) higher than one, reflecting in

very high throughput. Results showed that their algorithms provide a decompression speed in the range of

more than 2GB�s. It is an order of magnitude faster than the conventional compression algorithms, making

the decompression almost invisible. With this techniques it is possible to reduce the I�O bottleneck as it keeps

CPU busy while working with data when there are I�O stalls (i.e. the CPU does not have to waste cycles waiting

for data).

Lofstead et al. >21@ take an approach to improve the I�O efficiency in the accesses to underlying storage

platform of a large-scale system, for different machine architectures and configurations. Therefore, the ADIOS

(Adaptable I�O System) API, reported in the paper, is designed to be able to span multiple I�O realizations,

while being able to address both high-end I�O requirements and still offering a low-impact auxiliary tool integ-

ration for selecting other transport methods (i.e. with a simple ;ML file modification change the whole I�O

parameters for the different simulations or datasets). By providing highly tuned I�O routines through their

library, to different kinds of data and transport methods, it can improve the system performance even without

compressing the data.

With a concern for inter-node I�O bandwidth Welton et al. >22@ takes the approach to compress the data

between node communications in a large-scale system. They describe the IOFSL (I�O Forwarding Scalability

Layer), a portable I�O forwarding implementation that by adding compression to the forwarding layer (tested

with general algorithms zlib, bzlib2 and lzo), evaluates the changes in throughput to the application and to the

external file system. For certain types of scientific data it was observed significant bandwidth improvements.

Nonetheless, it is highly dependent on the data being transferred, and only useful on slower networks.

A very interesting approach is taken by Schendel et al. >23@ where they introduce ISOBAR (In-Situ Orthogonal

Byte Aggregate Reduction Compression) methodology as a pre-conditioner to lossless compression (using zlib
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and bzlib2 for the actual compression). ISABELA (In situ Sort-And-B-spline Error-bounded Lossy Abatement)

from Lakshminarasimhan et al. >24@, mostly the same authors as ISOBAR, performs lossy compression by

applying a sorting pre-conditioner that improves the efficacy of cubic B-spline spatial compression, and applies

delta-encoding of the high order differences in the index values. Both works try to identify and optimize

the compression efficiency and throughput of hard-to-compress datasets. In >25@ an hybrid compression

I�O framework was tested, with the underlying support of ADIOS >21@, allowing to separate the high-entropy

components of the data from the low-entropy components thanks to the proposed pre-conditioner in ISOBAR.

Therefore, independent streams of data are formed which may be interleaved. The high-entropy components

are sent across the network and to disk asynchronously while the low-entropy data can be compressed (using

gzip). This allows to hide the compression costs and fully utilize all computing, network and I�O resources in

the system. These works also make use of the datasets presented in >4@ and that we use on Part II.

The maMority of compression presented in this chapter execute sequentially.

15



Part II.

Test bench, methodology, results and
conclusions
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3. Test bench characterization and
methodology

In this chapter the specifications for a well defined test environment are described. First we define the physical

test bench where all the executions took place, then we take a descriptive approach to the algorithms explaining

their maMor properties and continue to the datasets characteristics. The final section describes the methodology

used for the tests and measurements.

3.1. The test bench

Setting up a stable test bench is critical to achieve reliable results. Here we provide the hardware characteristics

from the machines that executed our tests, and define the compilers versions and flags used across all the

experiments.

3.1.1. Execution nodes characteristics

To perform all the tests in this work, and in order to get the most stable results as possible, a group of

cluster execution nodes was selected and used throughout the tests. All the displayed metrics and results

come from these same execution nodes, from the local SeARCH cluster hosted at University of Minho. The

SeARCH cluster is a research proMect initially funded by FCT (Fundaomo para a Cirncia e a Tecnologia) and

is currently supported by funds from various departments. Therefore, it tries to satisfy a diverse community,

and consequently contains a somewhat heterogeneous group of execution nodes, from various generations,

and diverse brands (between other characteristics).

A selection of six nodes was made based on the hardware specifications. They are all based on the same

CPUs belonging to the Nehalem microarchitecture, but two of them have four times more RAM memory than

the other four. The Table 3.1 summarizes some of the specifications per node. Each one has two CPU chips

with six cores, that can run 12 threads using Hyper-Threading technology, thus totalling 24 threads per node.

The local storage devices are hard drive disks. Using solid-state disks (SSD) would be ideal for this work, as it
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improves on the I�O bottleneck, but this devices do not seem to be yet openly available on the cluster.

Intel ;eon (different node brands)
Specifications compute-601-1..4 compute-601-11,12

CPU

model 2×;5650 2×;5650
Cache L2�L3 2×(1.5MB�12MB) 2×(1.5MB�12MB)
Cores→Threads 2×(6c→12thr) 2×(6c→12thr)
Frequency 2.66GHz 2.66GHz

RAM 12GB 48GB
CentOS kernel 2.6.18-128.1.14.el5 2.6.18-128.1.14.el5
Storage unknown hdd unknown hdd

Table 3.1.: Hardware characteristics of the selected computing nodes.

Almost all of the nodes in the cluster have Intel chips (spread across various generations). AMD chips are

only available in one or two nodes, making it difficult to compare. The HDDs are described as unknown because

we could not get access to the model string. Nonetheless, the nodes are from the same generation and we

are almost certain that the HDDs are the same model. Having different disks (with different performance)

would have a significant impact on the measured times, making the comparison unfair. Only when analysing

some of the metrics for the performance assessment, it was discovered that the nodes compute-601-11 and

compute-601-12 are slightly faster. Running some compression tests, an execution time of 48 seconds was

measured on the other four selected nodes, while that compute-601-11 took 43 seconds to complete, hence

5 seconds faster. Apparently, and after contacting the cluster administrator, these two nodes are assembled

by a different brand, and the difference is likely coming from an extra flag IDA1 that control CPU frequency

and that is not defined on the other nodes. After looking back to the execution logs, very few instances were

identified of tests that executed on these nodes. The vast maMority of the tests were performed on the nodes

compute-601-1 to 4. Presumably the nodes were requested by other users, but more probably reserved, during

the execution of our tests. Because these two nodes were not available the scheduler assigned our Mobs to a

more limited amount of nodes, namely compute-601-1 to 601-4. These facts were only later noticed on the

analysis of the results, making it difficult to be excluded at that point. Despite the fact, we did not notice any

disruptive results.

3.1.2. Compiler options

Since the purpose of this work is to assess performance, it is of great importance to use a good compiler and

flags that are capable of exploiting the underlying hardware. Available on the cluster is the old version 4.1.2

of GCC (GNU Compiler Collection), the dominant open-source C compiler in Linux, and version 11.1 of ICC

1Intel Dynamic Acceleration technology (IDA)
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(Intel C�� Compiler), that is commercial and closed source. Recently it was made public2 that Intel is making

optimizations for their compiler and new hardware to increase performance in zlib, a widely used compression

library that implements the same algorithm as gzip. It is a recognized fact that Intel has optimizations in their

compilers specially for their products.

Both compilers were tested using L=4 as compile test subMect, to evaluate their performance. Because

the available version of GCC was so old, a much more recent 4.8.1 version was compiled on the cluster to

be tested. Unexpectedly the outcome weighted in GCC’s favour. Maybe because GCC 4.8.1 is newer than

ICC 11.1, the execution times achieved by L=4 when compiled using GCC were lower, ranging from some

milliseconds to 9 seconds, depending on the file and compression mode. Based on this observation, and

because it would not be that accessible to test a newer ICC version on the cluster, GCC was elected as the

compiler to use for all compressors in this work.

When it comes to the compilation options used in GCC only two choices were taken. First, the general

flag for optimization was set to its maximum level -O3. Depending on the selected level, GCC will turn on

specific optimizations, such as loop optimizations, vectorization, inline functions, etc. Since the nodes have

relatively modern Intel chips, the manual was searched for an appropriate -march flag, leading to the choice

for -march corei7. With this flag GCC tries to make use of more recent instructions that come with modern

processors. In the end of the coming Section 3.2.2, a mistake related to the compilers is exposed, which Must

proves that they have a decisive impact on the performance.

3.2. Compressors

This section summarizes six compressors that were selected to be compared with each other: three single-

threaded and their shared-memory multi-threaded implementations. We aim to assess performance and

scalability, hence the focus and effort goes to measurements. An in-depth understanding and tuning of the

algorithms was not one of the obMectives, although we acknowledge that it would allow possible improvements

in performance. The serial compressors are gzip, L=4 and FPC. Their multi-threaded counterparts are pigz,

lz4mt and pFPC, respectively. In beforehand lets clarify the diverse nomenclature used in this work. When

referring to gzip, L=4 or FPC we might use one of these (prefix suffix) forms: ”original”, ”serial” or ”single-

threaded” for prefix, and ”compressors”, ”algorithms” or ”programs” for the suffix. The same happens when

referring to pigz, lz4mt or pFPC, for which we might use: ”multi-threaded” or ”parallel” for the prefix, and

again ”compressors”, ”algorithms” or ”programs” for the suffix.

L=4 compressor is a modern fast general-purpose compressor, which can achieve RAM-bandwidth decom-

pression speed. When studying the state of the art related to scientific compression we learnt about FPC, a

2http://www.phoronix.com/scan.php?page=news_item&px=MTUyNzY Accessed -anuary 28, 2014
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specific double-precision floating-point compressor that falls perfectly in this area because scientific data is

mostly produced and consumed in floating-point format. The decision for the third compressor, gzip, came

naturally because it offers a good balance between speed and compression ratio (CR), and it is a widely used

general compressor and a great point of reference and comparison. In order to get the best performance

possible when compressing data, we evaluate the algorithm’s parallel implementations. Aware of the possib-

ility to deteriorate the I�O bottleneck problem, we believe that higher compression levels that require more

computations can benefit from the parallelization, hence improving the overall performance.

3.2.1. Serial compressors

Gzip and L=4 derive from the Lempel-=iv (L=) family compressors, implementing variants of the L=77 algorithm

>7@. They are general-purpose compression utilities that operate at byte granularity, looking for repeating

sequences of bytes within a given sliding window that goes through the input stream. gzip further uses entropy

coding in the form of two Huffman trees, one to compress the distances in the sliding window and another to

compress the lengths of the matching sequences as well as the bytes that did not belong to any sequence.

L=4 does perform a matching algorithm, eliminating repetitions, but seems to skip entropy coding, which

makes it much faster while compressing less. Both of these compressors take a minimum compression level

setting of one (the faster mode), and maximum of nine (the highest compression mode). The different modes

change the size of the window used to look for matches (between other specifics), hence making it possible

to find better (longer) matches. L=4 only accepts the two extreme levels (one or nine), while gzip allows for an

intermediate value (one through nine).

FPC >4@ was developed to only compress floating-point binary data. The internals are completely different

from the two other dictionary coders. Nonetheless, it also operates at byte granularity (which is more efficient

than bit granularity), and compresses by predicting each value (in a reversible way), xoring the real value

with the predicted and leading-zero compressing the result. The better the prediction, the more zeroes come

from the xor3 operation, hence counting the leading-zeroes yields a higher number that is then encoded. The

non-zero residual bytes are added to the output without encoding. In FPC all of the floating-point doubles are

interpreted as 64bit integers and it only uses integer arithmetic, for performance reasons. The compression

level depends on the quality of the prediction, and for that a hash table is used to record the real values

that serve the predictors. The size of the table influences the prediction� hence, in FPC, the user simply

specify larger hash tables to specify an higher compression level. Theoretically there is no maximum, so the

compression level ranges from one to hardware limit. We decided to use levels from 1 to 26, to ensure that

a level higher than the authors was tested. In Section 4.4 we approach this decision and the difficulties that

we failed to expect.
3xor operation turns identical bits into zeros
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MAFISC by H�bbe and .unkel >5@ is a compressor implemented as a filter to HDF5, which performs

filtering of the data in order to provide better compression patterns (lower entropy) to the following lzma4

compressor, also from the L= family. The filters are invertible, analogous to the FPC predictors, so that it is

possible to reconstruct the data, losslessly, by knowing which filters were used and reapplying them in the

reverse order. The operations are performed in integer arithmetic for performance (and because it avoids

floating-point problems, such as rounding errors and catastrophic cancellation >26@). To compare MAFISC

against directly using lzma compression we use xz5, a publicly available program that implements the lzma

algorithm. Similarly to gzip and L=4, it accepts compression levels from level one to nine, being the latter the

higher compression mode. It also accepts a flag -e for extreme compression, but this makes it extremely slow,

thus unsuitable for comparison. We performed basic testing with MAFISC and lzma in Section 4.7, after all

the others tests were complete.

3.2.2. Parallel compressors

Take an input file, divide it in chunks, and compress them individually on local execution threads (preferably

on separate cores). This is an approach to parallel compression, and it is what the compressors do in a

shared-memory context. The compression has an underlying exploitable parallel nature, because each file

is processed in blocks when compressed. The multi-threaded approach performs each block compression

independently in a thread, and Moins the resulting compressed blocks into the final output file. For example,

pigz uses a single thread to write the data, but n other threads to compress 128.B blocks.

The three parallel compressors allow to set multi-threaded mode or to execute with a single thread, analogous

to their serial versions. This is useful to test the possible overhead of using the parallel implementation by

comparing the serial with the parallel running on a single thread, which we did on chapter 4. The compression

level parameters are the same as the serial versions, as one should expect. However pFPC requires a chunk

size specification that represents the number of doubles for each thread. Based on the authors work >16@,

three chunk sizes seemed to be interesting (good results) and were selected to test: 1024, 8192 and 65536.

The chunk size that in overall presented results with better executions times and CR was 8192, which was

selected for all the tests.

Two side notes should be acknowledged about pFPC and lz4mt. First it is stated in pFPC webpage6 that

the provided code is not prepared for maximum performance due to slow sequential data accesses. We think

that it is related with the disk accesses (later corroborated with the bigger advantage from discarding the

output). Based on this work obMectives, the compressors are tested as available. Secondly, at some point
4L=MA - Lempel-=iv-Markov chain algorithm
5;= Utils is free general-purpose data compression software with high compression ratio, and its core code is based on the L=MA
SD. - http://tukaani.org/xz/

6http://users.ices.utexas.edu/~burtscher/research/pFPC/ Accessed -anuary 28, 2014
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lz4mt presented some problems related to decompression, which were reported7 and fixed by the author in a

posterior commit8.

Compressor�library 9ersion Compile flags Compression settings
gzip 1.6 Gcc 4.8.1 -O3 -march corei7 -fgnu89-inline 1 (faster) to 9 (higher)
L=4 r99,r107,r109 Gcc 4.8.1 -O3 -march corei7 1 (fast) or 9 (high)
FPC 1.1 Gcc 4.8.1 -O3 -march corei7 1 to 26
MAFISC�HDF5 a
 � 1.8.12 Gcc 4.7.2 -O3 � Gcc 4.7.2 -O2 Default, 1,6,9
xz (lzma) 5.0.5 Gcc 4.7.2 -O2 1(faster),6,9(higher)

pigz � zlib 2.3 � 1.2.8 both: Gcc 4.8.1 -O3 -march corei7 1 (faster) to 9 (higher)
lz4mt 66990ac (28 Sep, 2013) Gcc 4.8.1 -O3 -march corei7 1 (fast) or 9 (high)
pFPC 1.0 Gcc 4.8.1 -O3 -march corei7 1 to 24, chunk 8192

Table 3.2.: Compressors versions, settings and compile flags used. The double horizontal line separates the bottom
parallel compressors from the others. 9ersion a
 means that no number was specified in the provided code.

All the tested programs, both single and multi-threaded, are publicly available under a permissive open-

source license, with the exception of FPC�pFPC that are covered by two academic licenses. The implementa-

tions are all written in C�C�� language, which is known for having good performance and made compilation

easy using GCC and the chosen flags. Pigz and pFPC use lower level pthreads implementations in C, and

lz4mt uses C��11 higher level threads through future obMects. Pigz makes use of zlib, which implements

DEFLATE, the same algorithm as gzip. The Table 3.2 summarizes the algorithm’s versions, compilation flags

and compression parameters used.

MAFISC, HDF5 library and xz were compiled with other version of GCC because a different environment

was used to facilitate the testing. Nonetheless this version is quite recent, the tests that were performed ran

on the same execution nodes, and the results are not meant to be directly compared to the other tests.

During the tests it was discovered that the complete set of executions performed with pigz were using an

older version of zlib (as available on the cluster). When the issue was rectified by changing pigz linkage

to a locally compiled zlib, using gcc 4.8.1 and -O3 -march corei7, the performance went up considerably.

Changing from the old version compilation to the new one made execution times manifest improvements in

the order of 1 to 30� seconds, depending on the file and pigz compression level.

3.3. Datasets

In order to perform the tests it was necessary to establish a solid, well defined, group of datasets to be used.

Since the purpose was to assess compression using scientific data, we tried to gather the numerical data from

7https://github.com/t-mat/lz4mt/issues/21 Accessed -anuary 28, 2014
8https://github.com/t-mat/lz4mt/commit/2a8ed67 Accessed -anuary 28, 2014
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different backgrounds and sources. In Table 3.3 the datagroups are briefly introduced. There are 33 datafiles

in total.

Datagroup names �Datafiles Research Area Software Data Type

waterglobe 6 molecular modelling TIN.ER text
engraph 3 molecular modelling TIN.ER text
gauss09 4 electronic structure modelling Gaussian 09 text
sci-files 13 message, numeric, observational diverse sources doubles
NTUPs 7 particle collision simulation LIP code ROOT files

Table 3.3.: Characteristics of the five datagroups originating from six different backgrounds

The six different disciplines covered by the datasets originate from various sources, mostly simulation pro-

grams. The molecular modelling datasets come from TIN.ER9 and the electronic structure modelling are

produced by Gaussian 09, which provides state-of-the-art capabilities for electronic structure quantum mod-

elling. The datagroup sci-files (with thirteen datasets) covers three areas and was used in various works

>13, 15, 18, 4, 17, 16, 23, 24@. The first area has five datasets covering parallel messages containing num-

bers sent by a node in a parallel system running NAS Parallel Benchmark(NPB) and SCI Purple applications.

The second area has four datasets with numeric simulations results, and the third area has another four

datasets this time with observational data comprising measurements from scientific instruments.

The NTUPs datagroup originates from work in simulations made at LIP10, hence the data is stored in a

ROOT file. This is the data analysis framework used by CERN and associated laboratories. Files in ROOT are

organized like directories on a file system with gzip compression applied on the obMects stored (enabled by

default), therefore requiring to be extracted.

3.3.1. Data makeover and transformations

Some of the datafiles arrived to us in a very raw format, specifically the files in text format. The files had to

undergo some manipulations in order to contain only the desired floating-point values.

Data Clean-up The data stored in datagroups waterglobe, engraph and gauss09 (all in text format) had

many types of variables and text (as opposite to floating-point numbers), and so the first step was to perform

a clean-up of the data by extracting (and sometimes reorganizing), Must the floating-point numerical parts.

We kept only floating-point numbers because this tends to be the preferred format used in the maMority of

scientific applications (which need to have great precision), and because it is the only type of data that FPC

9TIN.ER is a complete and general package for molecular mechanics and dynamics
10LIP - Laboratyrio de Instrumentaomo e Ftsica Experimental de Particulas� is a Portuguese laboratory of scientific research that

works in the field of high energy experimental physics. The research activities developed by LIP fit within the scope of international
proMects in collaboration with CERN and other scientific organizations.
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supports. Text data is very redundant and could be ideally dictionary-compressed when using L= coders. The

transformations modify the datafiles in such degree that they will not be recoverable to the original format

without further information, but nevertheless fully represent the floating-point datasets that we aim to evaluate.

The purpose is to get the most streamlined datasets as possible, and assess the compression strictly on

numerical values with scientific sources. Throughout this subsection the reader can follow the first column in

Table 3.4, in order to have a better comprehension of the mentioned datafiles.

Besides all the stripping made to the datasets, in order to only keep the numerical values, an experi-

mental change in the text files layout was applied. For the datasets waterglobe.arc.txt, waterglobe.vel.txt and

engraph1_100.txt that have the values in a matrix style (e.g. nrows×3columns, the three Cartesian coordin-

ates), they were individually written into a single column text file. The single column with all the values is filled

by reading the original text dataset in a row-wise fashion. By doing so we lower the entropy of a text file a little

more (no space character, only a value per row) and its structure becomes similar to a binary stream.

Binary representations had to be created for the text datafiles. For the conversion we wrote a small C��

program that reads the text files and outputs them to a binary file in single or double precision, as specified

by a parameter. The inverse operation was also implemented for testing and correctness checking purposes,

and it can write the values in text representation with the desired number of columns. For the datagroups

sci-files and NTUPs this text-binary conversion was not necessary. Nevertheless NTUPs are ROOT files which

require some work as described below in the Extraction paragraph.

Split/Join While some datasets were Moined into only one, others were split into more than one. In the

Moining scenario case we created engraph1_100 that was originally separated in 100 parts (each corresponding

to a time step in a molecular dynamics simulation) and NTUP1to5_floats.bin that simply contains the other

five NTUPn_floats (each containing multiple events) fused together to form the biggest datafile from our entire

dataset. In the case of gauss09 it suffered a split, because it had too much mixed data inside. The original

unique file originated from one single simulation, but the matrices contained in it represent different properties.

Two of them were quite large, hence a split to two different files seemed a logical step to take. From this split

we created the datafiles gauss09_alpha and gauss09_density.

Extraction For the NTUPs datagroup the values stored inside each NTUP file (ROOT) were all extracted

into two uncompressed binary files, one containing the floats and the other the doubles. This extraction pro-

cess was made thanks to a small root_extractor program created with some help of ROOT scripts. In the

root_extractor we loop through all the floats and doubles and output them to the according binary file. Accord-

ingly, ten binary files were created out of the five original NTUPs, five containing the single-precision values and
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other five containing the double-precision values. Because the doubles were very few in quantity compared to

the floats, the solution found to create a relevant datafile was to concatenate them all together into one slightly

bigger file NTUP1to5_doubles. As written previously the same was made for the floats in order to create the

biggest file in the dataset, with 7GB. This way, all of the resultant datafiles are in single-precision, suffixed with

_floats with the exception of NTUP1to5_doubles.

Because FPC compresses double-precision floating-point data, by interpreting each double as a 64-bit in-

teger, the use of single precision datafiles means that it will ”understand” a pair of floats as a 64-bit integer.

While that does not stop the algorithm from running, it reduces the compression capabilities because FPC

only encodes the leading-zeroes, therefore the second float zeroes resultant from the xor operation (if any)

are lost and encoded as is (uncompressed).

The sci-files were the only datagroup that did not need any ”aesthetic” work because, as available, they

come in separated simple binary stream files.

The modifications applied to the datasets are not taken into account for the measurements. These steps

were mostly necessary because FPC only accepts floating-point binary datasets. In a real scenario, if the

user wanted to apply this compression to his data it would be necessary to modify the datasets as we did,

or preferably modify the simulation�program that is generating the data, in order to simplify the interaction

of generation to compression. The costs associated to the data manipulation would depend on the datasets

(e.g. their organization, size, etc) and on the resources available. It would be really difficult to have a generic

approach because of the very diverse scientific context. Then, to avoid the waste of data pre-precessing time,

the preferred way would be the modification of the source, in which the data can pass immediately to the

compressor.

Another possible approach would be to leave the data intact for the general compressors pairs, gzip�pigz

and L=4�lz4mt, and only pro-process it for the FPC�pFPC. Following this line of comparison there would be

some notable changes, specially on the CR but also on the measured times. Because the intact datasets are

bigger it means that the (de)compression times would increase, but also the CR would increase considerably,

due to the fact that compressing text is an ideal application for dictionary coders.

3.3.2. Data statistical metrics
In this subsection we go through the metrics analysed for the entire datasets (Table 3.4). In beforehand we
can state that the following metrics are correctly calculated because we achieve the same values for the sci-
files datagroup, as used in >4, 23@. Randomness is presented differently in the two related works, and to our
understanding and opinion the formula from Schendel et al. >23@ is the most intuitive, hence is the one we
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use. Equation (3.1) describes the percentage of unique elements in a dataset, where V is the original vector
consisting of all values, and VUnique is the vector with duplicates removed. Note that for an ASCII file (txt
dataset), each value is a word read from a line, meaning that it can have a variable number of ASCII characters
per word. Because of this interpretation both text and binary versions of a dataset have the same number of
values and same uniqueness.

Uniqueness =
|VUnique|
|V |

× 100� (3.1)

H(V ) = −
N∑
i=1

p(xi)× log2(p(xi)) (3.2)

Randomness =
H(V )

H (Randomunique (|V |))
× 100� (3.3)

Equation (3.2) represents the Shannon entropy H(V ), where N is the number of distinct elements xi, and

p(xi) the probability of those elements, i.e. , the number of xi occurrences divided by the total number of

elements in the file. An element of a dataset depends on the datatype that composes it. Consequently for text

files an element is 1 byte (8 bits), for single-precision floats is 4 bytes (32 bits) and finally for double-precision

doubles an element is 8 bytes (64 bits). If the interpretation of the txt dataset’s values (for the uniqueness)

was made using the same 1byte element as for the entropy, then the |VUnique| value would be the same as

the N , which happens for the binary but not for the txt datafiles. We want to make sure that the uniqueness

represents the unique percentage of the numerical values, and not of the elements, like the entropy does.

The randomness is closely related with the entropy as described in (3.3). Its value reflects how close the

Shannon entropy of the datafile is to that of a true 100� unique random datafile with the same number of

elements. This may imply that was necessary to create synthetic datasets containing only unique elements,

in the same amount of the datasets they were going to be compared. In fact the formula from >4@ tells us

that for a dataset with N elements all unique, the randomness is given by H(V )/log2(N) . Therefore, the

second form is only a simplification of the first formula we used. Unfortunately, only when re-evaluating both

formulas at the writing of this dissertation it was noticed the simplification. This means that, in fact, synthetic

datasets (composed of only unique elements) were created.

The datasets have high degrees of random entropy, in average 81.43� (Table 3.4), which indicate that

entropy coding will not be very effective and low compression ratios should be expected. The uniqueness

varies more and has an average of 44.66�, whilst some files barely contain unique values others are almost

entirely composed of them. What is interesting is that even the files with low uniqueness are highly random

(high randomness�). A notable example of this are the datafiles waterglobe.vel, which are the velocities versus

time for a molecular dynamics simulation of a small drop of liquid.

There is a percentage value specifically for zeros because, this being scientific data, there is a good chance
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Datafiles Size(MB) � values Unique� =eros� Entropy Randomness�

waterglobe.arc.txt 1640 172800000 35.45� 0.00� 3.762 99.81�
waterglobe.1col.arc.txt 1640 172800000 35.45� 0.00� 3.670 99.70�
waterglobe.vel.txt 1405 172800000 3.30� 0.00� 3.765 99.89�
waterglobe.1col.vel.txt 1405 172800000 3.30� 0.00� 3.657 99.36�
waterglobe.arc.bin 1318 172800000 35.45� 0.00� 25.614 93.60�
waterglobe.vel.bin 1318 172800000 3.30� 0.00� 21.466 78.44�
engraph1_100.txt 856 85190400 72.88� 0.00� 3.754 99.59�
engraph1_100.1col.txt 856 85190400 72.88� 0.00� 3.666 99.61�
engraph1_100.bin 650 85190400 72.88� 0.00� 25.664 97.42�
gauss09_alpha.txt 304 33500944 28.61� 36.35� 3.611 92.87�
gauss09_density.txt 244 16753366 39.78� 0.05� 3.824 98.34�
gauss09_alpha.bin 256 33500944 28.61� 36.35� 15.662 62.66�
gauss09_density.bin 128 16753366 39.78� 0.05� 22.535 93.90�
msg_bt 254 33298679 92.88� 5.98� 23.667 94.71�
msg_lu 185 24264871 99.18� 0.00� 24.466 99.73�
msg_sp 277 36263232 98.95� 0.00� 25.032 99.68�
msg_sppm 266 34874483 10.24� 11.56� 11.238 44.85�
msg_sweep3d 120 15716403 89.80� 1.73� 23.411 97.93�
num_brain 135 17730000 94.94� 0.00� 23.971 99.55�
num_comet 102 13418496 88.87� 7.73� 22.039 93.08�
num_control 152 19938093 98.52� 0.33� 24.140 99.55�
num_plasma 33 4386200 0.31� 0.00� 13.651 61.87�
obs_error 59 7770102 18.05� 0.00� 17.804 77.78�
obs_info 18 2366316 23.94� 0.00� 18.068 85.33�
obs_spitzer 189 24772608 5.70� 5.29� 17.359 70.67�
obs_temp 38 4991784 100.00� 0.00� 22.251 100.00�
NTUP1_floats.bin 1415 370914252 28.82� 38.70� 15.130 53.15�
NTUP2_floats.bin 1433 375644746 28.70� 38.77� 15.116 53.07�
NTUP3_floats.bin 1435 376256329 28.70� 38.74� 15.123 53.09�
NTUP4_floats.bin 1429 374624469 28.75� 38.76� 15.123 53.10�
NTUP5_floats.bin 1435 376236020 28.72� 38.75� 15.127 53.10�
NTUP1to5_doubles.bin 232 30463714 20.97� 7.51� 7.646 30.76�
NTUP1to5_floats.bin 7148 1873675816 16.10� 38.75� 15.750 51.13�
AVG (all files) 860 163954134 44.66� 10.47� na 81.43�

Table 3.4.: All 33 datafiles statistical metrics and other characteristics. Highlighted in grey are the selected five (see
3.3.3) to represent the datagroups on the results Chapter 4.
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that zero values might be very common. This percentage is shown for curiosity only. Its meaning is somewhat

irrelevant, as it is only a specific case of one element in the datasets. Taking as an example the NTUP_floats

datafiles, out of the 72� of values that are not unique, more than half are zeros (38� out of 72�).

With this early but quite insightful statistical characterization we can already predict that NTUP datafiles

should have the best CR with entropy coders (gzip�pigz). No prediction can be made for the FPC compressor,

as that would require knowledge about the smoothness, or data continuity of the datasets, which was not

analysed. The overall dataset seems well balanced, with datafiles that cover many possible variations.

3.3.3. The five selected datafiles

It can be a daunting task to manage the results of the (de)compression of 33 datafiles for all of the combinations

assessed in this work. While the tests were performed for every file, the analysis in the coming chapter would

not have a good readability. Accordingly, a selection of five datafiles was made consisting of only one datafile

per datagroup, based on its properties and characteristics. The only restriction was that they had to be in binary

format, so that they were suitable to represent FPC and pFPC. The txt datafiles are still processed, in order

to give another point of comparison for the gzip and L=4 algorithms. The five datafiles selected to represent

their datagroup, highlighted on Table 3.4, are: waterglobe.vel.bin, engraph1_100.bin, gauss09_alpha.bin,

msg_sp.bin and NTUP2_floats.bin. The second selection criteria was the datasets size: choosing the bigger

ones will allow compressors to execute for more time, which gives room for more improvements when using

the parallel implementations. In the case of waterglobe.vel.bin and NTUP2_floats.bin that are comparable in

size to other binary datasets in the group, the selection was made based on the lower entropy�randomness,

this time to allow for higher CR. The biggest file, NTUP1to5_floats.bin, was not chosen because of exactly its

size, as it does not benefit the intended comparison with the other files (e.g. graphics readability would be

severely affected due to scaling).

3.4. Methodology

To perform the tests in the upcoming Chapter 4 a methodical approach was taken in order to obtain consistent

and coherent results. With the compression programs selected and the dataset defined the only planing left

before performing the tests is to decide the methodology to follow. A straightforward approach is taken and

is shown in Algorithm 1. Each instance of the Algorithm runs for a compressor for each datagroup, with the

timing measurements covered ahead on Subsec.3.4.1

For each file in the datagroup there are nRuns executions of compression and decompression, per com-

pression level, written to the local hard drive disk �local and to �dev�null (i.e. data is discarded). The output
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Algorithm 1: Perform compression�decompression for a given compressor
Data: datafiles, algorithm
Result: output log file with execution times and file sizes

initialization�
for f ← file to lastFile do

copy(f)→ �local�
for c_lvl ← 1 to maxCompression do

foreach n in nRuns do compress(f)→ �local�f.c_lvl �
foreach n in nRuns do compress(f)→ �dev�null �
foreach n in nRuns do decompress(f .c_lvl)→ �local�f.c_lvl-decomp �
foreach n in nRuns do decompress(f .c_lvl)→ �dev�null �
List sizes← �local�

end
Remove files← �local�^f,f.c_lvl,f.c_lvl-decomp`�

end

destinations were only decided after noticing that the initial tests were being executed through the Network File

System (NFS) when writing to the user �home directory, therefore utterly slow. The solution taken, and obvious

approach, is to perform the data compression in-node and only then move the files to the final destination.

An advantage of this is that the traffic in the network can be alleviated because compression may improve the

system throughput (less data to transfer), as evaluated in >22@. Instead of only compressing and writing data

to disk, the approach of discarding the data is also adopted in order to evaluate execution times differences,

by avoiding the timing component of disk I�O. As the authors state in >4@ writing to null still consume the data,

i.e. the whole compression takes place, Must the output component is ignored.

The number of executions is controlled by nRuns, originally set to 20 but on the latter tests changed to 10.

It was realized that 20 measurements were not necessary to get consistent values, hence the reduction. This

change effectively cuts the execution time to half for each instance of Algorithm 1. The other variables are

lastFile, that symbolizes the last file to test for a given list of files (usually a datagroup), and maxCompression

corresponding to the maximum level of compression for the compressor being tested (e.g. gzip�pigz goes from

1 to maximum 9).

We came to realize that many redundant file copies were performed. The optimal way would have been to

copy the datasets into the selected execution nodes �local, and keep them there available for every execution

of Algorithm 1. In our approach we removed the datasets from the nodes when the execution was over.

The multi-threaded method simply consists of running the same Algorithm 1 but taking an input

variable nthreads that represents the number of threads to execute. This value is a parameter for the parallel
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compressors, such that in each compression�decompression loop the call for the function compress(f) or

decompress(f) receives nthreads. Therefore the execution of the algorithm is performed for each specified

thread number, i.e. an instance of the algorithm runs for each nthreads. The number of threads tested are

>1,2:2:24@, i.e. one, two, four.. two in two until twenty four, therefore thirteen different tests in total. The

maximum number of available threads that are able to execute at the same time on the execution nodes

corresponds to the limit tested (2 cores ×12 threads = 24).

The full range of number of threads >1:24@ was not used in order to reduce the number of tests and because

it fits great with the double processor architecture (each increment is one more thread for each CPU).

3.4.1. Timing measurements

All timing measurements in this work, except those of MAFISC and xz (lzma), refer to the walltime reported

by the routine omp_get_wtime() from the OpenMP API11. We use this in detriment of Unix’s time command

because it has a better granularity (smaller), specially important for the low execution times that are expected

from L=4 with small datafiles. The C�C�� routine omp_get_wtime() returns the elapsed wall clock time in

seconds since “some time in the past”. This reference is arbitrary and the routines are anticipated to be used

on a start point and end point. Thus, the actual wall time is given by the difference of end-start. Consequently

it was necessary to add to the compressor’s code the OMP routines, once when the algorithm starts and a

second time when the algorithm ends. By calculating the difference in both walltimes it gives us the execution

time. Because OMP times are reported inside the execution of the program, they do not really encompass

the I�O time that remains when the compression ends. Therefore the differences measured between writing

to disk or discarding data are relatively small, as opposed to what was anticipated. If timing is measured

using Unix’s time capturing all the I�O time, which can be forced with the sync command12, the values can

increase considerably, especially for the low level compressions that terminate faster.

The small differences measured were only found after all the tests were performed. Detecting this behaviour

earlier would have allowed us to reduce the tests execution time in almost half (not performing the �dev�null

tests). The I�O time can be really important in some contexts (e.g. high load systems, shared computing

resources), and would be more realistically measured with sync enforcement, cache resetting between tests

and accounting the copy time of the datafiles from source to destination. In spite of these facts, the main

focus of the tests is to measure the performance of the compressors in order to perform a comparison between

them, therefore the I�O measuring was not a priority.

11OpenMP is an Application Program Interface that supports multi-platform shared-memory parallel programming in C�C�� and
Fortran on all architectures.

12sync performs a system call that writes all data buffered in memory out to disk
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Since we measure nRuns executions there are options we can take: average the execution times, use the

median, or simply select the best time. We opted for a best time, i.e. lower value, but still use the other values

for control. This decision is made upon the fact that every system is different, and a compression algorithm in

an ideal case always takes the same time to complete, because there are no stochastic elements. Therefore

the lowest time has a real meaning, it tells how capable the algorithm is in terms of speed. Nonetheless this

does not imply that the values have discrepancies, in fact they usually stay within 1� to 3� of each other.

This control is made with an algorithm based on .-best scheme by Bryant and O’Hallaron >27@, that defines

a K number of measurements that need to agree to the fastest within a certain range. There is an e that

dictates how close the measurements are required to be (i.e. the agreement range), and anM to define the

maximum number of measurements before giving up. In our approach we do not defineM , simply because

nRuns tests are always executed. The error margin is set to 1� (e = 0.01) andK = 3 (based on an example

from >27@), which means that at least three measured execution times, out of the total nRuns, should stay

within 1� of each other.

The measured times are only analysed after the tests are all complete. This is done in the parsing stage,

briefly described in the next subsection, using a python script. When checking for the lowest execution time

out of .-best in nRuns, our scheme is put to use, and if theK lowest values get out of range by more than e

a warning message is printed. This way, if measurements become too inconsistent, it is possible to intervene

and verify the correctness of the outputs and, if necessary, re-run the tests.

3.4.2. Job submission and parsing

In order for the Algorithm 1 to be executed, it needs to be submitted to one of the execution nodes. Without

going into much detail, the Algorithm is a translation of a bash script, where we define the variables related to

the tests to perform (files, compressor, et cetera), that is submitted into a queue of Mobs managed automatically

in the cluster. Each submitted Mob also has node related properties that we define, in the initialization phase

of Algorithm 1, so that the Mob only runs exclusively on the specified nodes. This way we make sure the tests

always perform on one of the selected nodes (the scheduler picks one node, depending on the availability),

and the timings are not affected by other users. The nodes were not reserved to us, and a public queue was

used, which made some of the Mobs wait long hours before they started to execute. When a Mob finishes we

receive the output log file containing all the measurements.

Parsing the outputs is methodical task, so a script was developed in python that does the maMority of the

work. As noted previously, it selects the best time out of the best nRuns for each compression�decompression

test, while looking for outliers using our .-best-like scheme. It also detects if there are missing measurements

or file sizes listings. When checking the file sizes a quick verification is performed for matching the original
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file size and the post compressed-decompressed file. This is not a robust verification but, to a certain degree,

can detect if something went wrong with file compression or decompression. All the parsed measurements

are then copied manually to spreadsheets for further analysis. A better alternative would have been to parse

the outputs into CS9 files, which are easily imported by spreadsheet editors.
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In this chapter we discuss the tests performed and analyse their results in the various sections. The division

is made into eight sections, each focusing on one different subMect. The core sections are: speedup and

efficiency (Sec.4.2), compression ratio (Sec.4.5) and MAFISC testing (Sec.4.7).

4.1. Tests metrics and remarks

The goal with thread parallelism is to increase performance, and this can be explored in two ways. First, by

being able to execute the same amount of work in less time, i.e., performing certain tasks faster for quicker

results. Secondly, for the same execution time try to perform the largest number of operations possible, i.e., get

more work done in a given time window, for more results. While it may seem counter intuitive, because having

lower execution times inherently allows for more calculations, the ways of taking advantage of parallelism are

subtly different. One other parallel approach is to overlap the computations with the I�O, as a method to

increase overall performance. With file compression the same scenario applies: simply compress a file faster,

or compress more files spending the same amount of time. Deriving from the intended purpose, there can

be slightly different implementations. The approach taken here, with the parallel compressors and the tests

performed, is oriented to the first scenario.

In order to assess the possible advantages of using parallelism we take into consideration three metrics.

The first metric compares the performance changes from the serial version to the multi-threaded one, and it is

referred as speedup. The second metric is the efficiency, and it compares the attained performance gain ratio

(i.e. the speedup) with the expected maximum gain. Note that performance changes do not necessarily mean

positive gains, as there can also be a loss of performance. The third metric is not a single one but a collection

of different characteristics that are analysed to give a prospect of the scalability for future challenges, such as

compression ratio and memory requirements.

4.1.1. Metrics
The speedup is the main metric used to evaluate the performance gain by using parallelism. It is a ratio given
by the execution time of a compression cycle (a compression step from Algorithm 1) with the serial compressor
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divided by the same compression executed with the multi-threaded compressor, and is shown in (4.1):

Speedup =
exectimeserial
exectimeparallel

=⇒ Spt =
Ts

Tt
(4.1)

where Ts is the execution time of the serial version, t is the number of threads used in the multi-threaded

program, and Tt is the execution time of that parallel version. As the equation shows, the smaller the parallel

time the higher the values of speedup, meaning the program was Spt times faster with respect to the serial

Ts execution time. Ideally, the speedup value is the same as the number of threads used (i.e. linear speedup,

where Spt = t), but this implies that the measured program is parallelizable in its totality (embarrassingly

parallel). Although most of programs have parts that are difficult to parallelize (hence making it almost im-

possible to have a linear speedup), the compression case appears to be promising in this scenario. Because

the files can be split into chunks, the compression algorithm can work for an individual chunk of the file, and

there can be as many working threads as possible, because there is no data dependency from one chunk

to the other. The downside is that by compressing a smaller file chunk, the compression ratio decreases as

it becomes harder to find matches in the chunks. This is true for the L= compressors family, but as other

methods exist, which do not resort in dictionary coding, the restriction may not apply. As an example, pigz

tries to mitigate this problem by using the last 32. of the previous block as a preset dictionary (to preserve the

compression effectiveness). FPC states that preliminary experiments show that compressing blocks of several

bytes independently reduce the CR by 2� at the maximum.

The efficiency (4.2) is strongly dependent on the speedup because it is a relation of the attained speedup
divided by the number of threads that symbolize the theoretical maximum:

Efficiency =
Speedupparallel

number of threads
=⇒ Eft =

Spt
t

(4.2)

where t is the number of threads used, and Spt is the measured speedup for that t. The efficiency is a

value between zero and one, and it estimates how efficiently the threads were used in the execution of the

program. Note that the speedup can have a high value, but it can be originated from a highly inefficient

parallelization. It is better to have a 2-threaded execution with efficiency close to one, than a 12-threaded

execution with efficiency below 0.5 (this means that more than 50� of the computing resources were wasted,

although it may be preferred on extreme scenarios - have lower execution times at any cost). With a linear

speedup (Spt = t) efficiency will be one (Eft = t/t), the theoretical maximum. Interestingly, sometimes

it is possible to have super-linear behaviour, due to efficient cache usage per thread. Consequently, the

measured speedups become greater than the theory value (Spt > t), and so does the efficiency (Eft > 1).
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4.1.2. Remarks about the tests

In order to calculate the speedups we first measured the compression and decompression times, for the serial

algorithms and datafiles, using multiple compression parameters as explained in Section 3.2. After that we

performed the same compression and decompression tests, but with the multi-threaded implementations. We

performed different runs executed with different number of threads. While pigz and pFPC allowed to specify

the number of threads to run upon execution explicitly with a command line flag, lz4mt did not. As available at

the time, it only allowed to switch on or off the multi-threading property, i.e. it would execute with one thread

or with the maximum threads it can detect from the hardware it is running on. To be able to perform the

same tests with all the compressors it was necessary to slightly modify the lz4mt code to allow thread-number

specification. The simple addition of a variable that takes the desired number of threads, and uses it (instead

of the maximum threads available in the hardware), was enough for the intended purpose.

To give an idea of the sheer amount of tests executed, and the corresponding outputs stored for parsing
and analysis, we present below a rough estimation of the number of tests Ntests:

S = 3serial = 1gzip× 9comp.levels+ 1L=4× 2comp.levels+ 1FPC× 26comp.levels

P = 3parallel = 1pigz× 9comp.levels+ 1lz4mt× 2comp.levels+ 1pFPC× 24comp.levels

E = exec. params. = 2(comp.	 decomp.)× 2(local 	 null)× 10runs× 33files

Ntests ≈ (S + P × 13threads runs (1,2:2:24))× E (4.3)

Ntests ≈ (37 + 35× 13)× 1320

Ntests ≈ 649440 (4.4)

The number above is an approximation: FPC and pFPC do not work for all the available files, only binaries�

the number of nRuns used is the minimum 10, but most of the tests were executed with 20 runs� finally, it

does not contemplate some more thousands of diverse and failed tests that were executed throughout this

work. Nevertheless it still represents the huge number of tests that were performed.

The vast number of outputs produced were reduced one order of magnitude by parsing the multiple runs

into the .-best-like values, as covered in Section 3.4.1. A great amount of values were stored but as they

do not show any strong point worth of a more thorough analysis, they are mostly disregarded. The two

overlooked groups of measured values are the values produced when the output is �dev�null (thus, with no

real application), and the maMority of the decompression times.

Because the decompression tests with the multi-threaded programs present values with small variations

compared to the tests with the serial executions (see 4.3 for more details), they are mostly redundant, and

consequently are ignored for a considerable part of the results analysis. The tests were performed before we
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were sure of this limitations.

Therefore, all the values presented in the coming sections, and unless stated otherwise, are from compres-

sion cycle tests with output to disk (the data was written). Most of the figures in this chapter were plot from

data of only five files, one for each dataset (see Section 3.3.3). This strategy was necessary to be able to better

manage the data (five instead of 33 files) and all of the measurement values, and to provide good readability

of the plots and tables.

4.2. Compression

In this Section we analyse metrics taken for the compression tests. This is the main focus of measurements

because parallel compression is where most differences can be seen between the algorithms. We go through

the analysis of the overhead from using parallel algorithms when compared with the serial versions, the

compression speedup, and lastly, the correspondent compression efficiency.

4.2.1. Serial vs single-threaded compression

In our scenario, the attained speedup values vary greatly depending on the datafile, the compressor and the

compression level. The first step in assessing the resulting speedups of the performed tests is to compare how

the multi-threaded implementation performs with only one thread against the serial version. This comparison

allows to measure the possible existence of overhead from using the multi-threaded version, as it is expected

that a one-thread execution of the parallel program would perform worse than the serial version. This was the

case, but there are quite a few exceptions, and they were found most consistently for pigz (refer to Table 4.2).

This phenomenon was discovered only after all the tests were performed on the nodes and, initially, it was

speculated that some nodes could be running faster than others. While this actually turned out to be true -

two of the nodes are slightly faster than the other four and can run a given test several seconds faster - it was

found that pigz seemed to be faster with one thread than gzip. This could be explained from the fact that pigz

uses the same algorithms as gzip1, but the implementation is part of zlib.

Some experiments confirmed that zlib is indeed a little faster than gzip, in the order of some seconds (Table

4.1) depending on the duration of the compression cycle (longer cycle → bigger difference). This should

be happening because zlib compression�decompression routines use smaller file headers and a quicker

integrity check verification, as stated in the FA42 of zlib. As a result, there are phenomena that occurs

in the data appearing as super speedups and efficiency, i.e. values greater than the theoretical limit (e.g.

1The name of the compression algorithm is known as DEFLATE, and the decompression as Inflate.
2http:��www.gzip.org�zlib�zlib_faq.html�faq19 Accessed -anuary 26, 2014
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Sp1 > 1, Eft > 1). This is a consequence of using gzip as the serial version reference, which performs

worse than the one-threaded parallel version (pigz).

gauss09_alpha.bin
lvl gzip pigz 1thread
1 3.894 2.124 4.023 1.438
2 3.964 2.104 4.094 1.424
3 4.816 2.231 4.311 1.419
4 5.963 2.212 5.696 1.399
5 6.372 2.173 6.088 1.379
6 7.232 2.174 6.800 1.390
7 8.421 2.170 7.990 1.376
8 25.741 2.148 23.210 1.364
9 55.044 2.111 48.405 1.345

Table 4.1.: The absolute execution times tuples (compression, decompression), in seconds, for gzip and pigz using one
thread and the nine compression levels with file gauss09_alpha.bin. Highlighted in blue where the biggest
difference occurs.

Referring to Table 4.2 one can verify that there is variability of the speedup values, and it comes from a

diversity of factors. The two intuitive ones are that the speedup changes with each file, and certainly with

the different compressors. Although, the biggest impacting factor in the differences of the speedups, is the

compression level (for more pronounced effects on the compressors see Table A.1 in the Appendix). Results

are presented for both measured output methods: writing the compressed data to the disk, and discarding it

by directing output to �dev�null. While it has no meaning for the real application of compression, it gives an

insight on the performance gain by not writing to disk storage. The improvement exists for almost all files but

it is small (because the sync time is not being measured, see Section 3.4.1), with the exception of pFPC that

seems to benefit more from discarding the data. This should be related with the fact that pFPC code is noted

as not being optimized in the source code that is distributed (see Section 3.2.2).

Overall pigz and lz4mt programs perform well with a speedup very close to or above one, meaning that the

variance it suffers in performance by running the multi-threaded variants (whether degradation or improve-

ment), is very small.

Lz4mt also shows some speedups above one, even if very marginally, which means that its version running

with one thread is finishing before the serial version L=4. A quick test was performed with both algorithms

on the same node, and it was determined that indeed lz4mt is faster in some cases (milliseconds). The

explanation we find is based on the fact that lz4mt is using an older version of L=4 inside (r104 versus r109

used for L=4), which might be providing slightly faster results. Between the two different releases of L=4, r104

and r109, were committed some changes that may be affecting the execution times.

pFPC has the worst speedup performance in both data output settings, despite the fact that is also pFPC
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Sp1 per compressor level, into �local Sp1 per compressor level, into �dev�null
pigz lz4mt pFPC pigz lz4mt pFPC

dataset 1 6 9 1 9 1 12 24 1 6 9 1 9 1 12 24
waterglobe.arc.bin 0.91 0.90 0.92 1.01 0.99 0.63 0.64 0.84 0.97 0.99 0.99 0.93 1.00 0.89 0.90 0.93
engraph1_100.bin 0.97 1.02 1.03 1.03 1.01 0.63 0.63 0.83 1.08 1.13 1.13 0.95 1.01 0.87 0.86 0.91
gauss09_alpha.bin 0.97 1.05 1.14 0.98 1.01 0.63 0.70 0.85 0.97 1.06 1.14 0.97 1.01 0.87 0.90 0.89
msg_sp 0.94 0.97 1.00 0.99 0.97 0.60 0.60 0.83 0.97 1.02 1.03 0.88 0.99 0.87 0.88 0.92
NTUP2_floats.bin 0.92 0.94 1.10 0.95 1.01 0.64 0.65 0.81 0.96 0.99 1.11 0.96 1.00 0.86 0.87 0.91
AVG (all datasets) 0.94 0.99 1.03 0.97 1.00 0.66 0.67 0.87 0.98 1.01 1.05 0.97 1.00 0.87 0.87 0.91
%RSD (all datasets) 6.2� 8.7� 7.5� 3.6� 2.2� 14.5� 16.2� 8.9� 7.5� 7.8� 6.7� 5.3� 2.3� 1.5� 1.6� 4.8�

Table 4.2.: Speedup of the five datafiles for the multi-threaded programs using only one thread. Compression levels are
the minimum, medium and maximum. Lz4mt only has two compression levels available, and pFPC do not
have a defined maximum so we use 24 as addressed in Sec. 4.4. Note that the average (A9G) and relative
standard deviation (RSD) values originate from the entire table, available in the Appendix A.1.

that appears to take the largest advantage of discarding data. It only achieves, in average for the three levels,

a speedup of ≈ 0.72 when output to disk, and ≈ 0.88 when output to null, which translates to 28� and

12� performance degradation, respectively.

4.2.2. Speedups as a function of number of threads and compression
levels

A comparative chart for the speedups of the parallel compressors, with output to �local and relatively to the

serial versions, is depicted in Figure 4.1. It contains two plots for each compressor: on the left with a low

compression level, and on the right with a high compression level. The purpose is to compare the gain of

compression speedup that is possible to get from higher compression levels. The speedup is expected to

grow as the number of threads used increase. This is indeed observable in almost every case for the initial

nthreads, most notably on pigz with compression level 9, that yields the highest speedups of this study. On

the opposite side is lz4mt level 1 and both pFPC levels� the three have the ideal speedup drawn in a black line

to emphasize the low values attained.

Using L=4 in the fast mode (level 1) is so fast that using multiple threads can actually decrease performance

(e.g. 9 out of 13 datafiles in sci_files dataset take more time to compress with lz4mt than with L=4). This

happens while the datafiles are small and the execution times are really low. However, when files are bigger

and�or the compression level is increased such leads to longer execution times, and in the same dataset all

of the datafiles achieve better compression speedup. For example, the datafile msg_sp has the speedup 0.99

with 24 threads for compression level 1, but achieves speedup 10.71 with same 24 threads and compression

level 9 (high).

In the Figure 4.1 pFPC is analysed for compression level 21 instead of 24. This choice has been made
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Figure 4.1.: The attained speedup for the number of threads used. The three parallel algorithms are shown with minimal
level of compression, on the left, and high level on the right. pFPC is shown with level 21 instead of the
maximum 24.

because it was observed that the maMority of higher speedup values are attained at this level. This differences

are analysed further in the document with reference to Figure 4.3. pFPC is the compressor with worst scaling,

presenting the lowest speedup values from the first nthreads. While this is observable for the speedup scaling

it does not paint the whole picture, as absolute execution times do not get worse (with some exceptions mostly

on highest nthreads and compression level). The clear best performing compressor is pigz when used with

maximum compression level, but with speedup increasing slower after 12 threads. This behaviour is also

visible on pigz compression level 1 and lz4mt level 9, the second and best performers, respectively, in the
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speedup assessment.

4.2.3. Speedups as a function of file sizes
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Figure 4.2.: Maximum speedup attained by each dataset relatively to their uncompressed size (all the datasets presen-
ted). Note that the x axis represent the sizes in bytes on a logarithmic scale.

Figure 4.2 represents the datasets uncompressed sizes plotted in order of their speedup for the three parallel

compressors using 24 threads and maximum compression level. A fourth plot (lower right) gathers the best

speedup for each file, independently from the number of threads or algorithm. What happens is that all the

best speedups are coming from pigz, with the subtle difference that for seven files the best speedups are

achieved one with 20 threads and the remaining six with 22 threads, instead of the maximum 24. Thus, the

first and fourth graphics are very similar, with basically NTUPs files having slightly higher speedup. The second

(top right) and third (bottom left) plots represent lz4mt and pFPC respectively. While seeming similar, they tell

different stories. lz4mt has a very clean trend line, achieving higher speedups with bigger input files. On the

other hand pFPC shows speedups lower than one (as low as 0.2), effectively meaning that it needed more

time to finish execution than its serial version FPC. Nonetheless, the behaviour is the same but with a different

connotation, as the smaller files suffered a stronger impact on the speedup than the larger files (i.e. bigger

files still perform better). One of the NTUPs files (NTUP1to5_floats.bin) is the larger in the tested datasets,
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with about 7.1GBytes. According to the observed pattern it would be the file to provide the higher speedup.

In fact this does not happen, and it falls behind in the speedup ”race” compared with other smaller files. It

is one of the exceptions in the general panorama, however, these representations show a reasonably clear

pattern, higher speedups come from bigger files overall.

A final remark should be made regarding the speedups below one for pFPC, as are the case of most sci_files.

This behaviour starts to occur when pFPC is executing with an increasing compression level, but mostly in-

creasing nthreads. For example, with lower compression level and four threads, the speedups are above one

for the maMority (if not all) files.

4.2.4. Speedups as a function of compression levels
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Figure 4.3.: The speedup relative to the compression level for pigz (two top plots) and pFPC (two bottom plots).

Figure 4.3 depicts the speedup relatively to the compression level, in order to assess the scalability of the

algorithm when increasing the level of compression. Only 12 and 24 threads are analysed because we want

to show the best performance, with 24 threads providing the maximum. The 12 threads speedups are used

because it does not imply the use of the Hyper-Threading (HT) technology, thus it may suggest to be a better
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trade-off using only 12 threads and getting a speedup with better efficiency. Not using HT is an assumption,

because no mechanisms were used to ensure the 12 threads affinity to the 12 available cores.

Focusing on pigz plots one can establish the connection that, overall, higher compression levels provide

the best speedups. The top left plot (12 threads) evidences that pigz was faster with one thread than gzip,

because the speedups consistently surpass the theoretic limit of 12 (on y axis), achieving a super-linear

scalability. The main differences of using 12 or 24 threads are: i) with 24 threads it is not possible to achieve

the theoretical maximum speedup (i.e. 24)� ii) with 12 threads the speedups only achieve higher values with

higher compression levels, while that with 24 threads the speedup values are higher from the first compression

levels� iii) with 24 threads the speedups are more constant with the exception of gauss09_alpha.bin that has

a Mump from compression level 2 to 3 and then again from 7 to 8.

The same does not happen with pFPC, that shows a relatively big increase followed by a drop with higher

compression levels. The behaviour is the same with 12 or 24 threads, with the nuance that the speedups of

two files drop below one with 24 threads, for maximum compression level. For pFPC, and with this sample

files, we can affirm that 24 threads did not pose any improvement and that compression level 21 seems the

one that yields higher speedups.

lz4mt is not represented because as it only has two compression levels, there is no behaviour other than

having higher speedups with the high compression level. For both 12 and 24 threads lz4mt present positive

slope lines from level 1 straight to level 9, i.e. straight lines going up from left to right.

4.2.5. Efficiency as a function of the number of threads

A simplification is adopted in the interpretation of the speedup, in order to keep the complexity of the results

as low as possible. With the nodes configuration of two physical processor chips, both with six cores each and

HT active, the theoretical speedup is lower than the resulting 24 threads. Intel states3 that HT measured a

performance gain of 30�, while other sources report better percentages. It all comes down to the specifics of

the problem, and because compression is a data intensive application it makes a good scenario for HT. The 12

physical cores available on the computing nodes execute 24 threads, and while one thread running on a core is

stalled for some reason the other thread can kick in and take advantage of the available resources on that core

(e.g. data that is already available in the cache, previously fetched by the first thread). With the 30� increase

the maximum speedup would be 12threads×1.30 = 15.6, which is pretty close to a great part of the values

measured. Nonetheless, in some cases the speedups surpass the 30� increase, specifically the waterglobe

datagroup (presented ahead in the best-values Table 4.5). For a more fair evaluation, the maximum speedup

expected with 24 threads should then be around 15.6, but in fact we used 24. The simplification is that we do

3http:��software.intel.com�en-us�articles�how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application
Accessed -anuary 26, 2014
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not estimate the 30� gain increase coming from HT (above the 12 threads), but assume it is a 100� increase.

When it comes to efficiency there is the repercussion from the simplification made to the speedup, dis-

cussed above. As the speedup values are simplified for analysis, the resulting efficiency is affected and it also

becomes an approximation. The values resulting from Eft = Spt/t will indicate an efficiency value that is

lower than, for example, the 24 thread really can offer, i.e. with HT enabled. With half of the threads, as same

number as physical cores available (12), we assume that each thread runs on a different core, as if there is

no HT, making it possible to achieve a Ef = 1 when Sp = 12. From Table 4.3 one can verify that indeed

this speedup is plausible when using 12 threads, hence a efficiency of one (100�) is achieved.

pigz - lvl 9 lz4mt - lvl 9 pFPC - lvl 24
dataset 1th 12th 24th 1th 12th 24th 1th 12th 24th

waterglobe.vel.bin 0.92 12.68 16.07 1.02 10.45 12.39 0.84 2.52 2.08
engraph1_100.bin 1.03 11.88 16.41 1.01 10.24 11.96 0.83 2.05 1.41
gauss09_alpha.bin 1.14 13.49 18.25 1.01 8.93 10.31 0.85 1.59 0.81
msg_sp 1.00 12.08 16.47 0.97 9.16 10.71 0.83 1.55 0.89
NTUP2_floats.bin 1.10 14.12 15.04 1.01 10.65 13.26 0.81 2.33 1.83
AVG (all datasets) 1.03 12.34 15.90 1.00 9.22 10.50 0.87 1.48 0.95
%RSD (all datasets) 7.49� 8.43� 13.40� 2.23� 22.36� 27.95� 8.88� 47.16� 69.82�

Table 4.3.: Speedup of the five datafiles for the multi-threaded programs using 1, 12 and 24 threads. The maximum
compression levels are used and correspond to 9 for both pigz and lz4mt, and 24 for pFPC. Note that the
average values originate from the full table, available in the Appendix A.2.

The speedup efficiency Eft is presented in Figure 4.4, where the three parallel programs are represented

with the correspondent number of t threads used. As with previous analysis, because pigz was faster with

1 thread than gzip, there are values above the theoretical top (super-efficiencies) of 1 (100�), marked with

a dashed line. Nevertheless, an observation worth noting is that there is a noticeable reduction of efficiency

when using more than 12 threads, presumably caused by the HT, in the pigz top left plot. The other two

compressors show expected values under the maximum efficiency line. On one hand there is lz4mt (top right)

that presents a linear drop in efficiency as more threads are used, while also showing a more aggressive

decrease for three of the five files, after the 12 threads mark. On the other hand is pFPC with a logarithmic

decay reaching efficiencies lower than 10� with more than 16 threads. pigz shows the best efficiencies all

around, with values between 60� and 80� with 24 threads, while that lz4mt provides values between 30�

and 60�. With 12 threads pigz accounts for the ”super-charged” efficiency of 100� to 120�, while lz4mt

reaches between 65� and 90�, depending on the file.
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Figure 4.4.: The speedup efficiency for the number of threads used, for pigz and lz4mt with compression level 9 (top),
and pFPC level 24 (bottom), using one file per dataset.

4.3. Decompression

Decompression has a different behaviour from compression, being much faster and having limited or no

parallelism to explore. This happens because the process is inherently much simpler and faster for the L=

family, and is independent from the compression level used. When decompressing, the algorithm only needs

to reconstruct the data following a set of steps.

Because the parallel decompression is not as easy to exploit as parallel compression, the compressors

present limited parallel decompression performance. pFPC takes the same approach as during compression,

it chunks the data and assigns them to threads. When decompressing it automatically uses the same amount

of threads and chunks that were used during compression, which fits with the symmetric properties of the

algorithm.

pigz seems to behave differently, because it spawn some extra threads but not as much as specified nthreads

for execution. The pigz documentation states that “decompression can not be parallelized, at least not without

specially prepared deflate streams for that purpose. As a result, pigz uses a single thread (the main thread)

for decompression, but will create three other threads for reading, writing, and check calculation, which can

speed up decompression under some circumstances.”. In fact we were able to verify the existence of four
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threads during decompression, even if more are specified.

The same does not happen with lz4mt, because it spawns the specified nthreads, even during decompres-

sion. It is not clear at this point if all the threads do useful work, or if internally lz4mt takes a similar approach to

pigz. Nonetheless, the performance differences are very small for both. Due to the fact of parallel decompres-

sion not providing any real advantage, we do not perform speedup and efficiency analysis for decompression.

It is still worth noting some realities about decompression. The nice property that L= algorithms exhibit

by having the decompression independent from the compression parameters is represented by the top plots

in Figure 4.5, showing very steady decompression execution times. The values present in the figure come

from tests using the serial compressors, and reading�writing to �local. The behaviour of FPC is different due

to its internal mechanics. Both gzip and L=4 plots look similar, with the difference that L=4 only has two

compression levels and does not allow to see the small variation with initial levels. These variations represent

a small decrease in decompression times, accompanied by the expected increase in compression times when

higher compression levels are used. It arises from the fact that when decompressing files that had been

compressed with higher levels, the files are naturally smaller and therefore less data is read. Other important

point is that at higher levels, or at least after a certain level ”threshold” (dependent on each file contents),

the compressing algorithm produce less but longer matches, leading to faster reassembly of the data, i.e. the

decompression stage. For gzip this seems to happen after level 4 or 5, especially for waterglobe datagroup

(the down slope on the waterglobe lines).

The fact that FPC operates in a symmetric fashion makes it perform slower on decompression, as shown in

bottom plot in Figure 4.5. As the FPC algorithm needs to refill prediction tables and calculate the same xor
operations as in the compression cycle, it performs slower when decompressing data that was compressed

with bigger prediction tables (i.e. higher compression settings). It happens because when decompressing FPC

has to write more data to the disk spending more time in output, but taking the same time with the compu-

tations, hence making the overall decompression process take more time to complete. In contrast, gzip and

L=4’s computational load is much smaller in decompression than during compression, thus the much faster

decompression times. FPC presents an approximately linear behaviour, thus with larger compression levels

come higher compression and decompression times, deriving from the symmetric nature of the algorithm.

L=4 decompression is specially fast as it can yield throughputs in the order of GB�s, possibly achieving RAM-

speed limits on some platforms. There is a significant difference in decompression times when L=4�lz4mt

decompress to �null (not shown). In this case the decompression times can perform twice as fast or more,

derived from the fact that it already is extremely fast and the data is discarded. This is an unexpected scenario

because gzip�pigz and FPC�pFPC do not show to benefit from output to �null as L=4�lz4mt do with some

datafiles. Considering that the real output time is not measured (only with sync we could force that), we find
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Figure 4.5.: Absolute execution times of decompression (y axis) in order of absolute execution times of compression (x
axis), for all the datafiles and the three serial compressors. For each file the points represents the consecutive
compression levels, hence 9 points for gzip, 2 for L=4 and 26 for FPC.

no explanation of why L=4 and lz4mt have this advantage when decompressing to �null (code analysis could

help in this situation). Consequently, with these measured low decompression times L=4�lz4mt can easily

achieve a throughput of more than 2GB�s when output to �null.

Our biggest datafile (NTUP1to5_floats.bin) was hidden from the plots because as it takes much longer time

to compress and decompress across all compressors, it would extend both axis ranges and severely affect the

readability.

4.4. Memory requirements

Nowadays RAM memory is a resource usually available in large quantities within computing clusters. Never-

theless, it actually became a problem when using pFPC in our tests nodes, with a somewhat ”limited” 12G

of RAM. The problem originates from the way pFPC works, as it allocates a table with 2n+4 bytes for each

thread, with n being passed as a parameter to the program.

For the tests n was selected within an entire integer range of >1:26@, because in >4@ the authors of FPC
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tested it with 25, so it only seemed interesting to take it one step further. This range worked without problems

when using the serial version (FPC), but the memory requirements increased exponentially in pFPC (Figure

4.6). This means that while 226+4 bytes (1GB) are used for one thread, 24 threads require twenty four times

that amount (24GB). The schematic depicted in Figure 4.6 represents the 12GB node limit with a vertical line,

meaning that beyond that point the performance is severely affected as swap memory kicks in, until there is

no more virtual memory and the program terminates. In orange and red are all the number of threads that

reach the limit with compression level 26.

To stay within the RAM limit, n is decremented to n = 25 in which case only the 24 threads tests (the red

one) reach the memory limit. Thus, it is necessary to decrement again to n = 24. Now we are within the

limit, which allow for the use of all available threads 24 × 224+4 = 6GBytes. Even though the node RAM

limit seems to be Must within reach with n = 25, the actual tests proved that it is not. What happens is that

the 12GB of RAM memory are not totally available for pFPC, as some memory is used by the OS and other

processes, leading to some swapping that severely affects the performance. It should be pointed out that tests

were still performed with n = 25, 26 for all the threads possible, i.e. within the node memory limit, and that

it offers better CR for 12 out of the 25 binary files tested in FPC and pFPC.

The other parallel compressors, pigz and lz4mt, do use more memory than their serial versions, estimated

as Parallelmem = �thr × Serialmem, where �thr is the number of threads used. Since they derive

from the L= family, the RAM requirements are much lower than pFPC. These values were measured in the

form of reserved memory, using the top4 program. The observed values for pigz are around 10MB with 12

threads and 18.5MB with 24 threads. These values agree with the estimation, knowing that gzip uses less

than 1MB (measured 800.B). lz4mt reserves about 100MB and 196MB with 12 and 24 threads respectively,

and measuring 8MB in L=4 means those values stay close to the estimation. A summary of these values is

presented in Table 4.4, which also includes values for pFPC and FPC.

Algorithms ² Comp. Level
�thr pigz ² 9 lz4mt ² 9 pFPC - 24

1 1.3 10 279
12 10 100 3017
24 18.5 196 6017

Serial 0.8 8 263
Est. 12thr 9.6 96 3156
Est. 24thr 19.2 192 6312

Table 4.4.: The memory usage of the three parallel algorithms measured for compression using high compression level.
Bottom rows show the memory measured for the single-threaded programs, and the estimation values to
expect from 12 and 24 threads. All memory quantities are in MB.

4top is an Unix program that provides a dynamic real-time view of a running system.
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For decompression the memory requirements are 100-400.B lower with the gzip�pigz and L=4�lz4mt

compressors. FPC and pFPC still require roughly the same memory because it is needed to refill prediction

tables. This implies that decompressing a file that is compressed with different levels will require different

quantities of memory for decompression. Because pFPC decompresses with the same number of threads

as it was used in compression, it will require the same amount of memory, e.g. decompressing a file that

was compressed with level 24 and 12 threads will yield a RAM usage of 3GB (12 × 224+4) Must like during

compression.
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Figure 4.6.: RAM memory required for pFPC corresponding to the amount of threads. The vertical line represents the
node memory limit.

4.5. Compression ratio

The three compressors we assess have different obMectives and properties. While gzip is one of the most

common compressors used (virtually every open-source software package is distributed with a gzipped option),

it also has a a very good balance between compression and execution time. L=4 offers a mode that is super-

fast, potentially RAM-speed bound while decompressing, but expectedly looses compression capabilities. FPC,

designed to compress binary floating-point scientific data, is not meant to do dictionary and entropy coding
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as the L= based compressors, which leads to a possible good balance between speed and compression ratio

(CR), but falls short on the usability as it is not general. This, however, should not be a big problem for the

scientific community as floats are the preferred data type used.

Interestingly when compressing with pFPC, the CR is lower than FPC for a great number of files. A strong

example is the file num_plasma.bin that deliver a CR of 15 when compressed with FPC level 24, but only 6.6

with pFPC level 24 (with 24 threads executed). This particular file is very small, with an uncompressed size

around 33MB. When compressed, it shrinks to 2.2MB with FPC, and 5MB with pFPC. It is not a big difference

in absolute terms but, relatively, it is more than twice its compressed size on the most effective form. pFPC

assigns each thread with chunks to compress (8192 floats was the elected chunk size, see Section 3.2.2), and

as more threads are used they will only compress certain parts of the data for the input datafile. Depending

on the dimensionality (e.g. number of variables) of the data, the threads can end up getting the values from

the same dimension (variable) as they process the file. Therefore, it will affect the predictions and CR, for the

best, if the same dimension ends up with same thread, or for worse, if the threads get chunks from different

dimensions.

When it comes to the variability of compression ratio there are some unexpected events with pFPC. The other

two pairs of algorithms, gzip�pigz and L=4�lz4mt, present the expected behaviour. The CR is kept exactly the

same between L=4 and lz4mt, while between gzip and pigz it varies very little. With some files gzip has higher

CR, while with others it is pigz who has the higher CR, although the differences are very small. Comparing to

gzip, in 19 out of 33 files pigz shows a reduction of CR, while in the remaining 14 files it shows an increase.

These variations of the CR represent absolute values of less than 3MB (e.g. with NTUP2_floats.bin, with an

uncompressed size of 1433MB, pigz compresses around 1.2MB more than gzip).

For a better overview of the CR for the full dataset visit the table A.3 in the Appendix.

Presented in Figure 4.7 are the CR of the files, using pFPC, relatively to the compression level used. One can

immediately spot an unusual drop, and recovery, of CR with the file gauss09_alpha on the first plot. Besides

this eye-catching event, there are other uncommon behaviours that deserve a closer look, shown on the rest

of the plots in the figure. The pattern that appears with gauss09_alpha (alpha) repeats itself, much more

subtly, with engraph1_100 (engraph) on the bottom left plot. Both of them show a decrease in compression

ratio, from 15 to 16 on alpha and 6 to 7 on engraph, which then start to recover with higher levels. With the

alpha file it happens abruptly, as it drops down it goes back up with the next level, while that with engraph

it takes more compression levels to expose the variation. The inversion points happen at 6 to 7, then 12 to

13 and then 18 to 19, exactly six levels between each other (may be related with data dimensionality). The

case of waterglobe.vel and NTUP2_floats file is different, because there is no recurring changes, it takes one

direction and apparently sticks to it. With waterglobe.vel.bin the CR line starts to decrease after compression
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Figure 4.7.: CR (y axis) relatively to the compression level used (x axis) in pFPC. The five selected files are used as a
sample, nevertheless this behaviour naturally happens on other datafiles.

level 17, while with NTUP2 it starts to increase after level 14. All of these events depend on the file itself and

the compression level of FPC�pFPC, due to the fact that these algorithms resort to predictors. The predicted

values vary with each compress level, thus giving a chance to detect this behaviours. Summing this events

(and referring to the analysis of the five datafiles), it is clear that a higher compression level in FPC�pFPC does

not seem to yield higher compression ratios, as opposed to what general compressors usually do.

4.5.1. The best CR and speedup values

The best CR and best speedup measured values are presented on Table 4.5, and are independent from each

other as we only looked for the highest yield. We summarize all the best CR on the left three columns and all

the best speedups on the rightmost four columns. For both metrics there is one column with its value, other

with the properties of the compressors that originated it, as well as a third column with the throughput (MB�s)

for that value of compression or speedup. The properties consist of the name of the compressor, the number

of threads used (1 is shown for serial compressors) and the compression level used. The speedup values have

an extra fourth column that presents the associated parallel efficiency of the best attained speedup. As one can

verify, the serial algorithms have the best CR, with the exception of NTUPs that are best compressed with pigz,
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Largest CR Largest Spt
Datafiles CR Conditions MB�s Speedup Conditions MB�s Eft

waterglobe.arc.txt 2.14 >gzip 1 8@ 7.3 17.94 >pigz 24 9@ 131.6 0.75
waterglobe.1col.arc.txt 2.20 >gzip 1 8@ 6.2 18.17 >pigz 24 8@ 111.9 0.76
waterglobe.vel.txt 2.19 >gzip 1 8@ 6.7 18.10 >pigz 24 8@ 122.1 0.75
waterglobe.1col.vel.txt 2.27 >gzip 1 8@ 5.3 18.41 >pigz 24 9@ 97.1 0.77
waterglobe.arc.bin 1.20 >gzip 1 3@ 20.0 16.35 >pigz 24 8@ 286.0 0.68
waterglobe.vel.bin 1.48 >gzip 1 5@ 19.1 16.12 >pigz 24 5@ 307.6 0.67
engraph1_100.txt 2.33 >gzip 1 9@ 5.7 18.60 >pigz 24 8@ 106.5 0.78
engraph1_100.1col.txt 2.44 >gzip 1 9@ 5.0 19.18 >pigz 24 9@ 95.5 0.80
engraph1_100.bin 1.22 >gzip 1 3@ 20.3 16.42 >pigz 24 7@ 276.4 0.68
gauss09_alpha.txt 4.37 >gzip 1 9@ 1.9 20.85 >pigz 24 9@ 39.4 0.87
gauss09_density.txt 2.36 >gzip 1 9@ 4.1 19.28 >pigz 24 9@ 78.6 0.80
gauss09_alpha.bin 3.87 >gzip 1 9@ 4.6 18.25 >pigz 24 9@ 84.7 0.76
gauss09_density.bin 1.09 >FPC 1 24@ 82.8 14.83 >pigz 24 9@ 294.5 0.62
msg_bt 1.29 >FPC 1 24@ 82.4 16.06 >pigz 24 9@ 263.5 0.67
msg_lu 1.17 >FPC 1 20@ 173.7 15.92 >pigz 24 7@ 279.4 0.66
msg_sp 1.26 >FPC 1 24@ 116.7 16.47 >pigz 24 9@ 217.9 0.69
msg_sppm 7.43 >gzip 1 9@ 314.8 15.84 >pigz 24 8@ 360.0 0.66
msg_sweep3d 3.09 >FPC 1 24@ 166.3 15.40 >pigz 24 7@ 272.4 0.64
num_brain 1.16 >FPC 1 24@ 96.0 15.68 >pigz 24 5@ 263.2 0.65
num_comet 1.16 >gzip 1 9@ 88.7 15.76 >pigz 24 9@ 236.3 0.66
num_control 1.16 >gzip 1 9@ 18.0 15.53 >pigz 24 7@ 280.0 0.65
num_plasma 15.00 >FPC 1 24@ 127.3 13.05 >pigz 24 5@ 322.3 0.54
obs_error 3.54 >FPC 1 24@ 91.4 15.94 >pigz 24 8@ 193.2 0.66
obs_info 2.27 >FPC 1 24@ 65.7 12.30 >pigz 20 7@ 232.8 0.62
obs_spitzer 1.23 >gzip 1 3@ 18.0 16.45 >pigz 24 9@ 203.7 0.69
obs_temp 1.04 >gzip 1 4@ 18.3 13.56 >pigz 24 6@ 247.7 0.56
NTUP1_floats.bin 2.19 >pigz 1to24 9@ 107.8 16.19 >pigz 22 9@ 116.2 0.74
NTUP2_floats.bin 2.19 >pigz 1to24 9@ 107.9 16.20 >pigz 22 9@ 116.3 0.74
NTUP3_floats.bin 2.19 >pigz 1to24 9@ 107.6 14.47 >pigz 22 8@ 257.2 0.66
NTUP4_floats.bin 2.19 >pigz 1to24 9@ 107.8 14.44 >pigz 22 8@ 257.1 0.66
NTUP5_floats.bin 2.19 >pigz 1to24 9@ 107.7 14.49 >pigz 22 8@ 257.6 0.66
NTUP1to5_doubles.bin 4.27 >pigz 1to24 9@ 94.9 14.76 >pigz 22 3@ 884.7 0.67
NTUP1to5_floats.bin 2.19 >pigz 1to24 9@ 114.4 14.84 >pigz 24 8@ 263.8 0.62

Table 4.5.: Summary of the all-best values for each datafile. The third and sixth columns contain the properties, enclosed
in square brackets, for the best values. These properties are composed of algorithm, number of threads and
compression level (in this order).

which is also the best achieving speedups compressor. This is to be expected because gzip is the compressor

with the longest execution times, hence giving pigz a better chance to improve. The best compression ratios

come mostly from highest compression levels, which is also expected. Nonetheless, for 10 datafiles the best

CR is achieved before highest compression level is used.

If the Table 4.5 was assembled with the purpose to show other metrics best values, specifically throughput,

it would be populated with mostly L=4�lz4mt and FPC�pFPC.
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4.6. Blocks (split datafiles) versus entire-file

At some point during the realization of all the tests a question arose to us: should the datafiles be a single

file within manageable limits, or should the original file be split into smaller parts. The idea here is to analyse

the effect of datafile splitting, while still using the serial compressors for each block. Looking for an answer

a few experiments were performed by splitting two files into smaller parts, and after initial assessment, pro-

ceeding with more splitting, this time with only one of the files (the most promising, if any). The two selected

datafiles are binary (so it is possible to test all algorithms), and consist of waterglobe.arc.bin, with 1.3GB, and

NTUP1_floats.bin, with 1.4GB. We selected the first NTUP file arbitrarily, as all of them are similar on size

and properties. The largest file from our datasets is NTUP1to5_float.bin and consists of the five NTUP files

concatenated together, hence it would not make sense to use it for this purpose. The waterglobe binary files

are the second largest in the datasets, and the specific file was also simply selected once more arbitrarily

(waterglobe.arc.bin comes before than waterglobe.vel.bin alphabetically).

What was observed in the initial assessment is that, with a split into four parts of waterglobe.arc.bin, the sum

of those parts for gzip and FPC take, respectively, in average less 50 and 28 milliseconds to complete, while

L=4 take in average 206 more milliseconds. The expected was that the execution times should be higher due

the overhead of calling the compressors multiple times (possibly some measurement imprecision). Relatively

to the size, the split results in fewer 5. with gzip, 13.B with lz4mt and 6MB with FPC (i.e. the sum of the split

files have more bytes after compression).

If comparing the average of (de)compression execution times of the 4-part split and the 4-threaded execution

(using pigz and the whole file), the results are similar: pigz takes in average more 3s on compression, but 5.6s

on decompression. This is expected because it is reading the whole file, thus more I�O is performed and, as

we have seen before (Sec. 4.3), the parallel decompression does not have the same behaviour as parallel

compression.

For NTUP1_floats.bin split tests, gzip and L=4 showed a very small increase in compression ratio for max-

imum level on NTUP1 (around 7-10.B less on compressed file), but FPC managed to compress 23MB more,

with around 126 milliseconds of increased compression�decompression execution time. No explanation is

found to this increase in the CR, other than that the dimensionality of the dataset contents must be fitting

better with the predictors (as the dataset is consecutively split into blocks). It only happens with NTUP1, as

with waterglobe.arc.bin the compression gets consistently worse, when increasing the compression level, with

the splitting. The second stage of this analysis now focus only FPC and NTUP1 datafile, which was split into

2, 4, 8, 16, 32 and 64 parts. This means that in the smallest split the algorithm compress a 1/64 of the file

(≈22MB) 64 times instead of 1.4GB once.

The outcome is summarized in Table 4.6, in the form of absolute differences between the sum of splits

(sum of the times and sizes of the split files) and the one file originals. Apparently, in this test case, FPC takes
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FPC ² compression level 24
�parts C-time diff (s) D-time diff (s) Size diff (MB)
2 -0.102 -0.230 -9.02
4 0.111 -0.062 -21.97
8 0.715 0.635 -13.08
16 1.678 1.538 -11.60
32 3.674 3.554 -19.04
64 6.332 6.090 -58.32

Table 4.6.: Differences summary table of using file splitting, in the concrete case of NTUP1_floats.bin with FPC. C-time
is the compression time and D-time the decompression, with blue cells representing the gain.

advantage of using smaller inputs, saving 58MB when the file was split into 64 pieces. pFPC, which chunks

the data for the threads, also compresses more, saving 46MB with 24 threads and same compression level.

Using split into 64 parts takes relatively more time to complete, around six seconds for both compression

and decompression. This is expected because of the overhead coming from executing the program 64 times

independently. In this case pFPC has the advantage, as it is faster than the serial version (but with a miserable

speedup of approximately 2 using the 24 threads)

With these observations it suggests that the little compression gain (58MB in a 1.4GB file) of split is not

worth the increase in execution times and the increased complexity in managing more files. Splitting into two,

or especially four pieces, looks much more reasonable, at least for this particular example.

4.7. MAFISC Pre-filtering for compression

When researching the state of the art in compression of scientific data we read about MAFISC, a compressor

that applies filters to the data before actually compressing it. This trade-off yields better compression ratio for

the cost of spending extra computing cycles to apply the filters. It consist of data reorganization (lower entropy)

that boosts the compressibility. Remember that the compression step is delegated to lzma compressor inside

MAFISC algorithm, which will have a better input for compression, resultant from the filters applied to the data.

It is expected that, at the worse case, the compression achieved is similar to only using lzma compression.

Interested by this approach we decided to test it, and for doing that we used HDF55 (hdf5). MAFISC is

implemented as a filter that plugs into HDF5 own high-level programs, and can be selected as a compression

method for the hdf5 format files. Because of this extra layer introduced by hdf5, the algorithm is not directly

compared to the other compressors.

Two big binary datafiles were used: the NTUP1_floats.bin file (converted to the hdf5 format and keeping its

1.4GB size), for the same reason as in previous section, and a fusion of all sci-files into a bigger file (2G). This

5HDF5 (Hierarchical Data Format) is a data model, library, and file format for storing and managing data. It supports an unlimited
variety of datatypes, and is designed for flexible and efficient I�O and for high volume and complex data.
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fusion was made with the features of HDF5 allowing for all the files in the sci-files datagroup to be structured

inside a unique file. When importing a file to hdf5 format it is possible to specify a chunk size, which defaults

to 32MB. With some testing using chunk sizes equivalent to the CPU’s L2 (1.5MB) and L3 (12MB) caches, it

was selected for comparison the L2 size for showing better performance.

There is a bug in hdf56, unresolved at the time of writing, that inhibits decompression testing because

h5repack fails to load the filter plugin, in this case MAFISC, and fails to decompress. h5repack is a high-level

program that comes with the library and allows to repack files in the hdf5 format using a filter, being the filter

already integrated or user defined (the case of MAFISC). To compress a file with one of integrated compressors

we simply use h5repack and use the filter code for it� for MAFISC it is exactly the same but the filter identific-

ation code is different.

The tests performed with MAFISC are all executed serially as hdf5 still does not offer multi-threading ability.

We measure compression time and compressed file size with the standard MAFISC settings, and repeat with

a modification on the filter. This modification simply consists of modifying a line of MAFISC source code, so

that it uses the specified lzma compression level instead of the default. Regarding the default configuration,

it uses a specific fast option of L=MA with parameters defined manually, which probably have been tuned by

the authors.

Comparison with lzma takes place, using the program xz, and also with a L=4 filter for hdf5 that is available
on public domain. Table 4.7 summarizes the gains, in percentage, of the compression time and compressed

file size relatively to a compression directly using gzip with level 9 (i.e. not using hdf5 gzip filter). Therefore we

are looking for negative percentages, meaning that the execution time took less t� time to complete, or the

file size had less s� of the size, compared to using gzip. We use the external gzip, as the baseline, with the

obMective of comparing the absolute cost of only using gzip versus the increased complexity of using MAFISC,

and the hdf5 library. Comparing with the gzip filter (within hdf5) would have been fairer, but was not the

obMective as it would hide the costs of using hdf5.

As expected the MAFISC and lzma tests perform much slower than gzip (positive percentages), because

lzma algorithm is known to offer some of the best compression ratios at the cost of execution time. Therefore,

both MAFISC and solo lzma output smaller files, i.e. compress more. The best defaults for MAFISC are

displayed in bold and, as previously explained, the best results come from the files that were chunked using

sizes that fit the CPUs L2 cache of the test nodes. When compressing with lzma level 9, and comparing to the

modified version of MAFISC, the execution is faster and output sizes are smaller. The latter was unexpected

because both are using lzma -9 and MAFISC should be able to compress more after applying its filters. A

possible explanation is that while MAFISC operates within hdf5, it compresses individual chunks of 1.5MB or

6http:��hdf-forum.184993.n3.nabble.com�HDF-Newsletter-137-td4026685.html Accessed -anuary 26, 2014
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NTUP1 fusion-sci_files
chunk-L2 default-chunk chunk-L2 default-chunk

comp. time

MAFISC 114.96% 183.63� 419.15% 627.46�
MAFISC mod. -9 489.52� 587.74� 1080.62� 1313.30�
xz(lzma) -9 304.30� 306.00� 878.85� 889.52�
hdf5-L=4 -9 -72.81� -74.58� -32.38� -37.32�

comp. size

MAFISC size -8.18% -2.71� -21.06% -19.09�
MAFISC mod. -9 size -10.86� -6.58� -23.01� -20.36�
xz(lzma) -9 size -12.78� -12.74� -29.08� -29.02�
hdf5-L=4 -9 size 4.62� 4.57� 6.62� 6.65�

Table 4.7.: Summary table for MAFISC tests compared to gzip. Top values are the percentage gains for compression
time and bottom values for file size after compression. Bigger values are worse, thus the negatives mean that
it was better than gzip (highlighted in blue). Best MAFISC values shown in bold.

32MB, while that using lzma separately do not have limits, therefore it handles the entire file and can find

better matches. A somewhat unfair comparison can be made for L=4 filter within hdf5. As L=4 is already less

capable of compressing than gzip it does perform the worse in terms of compressed file size, however it is the

only one who surpass gzip in terms of speed, an expected outcome.

4.8. Full measure of I/O

In this section we present the times for compression including full measurement of I�O time which were not

contemplated on the main tests. We do it by performing some measurements using Unix time to capture

both the full execution of the compression cycle (internally measured by OpenMP routines) and the sync
call at the end. This way all the data on the buffers is written to disk on completion and the I�O is properly

measured. As a consequence of this the reported times can increase greatly (Table 4.8).

This is evaluated with the datafile engraph1_100.bin.The datafile engraph1_100.bin is a binary dataset and

it has a size of 650MB, which is the closest to the average size of our datasets (860MB). Both gzip and pigz

are not shown because they add nothing to the comparison, as both compressors have very similar times

when using sync or not. This happens because their base (lowest) execution time is higher than the I�O

time enforced by sync. For the present parallel compressors, the shown execution times come from only one

thread.

The first observation to be made is that OMP routines do not capture the real I�O time, because I�O happens

after the compressor algorithm has already finished. However, when output is directed to �null FPC�pFPC

and L=4�lz4mt present an even smaller compression time.

The time it takes to copy the file is around 15 seconds, as visible on cp sync time cell. Therefore, and

with sync enforced, no other test case is expected to be faster than this (i.e. have lower execution time than
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engraph1_100.bin (650MB)
compression level 1 compression level 9 or 24

Test case OMP wtime time both→null OMP wtime time both→null
L=4 sync 2.283 13.905 1.564 28.575 31.648 28.362
L=4 2.262 2.265 1.466 29.296 29.299 31.23
FPC sync 2.455 15.971 1.747 6.665 17.879 6.116
FPC 2.405 2.528 1.669 6.688 6.797 6.138

lz4mt sync 2.290 16.395 1.627 28.497 31.438 27.861
lz4mt 2.323 2.332 1.613 28.309 28.316 27.513
pFPC sync 4.059 17.355 2.146 8.404 18.152 6.658
pFPC 4.046 4.158 2.138 8.163 8.284 6.515
cp sync N�A 14.984
cp N�A 1.016

Table 4.8.: Execution time measurements comparing the various compressors when including all I�O time (with sync),
and the execution time measured by the OpenMP walltime routines. Only compression times are analysed
for a single datafile.

a simple file copy). Incredibly L=4 level 1 compression shows to be faster (L=4 takes 14 seconds, 1 second

less than using cp) than a simple disk copy (both forcing sync). This is unexpected and is likely due to the

reduced amount of data that needs to be written (even though the file only achieves a CR of 1.005, 647MB),

and to the sheer speed of L=4 level 1. The remaining four datasets, from the selected five, are present on

Table A.4 in the Appendix, and three of them also present faster compression times than a datafile copy (both

L=4 and FPC).

When higher compression levels are used (9 for L=4�lz4mt and 24 for FPC�pFPC) the I�O time can be

mostly hidden by the compression time. That is the case for L=4�lz4mt which present similar time values

with and without sync. Although, FPC�pFPC show smaller compression time (even at this compression level)

when there is no sync, achieving less than half of the compression time for when sync is enforced. Therefore,

in this scenario FPC�pFPC shows to be faster for the computations alone (i.e. without accounting for complete

I�O time).

Regarding this specific test case, we can say that the cost of I�O varies between 11 and 14 seconds for

L=4�lz4mt and FPC�pFPC, when compressing engraph1_100.bin with one thread and both low and high

compression levels.
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In this final chapter only two sections are presented. We start with our conclusions based on the experiments

performed, and then follow to the section were some observations are made about the work that we prospect

can be done next.

5.1. Summary and conclusions

This dissertation reflects an effort to compare the performance of some selected data compressors on scientific

data. An analysis of the state of the art has been presented in the Chapter 2. The compression trend seems to

be growing within the scientific community, as computational resources available grow towards the Exascale

and scientific simulations produce an increasing quantity of data. While lossless compression is still the

preferred choice, there is a growing interest towards lossy compression, useful for data visualization (as it is

straightforward to estimate in that context the effect of approximations). Lossy compression can also be used

in scientific applications, if high percentages of correlation with original data are guaranteed. It seems that

parallel compression has not yet attracted much attention, as the related work on this topic is as yet scarce.

Over this work a combination of relevant scientific datasets were collected and tested with three compression

algorithms: gzip and L=4, both based on the general L= dictionary coders, and FPC, a specific floating-point

data compressor. We also briefly tested MAFISC, which applies filters to the floating-point data in order to

facilitate data compression.

On Chapter 3 we defined the entire test bench used throughout the tests performed. The selected com-

pressors were presented, the datasets characterized and the methodology for the tests and measurements

were explained. The content in the tested scientific datasets is highly random, with an average random entropy

(randomness) of 81.43�. 9ery dependent on the datafile is its uniqueness (� of uniques), with some being

composed of mostly unique values (typically zeroes and ones) , and others with a low percentage of uniques.

The datasets with with lower uniqueness still present high randomness.

It is from the results, presented in Chapter 4, that we manage to take the most conclusions that are

summarized on Table 5.1. The best performing compressors when it comes to CR are gzip�pigz (best in 24

of 33 datafiles), and FPC (with the remaining 9 datafiles). For parallel speedup, pigz yields the best values,
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but is the slowest compressor when it comes to absolute serial execution times. L=4 is the fastest compressor

(for the lowest compression level), especially when decompressing. The most efficient parallel compressor is

pigz, but closely followed by lz4mt, presenting efficiency around one when 12 threads are used on a 12 core

machine. pigz showed a better performance than gzip on our testing system, as it is faster even with only one

thread. Using pigz instead of gzip is a trade-off whose benefit increases with the number of threads and the

attained speedups close to linear.

pFPC was tested as available, even though it is not optimized to be used as such. pFPC performance was

poor, as a consequence of this, but with slight changes we believe it could become the best compressor for

specific binary files, because of low execution times and the best CR it achieves for those files. The memory

requirements for the pFPC compressor can become critical, when high compression levels are used together

with many threads, by requesting several gigabytes of RAM memory. However gzip�pigz and L=4�lz4mt use

memory sparingly in comparison, with lz4mt being the one that needs more memory (196MB with 24 threads).

Regarding total execution times, and if the full I�O time is taken into account, we found that L=4 with fast

compression level can be faster, if marginally, than a simple memory copy using Unix cp. Note that L=4

applies the compression and performs the data output to disk when cp only performs a file copy, yet this

advantage will probably get lost if we were to add the decompression time too. When decompressing and

discarding the output to null more than 2GB�s of throughput were achieved by lz4mt for certain datafiles.

lz4mt can deliver exceptional compression and decompression speed when CR is not the main goal.

Because the tests performed in a self-contained context the outcome cam become very different on a

real production environment. The datasets have to be parsed�converted into valid inputs for some of the

compressors, and the execution takes place on usually loaded machines, which would most certainly cause

some changes on the resultant ranking (Table 5.1).

MAFISC, the compressor that applies filters prior to compressing the data with lzma, presents higher CR than

gzip on two datasets tested, as was expected. While the compression speed is faster than simply using lzma,

which is used inside MAFISC, the decompression speed could not be analysed because it was impossible to

test due to a bug on the underlying data library HDF5.

Rank CR S-exec.T P-exec.T P-Sp P-Ef RAM req. I�O exec.T
best gzip�pigz (24�33) L=4 lz4mt pigz pigz gzip�pigz L=4�lz4mt
↓ FPC (9�33) FPC pigz (26�33) lz4mt lz4mt L=4�lz4mt FPC�pFPC

worst L=4�lz4mt gzip PFPC (7�33) pFPC pFPC FPC�pFPC gzip�pigz

Table 5.1.: General ranking for the compressors in diverse categories. Prefixes S and P stand for serial and parallel,
respectively� exec.T stands for execution times. If MAFISC was to be added to the table it would take the best
place for CR, but the worst for the serial execution times.

Ending fun fact: the size of this pdf document is around 450.B and the folder with all the source files is
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2236.B. Therefore, after compilation and internal pdf compression, this dissertation achieves a CR of 4.97.

5.2. Final considerations and future work

It is mostly clear that compression is not an ancient paradigm for the lack, and high cost, of storage and

communication bandwidth. The modern days and future do and will take advantages of data compression.

Because it was not in the scope of this work to explore the approaches in parallel implementation of the

compressors, this could well be the next step to take. We found in pFPC a high potential but the current version

is not yet fully mature. pFPC will require a proper implementation to allow its full potential to develop. For

lz4mt a tuning can also improve performance as this implementation is quite recent. Overall pigz seems the

most mature of the parallel compressors studied, so the work should focus lz4mt and pFPC for performance

tuning and possible CR improvements.

The filtering and data reordering approaches provide a better outcome than pure compression. This is

more versatile because for each kind of problem it is possible to adMust the filtering and reordering that might

give better compression, without the need to sacrifice precious computing time with a higher compression al-

gorithm. MAFISC should be tested with more datasets and compared with more compressors, and its memory

requirements investigated. An analysis of the decompression speed, which was not possible to assess, should

be made. More filters can be developed (as long as they are reversible), coupled with learning the best order

in which they can be applied to the data. In order to make MAFISC faster the general compressor lzma can

be changed for other faster compressor, and performance trade-off should be contemplated. Parallelization of

MAFISC can be studied on how to be applied: using parallel HDF5, or directly apply MAFISC to the datafiles.
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Sp1 per compressor level, into �local or �tmp Sp1 per compressor level, into �dev�null
pigz lz4mt pFPC pigz lz4mt pFPC

dataset 1 6 9 1 9 1 12 24 1 6 9 1 9 1 12 24
waterglobe.arc.txt 0.94 1.05 1.06 1.01 1.03 nd nd nd 0.99 1.06 1.06 1.00 1.04 nd nd nd
waterglobe.1col.arc.txt 0.93 1.05 1.06 1.01 1.02 nd nd nd 0.99 1.06 1.07 0.99 1.03 nd nd nd
waterglobe.vel.txt 0.99 1.18 1.18 1.02 1.02 nd nd nd 1.11 1.18 1.19 0.99 1.05 nd nd nd
waterglobe.1col.vel.txt 0.99 1.18 1.20 1.02 1.03 nd nd nd 1.11 1.18 1.20 0.99 1.01 nd nd nd
waterglobe.arc.bin 0.91 0.90 0.92 1.01 0.99 0.63 0.64 0.84 0.97 0.99 0.99 0.93 1.00 0.89 0.90 0.93
waterglobe.vel.bin 0.90 0.93 0.92 1.00 1.02 0.64 0.64 0.84 0.97 0.99 0.99 0.95 1.01 0.88 0.90 0.86
engraph1_100.txt 1.03 1.17 1.18 0.99 1.01 nd nd nd 1.12 1.18 1.18 0.99 1.03 nd nd nd
engraph1_100.1col.txt 1.00 1.17 1.18 0.99 1.02 nd nd nd 1.13 1.17 1.19 1.00 1.03 nd nd nd
engraph1_100.bin 0.97 1.02 1.03 1.03 1.01 0.63 0.63 0.83 1.08 1.13 1.13 0.95 1.01 0.87 0.86 0.91
gauss09_alpha.txt 0.98 1.03 1.06 0.99 1.01 nd nd nd 0.99 1.04 1.06 1.00 1.01 nd nd nd
gauss09_density.txt 0.98 1.04 1.07 0.99 1.00 nd nd nd 1.00 1.04 1.07 0.99 1.02 nd nd nd
gauss09_alpha.bin 0.97 1.05 1.14 0.98 1.01 0.63 0.70 0.85 0.97 1.06 1.14 0.97 1.01 0.87 0.90 0.89
gauss09_density.bin 0.96 0.98 0.98 1.02 1.00 0.63 0.65 0.86 0.97 0.98 0.98 0.94 1.00 0.83 0.87 0.91
msg_bt 0.95 0.93 0.95 0.98 1.00 0.62 0.62 1.11 0.97 1.01 1.00 0.94 0.98 0.87 0.88 0.88
msg_lu 0.97 0.91 0.91 0.96 0.98 0.62 0.63 0.82 0.97 1.00 0.99 0.96 0.98 0.87 0.86 0.89
msg_sp 0.94 0.97 1.00 0.99 0.97 0.60 0.60 0.83 0.97 1.02 1.03 0.88 0.99 0.87 0.88 0.92
msg_sppm 0.96 0.93 1.07 0.97 0.99 0.71 0.79 0.87 0.95 0.95 1.07 0.96 1.00 0.87 0.87 0.87
msg_sweep3d 0.97 0.98 0.98 0.94 0.99 0.65 0.68 0.90 0.98 1.00 0.99 0.94 1.00 0.88 0.87 0.96
num_brain 0.96 1.00 0.99 0.93 0.99 0.64 0.63 0.84 0.97 1.01 1.01 0.93 1.00 0.87 0.88 0.93
num_comet 0.98 0.98 1.01 0.99 0.99 0.66 0.64 0.83 0.97 1.00 1.01 0.95 1.00 0.89 0.88 0.88
num_control 0.96 1.01 0.99 1.03 1.00 0.63 0.64 0.84 0.98 1.00 1.00 0.97 0.99 0.88 0.89 0.90
num_plasma 0.98 0.98 0.99 0.98 0.98 0.65 0.66 1.08 0.97 0.97 0.97 1.02 1.00 0.85 0.84 1.07
obs_error 0.98 1.00 1.03 0.93 0.99 0.62 0.65 0.90 0.98 1.00 1.03 0.95 1.01 0.85 0.86 0.95
obs_info 0.97 0.99 0.99 0.91 0.98 0.74 0.66 0.97 0.96 0.98 0.98 1.14 1.01 0.86 0.87 0.99
obs_spitzer 0.95 1.00 1.03 0.95 0.99 0.64 0.65 0.85 0.97 1.01 1.03 0.95 1.00 0.88 0.87 0.94
obs_temp 0.98 0.99 0.99 0.89 0.99 0.68 0.65 0.85 0.96 0.99 0.98 1.12 1.01 0.86 0.86 0.90
NTUP1_floats.bin 0.90 0.95 1.10 0.95 1.00 0.63 0.64 0.82 0.95 0.98 1.11 0.96 1.00 0.86 0.86 0.90
NTUP2_floats.bin 0.92 0.94 1.10 0.95 1.01 0.64 0.65 0.81 0.96 0.99 1.11 0.96 1.00 0.86 0.87 0.91
NTUP3_floats.bin 0.81 0.82 0.99 0.97 1.00 0.64 0.64 0.83 0.85 0.88 0.99 0.96 1.01 0.86 0.86 0.91
NTUP4_floats.bin 0.81 0.83 0.99 0.97 1.00 0.64 0.65 0.82 0.86 0.88 0.99 0.95 1.00 0.86 0.87 0.91
NTUP5_floats.bin 0.84 0.82 0.99 0.95 1.01 0.64 0.64 0.81 0.85 0.88 0.99 0.96 1.00 0.86 0.87 0.91
NTUP1to5_doubles.bin 0.84 0.96 1.04 0.96 1.00 0.70 0.72 0.83 0.84 0.96 1.04 0.97 1.00 0.86 0.87 0.90
NTUP1to5_floats.bin 0.80 0.81 0.99 0.95 0.90 1.10 1.17 0.82 0.85 0.88 0.99 0.88 0.90 0.87 0.87 0.85
AVERAGE 0.94 0.99 1.03 0.97 1.00 0.66 0.67 0.87 0.98 1.01 1.05 0.97 1.00 0.87 0.87 0.91
%Relative STDEV 6.2� 8.7� 7.5� 3.6� 2.2� 14.5� 16.2� 8.9� 7.5� 7.8� 6.7� 5.3� 2.3� 1.5� 1.6� 4.8�

Table A.1.: Speedup of all the datafiles for the multi-threaded programs using only one thread. Compression levels are
the minimum, medium and maximum. Lz4mt only has two compression levels available, and pFPC do not
have a defined maximum so we use 24 as addressed in 4.4
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pigz lz4mt pFPC
dataset 1th 12th 24th 1th 12th 24th 1th 12th 24th

waterglobe.arc.txt 1.06 13.43 17.94 1.03 11.44 12.93 nd nd nd
waterglobe.1col.arc.txt 1.06 13.63 17.57 1.02 11.29 12.80 nd nd nd
waterglobe.vel.txt 1.18 13.61 17.55 1.02 11.03 12.29 nd nd nd
waterglobe.1col.vel.txt 1.20 13.58 18.41 1.03 11.46 12.45 nd nd nd
waterglobe.arc.bin 0.92 12.82 16.30 0.99 10.44 12.14 0.84 2.51 2.06
waterglobe.vel.bin 0.92 12.68 16.07 1.02 10.45 12.39 0.84 2.52 2.08
engraph1_100.txt 1.18 12.51 18.36 1.01 11.12 13.08 nd nd nd
engraph1_100.1col.txt 1.18 12.68 19.18 1.02 10.96 13.38 nd nd nd
engraph1_100.bin 1.03 11.88 16.41 1.01 10.24 11.96 0.83 2.05 1.41
gauss09_alpha.txt 1.06 12.69 20.85 1.01 10.45 12.21 nd nd nd
gauss09_density.txt 1.07 12.67 19.28 1.00 9.81 12.19 nd nd nd
gauss09_alpha.bin 1.14 13.49 18.25 1.01 8.93 10.31 0.85 1.59 0.81
gauss09_density.bin 0.98 11.41 14.83 1.00 8.71 8.74 0.86 1.17 0.52
msg_bt 0.95 11.89 16.06 1.00 8.89 10.01 1.11 1.90 1.03
msg_lu 0.91 11.71 15.73 0.98 8.44 9.90 0.82 1.21 0.63
msg_sp 1.00 12.08 16.47 0.97 9.16 10.71 0.83 1.55 0.89
msg_sppm 1.07 11.73 15.81 0.99 7.74 8.74 0.87 0.81 0.46
msg_sweep3d 0.98 11.49 15.30 0.99 8.27 8.29 0.90 0.91 0.43
num_brain 0.99 11.64 15.60 0.99 8.49 9.26 0.84 1.13 0.54
num_comet 1.01 11.68 15.76 0.99 7.36 7.97 0.83 0.95 0.42
num_control 0.99 11.63 15.47 1.00 7.77 8.71 0.84 1.25 0.58
num_plasma 0.99 10.27 12.73 0.98 4.62 3.90 1.08 0.77 0.31
obs_error 1.03 11.87 15.91 0.99 5.78 5.61 0.90 0.78 0.33
obs_info 0.99 9.48 11.34 0.98 3.01 2.53 0.97 0.43 0.17
obs_spitzer 1.03 12.17 16.45 0.99 8.96 9.64 0.85 1.38 0.72
obs_temp 0.99 10.83 12.91 0.99 5.83 4.78 0.85 0.56 0.20
NTUP1_floats.bin 1.10 14.03 15.01 1.00 10.70 13.08 0.82 2.30 1.84
NTUP2_floats.bin 1.10 14.12 15.04 1.01 10.65 13.26 0.81 2.33 1.83
NTUP3_floats.bin 0.99 12.85 13.46 1.00 10.73 13.25 0.83 2.37 1.86
NTUP4_floats.bin 0.99 12.58 13.48 1.00 10.91 13.22 0.82 2.37 1.85
NTUP5_floats.bin 0.99 12.59 13.46 1.01 10.54 13.17 0.81 2.35 1.83
NTUP1to5_doubles.bin 1.04 13.31 13.37 1.00 10.14 11.23 0.83 1.08 0.50
NTUP1to5_floats.bin 0.99 12.33 14.32 0.90 10.00 12.49 0.82 0.65 0.45
AVERAGE 1.03 12.34 15.90 1.00 9.22 10.50 0.87 1.48 0.95
%Relative STDEV 7.49� 8.43� 13.40� 2.23� 22.36� 27.95� 8.88� 47.16� 69.82�

Table A.2.: Speedup of all the datafiles for the multi-threaded programs using 1, 12 and 24 threads. The maximum
compression levels are used and correspond to 9 for both pigz and lz4mt, and 24 for pFPC. Note that the
average values originate from the entire table, available in the appendix.
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Datasets gzip L=4 FPC
Name Size(MB) lvl CR lvl CR lvl CR
waterglobe.arc.txt 1640 8 2.144 9 1.648 N�A N�A
waterglobe.1col.arc.txt 1640 8 2.204 9 1.703 N�A N�A
waterglobe.vel.txt 1405 8 2.191 9 1.687 N�A N�A
waterglobe.1col.vel.txt 1405 8 2.271 9 1.756 N�A N�A
waterglobe.arc.bin 1318 3 1.197 9 1.179 3 1.029
waterglobe.vel.bin 1318 5 1.477 9 1.433 6 1.003
engraph1_100.txt 856 9 2.328 9 1.757 N�A N�A
engraph1_100.1col.txt 856 9 2.437 9 1.807 N�A N�A
engraph1_100.bin 650 3 1.218 9 1.148 6 1.137
gauss09_alpha.txt 304 9 4.371 9 3.478 N�A N�A
gauss09_density.txt 244 9 2.358 9 1.860 N�A N�A
gauss09_alpha.bin 256 9 3.866 9 3.333 15 1.826
gauss09_density.bin 128 5 1.024 9 1.014 24 1.090
msg_bt 254 8 1.130 9 1.066 24 1.288
msg_lu 185 5 1.055 1 1.000 20 1.173
msg_sp 277 4 1.108 9 1.010 24 1.262
msg_sppm 266 9 7.431 9 6.724 19 5.298
msg_sweep3d 120 4 1.092 9 1.022 26 3.094
num_brain 135 4 1.064 1 1.000 26 1.165
num_comet 102 9 1.162 9 1.086 24 1.157
num_control 152 9 1.058 9 1.016 9 1.050
num_plasma 33 5 1.608 9 1.391 26 15.077
obs_error 59 4 1.448 9 1.288 26 3.633
obs_info 18 5 1.154 9 1.130 24 2.273
obs_spitzer 189 3 1.232 9 1.199 26 1.029
obs_temp 38 4 1.036 1 1.000 6 1.019
NTUP1_floats.bin 1415 9 2.187 9 2.094 26 1.627
NTUP2_floats.bin 1433 9 2.190 9 2.096 26 1.628
NTUP3_floats.bin 1435 9 2.188 9 2.095 26 1.628
NTUP4_floats.bin 1429 9 2.188 9 2.095 26 1.628
NTUP5_floats.bin 1435 9 2.188 9 2.095 26 1.627
NTUP1to5_doubles.bin 232 9 4.233 9 4.148 26 3.216
NTUP1to5_floats.bin 7148 9 2.188 9 2.095 26 1.585
AVERAGE 860 N�A 2.061 N�A 1.832 N�A 2.302
%Relative STDEV 148.58� N�A 63.71� N�A 63.34� N�A 123.96�

Table A.3.: Best CR for the full dataset using the serial compressors (the best for each dataset in bold). Parallel com-
pressors are absent because the maMority of the tests yield worse CR (and have very similar CR when using
only one thread).
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waterglobe.vel.bin (1318MB) gauss09_alpha.bin (256MB) msg_sp (277MB) NTUP2_floats.bin (1433MB)

lvl 1 lvl 9 or 24 lvl 1 lvl 9 or 24 lvl 1 lvl 9 or 24 lvl 1 lvl 9 or 24
Test case OMP time OMP time OMP time OMP time OMP time OMP time OMP time OMP time
lz4 sync 6.96 23.02 43.39 44.42 0.76 2.02 5.70 6.03 0.54 4.73 10.46 11.82 3.49 14.05 42.17 42.88
lz4 8.07 8.07 44.15 44.16 0.76 0.76 5.67 5.67 0.58 0.59 10.58 10.58 3.62 3.62 42.22 42.22
fpc sync 4.64 22.96 14.23 23.63 0.86 4.11 2.44 4.76 0.91 4.96 2.23 5.48 4.49 16.76 11.08 17.80
fpc 4.74 4.96 14.01 15.25 0.86 0.91 2.48 2.54 0.92 0.98 2.29 2.37 4.44 4.67 11.03 11.18

lz4mt sync 7.09 19.16 44.21 45.26 0.78 1.64 5.68 5.81 0.58 3.39 10.46 11.30 3.71 11.17 42.33 42.79
lz4mt 7.41 7.41 43.37 43.38 0.78 0.78 5.69 5.69 0.60 0.61 10.48 10.48 3.78 3.79 42.40 42.41
pFPC sync 8.16 20.84 17.40 22.98 1.49 3.77 3.06 4.63 1.62 4.28 2.75 5.06 7.24 14.87 13.94 17.43
pFPC 8.10 8.45 17.90 18.13 1.50 1.56 2.99 3.05 1.61 1.66 2.77 2.83 7.35 8.09 13.95 14.17
cp sync 21.57 4.27 4.74 21.99
cp 2.35 0.45 0.45 2.29

Table A.4.: Remaining four datasets for the compressor’s execution time comparison when including all I�O time (with
sync), and the OpenMP walltime routines. Only compression times to �local are analysed.
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