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Abstract 

 

 Colorectal cancer incidence is highly associated with one’s lifestyle, such as lack of 

physical activity, which leads to obesity, smoking habits, and most importantly, diet. Diet is an 

important risk factor for colon carcinogenesis and several studies have shown that high red 

meat and saturated fat intake increases the incidence of this disease significantly. On the other 

hand, a healthy balanced diet with intake of fruits and vegetables can decrease the risk of this 

disease. Dietary strategies for colon cancer chemoprevention, and even during treatment, are 

needed to help reduce the incidence of colorectal cancer. The aim of this work was to 

investigate dietary compounds that can be used in these dietary strategies for colon cancer 

prevention. Also, we initiated the development of new models to be used for compound 

screening processes. 

 Initially, we focused on the effects of two bile acids, deoxycholic acid (DCA), with 

colon cancer promoting capacity, and ursodeoxycholic acid (UDCA), a chemopreventive 

compound, induced in Caco-2 cell line. We found that DCA in fact increase DNA damage and 

apoptosis in Caco-2 cell line. Also, activation of MAPK/ERK and PI3K/AKT pathways was 

also observed. UDCA did not induce DNA damage, but did induce the same activation in the 

signaling pathways. So, it seems that DCA increase cell turnover by increasing apoptosis and 

also cell proliferation in the remaining cells. UDCA only increase cell proliferation. When 

UDCA was administered as a pretreatment before DCA treatment, apoptosis was increased and 

this increase was accompanied by a constant activation of the JNK signaling pathway. Also, 

pretreatment with UDCA significantly decreased expression of the repair proteins MGMT and 

MLH1.  

One of the aims of this work was to develop an in vitro model of the in vivo 

azoxymethane (AOM)-induced colon cancer model. With the conditions tested we were able 

to induce a slight increase in cell proliferation in Caco-2 cells. This increase of cell proliferation 

could possibly be explained by the activation of the MAPK/ERK pathway, which was also 

activated with AOM treatment. Although we observed this increase in cell proliferation, we 

found no induction of O6-methylguanine lesions by our CoMeth assay or DNA damage 

observed by the comet assay. 

In the in vivo assays, the potential of an herbal tea, sage, and two isolated compounds 

found in foods from our diet, ursolic acid (UA) and EGCG, were evaluated for their 

chemopreventive effects against colorectal cancer. In the first study, sage tea was given to 

Fischer 344 rats before or after AOM treatment. Sage tea was able to reduce the number of pre-
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neoplastic lesions when given before AOM treatment, demonstrating chemopreventive 

potential. This reduction of pre-neoplastic lesions was accompanied by a reduction of the 

number of proliferating cells in colon crypts, as seen by Ki67 marker. Also, it conferred 

protection against DNA damage induced by AOM and by H2O2 ex vivo in colonocytes and 

lymphocytes. In the second study, UA and EGCG were added to the diet of healthy Fischer 

344 rats. The potential of these compounds to protect against DNA damage was assessed. We 

found that both compounds protected against endogenous DNA damage in colonocytes and 

lymphocytes. The effects of the two compounds on protection against alkylating DNA damage 

induced ex vivo was also evaluated. UA and EGCG conferred protection against this type of 

damage in colonocytes, but not in lymphocytes. 

 Finally, it has been shown that epigenetics has an important role in colon carcinogenesis, 

so we tried to develop a new, simple method to evaluate demethylating agents. We used the 

CoMeth assay developed in our group in a MMR-deficient cell line, in which one of the 

intervenients, MLH1, is epigenetically silenced by hypermethylation. Using 5-azacytidine, we 

were able to revert the hypermethylation and induce DNA damage in these cells. We further 

characterized the model, showing increase in apoptosis, and effects on reexpression of MLH1 

protein levels by western blot. We also tested a few natural compounds with the model and 

found that EGCG, which is well-known that it has demethylating ability, induced similar levels 

of DNA damage as 5-azacitidine, suggesting that the model is functional.  

 In conclusion, this work demonstrated the potential of sage tea as a chemopreventive 

agent and UA and EGCG as compounds with interest for chemopreventive strategies. The 

AOM in vitro model needs to be improved, but the adapted CoMeth assay for demethylating 

compounds is functional. Altogether, but with some additional studies, these natural 

compounds could be considered as chemopreventive agents and have possible interest in 

dietary strategies for cancer prevention. 
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Resumo 

 

A incidência do cancro colorectal está altamente relacionada com o estilo de vida das 

pessoas. A falta de exercício, hábitos de tabagismo, obesidade e a dieta são alguns fatores de 

risco. A dieta assume um papel importante na carcinogénese do cólon. Vários estudos 

demonstraram que dietas ricas em carnes vermelhas e gorduras saturadas aumentam 

significativamente a incidência desta doença. No entanto, o seu risco de aparecimento pode ser 

reduzido com uma dieta saudável, rica em frutas e vegetais. Estratégias de quimioprevenção 

do cancro do cólon baseadas na dieta, assim como no decorrer do seu tratamento, são 

necessárias para ajudar na redução da sua incidência. Com este trabalho, pretendeu-se avaliar 

a capacidade preventiva de compostos presentes na dieta no aparecimento do cancro do cólon. 

Foi, também, desenvolvido trabalho no sentido de desenvolver novos modelos que possam ser 

usados no screening de outros compostos. 

Inicialmente, o trabalho focou-se no estudo da resposta da linha celular Caco-2 à 

presença de dois ácidos biliares, o ácido deoxicólico (DCA), um promotor do cancro do cólon, 

e o ácido ursodesoxicólico (UDCA), um composto quimiopreventivo. Descobriu-se que o DCA 

induz o aumento de danos no DNA, assim como promove a apoptose na linha celular. 

Verificou-se, também, a ativação das vias de sinalização MAPK/ERK e PI3K/AKT. No caso 

do UDCA, observou-se uma ativação das mesmas vias de sinalização, no entanto, não houve 

um aumento nos danos do DNA. Desta forma, o DCA aparenta ser capaz de aumentar a 

renovação celular, visto que promove a apoptose e também a proliferação celular. O UDCA é 

apenas capaz de aumentar a proliferação celular. Quando o UDCA foi administrado como pré-

tratamento ao tratamento com DCA, verificou-se um aumento da apoptose, o qual foi 

acompanhado de uma ativação constante da via de sinalização JNK. O pré-tratamento com 

UDCA foi, também, responsável por uma redução significativa da expressão das enzimas de 

reparação MGMT e MLH1. 

Com este trabalho, também se pretendeu desenvolver um modelo in vitro do modelo in 

vivo de indução do cancro do cólon com azoximetano (AOM). As condições usadas permitiram 

induzir um ligeiro aumento da proliferação celular. Este aumento da proliferação pode ser 

explicado pela ativação da via de sinalização MAPK/ERK, a qual também foi ativada pelo 

tratamento com AOM. Apesar do aumento observado da proliferação celular, não se 

identificaram danos do tipo O6-metilguanina, recorrendo ao método CoMeth, nem danos no 

DNA, observados por comet assay. 



Resumo 

viii 

 

Nos estudos in vivo, avaliou-se o potencial quimiopreventivo do chá de Sálvia e de dois 

compostos isolados presentes na dieta, o ácido ursólico (UA) e o (-)-epigalocatequina-3-galato 

(EGCG), contra o cancro colorectal,. No primeiro estudo, ratos Fischer 344 consumiram chá 

de Sálvia antes ou após o tratamento com AOM. O chá foi capaz de reduzir o número de lesões 

pré-neoplásicas quando administrado antes do tratamento com AOM, demonstrando o seu 

potencial quimiopreventivo. Essa redução de lesões pré-neoplásicas foi acompanhada duma 

redução do número de células proliferativas nas criptas do cólon, observado com o marcador 

Ki67. Foi, também, observada proteção do DNA contra danos induzidos por AOM e por 

H2O2 em ensaios ex vivo com colonócitos e linfócitos. No segundo estudo, incluiu-se UA e 

EGCG na dieta de ratos Fischer 344 saudáveis, avaliando-se o seu potencial protetor contra 

danos de DNA. Os resultados mostraram que, em colonócitos e linfócitos, ambos os compostos 

conferem proteção contra danos endógenos do DNA. O seu potencial contra danos alquilantes 

induzidos no DNA foi, também, avaliado em ensaios ex vivo. Nos colonócitos, foi possível 

observar proteção conferida pelo UA e pelo EGCG contra este tipo de danos, ao contrário do 

observado no caso dos linfócitos. 

Por fim, uma vez que a epigenética assume um papel importante na carcinogénese do 

cólon, criou-se um método novo, e simples, para avaliação de agentes desmetilantes. O método 

CoMeth, desenvolvido do nosso grupo de investigação, foi usado numa linha celular deficiente 

no sistema de Mismatch repair (MMR), na qual o gene MLH1 se encontra epigeneticamente 

silenciado por hipermetilação. Usado a 5-azacitidina, foi possível reverter a hipermetilação e 

induzir danos no DNA nestas células. Foi, também, observado um aumento da apoptose e, pela 

técnica de western blot, percebeu-se que existe reexpressão da proteína MLH1. Vários 

compostos naturais foram usados para validar o método e, entre eles, o EGCG, que é conhecido 

pela sua capacidade de desmetilação, induziu níveis de danos no DNA semelhantes àqueles 

observados com a 5-azacitidina, validando a funcionalidade do método. 

Assim, este trabalho comprovou não só o potencial quimiopreventivo do chá de Sálvia 

mas também o potencial do UA e do EGCG como parte integrante duma estratégia 

quimiopreventiva. O método CoMeth provou ser funcional na avaliação de potenciais agentes 

desmetilantes, contudo, o modelo in vitro do AOM precisa de ser melhorado. No seu conjunto, 

apesar de ser necessário completar os estudos já realizados, os compostos naturais estudados 

podem ser considerados agentes quimiopreventivos, conferindo-lhes o potencial para aplicação 

em estratégicas de prevenção de cancro baseadas na dieta.
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1 – Colorectal Cancer 

 

1.1 – Incidence and general concepts 

 

Colorectal cancer (CRC) is a common malignancy and significant cause of 

mortality in Western societies. Worldwide, CRC is the third most common cancer in men 

and second in women (Figure 1a), while being the fourth most common cause of death 

from cancer. In Portugal, it is the second most common cancer in men and in women, 

behind prostate and breast cancer, respectively (Figure 1b) [Ferlay, J., et al., 2010].  

 

 

Figure 1 – Representation of the incidence of different cancers in men and in women, in the world 

(A) and specifically in Portugal (B). Adapted from [Ferlay, J., et al., 2010]. 
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The carcinogenic process is multi-step and usually several years are needed for a 

tumor to reach an invasive stage. This process can be divided into three distinct phases: 

initiation, phase where genetic alterations occur and the irreversible changes confer an 

intrinsic capacity to proliferate uncontrollably; promotion, phase when the initiated cells 

continue to divide giving rise to a detectable neoplasm; and progression, where the 

neoplasm acquires increased invasiveness and metastatic potential [Frank, S.A., 2007; 

Grady, W.M., et al., 2008]. 

CRC usually develops through the inheritance of a genetic defect or induction of 

DNA damage. Afterwards, the accumulation of further genetic and epigenetic alterations 

transforms normal colon cells and gives them growth advantage over their neighboring 

cells. Other factors that have been implicated in the onset of the disease are diet, obesity, 

lack of physical activity, smoking habits and exposure to chemical or biological 

carcinogens. The evolution of normal tissue to adenocarcinoma usually follows a known 

progression of histological changes and simultaneous genetic and epigenetic 

modifications [Frank, S.A., 2007].  

The first alterations that appear during the carcinogenic process usually involve 

gatekeeper or caretaker genes. A gatekeeper gene is a gene that controls the initiation of 

a neoplasm, such as the adenomatous polyposis coli (APC) tumor suppressor gene, while 

a caretaker gene may also be one controlling the rate of accumulation of genetic 

alterations, such as the DNA mismatch repair (MMR) genes [Fearon, E.R., 2011; Frank, 

S.A., 2007; Redston, M., 2001]. With these alterations, progressive defects in important 

cellular pathways are activated, inducing cell proliferation, preventing apoptosis and 

senescence, and predisposing to failure to recognize and repair DNA damage [Walker, J., 

et al., 2001]. Some altered pathways in colorectal cancer are the mitogen-activated protein 

kinase pathway and WNT signaling pathway, which will be described in more detail in 

the following segment.  

 

1.2 – Signaling pathways  

 

 1.2.1 – WNT signaling 

The WNT signaling pathway is important for embryonic development, but also 

regulates homeostasis in self-renewing tissues, such as the colonic epithelial. At the center 

of this pathway is the highly regulated β-catenin protein, encoded by the CTNNB1 gene. 

β-catenin is found in three different sites in the cell: first, at cellular adherent junctions, 
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interacting with E-cadherin; in the cytosol; and finally in the nucleus. In normal cells, the 

absence of WNT signals favors the proteasomal degradation of cytoplasmic β-catenin and 

this degradation is initiated by a multi-protein “destruction” complex (Figure 2). This 

complex is formed by adenomatous polyposis coli (APC) and AXIN, which are important 

for binding of -catenin to the complex, and glycogen synthase kinase 3 β (GSK3β and 

casein kinase 1 (CK1), which are responsible for the phosphorylation of the protein. The 

“destruction” complex phosphorylates the N-terminus of the protein, targeting it for 

proteasomal degradation. This regulation maintains the cytosolic levels of the protein 

relatively low. Binding of Wnt signals to specific receptors in the cell membrane, frizzled 

(Fzd) and low-density lipoprotein receptor-related protein (LRP), inhibit -catenin 

phosphorylation, enabling this protein to accumulate in the cytosol and translocate to the 

nucleus. In this cellular compartment, -catenin interacts with a family of transcription 

factors, the T-cell factor/lymphoid enhancer factor (TCF/LEF), to activate target genes, 

mostly genes involved in differentiation, proliferation, migration, and adhesion [Burgess, 

A.W., et al., 2011; White, B.D., et al., 2012]. 

Aberrant WNT signaling is widely implicated in diseases, such as cancer. In CRC, 

a high number of tumors have an alteration in a protein of the WNT pathway, the most 

common being APC or CTNNB1, in which most of these tumors show β-catenin 

accumulation in the nucleus. Although mutations in these genes result in activation of the 

pathway and accumulation of β-catenin in the nucleus, it seems that they are not 

functionally equivalent. It seems that APC and CTNNB1 mutations are mutually exclusive, 

so tumors either have one or the other. CTNNB1 mutations have been associated with 

small colorectal adenomas and also hereditary nonpolyposis colorectal cancer (HNPCC), 

while APC mutations are associated with the familial adenomatous polyposis (FAP). But 

even between cells within the same tumor, there are differences in WNT signaling. CRC 

tumors with activating WNT signaling mutations show inconsistent levels of signaling, 

suggesting other mechanisms of pathway regulation, such as epigenetic silencing or 

pathway crosstalk. Also, APC mutations have been found to cause significant alterations 

at the cell membrane, influencing cell adhesion and migration. These mutations activate 

the pathway at different levels, promoting tumor progression by different mechanisms, 

ultimately prompting different types of tumors [Burgess, A.W., et al., 2011; White, B.D., 

et al., 2012; Zeller, E., et al., 2013].  
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Figure 2 – Schematic figure depicting the Wnt/β-catenin pathway. (A) In the absence of Wnt signal, β-

catenin is phosphorylated by a destruction complex containing AXIN, APC, GSK3, and CK1 proteins. N-

terminal phosphorylated β-catenin is targeted proteasomal degradation. (B) Wnt ligands initiate signaling 

through FZD and LRP receptor, activating and recruiting DVL (Disheveled) and Axin to the membrane, 

thereby disrupting the destruction complex. Higher cytosolic levels of β-catenin result in its translocation 

into the nucleus, where it binds TCF/LEF transcription factors, activating WNT target genes. Adapted from 

[White, B.D., et al., 2012].  

 

1.2.2 – Extracellular signal-regulated kinase (MAPK/ERK) pathway 

 The mitogen-activated protein kinase (MAPK) pathway is a highly conserved 

signaling pathway that controls important cellular processes that include cell proliferation 

and differentiation. Three distinct groups of regulated MAPK cascades are known in 

humans that lead to altered gene expression. One of them is the extracellular signal-

regulated kinase (MAPK/ERK) pathway. Activation of this pathway starts with an 

extracellular stimulus, such as a ligand binding to its respective receptor, for example 

epidermal growth factor (EGF) and EGF receptor (EGFR), which becomes dimerised and 

phosphorylated (Figure 3). A complex of proteins, that include growth factor receptor-

bound protein 2 (GRB2) and son of sevenless homologue (SOS), can now bind to the 

phosphorylated domain of the receptor. Simultaneously, a protein with guanine exchange 

factor (GEF) activity, which is also in the protein complex, binds to RAS protein. This 

GEF protein displaces guanosine diphosphate (GDP) molecules from RAS and allows 
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guanosine triphosphate (GTP) molecules to bind, thus activating RAS. Active RAS binds 

to RAF, recruiting it to the membrane and activating it. After activation, RAF proteins 

phosphorylate and activate MEK, which in turn, phosphorylate and activate ERK1/2. 

ERK1/2 protein then either phosphorylates target substrates in the cytosol or is 

translocated to the nucleus where it activates a range of transcription factors, for example, 

Jun and Fos, and these, in turn, bind to the AP-1 DNA domain promoting transcription of 

genes involved in regulation of cell proliferation. In normal cells, regulation of the 

pathway is done by RAS-GTPase activating proteins (GAP), which hydrolyze GTP to 

GDP, inactivating RAS protein, and blocking the pathway [Meister, M., et al., 2013; 

Zenonos, K., et al., 2013]. 

 

 

Figure 3 – Schematic representation of the MAPK/ERK cascade. Activation of the pathway by binding of 

a growth factor to a receptor results in recruitment of GRB2 and SOS, which then interacts with and 

activates RAS. This results in phosphorylation of Raf and, thereby, the initiation of sequential 

phosphorylation steps of MEK and ERK. Activated ERK can phosphorylate either cytosolic or nuclear 

substrates. Adapted from [Meister, M., et al., 2013]. 

 

Deregulation of the MAPK/ERK pathway is common in carcinogenesis. The RAS 

family of proteins was the first oncogene discovered. There are several subtypes of RAS 
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protein, such as HRAS, NRAS, ERAS, MRAS and KRAS, but the most common gene 

mutated in colorectal cancer is KRAS, followed by NRAS. Among the most frequent 

alterations, we find RAS and RAF mutations. About half of all CRC cases present a KRAS 

mutation, while NRAS mutation is found in only fewer cases of CRC. Mutations in the 

KRAS gene are usually found in specific positions at codons 12, 13, and 61, stabilizing 

the protein into a constant active state. These mutations usually lead to conformational 

changes in the protein, interfering with RAS-GAP activity and maintaining RAS 

constantly active, promoting tumorigenic properties by constant MAPK pathway 

activation. BRAF mutations appear in about 5% to 10% of all CRC cases. There are three 

isoforms of the RAF protein, C-RAF, also RAF-1, A-RAF and B-RAF. Mutations in 

BRAF lead to increased kinase activity, also promoting MAPK pathway activation. The 

most common mutation of the BRAF gene is the V600E mutation, a transversion of a 

thymine by an adenine, causing a substitution of amino acids. Both types of mutations 

lead to deregulation of the MAPK/ERK pathway and increased cell proliferation and 

tumor growth [Arends, M.J., 2013; Nandan, M.O., et al., 2011; Zenonos, K., et al., 2013]. 

 

1.2.3 – c-Jun amino N-terminal kinase (JNK) pathway 

 Another pathway of the MAPK is the c-Jun amino N-terminal kinase (JNK) 

pathway. The JNK pathway, also known as the stress-activated protein kinase (SAPK), is 

mainly activated in response to stress signals. In humans, three JNK genes can be found, 

JNK1 and JNK2, which are ubiquitously expressed, and JNK3, which is mainly expressed 

in the brain, cardiac smooth muscle and testes. Being part of the MAPK cascade, it is also 

a cascade with triple kinase (Figure 4). The signaling cascade starts with a stress stimulus. 

Various stresses strongly activate JNK pathway, such as cytokines, irradiation, cytotoxic 

drugs, DNA damaging agents, and reactive oxygen species (ROS). These stress stimuli 

activate various MAP3 kinases, such as MEKK1, mixed lineage kinase 2 (MLK2), MLK3, 

transforming growth factor-β-activated kinase 1 (TAK1) and apoptosis signal-regulating 

kinase-1 (ASK1). These, in turn, activate by phosphorylation MKK-3, MKK-4, MKK-6 

and MKK-7, and these ultimately activate JNK1 and JNK2. JNK can stay in the cytosol 

or translocate to the nucleus, so not only does JNK regulate transcription factors in the 

nucleus, such as c-Fos, c-Jun, ATF-2, AP-1, p53, and ELK1, but also modulates 

cytoskeletal and mitochondrial proteins, example of the latter being Bcl-2 and Bcl-xl 

[Sehgal, V., et al., 2013; Sui, X., et al., 2014].  
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Figure 4 – Schematic representation of the JNK pathway. Activation of the pathway by stress stimulus. 

These stress stimuli activate various MAP3 kinases, such as MEKK1, MLK3, TAK1, and ASK1. These, in 

turn, phosphorylate MKK4 or MKK7. JNK1 and JNK2 are phosphorylated by these last kinases, and 

activate various proteins in the cytosol or in the nucleus.  

 

 JNK pathway has been associated with a plethora of cellular processes, such as 

apoptosis, autophagy, metabolism, cell proliferation, and DNA repair. Whether JNK 

activation leads to cell proliferation or apoptosis depends on the type of cell involved and 

the stimuli received. Apoptosis is regulated by JNK through two different mechanisms. 

First, promotion of c-Jun and ATF-2 phosphorylation results in AP-1 activation and 

expression of Fas/FasL signaling pathway-related proteins. This Fas/FasL binding can 

mediate caspase 8 and caspase 3 activation, which will lead to apoptosis. Second, in the 

cytosol, JNK phosphorylates Bcl-2/Bcl-xL, which are anti-apoptotic proteins, changing 

the mitochondrial membrane potential and inducing caspase 9 and caspase 3 activation, 

also leading to apoptosis. So, looking at the classification of signaling pathways that 

initiate apoptosis as extrinsic or intrinsic, it is safe to say that JNK activation has an 

important role in both pathways. [Dhanasekaran, D.N., et al., 2008; Sui, X., et al., 2014].  
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1.2.4 – Phosphatidylinositol-3-kinase (PI3K)/AKT pathway 

 The phosphatidylinositol-3-kinase (PI3K)/AKT pathway has an important role in 

regulating cell survival in response to cellular stress. It is activated by growth factors that 

bind to receptor tyrosine kinases (RTKs), as in the MAPK pathways (Figure 5). After 

binding to the receptor, PI3K protein is recruited to the receptor, stimulating the 

conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-

3,4,5-triphosphate (PIP3). This conversion can be reversely regulated by the protein 

PTEN, converting PIP3 into PIP2. PI3K protein has two subunits: p110, which has 

catalytic activity, and p85, which is the regulatory subunit. PIP3 provides a docking area 

for proteins with pleckstrin homology (PH) domains, such as protein serine/threonine 

kinase-3’-phophoinositide-dependent kinase 1 (PDK1) and AKT/protein kinase B (PKB). 

AKT/PKB regulates several cell processes after activation [Porta, C., et al., 2014; Zhang, 

L., et al., 2013]. 

In normal cells and after appropriate stimuli, AKT/PKB protein can inhibit 

apoptosis by inactivating pro-apoptotic factors, such as BAD and caspase-9. It also 

phosphorylates GSK3β at Serine 9, which blocks the protein activity. As referred before, 

GSK3β is involved in β-catenin regulation and degradation. With GSK3β inhibited, there 

is an accumulation of β-catenin in the nucleus, inducing cell proliferation. AKT may also 

promote survival by phosphorylating HDM2, and this, in turn, promotes translocation to 

the nucleus, where it triggers p53 degradation [Manning, B.D., et al., 2007; Zhang, L., et 

al., 2013]. Cancer cells may present mutations in components of this pathway, leading to 

increased proliferation and decreased apoptosis. PI3KCA mutations have been found in 

some colorectal tumors. These mutations are mostly found in the catalytic subunit of the 

protein, affecting PIP2 to PIP3 conversion. It has been shown that, unlike other mutations 

that are mutually exclusive, PI3KCA mutations are significantly associated with KRAS 

mutations and loss of expression of a DNA repair enzyme O6-methylguanine-DNA 

methyltransferase (MGMT). PTEN is a phosphatase that acts as a tumor suppressor by 

suppressing cell proliferation by inhibiting AKT activation. PTEN mutations are 

frequently found in advanced stages of carcinogenesis. Mutations in this gene prevent the 

negative regulatory control of this protein, allowing for constant cell growth [Cathomas, 

G., 2014; Porta, C., et al., 2014].  
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Figure 5 – Schematic representation of the PI3K/AKT pathways. Upon RTK activation, PI3K catalyzes 

the conversion of PIP2 to PIP3. PIP3 allows recruitment to membrane of AKT, where it gets phosphorylated 

and induces proliferation and inhibits apoptosis. Adapted from [Zhang, L., et al., 2013]. 

 

1.3 – DNA repair systems 

 

Genomic instability has been recognized as a trait of the majority of solid tumors. 

There are many forms of genomic instability. One of the most common forms found in 

cancer is chromosomal instability (CIN). CIN is characterized by a high rate of changes 

in chromosome structure and number over time. It seems that cancer cells acquire new 

chromosomal abnormalities over time. Another type of genomic instability found in 

cancer cells is microsatellite instability (MSI). This type of abnormality is characterized 

by the increase or decrease of the number of oligonucleotide repeats present in a 

microsatellite sequence. Increased frequencies of base-pair mutations can also contribute 

to genomic instability in cancer cells. 

These genomic alterations and mutations can alter the cell’s behavior, in the 

initiation and/or progression process, and how the tumor will respond to therapy in cancer 

treatment. Due to the destructive effects of genomic instability, and the fact that the 

integrity of DNA is constantly being challenged, cells have DNA repair systems to detect 

and correct the lesions before being passed to daughter cells by division [Lord, C.J., et 
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al., 2012; Negrini, S., et al., 2010]. These repair systems recognize and repair specific 

and different types of damage [Ramos, A.A., et al., 2011]. In the next section, we will 

describe in more detail a few of these repair systems.  

 

1.3.1 – The DNA Mismatch Repair system 

The mismatch repair (MMR) system comprises a number of proteins that 

recognize and directly repair nucleotide mismatches, mainly base-base mismatches and 

insertion/deletion loops. The target DNA sequences of this repair system are residual 

errors that have escaped the normal proofreading function of the replication system. These 

mispairs, if not corrected, may cause nucleotide transitions or transversions, and 

consequently cause point mutations. These point mutations can appear in genes that 

regulate cell growth and accumulation of these in cells may promote neoplastic growth 

[Lord, C.J., et al., 2012; Marra, G., et al., 2005; Ramos, A.A., et al., 2011]. 

In human cells, at least six MMR proteins are needed for correct repair (Figure 6). 

MSH2 protein forms a heterodimer with MSH6 or MSH3 for mismatch recognition. The 

binding depends on the type of mispair found, where MSH2-MSH6 (hMutS complex) 

detects base-base mispairs and small insertion-deletion loops while MSH2-MSH3 

(hMutS complex) only detects larger loops. After recognition by the first complex, 

another heterodimer, hMutL composed of MLH1 and PMS2, coordinates the 

interaction between the recognition complexes and the other proteins necessary for repair, 

such as PCNA, DNA polymerases and single-stranded DNA–binding protein. All these 

interactions lead to the excision of the mispair or loop and resynthesis of DNA by DNA 

polymerase [Lord, C.J., et al., 2012; Marra, G., et al., 2005; Ramos, A.A., et al., 2011]. 

DNA repair pathways are important for the normal cell correction, but also for cancer 

treatment. Defects in the mismatch repair system, specifically mutation or epigenetic 

modifications of MLH1 or MSH2, have been observed in some cases of CRC. This is the 

case of hereditary non-polyposis colorectal cancer, which is associated with loss-of-

function mutations of these mismatch repair genes.  
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Figure 6 – Schematic representation of the mismatch repair system recognition. A hMutS complex 

identifies the lesion and recruits the MutL complex to the location. This complex coordinates the interaction 

between the recognition complexes and the other proteins necessary for repair, such as PCNA, DNA 

polymerases and single-stranded DNA–binding protein.  

 

1.3.2 – Direct damage reversal repair 

We are constantly in contact with mutagens from our environment, as well as 

endogenous metabolic products, both generating reactive electrophilic species which 

alkylate DNA. The O6-methylguanine adduct (O6-MeG) is a crucial lesion due to its 

mutagenic and toxic potential. It allows DNA replication to continue but causing a 

mispair with thymine instead of cytosine and, during the replication process, causing 

GCAT transitions. This lesion is very stable if not repaired by MGMT. MGMT repairs 

O6-alkylation adducts, by direct damage reversal, in a one-step alkyl transfer reaction, 

transferring the alkyl group from the oxygen in the guanine nucleotide in the DNA to a 

cysteine residue of the protein, a process that inactivates MGMT [Kaina, B., et al., 2007; 

Ramos, A.A., et al., 2011]. If MGMT fails to remove the alkyl group, the mispair is 

recognized by the MMR pathway, removing the thymine and inserting a gap. In the next 

round of replication, O6-MeG mispairs again, and the thymine is removed once more. 

This loop continues, if O6-MeG remains in one of the templates, creating a “futile repair 

loop”, eventually resulting in toxic double-strand breaks, leading to apoptosis or 
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chromosomal aberrations (Figure 7). It is known that O6-MeG is a common cause of 

mutations responsible for carcinogenesis initiation, especially activation of oncogenes 

and inactivation of tumor suppressor genes. MGMT is also frequently silenced in sporadic 

colon tumors by promoter hypermethylation, demonstrating the important role of this 

protein in cancer prevention [Kaina, B., et al., 2007; Ramos, A.A., et al., 2011].  

 

 

Figure 7 – MGMT repair of O6-MeG lesion. MGMT repairs the lesion by direct damage reversal 

inactivating the protein. If the lesion is not repaired, the mispair is recognized by the MMR pathway, 

removing it and inserting a gap. MMR keeps inserting a gap in every replication cycle, creating a “futile 

repair loop”, which ultimately leads to apoptosis. If MMR is not functional, then the mispair continues in 

the strand and, in the next replication, thymine is paired with an adenine, resulting in a point mutation. 

Adapted from [Allan, J.M., et al., 2005]. 

 

1.4 – Epigenetics and cancer 

 

In the past decade, it has been found that carcinogenesis does not arise by just 

genetic alterations in the DNA sequence, but also by alterations in gene expression that 

do not involve changes in the DNA sequence. This regulation is termed epigenetic 
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regulation and they are reversible, being transmitted during mitosis or meiosis. Epigenetic 

DNA modifications are an alternative pathway for colorectal carcinogenesis, affecting 

gene function even in the absence of mutations. Most colorectal tumors have epigenetic 

modifications that coexist with classical genetic alterations, such as P53, -catenin and 

KRAS mutations. Epigenetic alterations found to contribute to malignant phenotypes are 

5’ cytosine methylation of CpG island and histone modifications [Goel, A., et al., 2012]. 

 

1.4.1 – Epigenetic silencing by DNA methylation 

Gene expression is regulated by interactions between transcription factors and the 

start codon (ATG) and the DNA sequences immediately before or after the start sequence. 

Cytosine methylation is the most well-known epigenetic change. The promoter regions 

are rich in C-G sequences, termed CpG islands, around 60% of all the human promoters, 

and in normal cells, methylation is usually found in CpG-poor regions and CpG-rich 

regions are normally protected from this type of modification [Kulis, M., et al., 2010]. 

DNA methylation, controlled by DNA methyltransferases (DNMT), is necessary during 

development, but aberrant DNA methylation is known to be an important event in cancer 

development. Occasionally, the first exon and promoter regions of “housekeeping” genes 

or tissue-specific genes have unmethylated CpG islands. Fully methylated CpG islands 

are important in promoter regions of silenced alleles for selected imprinted autosomal 

genes and multiple silenced genes on the inactivated X-chromosome of females [Baylin, 

S.B., et al., 2000; Goel, A., et al., 2012; Kondo, Y., et al., 2004].  

As referred previously, the methylation of cytosines is mediated by a class of 

enzymes termed DNMT. Five members of this family have been identified until now in 

mammals: DNMT1, DNMT3a, DNMT3b, DNMT2 and DNMT3L, although only the first 

three have been found to participate in the assembly of the methylation pattern. These 

enzymes catalyze the addition of a methyl group to the 5’ carbon of a cytosine, forming 

5-methyl-cytosine. DNMT1 is the most abundant of the DNMT in somatic cells and 

interacts with the proliferating cell nuclear antigen (PCNA). DNMT1 is thought to be 

responsible for the copying of the methylation pattern after DNA replication, being 

referred as the “maintenance” methyltransferase. Both DNMT3a and DNMT3b are 

required for the de novo methylation that occurs in the genome following embryonic 

implantation, being referred as the “de novo” methyltransferases [Baylin, S.B., et al., 

2000].  
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DNMT1 is the major enzyme for maintenance of the methylation status of DNA 

during replication, but is also important for appropriate histone H3 modification, crucial 

for chromatin domain organization. DNMT1 is located at the replication fork and 

methylates the newly synthesized, hemimethylated DNA strand to maintain precisely the 

original DNA methylation pattern. DNMT1 recruits chromatin-modifying enzymes, such 

as HDAC1, HDAC2 and histone methyltransferase, and is important for the initiation of 

chromatin remodeling and, consequently, regulation of gene expression. The N-terminal 

domain of DNMT1 is essential to discriminate between hemimethylated and 

unmethylated DNA strands, having preference for the first one, decreasing the “de novo” 

methylation activity of this enzyme [Turek-Plewa, J., et al., 2005]. Loss of DNMT1 

function results in embryonic lethality in mice, demonstrating the importance of this 

protein for normal cell function [Kulis, M., et al., 2010].  

DNMT3a and DNMT3b methylate CpG dinucleotides and are responsible for the 

“de novo” methylation of DNA, especially during embryogenesis and their levels remain 

low in adult somatic tissues. Unlike DNMT1, these methyltransferases methylate without 

preference for hemimethylated DNA. DNMT3a expression is ubiquitous, but DNMT3b 

is expressed at low levels in most tissues and is intensely increased in tumor cell lines. 

These two enzymes can interact with DNMT1 and activate HDAC1, repressing gene 

transcription which indicates that DNMT3a and 3b may be involved in chromatin 

remodeling associated with gene transcription regulation. This may indicate that 

DNMT3b is important for tumorigenesis [Turek-Plewa, J., et al., 2005]. Inactivation of 

these proteins leads to embryonic lethality, DNMT3b, or death shortly after birth, 

DNMT3a, in knockout mice. This could indicate that DNMT3b is important in the early 

stages of development, while DNMT3a is relevant in the later stages or after birth [Kulis, 

M., et al., 2010]. 

The methylation status of regulatory DNA sequences is correlated with the 

transcriptional activity of genes. The presence of methylated CpG dinucleotides in the 

promoter region or first exon of the gene may have a direct or indirect effect on 

transcription. Methylation affects the promoter region and the start site of the gene, 

altering the configuration of the DNA strand, interfering with binding of transcription 

factors, silencing gene expression. This way, transcription factors do not bind correctly 

to the promoter region, preventing transcription. Indirectly, specific DNA-binding 

proteins will bind to the methylated CpG dinucleotides, which then block the interaction 

of the transcription factors with the DNA. It is considered that DNA methylation is the 
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initial step for establishing the inactive chromatin state. These proteins include m5CpG-

binding domain proteins (MBD) and m5CpG-binding proteins (MeCPs) which are able to 

form complexes with histone deacetylases (HDAC) and ATP-dependent chromatin 

remodeling proteins. These proteins, in turn, are involved in the stabilization of the 

heterochromatin (transcriptionally inactive chromatin) structure, and gene silencing is 

achieved. These modifications are stably passed to the daughter cells, maintaining the 

methylation pattern in the next generation [Baylin, S.B., et al., 2000; Goel, A., et al., 

2012; Kulis, M., et al., 2010].  

 

1.4.2 – Epigenetic silencing by histone modifications 

Along with DNA methylation-induced transcriptional gene expression control, 

posttranslational covalent modifications of histones constitute another epigenetic 

mechanism. Histone modifications in the N-terminal tail control chromatin structure, and 

therefore gene expression. In the nucleus of eukaryotic cells, DNA is tightly condensed 

into chromatin, functioning as a scaffold in the regulation nuclear processes, such as 

transcription, DNA replication and repair, apoptosis and mitosis. The status of chromatin 

structures affects the ability of transcriptional regulatory proteins and RNA polymerase 

to access specific promoter regions, and consequently activate gene transcription. So, 

unmethylated chromatin is typically active while methylated chromatin is inactive 

[Baylin, S.B., et al., 2000; Zheng, Y.G., et al., 2008]. 

As referred before, histone modifications is another mechanism of epigenetic 

silencing of genes. Genomic DNA is folded by both histone, that are organized in 

cylindrical structures and constitute the histone core, and non-histone proteins, forming 

nucleosomes and a more structured form, referred to as chromatin. This dynamic 

packaging of the DNA is important to switch between on and off states of transcription, 

controlling gene activation and silencing. It is known that histone tail domains can be 

modified by a variety of processes, such as acetylation, phosphorylation and methylation. 

Histones modifications are governed by two factors: the type of modification and the 

amino acid involved in the modification. Histone methylation and 

acetylation/deacetylation are epigenetic modifications that are reversible and responsible 

for the activation or silencing of transcription, respectively. Histone modifications usually 

occur at 4 histones, H2A, H2B, H3, and H4. Histone acetyltransferases (HAT) and HDAC 

maintain the level of acetylation of the chromatin histones, balancing the 

euchromatin/heterochromatin structure. It is known that hypoacetylation of histones is 
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typically involved in gene silencing, while hyperacetylation activates gene expression. 

HATs add acetyl groups to lysine residues in histone tails, neutralizing their positive 

charges and relaxing the chromatin structure. HDACs interact with transcriptional 

activators and co-activators, reversing the action of HAT, condensing chromatin and not 

allowing transcription to occur. Methylation/demethylation is also controlled by enzymes 

termed histone methyltransferases and histone demethylases, respectively [Fang, J.Y., et 

al., 2004; Goel, A., et al., 2012]. 

 

1.4.3 – Epigenetic silencing and cancer 

It has been found that tumors are overall hypomethylated, with the exception of 

specific hypermethylated genes. This hypomethylation contributes to genomic instability 

and activation of silenced oncogenes. Promoter hypermethylation is accepted as a 

mechanism for gene silencing, especially of tumor suppressor genes. This was first 

demonstrated in studies of retinoblastoma patients in which the promoter region of 

retinoblastoma tumor suppressor gene (RB1) was hypermethylated. Gene inactivation 

resulting from DNA promoter hypermethylation and histone deacetylation is a frequent 

epigenetic event in malignant transformation. This phenotype in which tumor suppressor 

genes are methylated and carcinogenesis occurs through silencing is termed “CpG island 

methylator phenotype” or CIMP. Many genes have been found to be hypermethylated in 

CRC tissue, such as DNA repair genes, hMLH1 and MGMT, and cell cycle regulators, 

p16 and p15, and substantial degrees of hypermethylation have been found already in 

early colon cancer lesions, aberrant crypt foci (ACF) [Goel, A., et al., 2012; Kulis, M., et 

al., 2010]. It is possible to classify tumors as non-CIMP, CIMP-low and CIMP-high 

according to the proportion of promoters that surpass a certain degree of DNA 

methylation. CIMP-high appears in around 15% of CRC cases and is almost always 

present in tumors with MLH1 silencing [Goel, A., et al., 2012]. The death-associated 

protein kinase or DAPK is a protein involved in apoptotic and autophagic cell death, 

tumor and metastasis suppression. This protein induces cell death when overexpressed in 

cells. It has been found to possess a hypermethylated promoter in more than 20 types of 

human cancers including lymphomas, lung, breast, colon, prostate and brain. This fact 

further implies the tumor suppressor activity of this protein [Gozuacik, D., et al., 2006]. 

As referred previously, hyperacetylation of histones opens chromatin, a process 

necessary for transcriptional activation. It has been shown that transcriptionally inactive 

gene promoters are characterized by trimethylation of histone H3 lysine 9 and 27, 
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H3K9me3 and H3K27me3, respectively. Transcriptionally active modifications found are 

dimethylation and trimethylation of histone H3 lysine (H3K4me2/me3) and acetylation 

of H3/H4 (H3K9Ac and H4K9Ac). So, HDAC inhibitors, such as sodium butyrate (a 

short chain fatty acid), have been investigated as possible candidates for cancer treatment 

because of the effects on genes regulating proliferation [Fang, J.Y., et al., 2004; Spurling, 

C.C., et al., 2008; Zheng, Y.G., et al., 2008]. 

   

1.5 – Molecular pathways to CRC 

 

Colorectal cancer is a major health problem, as it is one of the most common types 

of cancer worldwide. With the scientific advances, CRC has been shown to be a very 

heterogeneous disease. Nowadays, the molecular and genetic features of the tumors have 

an important role in the prognosis and treatment of the disease. The majority of CRC 

cases arise as sporadic carcinomas and develop through the classical adenoma-carcinoma 

sequence (Figure 8). Common APC changes which lead to a truncated protein, affecting 

-catenin degradation by the proteasome, are considered to be initiating events. As 

mentioned above, destabilization of the complex allows -catenin to be translocated to 

the nucleus and activate transcription of key players in the regulation of proliferation and 

apoptosis [Arends, M.J., 2013; Fearon, E.R., 2011]. In a study conducted with human 

samples of CRC, WNT signalling pathway was altered in 93% of all the cases studied, 

either by inactivation of APC, activating mutation of -catenin, and alterations in other 

pathway intervenients [Network, T.C.G.A., 2012]. APC has also been found to be 

involved in exporting -catenin from the nucleus, reducing transcription of -catenin 

target genes. KRAS mutations are thought to be important for adenoma progression. The 

same study with human samples found that 55% of non-hypermutated tumors had 

activating alterations affecting KRAS, NRAS or BRAF [Network, T.C.G.A., 2012]. The 

tumor suppressor p53 protein is the “guardian of the genome” due to its pivotal role in 

responding to DNA damage-induced stress by interrupting the cell cycle for DNA repair 

or induction of apoptosis. Mutations in this gene are found in more than 60% of CRC, 

usually appearing at later stages of the adenoma-carcinoma transformation [Arends, M.J., 

2013].  

 



Chapter 1                                                                                                                         General introduction 

 

20 

 

 

Figure 8 – The colorectal adenoma-carcinoma sequence. The adenoma-carcinoma sequence shows the 

transitions from normal through the earliest stage of aberrant crypt foci to adenomas and ultimately 

carcinomas. Key molecular alterations are highlighted to distinguish sporadic, FAP and HNPCC. Adapted 

from [Fearon, E.R., 2011; Frank, S.A., 2007].  

 

Less than half of CRC cases can be classified as hereditary colon cancer. Familial 

adenomatous polyposis coli syndrome (FAP) is a type of hereditary colon cancer that 

starts with an inherited mutated APC gene. This alteration causes the development of 

hundreds of adenomatous polyps in the colon and increases the risk of CRC to nearly 

100%. FAP patients inherit an APC mutation in one allele and are wild-type in the other 

allele, acquiring the second APC alteration, which can be a mutation or promoter 

methylation. All the cells of a FAP patient have the initial APC mutation and the second 

alteration happens in a number of colorectal cells, leading to hundreds of adenomas 

[Arends, M.J., 2013; Fearon, E.R., 2011; van Wezel, T., et al., 2012]. In hereditary 

nonpolyposis colorectal cancer (HNPCC) syndrome, also known as Lynch syndrome 

(LS), there is an inherited alteration, mutation or epigenetic silencing, in a MMR gene in 

one allele, in which the most commonly inherited mutant genes are MLH1 and MSH2. 

After the inactivation of the same gene in the second allele, the cell’s MMR system 

becomes faulty, increasing the rate of mutation due to the inability to repair DNA damage. 

When the mutations occur at nucleotide repeats, termed microsatellites, microsatellite 

instability arises, and this is also a common characteristic of LS. These patients develop 

a smaller number of polyps, but it is believed that these progress at a faster rate to 

carcinoma [Arends, M.J., 2013; Banno, K., et al., 2012; Fearon, E.R., 2011]. 

Apart from the conventional adenoma-carcinoma, the serrated neoplasia pathway 

can be responsible for around 30% of CRC cases. This pathway involves the transition of 

hyperplastic polyps, which are found in patients with hyperplastic polyposis syndrome, 

to serrated adenomas, and then further to invasive adenocarcinomas. In this pathway, two 

molecular features, MAPK pathway activation and CIMP, in which the MAPK pathway 
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activation can appear due to BRAF or KRAS mutation. There are three major categories 

of serrated polyps: hyperplastic polyps, sessile serrated adenomas, and traditional serrated 

adenomas. The first are common large polyps, with BRAF or KRAS mutation and are 

usually not considered potential malignant precursors. In sessile serrated adenomas, the 

initiating event is thought to be a BRAF mutation, while promoter silencing of MLH1 is 

found in adenomas with high-grade dysplasia. Other alterations are found in subsets of 

these types of adenomas, including activation of WNT signalling and methylation of 

MGMT. These lesions are more common on the right side of the colon, more specifically 

in the cecum, ascending colon and transverse colon. The traditional serrated adenomas 

are less frequently found, around 1% of colorectal polyps and are more common in the 

distal side of the colon, sigmoid colon and rectum. These lesions are still poorly 

understood as they are confused with the other types of polyps. KRAS mutation and 

MGMT silencing are common in advanced lesions and CIMP-H has been reported in 

many cases, but BRAF mutations can also be found [Arends, M.J., 2013; Bettington, M., 

et al., 2013]. 

Considering the pathological, molecular, and clinical characteristics of CRC 

tumors, Jass et al. developed a 5 subtype classification for CRC [Jass, J.R., 2007]:  

1) CIMP-H/MSI-H/BRAF mutation; 

2) CIMP-H/MSI-L or microsatellite stable (MSS)/BRAF mutation; 

3) CIMP-L/MSS or MSI-L/KRAS mutation; 

4) CIMP-negative/MSS; 

5) HNPCC/CIMP-negative/MSI-H. 

It is clear now that colorectal cancer is not just one type of disease, it comprises a 

heterogeneous group of diseases. Knowing the characteristics of the tumors can help 

provide better prognostic and treatment options [Bettington, M., et al., 2013; Bogaert, J., 

et al., 2014].  

 

1.6 – Animal models of colorectal cancer 

 

As referred previously, CRC is an accumulation of genetic and epigenetic 

modifications, giving cells advantage to divide uncontrollably. This process is stepwise, 

with diverse intermediates before reaching the carcinoma stage. The various stages of the 

colorectal carcinogenic process can be studied using adequate animal models, 

investigating effects in the different pathways that can be altered. There are several animal 
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models for CRC, and these can be divided into induced and transgenic models, excluding 

the rare cases where CRC develops spontaneously in aged rodents [Johnson, R.L., et al., 

2013; Perse, M., et al., 2011]. Due to the diversity of human CRC, it is difficult to find 

an adequate model for all types of CRC in a single animal model. Nevertheless, animal 

models can be used to study specific alterations important to colon carcinogenesis, as 

long as the model maintains three important characteristics [Johnson, R.L., et al., 2013]: 

1 – The cancer should be limited to organ of interest, in this case the colon, so 

there is no interference with diseases in other organs; 

2 – The lesions studied should be similar to the lesions found in the human form 

of the cancer; 

3 – The models should seize the complex cellular interactions that are important 

for carcinogenesis.  

 

1.6.1 – Chemically induced models - 1,2-dimethylhydrazine/azoxymethane 

Among the induced CRC models, 1,2-dimethylhydrazine (DMH) and 

azoxymethane (AOM) are the chemicals mostly used. Identification of these carcinogens 

was found when large quantities of cycad flour were fed to rats and colon 

adenocarcinomas were found [Rosenberg, D.W., et al., 2009]. Usually, the endpoint of 

studies with these carcinogens are intermediate, pre-neoplastic lesions termed aberrant 

crypt foci (ACF), in short-term studies, or colonic tumors in long-term studies. The 

DMH/AOM model shares many similarities to human sporadic colon cancer, including 

responses to some preventive and promotional agents. Due to this fact, they are widely 

used today to study chemopreventive, dietary and environmental agents. DMH is 

metabolically activated, in the liver, through a cascade of intermediates, including AOM 

and methylazoxymethanol (MAM), until the highly reactive carcinogenic metabolite, 

methyldiazonium ion. Once converted, MAM can enter the blood stream and travel to 

epithelial cells in the colon. In the colon, MAM is metabolized into methyldiazonium ion, 

which, in turn, induces methylation of DNA, increasing loss of epithelial cells by 

apoptosis, increasing proliferation and the rate of mutation. The most important lesion 

this carcinogen generates is O6-methylaguanine, which, can mispair with thymidine, 

resulting in a point mutation, if not repaired correctly [Perse, M., et al., 2011; Rosenberg, 

D.W., et al., 2009; Washington, M.K., et al., 2013]. 

ACF were first visualized by Bird in 1987 [Bird, R.P., 1987] and since then these 

lesions have been used as biomarkers for CRC studies. In the last few years, there have 
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been additional lesions identified as biomarkers, such as dark ACF, flat ACF, mucin-

depleted foci (MDF), and -catenin accumulated crypts (BCAC). ACF can be seen with 

a simple methylene blue staining and have been found in human colon as well as 

carcinogen treated rodents. These lesions are a heterogeneous group, as it is fairly easy to 

find ACF with hyperplasia but it is also possible to find lesions with dysplasia. These 

lesions with dysplasia are accepted as indicators of increased risk for cancer progression 

and, after identification, can be classified as flat ACF or dark ACF, depending on surface 

morphology. When using high-iron diamine alcian blue, one can visualize crypts with 

mucous production. Aberrant crypts with little or no production of mucous are termed 

mucin-depleted foci, and these are dysplastic crypts which share frequent genetic and 

epigenetic alterations with colon cancer. After carcinogen administration, MDF appear 

over a period of around 7 weeks and increase in number and multiplicity with time. BCAC 

are only found with immunohistochemical protocols, searching for -catenin 

accumulation in the nucleus of colon cells. This accumulation is often due to a mutation 

in the -catenin gene, giving these lesions a higher relevance as biomarkers for CRC 

[Perse, M., et al., 2011]. 

In the DMH/AOM model, Apc mutations are found to a lesser extent than -

catenin mutations, although these alterations are only found in neoplastic lesions and have 

not been found in hyperplastic ACF. Apc alterations have been found to be missense or 

truncated point mutations, while -catenin mutations are G to A point transitions in the 

GSK3 phosphorylation motif due to O6-MeG damage. Either mutation gives the same 

result as in human carcinogenesis, inability to phosphorylate -catenin and, therefore, -

catenin accumulation in the nucleus and activation of transcription factors. Kras point 

mutations in codon 12 have been found in hyperplastic lesions, in adenomas and in 

adenocarcinomas of the DMH/AOM animal model, while it is very rare to find p53 

mutations. In this model, Kras mutations have the same effect as in human CRC, 

increased MAPK activation leading to increased proliferation. Also, the frequency of this 

mutation in small adenomas and large adenoncarcinomas is similar to the frequencies 

found in human cancer. This type of alteration has also been found frequently in 

hyperplastic ACF, more than in dysplastic ACF. In human CRC, TP53 mutations are 

frequently found in later stages of the adenoma to carcinoma transition, but in the 

DMH/AOM animal model, this alteration is very rarely found [Perse, M., et al., 2011; 

Takahashi, M., et al., 2004].  
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1.6.2 – Transgenic models 

One of the most used genetically modified animal model is the APCmin/+ mice 

model, a model extensively used to study the prevention, development or treatment of 

CRC with somatic APC alterations. This model was reported in 1990 after a germline 

truncating mutation of Apc was induced with ethylnitrosourea in C57B1/6J mice. These 

mice develop multiple intestinal neoplasms or “Min”, where most tumors appear in the 

small intestine rather than in the large intestine in heterozygotic mice. Although this 

difference in the model compared to human FAP, the phenotypic and histopathological 

features are similar to those found in colon tumors in FAP patients, so this model is widely 

used in studies to understand the role of APC mutation in cancer. As in FAP, loss of the 

functional protein in the second allele is needed for adenoma formation [Johnson, R.L., 

et al., 2013; Suman, S., et al., 2012].  

Another model for the study of hereditary CRC, FAP, is the Pirc (polyposis in the 

rat colon) rat, which was also induced by ethylnitrosourea in F344 rats. This model 

harbors a heterozygous point mutation at the Apc gene that results in a truncated protein. 

These rats develop adenomas throughout the intestine and colon and they mimic the 

morphology of human adenomas and the progression to invasive adenocarcinoma 

sequence. In homozygotes, this mutation is embryonic lethal, while in the heterozygous, 

animals become mortally ill in less than a year [Johnson, R.L., et al., 2013; Washington, 

M.K., et al., 2013].  

Heterozygous or homozygous mice for DNA MMR genes are also used, mostly 

to study Lynch syndrome. Lynch syndrome, as referred before, is an inherited condition 

where cells present a deficient MMR system, usually caused by mutation or epigenetic 

silencing of one of the MMR genes, mainly MLH1 and MSH2. Mouse models lacking 

Mlh1, Msh2 and Msh6 have been developed and tumors are found in the organs of the 

intestinal tract, including colon [Suman, S., et al., 2012]. Mlh1-/- mice develop cancer in 

the intestine and lymphoid tissue, but usually die by the age of 9 months due to this 

phenotype. Msh2 knockout mice develop intestinal tumors after 6 months of age, but often 

die due to lymphomas. Crossing mice that are Mlh1 or Msh2 knockout with heterozygous 

mutated Apc mice increase intestinal carcinogenesis, the same occurring with crossing 

Msh2 and inducible Kras mutation, although in this last case there are more tumors in the 

small intestine than the colon [Johnson, R.L., et al., 2013].  

As most of these models only show the effects of one type of alteration, and as 

carcinogenesis is an accumulation of genetic modifications, investigators are crossing 
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different rodent strains, generating models representing key molecular events involved in 

CRC, for example, the MMR deficiency (Msh2-/-) in combination with APCMin/+. Due to 

the complexity of CRC, there seems to be no one ideal animal model to study all the 

genetic and epigenetic alterations that can lead to CRC. With this in mind, the selection 

of the appropriate model to use in compound chemopreventive/therapeutic studies is 

important to correctly understand the mechanistic, preventive or therapeutic action of the 

compound [Johnson, R.L., et al., 2013; Suman, S., et al., 2012].  

 

2 – Diet and cancer 

 

2.1 – General concepts 

 

A large percentage of the etiology of colorectal cancer has been attributed to 

factors associated with lifestyle, such as obesity, lack of physical activity, smoking habits, 

and most importantly, diet. Modification of these factors may, therefore, be beneficial for 

prevention of the disease [Andersen, V., et al., 2013]. Diet seems to have a major role not 

only on the onset of the disease, but also in the possible chemoprevention. 

Chemoprevention can be considered the use of natural or synthetic compounds to prevent 

or delay the development of a disease and the fact that one of the risk factors of CRC is 

diet makes this disease an excellent case for chemoprevention studies. Animal studies 

give us the opportunity to test the role of environmental factors, such as dietary 

constituents, in the prevention or progression of colon cancer. The concept of colon 

cancer prevention involves inhibition, regression or elimination of precancerous lesions, 

reducing the incidence of cancer. It has been seen that bioactive dietary compounds may 

alter the expression of certain genes involved in a variety of cellular events and regulatory 

processes [Andersen, V., et al., 2013].  

Diet may also have adverse effects on colon cancer, being one of the main risk 

factors of this disease [Andersen, V., et al., 2013; Durko, L., et al., 2014; Yusof, A.S., et 

al., 2012]. Red and processed meat has been associated with increased risk of CRC. 

Several hypotheses have been suggested for the reason behind this association, such as 

high heme intake, which induces ROS and these induce mutations and expression of 

cytokines, the production of malondialdehyde, a lipid peroxidation product, or the 

production of heterocyclic amines and N-nitroso compounds [Durko, L., et al., 2014; 
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Oostindjer, M., et al., 2014]. Also, diets with high intake of saturated fats are associated 

with CRC incidence. A proposed mechanism for this risk factor is the stimulation of bile 

acids discharge. Although bile acids are needed for proper digestion, some have been 

shown to be CRC promoters. The next section will explain bile acids and the mechanism 

for tumor promotion [Barrasa, J.I., et al., 2013].  

 

2.2 – Bile acids 

 

It is known that diet is one of the risk factors of colon cancer development. 

Research has shown that high saturated fat intake increases the risk of CRC. This effect 

seems to be related with the increase of endogenous cholesterol biosynthesis that, when 

combined with exogenous cholesterol intake, can lead to increased bile acid biosynthesis. 

Fatty acids have the ability to irritate the colon and induce a local inflammatory response, 

increasing the production of ROS or reactive nitrogen species (RNS) in colon cells. High 

ingestion of fats also stimulate the release of bile acids, which induce an increase in cell 

proliferation, acting as promoters of CRC. It has been shown that there is an increase of 

fecal bile acid concentrations in individuals with increased risk for CRC [Bernstein, H., 

et al., 2009]. 

Bile acids are natural detergents that facilitate the uptake of lipids and fat-soluble 

vitamins. The primary bile acids cholic (CA) and chenodeoxycholic acid (CDCA) are 

synthesized in the liver from cholesterol and high intake of fat induces the release of these 

bile acids into the small intestine, after conjugation with glycine or taurine. The bile salts 

are then actively absorbed in the ileum and return to the liver, by the enterohepatic 

circulation, although some bile salts are able to escape this process and enter the colon. 

In the colon, these bile salts suffer various enzymatic reactions, such as deconjugation 

and dehydroxylation, by bacteria in the colonic lumen, forming secondary bile acids, such 

as deoxycholic (DCA) and lithocholic acid (LCA). Ursodeoxycholic acid (UDCA) is also 

formed by the gut microbiota by epimerization of CDCA [De Preter, V., et al., 2011; 

Payne, C.M., et al., 2008]. A representation of the chemical structures of the bile acids 

are shown in Figure 9. 
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Figure 9 – Representation of the chemical structures of the different bile acids referred in the text. 

 

It has been found that it is possible that the bacteria in the colonic lumen can 

influence multiple processes involved in colon carcinogenesis. There has been a link 

between bacteria and production of toxic and genotoxic metabolites that affect colon cell 

signal transduction. Also, carcinogenic agents can be formed during bacterial 

transformation in the gut. There is a higher bacterial density in the colon than in the small 

intestine. In 1975, the first study showing the link between gut microbiota and colon 

carcinogenesis was by Reddy et al. [Reddy, B.S., et al., 1975]. In this study, Reddy 

demonstrated that only 20% of germ-free rats developed colon cancer after treatment with 

a chemical inducer, while in conventionally maintained rats 93% developed colon tumors. 

There are several strains of bacteria found in the human intestine, and some of these 

strains have been implicated in the development of cancer, such as Streptococcus bovis, 

Bacteriodes spp, Clostridia spp, and H. pylori, while other strains have been shown to 

have the opposite effect, such as Lactobacillus acidophilus and Bifidobacetrium longum. 

For example, S. bovis has been shown to induce increase of proliferation in colonic crypts 

and increase proliferation markers in carcinogen-treated rats [Ellmerich, S., et al., 2000]. 

Also, it seems that diet has a high impact on the type of strains present in the microbiota. 

Gut microbiota appears to increase colon cancer risk by inducing inflammation, 

generating reactive metabolites, which can induce damage, and converting primary bile 

acids to tumor promoting secondary bile acids [Del Chierico, F., et al., 2014; Zhu, Q., et 

al., 2013].  
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Secondary bile acids have been shown to be promoters of colon carcinogenesis. 

Although concentration of bile acids in the colon are relatively low, compared to 

concentrations in the gall bladder or small intestine, some secondary bile acids, such as 

DCA, can achieve concentrations of 700 to 800 µM in the cecum with high-fat diets or 

pathological anomalies [Barrasa, J.I., et al., 2013]. In vivo, deoxycholic acid promotes 

growth of ACF and increases translocation of -catenin to the nucleus, which provides 

an increase of proliferation [Flynn, C., et al., 2007]. Nevertheless, the effects of secondary 

bile acids to the promotion of carcinogenesis are vast. One of the first immediate effects 

of bile acids to colon cells is the induction of ROS and RNS. This increase can be caused 

by damage to mitochondria or by release of arachidonic acid from the cell membrane and, 

consequently, ROS production by partial reduction of O2. Also, DCA has been found to 

activate NF-B in colon cells. This activation may induce and increase nitric oxide 

synthase 2, which generates NO. The production of ROS/RNS increases DNA damage 

and, consequently, favors the appearance of mutations. With the increase of ROS/RNS, 

it is possible to conclude that bile acids can induce DNA damage and cause mutation 

while decreasing DNA repair enzymes, which expression decreases with the increase of 

oxidative stress [Bernstein, H., et al., 2009; Payne, C.M., et al., 2008]. 

DCA has been shown to produce more damage to the cell membrane than any 

other bile acids and their conjugates. It was found that DCA alters membrane 

composition, through redistribution of cholesterol, and microdomains, dysregulates 

membrane-bond receptors, and activates surface enzymes, such as epidermal growth 

factor receptor and protein kinase C. The activation of these surface proteins can be the 

cause for DCA modulation of signaling pathways [Jean-Louis, S., et al., 2006]. Other 

effects that have been found to be due to bile acid exposure are micronuclei formation, 

induction of endoplasmic-reticulum stress, and consequently apoptosis, autophagy or 

necrosis [Barrasa, J.I., et al., 2013; Payne, C.M., et al., 2008]. 

On the other hand, UDCA, a less hydrophobic bile acid, has been shown in several 

publications that it has chemopreventive potential. This compound was initially used for 

treatment of gallstones and primary biliary cirrhosis. UDCA not only has different 

biological effects than DCA, but can also inhibit DCA’s deleterious effects. In one study, 

it was found that UDCA is able to inhibit cell proliferation in a colon cancer cell line, 

suppressing c-Myc expression [Peiro-Jordan, R., et al., 2012]. In other studies, UDCA 

was found to inhibit DCA-induced apoptosis in HCT116 colon cancer cell line [Im, E., et 

al., 2004; Powell, A.A., et al., 2006]. This same group also demonstrated that UDCA can 
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induce differentiation in colon cancer cells by inducing histone hypoacetylation [Akare, 

S., et al., 2006]. In high-risk populations, UDCA was also found to decrease the risk of 

colorectal cancer development. In animal models, UDCA was found to inhibit Ras 

mutations and cyclooxygenase-2 expression in AOM-induced carcinogenesis. As UDCA 

is a hydrophilic bile acid and DCA has a hydrophobic character, the differences in mode 

of action could be due to the hydrophilicity of the compounds [Barrasa, J.I., et al., 2013]. 

 

2.3 – Natural compounds 

 

Natural products have been shown to be promising agents that may play a role in 

cancer prevention as well as in cancer therapy, by modulating common signaling 

pathways in cancer development, but also in DNA damage prevention or repair. So, 

chemoprevention can be targeted to specific molecular processes. Many epidemiological 

studies have found a correlation between consumption of fruits and vegetables and the 

decrease risk of CRC.  

Folic acid (vitamin B9) is not synthesized by the human organism, so its source is 

fruits and dark green vegetables. It has been found that deficiency of this vitamin is linked 

to increased colorectal lesions, while supplementation correlates with decreased risk in 

patients with ulcerative colitis. The assumed molecular mechanisms for folic acid CRC 

prevention include DNA synthesis and repair, but also the methylation state of genes. 

Epidemiological studies have shown also an association of folic acid and decreased colon 

carcinogenesis [Link, A., et al., 2010].  

Polyphenols have been shown to have a wide variety of beneficial effects for 

overall human health. Curcumin has antioxidant, anti-inflammatory and anticarcinogenic 

properties and has been found to inhibit cell invasion and decrease DNMT activity, 

reducing gene silencing [Link, A., et al., 2010; Vanden Berghe, W., 2012]. Quercetin, a 

flavonol, has been found to interact with β-catenin, decreasing cell proliferation, but also 

to inhibit HAT activity, reducing gene expression [Pericleous, M., et al., 2013; Vanden 

Berghe, W., 2012]. Quercetin has also been found to suppress ACF formation in a colon 

cancer induced model [Bordonaro, M., et al., 2014; Warren, C.A., et al., 2009]. It was 

found that (-)-epigallocatechin-3-gallate (EGCG), a major polyphenolic compound from 

green tea, inhibits DNMT activity and reactivates methylation-silenced genes present in 

cancer cells, such as MGMT and hMLH [Fang, M.Z., et al., 2003]. The chemical 

structures of some natural compounds are shown in Figure 10.  
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Figure 10 – Representation of the chemical structures of the different natural compounds referred in the 

text. 

 

Studies in our lab have demonstrated other effects of diet on CRC prevention: at 

the level of DNA protection and/or induction of repair and of molecular targets of cell 

proliferation and death. These studies demonstrated that ursolic acid and luteolin protect 

DNA from oxidative damage, increase DNA repair activity [Ramos, A.A., et al., 2010b], 

but also have antiproliferative and proapoptotic effects [Xavier, C.P., et al., 2009b]. Also, 

extracts from the plant genius Salvia had chemopreventive potential by stimulating DNA 

repair and protecting cells against oxidative DNA damage in Caco-2 [Ramos, A.A., et al., 

2010a] and in CO115 and HCT15 [Ramos, A.A., et al., 2012]. In another study, these 

extracts induced apoptosis and inhibited cell proliferation by interfering in the MAPK 

signaling pathway [Xavier, C.P., et al., 2009a]. 
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Alterations in lifestyle and diet can help lower colorectal incidence and/or 

progression. The introduction of foods with compounds that have chemopreventive 

activity can also aid in the prevention of CRC. The introduction of a healthy dietary 

pattern and good lifestyle habits would not only bring benefits for colorectal cancer 

prevention, but also the overall health of the individual.  

 

3 – Bibliography 

 

Akare, S., Jean-Louis, S., Chen, W., et al., Ursodeoxycholic acid modulates 

histone acetylation and induces differentiation and senescence, International journal of 

cancer. Journal international du cancer, 2006, 119 (12), 2958-2969. 

Allan, J.M., Travis, L.B., Mechanisms of therapy-related carcinogenesis, Nat Rev 

Cancer, 2005, 5 (12), 943-955. 

Andersen, V., Holst, R., Vogel, U., Systematic review: diet–gene interactions and 

the risk of colorectal cancer, Alimentary Pharmacology & Therapeutics, 2013, 37 (4), 

383-391. 

Arends, M.J., Pathways of colorectal carcinogenesis, Applied 

immunohistochemistry & molecular morphology : AIMM / official publication of the 

Society for Applied Immunohistochemistry, 2013, 21 (2), 97-102. 

Banno, K., Kisu, I., Yanokura, M., et al., Epimutation and cancer: a new 

carcinogenic mechanism of Lynch syndrome (Review), International journal of oncology, 

2012, 41 (3), 793-797. 

Barrasa, J.I., Olmo, N., Lizarbe, M.A., et al., Bile acids in the colon, from healthy 

to cytotoxic molecules, Toxicology in vitro : an international journal published in 

association with BIBRA, 2013, 27 (2), 964-977. 

Baylin, S.B., Herman, J.G., DNA hypermethylation in tumorigenesis: epigenetics 

joins genetics, Trends Genet, 2000, 16 (4), 168-174. 

Bernstein, H., Bernstein, C., Payne, C.M., et al., Bile acids as endogenous 

etiologic agents in gastrointestinal cancer, World journal of gastroenterology : WJG, 

2009, 15 (27), 3329-3340. 

Bettington, M., Walker, N., Clouston, A., et al., The serrated pathway to colorectal 

carcinoma: current concepts and challenges, Histopathology, 2013, 62 (3), 367-386. 



Chapter 1                                                                                                                         General introduction 

 

32 

 

Bird, R.P., Observation and quantification of aberrant crypts in the murine colon 

treated with a colon carcinogen: preliminary findings, Cancer Lett, 1987, 37 (2), 147-151. 

Bogaert, J., Prenen, H., Molecular genetics of colorectal cancer, Annals of 

gastroenterology : quarterly publication of the Hellenic Society of Gastroenterology, 

2014, 27 (1), 9-14. 

Bordonaro, M., Venema, K., Putri, A.K., et al., Approaches that ascertain the role 

of dietary compounds in colonic cancer cells, World journal of gastrointestinal oncology, 

2014, 6 (1), 1-10. 

Burgess, A.W., Faux, M.C., Layton, M.J., et al., Wnt signaling and colon 

tumorigenesis - a view from the periphery, Experimental cell research, 2011, 317 (19), 

2748-2758. 

Cathomas, G., PIK3CA in colorectal cancer, Frontiers in oncology, 2014, 4, 1-4. 

De Preter, V., Hamer, H.M., Windey, K., et al., The impact of pre- and/or 

probiotics on human colonic metabolism: does it affect human health?, Molecular 

Nutrition & Food Research, 2011, 55 (1), 46-57. 

Del Chierico, F., Vernocchi, P., Dallapiccola, B., et al., Mediterranean diet and 

health: food effects on gut microbiota and disease control, International journal of 

molecular sciences, 2014, 15 (7), 11678-11699. 

Dhanasekaran, D.N., Reddy, E.P., JNK signaling in apoptosis, Oncogene, 2008, 

27 (48), 6245-6251. 

Durko, L., Malecka-Panas, E., Lifestyle Modifications and Colorectal Cancer, 

Current Colorectal Cancer Reports, 2014, 10, 45-54. 

Ellmerich, S., Djouder, N., Scholler, M., et al., Production of cytokines by 

monocytes, epithelial and endothelial cells activated by Streptococcus bovis, Cytokine, 

2000, 12 (1), 26-31. 

Fang, J.Y., Chen, Y.X., Lu, J., et al., Epigenetic modification regulates both 

expression of tumor-associated genes and cell cycle progressing in human colon cancer 

cell lines: Colo-320 and SW1116, Cell Res, 2004, 14 (3), 217-226. 

Fang, M.Z., Wang, Y., Ai, N., et al., Tea polyphenol (-)-epigallocatechin-3-gallate 

inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell 

lines, Cancer Res, 2003, 63 (22), 7563-7570. 

Fearon, E.R., Molecular genetics of colorectal cancer, Annual review of pathology, 

2011, 6, 479-507. 



Chapter 1                                                                                                                         General introduction 

 

33 
 

Ferlay, J., Shin, H.R., Bray, F., et al., GLOBOCAN 2008 Cancer Incidence and 

Mortality Worldwide: IARC CancerBase No. 10, Lyon, France: International Agency for 

Research on Cancer; 2010. Available from: http://globocan.iarc.fr, accessed on 27 of 

August, 2013. 

Flynn, C., Montrose, D.C., Swank, D.L., et al., Deoxycholic acid promotes the 

growth of colonic aberrant crypt foci, Mol Carcinog, 2007, 46 (1), 60-70. 

Frank, S.A., In Dynamics of Cancer - Incidence, Inheritance, and Evolution, 

Princeton University Press, 2007,  

Goel, A., Boland, C.R., Epigenetics of colorectal cancer, Gastroenterology, 2012, 

143 (6), 1442-1460. 

Gozuacik, D., Kimchi, A., DAPk protein family and cancer, Autophagy, 2006, 2 

(2), 74-79. 

Grady, W.M., Carethers, J.M., Genomic and epigenetic instability in colorectal 

cancer pathogenesis, Gastroenterology, 2008, 135 (4), 1079-1099. 

Im, E., Martinez, J.D., Ursodeoxycholic acid (UDCA) can inhibit deoxycholic 

acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human 

colon cancer cells, The Journal of nutrition, 2004, 134 (2), 483-486. 

Jass, J.R., Classification of colorectal cancer based on correlation of clinical, 

morphological and molecular features, Histopathology, 2007, 50 (1), 113-130. 

Jean-Louis, S., Akare, S., Ali, M.A., et al., Deoxycholic acid induces intracellular 

signaling through membrane perturbations, The Journal of biological chemistry, 2006, 

281 (21), 14948-14960. 

Johnson, R.L., Fleet, J.C., Animal models of colorectal cancer, Cancer metastasis 

reviews, 2013, 32 (1-2), 39-61. 

Kaina, B., Christmann, M., Naumann, S., et al., MGMT: key node in the battle 

against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents, DNA 

Repair (Amst), 2007, 6 (8), 1079-1099. 

Kondo, Y., Issa, J.P., Epigenetic changes in colorectal cancer, Cancer Metastasis 

Rev, 2004, 23 (1-2), 29-39. 

Kulis, M., Esteller, M., DNA Methylation and Cancer In Advances in Genetics, 

Academic Press, 2010, vol. 70, 27-56 

Link, A., Balaguer, F., Goel, A., Cancer chemoprevention by dietary polyphenols: 

promising role for epigenetics, Biochem Pharmacol, 2010, 80 (12), 1771-1792. 



Chapter 1                                                                                                                         General introduction 

 

34 

 

Lord, C.J., Ashworth, A., The DNA damage response and cancer therapy, Nature, 

2012, 481 (7381), 287-294. 

Manning, B.D., Cantley, L.C., AKT/PKB signaling: navigating downstream, Cell, 

2007, 129 (7), 1261-1274. 

Marra, G., Jiricny, J., DNA Mismatch Repair and Colon Cancer In Genome 

Instability in Cancer Development, Springer Netherlands, 2005, vol. 570, 85-123 

Meister, M., Tomasovic, A., Banning, A., et al., Mitogen-Activated Protein (MAP) 

Kinase Scaffolding Proteins: A Recount, International journal of molecular sciences, 

2013, 14 (3), 4854-4884. 

Nandan, M.O., Yang, V.W., An Update on the Biology of RAS/RAF Mutations 

in Colorectal Cancer, Current Colorectal Cancer Reports, 2011, 7 (2), 113-120. 

Negrini, S., Gorgoulis, V.G., Halazonetis, T.D., Genomic instability - an evolving 

hallmark of cancer, Nature reviews. Molecular cell biology, 2010, 11 (3), 220-228. 

The Cancer Genome Atlas Network, Comprehensive molecular characterization 

of human colon and rectal cancer, Nature, 2012, 487 (7407), 330-337. 

Oostindjer, M., Alexander, J., Amdam, G.V., et al., The role of red and processed 

meat in colorectal cancer development: a perspective, Meat science, 2014, 97 (4), 583-

596. 

Payne, C.M., Bernstein, C., Dvorak, K., et al., Hydrophobic bile acids, genomic 

instability, Darwinian selection, and colon carcinogenesis, Clinical and experimental 

gastroenterology, 2008, 1 19-47. 

Peiro-Jordan, R., Krishna-Subramanian, S., Hanski, M.L., et al., The 

chemopreventive agent ursodeoxycholic acid inhibits proliferation of colon carcinoma 

cells by suppressing c-Myc expression, European journal of cancer prevention : the 

official journal of the European Cancer Prevention Organisation, 2012, 21 (5), 413-422. 

Pericleous, M., Mandair, D., Caplin, M.E., Diet and supplements and their impact 

on colorectal cancer, Journal of Gastrointestinal Oncology, 2013, 4 (4), 409-423. 

Perse, M., Cerar, A., Morphological and molecular alterations in 1,2-

dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats, Journal of 

biomedicine & biotechnology, vol. 2011, Article ID 473964, 14 pages, 2011. 

Porta, C., Paglino, C., Mosca, A., Targeting PI3K/Akt/mTOR Signaling in Cancer, 

Frontiers in oncology, 2014, 4, 64. 



Chapter 1                                                                                                                         General introduction 

 

35 
 

Powell, A.A., Akare, S., Qi, W., et al., Resistance to ursodeoxycholic acid-

induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis 

and increased tumorgenicity, BMC cancer, 2006, 6, 219. 

Ramos, A.A., Azqueta, A., Pereira-Wilson, C., et al., Polyphenolic compounds 

from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in 

cultured human cells, Journal of Agricultural and Food Chemistry, 2010a, 58 (12), 7465-

7471. 

Ramos, A.A., Lima, C.F., Pereira-Wilson, C., DNA Damage Protection and 

Induction of Repair by Dietary Phytochemicals and Cancer Prevention: What Do We 

Know? In Selected Topics in DNA Repair, InTech, 2011, Rijeka, Croatia. 

Ramos, A.A., Pedro, D., Collins, A.R., et al., Protection by Salvia extracts against 

oxidative and alkylation damage to DNA in human HCT15 and CO115 cells, Journal of 

toxicology and environmental health. Part A, 2012, 75 (13-15), 765-775. 

Ramos, A.A., Pereira-Wilson, C., Collins, A.R., Protective effects of ursolic acid 

and luteolin against oxidative DNA damage include enhancement of DNA repair in Caco-

2 cells, Mutat Res, 2010b, 692 (1-2), 6-11. 

Reddy, B.S., Mastromarino, A., Wynder, E.L., Further leads on metabolic 

epidemiology of large bowel cancer, Cancer Research, 1975, 35 (11 Pt. 2), 3403-3406. 

Redston, M., Carcinogenesis in the GI tract: from morphology to genetics and 

back again, Mod Pathol, 2001, 14 (3), 236-245. 

Rosenberg, D.W., Giardina, C., Tanaka, T., Mouse models for the study of colon 

carcinogenesis, Carcinogenesis, 2009, 30 (2), 183-196. 

Sehgal, V., Ram, P.T., Network Motifs in JNK Signaling, Genes & cancer, 2013, 

4 (9-10), 409-413. 

Spurling, C.C., Suhl, J.A., Boucher, N., et al., The Short Chain Fatty Acid 

Butyrate Induces Promoter Demethylation and Reactivation of RAR2 in Colon Cancer 

Cells, Nutrition and Cancer, 2008, 60 (5), 692-702. 

Sui, X., Kong, N., Ye, L., et al., p38 and JNK MAPK pathways control the balance 

of apoptosis and autophagy in response to chemotherapeutic agents, Cancer letters, 2014, 

344 (2), 174-179. 

Suman, S., Jr., A.J.F., Datta, K., Animal Models of Colorectal Cancer in 

Chemoprevention and Therapeutics Development In Colorectal Cancer - From 

Prevention to Patient Care, InTech, 2012. 



Chapter 1                                                                                                                         General introduction 

 

36 

 

Takahashi, M., Wakabayashi, K., Gene mutations and altered gene expression in 

azoxymethane-induced colon carcinogenesis in rodents, Cancer Science, 2004, 95 (6), 

475-480. 

Turek-Plewa, J., Jagodzinski, P.P., The role of mammalian DNA 

methyltransferases in the regulation of gene expression, Cell Mol Biol Lett, 2005, 10 (4), 

631-647. 

van Wezel, T., Middeldorp, A., Wijnen, J.T., et al., A review of the genetic 

background and tumour profiling in familial colorectal cancer, Mutagenesis, 2012, 27 (2), 

239-245. 

Vanden Berghe, W., Epigenetic impact of dietary polyphenols in cancer 

chemoprevention: Lifelong remodeling of our epigenomes, Pharmacological Research, 

2012, 65 (6), 565-576. 

Walker, J., Quirke, P., Biology and genetics of colorectal cancer, European 

Journal of Cancer, 2001, 37 Suppl 7 S163-172. 

Warren, C.A., Paulhill, K.J., Davidson, L.A., et al., Quercetin may suppress rat 

aberrant crypt foci formation by suppressing inflammatory mediators that influence 

proliferation and apoptosis, The Journal of nutrition, 2009, 139 (1), 101-105. 

Washington, M.K., Powell, A.E., Sullivan, R., et al., Pathology of rodent models 

of intestinal cancer: progress report and recommendations, Gastroenterology, 2013, 144 

(4), 705-717. 

White, B.D., Chien, A.J., Dawson, D.W., Dysregulation of Wnt/beta-catenin 

signaling in gastrointestinal cancers, Gastroenterology, 2012, 142 (2), 219-232. 

Xavier, C.P., Lima, C.F., Fernandes-Ferreira, M., et al., Salvia fruticosa, Salvia 

officinalis and rosmarinic acid induce apoptosis and inhibit proliferation of Human 

Colorectal cell lines: the role in MAPK/ERK pathway., Nutrition and Cancer, 2009a, 61 

(4), 564-571. 

Xavier, C.P., Lima, C.F., Preto, A., et al., Luteolin, quercetin and ursolic acid are 

potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF 

mutated human colorectal cancer cells, Cancer Lett, 2009b, 281 (2), 162-170. 

Yusof, A.S., Isa, Z.M., Shah, S.A., Dietary patterns and risk of colorectal cancer: 

a systematic review of cohort studies (2000-2011), Asian Pacific journal of cancer 

prevention : APJCP, 2012, 13 (9), 4713-4717. 

Zeller, E., Hammer, K., Kirschnick, M., et al., Mechanisms of RAS/beta-catenin 

interactions, Archives of toxicology, 2013, 87 (4), 611-632. 



Chapter 1                                                                                                                         General introduction 

 

37 
 

Zenonos, K., Kyprianou, K., RAS signaling pathways, mutations and their role in 

colorectal cancer, World journal of gastrointestinal oncology, 2013, 5 (5), 97-101. 

Zhang, L., Zhou, F., ten Dijke, P., Signaling interplay between transforming 

growth factor-beta receptor and PI3K/AKT pathways in cancer, Trends in biochemical 

sciences, 2013, 38 (12), 612-620. 

Zheng, Y.G., Wu, J., Chen, Z., et al., Chemical regulation of epigenetic 

modifications: opportunities for new cancer therapy, Med Res Rev, 2008, 28 (5), 645-687. 

Zhu, Q., Gao, R., Wu, W., et al., The role of gut microbiota in the pathogenesis 

of colorectal cancer, Tumour biology : the journal of the International Society for 

Oncodevelopmental Biology and Medicine, 2013, 34 (3), 1285-1300. 





 

 

 

 

 

 

 

 

 

      
THE EFFECTS OF BILE ACIDS 

ON COLON CARCINOGENESIS 
Chapter 2 





Chapter 2                                                                            The effects of bile acids on colon carcinogenesis 

41 
 

1 - Effects of deoxycholic acid and ursodeoxycholic acid in Caco-2 cells 

 

1.1- Introduction 

 

Bile acids are amphiphilic acidic steroids which are synthesized from cholesterol 

in the liver, originating cholic and chenodeoxycholic acid as primary bile acids. After 

synthesis, these bile acids are conjugated with taurine or glycine, generating taurocholic 

or glycocholic acid and taurochenodeoxcholic or glycochenodeoxycholic acid, 

respectively, and released into the bile. In the intestine, bile acids aid in fat digestion and 

absorption and protect lipolytic enzymes from proteolytic degradation. Intestinal 

microflora metabolize bile acids converting them into secondary bile acids, for example, 

deoxycholic acid (DCA) [Bernstein, H., et al., 2009; Zhu, Q., et al., 2013]. Deoxycholic 

acid has been associated with increased risk of colon cancer development, whereas 

ursodeoxycholic acid (UDCA), also produced in the gut by the microflora, has been 

associated as a chemopreventive compound [Barrasa, J.I., et al., 2013; Bernstein, H., et 

al., 2009].  

It is known that the content of the intestinal lumen is dependent on diet and a diet 

with high saturated fat intake stimulates bile acid discharge. The constant exposure to 

high levels of bile acids in the large intestine can have two main consequences that may 

explain bile acid promotion of colorectal cancer: promotion of DNA damage by oxidative 

stress and selective growth of apoptotic-resistant cells. The apoptotic effect of bile acids 

on hepatocytes has been extensively studied, but there is also an interest on the cellular 

effects of these compounds on colonocytes and colon cancer. There are already several 

studies that have shown the effect of bile acids, especially DCA, in the promotion of colon 

carcinogenesis, but also the potential of being carcinogens themselves [Bernstein, C., et 

al., 2011; Flynn, C., et al., 2007; Payne, C.M., et al., 2010]. In colon cancer cell lines, 

various studies have shown some mechanisms on how DCA or UDCA can affect cell 

proliferation and apoptosis [Glinghammar, B., et al., 2002; Im, E., et al., 2004; Jean-

Louis, S., et al., 2006; Powell, A.A., et al., 2006; Qiao, D., et al., 2001].  

In this study, we used Caco-2 cells, a human colonic adenocarcinoma cell line, to 

study the effects of DCA and UDCA in cell proliferation, apoptosis and DNA damage. 

Most studies use HCT116 or HT29 cell lines to study the impact of bile acids on colon 

cells, however these cell lines harbor various genetic or epigenetic alterations in the 
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MAPK signaling pathways, giving us information on the effect of bile acids in tumor cells. 

Caco-2 cells are microsatellite stable, mismatch repair proficient, and KRAS and BRAF 

wild-type, having characteristics closer to normal colonocytes. 

 

1.2 – Material and methods 

 

1.2.1 – Reagents and antibodies 

N-Methyl-N-nitrosourea (MNU), O6-benzylguanine (BG), thiazolyl blue 

tetrazolium bromide (MTT), DCA, UDCA, Dulbecco’s modified Eagle medium 

(DMEM), penicillin/streptomycin, and trypsin solution were purchased from Sigma–

Aldrich (St. Louis, MO, USA). Fetal bovine serum (FBS) was purchased from Biochrom 

KG (Berlin, Germany). SYBR Gold (nucleic acid gel stain) was from Invitrogen 

Molecular Probes (Eugene, OR, USA). The protein quantification DC protein assay was 

purchased from Bio-Rad Laboratories (Hercules, CA, USA). Primary antibodies were 

purchased from the following sources: anti-actin was purchased from Sigma–Aldrich; 

anti-JNK, anti-phospho-JNK, anti-phosphoERK1/2, anti-K-Ras, anti-B-Raf, anti-MGMT, 

anti-MLH1 Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA); and anti-p44/42 

MAPK (ERK1/2), anti-phospho-Akt (ser473), and anti-Akt from Cell Signaling (Danvers, 

MA, USA). Peroxidase-conjugated goat anti-mouse antibody and Immobilon Western 

blotting detection reagents were purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA, USA) and Millipore (Billerica, MA, USA), respectively. All other reagents and 

chemicals used were of analytical grade. 

 

1.2.2 – Cell line and culture conditions 

Caco-2 cells, derived from human colon carcinoma, were maintained as 

monolayer cultures in DMEM supplemented with 10% FBS and antibiotics (100 U/mL 

penicillin and 100 mg/mL streptomycin), under an atmosphere of 5% CO2 at 37 ºC. Cells 

were seeded onto 6- (2 mL) or 12- (1 mL) well plates at a density of 0.1×106 cells/mL. 

Test compounds were added to culture medium to the desired concentration ensuring that 

the DMSO concentration did not exceed 0.5% (v/v); controls received vehicle only. 

 

1.2.3 – Assessment of cell viability/proliferation by MTT reduction test 

A MTT reduction assay was performed in order to evaluate the toxicity of DCA 

and UDCA in this colon cancer cell line. Cells were treated with test compounds for 6, 
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24 and 48 h, including 2 h incubation with MTT (final concentration 0.5 mg/mL). The 

formazan crystals were then dissolved in a solution of DMSO/ethanol (1:1). The number 

of viable cells in each well was estimated by the cell capacity to reduce MTT. The results 

were expressed as percentage relative to the control (cells without any test compound). 

 

1.2.4 – Nuclear condensation assay 

The effects of DCA (500 µM) or UDCA (500 µM) treatment on induction of 

apoptosis in Caco-2 cells was assessed by nuclear condensation assay. The number of 

apoptotic cells was counted after 48 and 72 h as previously described [Xavier, C.P., et al., 

2009]. Staurosporin (STS) at 0.5 µM was used as positive control. At least 500 cells were 

counted and the number of apoptotic cells was divided by the total number cells counted 

to give the percentage of cell death.  

 

1.2.5 – Genotoxicity assay 

 The alkaline version of the single cell gel electrophoresis (comet) assay was used 

to evaluate DNA damage [Collins, A.R., 2004]. Caco-2 cells were incubated for different 

time points (15 min, 30 min, 1 h, 6 h, 24 h and 48 h) at 37 ºC with DCA or UDCA at 

different concentrations (100, 500 and 750 µM). Cells were collected by trypsinization 

and around 50,000 cells were centrifuged for 1 min at 5,000 rpm, ressuspended in low 

melting point agarose and spread onto agarose-coated slide using a cover slip. After 10 

min at 4 ºC, the coverslips were removed and slides were placed in lysis solution (2.5 M 

NaCl, 100 mM Na2EDTA, 10 mM Tris base, pH 10, plus 1% Triton X-100) for 1 h at 4 

ºC. Slides were then placed in a horizontal electrophoresis chamber with electrophoresis 

solution (0.3 M NaOH, 1 mM Na2EDTA, pH > 13) for 40 min at 4 ºC for the DNA to 

unwind before electrophoresis for 20 min at 0.8 V/cm and ∼300 mA. After 

electrophoresis, slides were washed twice with PBS and dried at room temperature (RT). 

For analysis of the comet images, slides were stained with SYBR Gold solution for 30 

min at 4 ºC; after drying, the slides were analyzed using a fluorescence microscope and 

the Comet IV analysis system (Perceptive Instruments Ltd, Haverhill, UK) was used to 

calculate the parameter percentage of DNA in the tail. About 100 randomly selected cells 

were analyzed per sample. 
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1.2.6 – DCFH oxidative stress assay 

The capacity of DCA to induce reactive oxygen species was evaluated using the 

dichlorofluorescin (DCFH) oxidative stress assay. Briefly, culture medium was removed 

and cells were washed with PBS. Afterwards, cells were incubated with 2′,7′-

dichlorofluorescein diacetate (DCF-DA) (100 µM) or DMSO (vehicle) for 30 min at 37 

ºC. This solution was removed and cells were washed with PBS. Cells were then 

incubated with DCA (500 µM) or tert-butyl hydroperoxide (200 µM), diluted in serum-

free medium, for 30 min at 37 ºC. The compounds were removed and cells were lysed 

with a solution of 90% DMSO/10% PBS for 10 min at RT in the dark. Fluorescence was 

read at 520 nm upon excitation at 485 nm.  

 

1.2.7 – Western blot analysis 

Cells were incubated with DCA or UDCA (500 µM) for 6, 24 and 48 h. Total cell 

lysates were prepared to measure expression of different proteins. The cells were washed 

with PBS 1x and lysed for 5 min at 4 °C with ice-cold RIPA buffer (1% NP-40 in 150 

mM NaCl, 50 mM Tris (pH 7.5), 2 mM EDTA) supplemented with 20 mM NaF, 1 mM 

phenylmethylsulfonyl fluoride, 20 mM Na3VO4 and protease inhibitor cocktail (Roche, 

Mannheim, Germany). Protein concentration was quantified using the DC protein assay 

following the manufacturer’s instructions, and 20 µg/well was separated by 12% SDS–

PAGE and transferred to polyvinylidene difluoride membranes. Membranes were 

blocked and incubated with primary antibody overnight. After washing, membranes were 

incubated with secondary antibody conjugated with IgG horseradish peroxidase for 1 h, 

and immunoreactive bands were detected using the Immobilon solutions (Millipore, 

Billerica, MA, USA) under a chemiluminescence detection system (Chemi Doc XRS; 

Bio-Rad Laboratories, Inc.). 

Band area intensity was quantified using the Quantity One software from Bio-

Rad. β-Actin was used as loading control. 

 

1.2.8 – Statistical analysis 

Statistical analyses were done using t test, one-way or two-way analysis of 

variance, using GraphPad Prism 4.0 software, when appropriate (San Diego, CA, USA). 

P values ≤0.05 were considered statistically significant. All results are presented as mean 
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± SEM of at least three independent experiments. Images are representative of three 

independent experiments. 

 

1.3 – Results and discussion 

 

 In this study, we evaluated the effect of two bile acids, deoxycholic acid and 

ursodeoxycholic acid, on proliferation and DNA damage in Caco-2 cell line. One of the 

most used cell lines is HCT116, but as this cell line has many alterations in signaling 

pathways and DNA damage repair pathways, it gives us evidence of the effects of bile 

acids in tumor cells. Caco-2 cell line has fewer alterations in key pathways and has 

functional O6-methylguanine-DNA methyltransferase (MGMT) and mismatch repair 

systems, giving more information on possible mechanisms in normal colonocytes. Few 

studies have used Caco-2 for the evaluation of bile acids effects. In this study, high 

concentrations (500 and 750 µM) of DCA induced cell death at 24 and 48 h of treatment 

(Figure 1). This data is in accordance with a study by Milovic, V et al., where they found 

that apoptosis was induced with higher concentrations of the same bile acid, in Caco-2 

cell line [Milovic, V., et al., 2002]. We also tested a hydrophilic bile acid, UDCA, which 

is considered to be protective against colon carcinogenesis. With this bile acid, we found 

no significant effects on cell proliferation at any of the incubation times or the 

concentrations tested (Figure 1). Krishna-Subramanian et al., have shown that, in IEC-6 

intestinal cells, a 72 h incubation of UDCA induced growth arrest of these cells [Krishna-

Subramanian, S., et al., 2012]. They used the IEC-6 cell line due to the fact that this cell 

line mimicked the effects of UDCA in epithelial colonic cells from mice, while HCT116 

and HCT8 did not. As seen in Figure 1, for 750 µM of UDCA we also see a slight 

tendency (22%) of decreased proliferation with 48 h incubation. This tendency could 

suggest an effect of inhibition of proliferation of UDCA in this cell line, similar to the 

effects seen with the IEC6 cell line.  
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Figure 11 – The effect of different concentrations (750, 500 and 100 µM) of DCA and UDCA on cell 

viability at 6, 24 and 48 h, in Caco-2 cells. Cell viability was measured by the MTT assay and results are 

the mean ± SEM of at least 3 independent experiments. *P≤ 0.05 and ***P≤ 0.001, when compared with 

control were determined by one-way ANOVA followed by Newman-Keuls multiple comparison test. 

  

 As we found that 500 µM of DCA decreased cell proliferation, and this 

concentration is widely used in other studies, we tested this concentration for induction 

of cell death and for comparative reasons, the same concentration of UDCA was used. 

After 72 h incubation of DCA, there was a significant increase of cell death, while UDCA 

treatment showed no effect at this concentration (Figure 2). It has been reported that DCA 

is a stress inducer, causing membrane alterations, DNA damage, mitotic stress, and other 

perturbations, ultimately leading to apoptosis in various cancer cell lines [Payne, C.M., 

et al., 2008]. In cancer cells, as survival pathways are usually activated, apoptosis is 

evaded, so with this cell line we have a result possibly similar to what happens in normal 

cells. 
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Figure 12 – Effects of DCA, 500 µM, and UDCA, 500 µM, on apoptosis induction in Caco-2 cells. 

Apoptosis was measured by the TUNEL assay after 48 and 72 h incubation with the compounds. 

Staurosporin (STS) at 0.5 µM was used as a positive control. Results are expressed as mean ± SEM of at 

least 3 independent experiments. *** P≤ 0.001, ## P≤ 0.01 and ### P≤ 0.001, when compared with 

respective control, were determined by two-way ANOVA followed by Bonferroni post-tests.  

 

As it was found that DCA induces apoptosis, then it could be speculated that some 

kind of stress is being induced. Cells are under constant attack from reactive oxygen 

species (ROS) and alkylating species generated from endogenous and exogenous sources. 

It is known that high concentrations of bile acids, caused by high intake of fat, in the 

colon lumen provides a stressful environment, disrupting the normal cellular redox 

homeostasis, favoring an oxidant state. This redox state may also help the selection of 

mutated cells that survive this type of environment, propagating the mutator phenotype 

and increasing the chances of colon cancer development [Payne, C.M., et al., 2008; 

Ramos, A.A., et al., 2011]. ROS can damage molecules in the cell, such as proteins, lipids, 

and DNA, resulting in metabolic deregulation. DNA damage is a significant consequence 

of ROS and alkylating agents attack and is considered to be involved in the development 

of mutations and cancer [Payne, C.M., et al., 2008]. The ability of DCA and UDCA to 

induce DNA damage was measured using the Comet assay (Figure 3). UDCA did not 

induce DNA damage at any of the time points or concentrations used. DCA induced DNA 

damage after 1, 6 and 24 h incubation at the highest concentration used, 750 µM. At 48 h 

incubation, it seems that either the cells are repairing the damage or are redirecting to cell 

death, as the level of DNA damage begins to decrease.  
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Figure 3 – Effects of different concentrations (100, 500, and 750 µM) of DCA and UDCA on DNA damage 

induction in Caco-2 cells. DNA damage was measured by the comet assay at different time points (15 min, 

30 min, 1, 6, 24, and 48 h). Results are expressed as mean ± SEM of at least 3 independent experiments. 

*P≤ 0.05 when compared with respective control was determined by one-way ANOVA followed by 

Newman-Keuls multiple comparison test. 

 

We also evaluated the potential of DCA to induce ROS to find a possible cause 

for the DNA damage seen by the comet assay. As UDCA did not induce any kind of 

damage, we did not use this compound in this assay. Treatment with 500 µM of DCA for 

30 min produced significantly more ROS when compared with control, and comparable 

to the positive control used (Figure 4). It has been shown that DCA induces ROS 

production in other cell lines, such as Barrett's epithelial cells [Huo, X., et al., 2011] and 

HCT-116 [Smith, A.F., et al., 2012]. So, in our model, DCA is inducing DNA damage, 

at least in part, by ROS production.  
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Figure 4 – Effects of DCA (500 µM) on the production of ROS. Results are expressed as mean ± SEM of 

at least 3 independent experiments. ROS production was measured by DCFH oxidative stress assay and 

tert-butyl hydroperoxide (200 µM) was used as postive control. *P≤ 0.05 when compared with control was 

determined by one-way ANOVA followed by Newman-Keuls multiple comparison test. 

 

 Increased DNA damage by bile acids may be due, in part, to the decrease in DNA 

repair enzymes. O6MeG, a highly mutagenic lesion, is corrected by the MGMT protein. 

If there is a problem with the MGMT protein, then the lesion will cause a mispair in the 

DNA and then the mismatch repair system (MMR) will recognize it and excise the 

mispair. MGMT and MLH1, a protein from MMR system, are commonly altered in colon 

carcinogenesis. So, the effect of the two bile acids on the protein expression of these two 

repair enzymes was assessed (Figure 5). We found a significant effect of DCA on MLH1 

expression at 48 h incubation, a slight decrease of MLH1 expression, while UDCA 

showed a tendency (26.13%) to decease the expression of this protein. There was a 

significant decrease of MGMT expression by both bile acids after 48 h incubation. It has 

been shown that bile acids can modulate the expression of some DNA repair enzyme, 

either directly or by oxidative stress [Payne, C.M., et al., 2008]. With our results, we 

found that deoxycholic acid decreases the expression of MGMT and MLH1 over time. 

The decrease of the expression of these proteins can be the source of deoxycholic acid 

cancer promotion effect, not causing DNA damage itself, but modulating the expression 

of a key enzyme in DNA repair, which are important for repair of highly mutagenic 

lesions, such as O6methylguanine [Nyskohus, L.S., et al., 2013]. We also found that 

UDCA decreases significantly MGMT expression.  
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Figure 5 – Effects of treatment with DCA and UDCA (500 µM) for 6, 24, and 48 h on MLH1 and MGMT 

protein expression in Caco-2 cells, using western blot. A representative blot is shown under the 

quantification. β-actin was used as loading control. Values are mean ± SEM of at least three independent 

experiments. *P ≤ 0.05 when compared to control was determined by one-way ANOVA followed by 

Newman-Keuls multiple comparison test. 

  

As bile acids can modulate signaling pathways involved in cell proliferation and 

apoptosis, we investigated the expression of some key players in the MAP kinase 

signaling pathway. We found no significant effects of DCA or UDCA on BRAF and 

KRAS expression (Figure 6). The expression of phospho-ERK and phospho-JNK was 

also evaluated and an increase of phospho-ERK at 6 and 24 h incubation was observed, 

while no effects were seen in phospho-JNK (Figure 8). It has been demonstrated that in 

HCT116, DCA activates phospho-ERK, but not phospho-JNK [Qiao, D., et al., 2001], 

while in a more recent study by Zeng, H. et al., in the same cell line, they found activation 

of phospho-ERK and phospho-JNK [Zeng, H., et al., 2010]. In the cell viability assay, we 

found no significant effects on increase or decrease of proliferation at 6 h incubation, but 

it seems that the MAPK/ERK pathway is activated. As KRAS is a membrane anchored 

protein and bile acids have been found to perturb the cell membrane [Jean-Louis, S., et 

al., 2006], there could be alterations in the membrane composition and this effects KRAS 

expression. This would possible decrease the activation of the MAPK/ERK pathway, 

opposite of the effects in this study. One hypothesis to explain our results is that DCA has 

been shown to activate PKC pathway, and this pathway can activate MAPK/ERK via 

BRAF, without KRAS involvement [Wu, J., et al., 2008]. Also, the effect of the bile acids 



Chapter 2                                                                            The effects of bile acids on colon carcinogenesis 

51 
 

on phospho-AKT was investigated and there was also an increase by the bile acids of the 

expression of this protein (Figure 7). So, although DCA induces cell death to some cells, 

as seen by the cell viability assay, it activates proliferation and cell survival in other cells, 

seen by induction of MAPK/ERK and PI3K/AKT signaling pathways, respectively.  

 

 

Figure 6 – Effects of treatment with DCA and UDCA (500 µM) for 6, 24, and 48 h on BRAF and KRAS 

protein expression in Caco-2 cells, using western blot. A representative blot is shown under the 

quantification. β-actin was used as loading control. Values are mean ± SEM of at least three independent 

experiments.  

 

In conclusion, our study showed that, in Caco-2 cells, DCA induces cell death at 

high concentrations. This cell death can be, in part, due to DNA damage and decrease of 

DNA repair. Also, although DCA induces cell death, it also induces cell growth and 

survival in the remaining cells by activation of the MAPK/ERK and PI3K/AKT signaling 

pathways. In our study, UDCA did not induce apoptosis or DNA damage in this cell line, 

but did decrease DNA repair enzymes. This decrease is a characteristic of carcinogenesis 

and not chemoprevention. Also, UDCA activated the same signaling pathways that DCA 

did, this suggesting increased proliferative potential. These effects are characteristic of 

carcinogenesis and not chemoprevention. High levels of DCA appear to induce rapid cell 

turnover in the colon and this can be beneficial for propagation of a mutator phenotype.  
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Figure 7 – Effects of treatment with DCA and UDCA (500 µM) for 6, 24, and 48 h on phospho-ERK, 

phospho-JNK and phospho-AKT protein expression in Caco-2 cells, using western blot. A representative 

blot is shown under the quantification. The total protein was used to normalize the values. Values are mean 

± SEM of at least three independent experiments. *P ≤ 0.05 when compared to control. 

 

2 – Effects of UDCA pretreatment on DCA induced alterations 

 

2.1 – Introduction 

  

Hydrophobic bile acids, such as deoxycholic acid (DCA), has been shown to be 

linked to colon carcinogenesis as a promotor and also as an inducer. But more hydrophilic 

bile acids, such as ursodeoxycholic acid (UDCA), are considered cytoprotective and is 

used in the treatment of some diseases [Barrasa, J.I., et al., 2013]. It is known that the 

cytoprotective effect of UDCA may be due to the reduction of the apoptotic threshold 

through the classical mitochondrial pathways. In HCT116 cell line, it has been found that 
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UDCA induces differentiation and senescence, inhibits DCA-induced activation of 

EGFR/Raf-1/ERK signaling pathway and suppresses the apoptosis induced by high 

concentrations of DCA [Amaral, J.D., et al., 2009; Barrasa, J.I., et al., 2013]. Also, 

UDCA can protect HCT116 cells against DCA-induced apoptosis by stimulating AKT 

pathway [Im, E., et al., 2005]. But, HCT116 has an activating mutation in the KRAS gene 

[Ahmed, D., et al., 2013], so these effects are tumor-related. Caco-2 cell line has no 

mutation in the EGFR/Raf-1/ERK nor the PI3K/AKT pathways.  

 In this study, we evaluated the pretreatment for 48 h of UDCA on cell death and 

activation of signaling pathways induced by DCA. We used Caco-2 cell line, which does 

not harbor KRAS or BRAF mutations, to give us some evidence on how UDCA affects 

DCA alterations in a “normal” colon cell.  

 

2.2 – Material and methods 

 

2.2.1 – Reagents and antibodies 

DCA, UDCA, Dulbecco’s modified Eagle medium (DMEM), 

penicillin/streptomycin, and trypsin solution were purchased from Sigma–Aldrich (St. 

Louis, MO, USA). Fetal bovine serum (FBS) was purchased from Biochrom KG (Berlin, 

Germany). The protein quantification DC protein assay was purchased from Bio-Rad 

Laboratories (Hercules, CA, USA). Primary antibodies were purchased from the 

following sources: anti-actin was purchased from Sigma–Aldrich; anti-JNK, anti-

phospho-JNK, anti-phosphoERK1/2, anti-K-Ras, anti-B-Raf, anti-MGMT, anti-MLH1 

Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA); and anti-p44/42 MAPK 

(ERK1/2), anti-phospho-Akt (ser473), and anti-Akt from Cell Signaling (Danvers, MA, 

USA. Peroxidase-conjugated goat anti-mouse antibody and Immobilon Western blotting 

detection reagents were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, 

USA) and Millipore (Billerica, MA, USA), respectively. All other reagents and chemicals 

used were of analytical grade. 

 

2.2.2 – Cell line and culture conditions 

Caco-2 cells, derived from human colon carcinoma, cells were maintained as 

monolayer cultures in DMEM supplemented with 10% FBS and antibiotics (100 U/mL 

penicillin and 100 mg/mL streptomycin), under an atmosphere of 5% CO2 at 37 ºC. Cells 

were seeded onto 6- (2 mL) well plates at a density of 0.1×106 cells/mL. Test compounds 



Chapter 2                                                                            The effects of bile acids on colon carcinogenesis 

 

54 

 

were added to culture medium to the desired concentration ensuring that the DMSO 

concentration did not exceed 0.5% (v/v); controls received vehicle only. 

 

2.2.3 – Nuclear condensation assay 

The effects of 48 h pretreatment with UDCA (500 µM) before incubation with 

DCA (500 µM) for 72 h on induction of apoptosis in Caco-2 cells was assessed by nuclear 

condensation assay. The number of apoptotic cells was counted as previously described 

[Xavier, C.P., et al., 2009]. At least 500 cells were counted and the number of apoptotic 

cells was divided by the total number cells counted to give the percentage of cell death. 

 

2.2.4 – Western blot analysis 

Cells were incubated with UDCA (500 µM) or medium for 48 h. Then, medium 

was removed and DCA (500 µM) was added for 6, 24 and 48 h. Total cell lysates were 

prepared to measure expression of different proteins. The cells were washed with PBS 1x 

and lysed for 5 min at 4 °C with ice-cold RIPA buffer (1% NP-40 in 150 mM NaCl, 50 

mM Tris (pH 7.5), 2 mM EDTA) supplemented with 20 mM NaF, 1 mM 

phenylmethylsulfonyl fluoride, 20 mM Na3VO4 and protease inhibitor cocktail (Roche, 

Mannheim, Germany). Protein concentration was quantified using the DC protein assay 

following the manufacturer’s instructions, and 20 µg/well was separated by 12% SDS–

PAGE and transferred to polyvinylidene difluoride membranes. Membranes were 

blocked and incubated with primary antibody overnight. After washing, membranes were 

incubated with secondary antibody conjugated with IgG horseradish peroxidase for 1 h, 

and immunoreactive bands were detected using the Immobilon solutions (Millipore, 

Billerica, MA, USA) under a chemiluminescence detection system (Chemi Doc XRS; 

Bio-Rad Laboratories, Inc.). 

Band area intensity was quantified using the Quantity One software from Bio-Rad. 

β-Actin was used as loading control. 

 

2.2.5 – Statistical analysis 

Statistical analyses were done using t-test, one-way or two-way analysis of 

variance using GraphPad Prism 4.0 software, when appropriate (San Diego, CA, USA). 

P values ≤0.05 were considered statistically significant. All results are presented as mean 

± SEM of at least three independent experiments. Images are representative of three 

independent experiments. 
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2.3 – Results and discussion 

 

UDCA has been shown to inhibit DCA-induced alterations in HCT116 cell line. 

We evaluated the effect of 48 h pretreatment with UDCA (500 µM) on DCA-induced cell 

death in Caco-2 cell line (Figure 8). DCA induced an increase of cell death at 72 h 

incubation. UDCA alone did not induce any kind of cell death, being comparable to the 

control group. When UDCA was given before DCA treatment, there was an increase, 

although not significant when compared with DCA alone, of cell death with the two bile 

acids, which is significant when compared with UDCA alone. In studies with HCT116 

cell line, it was found that UDCA decreased DCA-induced apoptosis in an AKT-

dependent manner [Im, E., et al., 2005; Im, E., et al., 2004]. The difference in the effects 

may be due to the genetic alterations present in the HCT116 cell line that are not present 

in the Caco-2 cell line. This could indicate that there are differences in the effects of 

UDCA in cells with genetic alterations and normal colonocytes. 

The same study showed that UDCA pretreatment reduced the expression of 

phospho-ERK when compared with DCA treatment alone [Im, E., et al., 2004]. The effect 

of pretreatment with UDCA before DCA on the expression of phospho-ERK, phospho-

JNK, and phospho-AKT was also evaluated (Figure 9). In our study, we found no effect 

of pretreatment with UDCA in phospho-ERK expression at 6 h incubation, but at 24 h 

incubation we found a significant decrease in expression. As Caco-2 cells grow slower 

than HCT116, this could account for differences between the time points of these two 

studies. We also evaluated the effect on phospho-JNK and phospho-AKT, to compare 

with our previous results and to understand the increase of apoptosis seen with 

pretreatment with UDCA. In our previous study, we found no effect of either bile acid on 

phosphor-JNK expression, but with pretreatment with UDCA before DCA incubation, we 

found an increase in this protein expression at all time points (Figure 9). Upon 

phosphorylation of JNK, this protein enters the nucleus where it activates c-Jun, and this 

activation leads to the formation of AP-1, which, in turn, regulates the expression of 

several proteins, some of them involved in pro-apoptotic signaling [Dhanasekaran, D.N., 

et al., 2008]. As we found an increase in in the number of apoptotic cells with 

pretreatment of UDCA, and we find an increase in phospho-JNK expression, we can 

speculate that possibly, in Caco-2 cells, UDCA treatment before DCA incubation induces 

an increase in apoptosis via JNK pathway and this activation is prolonged until at least 

48 h incubation. This indicates, with the addition of the previous results on the decrease 
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of DNA repair proteins, that in this cell line, UDCA does not have a chemopreventive 

effect. Further studies are needed to support this hypothesis.  

 

 

Figure 8 – The effects of 48 h pretreatment with UDCA (500 µM) before incubation with DCA (500 µM) 

for 72 h on induction of apoptosis in Caco-2 cells. Apoptosis was measured by the nuclear condensation 

assay. Results are expressed as mean ± SEM of at least 3 independent experiments. * P≤ 0.05 when 

compared with control and ## P≤ 0.01 when compared with UDCA alone, were determined by Student’s t-

test. 

 

 In our previous study, we observed an increase of phospho-AKT with both bile 

acid treatments at 6 h. In this study, we observed an increase of the same protein at 6 h 

with DCA alone and pretreatment with UDCA significantly increased when compared 

with DCA (Figure 9). The PI3K/AKT pathway regulates different metabolic pathways, 

but also inhibits apoptosis [Testa, J.R., et al., 2005]. In this case, the effects on JNK 

signaling may be stronger than the effects of AKT signaling, hence having an increase in 

apoptosis.  
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Figure 9 – Cells were incubated with UDCA (500 µM) or medium for 48 h. Then, medium was removed 

and DCA (500 µM) was added for 6, 24 and 48 h. Effects on phospho-ERK, phospho-JNK and phospho-

AKT protein expression in Caco-2 cells were evaluated using western blot. The total protein was used to 

normalize the values. Values are mean ± SEM of at least three independent experiments. *P≤ 0.05, ** P≤ 

0.01 and *** P≤ 0.001 were determined by one-way ANOVA followed by Newman-Keuls multiple 

comparison test. 

 

 We also evaluated the effects of UDCA pretreatment on BRAF, KRAS, MGMT, 

and MLH1 protein expression. No significant effects were found on BRAF and KRAS 

expression (Figure 10) when comparing with DCA treatment alone. With the DNA repair 

enzymes, there was a decrease of expression of both proteins with UDCA pretreatment 

when compared with DCA treatment alone (Figure 11). This could be due to a decrease 

in DNA damage associated to UDCA cytoprotective effects as seen in a study with male 

rats [Rodrigues, C.M., et al., 1998]. In our previous study, we found that DCA and UDCA 

alone decreased MLH1 and MGMT expression. This effect could be an accumulation of 

the effects with each bile acid alone. Studies on UDCA pretreatment on ROS production 



Chapter 2                                                                            The effects of bile acids on colon carcinogenesis 

 

58 

 

and DNA damage would clarify this hypothesis. On the other hand, with the increase of 

apoptosis, the cell may be decreasing the production of these proteins, as it directs 

transcription to pro-apoptotic proteins. Further studies are needed to answer these 

questions. 

 

 

Figure 10 – Cells were incubated with UDCA (500 µM) or medium for 48 h. Then, medium was removed 

and DCA (500 µM) was added for 6, 24 and 48 h. Effects on KRAS and BRAF protein expression in Caco-

2 cells were evaluated using western blot. The total protein was used to normalize the values. Values are 

mean ± SEM of at least three independent experiments. 

 

 

Figure 11 – Cells were incubated with UDCA (500 µM) or medium for 48 h. Then, medium was removed 

and DCA (500 µM) was added for 6, 24 and 48 h. Effects on MGMT and MLH1 protein expression in 

Caco-2 cells were evaluated using western blot. The total protein was used to normalize the values. Values 

are mean ± SEM of at least three independent experiments. *P≤ 0.05, ** P≤ 0.01 and *** P≤ 0.001 were 

determined by one-way ANOVA followed by Newman-Keuls multiple comparison test. 
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 In conclusion, in Caco-2 cell line, UDCA enhances apoptosis when given before 

DCA treatment. This increase is accompanied by a prolonged increase in JNK 

phosphorylation. These results contradict some studies that were done in HCT116 cell 

line, but perhaps the genetic background of the two cell lines may account for the 

discrepancy. We found a decrease in phospho-ERK expression, which is in accordance 

with the HCT116 cell line study. UDCA pretreatment also induced a decrease in MGMT 

and MLH1 DNA repair proteins, which needs further studies to explain this effect. UDCA 

has shown potential cytoprotective effects in many studies, but in this study, UDCA 

showed characteristics of promoting potential.  
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1 – In vitro azoxymethane model for colon carcinogenesis 

 

1.1 – Introduction 

  

Colon cancer is one of the most common types of cancer in humans, so there is a 

need to improve colon cancer research and find ways to diagnose, prevent, and treat the 

disease. But the use of animal models always has its drawbacks, especially when it is used 

to evaluate potential dietary chemopreventive compounds. In chemoprevention and 

mechanistic studies, in addition to animal models, there has to be a complete cell culture 

study to screen for the compound or compounds that have higher potential for the effect 

that is desired. But, as cell culture is great for large scale screening of compounds, very 

often the effects do not hold up when used in animal models. In animal models, the 

compounds 1,2-dimethylhydrazine (DMH) and its derivative, azoxymethane (AOM), are 

the two most commonly used colon cancer chemical inducers. This model shares many 

similarities with sporadic colon cancer and is widely used to evaluate chemopreventive 

compounds [Suman, S., et al., 2012].  

 In the animal model, AOM is metabolized in the liver by CYP2E1 enzyme to 

methylazoxymethanol (MAM). This compound then circulates in the blood stream and 

reaches the colon where it is metabolized to the ultimate carcinogenic metabolite, the 

methyldiazonium ion. This metabolite is highly reactive and induces DNA damage in the 

cells, mainly O6-methylguanine (O6meG), giving rise to mutations in colon cells. O6-

methylguanine methyltransferase (MGMT) is the key enzyme for DNA repair and 

apoptotic removal in this model. O6meG is rapidly formed within 2 h of AOM 

administration in the rat colon. MGMT quickly repairs the lesion, being possible to see a 

quick depletion of the expression of this protein in a dose and time dependent manner. 

Apoptosis is only triggered when MGMT is no longer able to correct the lesion. But when 

even apoptotic removal is insufficient, O6meG quickly transforms in mispairs, leading to 

point mutations [Nyskohus, L.S., et al., 2013]. It has been shown that genes that are 

mutated in sporadic cases of colon carcinogenesis are also found mutated in the AOM-

induced colon carcinogenesis model. Some of these mutations alter key pathways 

involved in cell proliferation and apoptosis. These pathways include the WNT and MAPK 

pathways. APC is a protein involved in the WNT signaling pathway and it is involved in 

the regulation of free β-catenin. APC mutation is believed to be one of the first alterations 
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in colon carcinogenesis. With the AOM model, Apc mutations are rare (around 33% of 

tumors have this alteration), but a β-catenin mutation that has the same effect as the APC 

mutation in humans is induced in around 80% of AOM-induced tumors [Perse, M., et al., 

2011; Takahashi, M., et al., 2004]. Another mutation that is found in the AOM animal 

model is the Kras mutation. In this model, mutations in the Kras gene are point mutations 

most commonly observed in codon 12, promoting a G to A transition, which 

constitutively activates the MAPK signaling pathway. Kras mutations seem to be as 

frequent in the AOM model as in human carcinogenesis. This alteration has been 

observed more frequently, in humans and in the AOM model, in hyperplastic lesions, so 

it seems that this mutation is involved in early events of carcinogenesis [Perse, M., et al., 

2011; Takahashi, M., et al., 2004].  

 Animal models have been useful to explore the different features of colon 

carcinogenesis. But there are limitations in the use of animal models. Different models 

can give different results in the study of the effects of the same compound in colon 

carcinogenesis. So, in this study, we initiated a possible development of an in vitro model 

with the characteristics of the AOM-induced animal model for effective screening 

processes. We used the Caco-2 cell line, a colon cancer cell line with no alterations in the 

MAPK and WNT signaling pathways. Using AOM, we characterized the alterations 

induced by the carcinogen in our in vitro model and compared them to the AOM in vivo 

model, to ensure that the same modifications were being induced. 

  

1.2 – Material and methods 

 

1.2.1 – Reagents and antibodies 

N-Methyl-N-nitrosourea (MNU), O6-benzylguanine (BG), thiazolyl blue 

tetrazolium bromide (MTT), AOM, S9 liver fraction, Dulbecco’s modified Eagle medium 

(DMEM), penicillin/streptomycin, and trypsin solution were purchased from Sigma–

Aldrich (St. Louis, MO, USA). Fetal bovine serum (FBS) was purchased from Biochrom 

KG (Berlin, Germany). SYBR Gold (nucleic acid gel stain) was from Invitrogen 

Molecular Probes (Eugene, OR, USA). The protein quantification DC protein assay was 

purchased from Bio-Rad Laboratories (Hercules, CA, USA). Primary antibodies were 

purchased from the following sources: anti-actin was purchased from Sigma–Aldrich; 

anti-JNK, anti-phospho-JNK, anti-phosphoERK1/2, anti-K-Ras, anti-B-Raf, anti-MGMT, 

anti-MLH1, anti-β-catenin, and anti-histone H1 from Santa Cruz Biotechnology, Inc. 
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(Santa Cruz, CA, USA); and anti-p44/42 MAPK (ERK1/2), anti-phospho-Akt (ser473), 

and anti-Akt from Cell Signaling (Danvers, MA, USA. Peroxidase-conjugated goat anti-

mouse antibody and Immobilon Western blotting detection reagents were purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA, USA) and Millipore (Billerica, MA, USA), 

respectively. All other reagents and chemicals used were of analytical grade. 

 

1.2.2 – Cell line and culture conditions 

Caco-2 cells, derived from human colon carcinoma, cells were maintained as 

monolayer cultures in DMEM supplemented with 10% FBS and antibiotics (100 U/mL 

penicillin and 100 mg/mL streptomycin), under an atmosphere of 5% CO2 at 37 ºC. Cells 

were seeded onto 6- (2 mL) or 12- (1 mL) well plates at a density of 0.1×106 cells/mL. 

Test compounds were added to culture medium to the desired concentration ensuring that 

the DMSO concentration did not exceed 0.5% (v/v); controls received vehicle only. 

To enhance the enzymatic biotransformation of AOM, a mixture of S9 from 

human liver and an exogenous NADPH-regenerating system was added to the medium at 

the same time of the procarcinogen (0.5% v/v S9 liver fraction, 1 mM NADP+, 5 mM 

glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase, and 3.3 mM 

magnesium chloride).  

 

1.2.3 – Assessment of cell viability/proliferation by MTT reduction test 

A MTT reduction assay was performed in order to evaluate the toxicity/increase 

proliferation of AOM in this colon cancer cell line. Cells were treated with different 

concentrations of AOM for 6, 24, 48 and 72 h, including 2 h incubation with MTT (final 

concentration 0.5 mg/mL). The formazan crystals were then dissolved in a solution of 

DMSO/ethanol (1:1). The number of viable cells in each well was estimated by the cell 

capacity to reduce MTT. The results were expressed as percentage relative to the control 

(cells without any test compound). 

 

1.2.4 – Nuclear condensation assay 

The effects of AOM (15 µM) treatment, with and without S9 liver fraction mixture, 

on induction of apoptosis in Caco-2 cells was assessed by nuclear condensation assay. 

The number of apoptotic cells was counted after 48 and 72 h as previously described 

[Xavier, C.P., et al., 2009]. Staurosporin (STS) at 0.5 µM was used as positive control. At 
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least 500 cells were counted and the number of apoptotic cells was divided by the total 

number cells counted to give the percentage of cell death.  

 

1.2.5 – Genotoxicity assay 

 The alkaline version of the single cell gel electrophoresis (comet) assay was used 

to evaluate DNA damage [Collins, A.R., 2004]. Caco-2 cells were incubated for different 

time points (1, 2, 4, and 6 h) at 37 ºC with AOM (5 and 15 µM), with and without S9 liver 

fraction mixture. Cells were collected by trypsinization and around 50,000 cells were 

centrifuged for 1 min at 5,000 rpm, ressuspended in low melting point agarose and spread 

onto agarose-coated slide using a cover slip. After 10 min at 4 ºC, the coverslips were 

removed and slides were placed in lysis solution (2.5 M NaCl, 100 mM Na2EDTA, 10 

mM Tris base, pH 10, plus 1% Triton X-100) for 1 h at 4 ºC. Slides were then placed in 

a horizontal electrophoresis chamber with electrophoresis solution (0.3 M NaOH, 1 mM 

Na2EDTA, pH > 13) for 40 min at 4 ºC for the DNA to unwind before electrophoresis for 

20 min at 0.8 V/cm and ∼300 mA. After electrophoresis, slides were washed twice with 

PBS and dried at room temperature (RT). For analysis of the comet images, slides were 

stained with SYBR Gold solution for 30 min at 4 ºC; after drying, the slides were analyzed 

using a fluorescence microscope and the Comet IV analysis system (Perceptive 

Instruments Ltd, Haverhill, UK) was used to calculate the parameter percentage of DNA 

in the tail. About 100 randomly selected cells were analyzed per sample. 

 

 1.2.6 – CoMeth assay 

The adapted version of the comet assay (CoMeth) was used to measure the 

potential of AOM to induce specifically the O6-methylguanine (O6meG) lesion [Ramos, 

A.A., et al., 2013]. Briefly, cells were pretreated with or without BG, 100 µM, for 2 h 

before treatment for 1, 24, 48 or 72 h of AOM (15 µM), with or without S9 liver fraction 

mixture, or MNU (used as positive control). Afterwards, the comet assay was continued 

as referred previously.  

 

1.2.7 – DCFH oxidative stress assay 

The capacity of DCA to induce reactive oxygen species was evaluated using the 

dichlorofluorescin (DCFH) oxidative stress assay. Briefly, culture medium was removed 

and cells were washed with PBS. Afterwards, cells were incubated with 2′,7′-

Dichlorofluorescein diacetate (DCF-DA) (100 µM) or DMSO (vehicle) for 30 min at 37 
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ºC. This solution was removed and cells were washed with PBS. Cells were then 

incubated with AOM (15 µM), with and without S9 liver fraction mixture, or tert-butyl 

hydroperoxide (200 µM), diluted in serum-free medium, for 30 min at 37 ºC. The 

compounds were removed and cells were lysed with a solution of 90% DMSO/10% PBS 

for 10 min at RT in the dark. Fluorescence was read at 520 nm upon excitation at 485 nm.  

 

1.2.8 – Western blot analysis 

Cells were incubated with AOM (15 µM) for 6, 24 and 48 h, with and without S9 

liver fraction mixture. For the pretreatment with the bile acids, bile acid treatment was 

done for 6 h prior to a 24 h incubation with AOM, with and without S9 liver fraction 

mixture. Total cell lysates were prepared to measure expression of different proteins. The 

cells were washed with PBS 1x and lysed for 5 min at 4 °C with ice-cold RIPA buffer 

(1% NP-40 in 150 mM NaCl, 50 mM Tris (pH 7.5), 2 mM EDTA) supplemented with 20 

mM NaF, 1 mM phenylmethylsulfonyl fluoride, 20 mM Na3VO4 and protease inhibitor 

cocktail (Roche, Mannheim, Germany). Protein concentration was quantified using the 

DC protein assay following the manufacturer’s instructions, and 20 µg/well was separated 

by 12% SDS–PAGE and transferred to polyvinylidene difluoride membranes. 

Membranes were blocked and incubated with primary antibody overnight. After washing, 

membranes were incubated with secondary antibody conjugated with IgG horseradish 

peroxidase for 1 h, and immunoreactive bands were detected using the Immobilon 

solutions (Millipore, Billerica, MA, USA) under a chemiluminescence detection system 

(Chemi Doc XRS; Bio-Rad Laboratories, Inc.). 

Band area intensity was quantified using the Quantity One software from Bio-

Rad. β-Actin was used as loading control. 

 

1.2.9 – Statistical analysis 

Statistical analyses were done using t-test, one-way or two-way analysis of 

variance using GraphPad Prism 4.0 software, when appropriate (San Diego, CA, USA). 

P values ≤0.05 were considered statistically significant. All results are presented as mean 

± SEM of at least three independent experiments. Images are representative of three 

independent experiments. 
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1.3 – Results and discussion 

 

 In this study, we searched for an in vitro model of the AOM-induced 

carcinogenesis, for easier screening purposes of chemopreventive compounds. To our 

knowledge, very few studies have used azoxymethane in in vitro models. IEC-6 intestinal 

cells are from rat small intestine epithelium and have been used in in vitro studies with 

AOM [Sasaki, T., et al., 2005; Sasaki, T., et al., 2006]. The authors used these cells to 

evaluate the potential of deoxycholic acid and linoleic acid to promote or inhibit AOM-

induced carcinogenic transformation, respectively. In these two studies, the authors found 

that, in both cases, the compounds inhibit IEC-6 transformation. For the effects of AOM, 

the authors used a 40-week incubation period, but then did not characterize fully the effect 

of the carcinogenic transformation and compare it to the in vivo model, specifically the 

signaling pathways that could be altered and induce this transformation. 

 Contrarily to the studies mentioned above, in this study, a human colon cancer 

cell line was used, Caco-2 cells, and the characterization of the effects of AOM in this 

cell line was assessed. The time points used were up to 72 h, and not 40 weeks as in the 

study by Sasaki, T., et al., to see if there are immediate effects of AOM in the cell line, 

as it has been shown that O6meG is rapidly formed within 2 h of AOM administration in 

the rat colon. The effect on cell proliferation was evaluated by the MTT assay (Figure 1). 

No differences were found with the different concentrations (from 0.05 to 5 µM) of the 

carcinogen at any of our time points (6, 24, 48 and 72 h). It is known that AOM has to be 

metabolized to methylazoxymethanol, and this is done through the CYP2E1 enzyme. It 

has been shown that Caco-2 cells express this enzyme and the enzyme is active [Lampen, 

A., et al., 1998], but, as in studies in cell lines that do not have active metabolizing 

enzymes, we used a liver S9 fraction to enhance the metabolization of AOM. Using 5 and 

15 µM of AOM for 24 and 48 h incubations, we detected a significant increase of 

proliferation with 15 µM of AOM at 48 h, with S9 mixture (Figure 2). So with this result 

it seems that the S9 liver fraction enhanced AOM metabolization and alterations occurred 

that increased slightly cell proliferation. This increase of proliferation could suggest an 

alteration in signaling pathways that regulate this process. 
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Figure 1 – The effect of different concentrations (0.05, 0.1, 0.5, 1 and 5 µM) of AOM on cell viability at 

6, 24, 48 and 72 h, in Caco-2 cells. Cell viability was measured by the MTT assay and results are the mean 

± SEM of at least 3 independent experiments. 

 

We found no significant decrease in proliferation, but to evaluate if the 

concentration of AOM used would be too cytotoxic, we evaluated the induction of cell 

death through nuclear condensation assay. AOM, at 15 µM, did not induce cell death in 

any of the conditions tested, when compared with respective control group (Figure 3). So, 

this far in the characterization of our model, AOM induces a slight, but significant, 

increase in cell proliferation after 48 h incubation and does not induce cell death in Caco-

2 cells. 
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Figure 2 – The effect of different 5 and 15 µM of AOM on cell viability at 24 and 48 h, in Caco-2 cells. 

Control experiment was done in normal medium while S9 experiment was done adding the mixture of S9 

liver fraction. Cell viability was measured by the MTT assay and results are the mean ± SEM of at least 3 

independent experiments. *P≤ 0.05, when compared with respective control was determined by one-way 

ANOVA followed by Newman-Keuls multiple comparison test. 

 

DNA damage is an important and initiating step in colon carcinogenesis and is a 

significant consequence of the production of reactive oxygen species (ROS) [Ramos, 

A.A., et al., 2011]. The metabolism of procarcinogens can induce production of ROS, 

and these, in turn, induce damage in cellular molecules, such as DNA. The potential of 

AOM metabolism to induce ROS and DNA damage was evaluated by the DCFH 

oxidative stress assay and comet assay, respectively. ROS formation was measured after 

30 min of incubation with AOM, although no effects were found on the production of 

ROS (Figure 4). A preliminary teste at 1 h incubation was also done to evaluate the 

necessity of a longer time point, but no effects were seen in these conditions as well (data 

not shown). 
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Figure 3 – Effects of 15 µM of AOM, with and without S9 liver fraction mixture, on apoptosis induction 

in Caco-2 cells. Apoptosis was measured by the nuclear condensation assay after 48 and 72 h incubation 

with the compound. Staurosporin (STS) at 0.5 µM was used as a positive control. Results are expressed as 

mean ± SEM of at least 3 independent experiments. ** P≤ 0.01, when compared with respective control, 

was determined by two-way ANOVA followed by Bonferroni post-tests. 

 

As we found no ROS production with AOM tretament, we further evaluated the 

effect of AOM to induce DNA damage (Figure 5). We found no induction of DNA 

damage induced by AOM in any of the conditions tested. Not many studies have shown 

AOM-induced DNA damage. In the study with the IEC-6 cell line, they found increased 

DNA damage with AOM treatment alone, but not in cells treated with AOM and DCA 

[Sasaki, T., et al., 2005]. In a study where the effect of beer drinking on colon 

carcinogenesis, they found an increase of DNA damage induced by AOM in isolated 

colonocytes, and this DNA damage was reduced with beer consumption [Nozawa, H., et 

al., 2004]. In the first study, AOM was given during 40 weeks, while in the second study 

16 h before animal sacrifice, the lack of results in our study could be due to a time issue, 

as we used short time periods (1, 2, 4 and 6 h). Studies with longer exposure times would 

help clarify this discrepancy.  
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Figure 4 – Effects of 30 min incubation of AOM (15 µM), with and without S9 liver fraction mixture, on 

the production of ROS. Results are expressed as mean ± SEM of at least 3 independent experiments. ROS 

production was measured by DCFH oxidative stress assay and tert-butyl hydroperoxide (200 µM) was used 

as postive control. *P≤ 0.05 when compared with control was determined by student’s t-test. 

 

It is known that AOM cause DNA adducts that lead to induction of O6meG [Fiala, 

E., 1975; Papanikolaou, A., et al., 1998], and as the standard comet assay gives 

information on strand break type damage, we used our new adaptation of the comet assay 

(CoMeth) to assess the induction of this type of lesion (Figure 6). With this assay, we 

found no induction of O6MeG with AOM with the tested conditions. The assay was 

functional as we found induction of this type of lesion with our positive control. So far in 

this study, it seems that, although we were able to induce a slight increase of proliferation 

with AOM, the other characteristics of the in vivo model have not been fulfilled. 

The O6MeG lesion gives rise to point mutations in key regulatory genes. It has 

been demonstrated that the most common genes altered by point mutations in the AOM-

induced in vivo models are Kras and β-catenin [Perse, M., et al., 2011]. With this in mind, 

and the fact that a slight increase in proliferation was found, the effect of AOM on the 

MAPK and WNT signaling was evaluated. No effects were found on KRAS and BRAF 

protein expression with any of the treatments (Figure 7). But, the downstream protein 

phospho-ERK was found slightly increased, although the values are not statistically 

significant with AOM treatment and S9 liver fraction mixture (Figure 8). This effect was 

found at 6 and 24 h incubation. So, it seems that the MAPK/ERK pathway is slightly 

activated, and could explain the slight increase in proliferation, although the activation is 

from 6 to 24 h incubation and the increase of proliferation is seen at 48 h incubation.  
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Figure 5 – Effects of AOM on DNA damage induction in Caco-2 cells using the comet assay. Cells were 

treated with 5 or 15 µM of AOM for 1, 2, 4, or 6 h of AOM, with and without S9 liver fraction mixture. 

Results are expressed as mean ± SEM of at least 3 independent experiments.  
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Figure 6 – Effects of AOM on O6-MeG-type DNA damage induction in Caco-2 cells using the adapted 

version of the comet assay. Cells were pretreated with or without BG, 100 µM, for 2 h before treatment for 

1, 24, 48 or 72 h of AOM, with and without S9 liver fraction mixture. MNU was used as a positive control. 

Results are expressed as mean ± SEM of at least 3 independent experiments. *P≤ 0.05 when compared with 

respective control was determined by one-way ANOVA followed by Newman-Keuls multiple comparison 

test. 

 

As the O6MeG lesion is corrected by the protein methylguanine methyltransferase 

(MGMT), or, if not repaired by this system, is corrected by the mismatch repair system, 

the expression of MGMT protein and MLH1 (intervenient in the mismatch repair system) 

was also evaluated. MLH1 expression was not significantly altered with the various 

treatments (Figure 9). On the other hand, AOM treatment with S9 mixture showed a 

tendency to increase MGMT expression at 24 h incubation. As MGMT is a suicide protein, 

it could be hypothesized that AOM induced O6MeG lesion, but most of the cells had the 

capacity to correct this lesion. Although we did not find evidence of AOM inducing 
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O6meG with our comet assay, it does seem that AOM induces a response that increases 

MGMT expression.  

   

 

Figure 7 – Effects of treatment with AOM (15 µM) for 6, 24, and 48 h on BRAF and KRAS protein 

expression in Caco-2 cells, using western blot. A representative blot is shown under the quantification. β-

actin was used as loading control. Values are mean ± SEM of at least three independent experiments. 

 

Deoxycholic acid, a secondary bile acid, is considered a promoter of colon 

carcinogenesis [Flynn, C., et al., 2007], while ursodeoxycholic acid is believed to be 

preventive of carcinogenesis. In the previous chapter, we showed the effects of DCA and 

UDCA on the expression of several proteins involved in DNA repair and cell signaling. 

With this in mind, we further investigated the possible effect of pretreatment with the bile 

acids on AOM effects on phospho-JNK, MLH1 and BRAF expression (Figure 10). We 

found no differences of expression with neither DCA nor UDCA on these proteins, 

although there is a slight decrease of BRAF and phospho-JNK expression with the bile 

acids and a slight increase of MLH1 expression. This slight increase in MLH1 was also 

seen with 6 h incubation of the bile acids alone (chapter 2).  
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Figure 8 – Effects of treatment with AOM (15 µM) for 6, 24, and 48 h on phospho-ERK and phospho-JNK 

protein expression in Caco-2 cells, using western blot. A representative blot is shown under the 

quantification. The total protein was used to normalize the values. Values are mean ± SEM of at least three 

independent experiments. *P ≤ 0.05 when compared to control was determined by student’s t-test.  

 

Another pathway that can be altered in in vivo AOM-induced tumorgenesis is the 

WNT pathway [Perse, M., et al., 2011]. The mutation in the Apc or β-catenin gene disrupt 

the regulation of β-catenin and this protein accumulates in the nucleus and acts as a 

transcription factor, regulating cellular processes, such as proliferation [White, B.D., et 

al., 2012]. We analyzed the expression of nuclear β-catenin with AOM treatment (Figure 

11). No increase in nuclear β-catenin was seen in Caco-2 cells with 24 h incubation of 

AOM. As β-catenin mutations usually appear in lesions with dysplastic features 

[Takahashi, M., et al., 2004], the time point of the assay is probably not sufficient to see 

alterations in the WNT pathway.  
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Figure 9 – Effects of treatment with AOM (15 µM) for 6, 24, and 48 h on MLH1 and MGMT protein 

expression in Caco-2 cells, using western blot. A representative blot is shown under the quantification. The 

total protein was used to normalize the values. Values are mean ± SEM of at least three independent 

experiments.  

 

In conclusion, with this in vitro model, we were able to induce an increase in 

proliferation, which is typical of carcinogenic cells. We found no effects on induction of 

DNA damage by AOM. Different AOM incubation times should be tested. We found a 

slight increase in phospho-ERK expression although not statistically significant. This 

slight increase can give us some information that this signaling pathway is being altered, 

but more studies need to be performed. No effects were seen with β-catenin nuclear 

translocation, but the time point could be too soon. With these preliminary results, it 

appears that our model can be inducing some genetic alterations that could be comparable 

with the alterations seen in the in vivo model, but further work is needed to improve and 

validate this model. 
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Figure10 – Effects of pretreatment with DCA or UDCA for 6 h prior to AOM (15 µM) treatment for 24 on 

BRAF, MLH1, and pJNK protein expression in Caco-2 cells, using western blot. The total protein was used 

to normalize the values. Values are mean ± SEM of at least three independent experiments. 
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Figure 11 – Effects of treatment with AOM (15 µM) for 24 h on nuclear β-catenin expression in Caco-2 

cells, using western blot. A representative blot is shown under the quantification. The total protein was used 

to normalize the values. Values are mean ± SEM of at least three independent experiments. 
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1 – Colon cancer chemoprevention by sage tea drinking: decreased 

DNA damage and cell proliferation 

 

1.1 – Introduction 

 

Colorectal cancer (CRC) is one of the most common cancers worldwide and one 

of the leading causes of death by cancer in developed countries. Diet, in particular high 

fat foods, has been found to be an important risk factor in the development of this 

malignancy [Padidar, S., et al., 2012; Tang, F.-Y., et al., 2012]. A diet rich in fruits and 

vegetables has been shown, on the other hand, to have preventive effects on colon cancer 

[Pan, M.H., et al., 2011]. In agreement with this, a variety of natural occurring plant 

compounds, such as phenolic acids, flavonoids, and carotenoids, have been found to 

prevent aberrant crypt foci formation, the precursor lesions of colon cancer [Mori, H., et 

al., 2004; Pan, M.H., et al., 2011]. Salvia officinalis (sage) is a native plant to southern 

Europe commonly used as a tea and condiment in Mediterranean countries that also has 

been attributed medicinal properties, antiseptic, anti-inflammatory and 

antihyperglycemic activities, due to the high content of biologically active compounds 

[Miura, K., et al., 2002; Topcu, G., 2006]. The water extract of Salvia officinalis, used in 

the present study, contained rosmarinic acid and luteolin-7-glucoside, which are the major 

phenolic compounds of the species, while 1,8-cineole, cis-thujone, trans-thujone, 

camphor and borneol are the major volatile compounds [Lima, C.F., et al., 2005]. 

Previous studies have shown antioxidant properties of Salvia officinalis (SO) extracts 

[Lima, C.F., et al., 2005; Lima, C.F., et al., 2006] and a recent study has shown 

chemopreventive effects of this extract in vitro by protection against oxidative DNA 

damage and stimulation of DNA repair [Ramos, A.A., et al., 2010a]. Also, a study from 

our lab has shown that SO inhibited cell proliferation in HCT15, a colon cancer-derived 

cell line [Xavier, C.P., et al., 2009]. 

Genomic instability is a common characteristic of cancer cells. A combination of 

induction of DNA damage, defective DNA repair systems, and failure to stop the cell 

cycle to correct DNA before it is passed on to the next generation of cells may be 

contributing factors [Lord, C.J., et al., 2012]. DNA damage is constantly being inflicted 

to cells and, when the repair capacity is overwhelmed, it becomes the underlying cause 

of mutations. Critically, mutations may occur in key genes that control apoptosis and cell 
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proliferation, giving these cells growth advantage, eventually leading to cancer 

[Peltomaki, P., 2001]. The formation of aberrant crypt foci (ACF) is the reflex of 

increased cell proliferation which may result from DNA damage and occurrence of 

mutations in the colon mucosa. Many studies use induced ACF in rodents to study the 

chemopreventive or carcinogenic potential of natural or synthetic compounds [Johnson, 

R.L., et al., 2013]. 

In the present study, we evaluated the potential effect of SO water extract (sage 

tea) as a chemopreventive agent against the initiation and/or promotion of colon cancer 

in vivo. The preventive mechanisms were further characterized at the level of drug 

metabolism, proliferative and inflammatory markers, as well as at the level of colonocyte 

DNA protection. It was also of our interest to study DNA protection of lymphocytes. 

These cells are more accessible than colonocytes and the possibility of their use as 

surrogate markers of effects at the colonocyte level is evaluated. 

 

1.2 – Material and methods 

 

1.2.1 – Animals 

Female Fischer 344 rats, 3 weeks-old, were obtained from Charles River 

Laboratories and kept in quarantine during 1 week. Throughout the whole experiment, 

the animals had free access to food, an AIN76-based rat chow, and water or S. officinalis 

water extract (13.3 g/l). SO water extract was routinely prepared as an infusion by pouring 

450 mL of boiling water onto 6 g of the dried plant material and allowing to steep for 5 

min [Lima, C.F., et al., 2005]. The composition of the extract has been published 

elsewhere [Lima, C.F., et al., 2005], and the major phenolic compounds are rosmarinic 

acid and luteolin-7-glucoside (Table 1). Animals were weighed once a week during the 

whole experiment and food and water/sage tea consumption was registered 3 times a week. 

The experiments were carried out according to the regulations of national authorities for 

handling laboratory animals (Veterinary General Directive Board, Ministry of 

Agriculture, Rural Development and Fishing) and European Community Council 

Directive 86/609/EEC. 
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Table 1 – Main compounds found in SO water extract [Lima, C.F., et al., 2005]. 

Component μg/mL 

Water  

Phenolic acids  

 Rosmarinic acid 362.0 

Flavonoids  

 Luteolin-7-glucoside 115.3 

 Other luteolin glycosides (3) 48.5 

Volatile components 4.8 

 1,8-cineole 0.9 

 cis-thujone  1.7 

 trans-thujone  0.3 

 Camphor 0.5 

 Borneol 0.7 

 Other (20) 0.7 

Unknown 2972.0 

 

1.2.2 – Experimental design 

Rats were divided into 6 groups (Figure 1A). Groups 2 (Sage (pre)) and 4 (Sage 

+ AOM) had access to SO water extract instead of water (Groups 1 and 3) during the first 

two weeks. These two groups were used to evaluate the effects of sage water extract on 

initiating steps of the carcinogenic process. Groups 5 (Sage (post)) and 6 (AOM + Sage) 

had access to sage water extract during the last four weeks of the experiment. These two 

groups were used to investigate the potential of this extract to affect post-initiating steps 

of CRC progression. At the second and third week, groups 3 (Water + AOM), 4, and 6 

received a s.c. injection of AOM (15 mg/kg) in saline (0.9%). The other three groups 

received an injection of the vehicle. Seven weeks later, the animals were sacrificed and 

the colons removed for ACF and immunohistochemistry. 

For colonocyte and lymphocyte isolation, as well as for assessment of liver 

parameters, four additional groups of rats (Figure 1B) were sacrificed a day after AOM 

injection. For lymphocyte isolation, blood from all animals was collected in 5% EDTA 

and followed to the isolation protocol. The colon was also removed and washed in HBSS 

buffer (NaCl, 8.0 g/L; KCl, 0.4 g/L; Na2HPO4.12H2O, 0.12 g/L; KH2PO4.3H2O, 0.078 

g/L; NaHCO3, 0.35 g/L; HEPES, 4.8 g/L) for colonocyte isolation. 
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Figure 1 – Experimental plan 1 (A). G1 – Water, G2 – Sage (pre), G3 – Water + AOM, G4 – Sage + AOM, 

G5 – Sage (post), G6 – AOM + Sage. Experimental plan 2 (B). G1 - Water, G2 - Sage, G3 - Water + AOM, 

G4 - Sage + AOM All rats were kept in quarantine for one week. AOM injections were given to groups 3, 

4, and 6 at weeks two and three. Saline injections were given to the other three groups. At the end of the 

seventh week, all animals were sacrificed by decapitation. 

 

1.2.3 – Identification and quantification of ACF  

The colons were washed with ice cold phosphate buffered saline (PBS), cut open 

longitudinally, fixed in 3% (w/v) paraformaldehyde for 24 hours and then stored in 

ethanol.  

For ACF identification and quantification, colons were stained with 0.05% (w/v) 

methylene blue in PBS for 5 minutes. ACF number and multiplicity (number of aberrant 

crypts in each ACF) were scored blindly using a light microscope.  

 

1.2.4 – Immunohistochemical analysis of ACF 

Four µm sections were cut, deparaffinised and rehydrated. Antigen retrieval was 

performed using 10 mM citrate buffer solution, pH 6.0 at 98 ºC for 20 min and 

endogenous peroxidase inactivation was performed using 0.3% hydrogen peroxide for 10 

min. Sections were incubated with a protein blocking solution for 10 min and then 

incubated with primary antibody: Ki67 (1:100), Abcam, Cambridge, UK and β-catenin 

(1:100), Santa Cruz Biotechnology, Heidelberg, Germany. Next, the sections were 
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incubated with Streptavidine Peroxidase for 10 min followed by development with 3,3′-

diamino-benzidine (DAB + substrate System) during 10 min. Immunohistochemistry was 

performed using the Streptavidin-biotin peroxidase complex system (UltraVision Large 

Volume Detection System Anti-Polyvalent, Horseradish Peroxidase, Lab Vision 

Corporation, Fremont, CA, USA). Counterstaining was performed with hematoxylin and 

slides were permanently mounted. Ki67 positive-stained cells were expressed as 

percentage of positive cells per total number of epithelial cells per crypt.  

 

1.2.5 – Microsomal fraction preparation for CYP2E1 evaluation  

To measure the activity and expression of CYP2E1, liver microsomal fractions 

were isolated by differential centrifugation as previously described elsewhere [Barbier, 

O., et al., 2000]. Aliquots were frozen in liquid nitrogen and stored at -80 ºC until further 

use. 

 

1.2.6 – Evaluation of CYP2E1 activity 

The activity of CYP2E1 can be measured spectrophotometrically by following, at 

480 nm, the conversion of p-nitrophenol (PNP) to 4-nitrocatechol, as described by Allis 

et al., 1994 [Allis, J.W., et al., 1994].  

 

1.2.7 – CYP2E1 protein expression 

Protein concentration was quantified using with the Bradford Reagent purchased 

from Sigma using bovine serum albumin as a standard and 40 µg/well was separated by 

12% SDS–PAGE and transferred to polyvinylidene difluoride membranes. A rabbit 

polyclonal antibody against CYP2E1 (StressGen, Ann Arbor, MI, USA) protein (1:5,000) 

was used overnight at 4 ºC and secondary antibody incubation was done with anti-rabbit 

antibody conjugated with IgG horseradish peroxidase. A chemiluminescence detection 

system (Chemi Doc XRS, Bio-Rad Laboratories, Inc, Hercules, CA, USA) and band area 

intensity was quantified using the Quantity One software (Bio-Rad). 

 

1.2.8 – Glutathione-S-transferase (GST) activity 

Glutathione-S-transferase (GST) activity was measured in liver homogenates and 

was determined by following the formation of glutathione (GSH) conjugate at 340 nm 

with 1-chloro-2,4-dinitrobenzene (CDNB) as previously described by our group [Lima, 

C.F., et al., 2005].  
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1.2.9 – Colonocyte isolation 

The colons were removed and washed with HBSS buffer and then with ice-cold 

incubation solution (glucose, 1 g/L; DTT, 1 mM; glutamic acid, 2.4 mM, dissolved in 

HBSS buffer). The colons were then cut open longitudinally and placed in 10 mL of 

incubation solution, with 2 mg of proteinase K and 1.5 mg of collagenase, for 10 min at 

37 ºC, stirring slightly and gassed with carbogen (95% O2 and 5% CO2). The obtained 

cell suspension was filtered with 70 µm filters to separate the colonocytes. Next, 50 µL 

of 5.88% CaCl2 was added for each 5 mL of cell suspension, following a centrifugation 

at 200 g for 10 min at 4 ºC. The pellet was ressuspended in culture medium and cells were 

counted and used to measure DNA damage by the comet assay. 

 

1.2.10 – Lymphocyte isolation 

For lymphocyte isolation, the blood collected in EDTA solution was diluted in an 

equal volume of PBS buffer. This volume was added to a tube containing Ficoll, also in 

equal proportion, following a centrifugation at 1,800 rpm for 18 min, 18 ºC. The 

lymphocyte layer was removed and transferred to another tube where PBS was added and 

another centrifugation was done at 1,800 rpm for 10 min, 18 ºC. The pellet was 

ressuspended in medium and cells were counted and used to measure DNA damage by 

the comet assay.  

 

1.2.11 – Evaluation of DNA damage by comet assay and in vitro oxidative 

damage induction 

The alkaline version of the single cell gel electrophoresis (comet) assay was used 

to evaluate DNA damage [Collins, A.R., 2004]. Briefly, 50,000 cells were centrifuged for 

1 min at 5,000 rpm, ressuspended in low melting point agarose and spread onto agarose-

coated slide using a cover slip. To study protection against AOM-induced DNA damage 

in colonocytes and lymphocytes, the standard comet assay was used. To study protection 

against in vitro H2O2-induced DNA damage, colonocytes from sage or water drinking 

animals were used. After spreading these colonocytes on the slides, the slides were placed 

in different concentrations of H2O2 solution (25, 50, or 100 µM) or PBS (control), on ice 

for 5 min. After 5 min at 4 ºC, the cover slip was removed and the slides were placed in 

lysis buffer (NaCl, 2.5 M; Na2EDTA, 100 mM; Tris, 10 mM, pH 10) plus 1% Triton X-

100 for 1 h at 4 ºC. Then, the slides were left in electrophoresis buffer (NaOH, 300 mM; 

Na2EDTA, 1 mM, pH >13) for 40 min at 4 ºC. The electrophoresis was run for 20 min at 
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4 ºC, 21 V (0.8 V/cm) and 300 mA. After the electrophoresis, the slides were placed in 

neutralization buffer (Tris Base, 0.4 M, pH 7.4) for 15 min, washed with water and 

dehydrated with ethanol. To each slide, 20 µL of ethidium bromide was added and 100 

cells were counted under a fluorescent microscope and quantified by visual scoring and 

using Comet 4 image analysis system (Perceptive Instruments).  

 

1.2.12 – Statistical analysis 

Statistical significances were determined using Two-way ANOVA, followed by 

Bonferroni post-test for the effects of sage tea on protection against oxidative DNA 

damage, and Student’s t-test for all other data. Data was expressed as means ± SEM. p 

values ≤ 0.05 were considered statistically significant. 

 

1.3 – Results and discussion 

 

 Diet is an important factor in colon carcinogenesis. It has been shown that fat and 

red meat can promote tumorigenesis. However, diet can also have a beneficial effect on 

colon cancer [Ramos, A.A., et al., 2010b] and, in order to prevent this malignancy, dietary 

strategies to inhibit the formation or delay the progression of tumors are needed. In the 

present study, the chemopreventive potential of the water extract of sage, a plant with 

antioxidant properties [Lima, C.F., et al., 2005; Lima, C.F., et al., 2007b] and that has 

been shown to have in vitro ability to prevent DNA damage [Ramos, A.A., et al., 2010b], 

was studied against ACF formation in the AOM-induced colon carcinogenesis model. As 

our group has various studies demonstrating the in vitro potential of this extract, the 

objective in this study was to test whether the in vitro effects could also be present in vivo 

and correspond to a cancer preventive effect. We used the water extract and not an 

isolated compound of the extract to give emphasis a dietary strategies with whole 

compounds, of easy access, and to study the food, in this case a tea, as a complex mixture. 

Treatment with sage tea before exposure to the carcinogen (AOM injection) significantly 

decreased the number of ACF formed, indicating a chemopreventive effect of this extract 

on the initiation phase of the carcinogenic process in the colon (Figure 2A). The lack of 

effect of the extract when given after carcinogen injection (Figure 2A) and on crypt 

multiplicity (average number of aberrant crypts in each focus) (Figure 2B) indicates that 

after mutations set in, the herbal tea does not affect molecular mechanisms involved in 

promotional phases, at least not this early in the process. More studies with tumors would 
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be necessary to evaluate the potential of the herbal tea in advanced stages of 

carcinogenesis. Genetic animal models are now used to obtain important information on 

familial and sporadic colon carcinogenesis, but the AOM-induced model has been very 

useful in explaining the molecular mechanisms involved in sporadic CRC due to the 

similarities in the pathophysiology of the tumors with human colon tumors [Johnson, R.L., 

et al., 2013].  

 

 

Figure 13 – Effect of sage drinking in AOM-induced ACF formation and multiplicity. A – Average number 

of ACF found in the whole colon after methylene blue staining. B – Average number of aberrant crypt per 

foci (multiplicity) per crypt in the colon. The results are expressed as mean ± SEM for n=6. * P<0.05 when 

compared with water control. 

 

Effects of our herbal tea on initiation may reflect decreased AOM toxicity due to 

(1) decreased bioactivation through CYP2E1, (2) increased excretion through GST 

induction, (3) DNA damage protection, and/or (4) effects on cell proliferation. Beneficial 

effects of other plant foods have been found, for example, black tea and wine extracts, 

but not green tea, to protect against AOM-induced colon carcinogenesis in rats [Caderni, 

G., et al., 2000] and theaflavin-2, a major compound found in black tea extract was shown 

to induce apoptosis in human colon cell lines [Gosslau, A., et al., 2011]. In a study by 

Andersson et al., 2008 [Andersson, D., et al., 2008], ursolic acid, a pentacyclic 

triterpenoid also present in SO, was found to reduce the number of large ACF when given 

orally to rats during the initiation phase but not during the promotion/progression phase, 

results that are in agreement with our present study. Also, a study from our lab 

demonstrated that ursolic acid protects colon cells against DNA damage [Ramos, A.A., 

et al., 2010c]. 
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One of the possible mechanisms behind sage tea chemoprevention may be the 

modulation of enzymes involved in AOM metabolism. CYP2E1 enzyme is involved in 

the activation of AOM in vivo [Sohn, O.S., et al., 2001], suggesting that agents that 

modify this enzyme’s activity or expression levels may either promote or inhibit CRC 

through effects on formation of carcinogenic AOM derivatives. Based on this, effects of 

sage treatment on liver CYP2E1 activity and expression was evaluated, but no effects 

were found (Figure 3). A decrease of CYP2E1 activity with AOM injection was found, 

but this decrease was only significant in the water drinking group (Figure 3A). As 

demonstrated for other drugs, a decrease in CYP2E1 activity after a few hours (12-24 h) 

of AOM administration may indicate increased AOM metabolism and CYP2E1 

inactivation due to the high amount of free radicals produced [Lima, C.F., et al., 2007a; 

Weber, L.W., et al., 2003; Zhukov, A., et al., 1999]. Modulation of GST, a phase II 

enzyme, can increase carcinogen elimination before damage is done. In this study, and 

contrarily to what happened previously with mice [Lima, C.F., et al., 2005], no effects on 

GST activity in any of the treatment groups were found (data not shown). Altogether, 

these results indicate that the preventive effect of sage tea on ACF formation was not due 

to decrease in AOM bioactivation or increase of AOM elimination.  

 

 

Figure 3 – Effect of sage drinking (14 days) and/or AOM injection on CYP2E1 activity (A) and levels (B) 

measured in the microsomal fraction isolated from rat liver. CYP2E1 activity is expressed as nmol.min -

1.mg protein and protein levels expressed as percentage of water control group. The results are expressed 

as mean ± SEM for n=4. * P<0.05 when compared with water control. 

 

The most important initiating factor in carcinogenesis is the occurrence of DNA 

damage and mutations. It is known that dietary mutagens and oxidative stress may lead 
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to DNA damage. Dietary mutagens may be present in foods through fungal contamination 

or methods of preservation and cooking. One example of food mutagens are the 

heterocyclic amines 2-amino-1-methyl-6-phenylimidazol[4,5-b]pyridine (PhIP) and 2-

amino-3-methylimidazol[4,5-f]quinoline (IQ), which are produced from cooked protein-

rich foods such as meat and fish. The mutagenicity of these heterocyclic amines is DNA 

damage caused by induction of an inflammatory response [Ferguson, L.R., et al., 2008]. 

In our study, after bioactivation of AOM in the liver, methylazoxymethane (MAM) is 

transported to other organs where it will be further converted and finally, especially in 

the colon, induces DNA damage, suggesting that protection against DNA damage at the 

colonocyte level may be a relevant mechanism of chemoprevention. 

Therefore, the effect of in vivo SO treatment on protection against in vitro H2O2-

induced DNA damage in isolated colonocytes was investigated. Treatment with SO 

significantly decreased in vitro H2O2-induced DNA damage to colonocytes when 

compared with control (Figure 4), which is in agreement with our previous in vitro results 

[Lima, C.F., et al., 2007b; Ramos, A.A., et al., 2010b]. AOM-induced DNA damage to 

colonocytes was also evaluated. AOM was found to induce DNA damage detected by the 

comet assay, while SO treatment before AOM injection decreased DNA damage (Figure 

5A). In a study by Dolara et al., a protective effect of DNA damage in colonocytes was 

also found using wine polyphenols [Dolara, P., et al., 2005]. In the present study, the 

same protective effect of SO against AOM-induced DNA damage was found in 

lymphocytes isolated from the same animals (Figure 5B). This effect, as far as we know, 

has not been demonstrated in the literature and can be of great importance to further imply 

lymphocytes as surrogate markers in these kinds of studies. The protective effects of SO 

may be due, at least in part, to an increase in protection against DNA damage, which 

seems to be a global effect and not just localized in the colon, and may be the key to 

chemoprevention of colon cancer. Protection against DNA damage is not only beneficial 

for cancer prevention, but also for other diseases and the overall health of the individual.  
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Figure 4 – Effect of 2 week SO treatment in vivo on H2O2-induced DNA damage in isolated rat colonocytes. 

DNA damage analyzed by the Comet assay. Mean ± SEM (n=3). Statistical significances were determined 

using a two-way ANOVA followed by Bonferroni’s multiple comparison test. * P<0.05. 

 

It is also known that there is a link between chronic inflammation, proliferation 

and CRC [Hull, M., 2008; Itzkowitz, S.H., 2006; Terzic, J., et al., 2010]. The impact of 

SO on proliferation was evaluated in colon tissue, by Ki67 immunohistochemical staining 

of the colon mucosa. AOM increased the overall number of proliferating cells of the 

normal mucosa, but in animals treated with SO, this increase was significantly less 

pronounced (Figure 6A). The number of proliferative cells was naturally also higher in 

ACF when compared with the respective normal tissue (Figure 6B). Sage treatment was 

able to reduce the number of proliferating cells in the normal tissue, possibly as an effect 

of sage on different signalling pathways that regulate proliferation. A study from our lab 

showed that SO inhibits cell proliferation and inhibits the MAPK/ERK pathway in the 

KRAS mutated HCT15 cell line [Xavier, C.P., et al., 2009]. With this study, we add that 

SO also reduces cell proliferation in vivo. 
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Figure 5 – Effect of 2 week SO treatment and/or AOM injection on DNA damage on colonocytes (A) and 

lymphocytes (B) measured by the comet assay. DNA damage expressed as percentage of DNA in tail. The 

results are expressed as mean ± SEM for n=4. * P<0.05 when compared with water control, # P<0.05 when 

compared with Water + AOM group, ** P<0.01 when compared with water control, ### P<0.001 when 

compared with Water + AOM group. 

 

The WNT signalling pathway is important in the regulation of cell proliferation in 

the colon crypt [Pinto, D., et al., 2005], and AOM may cause mutations in β-catenin, an 

intervenient in this pathway [Takahashi, M., et al., 2004]. In the present study, no β-

catenin translocation to the nucleus was found in normal tissue or in ACF and APC 

expression was the same in all groups (data not shown). AOM may not have caused 

alterations in β-catenin possibly due to the short duration of the study relative to the time 

these mutagenic lesions need to be expressed. So, SO chemoprevention appears to be, 

apart from DNA protection from damage, also due to regulation of proliferation but does 

not appear to be in the regulation of WNT signalling pathway [Takahashi, M., et al., 2000; 

Takahashi, M., et al., 2004]. The MAPK/ERK pathway is usually also altered in this 

AOM-induced model. As it was referred before, SO has shown to inhibit this pathway in 

HCT15 cell line. As the WNT pathway was not altered, we could assume that sage tea is 

acting on the MAPK/ERK pathway. Studies in the activation of this pathway would 

answer this question.  
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Figure 6 – Proliferating cells in normal colon crypts of rats from water, Sage (pre), Sage (post), water + 

AOM and Sage + AOM groups (A) and ACF from water + AOM and Sage + AOM groups (B) assayed by 

Ki67 stained cells. Representative image of Water group (C) and Water + AOM group (D). Results are 

expressed as percentage of Ki67 stained cells per total number of cells in a crypt ± SEM for n = 4. *** = 

P<0.001 when compared with water group, ## = P<0.01when compared with Sage (pre) group, § = P<0.05, 

‡ = P<0.05 when compared with Water + AOM group of normal tissue, † = P<0.05 when compared with 

Sage + AOM group of normal tissue. 

 

In conclusion, treatment with sage water extract (herbal tea) showed a 

chemopreventive effect against AOM-induced preneoplastic lesions of colon cancer 

(Figure 9). An effect on colonocytes was demonstrated as SO treatment in vivo confers 

DNA protection against AOM- and H2O2-induced DNA damage. The protective effect of 

SO against DNA damage induced by AOM was also observed in lymphocytes. In 

addition, sage treatment significantly lowered the increased expression of Ki67, a marker 

of the overall proliferation rate in the colon. No evidence was found that sage treatment 

affected AOM metabolism in the liver or inflammation. This study showed that the 

consumption of Salvia officinalis tea may contribute to prevention of colon cancer, and 

mechanisms of protection against DNA damage and modulation of cell proliferation are 

involved. Plant foods and beverages, such as Salvia officinalis tea, have shown great 

potential and they should be considered as possible chemopreventive agents in dietary 

strategies against colon cancer. This herbal extract could ameliorate the overall health of 

the individual, not just against cancer initiation, but also diseases associated with DNA 

damage.  
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Figure 7 – Overview of the relevant results obtained in this study. Possible mode of action of Salvia 

officinalis colon cancer chemoprevention.  

 

2 – Impact of nutrition on DNA damage in rats 

 

2.1 – Introduction 

 

Colorectal cancer (CRC) is known to be caused by the accumulation of genetic 

and epigenetic alterations. Mutations and/or gene silencing may affect the expression or 

state of activation of key proteins involved in control of important cellular processes, such 

as cell proliferation, apoptosis, or repair of DNA damage [Arends, M.J., 2013]. Exposure 

to exogenous and endogenous agents results in an accumulation of DNA damage over 

time, and if not repaired, DNA damage contributes to carcinogenesis. Cells have a variety 

of DNA repair pathways to overcome the possible deleterious effects of DNA damage. 

Base excision repair (BER) is one of the major pathways involved in the repair of 

alkylation and oxidation DNA damage, repairing apurinic/apyrimidinic (AP) sites, DNA 

single-strand breaks and different types of base modifications [Maynard, S., et al., 2009]. 

Briefly, this pathway involves a recognition and excision step by glycosylases (for 

example, 8-oxoguanine glycosylase (OGG1) recognizes oxidized bases, while 

methylpurine-DNA glycosylase (MPG) recognizes alkylated bases), generating an AP 

site. This AP site is cleaved by an AP endonuclease, human AP endonuclease (APE1), 

generating a 3´OH and 5´deoxyribose phosphate terminus. Finally, DNA polymerase fills 

the nucleotide gap and a DNA ligase seals the nick on the DNA strand [Maynard, S., et 
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al., 2009]. The mismatch repair (MMR) system mainly corrects base to base mispairs 

which are caused by errors of the DNA polymerase. The recognition of these mispairs 

initiates a process that ends with the excision of the mispair and resynthesis of the DNA 

strand. Among the proteins important in this process, MSH2 and MLH1 are also found to 

be altered in CRC tumors [Lord, C.J., et al., 2012]. 

It has been demonstrated that CRC risk is strongly associated with diet. Dietary 

habits can help prevent or promote this disease [Nystrom, M., et al., 2009]. For example, 

western-type diet is thought to contribute to the development of colorectal cancer, while 

diets that are rich in fruits and vegetables have been found to be beneficial in the 

prevention carcinogenesis. Bile acids are considered as carcinogens in a variety of 

gastrointestinal cancers, including CRC. One of the effects of high bile acid exposure on 

cells is the DNA damage induced by reactive oxygen species (ROS) [Barrasa, J.I., et al., 

2013]. An increase of bile acid exposure increases ROS, which can increase DNA damage 

and consequently lead to mutations [Bernstein, H., et al., 2009]. On the other hand, 

phytochemicals, found in fruits and vegetables, can inhibit, delay and/or reverse 

carcinogenesis. (-)-Epigallocatechin-3-gallate (EGCG) is a catechin found in green tea 

and has been extensively used in chemopreventive studies in vivo and in vitro. EGCG 

was found to reactivate the expression of silenced genes by downregulation of DNA 

methyltransferases (DNMT) and histone deacetylases (HDAC) activity in human skin 

cancer cell lines [Nandakumar, V., et al., 2011]. Also, it has been found to suppress ACF 

formation when combined with sulindac and reduced the cytotoxicity induced by H2O2 

and increase levels of enzymes related to oxidative stress in HepG2 cells [Lambert, J.D., 

et al., 2010; Murakami, C., et al., 2002; Ohishi, T., et al., 2002]. Ursolic acid (UA) is a 

triterpenoid found in some fruits and herbs, with anti-cancer and anti-inflammatory 

properties. Previous work done in our lab has demonstrated various properties of UA, 

such as anticancer potential by induction of cell death in CRC cell lines and in vivo 

[Xavier, C.P., et al., 2013] and protection from oxidative damage and increase of DNA 

repair activity [Ramos, A.A., et al., 2010c]. In another study, UA was found to have 

inhibitory effects on the formation of pre-neoplastic lesions of CRC, demonstrating a 

chemopreventive effect [Andersson, D., et al., 2008]. 

The aim of our study was to evaluate the effect of diet on DNA damage and DNA 

repair systems in vivo. The potential chemopreventive effect of two natural compounds, 

UA and EGCG, was evaluated in lymphocytes and colonocytes and diet induced effects 

on in vivo protection from DNA damage and induction of repair. Also, the carcinogenic 
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potential of the bile acid, deoxycholic acid (DCA), was evaluated by induction of DNA 

damage and modulation of DNA repair systems. Blood samples are always easier to 

collect than colon samples, so another aim of this study was to evaluate the potential of 

lymphocytes to be surrogate markers of effects in colonocytes.  

 

2.2 – Material and methods 

 

2.2.1 – Animals 

Male Fischer 344 rats, 3 weeks-old, were obtained from Charles River 

Laboratories and kept in quarantine during 1 week. Throughout the whole experiment, 

animals had free access to food, an AIN76-based rat chow, and water. The experiments 

were carried out according to the regulations of national authorities for handling 

laboratory animals (Veterinary General Directive Board, Ministry of Agriculture, Rural 

Development and Fishing) and European Community Council Directive 86/609/EEC. 

 

2.2.2 – Experimental design 

Rats were divided into 5 groups (Figure 8). Natural compounds were given to the 

animals, using chocolate as the administration vehicle, during two weeks. The first group 

was control group, the second group was administered UA (50 mg/kg rat), third group 

received DCA (100 mg/kg rat), while the forth group received a combination of UA and 

DCA. The last group was administered EGCG (40 mg/kg rat). During this experiment, 

animals were weighted once a week and treatment did not alter significantly the average 

weight between groups (Figure 9). After treatment, the animals were sacrificed and the 

colons removed for colonocyte isolation.  

Blood was collected in 5% EDTA from all animals for lymphocyte isolation 

animals and followed to the isolation protocol.  
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Figure 8 – Experimental plan. Fischer 344 male rats were given different compounds every day during 2 

weeks. Control group received vehicle only, UA group was administered ursolic acid (50 mg/kg rat), DCA 

group received deoxycholic acid (100 mg/kg rat), UA + DCA received a combination of ursolic acid and 

deoxycholic acid, and finally the EGCG group was administered (-)-epigallocatechin-3-gallate (40 mg/kg 

rat). At the end of the two weeks, all animals were sacrificed by decapitation. 

 

 

Figure 9 – The average weight (g) of the animals in each group. There seems to be no difference between 

the treatments on the growth of the animals. 

 

2.2.3 – Colonocyte isolation 

The colon was removed and washed in HBSS buffer (NaCl, 8.0 g/L; KCl, 0.4 g/L; 

Na2HPO4.12H2O, 0.12 g/L; KH2PO4.3H2O, 0.078 g/L; NaHCO3, 0.35 g/L; HEPES, 4.8 

g/L) and with ice-cold incubation solution (glucose, 1 g/L; dithiothreitol (DTT), 1 mM; 

glutamic acid, 2.4 mM, dissolved in HBSS buffer). The colons were then cut open 

longitudinally and placed in 10 ml of incubation solution, with 2 mg of proteinase K and 

1.5 mg of collagenase, for 10 min at 37 ºC, stirring slightly and gassed with carbogen 
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(95% O2 and 5% CO2). The obtained cell suspension was filtered with 70 µm filters to 

separate the colonocytes. Next, 50 μL of 5.88% CaCl were added for each 5 mL of cell 

suspension, followed by a centrifugation at 200 g for 10 min at 4 ºC. The pellet was 

ressuspended in medium and cells were counted and used in the comet assay and western 

blot. 

 

2.2.4 – Lymphocyte isolation 

For lymphocyte isolation, the blood collected in a 5% EDTA solution was diluted 

in equal volume of PBS buffer. This volume was added to a tube containing Ficoll, also 

in equal proportion and centrifuged at 1,800 rpm for 18 min, 18 ºC. The lymphocyte layer 

was removed and transferred to another tube where PBS was added and another 

centrifugation was done at 1,800 rpm for 10 min, 18 ºC. The pellet was ressuspended in 

medium and cells were counted and used in the comet assay and western blot. 

 

2.2.5 – Evaluation of DNA damage by comet assay and in vitro 

oxidative/alkylating damage induction 

The alkaline version of the single cell gel electrophoresis (comet) assay was used 

to evaluate DNA damage in colonocytes and lymphocytes [Collins, A.R., 2004]. Briefly, 

15,000 cells were centrifuged for 1 min at 5,000 rpm, ressuspended in low melting point 

agarose and spread onto agarose-coated slide. To measure basal DNA damage, slides 

were placed in lysis buffer (NaCl, 2.5 M; Na2EDTA, 100 mM; Tris, 10 mM, pH 10) plus 

1% Triton X-100 for at least 1 h at 4 ºC. Then, these were washed in PBS and then in 

buffer (40 mM HEPES, 0.1 M KCl, 0.5 mM EDTA, 0.2 mg/mL bovine serum albumin 

(BSA), pH 8) before treatment with formamidopyrimidine DNA glycosylase (FPG) for 

20 min, 37 ºC. Afterwards, the slides were placed in electrophoresis buffer (NaOH, 300 

mM; Na2EDTA, 1 mM, pH >13) for 40 min at 4 ºC. The electrophoresis was run for 20 

min at 4 ºC, 21 V (0.8 V/cm) and 300 mA. After the electrophoresis, the slides were 

washed with water and dehydrated with ethanol.  

To measure prevention against oxidative and alkylating damage, cells were 

exposed to H2O2 (100 µM) or methyl methanesulfonate (MMS) (100 µM) for 5, on ice, 

and 15 min, at 37 ºC, respectively. Afterwards, the cells were centrifuged for 1 min at 

5,000 rpm, ressuspended in low melting point agarose and spread onto agarose-coated 

slides, and followed the same protocol as described previously. For analysis of the comet 

images, slides were stained with SYBR Gold solution for 30 min at 4 ºC; after drying, 
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slides were analysed using a fluorescence microscope, and a Comet 4 analysis system 

(Perceptive software) was used to calculate the parameter percent tail intensity. Generally, 

100 randomly selected cells were analysed per sample. 

 

2.2.6 – Evaluation of expression of DNA damage-related proteins by western 

blot 

MPG, APE1, and OGG1 expression was monitored by Western blotting in 

lymphocytes and colonocytes. Protein concentration was measured with the DC protein 

assay following manufacture instructions, and 20 μg/well was separated on 12% SDS-

PAGE and transferred to polyvinylidene fluoride membranes. Membranes were blocked 

and incubated with the monoclonal anti-MPG (Abcam, Cambridge, UK), anti-APE1 

(Abcam, Cambridge, UK) and anti-OGG1 (Abcam, Cambridge, UK). Immunoreactive 

bands were acquired using the Chemidoc camera (BioRad), and band area intensity was 

quantified by Quantity One software (BioRad). The results were expressed as percentage 

of control group. 

 

2.2.7 – Statistical analysis 

Data are expressed as means ± SEM. Statistical significances were determined using a 

Student’s t-test and one-away analysis of variance using GraphPad Prism 5.0 software. P 

values ≤ 0.05 were considered statistically significant. 

 

2.3 – Results and discussion 

 

Colon cancer is a major contributor to cancer–related morbidity, and cancer 

chemoprevention is becoming an important concept to implement through the use of 

nontoxic agents, specifically dietary sources, as a proper strategy for disease control. 

Natural products are now known to be promising agents in cancer prevention and therapy. 

Several reviews have compiled information on various dietary constituents and their 

possible contribution in the modulation of cancer development [Duthie, S.J., 2011; 

Lofano, K., et al., 2013; Nolfo, F., et al., 2013]. Recent studies from our group have also 

demonstrated the potential of natural compounds to protect against DNA damage and 

induction of DNA repair [Ramos, A.A., et al., 2010a; Ramos, A.A., et al., 2013; Ramos, 

A.A., et al., 2012; Ramos, A.A., et al., 2010c]. This study demonstrated that UA and 

EGCG in the diet protect colonocytes and lymphocytes from endogenous DNA damage 
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both in vivo and in vitro from MMS exposure. Bile acids are associated with high fat diets 

and DCA has been associated with increased risk of CRC [Barrasa, J.I., et al., 2013; 

Bernstein, H., et al., 2009]. We used DCA, also added in the diet, to evaluate the effect 

on DNA damage and DNA repair protein expression. 

Unlike most studies that test DNA protection by dietary compounds in animals 

exposed to a genotoxic agent, in this study we used healthy individuals to evaluate the 

potential for cancer prevention by reduction of DNA damage. Endogenous DNA damage 

(strand breaks and FPG sites) in colonocytes and lymphocytes were evaluated by comet 

assay without and with FPG enzyme, respectively (Figure 10). Both cell types have more 

strand breaks than DNA damage recognized by FPG enzyme (FPG sites). Comparing 

endogenous DNA damage between colonocytes and lymphocytes, we found that the level 

of strand breaks are similar between the two cell types, while colonocytes present a 

tendency for higher levels of DNA damage recognized by FPG. This is in agreement with 

other studies that find higher levels of damage in colon tissue when compared with 

lymphocytes [Kager, N., et al., 2010].  

 

 

Figure 10 – Endogenous DNA damage in colonocytes and lymphocytes. DNA damage was measured by 

the comet assay. Results are expressed as percentage of DNA in tail and represent the means of at least 3 

independent experiments. *P ≤ 0.05, ** P≤ 0.01 when compared with strand breaks was determined by 

student’s t-test.  

 

Oxidative DNA damage has been associated with being the cause of degenerative 

diseases and cancer. Several types of damaged bases result from ROS attack on DNA, 

many with mutagenic potential. 8-oxoguanine is a biomarker of oxidative stress and is 

believed to participate in carcinogenesis, possibly through G to T transversions through 



Chapter 4                                                                                               In vivo effects of natural compounds 

 

105 

 

mispairing during replication [Tudek, B., et al., 2012] when it is efficiently repaired by 

the base excision repair system. Colonocytes treated with H2O2 showed an increase of 

strand breaks relative to endogenous strand breaks (Figure 11A). This increase was 

around 47% in comparison to respective control. H2O2 did not induced FPG sites in 

colonocytes. In lymphocytes, H2O2 (in the same concentration used for colonocytes) 

induced a high level of strand breaks (Figure 11B), most of the comets observed had more 

than 70% of the DNA in the tail of the comet. Therefore, lymphocytes showed more 

susceptibility to H2O2–induced DNA damage than colonocytes. The compounds tested in 

this study reduced the overall endogenous DNA damage (Figure 12A and 13A). In 

lymphocytes (Figure 13A), these natural compounds were found to reduce endogenous 

strand breaks. In a study by Brevik et al., intake of a diet rich in phytochemicals by healthy 

human individuals during a total of eight weeks decreased significantly the levels of 

endogenous strand breaks in lymphocytes [Brevik, A., et al., 2011]. On the other hand, 

reduction of DNA damage recognized by FPG, oxidative DNA damage, was seen by 

ursolic acid and EGCG in colonocytes (Figure 12A). The differences between the results 

in colonocytes and lymphocytes could be explained by the metabolization and absorption 

of the compounds.  

 

 

Figure 11 – Induced DNA damage in colonocytes (A) and lymphocytes (B): endogenous, H2O2, and MMS-

induced DNA damage. H2O2 treatment was done 5 min on ice, while MMS was 15min at 37 ºC. DNA 

damage was measured by the comet assay. Results are expressed as percentage of DNA in tail. *P ≤ 0.05, 

** P≤ 0.01, ***P ≤ 0.005 when compared with endogenous DNA damage was determined by student’s t-

test. 
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Alkylating DNA damage can result from exogenous, such as diet and environment, 

or endogenous (metabolism of enteric bacteria) sources. Alkylating damage include N-

alkylating adducts (N7-methylguanine, N3-methyladenine, and N3-methylguanine) and O-

alkylating adducts. N-alkylating adducts are more abundant but are cytotoxic and less 

mutagenic than O-alkylating adducts. In our study, we used methyl methanesulfonate, 

which induces N7-methylguanine and N3-methyladenine, causing base mispairs that are 

recognized and repaired by base excision repair [Lundin, C., et al., 2005; Ramos, A.A., 

et al., 2013]. Since, FPG can also recognize alkylation damage, such as N7-methylguanine, 

it was used to detect MMS-induced DNA damage. We found that MMS increased 

significantly the amount of strand breaks and FPG sites when compared with the control 

in colonocytes (Figure 11A). We found no effects of our natural compounds on MMS-

induced DNA damage in lymphocytes (Figure 13B), but in colonocytes (Figure 12B) UA 

significantly decreased strand breaks and FPG sites, while EGCG only showed a slight 

tendency to decrease FPG sites induced by MMS. To our knowledge, few studies have 

studied the effect of UA on alkylating DNA damage. In a study with rats, it was found 

that administration of UA before treatment with an alkylating carcinogen, azoxymethane, 

reduced the number of preneoplastic lesions when compared with control group 

[Andersson, D., et al., 2008]. UA was effective in reducing the oxidative stress mediated 

changes in liver of rats, showing chemopreventive potential in the liver [Gayathri, R., et 

al., 2009]. Ramos et al. demonstrated that ursolic acid protects DNA from oxidative 

damage and increases repair activity in vitro [Ramos, A.A., et al., 2010c]. EGCG is a 

flavonoid polyphenol found in green tea. It has been found to possess a variety of 

protective activities against cancer, such as inhibition of growth factor signaling and gene 

transcription and induction of tumor suppressors, but also the antioxidant activity of 

EGCG has been proposed as a potential anti-cancer mechanism [Lambert, J.D., et al., 

2010]. So, UA is able to decrease endogenous DNA damage and also decrease DNA 

damage induced by alkylating agents, in this case MMS, ex vivo, suggesting that diets 

with compounds rich in ursolic acid can ameliorate the individual’s health, protecting 

against different types of DNA damage, reducing risk of DNA damage-associated 

diseases. 

 



Chapter 4                                                                                               In vivo effects of natural compounds 

 

107 

 

 

Figure 12 – Endogenous (A) and MMS (B)-induced DNA damage in isolated colonocytes. Test compounds 

were given in the diet for two weeks, two natural compounds - ursolic acid (UA) and (-)-epigallocatechin 

gallate (EGCG), and deoxycholic acid (DCA). DNA damage was measured by the comet assay. Results are 

expressed as percentage of control. *P ≤ 0.05, ** P≤ 0.01, when compared with respective control, #P≤ 

0.05 when compared with DCA treatment alone was determined by student’s t-test. 

 

 

Figure 13 – Endogenous (A) and MMS (B)-induced DNA damage in isolated lymphocytes. Test 

compounds were given in the diet for two weeks, two natural compounds - ursolic acid (UA) and (-)-

epigallocatechin gallate (EGCG), and deoxycholic acid (DCA). DNA damage was measured by the comet 

assay. Results are expressed as percentage of control. *P ≤ 0.05 when compared with respective control, 

#P≤ 0.05 when compared with DCA treatment alone was determined by student’s t-test. 

 

As pointed out previously, the types of DNA damage induced in this study are 

repaired by the base excision repair system. The protein expression of three intervenients 

in this repair system was evaluated in the isolated colonocytes and lymphocytes. We 

found no differences in the expression of APE1 and MPG proteins (data not shown), but 

found a decrease in OGG1 expression by UA and EGCG (Figure 14). OGG1 (the human 
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equivalent of FPG) recognizes oxidation damage, specifically 8-oxoguanine. In 

colonocytes, levels of 8-oxoguanine recognized by using the FPG enzyme were decreased 

by our natural compounds, so we can hypothesize that the ability of UA and EGCG to 

decrease OGG1 protein expression is related with the protective effect against DNA 

damage. It is known that transcription of BER genes is regulated by the cell cycle and by 

oxidative stress [Tudek, B., 2007]. If both compounds exert their antioxidant properties 

by reducing the levels of DNA damage, then OGG1 is not needed to recognize the lesions, 

therefore, the production of this protein is basal, hence explaining the decreased 

expression of OGG1 when compared with the control group. In lymphocytes, the levels 

of FPG sites are low to begin with (around 15% in the control group) possibly explaining 

the lack of protection by our natural compounds, nevertheless, the compounds are present 

and there can also be a reduction of expression of OGG1. Although bile acids are known 

to increase ROS production and therefore increase DNA damage, in our study 

deoxycholic acid did not affect DNA damage in any way, nor protein expression.  

Although some of the effects observed in colonocytes were also found with 

lymphocytes, the susceptibility of the two cell types is different, so there are not enough 

results to authenticate lymphocytes as surrogate markers. Nevertheless, ursolic acid and 

EGCG were found to decrease DNA damage, possibly by their antioxidant potential, 

ameliorating the basic internal status of colonocytes and lymphocytes. Consumption of 

fruits and vegetables with these compounds could therefore benefit public health by 

countering oxidative stress factors and help prevent diseases mediated by ROS-induced 

DNA damage.  

 

 



Chapter 4                                                                                               In vivo effects of natural compounds 

 

109 

 

 

Figure 14 – Expression of OGG1 protein in colonocytes (A) and lymphocytes (B) isolated from rats. 

Protein expression was assayed by western blot. Results are expressed as percentage of control. *P ≤ 0.05 

and **P ≤ 0.01 when compared with respective control determined by one-way ANOVA followed by 

Tukey’s post-test. 
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1 – An epigenetic application for the CoMeth assay 

 

1.1 – Introduction 

  

Colorectal cancer (CRC) arises from an accumulation of genetic and epigenetic 

alterations. Epigenetics is the regulation of gene expression without modification of the 

DNA sequence. This regulation can be done by DNA methylation in promoter regions, 

histone modifications regulating transcription or noncoding RNAs. DNA methylation is 

the most studied epigenetic modification in humans. Cytosine methylation consists of a 

covalent addition of a methyl group from a methyl donor to a cytosine within a CpG 

dinucleotide by a specific family of enzymes, the DNA methyltransferases (DNMTs). 

These CpG dinucleotides are usually found in small clusters, called CpG islands. In 

cancer cells, DNA methylation is affected by two major alterations: (1) a global 

hypomethylation of the DNA due to generalized demethylation in the scattered CpG 

islands in the genome, allowing transcription of otherwise silenced oncogenes, and (2) 

specific promoter regions of tumor-suppressor genes are hypermethylated, inhibiting 

gene transcription [Goel, A., et al., 2012; Kulis, M., et al., 2010; Sandoval, J., et al., 2012].  

 Nowadays, the term “CpG island methylator phenotype” or CIMP, is a 

characteristic of tumors in which tumor suppressor genes are silenced by 

hypermethylation, and tumor progression occurred, at least in part, by progressive tumor 

silencing. The most common silenced genes in CRC are PTEN, MLH1, MSH2, APC, 

RUNX3 (a transcription factor), UNC5C (involved in cell migration) and MGMT. The 

mismatch repair gene MLH1 was one of the first important tumor suppressor genes to be 

seen hypermethylated in cancer. Lynch syndrome (formerly known as hereditary 

nonpolyposis colorectal cancer, or HNPCC) arises due to mismatch repair dysfunction 

and hypermethylation of hMLH1 and hMSH2. hMLH1 has also been found silenced in 

sporadic cases of CRC [Goel, A., et al., 2012].  

Different from irreversible gene mutations, epigenetic silencing can be reactivated 

by small molecules that act as epigenetic modifiers. These epigenetic modifiers can 

interfere with the activity of DNMTs, histone deacetylase (HDAC), and sirtuins, a 

specific class of histone acetyltransferases (HATs). Inhibiting DNMT’s can reverse 

hypermethylation by covalently trapping DNMT after incorporation in the DNA strand, 

blocking the catalytic site of the enzyme, degradation of the enzyme, or suppression of 
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the enzyme expression. 5-azacytidine (5-aza) is incorporated in the DNA and DNMT 

activity is lost due to the enzyme becoming irreversibly bound to 5-aza residue in the 

DNA, and this leads to loss of methylation [Christman, J.K., 2002]. Some natural 

compounds have already been found to reverse hypermethylation in cells [Banno, K., et 

al., 2012; Pezzuto, J.M., et al., 2013]. For example, epigallocatechin gallate was found to 

bind to the catalytic site of DNMT, therefore inhibiting DNMT activity, and reactivating 

silenced genes in cell lines [Fang, M.Z., et al., 2003]. Reversing hypermethylation of 

promoter regions by demethylating compounds is an interesting approach for cancer 

prevention as well as therapy. In therapy, epigenetic agents may be used as sensitization 

agents to overcome CRC drug resistance or to directly modulate an epigenetic alteration 

for therapeutic intervention [Bardhan, K., et al., 2013].  

 In this study, we developed a new adaption to our CoMeth assay, for epigenetic 

agent screening that act on DNMT inhibition. We used a colorectal cancer cell line (RKO) 

with hMLH1 silencing by promoter hypermethylation, reactivated the expression of the 

protein with a well-known demethylating compound, 5-azacytidine, and used the CoMeth 

assay to see strand breaks. After characterization of the method, by nuclear condensation 

and western blot analysis, we used some natural compounds in our adapted CoMeth assay 

to screen for potential epigenetic chemopreventive compounds. 

 

1.2 – Material and methods 

 

1.2.1 – Reagents, plant material and antibodies 

N-Methyl-N-nitrosourea (MNU), O6-benzylguanine (BG), thiazolyl blue 

tetrazolium bromide (MTT), 5-aza, (-)-epigallocatechin gallate (EGCG), curcumin, 

ursodeoxycholic acid, resveratrol, ursolic acid, rosmarinic acid, RPMI - 1640 medium, 

penicillin/streptomycin, and trypsin solution were purchased from Sigma–Aldrich (St. 

Louis, MO, USA). Fetal bovine serum (FBS) was purchased from Biochrom KG (Berlin, 

Germany). SYBR Gold (nucleic acid gel stain) was from Invitrogen Molecular Probes 

(Eugene, OR, USA). The protein quantification DC protein assay was purchased from 

Bio-Rad Laboratories (Hercules, CA, USA). Primary antibodies were purchased from the 

following sources: anti-actin was purchased from Sigma–Aldrich; anti-p53, anti-MGMT 

and anti-MLH1 Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). Peroxidase-

conjugated goat anti-mouse antibody and Immobilon Western blotting detection reagents 

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA) and Millipore 
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(Billerica, MA, USA), respectively. All other reagents and chemicals used were of 

analytical grade. 

Salvia officinalis L. plants was from an experimental farm in Arouca, Portugal. 

Plants were collected between 2001 and 2003 and the water extracts were prepared as 

described previously by our group [Lima, C.F., et al., 2005]. The filtered water extract 

was then lyophilized to dryness, giving a yield of 25.8%, and stored at -20 ºC.  

 

1.2.2 – Cell line and culture conditions 

RKO cells, derived from human colon carcinoma were a gift from Dr. Raquel 

Seruca (IPATIMUP, University of Porto, Portugal) and were maintained as monolayer 

cultures in RPMI medium supplemented with 10% FBS and antibiotics (100 U/mL 

penicillin and 100 mg/mL streptomycin), under an atmosphere of 5% CO2 at 37 ºC. Cells 

were seeded onto 6- (2 mL) or 12- (1 mL) well plates at a density of 0.2×105 cells/mL. 

Test compounds were added to culture medium to the desired concentration ensuring that 

the DMSO concentration did not exceed 0.5% (v/v); controls received vehicle only. 

 

1.2.3 – Assessment of cell viability/proliferation by MTT reduction test 

A MTT reduction assay was performed in order to evaluate the toxicity of 5-

azacytidine in the RKO cell line. Cells were treated with different concentrations (0.5, 1, 

and 2 µM) of the 5-aza for 72 an 96 h, including 2 h incubation with MTT (final 

concentration 0.5 mg/mL). The formazan crystals were then dissolved in a solution of 

DMSO/ethanol (1:1). The number of viable cells in each well was estimated by the cell 

capacity to reduce MTT. The results were expressed as percentage relative to the control 

(cells without any compound). 

 

1.2.4 – Adaptation of the CoMeth assay 

The CoMeth assay [Ramos, A.A., et al., 2013] was developed by our group to 

measure O6MeG lesion in DNA. This assay can only be used in a cell line with a 

functional mismatch repair system, to be able to start repair and induce strand breaks. In 

a cell line that has a silenced MLH1 gene, demethylating compounds revert this effect and 

the CoMeth assay is functional. So, we developed a new adaptation of the CoMeth assay 

to study demethylating compounds. We used a known demethylating compound, 5-

azacytidine, to revert MLH1 silencing in RKO cell line. Briefly, cells were treated with 
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5-azacytidine for 48 h before treatment with BG, 100 µM, for 2 h and MNU (500 µM) 

for 24 or 48 h. 5-azacytidine was also added in these incubations.  

Afterwards, the alkaline version of the single cell gel electrophoresis (comet) 

assay was used to evaluate DNA damage [Collins, A.R., 2004]. Cells were collected by 

trypsinization and around 50,000 cells were centrifuged for 1 min at 5,000 rpm, 

ressuspended in low melting point agarose and spread onto agarose-coated slide using a 

cover slip. After 10 min at 4 ºC, the coverslips were removed and slides were placed in 

lysis solution (2.5 M NaCl, 100 mM Na2EDTA, 10 mM Tris base, pH 10, plus 1% Triton 

X-100) for 1 h at 4 ºC. Slides were then placed in a horizontal electrophoresis chamber 

with electrophoresis solution (0.3 M NaOH, 1 mM Na2EDTA, pH > 13) for 40 min at 4 

ºC for the DNA to unwind before electrophoresis for 20 min at 0.8 V/cm and ∼300 mA. 

After electrophoresis, slides were washed twice with PBS and dried at room temperature. 

For analysis of the comet images, slides were stained with SYBR Gold solution for 30 

min at 4 ºC; after drying, the slides were analyzed using a fluorescence microscope and 

the Comet IV analysis system (Perceptive Instruments Ltd, Haverhill, UK) was used to 

calculate the parameter percentage of DNA in the tail. About 100 randomly selected cells 

were analyzed per sample. 

For the screening of natural compounds, the same protocol was used, substituting 

5-azacytidine for the natural compounds tested: (-)-epigallocatechin gallate (EGCG) – 4 

µM, curcumin - 3 µM, ursodeoxycholic acid - 500 µM, resveratrol – 20 µM, rosmarinic 

acid - 20 µM, ursolic acid - 4 µM, Salvia officinalis (SO) – 50 µg/mL. Cells were treated 

with the compounds for 48 h before treatment with or without BG, 100 µM, for 2 h and 

MNU (500 µM) for 48 h. Afterwards, the comet assay was used to evaluate DNA damage, 

as described before.  

 

1.2.5 – Nuclear condensation assay 

The effects of the conditions of the modified CoMeth assay on cell death in RKO 

cells. The number of apoptotic cells was counted after 48 and 72 h as previously described 

[Xavier, C.P., et al., 2009]. At least 500 cells were counted and the number of apoptotic 

cells was divided by the total number cells counted to give the percentage of cell death.  

 

1.2.6 – Western blot analysis 

RKO cells were treated with 5-azacytidine for 48 h before treatment with or 

without BG, 100 µM, for 2 h and MNU (500 µM) for 24 or 48 h. 5-azacytidine was also 
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added in these incubations. Total cell lysates were prepared to measure expression of 

different proteins. The cells were washed with PBS 1x and lysed for 5 min at 4 °C with 

ice-cold RIPA buffer (1% NP-40 in 150 mM NaCl, 50 mM Tris (pH 7.5), 2 mM EDTA) 

supplemented with 20 mM NaF, 1 mM phenylmethylsulfonyl fluoride, 20 mM Na3VO4 

and protease inhibitor cocktail (Roche, Mannheim, Germany). Protein concentration was 

quantified using the DC protein assay following the manufacturer’s instructions, and 20 

µg/well was separated by 12% SDS–PAGE and transferred to polyvinylidene difluoride 

membranes. Membranes were blocked and incubated with primary antibody overnight. 

After washing, membranes were incubated with secondary antibody conjugated with IgG 

horseradish peroxidase for 1 h, and immunoreactive bands were detected using the 

Immobilon solutions (Millipore, Billerica, MA, USA) under a chemiluminescence 

detection system (Chemi Doc XRS; Bio-Rad Laboratories, Inc.). 

Band area intensity was quantified using the Quantity One software from Bio-Rad. 

β-Actin was used as loading control. 

 

1.2.7 – Statistical analysis 

Statistical analyses were done using t-test, one-way or two-way analysis of 

variance using GraphPad Prism 4.0 software, when appropriate (San Diego, CA, USA). 

P values ≤0.05 were considered statistically significant. All results are presented as mean 

± SEM of at least three independent experiments. Images are representative of three 

independent experiments. 

 

1.3 – Results and discussion 

 

In this study, a novel assay for screening compounds with potential demethylating 

capacity using the simple comet assay was developed. This method uses the adapted 

CoMeth version of the comet assay, developed by our group [Ramos, A.A., et al., 2013]. 

The CoMeth assay is based on the principal that in a condition when MGMT is inhibited, 

for example with BG, and a compound, in this case MNU, induces the O6methylguanine 

lesion, a functional mismatch repair system will recognize and start to repair the lesion, 

introducing nicks in the DNA strand. These nicks will be detected by the comet assay. In 

this new version, instead of using a mismatch repair functional cell line, as needed for the 

CoMeth assay, we use a hMLH1 silenced cell line, that will not present comets in response 

to MNU due to the lack of functional mismatch repair. Theoretically, if we use a 
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demethylating agent and reactivate MLH1 expression, we have a functional mismatch 

repair system and will observe an increase in DNA strand breaks. The demethylating 

compound 5-azacytidine was used to test our hypothesis.  

First, we tested for toxicity of the compound, as the objective is to increase strand 

breaks by activating the mismatch repair system and not due to direct toxicity of our test 

compound. For this, we measured cell viability using the MTT assay with 0.5, 1 and 2 

µM of 5-azacytidine for 72 and 96 h incubation (Figure 1). This compound showed no 

decrease in cell viability at 72 or 96 h incubation, proving that these concentrations are 

not cytotoxic for these cells.  

The concentration of 2 µM of 5-azacytidine was used in the subsequent assays. 

For the adapted epigenetic version of the CoMeth assay, cells were treated with 5-

azacytidine for 48 h before incubation with BG and MNU. We found that at 24 h 

incubation of MNU there were no significant differences between treatment with BG + 

MNU and 5-aza + BG + MNU, but at 48 h incubation with MNU there is a significant 

increase of DNA damage with the 5-azacytidine treatment (Figure 2). The difference, at 

this time point, between BG + MNU and 5-aza + BG + MNU are cells that now have 

functional mismatch repair systems (MLH1 is no longer silenced and there is transcription 

of the protein) and recognize the O6-methylguanine lesion induced by MNU, generating 

strand breaks detected by the comet assay.  

 

 

Figure 1 – The effect of different concentrations of 5-azacytidine on cell viability at 72 (white bars) and 

96 (gray bars) h incubation, in RKO cells. Cell viability was measured by the MTT assay and results are 

the mean ± SEM of at least 3 independent experiments. *P≤ 0.05 when compared with respective control 

was determined by one-way ANOVA followed by Newman-Keuls multiple comparison test. 
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 In this system, cell death is induced due to the recognition of unrepaired 

O6methylguanine lesion by the mismatch repair system. This repair system introduces 

strand breaks by excising the mispair created by the lesion, but as long as the 

O6methylguanine remains in the DNA template, this process will be repeated, creating a 

futile repair loop that results in double strand breaks and, consequently, cell death [Kaina, 

B., et al., 2007; Kondo, N., et al., 2010]. This only happens if the MMR system is 

functional. At 72 and 96 h incubation, it was possible to observe a significant increase in 

cell death with 5-azacytidine + BG + MNU when compared with control (Figure 3). This 

increase in cell death was not seen in the condition with BG + MNU alone because MLH1 

is silenced and the mismatch repair is not functional. This increase in cell death is 

additional proof that the mismatch repair system is functional after 5-aza treatment. So, 

there is an increase of DNA damage when 5-azacytidine is used in the RKO cell line and 

this DNA damage leads to cell death at 96 h.  

 

 

Figure 2 – Modified CoMeth assay for epigenetic screening of demethylating compounds. Cells were 

incubated with 5-azacytidine for 48 h before 2 h incubation with BG and 24 or 48 h incubation with MNU. 

DNA damage was then measured with standard comet assay and results are the mean ± SEM of at least 3 

independent experiments.. *P≤ 0.05, ##P≤ 0.01, ### P≤ 0.005 when compared with respective control and 

+ P≤ 0.05, were determined by one-way ANOVA followed by Newman-Keuls multiple comparison test. 
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Figure 3 – Effects of the conditions of the modified CoMeth assay on cell death. Cells were incubated with 

5-azacytidine for 48 h before 2 h incubation with BG and 72 (white) or 96 (gray) h incubation with MNU. 

Cell death was measured by nuclear condensation assay and results are the mean ± SEM of at least 3 

independent experiments.. *P≤ 0.05 and ### P≤ 0.005 when compared with respective control were 

determined by one-way ANOVA followed by Newman-Keuls multiple comparison test. 

 

 MLH1 and MGMT protein expression were also evaluated. In this assay, BG is 

added to the cells for MGMT inhibition. MGMT is responsible for the repair of the O6-

methylguanine lesion, but this protein is a suicide repair enzyme, in which, after the 

transfer of the alkyl group from the DNA template to a cysteine residue in the active 

center of the molecule, this enzyme is inactivated and directed to the proteasome for 

degradation. BG acts as a pseudosubstrate of MGMT, thus inactivating the enzyme 

[Srivenugopal, K.S., et al., 1996]. By western blot, we found that all the conditions that 

received BG had almost no expression of the protein, confirming that in this assay, this 

concentration of BG is sufficient to inhibit almost all of MGMT protein during 48 h 

incubations (Figure 4).  

As MGMT is inactive, the mismatch repair system recognizes the unrepaired O6-

methylguanine lesion induced by MNU, as long as it is functional, which in this case is 

with 5-azacytidine incubation. Treatment with 5-azacytidine alone increase MLH1 

expression when compared with the respective control at 24 h (Figure 4). When 5-aza 

treatment is not given, the levels of MLH1 protein are similar to the control. The 

demethylating agent is able to increase the expression of the silenced MLH1 protein, 

activating the mismatch repair system. These results suggest that treatment with 5-aza for 

48 h reactivates the expression of MLH1 protein. When BG is used to inactivate MGMT 
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and MNU induces O6-methylguanine lesion, in cells with reactivated MLH1, there is an 

increase of DNA damage observed by the comet assay, after 48 h treatment with MNU, 

and increase in cell death at 72 and 96 h incubations. 

The p53 protein is referred to as the “guardian of the genome” as its role is to 

respond to DNA damage and pause the cell cycle, to allow repair, or upregulate proteins 

involved in cell death pathways. TP53 mutations are very common in colorectal cancers, 

but usually appear in late stages of the carcinogenic process [Pezzuto, J.M., et al., 2013]. 

The RKO cell line is P53 wild-type and, in this study, the effect of the conditions used on 

the modified CoMeth assay on p53 protein expression were evaluated (Figure 5). 

Interestingly, we found a significant increase of p53 expression with the 5-azacytidine 

treatment alone at both time points. This increase could possibly be explained by the 

expression of another protein, the death-associated protein kinase (DAPK). DAPK is a 

serine/threonine kinase involved in the extrinsic death receptor-mediated apoptotic 

pathway. There is an autoregulatory feedback loop between DAPK and p53, as DAPK is 

induced by p53 activation and DAPK expression increases p53 protein expression. It is 

known now that DAPK promoter is usually hypermethylated in many cancers [Gozuacik, 

D., et al., 2006; Pezzuto, J.M., et al., 2013], and the RKO cell line presents this promoter 

hypermethylation [Paz, M.F., et al., 2003]. This increase of p53 expression could be 

explained by the re-expression of DAPK protein by 5-azacytidine and the regulatory 

feedback loop. There was also an increase of p53 protein expression with MNU treatment 

alone at 24 h incubation. As in this condition MGMT is not inhibited by BG, this increase 

could be due to normal molecular p53-dependent signaling due to the repair of DNA 

damage, induced by MNU, by MGMT [Roos, W., et al., 2004]. P53 has been found to be 

involved in DNA repair in the cells. After the introduction of DNA injuries the level of 

p53 protein rises, which in turn induces a transient cell cycle arrest or apoptotic cell death. 

Also, some mismatch repair proteins are p53 target genes, including MSH2 and MLH1 

[Gatz, S.A., et al., 2006]. So, this increase of p53 expression can also regulate mismatch 

repair, inducing transcription of the mismatch repair proteins and increasing apoptosis, 

an effect that we also observed. 
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Figure 4 – Effects of treatment with the conditions of the modified CoMeth on MLH1 and MGMT protein 

expression in RKO cells, using western blot. Cells were incubated with 5-azacytidine for 48 h before 2 h 

incubation with BG and 24 h incubation with MNU. β-actin was used as loading control. Values are mean 

± SEM of at least three independent experiments. *P ≤ 0.05 when compared to control. 

 

 Until now, it seems that the assay is effective, so we used this method to 

investigate the potential of natural compounds to be demethylating compounds (Figure 

6). Of all the compound, (-)-epigallocatechin gallate (EGCG) presented values very 

similar with our positive control, 5-azacytidine. It is known that EGCG has DNMT 

inhibiting capacity [Fang, M.Z., et al., 2003; Nandakumar, V., et al., 2011], so this result 

can confirm that our modified CoMeth assay can be used to screen demethylating 

compounds. Of the other natural compounds, resveratrol also showed results similar to 

our positive control and this compound has been shown to have demethylating potential 

in breast cancer cells [Paluszczak, J., et al., 2010]. Further studies on MLH1 protein 

expression with these natural compounds are needed to validate the effects in the comet 

assay.  
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Figure 5 – Effects of treatment with the conditions of the modified CoMeth on p53 protein expression in 

RKO cells, using western blot. Cells were incubated with 5-azacytidine for 48 h before 2 h incubation with 

BG and 24 and 48 h incubation with MNU. β-actin was used as loading control. Values are mean ± SEM 

of at least three independent experiments. **P≤ 0.01, ***P≤ 0.005, and ### P≤ 0.005 when compared with 

respective control were determined by one-way ANOVA followed by Newman-Keuls multiple comparison 

test. 

 

 In conclusion, we developed a modified version of the comet assay to evaluate 

potential compounds with demethylating capacity. The comet assay is a simple, relatively 

cheap assay to evaluate DNA damage. The standard version is capable to evaluate strand 

breaks and different versions of this assay have been developed to increase the types of 

damage that are possible to assess. Our lab has developed a version to evaluate the 

alkylating DNA damage, O6methylguanine. With this in mind, and using a mismatch 

repair deficient cell line in which MLH1 is epigenetically silenced, we were able to 

present a method to investigate potential demethylating compounds. We characterized 

this method using a well-known demethylating agent, 5-azacytidine, and also showed the 

application with natural compounds for screening purposes. This assay should be 

accompanied by a protein expression assays to ensure that the effects seen are due to the 

demethylating potential and reexpression of the protein. Further studies will be done to 

validate this method.  
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Figure 6 – Modified CoMeth assay for epigenetic screening of demethylating compounds. Cells were 

incubated with tested compounds or 5-azacytidine for 48 h before 2 h incubation with BG and 24 or 48 h 

incubation with MNU. . Concentrations used were: (-)-epigallocatechin gallate (EGCG) – 4 µM, curcumin 

(CUR) - 3 µM, ursodeoxycholic acid (UDCA) - 500 µM, resveratrol (RES) – 20 µM, rosmarinic acid (RA) 

- 20 µM, ursolic acid (UA) - 4 µM, Salvia officinalis (SO) – 50 µg/mL. DNA damage was then measured 

with standard comet assay and results are the mean ± SEM of at least 3 independent experiments.  
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1 – General conclusions 

 

Colorectal cancer is a major health problem, as it is one of the most common types 

of cancer in Western societies. The accumulation of genetic and epigenetic alterations 

transforms normal colon cells and gives them growth advantage over their neighboring 

cells. These genomic alterations and mutations can alter the cell’s behavior, in the 

initiation and/or progression process, and how the tumor will respond to therapy, in cancer 

treatment. Colorectal cancer is highly associated with lifestyle, such as obesity, lack of 

physical activity, smoking habits, and most importantly, diet. Diet has an important role 

not only on the initiation of the disease, but also in possible chemopreventive and 

therapeutic strategies. Diet may have adverse effects on colon cancer, being one of the 

main risk factors of this disease. High intake of saturated fat, red meat, and processed 

foods has been linked to increase in cancer risk. Fruits and vegetables, and isolated 

compounds of these foods, have shown to be promising agents that may play a role in 

cancer prevention as well as in cancer therapy. Modulation of signaling pathways 

associated with proliferation and apoptosis, protection against DNA damage, and 

induction of DNA repair are just some of the possible mechanisms of action for cancer 

prevention. 

The main objective of this work was to evaluate the effect of some dietary 

compounds on colon cancer prevention and bile acids in colon cancer promotion. In 

Chapter 2, the effects of two bile acids, deoxycholic acid and ursodeoxycholic acid, were 

evaluated in colon cancer cell line with no mutations in the MAPK and PI3K/AKT 

pathways. Deoxycholic acid is considered a colon cancer promoter, while 

ursodeoxycholic acid is used in studies to evaluate chemoprevention. In this study, 

deoxycholic acid was found to decrease proliferation and induce apoptosis with high 

concentrations (500 µM). This induction of apoptosis could be due, in part, to formation 

of reactive oxygen species and/or induction of DNA damage that was observed with 

deoxycholic acid. Ursodeoxycholic acid did not induce any of these alterations. It is 

known that bile acids can regulate DNA repair proteins, so with this in mind, the effects 

of these bile acids on MLH1, a mismatch repair protein, and MGMT protein expression 

were evaluated. Both bile acids were able to decrease the expression of these proteins 

after 48 h incubation. This effect suggests that these two bile acids can promote 

carcinogenesis through reduction of DNA repair. The activation of three signaling 
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pathways was also determined. The bile acids were able to activate PI3K/AKT and 

MAPK/ERK by increase of phosphoAKT and phosphoERK expression, respectively, but 

not JNK signaling pathway. As ursodeoxycholic acid is believed to be chemopreventive, 

the effect of pretreatment of this compound before DCA treatment was also evaluated. In 

this study, we found an increase of cell death with the pretreatment of ursodeoxycholic 

acid when compared with deoxycholic acid alone. This increase of apoptosis was 

accompanied by a constant activation of the JNK signaling pathway, determined by 

phosphoJNK protein expression. Also, pretreatment with ursodeoxycholic acid 

significantly decreased expression of the repair proteins MGMT and MLH1. Deoxycholic 

acid induced typical alterations associated with cancer promotion. On the other hand, 

ursodeoxycholic acid did not show any effects of chemopreventive potential and even 

enhanced deoxycholic acid apoptosis and decreased DNA repair protein expression. 

In chapter 3, we tried to develop an in vitro model of azoxymethane-induced colon 

carcinogenesis. The characterization of the effects induced were compared to the 

alterations induced in the in vivo model. For this, we used the Caco-2 cell line and added 

a S9 liver fraction mixture to enhance azoxymethane metabolization. Azoxymethane (15 

µM) treatment for 48 h slightly increased cell proliferation and phosphoERK expression. 

On the other hand, no DNA damage was observed, oxidative or O6meG, whereas 

azoxymethane induces the O6meG lesion in vivo. Also, no nuclear translocation of β-

catenin was observed. The lack of consistencies with the in vivo assay suggest the 

optimization of the in vitro assay. 

Chapter 4 was dedicated to the in vivo effects of natural compounds on colon 

cancer prevention. In the first part, the effect of an herbal tea, Salvia officinalis, was 

evaluated on the prevention of colon carcinogenesis used the in vivo AOM-induced 

model. In this study, our herbal tea reduced the number of pre-neoplastic lesions induced 

by AOM. This reduction was accompanied by a decrease of Ki67 staining, suggesting an 

effect of Salvia officinalis on cell proliferation, an effect already seen in vitro by our 

group. Herbal tea drinking did not effect metabolization or elimination of azoxymethane 

in the liver, as there were no effects on CYP2E1 expression and activity, nor GSH and 

GST activity. Azoxymethane induced DNA damage in colonocytes and lymphocytes and 

Salvia officinalis drinking protect colonocytes and lymphocytes from this DNA damage. 

Also, H2O2 was used to induce DNA damage ex vivo to colonocytes and lymphocytes 

isolated from rats that drank the herbal tea and that drank water, and Salvia officinalis 

protected against this type of DNA damage. In the second part, we evaluated the effects 
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of two isolated compounds, ursolic acid and (-)-epigallocatechin-gallate, on protection 

against DNA damage in healthy animals. The comparison of the effects on lymphocytes 

and colonocytes for the possible use of lymphocytes as surrogate markers of effects on 

colonocytes, but the data collected was not sufficient to validate this hypothesis. The 

natural compounds tested protected against endogenous DNA damage, in colonocytes 

and lymphoctyes. When an alkylating agent was used ex vivo, MMS, ursolic acid and (-

)-epigallocatechin-gallate protected against this type of damage in colonocytes, but not in 

lymphocytes. The expression of a base excision repair protein, OGG1, was evaluated by 

western blot and both natural compounds were found to decrease the expression of this 

protein. This could be explained by the fact that if the compounds exert their antioxidant 

properties by reducing the levels of DNA damage to begin with, then there is no need to 

increase the transcription levels of the protein. So in this section we demonstrated the 

potential of an herbal tea and two isolated dietary compounds to protect against colon 

carcinogenesis. In this study, DCA was also used, but it did not induce DNA damage 

itself or increase DNA damage induced by MMS.  

In chapter 5, we adapted a version of the CoMeth assay to be used for screening 

of epigenetic compounds with DNMT inhibiting potential. We used a hMLH1 silenced 

cell line and reactivated the expression of the protein by using 5-azacytidine. We then 

used BG and MNU, as in the CoMeth assay, to inactivate MGMT and induce the 

O6methylguanine lesion. The difference of DNA damage we found between treatment 

with 5-aza + BG + MNU and BG + MNU alone is DNA damage induced by the 

reactivation of hMLH1, proving that the compound tested, in this case a well-known 

demethylating agent, has demethylating activity. We further characterized this model by 

observing the induction of cell death after 72 and 96 h incubation with the 5-aza + BG + 

MNU, typical phenotype of MMR proficient cells with inhibited MGMT and 

O6methylguanine lesion corrected by the MMR system. By western blot, we observed 

efficient inhibition of MGMT by BG and transcription of MLH1 protein by 5-aza. We 

also observed an increase of p53 protein with 5-aza treatment. This increase could be 

explained by the reactivation of DAPK, also found silenced, and an autoregulatory 

feedback loop with p53. We further tested several natural compounds and their ability to 

act as demethylating agents. By the comet assay, we observed that EGCG showed DNA 

damage levels similar to 5-aza. It is known that EGCG is an inhibitor of DNMT activity, 

and therefore a demethylating agent, so this helps to further validate our assay. 
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In conclusion, this work demonstrates the chemopreventive effects of natural 

compounds, Salvia officinalis tea, ursolic acid and EGCG. These compounds protect 

against DNA damage and show colorectal cancer chemopreventive activity. We also 

demonstrated the deleterious effects of deoxycholic acid and ursodeoxycholic acid and 

characterized the molecular alterations induced by these bile acids. Not only does DCA 

promoter cell turnover, it inhibits DNA repair proteins, enhancing its tumor promoting 

ability. UDCA inhibits DNA repair proteins and enhances DCA-induced apoptosis. 

Finally, we developed a new adaptation of the comet assay to detect possible 

demethylating compounds. More studies are needed to safely add these compounds to 

dietary strategies for colorectal cancer prevention. 

  

2 – Further perspectives 

 

The studies presented in this thesis were carried out to increase our knowledge in 

dietary compounds that can be inserted into dietary strategies for cancer prevention. 

Despite all the work presented here, many questions remained unanswered and many 

more appeared. 

The studies with DCA demonstrated increase of apoptosis, increase of DNA 

damage and increase of signaling pathways that control cell proliferation. It has been 

demonstrated elsewhere that low and high concentrations of DCA have different effects 

on cell proliferation. Studies with lower concentrations of DCA to compare with the 

effects of high concentrations would give more information on the effects of this bile acid 

in colon carcinogenesis. The preventive effects of UDCA before DCA needs further 

investigation. The effects presented in this thesis are different from the idea that UDCA 

is preventive. More studies with different concentrations and different time points could 

help clarify this inconsistency. 

We tried to develop an in vitro model of the AOM-induced colorectal 

carcinogenesis using Caco-2 cell line. The effects found with the conditions tested did 

not correlate with the alterations found in the in vivo model. Evaluation of the effect of 

longer periods of incubation with AOM to verify if longer time points are needed to 

develop this in vitro model. Also, we can use BG before AOM exposure and evaluate 

MAPK pathway and if there is induction of alterations in this pathway. If it is possible to 

develop the model, using natural compounds to prevent AOM alterations in vitro for 
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screening processes. The most promising compounds can then be used in the in vivo 

model to verify if the effects seen in vitro are also seen in vivo. 

In chapter V, we developed a method to study possible demethylating agents. 

Further studies are needed to validate this method. MS-PCR could be done to verify the 

reactivation of MLH1 expression in the model. Also, 72 and 96 h incubations for the 

comet assay could be done to see if the effect is more pronounced with longer periods of 

incubation. Also, western blot of the natural compounds + BG + MNU should be done to 

observe the expression of MLH1 protein.  
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