
Nuno Alexandre Ramos de Carvalho

November 2014

U
M

in
ho

|2
01

4

An Ontology Toolkit for Problem
Domain Concept Location in Program
Comprehension

A
n

 O
n

to
lo

g
y

To
o

lk
it

 f
o

r
P

ro
b

le
m

 D
o

m
a

in

C
o

n
ce

p
t

Lo
ca

ti
o

n
 in

 P
ro

g
ra

m
 C

o
m

p
re

h
e

n
si

o
n

N
un

o
Al

ex
an

dr
e

R
am

os
 d

e
C

ar
va

lh
o

Universidade do Minho

Escola de Engenharia

The MAP Doctoral Program in Computer Science
of the Universities of Minho, Aveiro and Porto

Universidade do Minho

universidade de aveiro

November 2014

Supervisors:

Professor Doutor José João Almeida

Professor Doutor Maria João Varanda

Nuno Alexandre Ramos de Carvalho

An Ontology Toolkit for Problem
Domain Concept Location in Program
Comprehension

Universidade do Minho

Escola de Engenharia

The MAP Doctoral Program in Computer Science
of the Universities of Minho, Aveiro and Porto

Universidade do Minho

universidade de aveiro

STATEMENT OF INTEGRITY

I hereby declare having conducted my thesis with integrity. I confirm that I have not used plagiarism or any

form of falsification of results in the process of the thesis elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, _____________________________

Full name: ___

Signature: __

Acknowledgments

I would like to thank all the persons that helped and supported me during this PhD, and
dedicate the final work and results to all of them. I would like to express my graࢢtude
in parࢢcular to:

• my advisors, Prof. José João Almeida and Prof. Maria João Varanda;

• a special thanks to Prof. Pedro Rangel Henriques;

• a word of thanks to Alberto Simões, Prof. Luís Soares Barbosa, Prof. José Nuno
Oliveira, Luís Fernandes, Nuno Oliveira, the CROSS project team, and the Per-Fide
project team.

This work was supported by the CROSS project1, the Per-Fide project2, and the Univer-
sity of Minho School of Engineering3. Finally, I would like to acknowledge the commit-
tee of the MAP-i Doctoral Program.

1FCT contract under reference PTDC/EIA-CCO/108995/2008.
2FCT contract under reference PTDC/CLE-LLI/108948/2008.
3This work was parࢢally funded by Naࢢonal Funds through the FCT - Fundação para a Ciência e a Tec-

nologia (Portuguese Foundaࢢon for Science and Technology) within project PEst-OE/EEI/UI0752/2014.

v

AnOntology Toolkit for ProblemDomain Concept Locaࢢon in
Program Comprehension

So[ware maintainers are o[en challenged with source code changes in unfamiliar pro-
grams to improve so[ware systems, e.g., eliminaࢢng defects, introducing new features,
adapࢢng to reality shi[s. To undertake these tasks a sufficient understanding of the sys-
tem (or at least a part of it) is required. One of the most meࢢ consuming acࢢvity during the
understanding process is locaࢢng which parts of the code are responsible for which key
funcࢢonality or feature - concept (or feature) locaࢢon. Details inherent to the different
languages involved (natural languages used to describe concepts in the real world, versus
the programming languages used to implement programs), and their different levels of
abstracࢢon, entail the major challenges during these acࢢviࢢes.

This dissertaࢢon introduces the use of mappings for creaࢢng semanࢢc bridges be-
tween the so[ware system and its applicaࢢon domain, to enhance concept locaࢢon, and
other so[ware understanding acࢢviࢢes. The generic proposed approach for building map-
pings is divided in three main steps: (i) model, (ii) calculate, and (iii) devise views. The goal
during the first step is to model relevant domains using ontologies to convey the informa-
onࢢ of interest, for example, model the so[ware system (the program), or the applicaࢢon
domain (the problem). Once the ontologies (models) are available, the second step im-
plies performing arbitrary calculaࢢons to create, organize, or infer new informaࢢon about
each domain. During the final step, specific views are cra[ed based on informaࢢon avail-
able in the different models, that emphasize elements and traits of interest.

During this work, a set of frameworks and libraries were developed, including generic
methods and tool composiࢢons, that allowed the implementaࢢon of the described ap-
proach in a elegant (simple but effecࢢve) way. This toolkit was used to develop an en-
vironment that features a set of applicaࢢons that enhance program comprehension ac-
.esࢢviࢢ A set of pracࢢcal experiments were performed to measure tools (individual and
composed) effecࢢveness, and a final overarching experience draws conclusions about the
advantages of the featured techniques from a maintainers point of view, while perform-
ing so[ware debugging tasks, and the benefits in general of exploring mappings between
the program and the problem domain.

UmKit Ontológico para Localização de Conceitos do Domínio
do Problema na Compreensão de Programas

Programadores são muitas vezes confrontados com alterações do código de programas
desconhecidos para melhorar os sistemas de so[ware, eliminar defeitos, introdução de
novas funcionalidades, ou adaptação a novas realidades. Para realizar estes tarefas é
necessário uma compreensão suficiente do sistema (ou parte dele). Uma das acࢢvidades
mais demoradas durante o processo de compreensão é localizar as partes do código re-
sponsáveis por recursos chave ou funcionalidades - localização de conceitos. Detalhes
inerentes às diferentes linguagens envolvidas (linguagens naturais uࢢlizadas para descr-
ever conceitos no mundo real, versus linguagens de programação uࢢlizadas nos progra-
mas), e os seus diferentes níveis de abstração, são responsáveis pelos principais desafios
durante estas aࢢvidades.

Esta dissertação introduz o uso de mapeamentos para a criação de pontes semânࢢcas
entre o sistema de so[ware e o seu domínio de aplicação, para melhor localizar conceitos,
e outras acࢢvidades de compreensão de programas. A abordagem proposta para a criação
de mapeamentos está dividida em três etapas principais: (i) modelar, (ii) calcular, e (iii)
criar pontos de vista. O objecࢢvo da primeira etapa é modelar domínios relevantes us-
ando ontologias para representar a informação de interesse, por exemplo o modelo do
sistema de so[ware (programa), ou o domínio da aplicação (o problema). Assim que as
ontologias (modelos) estejam disponíveis, o segundo passo implica a realização de cálcu-
los para criar, organizar ou inferir novos dados sobre cada domínio. Durante a etapa final,
são criadas vistas específicas com base em informação disponível nos diferentes modelos,
que enfaࢢzam elementos e caracterísࢢcas de interesse.

Durante este trabalho, desenvolveram-se um conjunto de frameworks e bibliotecas,
incluindo métodos genéricos e composições de ferramentas, que permiࢢram a implemen-
tação da abordagem descrita de uma forma elegante (simples mas eficaz). Este kit de fer-
ramentas foi uࢢlizado para desenvolver um ambiente que disponibiliza um conjunto de
aplicações que ajudam em aࢢvidades de compreensão de programas. Foram realizadas
um conjunto de experiências práࢢcas para medir a eficácia de algumas ferramentas (in-
dividualmente e compostas), e uma experiência final mais abrangente permite rarࢢ con-
clusões sobre as vantagens da uࢢlização das técnicas discuࢢdas do ponto de vista do pro-
gramador, durante a execução de tarefas de depuração de so[ware, e os bene߶cios em
geral de explorar mapeamentos entre o domínio do programa e o domínio do problema.

Preface

This document is a thesis in Computer Science (area of Program Comprehension) submit-
ted to Universidade do Minho, Braga, Portugal.

Document structure

Part I - Introducࢢon

Introduces the subject, presenࢢng some basic concepts and ideas, the main challenges
and goals, including the major research hypothesis.

Part II - Background and State-of-the-Art

Reviews some background concepts, methods and techniques used during this work, and
discusses some related work available in the literature.

Part III - Ontology-based Concept Locaࢢon

These chapters describe in detail the major contribuࢢons of this work, including the de-
scripࢢon and analysis of the implemented libraries and frameworks.

Part IV - Conclusion

Closing chapters presenࢢng some concluding remarks and discussion, including some trends
for future work.

Appendices

Complementary informaࢢon is presented on the appendices.

xi

Contents

Acronyms xix

I Introducࢢon 1

1 Introducࢢon 3
1.1 The Problem . 5
1.2 Moࢢvaࢢons . 6
1.3 Main Contribuࢢons . 8
1.4 Document Outline . 11

II Background And State-of-the-Art 13

2 Program Comprehension 15
2.1 Mental Models and the Cogniࢢve Process 16

2.1.1 Bo�om-Up Theories . 17
2.1.2 Top-Down Theories . 17
2.1.3 Other Approaches . 18

2.2 Concept and Feature Locaࢢon . 19
2.2.1 Formal Concept Analysis . 20
2.2.2 Staࢢc Analysis . 21
2.2.3 Dynamic Analysis . 22
2.2.4 Textual Approaches . 24
2.2.5 Combined Techniques . 25

xiii

xiv Contents

2.2.6 Other Approaches . 26
2.2.7 Tools . 26

2.3 Program Idenࢢfiers Normalizaࢢon . 27
2.3.1 Current Approaches . 28

2.4 Knowledge Domains . 30
2.4.1 The Problem Domain . 30
2.4.2 The Program Domain . 31

3 Ontologies 33
3.1 Introducࢢon and Definiࢢon . 33
3.2 Representaࢢon and Formats . 35
3.3 Tools and Libraries . 42
3.4 Ontologies and So[ware Engineering 44

4 Informaࢢon Retrieval 45
4.1 Precision and Recall . 45
4.2 LSI . 47
4.3 �-idf . 47

5 Natural Language Processing 49
5.1 Parsing . 50
5.2 Lemmaࢢzaࢢon . 50
5.3 Part-of-Speech Tagging . 51
5.4 Parallel Corpora . 51
5.5 Probabilisࢢc Translaࢢon Dicࢢonaries 52
5.6 Semanࢢc Relatedness . 53
5.7 Tools and Frameworks . 53
5.8 NLP and So[ware Engineering . 54

III Ontology-based Concept Locaࢢon 55

6 Domain Knowledge Representaࢢon 57
6.1 The Program Domain . 60

Contents xv

6.1.1 Classes and Instances . 67
6.1.2 Data and Object Proprieࢢes 67

6.2 The Problem Domain . 69
6.3 Query Domains . 70
6.4 Conclave OTK – The Ontology Toolkit 71

6.4.1 Formal Definiࢢons . 72
6.4.2 Operaࢢons and Informaࢢon Handling 75

7 The Concept Mapper 83
7.1 The Query Language . 85
7.2 The locate Funcࢢon . 88
7.3 The map Funcࢢon . 90
7.4 The Scoring Funcࢢon . 91

7.4.1 kPSS Based Scoring Funcࢢon 94
7.4.2 Probabilisࢢc Synonyms Sets 99

7.5 Conclave Concept Mapper . 101

8 The Conclave Environment 105
8.1 From Code to Resources: Clang Conclave 107
8.2 From Idenࢢfiers to Sets of Full Terms: Lingua IdSpli�er 110

8.2.1 The Spliࢰng Approach . 111
8.2.2 Documentaࢢon Corpus . 119
8.2.3 Custom Corpus-based Dicࢢonary 120
8.2.4 Other Dicࢢonaries . 123

8.3 From So[ware File Tree to Ontologies: DMOSS Toolkit 123
8.3.1 First Pass: Gathering Informaࢢon 127
8.3.2 Second Pass: Reducing Results 129
8.3.3 Building Reports . 130
8.3.4 Toolkit Plugins . 132
8.3.5 Traits Versus Plugins . 134

8.4 Generalizing the Creaࢢon and Populaࢢon of Ontologies: Conclave Uࢢls 135
8.4.1 Iniࢢalizing Ontologies . 135
8.4.2 Populaࢢng Ontologies . 136

xvi Contents

8.5 The Conclave Environment . 137
8.6 Conclave Tour . 139

9 Experimental Validaࢢon 147
9.1 kPSS Experimental Validaࢢon . 149

9.1.1 Results and Discussion . 150
9.2 LIdS Experimental Validaࢢon . 151

9.2.1 Creaࢢng the Oracles . 152
9.2.2 Accuracy . 154
9.2.3 Precision and Recall . 154
9.2.4 Results Discussion . 155
9.2.5 Threats to Validity . 158

9.3 LIdS Experimental Comparison . 159
9.3.1 First Experiment . 159
9.3.2 Second Experiment . 160
9.3.3 Threats to Validity . 164

9.4 Concept Mapper Locate Experimental Validaࢢon 164
9.4.1 Threats to Validity . 167

9.5 Mappings Experimental Validaࢢon . 168
9.5.1 Results Discussion . 170
9.5.2 Threats to Validity . 172

9.6 The Development Point of View . 173

IV Conclusion 177

10 Final Remarks 179
10.1 Future Work . 183

Appendices 187

A Introducࢢon to the Haskell Notaࢢon 187

B Introducࢢon to Template Toolkit 193

Contents xvii

C Introducࢢon to SPARQL and OTK Queries 197

D Program Ontology Template 201

E Survey Pages 207

xviii Contents

Acronyms

AOIG Acࢢon-Oriented Idenࢢfier Graph.

ASDG Abstract System Dependence Graph.

CSV Comma-Separated Values.

DFT Dynamic Feature Traces.

FCA Formal Concept Analysis.

FEAT Feature Exploraࢢon and Analysis Tool.

IEEE Insࢢtute of Electrical and Electronics Engineers.

IR Informaࢢon Retrieval.

kPSS kind-of Probabilisࢢc Synonyms Set.

LSI Latent Semanࢢc Indexing.

NLP Natural Language Processing.

OO Object Oriented.

OTK Ontology Toolkit.

OWL Web Ontology Language.

xix

xx Acronyms

PC Program Comprehension.

PTD Probabilisࢢc Translaࢢon Dicࢢonary.

RDF Resource Descripࢢon Framework.

SBP Scenario Based Probabilisࢢc.

SDG System Dependence Graph.

SE So[ware Engineering.

SKOS Simple Knowledge Organisaࢢon System.

SPARQL Simple Protocol and RDF Query Language.

SVD Singular Value Decomposiࢢon.

�-idf Term Frequency - Inverse Document Frequency.

TT Template Toolkit.

List of Figures

1.1 Natural language versus formal languages levels of abstracࢢon gap car-
toon. 7

3.1 OWL example. 36

3.2 SKOS example. 37

3.3 Topic Maps example. 39

3.4 ISO 2778 example. 39

3.5 Biblio::Thesaurus API example. 40

3.6 RDF example. 40

3.7 CycL example. 41

3.8 CycL inference expression example. 41

5.1 Parsing tree example. 50

5.2 POS tagging example. 51

6.1 Class hierarchy of concepts transported from the source code to the
program model. 62

6.2 Graph represenࢢng the knowledge described by the triples described
in Table 6.2. 66

6.3 Graph represenࢢng a sub-set of the problem ontology automaࢢcally
generated for the tree package. 70

6.4 Process the so[ware system, and related arࢢfacts, using a set of hetero-
geneous techniques, to build resources that contain informaࢢon about
different domains. 80

xxi

xxii List of Figures

6.5 Convey the informaࢢon available in the resources to a set of well de-
fined ontologies. 81

7.1 Syntax diagram for the query string grammar. 86
7.2 The Concept Mapper framework retrieves informaࢢon from ontologies,

and produces views of elements of interest. 103
7.3 General pa�ern for compuࢢng scores between elements in ontologies. 103

8.1 Laࢰce for spliࢰng the “strcmp” idenࢢfier. 112
8.2 Laࢰce for spliࢰng the “parse_userstr” idenࢢfier. 112
8.3 Word automaton for the ”mesortࢡ“ idenࢢfier. 115
8.4 DMOSS so[ware package tree like structure representaࢢon. 125
8.5 DMOSS so[ware package tree like structure representaࢢon. 130
8.6 Conclave system web interface front page, main applicaࢢons are di-

vided in blocks. 140
8.7 Conclave ontology browser, illustraࢢon of the program ontology for the

tree package. 140
8.8 Conclave program idenࢢfiers processing using LIdS. 141
8.9 A mapping produced by Concept Mapper using the Conclave environ-

ment web interface. 142
8.10 Screenshots of HTML reports produced using DMOSS for several so[-

ware packages, including analyzed features and corresponding grades. . 143
8.11 Conclave main workflow, combining techniques, tools, and approaches

discussed in Chapter 6, 7 and 8. 145

9.1 F-measure means for correct splits and correct terms sets, for the tree
(le[) and for the AbcMidi (right) packages. 156

9.2 F-measure means for JHotDraw and Lynx using different approaches. . 161

List of Tables

3.1 Summary of ontologies ediࢢng tools and libraries. 44

6.1 Resulࢢng resource of processing Program 6.1 with the C source analyz-
ing tool. 64

6.2 Resulࢢng resource of processing Program 6.1 with the C source analyz-
ing tool. 65

6.3 Possible definiࢢon of a template to create sets of triples for funcࢢon
definiࢢons, the variable elements (inside [% and %]) are instanࢢated
with informaࢢon from the resource. 66

6.4 Available classes in the program ontology for instanࢢaࢢng program el-
ements. 68

6.5 Available object proprieࢢes for program elements (relaࢢons between
instances), and corresponding range classes. 68

6.6 Available data proprieࢢes for program elements (relaࢢons between in-
stances and data of an arbitrary type), and corresponding data types. . 69

6.7 Summary of most commonly used operaࢢons on ontologies provided
by Conclave OTK. 79

7.1 Available parameters to define query properࢢes. 86
7.2 kind-of Probabilisࢢc Synonyms Set (kPSS) of order 3 for the term “insert”. 94
7.3 Synset terms per order n in a kPSS. 96
7.4 PSS for the term “tesࢡng”. 99

8.1 Nodes of interest idenࢢfiers in the libclang parsing tree. 110
8.2 Dicࢢonary valid words per string index for the idenࢢfier .”mesortࢡ“ . . 114

xxiii

xxiv List of Tables

8.3 Top entries in the idenࢢfier ”mesortࢡ“ rank, sorted by score from high-
est to lowest. 115

8.4 Derived regular expressions examples. 122
8.5 Top entries in the idenࢢfier ”mesortࢡ“ rank, sorted by score from high-

est to lowest. 122

9.1 Percentage of terms found in WordNet synsets. 150
9.2 Some so[ware packages characterisࢢcs. 153
9.3 Correct split accuracy means and correct terms accuracy means for tree

and AbcMidi, in the three seࢰngs. 154
9.4 Precision, recall, and f-measure means, for correct splits and correct

terms sets, for tree and AbcMidi packages, in the three seࢰngs. 156
9.5 JHotDraw and Lynx main characterisࢢcs. 160
9.6 Precision, recall, and f-measure for several approaches on JHotDraw. . . 161
9.7 Precision, recall, and f-measure for several approaches on Lynx. 162
9.8 Mean per-idenࢢfier accuracy for each programming language subset for

the Ludiso oracle. 163
9.9 Mean precision (P), recall (R), and f-measure (F) for each programming

language subset for the Ludiso oracle, sorted by mean overall accuracy. 165
9.10 Informaࢢon about the analyzed packages during the Concept Mapper

locate funcࢢon empirical validaࢢon. 167
9.11 Results of the empirical validaࢢon for the Concept Mapper locate funcࢢon.167
9.12 Measures results for the mappings analysis survey. 170
9.13 Feedback distribuࢢon for the mappings analysis survey feedback. . . . 172

C.1 OTK query templates for some common operaࢢons. 199

Part I

Introducࢢon

1

Chapter 1

Introducࢢon

Programmers have become part historian, part detecࢡve, and part
clairvoyant.

T.A. Corbi

Reality shi[s, bug fixes, updates or introducࢢon of new features o[en require source
code changes. These so[ware changes are usually undertaken by so[ware maintainers
that may not be the original writers of the code, or may not be familiar with the code
anymore. In order to carry out these changes, programmers need to first understand
the source code [158]. This task is probably the main challenge during so[ware main-
tenance acࢢviࢢes [37]. The programmer is able to understand the program when he or
she can explain the source code, and relate the code with the concepts in its problem
domain [10].

Reverse engineering is the process of discovering how an object or system works
through detailed and careful analysis of its structure and how available operaࢢons are
performed. This approach has its origin in the analysis of hardware, mainly for military
purposes, and has been used for years to infer how, and why, a mechanic system is
assembled without any prior knowledge about its original design and/or implementa-
.onࢢ For many years now that this discipline has also proven useful under the umbrella
of so[ware engineering, where the object of study is commonly a program. A similar
approach can be adopted: deduce how the so[ware works by analyzing and inspecࢢng

3

4 1. Introducࢢon

its building blocks and how they interact together to perform their role. This area of
interest is typically called Program Comprehension [111, 33].

Program Comprehension (PC) is a field of research concerned with the analysis and
understanding of applicaࢢons and so[ware source code, without previous knowledge
about it, or its design goals. It is also concerned with the study of how humans analyze
and comprehend source code, and the mental processes behind these acࢢviࢢes, with
the aim of devising methods and techniques that can assist during these processes.
Many methods and techniques are widely available, and new ones are conࢢnuously
being researched.

Comprehension and understanding acࢢviࢢes, and knowledge in general, are strongly
related with words and natural languages, and their acࢢve role as a transport protocol of
informaࢢon in and out of the human brain. When natural language words are weaved
together using mathemaࢢcal proprieࢢes, objects in the family of the ontologies start
to emerge. Hence, acࢢviࢢes in the field of PC are o[en coupled with the study of lan-
guages, not only programming languages used to write source code, but also natural
languages that are used foremost to discuss and reason about the original problem and
related domains of interest. Many of the techniques used in PC also rely on mappings
between human oriented concepts (described using natural language), and program
elements (implemented using programming languages) [125]. These are o[en used to
locate which parts of the program are responsible for addressing specific domain con-
cepts [10], and are usually referred in the literature as feature locaࢢon techniques [41].

The adopࢢon of tools in the family of program comprehension allows a be�er and
quicker understanding of so[ware programs being analyzed. Which helps fault detec-
onࢢ and bug discovery, and improves the development of be�er so[ware and also
helps maintaining it [113]. The use of these valuable approaches, and corresponding
tools, is a very valuable help while analyzing so[ware for finding or fixing bugs, discov-
ering faulty secࢢons of the so[ware, improving so[ware maintainability and overall
quality.

This PhD thesis introduces a new approach to devise an effecࢢve program com-

1.1. The Problem 5

prehension. It introduces the use of ontologies for describing program elements and
concepts, and also other related domains of knowledge. The presented approach is con-
cerned with first collecࢢng and organizing, on one side concepts from the program do-
main, and on the other side concepts from the applicaࢢon domain. Which elements to
explore, and concepts to capture, and which of these are conveyed to the program and
problem higher level representaࢢon. Once concepts are available on both the program
and the problem domain, the next step encompasses the creaࢢon of bridges between
domains, and which relaࢢons and elements can be explored as clamps. The definiࢢon of
these arࢢfacts helps closing the gap between the different levels of abstracࢢons of the
languages used in both domains – programming languages in the program domain, and
natural languages in the problem domain. Finally it explores the use of these bridges to
create mappings, and other fine-tuned views, of the program (and someࢢmes also the
problem) domain, that provide maintainers with insight and informaࢢon that can aid in
the understanding process and related acࢢviࢢes.

The remaining secࢢons of this chapter discuss the problem that this approach is
addressing; it briefly moࢢvates for studies in this area of research; and, discusses the
main contribuࢢons of this work. The chapter concludes with an outline of the remaining
chapters of this document.

1.1 The Problem

In order to change a program, either to add a new feature or to fix a problem, the main-
tainer needs to understand it. The programmer understands the program when he or
she can explain the source code, relate the code with the concepts in its applicaࢢon do-
main, and is able to comprehend the concepts in the program and the problem domain.
The challenge becomes to relate concepts described in natural languages – the problem
domain – and the formal programming languages that are used to write source code –
the program domain. For example, the task described in natural language as: ”reserve
an airline ”cketࢡ can be implemented as shown in the following snippet of pseudo code
[10]:

6 1. Introducࢢon

if (seat = request(flight) && available(seat)) then
reserve(seat, customer)

Once the programmer knows which real operaࢢons the code is implemenࢢng, he or she
can understand the meaning and context of the program elements and reason about
them, including verifying if it is working as intended. In this specific case as soon as
the programmer understands that this code is about reserving an airline ,cketࢢ he un-
derstands the expected behavior of the ”request”, ”available” and ”reserve” funcࢢons.
This example is trivial for the human brain to process, but teaching a machine to do this
systemaࢢcally is not easy.

The main problem to solve is accurately compute which real concepts a specific
program element is addressing. Common so[ware applicaࢢons are just too big and
complex, to apply a top-down strategy, or have knowledge about the complete sys-
tem [118]. Another major challenge, when addressing the problem of creaࢢng concept
mappings between different domains, is the different level of abstracࢢons used. An
evidence of this situaࢢon is the abstracࢢon level of programming languages used to
develop computer programs to address the iniࢢal problem, and the natural languages
used by humans to discuss, describe, and plan the problem outside the scope of source
code [134]. Figure 1.1 cartoon emphasizes this gap.

The main research hypotheses has been defined as:

Can an ontological mapping between the problem domain, the program domain,
and the real world effects of running the program, potenࢡally provide
addiࢡonal benefits over exisࢡng approaches for collecࢡng and relaࢡng

informaࢡon available in source code to enhance program comprehension?

1.2 Moࢢvaࢢons

Program comprehension is an area that helps programmers be�er understand so[ware
programs [14]. Most of the mesࢢ generally adopted techniques like program slicing
and chopping are combined together to illustrate views of the program to give a be�er,

1.2. Moࢢvaࢢons 7

"reserve an airline
ticket"

if (seat = request(flight)) &&
 available(seat)
then
 reserve(seat,customer)

M
IN

D
 T

H
E

 G
AP

Figure 1.1: Natural language versus formal languages levels of abstracࢢon
gap cartoon.

or quicker, understanding of the program. Several known tools can be used to analyze
source code. These technologies are important in so[ware engineering as they improve
program maintenance, debugging, tesࢢng, opࢢmizaࢢon and reuse.

The Linux Kernel1 is one of the most successful open source projects ever and is
a good example where the use of tools in the family of program comprehension can
be very helpful. The Kernel release 2.6.35 has 33 335 source files, which makes an
impressive total of 13 468 253 lines of code [36]. Imagine the iniࢢal effort required to
dwell in the source code trying to fix a bug without any previous help or guidance.

In other examples of applicaࢢon, it has been demonstrated how a tool that analy-
ses so[ware helped finding areas of source code responsible for applicaࢢon bugs. This
clearly reduced the meࢢ to find and fix the applicaࢢon problem [67]. This is a common
scenario in many companies that offer services in the area of so[ware refactoring, im-
provements, updates or maintainability. Murphy summarizes this general concern as:
“developers may be spending more meࢢ looking for relevant informaࢢon amongst the
morass presented than working with it” [110].

Nowadays, so[ware systems rule many aspects of our lives, and these systems are

1Available from: http://www.kernel.org, (Last accessed: 12-09-2014).

http://www.kernel.org

8 1. Introducࢢon

geࢰng more complex every day. Faulty so[ware, and related evoluࢢon and mainte-
nance acࢢviࢢes, have a direct impact on our day to day life, not only financial impact,
but also creaࢢng life-threatening situaࢢons [170]. Maybe one of the most famous ac-
cident caused by so[ware defects was the Ariane 5 explosion, less than a minute a[er
launch [42]. Another example is the crash of a Briࢢsh Royal Air Force helicopter in 1994
cosࢢng 29 lives, where sufficient evidence was found for the cause of the accident to
be related with a so[ware defect [133].

1.3 Main Contribuࢢons

The overarching goal of this work is to contribute to enhance program comprehension
tasks. In a broader sense, the main contribuࢢons of this work are:

• an increase awareness of the domain knowledge relevance, besides the source
code, in the field of PC, and also about the approaches adopted for knowledge
representaࢢon;

• a methodology for represenࢢng knowledge, including an ontology oriented for-
malism to describe knowledge from heterogenous domains;

• a methodology for creaࢢng relaࢢons between knowledge in different domains;

• a set of libraries and frameworks, to implement the devised methods and ap-
proaches to ease so[ware maintenance and evoluࢢon tasks.

Some of the contribuࢢons have already been materialized in the following publica-
onsࢢ (in no parࢢcular order):

• “An Ontology Toolkit for Problem Domain Concept Locaࢢon in Program Compre-
hension” [18], describes the general approach of using ontologies to devise meth-
ods and approaches in the context of PC, its’ problems and moࢢvaࢢons.

• “From Source Code Idenࢢfiers to Natural Language Terms” [20], discusses a new
approach to convey program indenࢢfiers to full sets of terms, by spliࢰng muࢢ-
term idenࢢfiers, and expanding abbreviaࢢons.

1.3. Main Contribuࢢons 9

• “Open Source So[ware Documentaࢢon Mining for Quality Assessment” [26], and
“DMOSS: Open Source So[ware Documentaࢢon Assessment” [27] are concerned
with documentaࢢon analysis and extracࢢng informaࢢon from non-source code
files usually available in so[ware packages.

• “A Framework for Modular and Customizable So[ware Analysis” [101], illustrates
the integraࢢon of the DMOSS applicaࢢon (described in detail in Chapter 8) in a
broader system for so[ware analysis.

• “Defining a Probabilisࢢc Translaࢢon Dicࢢonaries Algebra” [149], describes how to
create required resources to build some of the arࢢfacts used to compute scores
between terms, used later for scoring elements in searching and mapping oper-
aࢢons.

• “The Per-Fide Corpus: A New Resource for Corpus-Based Terminology, Contrasࢢve
Linguisࢢcs and Translaࢢon Studies” [4], discusses and illustrate many tools that
are used in the background to produce the resources required to build synsets
discussed in Chapter 7 and 8.

• “Conclave: Ontology-driven Measurement of Semanࢢc Relatedness Between Source
Code Elements and Problem Domain Concepts” [19], discusses the creaࢢon of
mappings between source code elements and domain concepts to measure the
semanࢢc relatedness between them.

• “Conclave: Wriࢢng Programs to Understand Programs” [23], illustrates how sys-
tems like Conclave enhance PC acࢢviࢢes, and how a set of well designed building
blocks eases building complex systems.

• “OML: A Scripࢢng Approach for Manipulaࢢng Ontologies” [25], defines a lan-
guage to describe operaࢢons over ontologies.

• “Weaving OML in a General Purpose Programming Language” [24], describes an
approach, and required tools, to weave the definiࢢon of ontology-aware opera-
onsࢢ inside a more general purpose programming languages to implement appli-
caࢢons.

10 1. Introducࢢon

• “PFTL: A Systemaࢢc Approach For Describing Filesystem Tree Processors” [28],
structural processing of filesystem trees to produce arbitrary side effects, a so[-
ware package is as a tree of directories and files.

• “Structural alignment of plain text books” [138], text alignment is one of the main
processes for obtaining parallel corpora, required to build Natural Language Pro-
cessing (NLP) resources.

• “Generaࢢng flex lexical analyzers for Perl Parse::Yapp” [150], extends the syntax
of a well known parser generaࢢon to automaࢢcally build lexical analyzers.

• “Probabilisࢢc SynSet Based Concept Locaࢢon” [21], discusses how synonyms sets
can be used in concept locaࢢon tasks.

Besides publicaࢢons, contribuࢢons also include a set of tools and libraries devel-
oped during this work, and that are publicly available under an open source license, in
ready to install libraries or applicaࢢons. A set of the major frameworks and libraries
developed and made available follows, including the public repository where develop-
ment is being tracked, and everyone is invited to download the tool, browse the code,
and submit comments (or issues found):

Conclave OTK
The ontology toolkit, that includes the ontology definiࢢon, storage backends, and
methods for manipulaࢢng and retrieving informaࢢon.
Public repository: https://github.com/nunorc/Conclave-OTK

Conclave Concept Mapper
The framework for performing searches and building maps, exploring data stored
used Conclave OTK.
Public repository: https://github.com/nunorc/Conclave-Concept-Mapper

Conclave Uࢢls
Set of specific features in the scope of so[ware engineering used in the Conclave
environment.
Public repository: https://github.com/nunorc/Conclave-Utils

https://github.com/nunorc/Conclave-OTK
https://github.com/nunorc/Conclave-Concept-Mapper
https://github.com/nunorc/Conclave-Utils

1.4. Document Outline 11

Lingua IdSpli�er
Generic applicaࢢon for spliࢰng textual idenࢢfiers into words.
Public repository: https://github.com/nunorc/Lingua-IdSplitter

DMOSS
Applicaࢢon for analyzing non-source code content.
Perl distribuࢢon: http://search.cpan.org/dist/DMOSS/

1.4 Document Outline

A brief outline of the remaining of this document follows:

Chapter 2 presents some currently available knowledge in the literature about PC, de-
scribing some state-of-the-art theories and methods closely related with this work.

Chapter 3 introduces some ontology concepts, and state-of-the art representaࢢon for-
mats and manipulaࢢon tools.

Chapter 4 describes some Informaࢢon Retrieval (IR) techniques and common metrics
used during this work.

Chapter 5 describes some NLP concepts, algorithms and tools that are used by some
of the implemented tools.

Chapter 6 discusses the ontology oriented knowledge representaࢢon approach devised
to store knowledge about different domains.

Chapter 7 describes in detail the method for creaࢢng semanࢢc relaࢢons between do-
mains and searching features.

Chapter 8 describes in detail some of the tools implemented during this work and Con-
clave, the final proof-of-concept system.

Chapter 9 presents experimental validaࢢons that help to draw conclusions about the
effecࢢveness of some of the tools implemented during this work.

https://github.com/nunorc/Lingua-IdSplitter
http://search.cpan.org/dist/DMOSS/

12 1. Introducࢢon

Chapter 10 concludes this document with some final remarks and trends for future
work.

Appendix A introduces the Haskell notaࢢon that is used in some chapters to describe
relevant funcࢢons, and how they are composed together.

Appendix B introduces the Template Toolkit templaࢢng engine, used in Chapter 6 to
define templates for some common operaࢢons.

Appendix C introduces the SPARQL query language, and briefly describes how OTK uses
it to perform operaࢢons on ontologies.

Appendix D presents the template used to bootstrap the program domain ontology.

Appendix E illustrates the survey proposed during the mappings experimental valida-
onࢢ discussed in Chapter 9.

A couple of remarks regarding the content of this document. Mainly during Chap-
ter 6 and 7, to clearly define funcࢢons (signatures, body or data types) the Haskell pro-
gramming language is used. Most of the mesࢢ the Haskell syntax is followed strictly,
i.e., the code can be executed by an Haskell compiler, but someࢢmes in order to in-
crease readability some details are simplified, resulࢢng in non-valid code, but hopefully
easier to be read by humans. Appendix A provides a brief introducࢢon to the Haskell
notaࢢon, emphasizing the most common expressions and statements used in this doc-
ument. Algorithms descripࢢon, mainly along Chapter 8, are wri�en using a more al-
gorithmic natural approach, and together with the text should be easy to follow. Most
example programs are wri�en in C, and are not simplified in any way.

Part II

Background And State-of-the-Art

13

Chapter 2

Program Comprehension

Program Comprehension (PC) is an area of so[ware engineering concerned with the
study of how so[ware engineers understand and maintain programs [158]. When a
programmer or maintainer is able to explain the program structure and behavior, its
operaࢢons and effects, including the relaࢢons between source code elements and its
applicaࢢon domain, the program (or a part of it) is understood [10]. The understanding
acࢢvity is a fundamental stage to devise so[ware changes during so[ware maintenance
and evoluࢢon acࢢviࢢes [158, 37]. Program evoluࢡon and so[ware evoluࢡon are used
to encompass the progression of a so[ware system through maintenance, including
enhancements [86].

So[ware Maintenance is defined by the Insࢢtute of Electrical and Electronics Engi-
neers (IEEE) Standard 1219 as:

Definiࢢon 1 “The modificaࢡon of a so[ware product a[er delivery to correct faults, to
improve performance or other a�ributes, or to adapt the product to a modified envi-
ronment.” [2] ♢

Researchers have idenࢢfied five tasks that require the understanding of a program dur-
ing So[ware Maintenance: (i) adapt to new requirements; (ii) improve performance,
efficiency or maintainability; (iii) correct errors or problems; (iv) idenࢢfy and integrate
reusable components; and, (v) code refactoring [158]. Understanding the code is among
the first acࢢviࢢes for any of these tasks, thus increasing the moࢢvaࢢon for studies in this

15

16 2. Program Comprehension

field of research.

Understanding source code is a challenging acࢢvity, mainly because of the gap be-
tween the applicaࢢon domain, and the programming domain languages and levels of
abstracࢢon [134]. For example, a maintainer analyzing the following funcࢢon definiࢢon
f1:

f1 a b = sqrt (a2 + b2)

understands the elementary algebraic operaࢢons involved, but in order to fully under-
stand the program, it needs to know that this funcࢢon uses the Pythagorean theorem
to compute the hypotenuse. This enables the relaࢢon between the program elements
and real world concepts, e.g., a and b are variables that represent sides of a triangle.
This allows the programmer to validate if the funcࢢon is working properly, since the
result of such funcࢢon is well defined outside the scope of the program.

A significant body of research exists on cogniࢢve models to describe how program-
mers create mental representaࢢons of the code during so[ware maintenance and evo-
luࢢon. The next secࢢons describe some key concepts and models.

2.1 Mental Models and the Cogniࢢve Process

During the understanding process, through observaࢢon, inference or interacࢢon with
the so[ware, the maintainer creates and maintains a mental structure of the knowledge
about the program.

Definiࢢon 2 “A mental model describes a maintainer’s mental representaࢡon of the
program to be understood.” [153] ♢

Definiࢢon 3 “A cogniࢡvemodel describes the cogniࢡve processes and informaࢡon struc-
tures used to form the mental model.” [153] ♢

There is a varied collecࢢon of cogniࢢve models available, with different character-
isࢢcs. Some models are categorized as bo�om-up or top-down approaches, others use

2.1. Mental Models and the Cogniࢢve Process 17

some kind of hybrid or opportunisࢢc approach, where the maintainer shi[s between
the most suitable approach according to available informaࢢon, or previous knowledge
(e.g., Mayrhauser and Vans approach [158]). The following secࢢons introduce some key
cogniࢢve theories available in the literature.

2.1.1 Bo�om-Up Theories

Bo�om-up approaches propose that, the cogniࢢve process of creaࢢng a model starts at
the bo�om, and moves upwards, i.e., the representaࢢon of the program is built by ana-
lyzing the source code (the bo�om) and then building higher level abstracࢢons referred
as chunks [144, 107].

Shneiderman and Mayer bo�om-up model [145], disࢢnguishes between syntacࢢc
and semanࢢc knowledge of programs. The syntacࢢc knowledge refers to language de-
pendent knowledge and is concerned with elements in the code. The semanࢢc knowl-
edge refers to the applicaࢢon domain, is language independent, and is built in progres-
sive layers, starࢢng from the code unࢢl a mental model of the program is formed. The
final mental model is achieved by chunking (abstracࢢng, by joining, conceptually related
lower level units [107]) and aggregaࢢng semanࢢc components and syntacࢢc elements.

In Pennington bo�om-up model [115], the programmer defines two mental struc-
tures: the program and the situaࢢon model. The program model captures the sequence
of operaࢢons and procedures creaࢢng a control-flow abstracࢢon of the program. The
model is developed by chunking and cross-referencing (connecࢢng elements at differ-
ent levels of abstracࢢon [158]) program units with textual structure abstracࢢons. The
situaࢢon model includes knowledge about data-flow and funcࢢonal abstracࢢons, re-
quiring knowledge about the applicaࢢon domain.

2.1.2 Top-Down Theories

Brooks top-down theory [14], assumes that the understanding process is first based on
reconstrucࢢng the domain knowledge and then mapping this knowledge to the source
code. This is achieved by a successive formalizaࢢon and validaࢢon of hypothesis. The
presence of hypothesized structures or operaࢢons (beacons) refutes or confirms the

18 2. Program Comprehension

iniࢢal, or subsidiary refined, hypothesis.

Soloway and Ehrlich in [152] claim that programmers use two disࢢnct types of knowl-
edge during the understanding process: programming plans, generic fragments of code
that represent typical scenarios in programming; and rules of programming discourse,
which capture coding standards, algorithm implementaࢢons, and other programming
convenࢢons. Rules of discourse and beacons are used to decompose plans and goals,
unࢢl a hierarchy of plans (built top-down) is formed. Expert programmers, i.e., pro-
grammers with more years of experience and pracࢢce, are bound to have a richer knowl-
edge of programming plans and rules of discourse, and are prone to work their way
faster down the understanding process. Although, when expected rules of discourse
are violated, the understanding meࢢ of expert programmers is roughly the same as
novice programmers.

2.1.3 Other Approaches

Mayrhauser and Vans approach [158], describes a hybrid approach, where a top-down
or bo�om-up strategy is adopted by the programmer according to the situaࢢon. Namely,
Soloway’s top-down model and Pennington’s bo�om-up model. When the programmer
or maintainer is familiar with the code, beacons are idenࢢfied and the understanding
approach follows a top-down approach, otherwise a bo�om-up approach is adopted.

In Letovsky cogniࢢve model [89], a maintainer understanding a program uses a com-
binaࢢon of top-down and bo�om-up approaches, as best fits the current knowledge.
The model defines three elements: (i) a knowledge base, programmers exisࢢng knowl-
edge of the applicaࢢon domain, programming domain, programming plans, goals and
rules of discourse; (ii) a metal model, the program mental representaࢢon; and, (iii) an
assimilaࢢon process, the process used to evolve the mental model. During the assimila-
onࢢ process the maintainer performs inquiries, i.e., formulates quesࢢons, conjectures
about the answers, and then searches the code to verify these answers,

Li�man et al. describe an opportunisࢢc approach [91], where the maintainers use
either a systemaࢢc or as-needed comprehension strategy. A systemaࢢc approach allows
the creaࢢon of a mental model of the program based on informaࢢon about the code

2.2. Concept and Feature Locaࢢon 19

(staࢢc knowledge) and interacࢢons between elements of the program when executed
(casual knowledge). Maintainers adopࢢng an as-needed approach mental model is only
based on staࢢc knowledge, resulࢢng on a weaker mental representaࢢon of the program.

2.2 Concept and Feature Locaࢢon

Concept locaࢢon is the process of locaࢢng relevant domain concepts in source code, and
is a key task in the area of PC. This is typically the first step a programmer undertakes
in order to devise a code change.

Definiࢢon 4 A concept is a principle, an abstract idea, a single unit of knowledge, and
that typically has representaࢡon in a language, a term for example, or a symbol. ♢

Probably being a maintainer, and not the original developer, the programmer in
charge of updaࢢng the code knows the domain concepts of the the problem, but is
unaware where the implementaࢢon of these concepts is wri�en in the code. This is a
required task during most so[ware maintenance and evoluࢢon acࢢviࢢes, and has been
idenࢢfied as a real problem by so[ware engineering researchers and pracࢢࢢoners, thus
many techniques have been developed to address this specific problem.

grep is a common approach to find relevant keywords in source code. This uࢢlity
is used to find matches of terms which represent concepts that the current so[ware
maintainer is searching for. More advanced versions of this approach use regular ex-
pressions to match terms. This helps the programmer when looking for specific areas
of the code that address the concepts that require updaࢢng or revision. A major draw-
back of grep is that is basically a technique that finds a string in a text, it is not context
or program elements aware (meaning that it does not disࢢnguish if looking for a func-
onࢢ or a variable, or looking inside a specific class or module), and it does not take in
consideraࢢon any semanࢢc value that might be available (it is purely syntacࢢc). Such
drawbacks, shared by approaches like grep, moࢢvated researchers to devise more com-
plex strategies, able to provide a richer set of features to programmers and maintainers.

Concept locaࢢon techniques can be categorized by type of analysis: (i) dynamic
analysis, which is based in so[ware execuࢢon traces, and examines programs runࢢme

20 2. Program Comprehension

(e.g. [161, 164]); (ii) staࢢc analysis, based on staࢢc source code informaࢢon, such as
slicing, control or data flow graphs (e.g. [31, 129]); and, (iii) textual analysis, that ex-
plore natural language text found in programs like comments or documentaࢢon. This
last type can be based on IR methods (e.g. [4,5,26]), NLP (e.g. [18,41]), or pa�ern
matching (someࢢmes also referred as grep-like) based approaches (e.g. [14]).

The following secࢢon introduces Formal Concept Analysis (FCA) an underlying tech-
nique for Concept Locaࢢon, and Secࢢon 2.2.2 throughout 2.2.6 introduce some state-
of-the-art techniques available in the literature, organized by type of analysis.

2.2.1 Formal Concept Analysis

Formal Concept Analysis (FCA) [54] is a branch of mathemaࢢcal laࢰce theory that pro-
vides means to idenࢢfy meaningful groupings of objects that share common a�ributes,
and provides a theoreࢢcal model to analyze hierarchies of these groupings. The main
goal of FCA is to define a concept as a unit of two parts: (i) the extension, set of objects
that belong to the concept, and (ii) the intension, set of a�ributes that are common to
the objects under consideraࢢon.

The formal context is required by FCA, which indicates which a�ributes objects have.

Definiࢢon 5 A formal context is a triplet (O,A,R), where O is a set of objects, A is a
set of a�ributes, andR is a binary relaࢡon between objects and a�ributes (R ⊆ O×A).
♢

Formally, a set of concepts can be generated from the formal context using Def. 6, where
X is the extent, and Y is the intent.

Definiࢢon 6 A concept is a pair of sets (X, Y), such that: X = {o ∈ O | ∀a ∈ Y :

(o, a) ∈ R} and Y = {a ∈ A | ∀o ∈ X : (o, a) ∈ R}. ♢

The set of all concepts of a given formal context forms a parࢢal order via the superconcept-
subconcept ordering: ≤: (O1, A1) ≤ (O2, A2) ⇔ O1 ⊆ O2 or, dually (O1, A1) ≤
(O2, A2)⇔ O1 ⊆ O2. The set of all concepts of a given formal context and the parࢢal

2.2. Concept and Feature Locaࢢon 21

order ≤ form a concept laࢯce. The concept laࢰce is the starࢢng arࢢfact for further
analysis, it can be represented graphically or subject of more algebraic operaࢢons.

FCA has been used in the context of So[ware Engineering (SE) [151], for example, to
support requirement analysis (e.g., [44]), so[ware maintenance acࢢviࢢes (e.g, [5, 121]),
among others, a comprehensive survey is available in [155].

2.2.2 Staࢢc Analysis

Staࢢc analysis techniques inspect the source code, and explore its dependencies and
structure, without execuࢢng the program.

Chen and Rajlich present a computer assisted search method for locaࢢng features
and concepts related with a maintenance request [31]. This approach proposes the use
of Abstract System Dependence Graphs (ASDGs), an higher level abstracࢢon represen-
taࢢon of a program based on System Dependence Graphs (SDGs) [65, 64]. In an ASDG
verࢢces represent the components in the program (funcࢢons and global variables), call
edges describe funcࢢon calls and data flow edges describe flows of data between func-
onsࢢ and global variables. In each step of the search process a component is selected,
the search graph [30] is updated. During the search process the programmer role is to
make decisions from a possible set (e.g., choose a component to visit, check if goal is
reached), while the supporࢢng tools perform other tasks (e.g., update the search graph,
extract dependencies graphs). The process ends when the maintainer is saࢢsfied with
the set of relevant components visited.

Robillard and Murphy developed the Concern Graphs representaࢢon [129, 132],
that abstracts the implementaࢢon details of concerns, by storing only key structures,
and explicitly emphasizing the relaࢢonships between the different elements of a con-
cern. Concern Graphs are automaࢢcally extracted from source code, or intermediate
representaࢢons. Feature Exploraࢢon and Analysis Tool (FEAT) is the tool introduced to
create and explore Concern Graphs.

Walkinshaw presents an approach [159] that combines landmark methods – meth-
ods that have a key role in a parࢢcular feature – with slicing, to create a call graph of
the code related with a feature of interest.

22 2. Program Comprehension

Saul et al. in [139] present a set of algorithms to analyze rich APIs to find and rec-
ommend funcࢢons related with a given funcࢢon, based on a random-walk approach.
This approach relies only on the source code, which is always available.

Trifu approach [156], uses staࢢc data flow informaࢢon (using directed graphs) for
idenࢢfying concerns in Object Oriented (OO) programming systems, to support so[-
ware understanding acࢢviࢢes. This approach has been applied to the JHotDraw case
study and was able to idenࢢfy a significant number of concerns.

Robillard technique [128], from a set of program elements, produces a set of meth-
ods and fields of potenࢢal interest, based on topology of structural dependencies anal-
ysis. Each element in any of these sets, has associated a value that measures its rele-
vance. Relevance values are based on two metrics: (i) specificity, inversely proporࢢonal
to the number of elements related to it; and, (ii) reinforcement, directly proporࢢonal
to the number of elements related to it. This implies that a program element becomes
more specific, as fewer program elements are related to it. This approach was applied
to two medium sized so[ware systems, which has shown that it can help developers
selecࢢng program elements more worth invesࢢgaࢢng.

2.2.3 Dynamic Analysis

Opposed to staࢢc analysis, dynamic analysis requires the source code to be executed,
and relies on collecࢢng informaࢢon about the program during runࢢme.

Wilde et al. introduced the So[ware Reconnaissance technique [161, 162]. This
method executes the program using test cases that exercise the feature of interest, and
another set that does not. The program elements that implement the feature of interest
are idenࢢfied by analyzing the differences between the execuࢢng traces of the two sets.

Wong et al. describe an execuࢢon slice-based technique [164], where an execu-
onࢢ slice is the set of program components executed by a test input. The general idea
is to re-use the tests wri�en for the applicaࢢon, to idenࢢfy which program elements
are unique to a specific feature, and provide a programmer or maintainer with starࢢng
points for understanding large so[ware systems.

Eisenbarth and De Volder introduce Dynamic Feature Traces (DFT) [50], a technique

2.2. Concept and Feature Locaࢢon 23

for feature locaࢢng based on execuࢢon-trace analysis. This approach uses the same ap-
proach of comparing execuࢢons traces of tests that exercise, or not, specific features,
followed by [162] and [164], but tries to overcome the most significant problem of dy-
namic analysis – coming up with execuࢢon scenarios that exercise one specific feature.

Eisenberg et al introduce a technique based on execuࢢon traces for different sce-
narios, where each scenario represents the invocaࢢon of a single feature, idenࢢfying
the program components executed for each feature [48, 49]. A concept analysis tech-
nique is then applied to the components list and the set of features, highlighࢢng the
relaࢢons between features and components – the feature component map.

Safyallah and Sarࢢpi introduce an approach that explores frequent pa�erns in ex-
ecuࢢon traces, to idenࢢfy features in source code [137]. A set of case scenarios that
share specific features is used to produce execuࢢon traces. A sequenࢢal pa�ern min-
ing algorithm is then applied to the execuࢢon traces to highlight frequent execuࢢon
pa�erns. A[er a set of refinements, the result are conࢢnuous fragments of execuࢢon
traces that correspond to a parࢢculars features.

Edwards et al. introduce a feature locaࢢon technique for distributed systems [46].
To overcame the problem of the stochasࢢc nature of distributed systems, and the dif-
ficulty of correctly ordering events ,(me-wiseࢢ) a definiࢢon of meࢢ intervals based on
causal relaࢢonships between events is proposed. Besides the execuࢢon traces, the first
and last events related with a specific feature are also required, in order to idenࢢfy the
event set related to that specific feature. The final output is a ranked list of program
elements inside this interval, related with a specific feature.

Bohnet et al. describe an analysis technique [11] that combines informaࢢon from
dynamic execuࢢon traces with informaࢢon on the hierarchical structuring of implemen-
taࢢon units. The program is executed using a scenario that exercises the feature of
interest. The execuࢢon trace is analyzed and several views of the trace are created
that highlight various characterisࢢcs. These views are synchronized, i.e., they simulta-
neously present the informaࢢon extracted from the trace from different perspecࢢves,
and when the maintainer focus the point of view on a specific detail of the trace, all the
views update to provide their view of the same detail.

24 2. Program Comprehension

2.2.4 Textual Approaches

Textual analysis techniques explore natural text found in so[ware systems (e.g., com-
ments, idenࢢfiers, documentaࢢon) to gather informaࢢon about program elements.

Petrenko et al. in [118] propose the use of ontology fragments, an ontology based
on the parࢢal knowledge about features, during the understanding process. These on-
tologies fragments help the maintainer in formulaࢢng queries (e.g., proving terms, at-
tributes and concepts) while searching the code for relevant components.

Marcus et al. in [99] explore a IR technique called Latent Semanࢢc Indexing (LSI)
(introduced in Chapter 4), to map concepts expressed in natural language by program-
mers to the source code components. This approach uses LSI to find semanࢢc simi-
lariࢢes between queries and so[ware, to locate concepts of interest. Idenࢢfiers and
comments are extracted and pre-processed to build a corpus, which is parࢢࢢoned to
create documents represenࢢng related program elements. The query and the docu-
ments are transformed in vectors, and the similarity measure between vectors is used
to rank documents (relevance-wise) against queries.

Cleary et al. introduce the cogniࢢve assignment technique in [34], an approach
also based in IR techniques, but including informaࢢon derived from non-source code
arࢢfacts.

Abebe and Tonella in [3] present an approach for extracࢢng concepts and relaࢢons
from source code idenࢢfiers, based on NLP techniques. Sets of sentences, built from
lists of terms in the code, are parsed using NLP, and then used to extract concepts and
relaࢢons. This informaࢢon is stored in an ontology, which is used to enhance queries,
and increase the precision of concept locaࢢon acࢢviࢢes.

Hill et al. in [62] also explore the use of NLP techniques, to automaࢢcally extract
and categorize phrases from source code idenࢢfiers to categorize and organize search
results. Once phrases are extracted from method and field names (someࢢmes also
looking at methods parameters), they are grouped into a hierarchy based on parࢢal
matching, and are linked to the original source code. A maintainer when formulated a
query (e.g., searching for a feature), is presented with is a hierarchy of phrases and con-
textualized program elements, which help to idenࢢfy relevant program components.

2.2. Concept and Feature Locaࢢon 25

Sheperd et al. introduce the Acࢢon-Oriented Idenࢢfier Graph (AOIG) in [143], a
natural language representaࢢon of the source code, which help linking acࢢons sca�ered
in the program, built using NLP techniques. This work also demonstrates how a AOIG
can be used during so[ware maintenance acࢢviࢢes.

Würsch et al. in [165], introduce a framework to query informaࢢon about a so[ware
system, using a natural language similar to plain English. Program elements informa-
onࢢ is modeled in an ontology, which is later used by a guided-input natural language
interface, to answer quesࢢons formulated by the maintainer.

2.2.5 Combined Techniques

In order to achieve an overall be�er result, some approaches combine several tech-
niques, so that limitaࢢons of one technique can be compensated by another. This sec-
onࢢ introduces some examples of using combinaࢢons of techniques.

For example, Antoniol and Guéhéneuc, in [6] introduce a technique using both staࢢc
and dynamic analysis, for feature idenࢢficaࢢon in large object oriented programs. Us-
ing a set of scenarios that exercise specific features, sets of staࢢc data are filtered, al-
lowing the relaࢢon between classes, features, and scenarios. Maintainers can use this
approach to build micro-architectures (subsets of program architectures), for feature
idenࢢficaࢢon and comparison.

Poshyvanyk et al. in [119] combine staࢢc and dynamic analysis, by applying LSI to
source code, and a Scenario Based Probabilisࢢc (SBP) ranking of events extracted while
execuࢢng the program under specific scenarios. The case studies discussed show that
the combined techniques provide complementary results.

Eaddy et al. in [45] introduce prune dependency analysis, a hybrid feature locaࢢon
technique. An IR technique is used to extract terms from comments and idenࢢfiers;
execuࢢon traces are used to determine which program elements are executed when
a concern is exercised; and, then a prune dependency analysis technique is used to
find the impact of removing relevant elements to infer addiࢢonal elements. According
to the authors the synergy between the different techniques produces more accurate
results than other combinaࢢons of techniques.

26 2. Program Comprehension

2.2.6 Other Approaches

Other approaches explore informaࢢon available in other arࢢfacts outside the scope of
the program itself (e.g., bug reports, source version control systems, development en-
vironments), this secࢢon introduces some of these techniques.

For example, Yao, in [167] introduces a tool that extracts informaࢢon from the CSV
version control system. It features an algorithm for mapping commit comments to the
source code, and related program elements. Given a query, the tool produces a ranked
set of lines of code, including a score of how be�er each line matches the query.

In another example, Robillard and Murphy, in [130], introduce a technique for con-
cept locaࢢon based on source code invesࢢgaࢢon undertaken during maintainers and
developers acࢢviࢢes. The results of these acࢢviࢢes are documented using a set of con-
cerns descripࢢon, extracted by an algorithm from the invesࢢgated elements. This algo-
rithm is based on elements visited during an invesࢢgaࢢon session, and how the main-
tainer navigates between elements.

2.2.7 Tools

Some of the work discussed and presented in previous secࢢons, and other, spawned
concrete tools for concept locaࢢon. This secࢢon briefly enumerates some of these tools.

FEAT (Feature Exploraࢢon and Analysis Tool) is an plug-in for eclipse based on the Con-
cern Graphs approach [131].

Featureous a plug-in for the NetBeans IDE, provides views for legacy Java so[ware
analysis [112].

Google Eclipse Search is a search engine that integrates Google Desktop Search into
the Eclipse development environment, providing improved searches [122].

Ripples a tool for concept locaࢢon based in ASDG [32].

STRADA helps so[ware maintainers to explore traces links to source code through test-
ing [47].

2.3. Program Idenࢢfiers Normalizaࢢon 27

Suade an Eclipse plug-in for automaࢢc generaࢢon of program invesࢢgaࢢon suggesࢢons
using staࢢc analysis [160].

TraceGraph a tool for execuࢢon traces analysis for concept locaࢢon, using a simple
visual interface [93].

2.3 Program Idenࢢfiers Normalizaࢢon

Program idenࢢfiers are one of the major source of informaࢢon about program elements
[16, 17], and their meaningfulness has a direct impact on future comprehension tasks
[83]. Most of the programming communiࢢes promote the use of best pracࢢces and
coding standards, that usually include rules and naming convenࢢons which tend to im-
prove the quality of idenࢢfiers used (e.g., the style guide for the Python programming
language1).

Program idenࢢfiers have been greatly explored in the context of program under-
standing: for concept and concern locaࢢon (e.g., [142, 99, 3, 92]), relaࢢng documenta-
onࢢ with source code (e.g., [7, 166, 98]), and other assorted so[ware analysis applica-
onsࢢ (e.g., [84, 79, 51, 22, 27]). All this work can benefit from be�er program idenࢢfiers
handling, and in many cases results can be improved [40].

Programming languages grammars constrain the strings that can be used as idenࢢ-
fiers, not allowing spaces and other special characters (e.g., commas). These also tend
to be short and easy to remember. Thus, acronyms and abbreviaࢢons are frequently
used to represent real world concepts.

Idenࢢfiers created using a single word (or abbreviaࢢon) are easier to relate with
domain terms. The real challenge are compound idenࢢfiers, i.e., idenࢢfiers assembled
using more than one string (each represenࢢng a term), because these strings need to
be correctly isolated before they can be linked with domain concepts. Moreover, these
strings can be abbreviaࢢons or acronyms, and not actual words, increasing the tok-
enizaࢢon process difficulty. Someࢢmes an explicit mark is used to delimit the strings
used, for example, the idenࢢfier “insert_user” uses the underscore as an explicit mark

1 Available from: http://legacy.python.org/dev/peps/pep-0008/ (Last accessed: 31-03-
2014).

http://legacy.python.org/dev/peps/pep-0008/

28 2. Program Comprehension

to clearly disࢢnguish the word “insert” and the word “user”. Another common explicit
technique is the CamelCase notaࢢon, for example in the idenࢢfier “insertUserData”
the words used are explicitly delimited with an uppercase le�er. This trend of explicit
word compounds are referred in the literature as hard splits (or hard words). Many
mesࢢ no explicit mark is used to delimit the words, for example the idenࢢfier -meࢡ“
sort”, was formed by joining the words ”meࢡ“ and “sort”, but there is no explicit mark
where one word ends, and the next word begins. This is usually referred as so[splits
(or so[words). Spliࢰng so[words is more complex that hard words, and the com-
plexity increases when acronyms or abbreviaࢢons are used instead of complete words
[83, 81, 82]. The next secࢢon introduces some state-of-the-art techniques to address
this problem.

2.3.1 Current Approaches

The work by Caprile et al [16], describes their lexical, syntacࢢcal and semanࢢc analysis
of funcࢢon idenࢢfiers. In this work the creaࢢon of a dicࢢonary based on informaࢢon
extracted from the so[ware (source code mainly) was also a concern, and a valuable
source of informaࢢon. It also helps to highlight the relevance of NLP techniques applied
in the context of Program Comprehension.

Enslen et al in [51] describe Samurai, an automaࢢc approach to split idenࢢfiers that
uses a scoring funcࢢon based on program-specific and global frequency tables. These
tables are built by mining strings frequency in source code. The main intuiࢢon behind
this algorithm is that sub-strings used as part of an idenࢢfier are likely to be used in
other idenࢢfier from the same so[ware, or even in other programs. A similar concern
is behind our proposed custom corpus-based dicࢢonaries, the expressions and terms
found in natural language text belonging to the so[ware domain are prone to be used
as idenࢢfiers.

TIDIER [94, 57] is another approach for idenࢢfiers spliࢰng. This algorithm is based
in the Dynamic Time Warping algorithm, iniࢢally devised to compute distances in the
context of speech recogniࢢon. And tries to achieve the correct split by compuࢢng dis-
tances between the idenࢢfier and words found in a set of dicࢢonaries. The algorithm
takes advantage of dicࢢonaries, including domain specific dicࢢonaries, and the infer-

2.3. Program Idenࢢfiers Normalizaࢢon 29

ence of abbreviaࢢons is based on compuࢢng some kind of metric between the idenࢢ-
fier and words found in dicࢢonaries. A possible short-coming of this approach (and the
previous one – Samurai) is that both can produce a different split for the same idenࢢ-
fier in different iteraࢢons. TIDIER also does not handle spliࢰng idenࢢfiers that contain
single le�er abbreviaࢢons.

TRIS [58] is a more recent technique for spliࢰng and expanding program idenࢢfiers
proposed by the same authors of TIDIER. It also uses a set of dicࢢonaries, general and
domain specific. TRIS handles the spliࢰng and expansion as an opࢢmizaࢢon problem,
divided in two stages. During the first stage a set of dicࢢonary word transformaࢢons is
created including corresponding costs, and during the second phase the goal is to find
the opࢢmal path in the expansion graph. The resulࢢng split and expansion corresponds
to the one with the minimal cost.

The GenTest normalizaࢢon algorithm proposed by Lawrie et al described in [80] and
[79] involves vocabulary normalizaࢢon found in so[ware arࢢfacts (e.g., source code,
documentaࢢon) to improve Informaࢢon Retrieval so[ware analysis tools. This algo-
rithm starts by scoring all the possible splits, and the resulࢢng split is the one with the
highest score. The scoring funcࢢon is based in a set of metrics, based on internal infor-
maࢢon (e.g., word characterisࢢcs), and external informaࢢon (e.g., dicࢢonaries).

LINSEN [35] is an approach for spliࢰng idenࢢfiers, and expanding abbreviaࢢons,
proposed by Corazza et al. The authors propose the use of the Baeza-Yates and Per-
leberg, an approximate string matching technique, and the use of several general and
domain specific dicࢢonaries, to find a mapping between program idenࢢfiers and the
corresponding set of dicࢢonary words.

The work by Sureka [154], is a more recent approach for spliࢰng idenࢢfiers using
the Yahoo web search and image search similarity distance. The main idea is that strings
used as idenࢢfiers represent concepts in real life, and documents indexed in search en-
gines include images and text, providing informaࢢon to compute possible splits scores.

Butler et al in [15] describe the INTT algorithm, a technique for idenࢢfiers names
automaࢢc tokenizaࢢon, with special focus on single case idenࢢfiers, and idenࢢfiers con-
taining digits. INTT also takes advantage of a pre-defined set of dicࢢonaries, including
commonly used abbreviaࢢons and acronyms.

30 2. Program Comprehension

These approaches (more details in [52]) help to highlight the relevance of processing
program idenࢢfiers, in the context of so[ware analysis. The usage of NLP techniques
and various types of dicࢢonaries is a common trend in modern approaches, and the
corresponding empirical studies help to highlight their added value and benefits.

2.4 Knowledge Domains

Knowledge is a common element in most of the cogniࢢve models described in Sec-
onࢢ 2.1. The process of understanding a program implies the forming (or re-forming)
of mental models based on maintainers previous knowledge, and new knowledge ac-
quired during the understanding process.

The most typical domains of knowledge defined in PC are the problem domain, and
the program domain, introduced in the next secࢢons.

2.4.1 The Problem Domain

The problem (or applicaࢢon) domain [13] is concerned with real world concepts and
problems the applicaࢢon is solving. The knowledge about the applicaࢢon domain plays
an important role during the understading process [141].

The domain model of the applicaࢢon domain, which represents real world concepts
that are addressed by a specific applicaࢢon, captures informaࢢon about the applica-
onࢢ domain (e.g., terminology, objects, relaࢢonships). The domain model provides the
maintainer with relevant knowledge about the domain, for example, provide iniࢢal sets
of elements to query, or keywords to search, that are expected to be present in a pro-
gram in a specific domain. The relaࢢons described in the applicaࢢon model can guide
the understanding process providing the maintainer with informaࢢon to be expected
about a specific domain [135].

2.4. Knowledge Domains 31

2.4.2 The Program Domain

The program domain [13] binds knowledge concerned with programming and source
code concepts. This includes general programming concepts (e.g., programming par-
adigm, programming languages), and in some cases, may include informaࢢon about
actual components or elements in the source code.

The program contains an assorted amount of technical informaࢢon (e.g., algorithms,
data structures), but also, sca�ered throughout the program, knowledge about the ap-
plicaࢢon domain is available. The concepts to which this knowledge is related, is not
always explicit. Modeling the source code, abstracࢢng some specific programming con-
cepts, and discarding specific technology details, may promote a be�er construct for
understanding acࢢviࢢes. Not only for the maintainer, but also for the applicaࢢon of
other techniques. The program model provides a high level abstracࢢon of the source
code [126, 136]. Some techniques presented in Secࢢon 2.2, introduce several program
models, with different aims, and heterogenous levels of abstracࢢon.

32 2. Program Comprehension

Chapter 3

Ontologies

3.1 Introducࢢon and Definiࢢon

One of the major goals of this work it to represent informaࢢon gathered from so[ware
analysis and related domains using ontologies, for later reasoning. To achieve this a for-
malism to represent the informaࢢon in a ontology is required, and also some methods
(and tools) to reason about the available informaࢢon. This chapter overviews some of
the current trends for ontology representaࢢon and manipulaࢢon.

The term ontology has its origin in the field of philosophy. Ontologies are one of
the soluࢢons found in computer science to represent knowledge about a well defined
domain in a structured way. Ontologies can be used to represent knowledge about any
kind of domain or area of interest. The use of the term ontology in computer science
was first introduced in the area of arࢢficial intelligence reasoning [102]. An ontology
was used to represent the things that existed in a given domain. The idea sࢢll persists
today. An ontology is used to represent knowledge about a domain, by represenࢢng
things that exist in that domain.

Another important term that we have been using but have not yet defined is do-
main. An ontology is always an arࢢfact on a given domain. Again, this term is used
in a wide range of sciences which makes it hard to define. But, it can be stated that a
domain is a way of refereeing a parࢢcular well defined area of knowledge. Someࢢmes
this knowledge may not be clearly bounded [68]. From the Oxford English Dicࢢonary,

33

34 3. Ontologies

the domain definiࢢon:

Definiࢢon 7 A sphere of thought or acࢡon; field, province, scope of a department of
knowledge, etc. [1] ♢

During this work the following definiࢢon is assumed:

Definiࢢon 8 a domain ontology is an engineered arࢡfact that informally defines con-
cepts from a specific domain, represenࢡng and organizing them as conceptualizaࢡons
which a set of systems working cooperaࢡvely with each other agree to share [68]. ♢

Formal definiࢢons, more common in Computer Sciences, are devised to clearly de-
fine what an ontology is. An example is the definiࢢon proposed by Serra et al. [140],
where an ontology is defined by the following tuple:

O = (C,H, I, R, P,A)

Where, C represents the set of concepts in the domain; H the set of taxonomic rela-
onshipsࢢ between concepts; I the set of relaࢢonships between classes and instances;
R the set of other relaࢢonships; P the set of properࢢes of classes; and, A the set of
axioms.

Regardless of the concrete approach chosen, most formal definiࢢons usually share
some characterisࢢcs, namely the use of:

• classes (or concepts) to create groups of elements that share properࢢes;

• instances to group elements (or individuals) in classes

• properࢢes to define broader classes or instances characterisࢢcs;

• relaࢢons between classes and instances.

The specific definiࢢon that is used during this work is presented and discussed in
Chapter 6.

Someࢢmes other structures that belong to the ontology family, but most of the
cases they are quite distant cousins, are used. Nevertheless they are useful when some
kind of conceptualizaࢢon is required. Some examples of these structures are [12]:

3.2. Representaࢢon and Formats 35

Glossaries: lists of terms and definiࢢons. In some cases it is a relaࢢon between terms
and equivalents, not exactly definiࢢons.

Thesaurus: networks of well defined interrelaࢢons, or associaࢢons, between terms.
Given a parࢢcular term, a thesaurus will indicate other terms with the same mean-
ing, which terms denote a broader category, which denote a narrower category,
and which are related in some other way.

Taxonomies: tradiࢢonal structures that arrange terms into groups and subgroups based
on predetermined rules. Groups also need to follow well defined hierarchical re-
laࢢons.

When adopࢢng this broad family of structures, most of the mesࢢ tools that were
originally designed to work with ontologies can be used. Which means that these data
structures can be represented using languages that were designed to describe ontolo-
gies. Some languages are already specialized in describing some of these structures.

Ontologies are a popular approach to represent knowledge. Besides the formal def-
iniࢢons, to actually store and use them in a modern computer system, a concrete solu-
onࢢ (format) for represenࢢng the informaࢢon is required. The next secࢢon introduces
and discusses some well known languages and formats to represent ontologies.

3.2 Representaࢢon and Formats

There are several ways to represent, and therefore store and share, ontologies. Some
of them are more suitable to some kind of parࢢcular tasks or operaࢢons. The next sec-
onsࢢ briefly introduce some examples of families of languages that are used to describe
ontologies, or some well defined subsets. Most of these languages use some kind of
XML notaࢢon. This is mainly a portability issue, it makes informaࢢon exchange between
different systems easier.

36 3. Ontologies

1 <rdf :RDF xmlns=”http : / / ontologies /example” />
2 <owl : Class rdf : about=” F e l i s ” />
3 <rdfs : subClassOf rdf : resource=”#Felidae” />
4 </owl : Class >
5 <owl : ObjectProperty rdf : about=”eatsMeat”>
6 <rdfs :domain rdf : resource=”# F e l i s ”/>
7 </owl : ObjectProperty>
8 <owl : Class rdf : ID=”house_cat” />
9 <rdfs : subClassOf rdf : resource=”# F e l i s ” />

10 </owl : Class >
11 </rdf :RDF>

Figure 3.1: OWL example.

OWL

The Web Ontology Language (OWL) is a family of languages for publishing and sharing
ontologies on the World Wide Web [63]. This language is mainly developed and main-
tained by the World Wide Web Consorࢢum (W3C). The OWL specificaࢢon includes the
definiࢢon of three variants:

• OWL Lite, supports basic needs of a classificaࢢon hierarchy and simple constrains.

• OWL DL (Descripࢢon Logic), supports maximum expressiveness.

• OWL Full, meant for maximum expressiveness and syntacࢢc freedom of RDF.

OWL is intended to provide a language that can be used to describe the classes and
relaࢢons in Web documents and applicaࢢons [103].

The basic elements in OWL are: classes, objects, individuals, and properࢢes. These
basic elements can be put together to create ontologies. Figure 3.1 illustrates a sim-
plified version of the definiࢢon of a class, and an instance, in OWL usig the RDF/XML
syntax (a common format used to store OWL ontologies).

There are a lot of characterisࢢcs that are used to further specify properࢢes of classes.
Examples of proprieࢢes are: transiࢢve, symmetric, funcࢢonal, and inverse. Although
OWL is a complex language to use, and representaࢢons can quickly become compli-
cated and confusing; this complexity translates in a more accurate knowledge repre-
sentaࢢon. Ontologies are used among many sciences, OWL might be hard to use for

3.2. Representaࢢon and Formats 37

1 <Fel is > rdf : type skos : Concept ;
2 skos : prefLabel ” F e l i s ” ;
3 skos : broader <Felidae > .
4

5 <Lucky> rdf : type skos : Concept ;
6 skos : prefLave ”Lucky” ;
7 skos : broader <house_cat> .

Figure 3.2: SKOS example.

someone without a background in computer science. This can be an obstacle for the
spread of the language between different communiࢢes.

OWL can be used to represent ontologies, taxonomies, thesaurus, etc. In 2009 the
OWL working group published the OWL 2 Web Ontology Language, an extension of the
previous version adding even more features. New features include addiࢢonal prop-
erty and qualified cardinality constructors, extended datatype support, simple meta-
modeling and extended annotaࢢons [109].

SKOS

Simple Knowledge Organisaࢢon System (SKOS) is a family of languages that are used
for expressing the basic structure and content of concept schemes. It is published and
maintained by the W3C Semanࢢc Web Best Pracࢢces and Deployment Working Group.
SKOS basic elements are classes and properࢢes. In opposiࢢon to OWL, SKOS is not a
formal knowledge representaࢢon language. It can be used to create thesaurus, tax-
onomies, classificaࢢon schemes and terminologies for example, and it can be used to-
gether with OWL to create more demanding things as ontologies [105].

A simple example of this language representaࢢon is illustrated in Figure 3.2. There
is no specific way to represent instances of concepts, so one way to go is to represent
individuals as new concepts. SKOS is a very powerful vehicle already being used in many
situaࢢons instead of OWL [104].

38 3. Ontologies

Topic Maps

Topic Maps is a specificaࢢon that provides a grammar and a model for represenࢢng
the structure of informaࢢon resources [116]. Topic maps resolves around three basic
concepts:

• Topics, that can represent anything, a fact, a person, an enࢢty, concepts, etc.

• Associaࢢons, relaࢢons between one or more topics.

• Occurrences, any informaࢢon relevant to a given subject.

In Topic Maps documents, real world subjects are represented using topics. Topics
have names, and can also have occurrences that can be used to specify any informaࢢon
being relevant to a subject. For example for a person occurrences might be his home
address, phone number, picture, etc. Topics can also have roles, roles can be used to
define the role that a topic has in a associaࢢon. Relaࢢonships between topics are mod-
eled with associaࢢons. Topics can have different roles for different associaࢢons, for
example a person can play a role of author in a associaࢢon with a paper and a role of
editor in a associaࢢon with a book. Associaࢢons also have types. Figure 3.3 illustrates
an example of using Topic Maps.

Topic maps can be used to create rich documents that contain structured informa-
.onࢢ Topic Maps can be used to represent and manage any kind of subjects and relaࢢon-
ships between them, which means that any data structure discussed before (glossaries,
thesaurus, ontologies, etc) can be represented [157].

ISO 2778

Biblio::Thesaurus1 is a module that was created to store informaࢢon based on ISO
2778. This ISO standard is developed and maintained by the Internaࢢonal Organizaࢢon
for Standardizaࢢon (ISO).

1Available from: http://search.cpan.org/dist/Biblio-Thesaurus/ (Last accessed: 10-09-
2014).

http://search.cpan.org/dist/Biblio-Thesaurus/

3.2. Representaࢢon and Formats 39

1 <topic id=”Felidae”>
2 <baseName>
3 <baseNameString>Felidae </baseNameString>
4 </baseName>
5 </topic >
6 <associantion id=”broader−than”>
7 <member>
8 <roleSpec>
9 <topicRef x l ink : href=”#bigger”/>

10 </roleSpec>
11 <topicRef x l ink : href=”# F e l i s ”/>
12 </member>
13 <member>
14 <topicRef x l ink : href=”#Felidae”/>
15 </member>
16 </association >

Figure 3.3: Topic Maps example.

1 Animal
2 BT Carnivora
3

4 Carnivora
5 BT Canidae , Felidae
6

7 Felida
8 BT Panthera , F e l i s

Figure 3.4: ISO 2778 example.

This module was iniࢢally created to provide a set of tools to maintain thesaurus files.
We already discussed how a thesaurus can be defined as a sub set of an ontology. But
this module has grown and now is prepared to work with more abstract and complex
structures, like ontologies for example. It sࢢll maintains the name, but that is bound to
change in the future.

The internal representaࢢon for the ontology follows ISO 2788. This means that it
can interact with other sources that follow the same standard. Note that the module
was changed to work with more complex structures, and the standard defines standard
features to be found on thesaurus files. An example of the ISO representaࢢon looks
like:

40 3. Ontologies

1 $ontology−>addTerm(’termA ’) ;
2 $ontology−>addRelation (’ termA’ , ’ relation ’ , ’ termB ’) ;

Figure 3.5: Biblio::Thesaurus API example.

1 <rdf :RDF
2 xmlns : rdf=”http : / /www.w3. org/1999/02/22−rdf−syntax−ns#”
3 xmlns : terms=”http : / / purl . org/dc/terms/”>
4 <rdf : Description rdf : about=”urn : x−states :NewYork”>
5 <terms : alternative >NY</terms : alternative >
6 </rdf : Description >
7 </rdf :RDF>

Figure 3.6: RDF example.

This module has already been successfully used to translate other resources into
ontologies. A well defined API allows the manipulaࢢon and access to various informa-
onࢢ in a very simple way. Adding or deleࢢng informaࢢon can be as simple as illustrated
in Figure 3.5 [148].

Clearly is a very different approach form the other representaࢢons discussed before,
which has advantages and disadvantages.

RDF

RDF is a W3C language for represenࢢng informaࢢon about resources in the World Wide
Web. RDF is based on the idea of idenࢢfying things using Web idenࢢfiers (called Uni-
form Resource Idenࢢfiers, or URIs), and describing resources in terms of simple prop-
erࢢes and property values [97]. The underlying structure of any expression in RDF is a
collecࢢon of triples, each consisࢢng of a subject, a predicate and an object.

Most of the mesࢢ we see RDF graphs encoded in XML, this syntax is defined in RD-
F/XML syntax specificaࢢon [9]. An example of the standard RDF/XML representaࢢon
is illustrated in Figure 3.6. RDF by itself is not suitable to represent structures like on-
tologies, but, as already has been illustrated, it is very common for other languages and
models to use RDF.

3.2. Representaࢢon and Formats 41

1 (# $genls #$Canidae #$Carnivora)
2

3 (# $isa #$Lucky #$house_cat)

Figure 3.7: CycL example.

1 (# $implies
2 (# $isa ?APPLE (# $FruitFn #$AppleTree))
3 (# $colorOfObject ?APPLE #$RedColor))

Figure 3.8: CycL inference expression example.

CycL

One of the first languages to aim for knowledge representaࢢon was CycL [88]. This for-
mal language is mainly used by the Cyc knowledge based. Cyc is a project to create a
comprehensive ontology and knowledge base of everyday common sense knowledge.
The language itself is a bit different from those shown before. Figure 3.7 illustrate this
language, this examples states that all members of the Carnivora group are also mem-
bers of the Mammalia group, individuals are represented using the predicate isa.

CycL also supports variables in expressions, variable names start with a quesࢢon
mark (?). Knowledge can also be inferred, the example illustrate in Figure 3.8 states
that every fruit of the apple tree has color red. This expression in loosen English reads,
that every fruit of the AppleTree named ?APPLE, which is acࢢng as a variable, has color
RedColor.

One big problem with CycL is that the predicates for the expressions are all pre-
defined. Which means that to be able to represent any arbitrary relaࢢon, a predicate
for that relaࢢon is required.

Notes Regarding Representaࢢon

All the languages discussed are interesࢢng and provide useful instruments to represent
knowledge. The common use of XML is a valuable asset, it makes easier the job of
transporࢢng and storing data formats. Languages like OWL are very complete and allow

42 3. Ontologies

for accurate representaࢢons, but they tend to easy became complex, and the concepts
being represented tend to be lost in the language syntax.

Languages variables, and ways to infer new knowledge from the exisࢢng informa-
,onࢢ are interesࢢng feature of some of these languages. Defining a new concept using
other concepts or concepts proprieࢢes enhances the language, and allows for users to
create expressions for adding more complex informaࢢon. It can also save a lot of work,
instead of enumeraࢢng for every individual, or concept, or any given propriety, an ex-
pression can be defined that implicitly adds that propriety for the class of individuals,
or concepts, that share them. For example, every meࢢ an animal is added to an animal
classificaࢢon ontology, that belongs to the Carnivora class, a fact that states that the
newly added animal eats meat could be added. Instead a generic fact staࢢng that every
animal that belongs to this class eats meat, could be added.

Of course there are a lot more ways to represent ontologies, or similar knowledge
structures, than the ones presented here. But the illustrated set shows the most pop-
ular and adopted approaches, and is enough to emphasize most common traits and
details.

3.3 Tools and Libraries

Since there are several ways to represent ontologies, there are also different approaches
to manipulate them. Several so[ware packages offer methods to change and manip-
ulate informaࢢon in a ontology. Once agreed on which representaࢢon to use, a set of
readily tools and libraries is immediately available.

A small list of examples of tools that can be used to manipulate informaࢢon in an
ontology follows:

Protégé 2 is an open-source pla�orm that provides a suit of tools for building knowl-
edge representaࢢons based on ontologies. It has a specific extension to work
with OWL. This extension allows for a visual ediࢢng of informaࢢon stored in a
OWL ontology, and other well known formats.

2Available from: http://protege.stanford.edu/ (Last accessed: 10-09-2013).

http://protege.stanford.edu/

3.3. Tools and Libraries 43

Jena Framework 3 is a framework building semanࢢc web applicaࢢons in Java. This
framework includes a wide set of classes for use in Java development. Among
many things, this framework has an interface called OntModel that can be used
with other tools in the framework as interfaces to underlying models, wri�en in
OWL for example.

SWOOP 4 is another tool for creaࢢng and ediࢢng OWL ontologies. This project is also
hosted on Google Code. This tool has a nice look and feel and it is very intuiࢢve.
Simple interface with concise operaࢢons over ontologies and a plug-in opࢢon for
quick development of new features.

ThManager 5 is an open source tool that is able to manage thesauri stored in SKOS,
allowing their visualizaࢢon and ediࢢon [76].

OWL Visual Editor 6 is, as the name clearly shows, a visual editor for OWL.

Biblio::Thesaurus is module that can be used to build ontology-aware applicaࢢons in
Perl. It can be used as a library, and provides a rich API that is used to do many
elaborated operaࢢons over ontologies. Another plus for these approaches, in
opposiࢢon to the graphical tools, is that operaࢢons can be automaࢢcally created
and executed without human intervenࢢon.

Manipulaࢢon Tools Summary

• Table 3.1 summarizes some of the features of previously described tools for easier
reference.

• Regarding the editors that implement a graphical interface for manipulaࢢng in-
formaࢢon, with more or less features or operaࢢons, they are all much alike. They
are suitable for humans to use. This is not exactly our aim since we plan on using
our manipulaࢢon approach to build complex tools, and most of the manipulaࢢon
operaࢢons should be decided in runࢢme.

3Available from: http://jena.apache.org/ (Last accessed: 10-09-2014).
4Available from: http://code.google.com/p/swoop/ (Last accessed: 10-09-2014).
5Available from: http://thmanager.sourceforge.net/ (Last accessed: 10-09-2014).
6Available from: http://sourceforge.net/projects/owlve/ (Last accessed: 10-09-2014).

http://jena.apache.org/
http://code.google.com/p/swoop/
http://thmanager.sourceforge.net/
http://sourceforge.net/projects/owlve/

44 3. Ontologies

• On the other end of the spectrum, there are tools that do not provide a graphical
interface but offer APIs or libraries for execuࢢng operaࢢons. This approach allows
for a wider range of possible applicaࢢons, since more complex tools can be built
using the provided interfaces. This approach suits our needs best, providing a
complete module to manipulate informaࢢon through a well defined API. This way
is more flexible for wriࢢng more complex applicaࢢons using this API from a high
level layer.

Tool Version Descripࢢon Pla�orms Formats

Protége 5.0 graphical editor All OWL+SKOS
Jena 2.12.0 Java classes All (w/ Java) -

SWOOP 2.3 graphical editor All OWL
ThManager 2.0 graphical editor All (w/ Java) SKOS/RDF

OWL VE 1.1.0 graphical editor Linux/Source OWL
Biblio::Thesaurus 0.43 API All ISO 2778++

SquishQL - SQL-ish language - RDF

Table 3.1: Summary of ontologies ediࢢng tools and libraries.

3.4 Ontologies and So[ware Engineering

The adopࢢon of ontologies in the context of so[ware engineering is being used for dif-
ferent purposes, and in different stages of so[ware development and evoluࢢon [55].
For example, in requirements engineering [85], so[ware modeling [75], model trans-
formaࢢons [70], so[ware maintenance [73], and so[ware comprehension [163].

Ontologies provide rich semanࢢcs that can cope with the heterogeneity of informa-
onࢢ sources usually present during so[ware development. They provide a unambigu-
ous mediaࢢng mechanism to improve collaboraࢢng environments not only for so[ware
engineers, but also other stake holders in the development process [39].

Chapter 4

Informaࢢon Retrieval

Informaࢢon Retrieval (IR) [96] is a field of study concerned with finding resources (usu-
ally unstructured documents, e.g., text) from a large collecࢢon of resources, that saࢢsfy
an informaࢢon need. One popular modern example of an IR applicaࢢon is a web search
engine. The task of the this engine is to find the web pages from the Internet, that sat-
isfy the query submi�ed by the user, i.e., find the relevant documents from a huge
collecࢢon of documents that saࢢsfy a search query.

This chapter briefly introduces some topics in the branch of IR addressed throughout
this work. Some techniques in the this field are being used, or adapted, in the context
of PC to find relevant elements (e.g. code, documents, reports) in a program, during,
or to enhance, so[ware analysis. This subject is also discussed in Chapter 2.

4.1 Precision and Recall

In general, the goal of an IR technique is to find the relevant documents in a collecࢢon
of documents, for a given definiࢢon of relevant. For example, for a web search engine,
the set of retrieved documents is the set of pages computed for a search query, and the
relevant documents set is the set of web pages that actually address the topic described
in the search query. Precision and recall are two measures usually used to evaluate
the performance of some technique, and to compare performances of techniques that

45

46 4. Informaࢢon Retrieval

address the same problem. The remaining of this secࢢon defines precision and recall
as used in the context of IR, which may differ from other branches of science.

Precision

Precision measures the fracࢢon of retrieved documents that are relevant and is calcu-
lated using the following formula:

P =
|drelevant ∩ dretrieved|

|dretrieved|

Where, drelevant is the set of retrieved documents considered relevant, dretrieved is the
set of retrieved documents, and |x|means the cardinality of x. PrecisionP is calculated
as the cardinality of the intersecࢢon between the relevant retrieved documents set, and
the retrieved documents set, normalized by the cardinality of the retrieved documents
set.

Recall

Recall measures the fracࢢon of the relevant documents query that are successfully re-
trieved, and is calculated using the following formula:

R =
|drelevant ∩ dretrieved|

|drelevant|

Where, drelevant is the set of retrieved documents considered relevant, dretrieved is the
set of retrieved documents, and |x|means the cardinality of x. Recall R is calculated as
the cardinality of the intersecࢢon between the relevant retrieved documents set, and
the retrieved documents set, normalized by the cardinality of the relevant documents
set.

F-Measure

Precision and recall are o[en combined to produce measures about some technique.
These can be analyzed independently or combined into a single value. A common mea-

4.2. LSI 47

sure that combines precision and recall values is the f -measure (also known as F1

measure). This measure represents the weighted harmonic mean between precision
and recall, and is calculated using the following formula:

F =
2 · P ·R
(P +R)

Where, the f -measure F is the result of mulࢢplying the precision P , the recall R, and
2, normalized by the sum of precision P and recall R.

4.2 LSI

Latent Semanࢢc Indexing (LSI) [38, 77] is an indexing and retrieval staࢢsࢢcal technique
for analyzing relaࢢonships between queries and unstructured collecࢢons of text using a
term by document frequency matrix. Each column in the matrix represents a document
(a text), or a query, and each row in the matrix stands for a unique word. The cells of the
matrix contain the frequency with which the term is found in the corresponding text.

A mathemaࢢcal technique called Singular Value Decomposiࢢon (SVD) is used to cre-
ate a vector representaࢢon of the documents and the query by normalizing and decom-
posing the matrix. The similarity between a document and a query is typically measured
by the co-sine between their corresponding vectors.

LSI has been used in the context of SE, for example to cluster source code elements
to support program understanding [95], or to map feature descripࢢons (expressed in
natural language) to source code [99].

4.3 �-idf

Term Frequency - Inverse Document Frequency (�-idf) is a staࢢsࢢcal measure of how
relevant a term is to a specific document in a collecࢢon of texts (corpus). It is commonly
used by IR techniques as a weighࢢng factor.

The frequency of a term tf(t, d) counts the number of mesࢢ term t occurs in docu-

48 4. Informaࢢon Retrieval

ment d. The inverse document frequency for a given term t in a collecࢢon of documents
D, idf(t,D), is calculated as:

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}|

Where, |D| is the total number of documents in the collecࢢon D, and |{d ∈ D : t ∈ d}|
is the number of documents where the term t occurs in the collecࢢon D. The Term Fre-
quency - Inverse Document Frequency (�-idf) of a term t, in document d, in a collecࢢon
of documents D , �-idf(t, d,D), is then calculated as:

�-idf(t, d,D) = tf(t, d)× idf(t,D)

Chapter 5

Natural Language Processing

Natural Language Processing (NLP) is a field of computer science mainly concerned with
the interacࢢon between computers and human languages [100]. In pracࢢce, one com-
mon example of these interacࢢons is a machine trying to understand text wri�en in a
natural language. This process may imply a narrower definiࢢon of understanding, e.g.,
extracࢢng some specific informaࢢon, or extracࢢng arbitrary facts. These processes of-
ten imply an algorithm that applies a sequence of well defined operaࢢons over a text,
where the output of one operaࢢon is handed to next operaࢢon, and the combined
set of operaࢢons entails the final result. Some of these operaࢢons can be simple and
straigh�orward, others can be more complex.

An example of a common operaࢢon is tokenizaࢢon, which refers to the process of
dividing a text into its consࢢtuent tokens. The most common token size is words, but
other sizes can be used (e.g., le�ers, sentences). At first glance it seems a trivial op-
eraࢢon, spliࢰng text into words, but in real world applicaࢢons several subtleࢢes can
produce some unexpected results or misbehaviors. For example, different handling of
punctuaࢢon tokens, changing text language, or how to handle words composed us-
ing an hyphen (e.g., “user-generated” can be a single word, or the composiࢢon of two
words).

The remaining secࢢons of this chapter briefly introduce some topics or common
operaࢢons that are closely related, or actual steps, with the algorithms introduced in
upcoming chapters.

49

50 5. Natural Language Processing

....S.....

..VP.....

..PP.....

..NP.....

..NN...

..couch.

..

..DT...

..the

.

..

..IN...

..on

.

..

..VBD...

..sat.

..

..NP...

..NNP...

..John

Figure 5.1: Parsing tree example.

5.1 Parsing

Parsing is the process of syntacࢢcally analyzing a sequence of symbols. In NLP, the goal
of a parser is to derive the grammaࢢcal structure of a sentence, and which groups of
words are part of each phrase, usually this structure is represented using a parsing tree.
Most of the parsers expect a tokenized version of the text.

Figure 5.1 illustrates a parsing tree example, for the sentence: “John sat on the
couch”. The NP acronym stands for a noun phrase, and VP for a verb phrase. Due to
natural languages grammars o[en having ambiguous rules, some sentences may have
more than one possible parsing tree.

5.2 Lemmaࢢzaࢢon

Lemmaࢢzaࢢon refers to the process of finding the lemma of a word. The lemma of the
word, also refereed to as dicࢡonary form, is the base form of the word. For example,
the words: “walks”, “walking”, “walked”, all have the same lemma (base form) “walk”.
The main idea is to be able to group together different forms of a word so that they
can be analyzed as the the same word. This is parࢢcular relevant in, for example, IR
techniques. The total count of occurrences of all the possible tenses and inflecࢢons
of the verb “walk” is more important than the separate count of the various possible

5.3. Part-of-Speech Tagging 51

..NNP. VBD. IN. DT. NN.

John

.

sat

.

on

.

the

.

couch

.....

Figure 5.2: POS tagging example.

words. This also enables to find a match of a the query string “reading”, in a text that
contains “reads” or “read”. Lemmaࢢzaࢢon is a context-aware process, meaning that
the context of the word, i.e., the phrase where the word is used, has a weight while
choosing the word lemma.

5.3 Part-of-Speech Tagging

Part-of-speech tagging (or POS tagging) corresponds to the operaࢢon that marks words
in a sentence with a parࢢcular part-of-speech (commonly designated as tags). This al-
lows to figure out if a specific form of a word is acࢢng as a verb or as a noun, since many
words have different meanings according to context. Although, this operaࢢon in strictly
related with how the sentence is parsed, and how the words are grouped in phrases,
its sࢢll possible to tag single words, outside the scope of a complete sentence.

Figure 5.2 emphasizes how the words in the sentence used in the parsing example
illustrated in Figure 5.1 are tagged. The specific set of tags used in this example, tags the
word “John” as a singular proper noun (NNP), “sat” as a verb in the past tense (VBD),
and so on.

5.4 Parallel Corpora

Informally, a corpus is a collecࢢon of texts, usually representaࢢve of a given domain or
subject. These constructs are used to build other common linguisࢢc arࢢfacts in the field
of NLP [59, 72, 100]. Corpora is a term to refer a collecࢢon of texts, usually in a specific
language.

Parallel corpora is a collecࢢon of texts in different languages where one of them is
the original text and the other are translaࢢons [146]. Using alignment tools, the paral-

52 5. Natural Language Processing

lelism between units of text in a parallel corpora is increased. Usually, aligners perform
the alignment at sentence or word level.

Parallel corpora are commonly used in teaching acࢢviࢢes, terminological studies,
automaࢢc translaࢢon, cross language informaࢢon retrieval engines. They are used as
an input to produce other useful arࢢfacts, an example is described in the next secࢢon.

5.5 Probabilisࢢc Translaࢢon Dicࢢonaries

A Probabilisࢢc Translaࢢon Dicࢢonary (PTD) [147] is a translaࢢon dicࢢonary between
two different languages. A PTD is built using a staࢢsࢢcal method on a parallel corpora.
The following example illustrates the PTD entry for the portuguese word “codificada”,
extracted from the EuroParl1 parallel corpora:

T (codificada) =


codified 62.83%
uncoded 13.16%
coded 6.47%
. . .

This example should be read as: in the EuroParl corpus, the portuguese word “codifi-
cada” is highly co-related with the english words “codified”, “uncoded”, and “coded”.
The percentage value measures the degree of certainty for the actual translaࢢon.

The dicࢢonaries are extracted automaࢢcally from parallel corpora, meaning that the
vocabulary present in the dicࢢonary is, up to a certain level, controlled by the text avail-
able in the corpora. This allows the creaࢢon of dicࢢonaries (commonly not available)
for specific domains. These dicࢢonaries are also used to build another natural language
arࢢfacts.

1Parallel corpus built from the proceedings of the European Parliament.

5.6. Semanࢢc Relatedness 53

5.6 Semanࢢc Relatedness

Semanࢢc relatedness is a metric used to measure the conceptual distance between
terms, sentences or documents. This helps measuring how close a set of textual ele-
ments are referring the same concept or idea. For example, the semanࢢc relatedness
of the word “car” and “vehicle” by a given measure, is expected to be higher (assuming
that the higher the relatedness score, the higher the terms are conceptually related),
than for the terms “vehicle” and “carrot”. Because, in probably most of the contexts
the words “car” and “vehicle” can be used to refer to the same concept (object) – a
means of transportaࢢon – they are closer at a semanࢢc level, than the words “vehicle”
and “carrot”.

This process is o[en used in tasks of word disambiguaࢢon, plagiarism detecࢢon,
summary creaࢢons, and in the design of query-answering systems [60].

5.7 Tools and Frameworks

This secࢢon briefly introduces some popular tools and frameworks currently available
to aid the implementaࢢon of NLP features.

Jspell is a morphological analyzer, that can be used as a library in C or Perl, and supports
several languages2.

FreeLing is suite of tools for language analysis, it provides many common tasks (e.g.,
parsing, named enࢢty recogniࢢon), and supports various languages (e.g., english,
spanish, german)3.

NLTK is a NLP toolkit for the Python programming language. It provides common tasks
as stemming, tagging, or parsing, amongst others 4.

2Available from: http://search.cpan.org/dist/Lingua-Jspell/ (Last accessed: 14-09-2014).
3Available from: http://nlp.lsi.upc.edu/freeling/ (Last accessed: 14-09-2014).
4Available from: http://www.nltk.org/ (Last accessed: 14-09-2014).

http://search.cpan.org/dist/Lingua-Jspell/
http://nlp.lsi.upc.edu/freeling/
http://www.nltk.org/

54 5. Natural Language Processing

OpenNLP is machine learning based toolkit for processing natural language text imple-
mented in Java. It supports most common NLP tasks (e.g., tokenizaࢢon, segmen-
taࢢon, part-of-speech tagging)5.

These tools are to be used as building blocks to ease the development of real world ap-
plicaࢢons. The programmer, uses a combinaࢢon of the provided operaࢢons, to weave
an algorithm without spending meࢢ implemenࢢng well known tasks (e.g. tokenizaࢢon,
parsing, lemmaࢢzaࢢon).

5.8 NLP and So[ware Engineering

Feature locaࢢon techniques o[en explore natural language text found in so[ware pack-
ages to perform arbitrary analysis. These involve processing, for example, program
idenࢢfiers, comments, or documentaࢢon, using NLP techniques. Similar techniques are
also used to process queries devised by maintainers when analyzing so[ware. Chapter
2 introduces some techniques that explore these approaches.

5Available from: https://opennlp.apache.org/ (Last accessed: 14-09-2014).

https://opennlp.apache.org/

Part III

Ontology-based Concept Locaࢢon

55

Chapter 6

Domain Knowledge Representaࢢon

Knowledge is power.

Sir Francis Bacon

The goal of this chapter, is to describe the approach used to model required knowl-
edge about the object of analysis for reasoning, and, which design goals were behind
major decisions. The typical object of analysis during program understanding acࢢvi-
esࢢ is a so[ware system, this means that the source code, and other files that may
be included in the so[ware package (e.g., documentaࢢon, tests, examples), convey
knowledge required to create useful models. Also, some other external sources can
contribute with informaࢢon, for example, informaࢢon about the applicaࢢon domain,
or area of interest, can be found elsewhere outside the scope of the package. The
knowledge concerning a so[ware package is devised by domain; important domains
idenࢢfied by the literature in the context of PC, are introduced in Secࢢon 2.4 (e.g., the
problem domain, the program domain). Therefore, at least these two are (usually) avail-
able, and are discussed in detail during this chapter. However, the method introduced
is valid for any domain, even outside the context of PC.

The first challenge when devising a model of some sub-set of the real world, is to
choose a formalism to represent the informaࢢon. In the context of this work, ontologies
are adopted for knowledge representaࢢon mainly because of the following reasons:

57

58 6. Domain Knowledge Representaࢢon

• Ontologies can represent knowledge in any domain, they do not enforce any con-
strain on the kind of informaࢢon or applicaࢢon domain, they can be regarded as
having an universal type.

• Reasoning engines and algorithms are available to infer new informaࢢon in a on-
tology seࢰng. This allows to infer new informaࢢon, and validate constrains for
the already available data, for the created models.

• Technologies for querying, storing, sharing, and managing ontologies are widely
available, providing a set of tools and applicaࢢons that can be explored, and used
to enhance current features, or build new applicaࢢons.

These also allow that knowledge about disࢢnct domains can be captured in different
ontologies, but informaࢢon can be linked between different ontologies, in order to de-
vise bridges between domains.

The goal is to have a generalized way for building an ontology (a model) for a given
domain, this can be abstracted by the signature of the following funcࢢon, namedmodel:

model :: Domain → Ontology

The model funcࢢon, given a domain, builds a model of the domain using an ontology.
The Domain type is defined as a collecࢢon of arࢢfacts (of heterogeneous types) that
convey knowledge about the given domain (e.g., a program source code, so[ware doc-
umentaࢢon, iniࢢal specificaࢢon, taxonomies of concepts). The Domain type is defined
as a set of arࢢfacts of any given type, this heterogeneity is captured by the Any type:

data Domain = Domain { artifacts :: [Any] }
data Any = Text String | Source String | Doc String | ...

For now an ontology is simply defined as a set of triples, where a triple is used to rep-
resent a relaࢢon between two elements.

data Ontology = Ontology { triples :: [Triple] }

59

data Triple = Triple { subject :: String, relation :: String, range :: String }

A more accurate and precise definiࢢon of theOntology data type actually used through-
out this work is introduced and discussed in Secࢢon 6.4.1.

In order to simplify the process of creaࢢng the domain ontology, and to improve its
generalizaࢢon, funcࢢon model is decomposed in two funcࢢons: process and convey,
with the following signatures:

process :: Any → Resource

that, given an element of the domain (of any type), builds an arbitrary resource of in-
formaࢢon, and:

convey :: Resource → [Triple]

that, given an arbitrary source of informaࢢon (a resource), conveys the required infor-
maࢢon to a set of triples. Given process and convey, the funcࢢon model is defined as:

model d = Ontology (concat [convey (process ai) | ai ← artifacts d])

where the ontology that represents the domain, is created by composing together the
sets of triples computed by applying convey to the resources created by applyingprocess
to the set of available domain arࢢfacts. Most of the ,mesࢢ the process and convey func-
onsࢢ are to be regarded as dispatch funcࢡons, i.e., that according to the given arࢢfact
type call the correct set of tools to process it, and according to the resulࢢng resource
type call the correct funcࢢons to create the triples sets.

..

For example, given a program source code file (an arࢢfact of the program
domain), the process funcࢢon can call a tool that builds the table of idenࢢ-
fiers for the program (produced resource), and convey calls a specific func-
onࢢ to convey the informaࢢon from a table of idenࢢfiers (the resource) to
the ontology (set of triples).

This means that any arbitrary tool, from any parࢢcular discipline, can be used to
create a resource that captures informaࢢon from the domain, being only necessary to

60 6. Domain Knowledge Representaࢢon

define the rules that convey the knowledge captured in the resource to the ontology.
The domain ontology is then the result of composing together all the triple sets resulࢢng
from execuࢢng all the intended tools on the corresponding arࢢfacts from the domain.

These funcࢢons definiࢢons and composiࢢon captures the method for building the
ontologies (the models) for each domain. Having a set of tools, that produce a collecࢢon
of resources, to create the ontology it is only required to define how the informaࢢon
available in these resources is conveyed to the final domain ontology. The next secࢢons
describe in detail how this process is defined for two important domains of interest in
the context of PC: the program (source code and related arࢢfacts), and problem domain
(real world knowledge about the applicaࢢon domain).

6.1 The Program Domain

The program domain (introduced in Secࢢon 2.4) captures knowledge in the scope of
the program itself. The main source of informaࢢon about a program is the source code,
which precisely describes all the concepts and operaࢢons from the applicaࢢon domain.
Source code is wri�en in a specific formal language, a programming language, usually
following a programming paradigm (e.g., object oriented, imperaࢢve, funcࢢonal). Mod-
ern complex systems o[en use a heterogenous combinaࢢon of programming languages
and paradigms to implement different sub-systems. Using one or more programming
languages the underlying intuiࢢon is the same: source code is wri�en using a formal
language and a strict grammar, which makes the sentences that compose a program
follow a well defined set of rules. This well known set of rules allows tools to extract
informaࢢon about a program with a high degree of confidence, in the same sense a
compiler needs to unambiguously interpret code.

To model the program domain, at least an abstract representaࢢon of (some) state-
ments in the source code is required. The intended level of abstracࢢon is high enough to
hide details about the code that do not contribute to the calculaࢢons performed later,
but sࢢll keeps the required informaࢢon. This means that not every basic element in the
source code is conveyed to the program abstract representaࢢon. Only elements that
are prone to contribute for later calculaࢢons are transported from the source code.

6.1. The Program Domain 61

Besides the challenge of choosing which elements are represented, there is also the
heterogeneity of programming languages and paradigms currently available.

To simplify the creaࢢon of the source code abstracࢢon, only a small set of program
elements are elected to be represented. All the selected elements have parallel con-
cepts in most programming languages. If in some abstract representaࢢon the program-
ming languages are verࢢcal lines in a matrix, and these concepts are represented in hor-
izontal lines, it is expected that for most programming language, the two lines cross, i.e.,
the programming language implements some elements that are related to these con-
cepts. The following concepts are analyzed and represented in the program domain
ontology:

Files are mostly used for organizaࢢon purposes. It is important to keep at least some
informaࢢon about the original structure of the program, so that when a view is
created of some program element, its counterpart in the original source code can
be directly pinpointed. This is the same reason why, for most elements, the line
number is also stored.

Classes, modules or objects are common concepts in programming languages, as a way
to organize the program, source code and funcࢢonaliࢢes inside these are usually
related with the same concepts from the applicaࢢon domain.

Funcࢢons or methods in the sense of a way to encapsulate a set of instrucࢢons, to be
executed at any given .meࢢ This means that it can be used to represent a funcࢢon
(or sub-rouࢢne) in imperaࢢve languages, or methods in OO programming, etc.

Variables encompass all the ways of defining data representaࢢons, including global
and local variables, funcࢢon parameters, etc., according to the programming lan-
guage.

Idenࢢfiers are used in most programming languages to assign labels to elements so
that they can be referenced elsewhere (e.g, funcࢢon and variable names).

Funcࢢon or method calls as a simple way to store some informaࢢon about the possi-
ble execuࢢon flows of the program, this kind of informaࢢon can be more or less
complete according to the informaࢢon available. For example, execuࢢon traces

62 6. Domain Knowledge Representaࢢon

....root.

....

..ProgramElement.

....

..Variable.

....

..Parameter

.

....

..GlobalVariable

.
.. ..LocalVariable
.

....

..Method

.

....

.. Idenࢢfier

.

....

..Funcࢢon

.

....

..Comment

.
.. ..Class
.

.. ..File

Figure 6.1: Class hierarchy of concepts transported from the source code to
the program model.

of the program can provide exact funcࢢon calls for given execuࢢon scenarios,
while staࢢc analysis can only provide informaࢢon about possible graphs of exe-
cuࢢon.

These elements convey knowledge informaࢢon that can be later used to perform
calculaࢢons in the program domain, and when searching for connecࢢons between do-
mains. This elements set is used to define a hierarchy of classes (illustrated in Fig-
ure 6.1), used to organize elements extracted from the source code. This is not the
only possible class hierarchy, other definiࢢons are possible, and the only details that
this parࢢcular definiࢢons establishes (opposed to other definiࢢon) are the class names
and corresponding sub-classes. This means that changing the set of classes is possible
at anyࢢme, and other tools can cope with class hierarchy updates.

Thus, the process of populaࢢng the program domain ontology simply implies clas-
sifying the extracted elements (according to the specified class hierarchy) and creaࢢng
the required triples to convey the required informaࢢon. Following the strategy defined
in the previous secࢢon modeling the program domain is defined as:

modelP :: DomainP → OntologyP
modelP dP = concat [convey (process si) | si ← sources]

6.1. The Program Domain 63

where
sources = [e | e@(Source _) ← dP]

To create the program model (the program ontology), every arࢢfact in the program do-
main (for now only the source code is analyzed, so corresponds to the set of source files)
is processed by the process funcࢢon to create a resource for each source file that cap-
tures the intended informaࢢon, and this resource is processed by the convey funcࢢon
to compute the corresponding set of triples. The informaࢢon that is extracted, and how
this informaࢢon is conveyed to a set of triples, defines how the knowledge in the ontol-
ogy reflects the source code. Different implementaࢢons of these funcࢢons can be used
for different analysis, the next secࢢons describe in more detail the implementaࢢon of
these funcࢢons in the context of this work.

The process Funcࢢon

The goal of this funcࢢon is, given a source code file, extract the informaࢢon required for
further concept locaࢢon analysis. The class hierarchy definiࢢon gives a set of elements
of interest that can be found in the program. The signature of the funcࢢon process is
the same as before:

process :: Any → Resource

In the parࢢcular case of the program domain, all the arguments passed to this funcࢢon
are of type Source String (source code file content). The set of relevant informaࢢon is
defined by the class hierarchy illustrated in Figure 6.1, and by the set of concepts of
interest described earlier in this secࢢon. In pracࢢce, the funcࢢon that does the source
code analysis is concerned with capturing elements related with these concepts: vari-
able declaraࢢons, funcࢢon definiࢢons and calls, etc. The output of this funcࢢon is a
Resource, that represents arbitrary data, stored in a format that is easily processed
(e.g, CSV, XML) or in plain text, simple to parse. Storing the resource informaࢢon in
this way, allows for other tools to process the resource data and convey informaࢢon to
the program representaࢢon, according to the program ontology semanࢢcs.

As an example, Program 6.1 illustrates a possible definiࢢon for a funcࢢon to com-
pute the factorial of a number in C. And Table 6.1 summarizes the computed resource

64 6. Domain Knowledge Representaࢢon

Id Type Idenࢢfier Context File From To

1 Funcࢢon factorial - fact.t 1 8
2 Parameter n 1 fact.t 1 1
3 LocalVariable result 1 fact.t 2 2
4 hasFuncࢢonCall factorial 1 fact.t 6 6

Table 6.1: Resulࢢng resource of processing Program 6.1 with the C source
analyzing tool.

that captures the intended informaࢢon from Program 6.1. This informaࢢon includes the
funcࢢon definiࢢon, the parameter used by the funcࢢon, the local variable used inside
the funcࢢon, and the funcࢢon call inside the funcࢢon. For every captured element the
idenࢢfier string, file and line where the element begins and ends is recorded. Once this
resource is available, the next step is to convey the informaࢢon to sets of triples that
are used later to populate the ontology. This step is carried out by the convey funcࢢon,
discussed in the next secࢢon.

1 int f a c t o r i a l (int n) {
2 int result ;
3 i f (n == 0)
4 result = 1;
5 else
6 result = n * f a c t o r i a l (n−1);
7 return result ;
8 }

Program 6.1: Funcࢢon to compute the factorial of a number recursively,
wri�en in C.

The convey Funcࢢon

The goal of this funcࢢon is, given a resource file (created by the process funcࢢon), com-
pute a set of triples that convey the intended informaࢢon, computed by an arbitrary
tool, to the ontology. Table 6.2 describes the full sets of triples computed for every el-
ement in the resource created by the process funcࢢon illustrated in Table 6.1. This step
conveys the informaࢢon from the resource to the semanࢢcs of the ontology. The first

6.1. The Program Domain 65

Id Triple Set Id Triple Set

1

Triple ”uid_1” ”hasClass” ”Function”

3

Triple ”uid_5” ”hasClass” ”LocalVariable”
Triple ”uid_1” ”hasFile” ”fact.c” Triple ”uid_5” ”hasFile” ”fact.c”
Triple ”uid_1” ”hasLineBegin” ”1” Triple ”uid_5” ”hasLineBegin” ”2”
Triple ”uid_1” ”hasLineEnd” ”10” Triple ”uid_5” ”hasLineEnd” ”2”
Triple ”uid_1” ”hasIdentifier” ”uid_2” Triple ”uid_5” ”hasIdentifier” ”uid_6”
Triple ”uid_2” ”hasClass” ”Identifier” Triple ”uid_6” ”hasClass” ”Identifier”
Triple ”uid_2” ”hasString” ”factorial” Triple ”uid_6” ”hasString” ”result”

2

Triple ”uid_3” ”hasClass” ”Parameter”

4

Triple ”uid_1” ”hasFunctionCall” ”uid_1”
Triple ”uid_3” ”hasFile” ”fact.c”
Triple ”uid_3” ”hasLineBegin” ”1”
Triple ”uid_3” ”hasLineEnd” ”1”
Triple ”uid_3” ”hasIdentifier” ”uid_4”
Triple ”uid_4” ”hasClass” ”Identifier”
Triple ”uid_4” ”hasString” ”n”

Table 6.2: Resulࢢng resource of processing Program 6.1 with the C source
analyzing tool.

detail to note is the presence of the strings uid_n in the triples, these represent unique
idenࢢfiers that unambiguously idenࢢfy every element available in the resource. In the
example, uid_1 represents the funcࢢon definiࢢon, which is related with an instance of
idenࢢfier (the funcࢢon has a name – factorial) which is described as an instances of the
class Identifier, with a data propriety that stores the actual name of the funcࢢon.

The use of the unique idenࢢfiers created for every element is just to prevent prob-
lems when materializing the ontology to well known formats (e.g. OWL) that have rules
to enforce the situaࢢon where each individual (instance) has a unique name. Although
these set of triples look confusing, they are created in a systemaࢢc way, i.e., it is pos-
sible to define a pa�ern of relaࢢons that are created for each type of element present
in the resource. Once the pa�erns are defined they can be implemented in a simple
template and instanࢢated according to the element informaࢢon. Table 6.3 illustrates
a possible template that could have been used to create the triple set for uid_1 in Ta-
ble 6.2. The problem of converࢢng the enࢢre resource is simply choosing the correct
template for the current element. This systemaࢢc approach is used successfully in some
tools described in Secࢢon 6.4.

In order to build the set of templates for every pa�ern, the set of classes and pos-

66 6. Domain Knowledge Representaࢢon

..Funcࢢon.

1

.

uid1

.

8

. Parameter.

1

.

uid3

.

1

. LocalVariable.

2

.

uid5

.

2

.

uid2

.

uid4

.

uid6

.

factorial

.

n

.

result

.

Idenࢢfier

.

hasClass

.

hasLineBegin

.

hasLineEnd

.

h
a
s
F
u
n
c
ti
o
n
C
a
ll

.

hasClass

.

hasLineBegin

.

hasLineEnd

.

hasClass

.

hasLineBegin

.

hasLineEnd

.

hasIdentifier

.

hasIdentifier

.

hasIdentifier

.

hasString

.

hasSrring

.

hasSrring

.

hasClass

.

hasClass

.

hasClass

Figure 6.2: Graph represenࢢng the knowledge described by the triples
described in Table 6.2.

Template

add element
Triple ”[% id %]” ”hasClass” ”[% type %]”
Tr iple ”[% id %]” ” hasFi le ” ”[% f i l e %]”
Tr iple ”[% id %]” ”hasLineBegin” ”[% from %]”
Tr iple ”[% id %]” ”hasLineEnd” ”[% to %]”
Tr iple ”[% id %]” ” hasIdent i f ier ” ”[% i id %]”
add element ident i f i e r
Triple ”[% i id %]” ” hasString ” ” I d e n t i f i e r ”
Tr iple ”[% i id %]” ” hasclass ” ”[% ident i f ier %]”

Table 6.3: Possible definiࢢon of a template to create sets of triples for
funcࢢon definiࢢons, the variable elements (inside [% and %]) are

instanࢢated with informaࢢon from the resource.

6.1. The Program Domain 67

sible relaࢢons between instances needs to be well defined. The next secࢢon describes
in more detail the sets of classes and proprieࢢes used to implement the systems de-
scribed in Secࢢon 6.4. This is not a closed and finished set, more classes and relaࢢons
can be added when required, and the remaining tools in the workflow cope with such
updates.

6.1.1 Classes and Instances

This secࢢon describes the set of concrete classes available in the program ontology. The
top classes are File and ProgramElement. Every program element of interest that needs
to be conveyed to the abstract representaࢢon is an instance (member) of a sub-class
of ProgramElement. The set of available classes should be enough to capture the most
relevant informaࢢon, but other classes can be added if required. Table 6.4 enumerates
the available sub-classes of ProgramElement, and describes which program elements
should be instances of each class.

6.1.2 Data and Object Proprieࢢes

A[er the elements are added to the ontology, as instances of the classes described in
the previous secࢢon, proprieࢢes can be defined for each element (relaࢢons with other
elements, or arbitrary data). There are two main types of proprieࢢes (relaࢢons): (i) a
propriety that relates two instances, and (ii) a propriety that relates an instance and
arbitrary informaࢢon of a given type (e.g., string, integer). An example of the first is the
relaࢢon inFunction, between a funcࢢon and a local variable, describing that the variable
is declared inside the funcࢢon, this is a relaࢢon between two elements. An example of
the second type of relaࢢon is the hasName propriety, which is a relaࢢon between an in-
stance (element) and arbitrary data, a string in this parࢢcular case. Table 6.5 describes
the possible object proprieࢢes to describe relaࢢons between elements, and Table 6.6
describes the available data proprieࢢes to describe relaࢢons between objects and arbi-
trary data. Again, more relaࢢons of both types can be added when required.

68 6. Domain Knowledge Representaࢢon

Ontology Class Descripࢢon

Class The goal of this class is to capture collecࢢons of variables and func-
onࢢ closely related (e.g., a Class in Java).

Function Capture a set of statements wrapped in a single executable pro-
gram unit (e.g., funcࢢon in C, a procedure in Pascal).

Identifier Captures labels in the source code, names of references to program
elements (e.g., variable names, funcࢢon names).

Method Similar to the Function class but intended to be used in OO pro-
gramming paradigms (e.g., method definiࢢons in Java).

Variable This class is used to represent a variable in a program. The more
specific next three classes should be used when possible, this class
should only be used if none of the more specific next three classes
applies.

LocalVariable Used to represent variables only defined in a given scope (e.g., C
variable declared inside a funcࢢon).

GlobalVariable Used to represent a global variable, that exists throughout the en-
reࢢ program (e.g., global variable in C).

Parameter A variable passed as an argument to a funcࢢon call (e.g. parameters
passed to a method call in Java).

Table 6.4: Available classes in the program ontology for instanࢢaࢢng
program elements.

Propriety Descripࢢon Range Class

hasFunctionCall Describes staࢢc funcࢢon calls. Function

hasIdentifier Relates a program element with its idenࢢfier. Identifier

inFile Describes in which file the element is defined. File

inFunction Describes elements that are defined inside a
funcࢢon scope (e.g. local variables).

Function

Table 6.5: Available object proprieࢢes for program elements (relaࢢons
between instances), and corresponding range classes.

6.2. The Problem Domain 69

Propriety Descripࢢon Data Type

hasName Describes the name of the element. String

hasLineBegin Describes in which line the element begins. Int

hasLineEnd Describes in which line the element ends. Int

hasSplits Describes the splits of an Identifier instance. String

hasTerms Describes the set of terms of an Identifier instance. String

Table 6.6: Available data proprieࢢes for program elements (relaࢢons
between instances and data of an arbitrary type), and corresponding data

types.

6.2 The Problem Domain

The problem, or applicaࢡon, domain (introduced in Secࢢon 2.4), encompasses the real
world knowledge about the area of interest where the so[ware is acࢢng, usually by
describing relevant concepts and the relaࢢons between these concepts. This domain is
usually described and discussed using natural languages, opposed to the main source of
informaࢢon about the program domain (the source code) which is wri�en using formal
languages (programming languages).

The goal of this ontology is mainly to capture concepts used in the applicaࢢon, and
sets of relaࢢons between these concepts. There is no set of classes and relaࢢons de-
fined at the outset for this ontology. The ontology creator is free to devise the best
approach to model the domain.

The creaࢢon of this ontology is not one of the goals of this work, it is assumed that an
applicaࢢon domain ontology is available. However, in order to have problem ontologies
for the analyzed case studies, a simple strategy was devised to automaࢢcally bootstrap a
problem ontology for a so[ware system. The generated ontologies saࢢsfy the following
invariants:

• A domain concept is represented using a class.

• Every class that represents a concept, is an instance of the class Concept, or in-
stance of a sub-class of Concept.

70 6. Domain Knowledge Representaࢢon

..Concept.

File

.

Directory

.

Output

.

file

.

files

.

directo-
ry

.

directo-
ries

.

output

.

subClassOf

.

subClassOf

.

subClassOf

.

instanceOf

.

instanceOf

.

instanceOf

.

instanceOf

.

instanceOf

Figure 6.3: Graph represenࢢng a sub-set of the problem ontology
automaࢢcally generated for the tree package.

• The linguisࢢc representaࢢon of each concept, i.e., terms used to refer to the con-
cept, are instances of the class represenࢢng the concept.

Figure 6.3 illustrates an example of a program ontology created automaࢢcally from
the so[ware system. The orange boxes represent concepts in the applicaࢢon domain,
and grey circles are instances of the different classes, represenࢢng possible textual rep-
resentaࢢons of the concept. This reads as Directory is a concept in this domain, and
can be described using the terms directory or directories, and in a similar fashion for
the File and Output concepts. All the classes represenࢢng concepts are sub-classes of
the class Concept. The graph represents only a sub-set of the knowledge described in
the complete ontology.

These arࢢfacts capture relevant concepts about the applicaࢢon domain, and allow
the realizaࢢon of an applicaࢢon model. Although, ontologies manually cra[ed by ex-
perts provide more accurate knowledge, they are not always available, or are expensive
to build. Hence, this approach provides a way to bootstrap an ontology to be directly
used, which can be enhanced at a later .meࢢ

6.3 Query Domains

Previous secࢢons address the problem of capturing informaࢢon about a domain in an
ontology, creaࢢng a model of the domain. Another relevant issue, is a[er the data is

6.4. Conclave OTK – The Ontology Toolkit 71

organized and stored, how can we query the model for informaࢢon. Querying ontolo-
gies is straight-forward, in the sense that, there are clear and well defined languages,
with different levels of expressiveness, for devising efficient expressions to retrieve in-
formaࢢon stored in an ontology.

Querying the ontology (the domain model) implies defining quesࢢons about the do-
main, and retrieving informaࢢon, with well defined semanࢢcs, to answer these ques-
.onࢢ This approach allows to obtain informaࢢon about the domain in a efficient and ac-
curate way. Also, ontologies are easier to query than, for example, the program source
code. Lacking a query language that targets source code, makes performing specific
queries a complex task.

One of the major advantages of a common knowledge representaࢢon for different
domains is that the same technology can be used to formulate queries that cross do-
mains boundaries. This means that, using the same language for describing the query,
or even in the same query, it is possible to query different domains of interest. For ex-
ample, get the list of program idenࢢfiers (from the program domain), and also the list
of concepts from the applicaࢢon domain.

The next secࢢon introduces the Ontology Toolkit that provides a set of methods to
populate and query domain ontologies.

6.4 Conclave OTK – The Ontology Toolkit

This secࢢon describes the Ontology Toolkit (OTK), a toolkit developed in the context of
this work, that provides an abstracࢢon layer on top of ontology related technologies,
to develop ontology-aware applicaࢢons using the approach described in previous sec-
onsࢢ of this chapter. OTK is implemented as a library (a set of modules) for the Perl
programming language. Outside the scope of this work, OTK can be used in any appli-
caࢢon that has to deal with ontologies. In the scope of this work, OTK is used to develop
the applicaࢢons that implement the methods and techniques described throughout this
document, e.g., how to model (build an ontology) for a given domain of knowledge.

In pracࢢce, when applicaࢢons developers want to perform an ontology related oper-
aࢢon, instead of using a specific format or underlying technology (e.g., triple-store low

72 6. Domain Knowledge Representaࢢon

level primiࢢves), they can use the abstracࢢon layer. To moࢢvate for the development of
this abstract framework, consider the modern Object-Relaࢢonal Mappers (ORM) frame-
works in the context of relaࢢonal databases. Which provide an abstracࢢon layer and
interface for programming languages to handle data (stored in databases) as objects,
allowing the development of applicaࢢons regardless of the underlying database tech-
nology used. Also developers use object methods to perform operaࢢons on the data, in-
stead of wriࢢng SQL statements. This allows wriࢢng more opࢢmized and more portable
code. More opࢢmized because the SQL queries actually executed are generally well op-
mizedࢢ by the ORM. More portable because the framework deals with different details
that may exist between the actual underlying database technology used, and the sys-
tem where the program is running. These are some of the advantages that OTK also
features.

6.4.1 Formal Definiࢢons

Given the previous discussion, and elements of interest in the domain models, the de-
vised ontology formal definiࢢon follows. This definiࢢon refines the simple set of triples
approach introduced in the beginning of this chapter to discuss the model building ap-
proach.

data Ontology = Ontology {
classes :: [Class],
instances :: [Instance],
objProps :: [ObjProp],
dataProps :: [DataProp]

}

Where, an ontology is defined by describing its set of classes, its set of instances, the set
of relaࢢons between elements (classes or instances) using object proprieࢢes, and the
set of relaࢢons between elements and arbitrary data using data proprieࢢes (e.g., strings
and integers). The Class type is a string, that stores the name of the class. The type of
an Instance is also a string, that stores the name of the instance, or a more complete
unique idenࢢfier for the instance (e.g., URI).

6.4. Conclave OTK – The Ontology Toolkit 73

type Class = String
type Instance = String

An object propriety, a relaࢢon between two elements of the ontology (e.g., two classes,
two instances, a class and an instance), is defined using a triple: (i) the source element
of the relaࢢon, (ii) the relaࢢon, and (iii) the range (or target element) of the relaࢢon:

data ObjProp = ObjProp {
source :: Element,
relation :: ObjRelation,
target :: Element

}

A data propriety, a relaࢢon between an element and arbitrary data follows a similar
approach, it is defined using a triple: (i) the source element, the element that is related,
(ii) the relaࢢon, and (iii) the target data, including the data type:

data DataProp = DataProp {
source :: Element,
relation :: DataRelation,
target :: Data
}

A set of predefined object proprieࢢes is available. But this is not a close set, and rela-
onsࢢ can be added when required. Relaࢢons for describing class hierarchies (subClassOf),
or classes instances (instanceOf) are available:

type ObjRelation = subClassOf | instanceOf | ...

A similar situaࢢon takes place with data relaࢢons, although, Data relaࢢons are more
closely related with the details of the domain at hand. For example, for the program
domain, there are a set of available relaࢢons to store informaࢢon about the path of the
file, or at which start the element begins and ends. But, again, the set of relaࢢons can
be enriched to provide new semanࢢcs whenever required.

74 6. Domain Knowledge Representaࢢon

type DataRelation = hasFullPath | hasLineBegin | hasLineEnd | ...

Data relaࢢons are usually typed. This type is defined as alternaࢢon of all possible avail-
able types of data. Usual types are strings, and numbers, but more complex data types
can be used.

data Data = S String | I Int | ...

To illustrate these definiࢢons a brief example of a simple ontology follows.

..

For example, family trees are o[en available in ontological formats, to rep-
resent individuals and their family relaࢢonships. The following classes could
be available to capture gender:

classes = [”Female”, ”Male”]

Each individual is represented as one instance. For example:

instances = [”Ann”, ”Peter”]

Individuals gender is captured by relaࢢng each instance with the corre-
sponding class, and family relaࢢonships using object proprieࢢes:

objprops = [ObjProp ”Ann” instanceOf ”Female”,
ObjProp ”Peter” instanceOf ”Male”,
ObjProp ”Ann” hasParent ”Peter”]

Extra informaࢢon can be included, for example individuals age, using data
proprieࢢes:

dataprops = [DataProp ”Ann” hasAge (I 4),
DataProp ”Peter” hasAge (I 28)]

6.4. Conclave OTK – The Ontology Toolkit 75

..

The final ontology is defined as:

onto = Ontology classes instances objprops dataprops

6.4.2 Operaࢢons and Informaࢢon Handling

In order to provide an useful toolkit for building ontology-aware applicaࢢons, the on-
tology types discussed in the previous secࢢon are not enough, a set of operaࢢons to
handle (query and update) informaࢢon is also required (e.g., creaࢢon of classes and in-
stances, descripࢢon of proprieࢢes). In sum, operaࢢons for populaࢢng ontologies, and
retrieving data, are required. The remaining of this secࢢon describes some common
operaࢢons available in Conclave OTK.

Secࢢon 6.1 discusses how data about a resource is translated into a specific format
using templates, i.e., how to transport the informaࢢon from an arbitrary resource to an
ontology. Although, this approach works well, it has major drawbacks. The templates
produce sets of arbitrary triples, but in order to build real world scalable applicaࢢons, a
way to manage, store and share these triples is required. To overcome this drawback,
instead of using templates to generate simple triple sets, Ontology Toolkit (OTK) uses a
slightly different approach: templates create Simple Protocol and RDF Query Language
(SPARQL) queries. This means that the result of applying a template is a SPARQL query
that describes the intended operaࢢon. SPARQL is a language to describe queries on
Resource Descripࢢon Framework (RDF) documents. Its roughly the same as SQL is to
relaࢢonal databases, but to RDF documents. Most of the engines and technologies,
typically adopted to store ontology formats, provide a SPARQL end-point, i.e., a service
(most of the mesࢢ via web) to perform queries. This allows the adopࢢon of a centralized
and manageable mechanism to store, retrieve, and share data. Appendix C provides
an introducࢢon to the SPARQL query language. This allows to devise templates that
describe queries to perform operaࢢons, independent of the actual technology used to
store the ontology, allowing the implementaࢢon of generalized operaࢢons in the toolkit.

SPARQL provides a mechanism to define queries based on triples. Although, an on-
tology can be represented as a set of triples, this is not enough. A language that defines
the proprieࢢes of the triples is needed, for example, to define clearly how classes and

76 6. Domain Knowledge Representaࢢon

instances, are represented, etc. OTK use the OWL family of languages, introduced in
Chapter 3, to define this semanࢢcs. OWL was adopted, not only because of the inher-
ent characterisࢢcs of the language itself (e.g., clear, concise, good expressive power),
but also due to its popularity, and the vast set of resources and tools currently available.
But, as most of the design opࢢons in OTK, this is a well defined step in the workflow,
other modules can be added to the toolkit to feature other languages.

..

For example, to add a new class to an ontology, OTK provides the add_class
method, it can be used to add a class in a applicaࢢon. Adding the Female
class to the ontology from a program wri�en in Perl:

$ontology−>add_class (’ Female ’) ;

This statement calls the add_classmethod, available in the object that rep-
resents the ontology passing the name of the new class as argument. A
simplified version of the template for creaࢢng the SPARQL query that im-
plements this operaࢢon is as follows:

INSERT DATA {
GRAPH <[% graph %]> {
[% name %] rdf : type owl : Class .

}
}

The operaࢢon is an INSERT, since the goal is to add new informaࢢon to
the ontology (a new class). The GRAPH keyword defines in which ontology
the query is to be executed. And finally the template describes the new
triple to add, using the rdf : type relaࢢon to define a new owl :Class (follow-
ing the OWL semanࢢcs). Processing this template for the specific example
illustrated before would render the following query:

INSERT DATA {
GRAPH <http : / / conclave/example/ontology> {

<http : / / conclave/example/ontology#Female> rdf : type owl : Class .
}

}

This query is then executed on the SPARQL end-point set during the defi-
niࢢon of the object represenࢢng the ontology, adding a new class named

6.4. Conclave OTK – The Ontology Toolkit 77

..
Female (an element of type owl :Class).

OTK provides a set of operaࢢons that allow common ontologies manipulaࢢon, and
new operaࢢons can be easily added by defining new templates to build new queries.
The following secࢢons describe some of these operaࢢons in more detail, and illustrate
how the OTK library can be used from an applicaࢢon wri�en in Perl.

Classes and Instances

Adding classes and instances to an ontology are common operaࢢons. Instances (or in-
dividuals) are a major part on an ontology, they describe the enࢢࢢes that exist in the
domain. Adding a class is done using the add_classmethod, that allows two arguments:
(i) the new class name, and (ii) an opࢢonal set of parent classes for the new class. For
example, adding the Male class to an ontology, as sub-class of the Person class:

$ontology−>add_class (’Male ’ , ’ Person ’) ;

Once classes are available, instances can be created. For example, creaࢢng an instance
named Ann, of the Female class:

$ontology−>add_instance (’Ann’ , ’ Female ’) ;

New classes and arbitrary instances are added to populate the ontology.

Once the informaࢢon is populated, OTK provides methods for retrieving informaࢢon
from an ontology, related with classes and instances. For example, to get all the classes
available in the ontology:

my @classes = $ontology−>get_classes () ;

Or, to get the set of all sub-classes of a given class:

my @subclasses = $ontology−>get_subclasses ($parent) ;

More closely related with instances, for example, get the set of available instances for
a given class:

my @instances = $ontology−>get_instances ($class) ;

78 6. Domain Knowledge Representaࢢon

Object and Data Properࢢes

OTK also provides methods for handling properࢢes. To add a new object propriety, a
relaࢢon between two instances, the method add_obj_prop is available. For example,
to add a relaࢢon between the instance Ann and Peter named hasParent:

$ontology−>add_obj_prop (’Ann’ , ’ hasParent ’ , ’ Peter ’) ;

To retrieve the list of proprieࢢes for an element from the ontology, the methodget_obj_props,
giving as argument the element of interest:

my @proprieties = $ontology−>get_obj_props (’Ann’) ;

A data propriety is a relaࢢon between an element and arbitrary data. For example
to add the relaࢢon between the instance Ann and the integer 5, to represent the person
age:

$ontology−>add_data_prop (’Ann’ , ’ hasParent ’ ,5 , ’ Int ’) ;

The set of data proprieࢢes for a given element is retrieved using the get_data_props
method, that has a single argument, the element of interest. For example to get the
data proprieࢢes set for the Ann instance:

my @proprieties = $ontology−>get_data_props (’Ann’) ;

Table 6.7 summarizes the set of operaࢢons on ontologies provided by Conclave OTK,
most commonly used. The composiࢢon of these operaࢢons is enough to build an as-
sorted array of heterogenous applicaࢢons. Some examples are illustrated in the follow-
ing chapters. And, since the operaࢢons are performed on a SPARQL end-point, anyone
can build a query to perform a custom operaࢢon, and directly explore the service, or
use the operaࢢons provided by OTK.

6.4. Conclave OTK – The Ontology Toolkit 79

Classes and Instances Object and Data Proprieࢢes

add_class add_obj_prop

add_instance get_obj_props

get_classes add_data_prop

get_subclasses get_data_props

get_instances

Table 6.7: Summary of most commonly used operaࢢons on ontologies
provided by Conclave OTK.

Summary

• This chapter describes an approach for modeling a domain of knowledge, and the
toolkit for implemenࢢng this method.

• A model of a domain is an arࢢfact that helps to quickly study and be�er under-
stand an applicaࢢon domain. The model discards less relevant real world details,
and emphasizes more relevant domain concepts.

• This chapter introduces a domain agnosࢢc approach for creaࢢng a model, divided
in two main steps: (i) process domain arࢢfacts; and (ii) convey relevant informa-
.onࢢ

• The first step, summarized in Figure 6.4 for the program domain, processes a set
of domain arࢢfacts in order to abstract specific informaࢢon about the domain,
the final result is a set of resources that capture specific informaࢢon.

• The second step, summarized in Figure 6.5 for the program domain, processes a
set of resources in order to convey (transport) relevant informaࢢon to an onto-
logical format, with a concrete semanࢢcs.

• The final domain model is implemented using an ontology. In the context of PC
heterogenous domains may be available (e.g., the applicaࢢon domain, the pro-
gram domain), abstracࢢon of each one of them is captured in a different ontology.

80 6. Domain Knowledge Representaࢢon

..So[ware
Package

. Dynamic
Analysis

.

Staࢢc
Analysis

.

NLP
Techniques

.

Problem
Analysis

.

Specificaࢢon

.

Resources
e.g. idenࢢfiers table

. Resources
e.g. execuࢢon traces

.

Resources
e.g. so[ware corpus

.

Resources
e.g. requirements

........

Figure 6.4: Process the so[ware system, and related arࢢfacts, using a set of
heterogeneous techniques, to build resources that contain informaࢢon

about different domains.

• Conclave OTK is a toolkit for implemenࢢng ontology-aware applicaࢢons, devel-
oped in the context of this work, and its used to implement the techniques dis-
cussed in this chapter.

• OTK uses a template based engine to build SPARQL queries, to describe and per-
form operaࢢons. The toolkit stores the ontology using OWL notaࢢon.

6.4. Conclave OTK – The Ontology Toolkit 81

..Resources
e.g. idenࢢfiers table

.

Resources
e.g. execuࢢon traces

.

Resources
e.g. so[ware corpus

.

Resources
e.g. requirements

. Program
Ontology

.

Word Δ
Ontology

.

Problem
Ontology

. Language
Ontology

.

Domain
Ontology

.........

Figure 6.5: Convey the informaࢢon available in the resources to a set of
well defined ontologies.

82 6. Domain Knowledge Representaࢢon

Chapter 7

The Concept Mapper

The discussion in Chapter 6 revolves around on how to describe concepts about a so[-
ware system, and related domains, using ontologies. For example, building a model for
the program, or applicaࢢon domain. Relaࢢng real world concepts (commonly described
in the problem or applicaࢢon ontology) with source code (the program ontology) is a
crucial task during program comprehension acࢢviࢢes, in order to understand a program.
Concept Mapper main task is to build bridges between ontologies, to create relaࢢons
between elements in the different domains.

This chapter describes the Conclave Concept Mapper framework. Its goal is to pro-
vide a reasoning layer, on top of the ontologies representaࢢon described in the previous
chapter, that:

• provides a searching mechanism, for arbitrary keyword based searches;

• allows the creaࢢon of views that emphasize parࢢcular traits of interest;

• and, allows the creaࢢon of mappings between elements in different ontologies.

To create a view or a mapping, the reasoning layer queries the ontologies for informa-
onࢢ about their corresponding domain, and specific elements. This informaࢢon is then
used to build an arࢢfact that emphasizes some parࢢcular trait being analyzed.

83

84 7. The Concept Mapper

..

For example, query the program ontology for a list of funcࢢon definiࢢons
available in the program, and query the problem domain for a list of con-
cepts used in the applicaࢢon domain. Measure the relatedness between
each concept and every funcࢢon, and build a graph, or a tree-like structure,
that emphasizes which funcࢢons are related to which concepts.

The abstract signature of the generic funcࢢon provided by this framework is:

mapper :: [Ontology] → [Query] → View

i.e., given a set of ontologies and a set of queries, build some kind of view of the in-
tended data. The Ontology data type captures domain models, and is defined in Sec-
onࢢ 6.4. TheQuery type defines the data of interest for the intended search or analysis,
and how this data is compared when required. The View type encompasses the pos-
sible results of the mapper funcࢢon. The view can be achieved in different ways, for
example, a ranked set of elements when performing a plain search, new informaࢢon to
add to some ontology (i.e., infer new knowledge), a graph, a matrix of related elements
of different domains, etc. Someࢢmes the resulࢢng view can be less specific, or an inter-
mediate representaࢢon, before presenࢢng the data to the programmer or maintainer.
A generic definiࢢon of the View type for now is:

data View = Rank |Mapping | [DataProp] | [ObjProp] | ...

More detailed definiࢢons are introduced when more concrete applicaࢢons of this func-
onࢢ are discussed in future secࢢons. In some situaࢢons, the mapper funcࢢon can also
compute a set of triples, more knowledge about the domain, to be added to the on-
tologies. In some cases an intermediate resource is created, that is further processed
before being presented to the final recipient.

As with the model funcࢢon in the previous chapter, these more generic definiࢢons
are used as a generic method for defining funcࢢons with a more straigh�orward prac-
calࢢ applicaࢢon. An example of this are funcࢢons for locaࢢng elements of interest in a
domain, that compute a rank. For this family of problems the generic definiࢢon of the
locate funcࢢon is:

locate :: Query → Rank

7.1. The Query Language 85

which is discussed in detail in Secࢢon 7.2. Another example is the creaࢢon of mappings
(matrix like resources) that describe possible relaࢢons between elements defined in the
same domain, or in different domains. This family of problems is captured by the map
funcࢢon:

map :: Query → Query → Mapping

defined in detail in Secࢢon 7.3. The locate and map funcࢢons are specific cases, of the
more generic mapper funcࢢon. The ontologies input is omi�ed in both definiࢢons for
simplicity, it can be safely assumed that the set of ontologies is always available in these
funcࢢons.

Defining queries is required for both funcࢢons, so the Query type and the domain
specific language devised to write queries are discussed in the next secࢢon, before dis-
cussing the locate and map funcࢢons.

7.1 The Query Language

A query is used to describe which are the elements of interest in the domain. For ex-
ample, when performing a simple search for a set of keywords, the class of the element
of the domain can be used to restrict the elements being searched (e.g. search only
funcࢢon definiࢢons). This is a detail that can be complex to accomplish using common
approaches (e.g. grep). Most of the mesࢢ when searching some comparison is per-
formed between elements, to grade the relevance of the element being processed, for
example comparing the funcࢢon name with some search keyword. The funcࢢons used
to compute relevance values for these comparisons are also defined in the query. Since
more than one domain of knowledge (ontology) is available, the query allows to choose
from which set of ontologies to perform queries.

Given this descripࢢon of a query, the formal type is defined as:

data Query = Query { params :: [Param] }
data Param = Param { name :: String, value :: String }

A query is defined by a set of parameters, that describe the required proprieࢢes, that
entail the query semanࢢcs. Another advantage of this definiࢢon is that, to enrich the

86 7. The Concept Mapper

Name Descripࢢon

word set of keywords if required

class classes of interest, i.e. select instances of these classes

aggr relaࢢon to use to aggregate elements

score scoring funcࢢon used when elements need to be compared

onto ontology to use

Table 7.1: Available parameters to define query properࢢes.

Figure 7.1: Syntax diagram for the query string grammar.

query with new proprieࢢes, the query data type does not require any update. The
currently defined parameters, that can be used to write a query are summarized in
Table 7.1.

The word, class and aggr parameters can be used more than once in a query to
define a set (e.g. a list of keywords, a list of classes). Figure 7.1 illustrates the syntax
diagram, that defines the language to describe queries using a string: A query starts with
a open square bracket ([), a list of pairs conjugated using the equals sign (=) follows,
and ends with a closing square bracket (]). Each of these pairs defines a parameter,
where the string on the le[side of the equals sign defines the parameter name, and
the string to the right side defines its value. To be�er describe how a query is used and
to emphasize some query features, the remaining of this secࢢon is dedicated to the
analysis of some examples.

The program maintainer when iniࢢally addressing a possible bug fix, may be inter-
ested in searching funcࢢons (or methods) only. The class propriety can be used to con-
strain the class of elements that are being retrieved from the ontology. The following
query performs a search for the words “color” and “schema”, but only analyses ele-
ments that are instances of the class Function (remember the ontology definiࢢon in
Secࢢon 6.1, and that the program ontology is the default ontology for selecࢢng ele-

7.1. The Query Language 87

ments):

[word=color word=schema class=Funcࢢon]

This means that the elements of the resulࢢng rank are only instances of funcࢢons, be-
cause the query constrains the search domain of the locate funcࢢon. Another exam-
ple, can be searching for variables, by selecࢢng the class Variable, this includes all the
members that are instances of the class Variable and also instances of all sub-classes
of Variable (e.g. Parameter, LocalVariable), i.e. the resulࢢng rank includes all kinds of
variables in the original program:

[word=color class=Variable]

Parࢢcular types of variables can be selected, for example searching only local variables:

[word=color class=LocalVariable]

Another important propriety that can be defined is the scoring funcࢢon, i.e. the func-
onࢢ that will compute the semanࢢc relatedness score between the keywords searched
and each of the selected elements, this is done using the score propriety. For example,
the query:

[word=color class=Variable score=levenshtein]

uses the Levenshtein word distance metric [90], to compute the score. By default, a
scoring funcࢢon based on kPSS is used (details about scoring funcࢢons are discussed in
Secࢢon 7.4).

So far, the illustrated queries have been compuࢢng scores between elements (e.g.
funcࢢons, variables) and a set of words. But more complex comparisons may provide
more accurate rankings. The aggr propriety allows a query to define the name of a
relaࢢon (defined in the ontology) to compute a score not only between each selected
element, but also a set of related elements. For example, the query:

[word=color class=Funcࢢon score=levenshtein aggr=inFuncࢢon]

88 7. The Concept Mapper

analyses all the funcࢢons, and for each funcࢢon also considers all the elements that are
related with that funcࢢon by the relaࢢon inFunction (defined in the ontology). This re-
laࢢon is used to link all the local variables and parameters to the funcࢢons (or methods
depending on programming language) where they are defined and used. In pracࢢce,
the score for each element (funcࢢon) is the mean between compuࢢng the score for
the element itself, and the score for every local variable and parameter defined in that
funcࢢon.

7.2 The locate Funcࢢon

The locate funcࢢon addresses the problem of performing straigh�orward searches.
Working in a similar fashion to a tradiࢢonal web search engine, the user supplies a set of
keywords that he or she wants to search, and the system builds a list of documents re-
lated with the keywords, sorted by relevance (using some kind of score). The signature
for the generic locate funcࢢon is:

locate :: Query → Rank

i.e., given a query, compute a sorted rank of elements. The result of this funcࢢon is
always of type Rank, defined as:

data Rank = Rank { entries :: [Entry] }
data Entry = Entry { elem :: Element, score :: Float }

i.e., a rank is a set of entries, where for each entry the element and the relevance score
are available. An element is used to represent any instance of any class in any ontology
(e.g., a program funcࢢon definiࢢon, a domain concept). The score, is computed by a
scoring funcࢢon (discussed in more detail in Secࢢon 7.4) and is used to sort the element
set by relevance, the higher the score, for the majority of cases the higher is the degree
of relatedness of the element with the search query.

Given the Query and Rank type definiࢢons, the locate funcࢢon is defined as:

locate :: Query → Rank

7.2. The locate Funcࢢon 89

locate q = let
elements = getElements q
entries = [Entry e (computeScore q e) | e ← elements]

in
Rank (sortByScore entries)

i.e., given a query this funcࢢon builds a rank (a set of entries) where an entry is created
for every element in the set elements defined by the query, and each entry contains the
element itself and the element score. The way the score is calculated is also defined by
the query, details about this are discussed in Secࢢon 7.4. The sortByScore funcࢢon
simply sorts a list of elements by their corresponding score.

The conc-locate1, a possible implementaࢢon for the locate funcࢢon, is a command
line tool for performing simple search queries in a so[ware system. The tool takes two
arguments: (i) the so[ware system to use, and (ii) the query string. This and other
related tools are discussed in more detail in Chapter 8, but some examples of usage are
presented in this secࢢon just to illustrate some queries and corresponding results. In
these specific examples, the queried ontology is always the program ontology, and the
so[ware package tree-1.5.3 is the object of analysis.

$ conc-locate tree-1.5.3 "[word=color]"
tree.c: 1553 | int color(u_short mode, char *name, char orphan, char islink)
tree.c: 153 | int color(u_short, char *, char, char), cmd(char *),
patmatch(char *, char *);
tree.c: 633 | char *path, nlf = FALSE, colored = FALSE;
tree.c: 204 | int i,j,n,p,q,dtotal,ftotal,colored = FALSE;

(...)

The result includes the line of code where the elements were found, and is sorted by
score, from highest to lowest. The prefix of each line includes the original source file,
and line number. The query can constrain the search domain, for example by select-
ing only funcࢢon defiࢢons. The following example uses the same keyword search, but
contrains the search domain to instances of the class Function only (i.e., funcࢢon defi-
niࢢons):

1conc-locate is a tool available in the Conclave system introduced in the next chapter.

90 7. The Concept Mapper

$ conc-locate tree-1.5.3 "[word=color class=Function]"
tree.c: 1553 | int color(u_short mode, char *name, char orphan, char islink)
tree.c: 153 | int color(u_short, char *, char, char), cmd(char *),
patmatch(char *, char *);
tree.c: 1411 | void parse_dir_colors()
tree.c: 162 | void parse_dir_colors(), printit(char*), free_dir(struct _info**),
indent(int maxlevel);
(...)

The lines concerning variables are no longer present in the rank, because the corre-
sponding elements (instances of variables classes) are no longer included in the com-
puted rank. Of course the domain constrain could be on the variables class, or any other
class available in the ontology.

7.3 Themap Funcࢢon

The map funcࢢon goal is to build relaࢢons between elements, normally described in
different ontologies. For example to related concepts in the applicaࢢon ontology, with
elements from the program domain (e.g., funcࢢons). The generic signature for themap
funcࢢon is:

map :: Query → Query → Mapping

i.e., given a pair of queries, compute a set of scored relaࢢons between elements from
both queries. The result of this funcࢢon is usually a matrix-like structure, and is captured
in the Mapping data type definiࢢon:

dataMapping = Mapping {
rows :: [Element],
cols :: [Element],
cells :: [Cell]
}

data Cell = Cell {

7.4. The Scoring Funcࢢon 91

row :: Element,
col :: Element,
score :: Float
}

i.e., a Mapping is a matrix of scores, where each cell stores the score (a real number)
that measures the relatedness between the corresponding column and row element.
Besides the cells, the set of row elements, and the set of column elements, are also
stored. The map funcࢢon is defined as follows:

map :: Query → Query → SFunction → Mapping
map q1 q2 f = let

rows = getElements q1

cols = getElements q2

cells = [Cell er ec (f er ec) | er ← rows, ec ← cols]
in
Mapping rows cols cells

Given a set of queries, that define two sets of elements, and a scoring funcࢢon (more
details about scoring in the next secࢢon), themap funcࢢon computes a matrix (a set of
cells), where each cell stores the relatedness score between the cell row and column
elements. Examples of results for this funcࢢon are illustrated in Chapter 8.

7.4 The Scoring Funcࢢon

The locate andmap funcࢢons, defined in previous secࢢons, describe two generic meth-
ods for searching and building relaࢢons between elements. In either case a way to com-
pare single elements is required, and the result of this comparison needs to be quanࢢ-
taࢢve. In most cases, the goal is to have a numeric measure of how two elements are
closely related, in the sense that they deal with the same real world concept(s). This
idea has been entailed in the semanࢡc relatedness expression used previously. Hence,
whenever this expression is referred, its empiric measure is computed using a scoring
funcࢢon. This secࢢon describes scoring funcࢢons in general, and discusses some par-
cularࢢ opࢢons for calculaࢢng scores.

92 7. The Concept Mapper

Before analyzing possible scoring funcࢢons and their definiࢢons, a more concrete
definiࢢon of what actually is an element is required. An element is represented as an
instance in an ontology, this means that an element is used to represent, for example,
a funcࢢon definiࢢon, a variable in the program ontology, or a concept in the problem
ontology. The important detail is that every element has a textual representaࢢon, usu-
ally captured in a string. For example, a funcࢢon definiࢢon is textually referred as the
name of the funcࢢon, a concept in the problem domain is also refereed by its name.
Thus, the problem of compuࢢng the relatedness between two elements is reduced to
the problem of comparing the two strings that represent the elements. A string is com-
posed of a set of terms, at least one is required to convey some semanࢢc meaning. So,
the problem of comparing two strings is reduced again, to comparing two sets of terms.
Ideally, comparing the semanࢢc conveyed in the term set, and not only their syntacࢢc
resemblance.

Every element in the ontologies has a propriety that defines the string that repre-
sents the instance (see the hasString propriety in the program domain for example, in
Secࢢon 6.1). The Element data type, used to store an element from any ontology is
defined as:

data Element = Element { id :: UID, hasString :: String }

An element in the ontology is idenࢢfied by its unique idenࢢfier, and has a textual repre-
sentaࢢon described by a string. When required, every other propriety can be extracted
from the respecࢢve ontology, using the instance unique idenࢢfier (also unique across
different ontologies). The string used to represent the instance, for now, is the only
required informaࢢon from the element.

Any scoring funcࢢon used to measure the relatedness between elements respects
the SFunction signature, i.e., it takes two elements as argument, and computes a real
number (the score):

type SFunction = Element → Element → Float

The generic funcࢢon compare, that actually compares two elements, is defined as:

compare :: SFunction

7.4. The Scoring Funcࢢon 93

compare e1 e2 = let
t1 = terms (hasString e1)

t2 = terms (hasString e2)
in
score t1 t2

where the score funcࢢon is responsible for compuࢢng a float that compares both sets
of terms. The terms funcࢢon, simply breaks the string in terms, usually by spliࢰng the
string by the comma character, or empty spaces, depending on how the original data
was stored. Different approaches for implemenࢢng the score funcࢢon result in different
ranks and mappings.

The general idea, is to find a way of compuࢢng the proximity between arbitrary
terms, to figure out if they represent related concepts. A simple first approach is, for
example, to verify if the terms are equal, which would provide a binary answer: if the
terms are equal then the two concepts are related, and if the terms are not equal they
represent different concepts. But this would fail with simple and obvious cases, like
for example the terms “write” and “wrote”. Although they are not textually equal, they
represent the same verb “write”, so it is possible (for some degree of concept definiࢢon)
to claim that they represent the same concept, the act of wriࢢng. These, and similar
situaࢢons, like comparing inflecࢢons (e.g., “book” versus “books”) are overcome using
some linguisࢢc based approach, e.g., compare lemmas instead of actual terms, or use
measures like the Levenshtein distance. These approaches allow finding more relaࢢons
between terms, but sࢢll they rarely find semanࢢc relaࢢons between terms that are tex-
tually completely different. For example, the terms “car” and “vehicle”, in some con-
texts are used to represent the same concept but they are clearly different textually. To
overcome these challenging situaࢢons other approaches are required, a common trend
is to build some kind of fuzzy synonyms set for each term, and measure its intersecࢢon
in some way (e.g., number of common terms). The next secࢢon, discusses the scoring
funcࢢon used by default in Concept Mapper, based on kPSSs.

94 7. The Concept Mapper

Order (n) Synset Probability

n = 1 insert 0.333333

n = 2 insert 0.166667
inserts 0.166667

n = 3

buffer 0.074937
enter 0.054291
insert 0.068407
inserts 0.067033
inserࢢon 0.019270

Table 7.2: kPSS of order 3 for the term “insert”.

7.4.1 kPSS Based Scoring Funcࢢon

This secࢢon describes the algorithm that measures the relatedness between two sets
of terms using kind-of Probabilisࢢc Synonyms Sets (kPSS). A kPSS is a data structure that
stores synonyms for a given seed word organized in orders, including a probability for
each synonym. Table 7.2 illustrates an example, the kPSS created for the term “insert”.

Given two (or more) kPSSs it is possible to calculate a similarity score between them.
This score is used by aforemenࢢoned funcࢢons to measure relatedness between ele-
ments in the ontology, to create ranks or mappings. At this level the only informaࢢon
available of such elements is their textual representaࢢon, conveyed in a string, which
is usually composed of a set of terms (words). Hence, the relatedness measure is com-
puted based on these sets of terms. The funcࢢon that scores this relatedness (assigns
a real value) is defined as:

score :: [Term] → [Term] → Float
score t1 t2 = let

kpss1 = kpss t1
kpss2 = kpss t2

in
kpssScore kpss1 kpss2

i.e., given two sets of terms, first a kPSS is computed for each set of terms using the
kpss funcࢢon, and then the kpssScore funcࢢon is used to computed the score between

7.4. The Scoring Funcࢢon 95

the two resulࢢng kPSSs.

The kpss funcࢢon is the first requirement to implement the scoring funcࢢon. The
goal of this funcࢢon is to compute a kPSS for a set of terms. The strategy to compute
this is divided in two major steps: (i) compute a kPSS for every individual term; and
(ii) use an operaࢢon defined in a kPSS algebra to compose together the set of kPSSs,
compuࢢng the final kPSS. Following this strategy two funcࢢons are required. One that
given a term computes its kPSS, that has the following signature:

kpssBuild :: Term → kPSS

and a funcࢢon to compose together a set of kPSSs into a single kPSS, for example kPSS
union, with the following signature:

kpssUnion :: [kPSS] → kPSS

and, the kpss funcࢢon, that builds a kPSS for a set of terms is then defined as:

kpss :: [Term] → kPSS
kpss terms = kpssUnion (map kpssBuild terms)

i.e., build a kPSS by processing each term with the kpssBuild funcࢢon, and composing
together the resulࢢng set using the kpssUnion funcࢢon. Other composing funcࢢons can
be used, for example kPSS intersecࢢon, that yields a different kPSS, and consequently a
different score. Before discussing in detail the kpssBuild funcࢢon, a data type for storing
a kPSS is required.

A kPSS of order n is a list of n synsets (sets of synonyms). Each synset is composed of
a set of terms, and for each term a corresponding probability, that measures the degree
of confidence that the term is semanࢢcally equivalent (or related) to the original term
(i.e., represents the same concept):

data kPSS = kPSS { orders :: [Order] }
data Order = Order { n :: Int, synset :: [Syn] }
data Syn = Syn { term :: String, prob :: Float }

96 7. The Concept Mapper

Order n Synset Content

1 the term t itself with p = 1

2 term t lemma and possible inflecࢢons, with each p = 1
|words|

3 term t PSS, with corresponding probabiliࢢes

Table 7.3: Synset terms per order n in a kPSS.

A kPSS is a list of orders (of type Order), where each order stores the order number n,
where n ∈ N, and a list of synonyms, for each synonym (of type Syn) the term itself
and a probability is stored.

To build a kPSS the funcࢢon kpssBuild is used, and has the following definiࢢon:

kpssBuild :: Term → kPSS
kpssBuild t = normalize [Order n (buildSynset t n) | n ← [1 .. 3]]

i.e., given a term t, start by building the synset for orders 1 to 3, and then normalize the
resulࢢng synsets (i.e., maintain the invariant that the sum of all probabiliࢢes is less or
equal to 1). To build a synsset for a given order, the buildSynset funcࢢon is used, and
has the following definiࢢon:

buildSynset :: Term → Int → [Syn]
buildSynset t n = ⟨summary on how to build each synset in Table 7.3⟩

i.e., given a term t and an integer n build the synset for term t of order n, that contains
a set of synonyms with corresponding probabiliࢢes. Table 7.3 summarizes how this
funcࢢon builds the set of words that are members of the synset for a given order. For
n = 1, the synset contains only the term t with a p = 1. For n = 2, the synset contains
the lemma for the given term, i.e., the dicࢢonary form has described in Chapter 5, and
possible inflecࢢons (e.g., the plural or singular of the term), each word has the proba-
bility equal to 1 normalized by the total number of words in this synset. For n = 3, the
synset contains terms extracted from the PSS for the term t, the probabiliࢢes are the
same as defined by the PSS. More details about PSSs and how they are computed are
presented in the next secࢢon.

7.4. The Scoring Funcࢢon 97

Finally, the last requirement to compute the kPSS based relatedness score is the
kpssScore funcࢢon, defined as:

kpssScore :: kPSS → kPSS → Float
kpssScore k1 k2 = sum [min (prob x) (prob y) |

x ← flatten k1, y ← flatten k2,
word x == word y]

This funcࢢon iterates over the fla�ened version of the kPSS, and sums the minimum
probabiliࢢes for terms that are common. The fla�ened version of the kPSS is simply a
single list of terms. The flatten funcࢢon is defined as:

flatten :: kPSS → [Syn]
flatten kpss = unique $ concat [synset order | order ← kpss]

The unique funcࢢon removes duplicate terms from a synset list, adding their probabili-
.esࢢ A possible definiࢢon for this funcࢢon follows:

unique :: [Syn] → [Syn]
unique set = let

uniq = nub [term s | s ← set]
in

[Syn t (sum $map prob $ filter ((== t).term) set) | t ← uniq]

The kpssScore funcࢢon can be directly used as the score funcࢢon, in the compare
funcࢢon definiࢢon, to quanࢢfy relatedness between elements, to compute ranks or
mappings. It is important no note that looking at this score as absolute value does not
convey much interesࢢng informaࢢon, its main goal is to rank (sort) sets of elements.

..

For example, given the kPSS illustrated in Figure 7.2 for the term “insert”,
and the following kPSSs for the terms “enter” and “delete” respecࢢvely.

98 7. The Concept Mapper

..

“enter” “delete”

Order (n) Synset Probability Synset Probability

n = 1 enter 0.333333 delete 0.333333

n = 2
enter 0.166667 delete 0.166667
enters 0.166667 deletes 0.166667

n = 3

between 0.070727 delete 0.087397
enter 0.063716 deletes 0.022420
indicates 0.067441 excludes 0.029492
insert 0.044695 is 0.081242
provide 0.030405 removal 0.032690
specify 0.027150 remove 0.080092
type 0.029200

The relatedness score between the terms can be computed using the kPSS
based scoring funcࢢon. The following tables summarizes the results of the
kpssScore funcࢢon for several combinaࢢons of input kPSSs.

kpss1 kpss2 kpssScore

“insert” “enter” 0.098986
“insert” “delete” 0.000000
“enter” “delete” 0.000000

The table shows that there is no relaࢢon between “insert” and “delete”,
and “enter” and “delete”, because the score is 0. But the score achieved
between the terms “insert” and “enter” is 0.098986, higher than 0, show-
ing that there is a semanࢢc relaࢢon between the two terms. In the context
of PC this is a plausible conclusion, since most of the ,mesࢢ “insert” and
“enter” both refer to the same acࢢon (real world concept) of providing (in-
serࢢng or entering) some kind of data. A clearly different acࢢon is deleࢢng
data, captured by the “delete” term. Semanࢢcally, “insert” and “enter” are
much closely related than “insert” and “delete”, or “enter” and “delete”.

7.4. The Scoring Funcࢢon 99

Term Probability

patches 0.137035
regression 0.184512
sample 0.189865
test 0.203093
tests 0.107999
tesࢢng 0.177496

Table 7.4: PSS for the term “tesࢡng”.

7.4.2 Probabilisࢢc Synonyms Sets

In linguisࢢcs, and in the field of terminology, a set of synonyms, for a given term, is
commonly called a synset. A popular example of synsets is provided by WordNet2 [108,
106].

A Probabilisࢢc Synonyms Set (PSS) is a set of terms closely related with the original
seed word, it is similar to a synset, but it may contain terms that are not actual synonyms
but are semanࢢcally related. A PSS is automaࢢcally built from PTDs (introduced in Sec-
onࢢ 5.5), and each synonym in the synset has an associated probability. This probability
measures the similarity distance between each synonym and the original term. A PSS
can contain terms in several languages if required. Table 7.4 illustrates an example of a
PSS, for the term “tesࢡng”.

A PTD contains dicࢢonaries in a pair on languages (e.g., portuguese – english), which
means that, there is a dicࢢonary from one language to another and vice-versa (e.g.,
from portuguese to english, and from english to portuguese). A PSS is built by perform-
ing a triangulaࢢon between a pair of dicࢢonaries, i.e., first get the set of translaࢢons
from one language to another, and then for each possible translaࢢon determine the
set of translaࢢons to the original language. Usually there is a probability constrain on
the possible translaࢢons, to control the cut level of terms that are added to the final
synset. Formally, and given the definiࢢon of Syn presented earlier, the PSS data type is
defined as a set of synonyms:

type PSS = [Syn]
2Available from: http://wordnet.princeton.edu/ (Last accessed: 24-10-2014).

http://wordnet.princeton.edu/

100 7. The Concept Mapper

type Prob = Float

A probability, captured by the type Prob, is simply a real number. The following funcࢢon,
named pssBuild, defines how a PSS is built, given a pair of PTDs (one from language A
to B, and another from language B to A), a term, and a cuࢰng probability.

pssBuild :: PTDA,B → PTDB,A → Term → Prob → PSS
pssBuild ptdA,B ptdB,A t p =

let
termsA,B = ptd ptdA,B t
termsA,A = concat [ptd ptdB,A ti | (ti, pi) ← termsA,B, pi > p]

in
[Syn tj pj | (tj, pj) ← termsA,A , pj > p]

Where, ptd is a funcࢢon, that given a PTD from language A to B, and a term t, computes
a set of pairs, where each pair contains a term that is a possible translaࢢon of t, and a
probability that is translaࢢon is valid. The final synset found in a PSS is added to a kPSS,
as the 3rd order synset.

A PSS provides a set of terms, closely related with the seed word. These terms are
not all synonyms in a linguisࢢc sense, i.e., someࢢmes a term is semanࢢcally closely re-
lated with the seed word, but it is not a synonym that would appear in a dicࢢonary. For
example, in the PSS example illustrated in Table 7.4, the term “regression” is not exactly
a synonym for the term “tesࢡng”, but they are very closely related in the context of so[-
ware engineering3. These kind of relaࢢons between terms are usually not found in more
linguisࢢc based synsets, but they help to enrich the PSS semanࢢcally, and increase the
number of possible relaࢢons with other terms. The scope of these relaࢢons, and the
general vocabulary present, is controlled by the original parallel corpora that was used
to build the PTDs from which PSSs are created. PTDs can be created from generic par-
allel corpora resources, but they can also be created from domain specific corpora. The
text used helps to control the translaࢢon dicࢢonaries vocabulary, which in turns helps
to control the vocabulary present in the PSSs. For example, the PSSs used throughout

3In so[ware engineering, regression tesࢢng is a specific type of tesࢢng, to make sure a new version
of a program maintains backwards compaࢢbility for example.

7.5. Conclave Concept Mapper 101

this work, included the examples illustrated, are built from a set of PTDs created based
on parallel corpora extracted from so[ware documentaࢢon, i.e., text about so[ware.
This is a way of controlling the term sets available in the PSSs. This is the main reason
why, for example, the PSS for the term “fork” does not contain terms related with cut-
lery, because the actual sense that is predominant in the parallel corpora used, is the
one related with the operaࢢng system forking a process. The PTDs and some related
resources used are available in the Per-Fide project website4.

7.5 Conclave Concept Mapper

Conclave Concept Mapper is a framework, implemented as a library for the Perl pro-
gramming language, that provides the funcࢢons described in this chapter. Its designed
to work together with Conclave OTK. This library uses the abstracࢢon layer provided
by OTK to retrieve data for answering locate queries, and build maps, even outside the
scope of PC.

The library features two general mechanisms: (i) for searching, following the locate
funcࢢon definiࢢon; and, (ii) for creaࢢng maps, following the map funcࢢon; both func-
onsࢢ discussed earlier in this chapter. As input the provided mechanisms expect a
query, wri�en as a string, like the examples illustrated before. The framework includes
a parser-like tool that is responsible for processing the query and, using primiࢢves pro-
vided by OTK, achieve the intended results. The scoring funcࢢons (e.g., kpss), are pro-
vided as plug-ins, and new scoring funcࢢons can be easily added.

Besides the library, the framework also features some command line tools (e.g,
conc-locate) for more quick operaࢢons, or to compose textual results with other tools.
The next chapter illustrates some tools implemented using this framework.

4Available from: http://per-fide.di.uminho.pt/ (Last accessed: 24-10-2014).

http://per-fide.di.uminho.pt/

102 7. The Concept Mapper

Summary

• Locaࢢng concepts, and relaࢢng concepts with source code, are crucial tasks dur-
ing PC acࢢviࢢes, in order to understand a so[ware system, or a part of it.

• This chapter describes a set of funcࢢons that are used to clearly define locaࢢng
and mapping operaࢢons. These definiࢢons are represented using a query string,
with a well defined syntax.

• Locate and searching funcࢢons compute ranks, and mapping-like funcࢢons pro-
duce maps between elements. In either cases a scoring funcࢢon is used to mea-
sure the semanࢢc relatedness of elements.

• Every scoring funcࢢon between two elements follows the pa�ern illustrated in
Figure 7.3, every element in the ontology as a textual representaࢢon (a string),
that can be composed of one or more terms. Hence, a scoring funcࢢon given two
sets of terms, computes a score (a real number).

• A scoring funcࢢon, based on kPSS, is defined during this chapter. A kPSS is a data
structure for capturing terms synonyms, and the score between two kPSS can be
used to measure the semanࢢc relatedness between two terms.

• A PSS captures a set of synonyms, and closely related terms, based on a collec-
onࢢ of parallel corpora, which can be domain specific, that allow the creaࢢon of
relaࢢons between terms.

• Conclave Concept Mapper implements the described operaࢢons as a Perl library,
and its designed to integrate with OTK (the toolkit described in the previous chap-
ter), to build applicaࢢons that create views of the program (and related domains)
to enhance PC acࢢviࢢes. The Concept Mapper contribuࢢon to the general work-
flow is illustrated in Figure 7.2.

7.5. Conclave Concept Mapper 103

..Concept
Mapper

.

Program
Ontology

.Word Δ
Ontology

.

Problem
Ontology

. Views
e.g. graphs, ranks

....

Figure 7.2: The Concept Mapper framework retrieves informaࢢon from
ontologies, and produces views of elements of interest.

..Ontology
A
. Element a. Stringa. [Term]a.

Element b

.

Stringb

.

[Term]b

.

Ontology
B

.

score

.

Float

.........

Figure 7.3: General pa�ern for compuࢢng scores between elements in
ontologies.

104 7. The Concept Mapper

Chapter 8

The Conclave Environment

There’s an odd misconcepࢡon in the compuࢡng world that wriࢡng
compilers is hard. This view is fueled by the fact that we don’t write
compilers very o[en. People used to think wriࢡng CGI code was hard.
Well, it is hard, if you do it in C without any tools.

Allison Randal

Conclave is an environment for so[ware analysis, featuring a set of applicaࢢons and
tools for enhancing several PC acࢢviࢢes. The methodology described in Chapter 6 is
used to represent knowledge about domains (including the so[ware system), and the
approach described in Chapter 7 is used to build views of elements of interest, that
paired together with other provided assorted tools, enhance so[ware maintenance
tasks. The system provides a web interface to be used by humans when analyzing so[-
ware systems, and some of the tools include a web service that provides access to some
features to be used more cleanly by machines.

Achieve an implementaࢢon as modular as possible is one major design goal during
the development of Conclave, this entails dividing problems in several smaller problems
and devising an independent soluࢢon to solve each smaller problem using an approach
as generic as possible. This allows a more dynamic system, since current tools in the
system are easy to update, and new tools can be added to the workflows without effort,
to upgrade or provide new features. Also, generic tools are prone to be useful outside

105

106 8. The Conclave Environment

the scope of this system, or even outside the scope of so[ware engineering.

The system provides a set of tools, that can be used independently, or composed
together in previously defined workflows. These are divided in two main groups: (i)
tools for performing tasks concerned with modeling the so[ware system, and related
domains, using ontologies; and, (ii) tools related with performing reasoning about the
models, and providing views of the so[ware system under analysis.

The remaining secࢢons in this chapter discuss in detail some of these tools, and
how they are composed together, to build the program representaࢢon and other mod-
els (e.g., the problem domain model) and, the interface provided to programmers and
maintainers during so[ware maintenance and evoluࢢon tasks.

Source Code Analysis

The major source of informaࢢon of any so[ware system is the source code itself. As-
sorted informaࢢon can be extracted from analyzing the so[ware system. This kind of
informaࢢon is rich enough to build a model dedicated enࢢrely to the source code, this is
refereed in previous chapters as the program ontology. This ontology conveys informa-
onࢢ about the program, that is explored by other tools to provide concept locaࢢon and
searching features. This representaࢢon is not complete, i.e., some of the details about
the source code are discarded, and there is not enough informaࢢon in the program
ontology to build back the program.

Some elements of interest in the program and their representaࢢon in the ontology
are discussed in Secࢢon 6.1. A set of tools were implemented to collect this informaࢢon
from the source code. Of course the ontology is not closed, and other tools can be used
to extract more informaࢢon, and produce other arࢢfacts, that are later conveyed to the
program ontology.

Analysis of Non-Source Code Arࢢfacts

Besides source code, a fundamental source of informaࢢon about so[ware systems lies
in documentaࢢon, and other non source code files, like README, INSTALL, or How-To
files, commonly available in the so[ware ecosystem. These documents, wri�en in nat-

8.1. From Code to Resources: Clang Conclave 107

ural language, provide valuable informaࢢon during the so[ware development stage,
but also in future maintenance and evoluࢢon tasks. Their content provides valuable
informaࢢon, that is conveyed to several models (e.g., applicaࢢon ontology, program
ontology).

This chapter discusses tools and applicaࢢons that act at different processing stages:

• with the goal of processing arࢢfacts, creaࢢng and populaࢢng ontologies:

– a tool to analyze source code and create intermediate resources that convey
informaࢢon of interest (e.g., Clang Conclave);

– tools to create and populate ontologies with informaࢢon extracted from
source code and other arࢢfacts (e.g., DMOSS, Conclave Uࢢls);

– tools that process ontologies and infer or create new informaࢢon about do-
mains (e.g., spliࢰng and expanding idenࢢfiers using Lingua::IdSpli�er);

• browsing ontologies informaࢢon, or creaࢢng views about the so[ware system:

– allowing keyword based searching, or the creaࢢon of mappings to build
bridges between domains (e.g., Conclave Concept Mapper);

– and, the Conclave system in general.

8.1 From Code to Resources: Clang Conclave

Source code analysis, to extract informaࢢon about program elements, is a crucial step
when building the program domain ontology, the minimum required ontology for other
tools to perform useful operaࢢons. This secࢢon describes Clang Conclave, a tool for
source code staࢢc analysis for programs wri�en in the C programming language. The
major goal of this tool is to extract elements of interest from C programs to build the
program ontology. The iniࢢal version of this tools was based on Exuberant Ctags1, a tool
for generaࢢng an index of language objects found in source code. Although it supports

1Available from http://ctags.sourceforge.net/ (Last accessed: 28-10-2014).

http://ctags.sourceforge.net/

108 8. The Conclave Environment

a vast number of programming languages (the iniࢢal moࢢvaࢢon to adopt it), it is based
on processing the code as text, not using an approach based on a parser. Meaning that
it does not extract some informaࢢon of interest, e.g., the context where the program
element is defined. Thus, the need of devising a tool using compilers technology, but
the Exuberant Ctags based version is sࢢll useful to extract informaࢢon from source code
wri�en in programming languages for which there is no specific front-end.

The main tasks performed by Clang Conclave are:

• Extract variable, funcࢢons and macro declaraࢢons, including: (i) original source
file; (ii) context (i.e., where the element is in the code, for example inside a func-
;(onࢢ (iii) the name given to the element (i.e., the idenࢢfier); and, (iv) the source
file line number where the element begins and ends.

• For each element extracted clearly idenࢢfy to which class the element belongs,
classes of elements are defined in Secࢢon 6.1.

• Extract staࢢc funcࢢon calls, i.e., informaࢢon about which funcࢢons are called
throughout the code, even if funcࢢons are not called during runࢢme due to con-
trol flow decisions (e.g., if statements).

Following the strategy defined in Chapter 6 for modeling the program, this tool builds
an intermediate arࢢfact (acts as a processing funcࢢon). The relevant informaࢢon needs
to be conveyed to the ontology later. This last step is performed by another tool, a PC
specific module distributed with the Conclave Uࢢls library.

..

An example of execuࢢng this tool, and the resulࢢng arࢢfact is illustrated in
Chapter 6: Figure 6.1 mirrors the output of this tool for the source code il-
lustrated in Program 6.1. The raw output of this tool is in Comma-Separated
Values (CSV) format, where each line describes an element in the original
source code. The following example of usage illustrates the raw output of
this tool for the source code illustrated in Program 6.1 using the web ser-
vice provided by Conclave:

$ curl -F "upload_file=@factorial.c" http://conclave.di.uminho.pt/clang/ws
TYPE, UID, ID, CTX, FILE, LINESTART, LINEEND

8.1. From Code to Resources: Clang Conclave 109

..

Function,factorial.c::factorial::1,factorial,,factorial.c,1,8
Parameter,factorial.c::n::1,n,factorial.c::factorial::1,factorial.c,1,1
LocalVariable,factorial.c::result::2,result,factorial.c::factorial::1,factorial.c,2,2
hasFunctionCall,factorial.c::factorial::6,-,factorial.c::factorial::1,factorial.c,6,6

This output is loaded to the program ontology using the conc-otk-load
tool, distributed with the Conclave Uࢢls library. Given that the above out-
put is stored in the factorial.data, and the h�p://local/factorial ontol-
ogy is being used, the following command:

$ conc-otk-load http://local/factorial clang factorial.data

conveys the informaࢢon computed by clang-conclave to the ontology,
populaࢢng it with the required instances and data.

One of the advantages of spliࢰng this task in two steps, and two disࢢnct tools, is that
although the first step is language dependent, the second tool, since it processes the
created intermediate arࢢfact in an intermediate representaࢢon, is less language spe-
cific and is used to process arࢢfacts created from a heterogeneous set of programming
languages. This is a pracࢢcal example of the modularity that Conclave is, in general,
aiming for.

Given that Conclave Uࢢls provides this PC specific module for conveying resources
built by Clang Conclave, the problem at hand is how to build the intermediate arࢢfact.
The first required component is a C parser. Instead of implemenࢢng a C parser from
scratch, Clang Conclave was implemented as a CLang module using the CLang C parser2.
CLang is the C/C++ (among others) front-end for the LLVM compiler [78]. The CLang li-
brary provides funcࢢons for parsing and parsing tree traversal performing arbitrary pro-
cessing. The CLang library is used to: (i) parse the C code and build a parsing tree; and,
(ii) traverse the parsing tree, and for each node of interest produce the corresponding
entry in the intermediate representaࢢon. The nodes of interest set is defined by the
elements of interest discussed in Secࢢon 6.1 – the program domain. In libclang each
node (usually refereed as cursor) in the parsing tree has a well defined unique idenࢢfier
(refereed as kind) that describes the type of node, the nodes types are defined in the

2Available from: http://clang.llvm.org/ (Last accessed: 12-10-2014).

http://clang.llvm.org/

110 8. The Conclave Environment

Node Parent Short Descripࢢon

8 - funcࢢon declaraࢢon

9 8 variable declaraࢢon

9 300 variable declaraࢢon (local)

10 - parameter declaraࢢon

20 - type declaraࢢon

103 - funcࢢon call

501 - macro declaraࢢon

Table 8.1: Nodes of interest idenࢢfiers in the libclang parsing tree.

CXCursorKind enumeraࢢon. Table 8.1 describes the node types that are processed
in the parsing tree, each of these nodes spawns a line represenࢢng the element in the
final arࢢfact. Every other nodes are ignored.

Using this approach, the tool gathers not only informaࢢon about the idenࢢfiers used
throughout the code, but also informaࢢon about elements of interest, as described in
Secࢢon 6.1, for example: funcࢢon definiࢢons and corresponding parameters defini-
,onsࢢ staࢢc funcࢢon calls, local and global variables, etc.

This same strategy was also applied to develop a similar tool to process source code
wri�en in Java. Instead of using the libclang library, the Antlr parser generator3 [114]
was used to build the parsing tree, and transverse the tree to produce the intermediate
arࢢfact, analogously to the clang-conclave tool.

8.2 From Idenࢢfiers to Sets of Full Terms: Lingua IdSpli�er

When wriࢢng code, programmers follow processes (e.g. use of abbreviaࢢons, mulࢢ-
term composiࢢon) for devising idenࢢfiers that convey to programming language restric-
,onsࢢ but also are concise and convey semanࢢc value. These processes are not always
clearly idenࢢfied, and o[en change during different stages of development. Neverthe-
less, bringing idenࢢfiers from the program domain to natural language full terms, i.e.,

3Available from: http://www.antlr.org/ (Last accessed: 12-10-2014).

http://www.antlr.org/

8.2. From Idenࢢfiers to Sets of Full Terms: Lingua IdSpli�er 111

split muࢢ-terms idenࢢfies, and expand abbreviaࢢons, can potenࢢally improve concept
locaࢢon techniques. Guerrouj in [56] presents some studies on the impact of normal-
izing source code vocabulary on several feature locaࢢon techniques.

Lingua IdSpli�er (henceforth abbreviated LIdS)4, is a simple and fast algorithm that
addresses the problem of spliࢰng mulࢢ-term idenࢢfiers, and can cope with abbrevia-
,onsࢢ acronyms, or any type of linguisࢢc short-cuts (e.g., use only the first le�er of a
word). The algorithm calculates a ranked list of all the possible splits for an idenࢢfier,
based on a set of dicࢢonaries, and the top entry in the rank is proposed as the correct
split. Besides the actual split, the result includes the set of full terms that compose the
idenࢢfier, in case abbreviaࢢons were used for example. This technique can use an ar-
bitrary set of dicࢢonaries, but one of the major advantages of this approach is the use
of a so[ware specific dicࢢonary computed automaࢢcally from the so[ware corpus –
computed automaࢢcally and specific to each so[ware package – using a combinaࢢon
of Natural Language Processing (NLP) techniques. This dicࢢonary enables the algorithm
to correctly handle idenࢢfiers spliࢰng using arbitrary abbreviaࢢons or combinaࢢons of
terms specific to the applicaࢢon domain, not prone to be present in more general pro-
gramming dicࢢonaries.

This tool is used in the Conclave environment to split and expand idenࢢfiers ex-
tracted from so[ware source code. Using the sets of full terms enhances the results of
the scoring funcࢢons described in Chapter 7 to measure relatedness between elements.

8.2.1 The Spliࢰng Approach

The goal of the technique described in this secࢢon is to split any combinaࢢon of hard
and so[terms (including abbreviaࢢons) found in an idenࢢfier. Figure 8.1 illustrates the
intended process for the “strcmp” idenࢢfier. This idenࢢfier is composed of two abbre-
viaࢢons: “str” and “cmp”, so this is the first level of intended split. The next improved
step, is to start expanding abbreviaࢢons to the full term they represent. The best possi-
ble answer is to have the list of all correct terms: { string, compare }, in this example.

To cope with cases where combinaࢢons of so[and hard words are used, the algo-
4LIdS is available under GNU General Public License in the official comprehensive Perl network (CPAN)

from: http://search.cpan.org/dist/Lingua-IdSplitter/ (Last accessed: 09-07-2014).

http://search.cpan.org/dist/Lingua-IdSplitter/

112 8. The Conclave Environment

strcmp
soft_split

vvnnn
nnn

nnn
nnn

n

soft_split
((QQ

QQQ
QQQ

QQQ
QQQ

str

expand

��

cmp

expand

��
string

((PP
PPP

PPP
PPP

P
compare

vvmmm
mmm

mmm
mmm

m

string, compare

Figure 8.1: Laࢰce for spliࢰng the “strcmp” idenࢢfier.

parse_userstr
hard_split

vvmmm
mmm

mmm
mmm

mm

hard_split ((RR
RRR

RRR
RRR

RR

parse

��8
88

88
88

88
88

88
88

88
88

88
88

88
8

userstr
soft_split

uulll
lll

lll
lll

lll

soft_split &&LL
LLL

LLL
LLL

user

��

str

expand
��

string

ssggggg
ggggg

ggggg
ggggg

ggg

parse, user, string

Figure 8.2: Laࢰce for spliࢰng the “parse_userstr” idenࢢfier.

rithm first applies a hard split technique, followed by a so[split to the strings resulࢢng
from the first split. Figure 8.2 illustrates an example.

The hard_split Funcࢢon

This funcࢢon is responsible for spliࢰng strings when an explicit separator mark is present.
Since this is not the main focus of this tool, a simple funcࢢon that only detects two ex-
plicit cases: special common characters5 and the CamelCase notaࢢon, is used. When
these marks are found a simple split is made and the funcࢢon returns the set of result-

5Currently these include: single dot, underscore and double colon.

8.2. From Idenࢢfiers to Sets of Full Terms: Lingua IdSpli�er 113

ing strings. For spliࢰng strings in CamelCase notaࢢon, the String::CamelCase (a Perl
library) is used6.

Algorithm 1 illustrates the hard_split funcࢢon. The matches funcࢢon (line 2 and
7) tries to match a string with a regular expression, returning a true value on success.
CamelCase (line 7 and 8) represents a regular expression that matches the most com-
mon cases of CamelCase notaࢢon. The re_split funcࢢon (line 3 and 8), returns a list of
elements resulࢢng from spliࢰng a string using as delimiter a regular expression.

For example, the result of applying the hard_split funcࢢon to the idenࢢfier “in-
sert_UserDataStr” is the list: { insert, user, data, str }.

Algorithm 1 Compute hard splits.
Input: id :: String // idenࢢfier to split
Output: S :: [String]

1: L← [id]
2: ifmatches(id, special_marks) then
3: L← re_split(id, special_marks) // special marks are: ‘.’, ‘_’ and ‘::’
4: end if
5: S ← ∅
6: for each si ∈ L do
7: ifmatches(si, CamelCase) then
8: S ← S ∪ re_split(si, CamelCase)
9: else

10: S ← S ∪ si
11: end if
12: end for
13: return S

The soft_split Funcࢢon

A[er the hard words in the idenࢢfier are split, the next step is to split so[words. The
soft_split funcࢢon, given a string to split, returns a list of pairs, each pair containing
the string represenࢢng the cut and the full term (in case of abbreviaࢢons were used for
example). A simplified version of the algorithm is illustrated in Algorithm 2.

6Available from: http://search.cpan.org/dist/String-CamelCase/ (Last accessed: 03-03-
2014).

http://search.cpan.org/dist/String-CamelCase/

114 8. The Conclave Environment

Index Set Index Set

0 [t, ti, time, times] 4 [s, so, sort]
1 [i] 5 [o, or]
2 [m, me, mes] 6 [r, rt]
3 [e, es] 7 [t]

Table 8.2: Dicࢢonary valid words per string index for the idenࢢfier
.”mesortࢡ“

Lines 2-4 immediately return if the id to split is a valid string (i.e., a word or a known
abbreviaࢢons7). Lines 6-14 compute all the possible valid strings that can be found
starࢢng in every posiࢢon of the argument string. For example, Table 8.2 illustrates the
possible strings per index for the ”mesortࢡ“ idenࢢfier. This means the set of valid words
(according with the provided set of dicࢢonaries) that start at every index. The actual
computed set includes also the expanded terms (equal to the string if no abbreviaࢢon
was used), and the weight assigned to the dicࢢonary that validated the string. Once this
set is computed, the next step (described in lines 16-20) is to build an automaton with
all the words found, to calculate all the possible sequences of nodes (paths), that con-
catenate to rebuild the original idenࢢfier. An example of this automaton is illustrated
in Fig. 8.3 for the ”mesortࢢ“ idenࢢfier.

The set of paths (sequence of nodes from the starࢢng edge, to an end node) in the
automaton, define the set of string sequences that are candidates to be the idenࢢfier
correct splits. The post_process funcࢢon, called in line 21, allows for some extra candi-
dates to be created. Currently, a new candidate is added to the list when a sequence of
3 or 4 le�ers is found. The sequence of le�ers is added as a word with a weight lesser8

than any dicࢢonary, mainly to prevent over-spliࢰng small unknown abbreviaࢢons and
acronyms. Next, the algorithm computes the score for each candidate, creaࢢng a rank,
where the top element (the sequence with the highest score) is returned as the result-
ing split. The top entries for the ”mesortࢡ“ idenࢢfier rank are illustrated in Table 8.3.

The compute_word_graph funcࢢon, given a set of possible terms per original iden-

7Single le�er strings (like “a” or “x”) are valid english words. This technique can handle idenࢢfiers
composed of such strings (e.g., “xyfigure” that splits to the set: {x, y, figure}).

8This weight is usually 0.1, since more specific dicࢢonaries all have weights set to values above 0.1
(e.g., programming dicࢢonary weight is 0.6, custom corpus-based dicࢢonary weight is 0.6).

8.2. From Idenࢢfiers to Sets of Full Terms: Lingua IdSpli�er 115

Figure 8.3: Word automaton for the ”mesortࢡ“ idenࢢfier.

Table 8.3: Top entries in the idenࢢfier ”mesortࢡ“ rank, sorted by score from
highest to lowest.

Split Score

{ time, sort } 1.4400
{ ti, me, sort } 0.1920
{ time, so, rt } 0.1920
{ times, o, rt } 0.1500
(...)

116 8. The Conclave Environment

fierࢢ index, builds an automaton (example illustrated in Fig. 8.3), and the sort_by_score
funcࢢon numerically sorts the candidates, using the entry scores, from highest to low-
est. The valid_term and score funcࢢons are described in more detail later in this secࢢon.

The split Funcࢢon

Given an idenࢢfier this funcࢢon computes a list of pairs of type (String, Term) that rep-
resent the set of splits (and corresponding terms) for a single or mulࢢ-word idenࢢfier.
It uses a combinaࢢon of the hard_split and soft_split funcࢢons, and if a single word or
known abbreviaࢢon is given as argument it returns the word or expanded abbreviaࢢon
respecࢢvely.

This funcࢢon is the entry point for the technique and is described in Algorithm 3.
It starts by applying an hard_split to the argument, and then applies a soft_split to
every resulࢢng string. The final result is a list of pairs: each containing the split, and the
full expanded term.

The valid_term Funcࢢon

The valid_term funcࢢon, used by the soft_split funcࢢon, decides for a given string and
a set of dicࢢonaries if the string is a valid term. A string is considered valid if present in
any of the dicࢢonaries. If valid, the funcࢢon returns a tuple including: (1) the original
string, (2) the term the string represents (if an abbreviaࢢon is used for example), and
(3) the dicࢢonary (that validated the string) weight. Algorithm 4 illustrates this funcࢢon
implementaࢢon.

Generally, a dicࢢonary is defined as a pair: (i) a funcࢢon that given a string returns
a word, and (ii) a weight:

data Dictionary = Dictionary { words :: String → String, weight :: Float }

The weight is a float that expresses the dicࢢonary degree of confidence. This a�ributes
main purpose is to give dicࢢonaries a preference order. For example, the english lan-
guage dicࢢonary is always used, and has a weight set to less than more specific program-
ming dicࢢonaries. So that programming terms, more common to be used as program

8.2. From Idenࢢfiers to Sets of Full Terms: Lingua IdSpli�er 117

Algorithm 2 Compute so[splits.
Input: id : String // idenࢢfier to split
Output: S : [(String, String)] // list of pairs split,term

1: // return if valid word or know abbreviaࢢon
2: if (s, t, _) = valid_term(id) then
3: return [(s, t)]
4: end if
5: // compute possible valid terms in id per index
6: terms← ∅
7: for i = 0 to length(id) do
8: for j = i to length(id) do
9: str ← splice(i, j, id)

10: if (s, t, w) = valid_term(str) then
11: terms[i]← terms[i] ∪ (s, t, w)
12: end if
13: end for
14: end for
15: // compute every possible sequence of terms
16: g ← compute_word_graph(terms)
17: candidates← ∅
18: for all pi ∈ paths(g) do
19: candidates← candidates ∪ pi
20: end for
21: candidates← candidates ∪ post_process(candidates)
22: // compute score for each candidate
23: scores← ∅
24: for ci ∈ candidates do
25: scores{ci} ← score(ci)
26: end for
27: // sort candidates by score and select top ranked
28: rank ← sort_by_score(candidates, scores)
29: top← pop(rank)
30: S ← map (fst) top
31: T ← map (snd) top
32: return zip(S, T)

118 8. The Conclave Environment

Algorithm 3 Split an idenࢢfier.
Input: id : String // idenࢢfier to split
Output: S : [(String, String)] // list of pairs split,term

1: S ← ∅;T ← ∅
2: hard_words← hard_split(id)
3: for all si ∈ hard_words do
4: (s, t)← unzip(soft_split(si))
5: S ← S ∪ s
6: T ← T ∪ t
7: end for
8: return zip(S, T)

idenࢢfiers, have a higher chance to be included in the result of the idenࢢfier split. And
also, terms that share the same abbreviaࢢon, can use expansions more specific to the
program domain. For example, “directory” is commonly abbreviated as “dir”, but in the
AbcMidi package, “dir” is more o[en used to abbreviate “direcࢡon”9. The weight is also
used to calculate the sequence score (more details on this in the next sub-secࢢon).

Algorithm 4 Verify if a string is a valid term.
Input: str :: String // term to be verified
Input: D :: [Dictionary] // dicࢢonaries set
Output: (s, t, w) :: (String, String, F loat)

1: for all d ∈ sort_by_weight(D) do
2: if str ∈ domain(d{words}) then
3: return (str, d{words}(term), d{weight})
4: end if
5: end for
6: return ∅

The score Funcࢢon

The score funcࢢon, is used by the soft_split funcࢢon, to calculate a score for each possi-
ble sequence of strings (paths) found in the automaton. This score measures the likeli-
hood that a given sequence of strings is the correct split for a mulࢢ-word idenࢢfier. The
candidate sequences are sorted by score and the proposed soluࢢon is the sequence

9The direcࢢon is used to describe which way the note stem is oriented: upwards or downwards.

8.2. From Idenࢢfiers to Sets of Full Terms: Lingua IdSpli�er 119

with the highest score.

The formula to calculate a score is analyࢢcally defined as:

score(S) =
(
∏length(S)

i=1 factor(Si)) + length(m)

length(S)2

where the mulࢢplicand of factors (a factor is calculated for each element in the se-
quence) plus the length of the longer string in the sequence, is normalized by the squared
sequence length. Each factor is calculated according to the formula:

factor(s, t, w) = length(s)× w

i.e., the length of the string found mesࢢ the dicࢢonary weight that validated the string.

Algorithm 5 illustrates the implementaࢢon of this funcࢢon using these formulas.
It simply iterates over the elements in the sequence, compuࢢng the mulࢢplicand of
element factors, adding the longest split length, and dividing by the squared sequence
length.

Algorithm 5 The scoring funcࢢon.
Input: S : [(String, String, F loat)] // split,term,weight triple
Output: score : Float

1: prod← 1
2: max← 0
3: for all si ∈ S do
4: prod← prod× length(si{split})× si{weight}
5: if length(si{split}) > max then
6: max← length(si{split})
7: end if
8: end for
9: score← (prod+max) / length(S)2

10: return score

8.2.2 Documentaࢢon Corpus

Informally, a corpus is a collecࢢon of texts, usually representaࢢve of a given domain or
subject. These constructs are used to build other common linguisࢢc arࢢfacts in the field

120 8. The Conclave Environment

of NLP [59, 72, 100]. The first step in order to build some of the dicࢢonaries used by
the valid_term funcࢢon is to create the documentaࢡon corpus, by collecࢢng (natural
language) text from all the files included in the so[ware package.

The corpus is created using a tool distributed with the DMOSS10 framework (dis-
cussed in the next secࢢon). This tool iterates over the files in the package, and some
specific file types are processed to extract their content as plain text to be included in
the corpus. The following heurisࢢcs are currently being used:

• Documentaࢢon files (that can be plain text files or other common formats like
HTML,man or JavaDoc) content is included in the corpus, specific format files are
implicitly pre-processed for plain text extracࢢon.

• Text from files commonly available in so[ware packages that usually convey do-
main informaࢢon is also included (e.g., README, INSTALL files).

• All other plain text files content is included. The file type computed by theDMOSS-
Oracle tool – also distributed with the DMOSS framework – is used to decide
which files are plain text.

All this content is stored in a plain text file called the documentaࢡon corpus, specific
for each so[ware package. This file is later processed to build more linguisࢢc arࢢfacts,
namely dicࢢonaries, as described in the next secࢢon. Source code comments are ex-
tracted by a different process, and are not included in this corpus. More details about
DMOSS are available in Secࢢon 8.3.

8.2.3 Custom Corpus-based Dicࢢonary

Applicaࢢon domains tend to use a specific vocabulary, that uses terms, expressions
and common abbreviaࢢons which are not easily found in general purpose dicࢢonar-
ies. This secࢢon describes the technique devised to automaࢢcally create a dicࢢonary
for domain specific abbreviaࢢons and mulࢢ-word expressions from the documentaࢢon
corpus, specific to each so[ware package.

10DMOSS is a framework for so[ware packages (mainly non-source content) analysis, available from
http://search.cpan.org/dist/DMOSS/ (Last accessed: 27-03-2014).

http://search.cpan.org/dist/DMOSS/

8.2. From Idenࢢfiers to Sets of Full Terms: Lingua IdSpli�er 121

The starࢢng points are: (i) the documentaࢢon corpus, (ii) the set of program iden-
fiersࢢ extracted from the the source code, and (iii) a general programming dicࢢonary.
The steps to create the custom corpus-based dicࢢonary are:

1. Create the srcIds set, that includes the starࢢng point (ii) - the set of idenࢢfiers
collected from the source code – and, the explicit idenࢢfiers found in the docu-
mentaࢢon corpus. In order to be considered an explicit idenࢢfier, the string needs
to combine one or more terms using an explicit mark (i.e., use hard words).

2. Split the srcIds set usinghard split techniques, the resulࢢng set is called SimpleIds-bag.

3. Search possible idenࢢfier expansions in the corpus. For each string in the SimpleIds-bag
calculate a set of regular expressions to extract probable expansions and mulࢢ-
word correspondences (matches) in the corpus. Rank them by occurrence fre-
quency.

4. For every mulࢢ-word expansions found, calculate the single word correspondences,
and the non-trivial ones are added to the custom corpus-based dicࢢonary. By
non-trivial we mean exact matches (equal strings), and that are known words in
english. For example, the mulࢢ-word idenࢢfier ,”mesigࢡ“ that expands to { time,
signature } produces: (1) →”meࢡ“ ”meࢡ“ (trivial), and (2) “sig”→ “signature”
(non-trivial, hence added to the dicࢢonary).

5. To create the final dicࢢonary, expansions and mulࢢ-words are included based
on a set of filters (concerned with increasing precision, even if lowering recall).
Filters include, for example, minimum length for abbreviated strings (3 charac-
ters), rejecࢢng abbreviated strings with vowels, and expansions with a length of
15 characters or more.

For example, in the context of the AbcMidi package, many compound idenࢢfiers
are found (e.g., “mrest” and ,(”mesigࢡ“ and abbreviated terms (e.g., “chan”). Table 8.4
illustrates some example regular expressions created automaࢢcally to search the pack-
age corpus for the corresponding expansions. The top match for each expression is also
illustrated, and the final expansion selected, either by filters or frequency count (when

122 8. The Conclave Environment

String Derived Regular Expressions Top Match

mrest m\w* rest\w* “mulࢡbar rest” ✓
m\w{,2}r\w{,2}est\w* ∅

timesig
t\w* imesig\w* ∅
tim\w* esig\w* ∅
time\w* sig\w* meࢡ“ signature” ✓

chan c\w* han\w* “chord handling”
c\w{,2}h\w{,2}an\w* “channel” ✓

Table 8.4: Derived regular expressions examples.

Id Splits Expands

mrest m | rest {multibar, rest}
timesig time | sig { time, signature}
chan chan { channel }

Table 8.5: Top entries in the idenࢢfier ”mesortࢡ“ rank, sorted by score from
highest to lowest.

different expansions are available). The heurisࢢcs to create the regular expressions in-
volve iteraࢢvely filling gaps between characters with wildcards and spaces.

The first ranked corespondent occurrences in the corpus are: “mulࢡbar rest”, meࢡ“
signature” and “channel” respecࢢvely. The final corpus based dicࢢonary (a[er all the
inference process) includes: expansions (e.g., “chan”→ “channel”), abbreviaࢢons (e.g.,
“flg” → “flag”), mulࢢ-word (e.g., ”mesigࢡ“ → { time, signature }), some words not
present in a general english dicࢢonary but valid in the applicaࢢon context (e.g., “lynx”);

The automaࢢc creaࢢon of these dicࢢonaries, which provide valuable informaࢢon
for spliࢰng source code idenࢢfiers, is one of the major novelࢢes introduced by this
approach. These allow the correct split and expansion of strings difficult to achieve
otherwise (e.g., the “hornp” expands to “hornpipe”. And increases the relevance of
specific domain terms, not found in general programming dicࢢonaries (e.g., “anacrusis”
or “accidentals”, from the AbcMidi corpus) but frequent in this package as idenࢢfiers.
This dicࢢonary is used by the valid_term funcࢢon, which allows the soft_split funcࢢon
to handle (single and mulࢢ-word) domain abbreviaࢢons found in idenࢢfiers.

8.3. From So[ware File Tree to Ontologies: DMOSS Toolkit 123

8.2.4 Other Dicࢢonaries

Since the custom corpus-based dicࢢonary goal is to capture applicaࢢon domain specific
vocabulary, more general programming common abbreviaࢢons and acronyms may not
be present in this dicࢢonary. Also, documentaࢢon may not be available to create the
documentaࢢon corpus. To overcome this and similar situaࢢons another set of dicࢢo-
naries are being used by LIdS:

programming: includes some general programming terms and abbreviaࢢons (e.g.,
“msg” → “message”, “param” → “parameter”) that have been collected over
meࢢ by the authors, it has around 110 entries.

acronyms: a set of well known and common acronyms (e.g., HTML, XML, BSD, SQL),
this dicࢢonary has around 130 entries. These acronyms are not expanded to the
full set of terms in this dicࢢonary. In order to keep the seࢰng for the experimen-
tal verificaࢢon described in Secࢢon 9.3 as close as to the one described in [58],
the acronyms dicࢢonary provided by Guerrouj et al. was used to create the first
version of this dicࢢonary.

abbreviaࢡons: includes common abbreviaࢢons general to most programs (e.g., “ctrl”
→ “control”, “buff”→ “buffer”). Again, to keep the seࢰng as close as possible to
the one described in [58], the abbreviaࢢons dicࢢonary provided by Guerrouj et
al. is used. It has around 190 entries.

general: dicࢢonary for the english language, the dicࢢonary provided by aspell11 is
used. It has around 120 000 entries.

8.3 From So[ware File Tree toOntologies: DMOSS Toolkit

Typically a so[ware system is not a single a file, but a collecࢢon of files, including content
not wri�en using programming languages. The starࢢng point is o[en an heterogenous
file tree of files, including the source code and other assorted files.

11Available from: http://aspell.net (Last accessed: 12-02-2014).

http://aspell.net

124 8. The Conclave Environment

The Documentaࢢon Mining Open So[ware Systems (DMOSS) toolkit main goal is to
provide a set of tools that systemaࢢcally process a so[ware package, and produce a
report with conclusions about the quality of the non-source code content found. This
includes analyzing all the natural language text available in the documentaࢢon, com-
ments in the code, and other non-source code files typically found in packages.

The main design goals for DMOSS are:

• Develop small autonomous tools, so that they can be useful in other contexts or
environments. Applicaࢢons that use these smaller tools are modular, so that new
tools can be added without any addiࢢonal effort, just like typical plugins.

• Many tools in DMOSS take advantage of known algorithms and techniques (for
example the file processors). The main engine in the toolkit needs to be based
on the usage of plugins, so that new processors and similar uࢢliࢢes can be added
and improved easily.

• Represent the so[ware package as a tree. This allows the implementaࢢon of the
analysis algorithms as a set of tree traversals (for more details on tree data struc-
tures and traversal algorithms see e.g. [53, 43]). Keeping the implementaࢢon of
the specific analysis algorithms self-contained in the plugins.

Let us stress again the importance regarding the way DMOSS represents a so[ware
package: an annotated tree. In this tree, nodes represent files and directories, and
edges describe the hierarchical structure of the package. An example tree is illustrated
in Fig. 8.4, for the tree so[ware package. This tree is automaࢢcally generated by the
toolkit, by traversing the filesystem file hierarchy recursively, adding nodes for each
file and directory visited. For each node that is a known documentaࢢon format (e.g.
man(ual) page, HTML) the plain text content is extracted and added to the correspond-
ing node as an a�ribute12.

Once this tree is available, the task of processing a so[ware package is divided in
two tree traversals:

12Known types are defined in the toolkit by a set of regular expressions that match file extensions, and
a dispatch table that contains funcࢢons definiࢢons for text extracࢢon for each type.

8.3. From So[ware File Tree to Ontologies: DMOSS Toolkit 125

..tree-1.5.3. CHANGES.

INSTALL

.

MAN

.

LICENSE

.

tree.c

.

README

.

strverscmp.c

.

tree.1

.
tree.1.fr

.........

Figure 8.4: DMOSS so[ware package tree like structure representaࢢon.

1. During the first pass the goal is to gather informaࢢon about files and their con-
tent. Each plugin processor funcࢢon is executed for each file individually, and the
computed metrics are stored in the tree as node a�ributes.

2. In the second pass, results are aggregated (or reduced). For each directory node,
the available features are reduced to a single result. In the end, the tree root node
(the package top directory) contains the results of processing the enࢢre package.

A[er these traversals, a final report with conclusions is produced using the data
stored in the annotated tree. The plugins that perform the actual analysis and build
conclusions need to implement three funcࢢons to be used in both tree traversals:

1. A processor, which is responsible for gathering informaࢢon about a file and pro-
duce a set of features (a metric can be measured using one or more features)
about its content. These features are stored in the tree as node a�ributes:

processor :: Node → [Feature]

2. A reducer, which is responsible for reducing features to produce either interme-
diate or final results. Results can be a single feature or a set of features:

reducer :: [Feature] → [Feature]

126 8. The Conclave Environment

3. Finally, a reporter, which is responsible for building the final report given a set of
features:

reporter :: [Feature] → Report

The only strictly required funcࢢon is the processor, as there are default implementa-
onsࢢ for the other two funcࢢons, which are used when a plugin does not provide them.
The default reducer reduces a�ributes using string concatenaࢢon or arithmeࢢc sum de-
pending on value type. The default reporter uses a pre-defined template to produce a
simple report.

A feature is defined as a pair, consisࢢng of a name and a value:

data Feature = Feature { name :: String, val :: Value }
data Value = Int n | String s | ...

where,

• name is the a�ribute idenࢢfier (a string);

• val can be an atomic value (a string or number for example), or a structured set
for storing complex data structures.

A node in the tree is defined as:

data Node = Node {
path :: String,
isFile :: Bool,
text :: String,
features :: [Feature]
}

where,

• path stores the file name and its path;

8.3. From So[ware File Tree to Ontologies: DMOSS Toolkit 127

• isFile is a boolean value staࢢng if this node is a file or a directory;

• text stores the natural language text found in the file, and is computed before
starࢢng the tree traversal stages. During this step, content is extracted from files
wri�en in known formats (e.g. HTML, POD, man) and stored in the tree as plain
text.

• features stores a set of features for each node.

8.3.1 First Pass: Gathering Informaࢢon

When traversing the tree, each file node is processed, i.e. the files represented by each
node are processed. These nodes are processed in two steps:

1. Determine the file type, either using its full media type [66], or using heurisࢢcs,
like the file header or extension. The result of this step is the creaࢢon of an at-
tribute named type with the corresponding file type (for example plain/text, tex-
t/xml or text/html) as its value.

2. Given the node type and a list of available processors for each file type13 the next
step is to process the current file with all the available processors that support it,
and store each processor resulࢢng feature as a new node a�ribute.

This workflow is executed for every single node that represents a file, and is illus-
trated in Algorithm 614. The final result is a tree with a set of metrics calculated for each
file node, and stored as a�ributes (including the file type).

Processors

compute a�ributes values for file nodes, the toolkit provides an heterogeneous set of
processors. Each processor typically handles a single file, and produces a result that is

13The toolkit provides a set of plugins that implement several processors (more details in Secࢢon 8.3.4),
and new plugins can be easily added.

14Algorithm 6 and 8 loop over the relevant nodes in the tree are simplified for illustraࢢon purposes,
the actual implementaࢢon follows the tradiࢢonal tree traversal algorithms described in the literature.

128 8. The Conclave Environment

Algorithm 6 Decorate tree with processors results.
Input: tree : tree represenࢢng package content
Input: processors : set of processors indexed by type
Output: list of pairs split, term

1: for all node ∈ tree : node.isF ile = True do
2: type← typeOf(node) // compute file type
3: for all processor ∈ processors(type) do
4: node.features.push(processor(node)) // add resulࢢng feature set to node
5: end for
6: end for
7: return tree

stored as an a�ribute in the tree. For example, the spell checker processor computes
the total number of words in a text file, and the total number of words found in the
dicࢢonary (see Algorithm 7), the dicࢢonary used is aspell15.

Algorithm 7 Processor example: Spell Checker.
Input: node : Node represenࢢng the file being processed
Output: New feature set to be added to the node

1: total← 0
2: found← 0
3: for all word ∈ split_words(node.text) do
4: if dictionary.valid(word) then
5: found← found+ 1 // word was found in the dicࢢonary
6: end if
7: total← total + 1
8: end for
9: f1 ← Feature(”spellCheckerTotal”, total)

10: f2 ← Feature(”spellCheckerFound”, found)
11: return [f1, f2]

New processors can be added or plugged in at any .meࢢ Each plugin is also respon-
sible for defining which file types it wants to process. This informaࢢon is used to build a
dispatch table before any transversal, which keeps the traversing tree engine agnosࢢc
to which processors are available, and which files to process.

15Available from: http://aspell.net (Last accessed: 12-02-2014).

http://aspell.net

8.3. From So[ware File Tree to Ontologies: DMOSS Toolkit 129

8.3.2 Second Pass: Reducing Results

The goal of the second tree traversal (depth-first [87]) is to produce the final feature
set. This is achieved by combining (or reducing) the intermediate results for every level
of the package tree, and adding new a�ributes (typically to the directories nodes) that
store the result of combining the features for each subtree. Every plugin may provide
a specific funcࢢon to combine results. The default method for combining intermediate
results is plain string concatenaࢢon, or arithmeࢢc addiࢢon (depending on value type).

For example, the combining funcࢢon for the spell checker processor is to add the
total number of words, and the total number of words not found for the files on each
directory. This means that a[er this pass, the MAN node (illustrated in Figure 8.4, which
represents the file-system man/ directory) has an a�ribute that stores the result of com-
bining the spell checker processor result for files man.1 and man.1.fr16. Later, this
a�ribute value is used to calculate the totals for the package, stored in the top level
directory.

Figure 8.5 illustrates this process for an arbitrary metric. The algorithm is also de-
scribed in Algorithm 8.

Algorithm 8 Traversing the annotated tree, depth-first, to reduce nodes features.
Input: tree : Tree represenࢢng package content
Input: reducers : Set of available reducers
Output: Tree a[er adding reducers results to nodes as features

1: for all node ∈ transverse_depth_first(tree) : node.isF ile = False do
2: for all reducer ∈ reducers do
3: features← ... // get features from children node set
4: result← reduce(features) // call reduce funcࢢon
5: node.features.push(result) // add reducing result features to node
6: end for
7: end for
8: return tree

16Although the two files are wri�en in different languages the plugin uses a language idenࢢficaࢢon
algorithm before the spell checking task.

130 8. The Conclave Environment

..tree-1.5.3. CHANGES.

INSTALL

.

MAN

.

LICENSE

.

tree.c

.

README

.

strverscmp.c

.
tree.1

.

tree.1.fr

.
b1

.
b2

.

a1

.

a2

.

a3

.

a4

.

a6

.

a7

.

a5 = ∪ bi

.

V = ∪ ai

...................

Figure 8.5: DMOSS so[ware package tree like structure representaࢢon.

Reducers

are used to reduce intermediate results, i.e., combine the results found by the proces-
sors in the subtree of the node currently being processed, and add this reduced result
to the current node as new features. Algorithm 9 illustrates the reducer for the spell
checker example.

8.3.3 Building Reports

A[er the package is processed, a tree represenࢢng the package is available. This tree
is decorated with a set of features per node, that convey all the results gathered from
processing each file node, and also the conclusions taken for each processor. This infor-
maࢢon is stored in the tree using a�ributes. The toolkit provides a tool that can build
reports in several formats including HTML, and ontology style graphs in GraphViz17 no-
taࢢon. Examples of a HTML forma�ed reports are illustrated in Figure 8.10.

A[er the tree traversal stages, the set of reporters funcࢢons can be used to produce
a final report. In this step all the reporters funcࢢons are executed, and the results are
aggregated to build the final report (Algorithm 10). Besides these structured reports,

17Available from: http://www.graphviz.org/ (Last accessed: 12-02-2014).

http://www.graphviz.org/

8.3. From So[ware File Tree to Ontologies: DMOSS Toolkit 131

Algorithm 9 Reducer example: Spell Checker.
Input: features : Set of node features
Output: New set of features to be added to the node

1: total← 0
2: found← 0
3: for all feature ∈ features do
4: if feature.name = ”SpellCheckerTotal” then
5: total← total + feature.value
6: end if
7: if feature.name = ”SpellCheckerFound” then
8: found← found+ feature.value
9: end if

10: end for
11: f1 ← Feature(”spellCheckerTotal”, total)
12: f2 ← Feature(”spellCheckerFound”, found)
13: return [f1, f2]

Algorithm 10 Build final reports.
Input: tree : Tree represenࢢng package content
Input: reporters : Set of available reporters
Output: Final HTML report

1: report← ”” // start with an empty report
2: features← ... // // collect features set from tree root
3: for all reporter ∈ reporters do
4: curr ← reporter(features) // build each individual report
5: report← concat(report, curr) // concatenate individual reports
6: end for
7: return report

132 8. The Conclave Environment

the full tree is available as an associaࢢve array to be further processed by any other tool
or applicaࢢon.

Reporters

Reporters process a specific set of features about the package and produce custom
reports. They are mainly used for producing reports that require post processing com-
putaࢢons to achieve the intended result in the report (averages computaࢢons, for ex-
ample). Reporters usually compute a final grade for a specific analyzed feature (the
formula for compuࢢng the grade is another responsibility of a reporter funcࢢon). Re-
porters’ output is usually a snippet of HTML, built using a default set of templates. The
complete tree is always available inside any reporter funcࢢon, to gather any required
informaࢢon to build a more detailed report.

8.3.4 Toolkit Plugins

This secࢢon gives a brief overview of the plugins currently included in the DMOSS toolkit,
and used to produce the reports illustrated in the next secࢢon.

Validate Links gathers links found for known protocols (e.g. HTTP, FTP), and checks
if the link is sࢢll working. To validate the link a simple request is made, and if
a successful reply is received the link is considered valid. The plugin rates the
package be�er, as more valid links are found.

Spell Checker performs word spell checking, using a general purpose dicࢢonary, for ev-
ery word found in the documentaࢢon, and other non-source code files. It auto-
maࢢcally detect the language used, and chooses the dicࢢonary accordingly. The
dicࢢonary engine used is aspell.

Verify Licenses gather possible license informaࢢon found in the so[ware package. It
can verify some common open source license (e.g. GNU General Public License 18)

18General informaࢢon about GNU licenses available from: http://www.gnu.org/licenses/ (Last
accessed: 12-02-2014).

http://www.gnu.org/licenses/

8.3. From So[ware File Tree to Ontologies: DMOSS Toolkit 133

used in so[ware packages. Since this plugin was iniࢢally created for open source
so[ware, it grades the package if two criteria are met: (1) license informaࢢon is
found, (2) a known open source license was found. Of course, more licenses can
be added.

Comment Lines counts the total number of source code lines, and the total number of
comment lines found in the package source files. While the number of comment
lines per lines of source code is above 19% 19 this plugin grades the files posiࢢvely.

Idenࢢfiers Found in Docs a�empts to measure documentaࢢon source code coverage.
It measures the number of program idenࢢfiers (strings used as funcࢢons or vari-
ables names) found in the documentaࢢon. Mainly because most documentaࢢon
formats (e.g. DoxyGen) use these strings to relate the documentaࢢon snippets
with the source code. This can help to have an idea of which source code is cov-
ered by documentaࢢon.

Automaࢢc Classificaࢢon is used to automaࢢcally classify the so[ware package using
SourceForge taxonomy20. The classificaࢢon algorithm is straight-forward, it mea-
sures the distance between the words found in the documentaࢢon (which are
valid according to the english dicࢢonary), and the terms in the taxonomy. A more
robust version of this plugin should use a well established classificaࢢon approach
like Support Vector Machine (SVM) [69] or Naive Bayes related algorithms [168].
The correct automaࢢc classificaࢢon of the package can be a posiࢢve character-
isࢢc, because there’s a good probability that the vocabulary used in the docu-
mentaࢢon is close with the vocabulary stored in the taxonomy index, which is
usually in line with the vocabulary used in the so[ware area of interest. This plu-
gin grade is directly related with two factors: (1) classificaࢢon was possible, and
(2) the degree of confidence (distance) on the computed classificaࢢon.

Changes Verificaࢢon is used to analyze changes informaࢢon, if available. This file typ-
ically describes major releases done for the so[ware, including the date for the

19This parࢢcular threshold was chosen based on a study by Arafat et al. about source code comments
pracࢢces in open source projects [8].

20Available from: http://sourceforge.net/ (Last accessed: 12-02-2014).

http://sourceforge.net/

134 8. The Conclave Environment

release, and a list of topics that describe the major changes. The current goal of
this plugin is to discover the date of the last release, and compare it to the cur-
rent year. This is used in the report to grade posiࢢvely packages with more recent
releases. The lower possible grade is given when the set of regular expressions
that are used to parse the file content are not able to return any informaࢢon. Al-
though, there is no standard format for these files, this can be an indicator that
maybe some of the best pracࢢces were not followed.

New plugins can be easily added to analyze other features or characterisࢢcs of the
package. New plugins just need to define the required funcࢢons as described in the
previous secࢢons. The set of plugins available in DMOSS do not cover all the measures
and metrics described in the literature, and new analysis are proposed every day. One
of the major goals of the proposed methodology is to provide the community with a
framework that allows the quick development of new measurements, and integraࢢon
with currently available ones.

8.3.5 Traits Versus Plugins

In line with the previous discussion, the described plugins only provide informaࢢon to
assess a limited number of features. These features are related with previously dis-
cussed traits, that tend to have a considerable weight in the overall package quality.

Plugins like Spell Checker are close related to readability, the increasing number of
spelling errors can introduce noise in the text, making it harder to read or understand.
Other features that can be measured to increase readability coverage are, for example,
excessive use of acronyms and abbreviaࢢons, or punctuaࢢon analysis.

Completeness is a trait concerned with how much of the source code, and related
concepts, are covered by documentaࢢon. The Comment Lines plugin measures the raࢢo
of lines of comments found per lines of code, a low raࢢo may suggest that there are big
porࢢons of undocumented code. This feature is close related to the Idenࢡfiers Found
in Docs plugin measure, by finding funcࢢon definiࢢons that lack corresponding docu-
mentaࢢon. This can be crucial when documentaࢢon generaࢢon systems are used (e.g.
Doxygen). Both these traits are useful during so[ware development, measures can be

8.4. Generalizing the Creaࢢon and Populaࢢon of Ontologies: Conclave Uࢢls 135

used during development stages to make sure documentaࢢon is keeping up with code
implementaࢢon.

Plugins like Validate Links are more related to the actuality trait, because they pro-
vide clues that some elements in the documentaࢢon may be out of date, by finding
links that are no longer acࢢve or have been moved elsewhere. Another possible clue
can be given by the Changes Verificaࢡon plugin, if a so[ware package is stalled in ,meࢢ
i.e has not released a new version in the last years, it might be prone to have outdated
content.

Other plugins tend to be less subjecࢢve, and provide accurate informaࢢon about a
specific propriety, and are not closely related to these traits. For example the Verify
Licenses plugin a�empts to answer a specific quesࢢon: “Which license is the so[ware
package released under?”. This is a relevant detail in the context of open source so[-
ware.

8.4 Generalizing the Creaࢢon and Populaࢢon of Ontolo-
gies: Conclave Uࢢls

While Conclave OTK toolkit is designed to be as general as possible, i.e., to allow the
implementaࢢon of arbitrary applicaࢢons that handle data using ontologies, some op-
eraࢢons and features directly concerned with so[ware engineering are required by the
Conclave environment. This set of parࢢcular features are distributed with the Conclave
Uࢢls library. This allows keeping OTK as agnosࢢc as possible, and provide an indepen-
dent library to be developed for specific operaࢢons in the scope of this work. This sec-
onࢢ describes some major features provided by this library.

8.4.1 Iniࢢalizing Ontologies

When a so[ware system is added to the Conclave environment, the first task that is
undertaken is creaࢢng the corresponding ontologies for the new system. These model
the various domains of knowledge, as described in Chapter 6. But before starࢢng to
populate the ontology, a minimal bootstrap of domain is required. For example, when

136 8. The Conclave Environment

creaࢢng a new ontology to store a program domain, the iniࢢal ontology already has
some classes defined (e.g., Function, Variable), and some available proprieࢢes (e.g.,
hasString, hasLineBegin), etc. The informaࢢon that bootstraps the ontologies is avail-
able in the Conclave Uࢢls library. This informaࢢon is stored in a set of Template Toolkit
(TT) templates, so that informaࢢon is easily updated, and new models are easily added.

The library provides an easy to use funcࢢon called conc_base_ontologies, that given
as argument the type of ontology that is being bootstrapped, it returns the informaࢢon
in RDF/XML format, which can be immediately conveyed to the actual ontology using
Conclave OTK method init. The init method performs the iniࢢalizaࢢon of an ontology
and has one opࢢonal argument, the informaࢢon to bootstrap the new ontology. The
result of the conc_base_ontologies can be directly composed with the initmethod. The
library provides a command line tool called conc-otk-init that takes advantage of this
simple composiࢢon to quickly iniࢢalize new ontologies. This tool takes two arguments:
(i) the base name for the ontology; and, (ii) the template to use for bootstrapping the
new ontology.

..

For example, to iniࢢalize the program ontology for the tree so[ware pack-
age the following command is used:

$ conc-otk-init http://conclave/tree/program program
Initialized: http://conclave/tree/program

In pracࢢce, the ontology name refers to its unique URI.

Base ontologies are distributed using templates, so they can be adjusted in runࢢme
if required. For the sake of completeness, and as an example, Appendix D illustrates
the template set used to bootstrap the program ontology.

8.4.2 Populaࢢng Ontologies

Once the ontology is properly iniࢢalized, and ready to use, the next step is to start pop-
ulaࢢng it with informaࢢon. Usually this informaࢢon is available in heterogenous re-
sources, and needs to be conveyed to the ontology semanࢢcs. Conclave Uࢢls provides

8.5. The Conclave Environment 137

a set of funcࢢons that undertake this task, and features conc-otk-load, a command
tool to populate ontologies using a well defined set of resources. An example is load-
ing a resource created used the clang-conclave tool, this is illustrated in Secࢢon 8.1.
LIdS, introduced in a previous secࢢon, is another example of a tool that produces a re-
source, conc-otk-load also provides a feature for loading sets of terms for idenࢢfiers.

The funcࢢons responsible for populaࢢng ontologies use Conclave OTK API for han-
dling informaࢢon, this allows a fast and clear implementaࢢon of the operaࢢons that
convey the available data. The Conclave Uࢢls is easy to extend to feature more func-
onsࢢ for loading arbitrary resources to ontologies.

8.5 The Conclave Environment

The Conclave environment combines the tools described in this chapter, and the ap-
proaches described in Chapter 6 and Chapter 7 to provide single interface set of so[-
ware analysis tools. The interface is provided via web so that it can be accessed easily,
and all the tools are readily available to use server-side.

The main system workflow is divided in three main stages: (i) collecࢢng data; (ii)
processing collected data and loading ontologies; and, (iii) reasoning about data in the
ontologies, and providing views of computed informaࢢon. All the tools implemented
in the context of this system are modular (or work as plugins), and some provide web-
services, so that they can be used as standalone applicaࢢons, or composed together to
create more complex applicaࢢons or other workflows.

Collecࢢng Data

This is the first stage of the main workflow; its goal is to collect data from a so[ware
package, and any kind of problem specificaࢢon if available. It takes as input the com-
plete package (and other available documents) and produces as output an heteroge-
neous collecࢢon of resources. The processing tools involved in this stage can use differ-
ent type of analysis: staࢢc source code analysis (e.g. parsing code to extract idenࢢfiers
and staࢢc call graphs), dynamic analysis (e.g. execuࢢon traces), etc. Some of the tools

138 8. The Conclave Environment

described earlier in this chapter contribute to the data collecࢢng process, but other
tools, implemented outside the scope of this work are also used.

Normalizing Informaࢢon, Populaࢢng Ontologies

The main goal of this stage is to convey the data collected during the previous stage
into the system ontologies. The input of this stage is a collecࢢon of resources, and the
output is a set of populated ontologies. Usually three ontologies are populated for each
so[ware package:

Program Ontology: abstract representaࢢon of some key program elements (e.g. meth-
ods, funcࢢons, variables, classes);

Problem Ontology: concepts and relaࢢons in the applicaࢢon domain;

World△ Ontology: runࢢme effects of execuࢢng the program (e.g. program run traces).

The approach used during this stage follows the method described in Chapter 6, the
data produced by arbitrary tools is conveyed to the ontology using Conclave OTK. But
there are some important details to emphasize and discuss. The first one is the format
and technology chosen to store the ontologies. A RDF based triple-store technology
was adopted to store the data. This allowed for a scalable and efficient method for per-
forming storing and querying operaࢢons, and also allows to export the data in several
community accepted ontology formats (e.g. OWL, RDF/XML, Turtle) [74, 63]. Querying
faciliࢢes are also readily available; for instance, SPARQL is a querying domain specific
language for RDF triple-stores [124, 117].

Although these technologies provide scalable and efficient environments for han-
dling informaࢢon, development wise, they are far from the abstracࢢon desired by the
applicaࢢons level implementaࢢon. To overcome this problem the Conclave OTK21 was
implemented, which provides an abstracࢢon layer on top of the RDF technology, to de-
velop ontology-aware applicaࢢons. In pracࢢce, when applicaࢢons developers wish to
perform an ontology related operaࢢon, instead of using triple-store low level primiࢢves,

21Implemented as a set of libraries for the Perl programming language.

8.6. Conclave Tour 139

they can use the abstracࢢon layer. To moࢢvate for the development of this abstract
framework, consider the modern Object-Relaࢢonal Mappers (ORM) in the context of
relaࢢonal databases. Which provide an abstracࢢon layer and interface for programming
languages to handle data (stored in databases) as objects, allowing the development of
applicaࢢons regardless of the underlying database technology used [71].

Reasoning and Views

During this stage more knowledge about the system is build and provided to the system
end-user. The tools in this stage use as input the ontologies built during the previous
stage, and generally fall in one of the two categories, either they: (i) process informa-
onࢢ to compute new informaࢢon and knowledge about the system – usually in this case
the tool output is new content added to the ontologies; or (ii) informaࢢon or knowledge
suitable for visualizaࢢon is built – in this parࢢcular case the final output of the tool is
a view for the package system. The main features provided by the Conclave environ-
ment are provided using the Concept Mapper described in Chapter 7, which includes
searching and features the creaࢢon of mappings between available models.

8.6 Conclave Tour

The Conclave website is freely available (sࢢll under development) at:

http://conclave.di.uminho.pt/

This chapter briefly introduces the applicaࢢon from the user point of view, and illus-
trates some previously discussed features. Figure 8.6 illustrates the web interface front
page, the system is divided in blocks, and most of the applicaࢢons use resources pro-
duced by other blocks.

The ontology browser facility, illustrated in Figure 8.7, can be used to browse the
informaࢢon in any ontology available in the system. It also provides exporࢢng mecha-
nisms, that allow the user to locally store the ontology in some well know formats (e.g.,
OWL, RDF).

http://conclave.di.uminho.pt/

140 8. The Conclave Environment

Figure 8.6: Conclave system web interface front page, main applicaࢢons are
divided in blocks.

Figure 8.7: Conclave ontology browser, illustraࢢon of the program ontology
for the tree package.

8.6. Conclave Tour 141

Figure 8.8: Conclave program idenࢢfiers processing using LIdS.

Conclave uses LIdS described in Secࢢon 8.2 to process idenࢢfiers, i.e. to split and
expand abbreviaࢢons to more meaningful terms. Figure 8.8 illustrates these results.

Figure 8.9 illustrates a mapping between elements in different domains (ontolo-
gies). On the le[the Problem Ontology is used to constrain the concepts being searched
(directory), on the right the program ontology is used to constrain the range of program
elements being analyzed (funcࢢons), and in the center the resulࢢng rank sorted by rele-
vance. The ranking is built using the approach described in Chapter 7 in the background.
Although the interface provides some features to nkerࢢ mappings to specific needs, for
example, clicking a class of the ontology to constrain rankings to instances of that class
only, the user can built more complex mappings using the query language described in
Secࢢon 7.1.

Figure 8.10 illustrates some reports created by DMOSS, from open source analyzed
packages: (8.10a) aspell 0.60, a spell checker; (8.10b) wget 1.9.122, a package for re-
trieving files using several protocols; (8.10c) tree 1.5.3, a recursive directory lisࢢng com-

22Available from: http://www.gnu.org/software/wget/ (Last accessed: 12-02-2014).

http://www.gnu.org/software/wget/

142 8. The Conclave Environment

Figure 8.9: A mapping produced by Concept Mapper using the Conclave
environment web interface.

mand; and, (8.10d) grep 2.923, a tool for searching pa�erns in plain text files.

23Available from: http://www.gnu.org/software/grep/ (Last accessed: 12-02-2014).

http://www.gnu.org/software/grep/

8.6. Conclave Tour 143

(a) aspell 0.60 (b) wget 1.9.1

(c) tree 1.5.3 (d) grep 2.9

Figure 8.10: Screenshots of HTML reports produced using DMOSS for
several so[ware packages, including analyzed features and corresponding

grades.

144 8. The Conclave Environment

Summary

• Conclave provides an environment for so[ware analysis, providing a set of tools
and applicaࢢons to aid in program comprehension acࢢviࢢes. Searching and creat-
ing mappings between different domains, both using a domain specific language
to describe search queries, enchace feature locaࢢon acࢢviࢢes.

• The knowledge domains about the so[ware (including the source code) are rep-
resented using ontologies following the methodology described in Chapter 6.
Searching code, and mappings between domains are built using the approach de-
scribed in Chapter 7. Figure 8.11 illustrates how previously described techniques
are combined to devise the system main workflow.

• Most of the tools described in this chapter act in specific areas of PC (e.g., con-
cept locaࢢon, documentaࢢon analysis), but they are sࢢll modular enough to be
used as stand-alone applicaࢢons outside of Conclave scope to implement other
approaches. Some applicaࢢons are based on plugins, that are extended by simply
adding a new plugin. Other applicaࢢons provide a web-service to be easily com-
posed in other workflows without being installed. Generic toolkits are provided
as libraries to devise and implement applicaࢢon, recall Chapter 1 for references.

• Concerning PC, source code vocabulary normalizaࢢon, including mulࢢ-term split-
ngࢢ and abbreviaࢢon expansion, is a crucial step for most feature locaࢢon (and
other) acࢢviࢢes; the applicaࢢon (or problem domain) helps the understanding
process (e.g., providing a taxonomy for devising search queries, relaࢢng source
code with applicaࢢon concepts); the synergy between domains allows the cre-
aࢢon of views of the program that emphasize details of interest when performing
concrete so[ware maintenance or evoluࢢon tasks; and, the automaࢢc creaࢢon of
resources (e.g., program ontology, applicaࢢon ontology) reduces the iniࢢal over-
head of adopࢢng soluࢢons in the family of Conclave, while keeping the opࢢon to
nkerࢢ and manually improve the created arࢢfacts.

8.6. Conclave Tour 145

..So[ware
Package

. Dynamic
Analysis

.

Staࢢc
Analysis

.

NLP
Techniques

.

Problem
Analysis

.

Specificaࢢon

.

Resources
e.g. idenࢢfiers table

. Resources
e.g. execuࢢon traces

.

Resources
e.g. so[ware corpus

.

Resources
e.g. requirements

.

Program
Ontology

. Word Δ
Ontology

.

Problem
Ontology

.

Language
Ontology

.

Domain
Ontology

. Concept
Mapper

. Views....................

Figure 8.11: Conclave main workflow, combining techniques, tools, and
approaches discussed in Chapter 6, 7 and 8.

146 8. The Conclave Environment

Chapter 9

Experimental Validaࢢon

Divide et impera a

Philip II of Macedon
a“Divide and Rule” or “Divide and Conquer”.

It is commonly accepted that experimental validaࢢon is a requirement to support
new techniques or approaches for a given problem [169]. Someࢢmes authors do not
use the correct accuracy, or do not present enough results, to convince others of the
benefits of their work. To try to overcome such shortcomings, and given the complexity
of Conclave (complex because it explores and combines a heterogenous set of applica-
onsࢢ and tools) the process of experimenࢢng was o[en parࢢࢢoned, i.e., when possible
each applicaࢢon is experimented and validated individually. This also allows to use ex-
perimental validaࢢon as a tool to measure improvements on applicaࢢon developments.
Comparing applicaࢢons with other approaches currently available, besides measuring
tools effecࢢveness, also pushes the tools state of maturity forward.

Choosing case studies is required for some experiences. The case studies should be
complex enough to illustrate key aspects of the new methods, tools or techniques, but
should also be simple enough for everyone to understand what is going on. The meࢢ
devoted to the implementaࢢon of the tools in the context of research is someࢢmes
not enough to develop mature and finished programs that can deal with every aspect.

147

148 9. Experimental Validaࢢon

Many mesࢢ the tools used to demonstrate or validate results are sࢢll in a stage of heavy
development and may not cover all the key points of complex case studies. This is an-
other important reason why case studies need to be chosen carefully [123].

A good pracࢢce, is to perform validaࢢon of internal (o[en smaller) components, i.e.,
as o[en as possible evaluate a specific step (component) of the general approach in an
isolated seࢰng. These smaller evaluaࢢons tend do be less complex that evaluaࢢng the
enࢢre system, which usually simplifies the process of evaluaࢢon, and result analysis.

In the context of this work several tools are being implemented, at different stages
of development. The development general guide line is to create small, self-contained
tools, that are composed in more complex workflows to obtain the final results. Evalu-
aࢢon follows a similar tenet, performing evaluaࢢon on small components of the work-
flow when possible. This allows gathering evidence of the benefits of the smaller tools,
most of them stand-alone applicaࢢons, independently.

..

For example, one possible claim about Conclave Concept Mapper is that,
searching features uses the complete sets of splits and full terms (because
they tend to convey more semanࢢcs), instead of the original program iden-
fiersࢢ strings, to measure semanࢢc relatedness between elements. One
valid observaࢢon is that: “then, searching results depend on the ability of
the technique adopted to split and expand idenࢡfiers to correctly perform
its task”. This is absolutely correct, and that is why LIdS ability to correctly
split and expand idenࢢfiers is measured independently of the remaining
of the workflow, including searching features. This allows that, when the
searching ability is actually empirically measured, there is already a clear
idea on how well the spliࢰng technique is performing, and the results can
be analyzed accordingly.

The remaining of this chapter describes some of the experimental validaࢢons un-
dertaken to empirically evaluate Conclave components, including the discussions about
the achieved results.

9.1. kPSS Experimental Validaࢢon 149

9.1 kPSS Experimental Validaࢢon

Scoring funcࢢons described is previous chapters are used to measure semanࢢc relat-
edness between elements. An example of such a funcࢢon is the kPSS based scoring
funcࢢon described in Secࢢon 7.4.1. The goal of this experiment is to measure the qual-
ity of the terms found in a kPSS. The following research quesࢢon (RQ) was defined:

• RQ1: What is the percentage of terms in a kPSS that are semanࢢcally related with
the original term used to build the kPSS?

To help answering this quesࢢon the following experience was devised:

Step 1: collect bag of all terms resulࢢng from spliࢰng and expanding the program iden-
fiersࢢ available in Conclave program ontologies from different so[ware packages
(e.g. jEdit, tree, AbcMidi);

Step 2: select 1000 random terms from the list built in Step 1;

Step 3: build a kPSS for every term t selected in Step 2;

Step 4: for every synonym tS in every kPSS built in Step 2, if (i) tS is different from the
original term t, (ii) tS is a valid english word in the dicࢢonary, and (iii) the proba-
bility associated with tS is greater or equal to 0.1, then:

4.1: get all synsets for term tS available in WordNet;

4.2: if the original term t is present in any on the synsets collected in Step 4.1, tS
is considered related.

Step 5: calculate percentage of related terms during Step 4.

This five step experience was repeated ten ,mesࢢ the results are presented and
discussed in the next Secࢢon.

150 9. Experimental Validaࢢon

Terms

Set Total Related % Related

0 1102 758 69%
1 1091 754 69%
2 1092 746 68%
3 1106 758 69%
4 1129 758 67%
5 1092 748 68%
6 1097 737 67%
7 1105 776 70%
8 1115 776 70%
9 1110 749 67%

Table 9.1: Percentage of terms found in WordNet synsets.

9.1.1 Results and Discussion

Table 9.1 describes the results of this experiment. The table presents the terms com-
pared, and the number of terms that were related with WordNet synsets, achieving an
average of around 69% across all sets. This means that, on average, 69% of terms found
in a kPSS, have a synset in WordNet, that also contains both the term in the kPSS, and
the original seed term to build the corresponding kPSS. This implies that on average,
69% of semanࢢc arbitrary relaࢢons found between terms using kPSS, are also present
in WordNet.

The main reasons for not relaࢢng 100% of the terms with WordNet synsets are:
(i) synsets in WordNet only have the dicࢢonary form of a verb, e.g., the kPSS for the
term “compile” includes the terms “compiles” and “compiled”, but these are not present
in any synset for the term “compile” in WordNet; (ii) term inflecࢢons, e.g., the kPSS
for the term “backup” includes the term “backups”, but not on the WordNet synset.
These encompass most of the terms pairs that were not found in WordNet synsets.
With more or less effort an extra validaࢢon layer could perform some normalizaࢢon
of terms, but this could introduce some bias on the results, since that the exact terms
are used to build candidates for creaࢢng terms and splits sets in LIdS, for example, not
the normalized version of the term. Sࢢll, some were not fond due to higher semanࢢc

9.2. LIdS Experimental Validaࢢon 151

distances between terms, e.g., the kPSS for the term “click” contains the term “bu�on”,
which is plausible, in so[ware systems, when you perform a click you usually click on
something, this something can be a bu�on, but there is no synset in WordNet for the
“click” term that contains the term “bu�on”, which is also plausible, since from a more
linguisࢢc point of view, and depending on level of abstracࢢon, both terms represent
different real world concepts.

9.2 LIdS Experimental Validaࢢon

In order to measure its ability to correctly split and expand idenࢢfiers, LIdS was applied
to two open source (so that the code is readily available) so[ware packages: tree (ver-
sion 1.5.3)1, that implements the tree command, which can be used to list directories
content hierarchically; and AbcMidi (version 2012.12.25)2, a package that provides a
set of tools to convert Abc3 files to the Midi format. This last package was also cho-
sen as case study, because it acts on a specific domain (music), that has a specialized
vocabulary, which terms are prone to be used as program idenࢢfiers.

Both packages are wri�en in C. Source code wri�en in this parࢢcular language was
chosen for the experimental validaࢢon because although this language is being used
for many years, there is no universal guidelines for the techniques used to compose
mulࢢ-word idenࢢfiers. Typically, many combinaࢢons of techniques are used. This is not
the case for other languages, like Java for example, where there is a more tradiࢢonal
habit to use CamelCase for example [57]. Another relevant detail about these packages
is they are quite old, and different programmers have changed the code, increasing
the heterogeneity of ways to create idenࢢfiers (either by composiࢢon or abbreviaࢢon).
These characterisࢢcs make the spliࢰng process (even manually) harder, but allow to
be�er conclude about the ability of the proposed technique to generalize for other
so[ware packages.

The goal of this experiment is to measure LIdS ability to correctly split and expand
program idenࢢfiers. The following research quesࢢons (RQ) were defined:

1Available from: http://mama.indstate.edu/users/ice/tree/ (Last accessed: 01-10-2013).
2Available from: http://abc.sourceforge.net/abcMIDI/ (Last accessed: 01-10-2013).
3A text notaࢢon to represent music.

http://mama.indstate.edu/users/ice/tree/
http://abc.sourceforge.net/abcMIDI/

152 9. Experimental Validaࢢon

• RQ1: What is the percentage of idenࢢfiers in a program that LIdS can correctly
split?

• RQ2: What is the percentage of idenࢢfiers in a program that LIdS can correctly
split and expand in case abbreviaࢢons were used?

• RQ3: What is the gain of using the custom corpus-based dicࢢonary when spliࢰng
and expanding idenࢢfiers with LIdS?

To answer these quesࢢons the splits and expansions computed by LIdS were com-
pared with the correct split obtained from the oracle (the correct answer, more details
about oracles in the next secࢢon). Besides spliࢰng correctness, the set of calculated full
terms was also compared, to validate the ability of expanding strings to terms in case
abbreviaࢢons were used. Accuracy, precision and recall measurements were made in
three different seࢰngs:

• HardSplit, in this seࢰng only LIdS hard_split funcࢢon is called, this acts as the
baseline for other comparisons. No dicࢢonaries are used by this funcࢢon.

• Split, in this seࢰng LIdS split funcࢢon is used to compute splits and term sets. In
this seࢰng the following dicࢢonaries are used: programming, acronyms, abbre-
viaࢡons, and general (details about these are discussed in Secࢢon 8.2.4).

• CorpDict, is equivalent to the previous seࢰng, but the custom corpus-based dic-
,onaryࢢ automaࢢcally built for each specific package, is also included in the dic-
onaryࢢ set.

The idenࢢfiers correct split and abbreviaࢢons expansion are required for the evalu-
aࢢon, the next secࢢon describes the creaࢢon of the oracle.

9.2.1 Creaࢢng the Oracles

The oracle consists of two sets for each analyzed package: (i) the correct split, the list
of strings in which a mulࢢ-word idenࢢfier is correctly split; and (ii) the correct terms

9.2. LIdS Experimental Validaࢢon 153

Idenࢢfiers Oracle

Package Files KLOC4 total mulࢢ-word splits terms

tree 10 ∼2 235 145 (62%) 161 147
AbcMidi 86 ∼33 3 437 2 142 (62%) 1 644 1 565

Table 9.2: Some so[ware packages characterisࢢcs.

set, the list of terms that compose a mulࢢ-word idenࢢfier (in this set abbreviaࢢons
are expanded). Single terms are also included in the set, because although the split
is straigh�orward, the string used can sࢢll be an abbreviaࢢon. The steps to build the
oracle were:

1. Collect idenࢢfiers from source code files.

2. Remove idenࢢfiers with two or less characters.

3. Remove duplicate idenࢢfiers.

4. For each idenࢢfier in the set, by analyzing the source code, we: (i) manually cre-
ated the correct split for the idenࢢfier (e.g., the correct split set for the iden-
fierࢢ “wcount” is: {w, count}); and, (ii) manually created the correct set of in-
tended terms by the original programmer (e.g., the set of terms for “wcount” is:
{word, count} - this example funcࢢon counts number of words).

Table 9.2 includes some characterisࢢcs about the so[ware packages (number of files,
and number of lines of code); and about idenࢢfiers found in each package: total num-
ber of idenࢢfiers, percentage of idenࢢfiers that are composed of several terms, and the
number of idenࢢfiers in each oracle – the set of manual splits and the set of full abbre-
viaࢢons expanded terms. In some cases there was not a general consensus between
the authors on how to split an idenࢢfier or expand an abbreviaࢢon, these cases were
not included in the oracle. Mainly to try to reduce the final number of errors present in
the oracle.

4Thousands Lines of Code.

154 9. Experimental Validaࢢon

tree AbcMidi

Seࢰng Measure splits terms splits terms

HardSplit accuracy 0.4907 0.2721 0.3668 0.3073
Split accuracy 0.8571 0.6939 0.8832 0.7885
CorpDict accuracy 0.8696 0.7007 0.9300 0.8281

Table 9.3: Correct split accuracy means and correct terms accuracy means
for tree and AbcMidi, in the three seࢰngs.

9.2.2 Accuracy

Accuracy measures the ability to correctly split and expand the terms that compose an
idenࢢfier. The funcࢢon that validates if the split is correct returns a binary value: 1 in
case the set of splits (or terms) is exactly equal to the set in the oracle, and 0 otherwise.
It correctly measures the algorithm overall accuracy, but with a small draw-back: in case
the algorithm misses one correct single string (or expansion) in the set, but all the others
are correct, the validaࢢon funcࢢon returns 0, even if some parࢢal result is correct.

Table 9.3 illustrates the results of validaࢢng the accuracy measure on both packages,
in the different seࢰngs for each set of unique idenࢢfiers in the corresponding oracle.
Using the CorpDict seࢰng, LIdS achieved an accuracy mean of 0.8696 when spliࢰng
idenࢢfiers, i.e., around 87% of the idenࢢfiers were split correctly; and an accuracy mean
of 0.7007 when spliࢰng and expanding idenࢢfiers, i.e., around 70% of the idenࢢfiers
were correctly split and expanded to the set of terms in the oracle for the tree package.
The same seࢰng achieved a mean of 0.9300 for spliࢰng terms, and 0.8281 for spliࢰng
and expanding terms for the AbcMidi package.

9.2.3 Precision and Recall

To overcome the draw-back of measuring using the binary validaࢢon funcࢢon described
in the previous sub-secࢢon, a precision and recall measure of the correct splits (and
terms) was also made.

For a given idenࢢfier id to split let the oracle split set be: o = {o1, o2, ..., on}, and

9.2. LIdS Experimental Validaࢢon 155

s = {s1, s2, ..., sn} the computed split, then the precision and recall are calculated as:

precision =
|o ∩ s|
|s|

recall =
|o ∩ s|
|o|

where |x| represents the cardinality of x. The same formulas are applied when calcu-
laࢢng the measures for correct terms, but using the calculated sets of terms instead of
splits.

Once precision and recall are computed the f -measure can also be calculated. This
measure represents a weighted average between precision and recall, and is calculated
using the following formula:

f -measure =
2 · precision · recall
precision+ recall

Table 9.4 summarizes the precision, recall and f-measure means for correct splits
and sets of terms in the different seࢰngs for both packages. Using the CorpDict seࢰng,
LIdS achieved a precision mean of 0.8959 and a recall mean of 0.9027 when spliࢰng
idenࢢfiers for the tree package; and a precision mean of 0.9548 and a recall mean of
0.9552 when spliࢰng idenࢢfiers for the AbcMidi package. For the correct set of terms,
in the same seࢰng, LIdS achieved a precision mean of 0.8041 and a recall mean of
0.8101 for the tree package, and a precision mean of 0.9100 and a recall mean of 0.9112
for the AbcMidi package. A f-measure mean of 0.8060 was achieved when spliࢰng and
expanding terms of the tree package, and a f-measure mean of 0.9101 for the AbcMidi
package.

Figure 9.1 illustrates f-measure means for correct splits, and correct terms sets for
the tree and for the AbcMidi package.

9.2.4 Results Discussion

Regarding RQ1 and RQ2, the results obtained indicate that the proposed technique per-
formed well in the analyzed programs, wri�en in C, and that use an heterogeneous
combinaࢢon of techniques to create program idenࢢfiers (f-measure means in Table 9.4
illustrate this). The HardSplit seࢰng achieves, at best, a f-measure mean of 0.5025

156 9. Experimental Validaࢢon

tree AbcMidi

Seࢰng Measure splits terms splits terms

HardSplit
precision 0.5031 0.4150 0.4218 0.3887

recall 0.5021 0.4138 0.4034 0.3754
f-measure 0.5025 0.4143 0.4107 0.3807

Split
precision 0.8834 0.7973 0.9230 0.8782

recall 0.8903 0.8033 0.9307 0.8856
f-measure 0.8858 0.7992 0.9257 0.8810

CorpDict
precision 0.8959 0.8041 0.9548 0.9100

recall 0.9027 0.8101 0.9552 0.9112
f-measure 0.8982 0.8060 0.9544 0.9101

Table 9.4: Precision, recall, and f-measure means, for correct splits and
correct terms sets, for tree and AbcMidi packages, in the three seࢰngs.

... ..
HardSplit

.
SoftSplit

.
CorpDict

.0 .

0.5

.

1

.

0.5

.

0.88

.

0.89

.

0.41

.

0.79

.

0.8

.

. ..correct splits

. ..correct terms
HardSplit

.
SoftSplit

.
CorpDict

.0 .

0.5

.

1

.

0.41

.

0.92

.

0.95

.

0.38

.

0.88

.

0.91

.

. ..correct splits

. ..correct terms

Figure 9.1: F-measure means for correct splits and correct terms sets, for
the tree (le[) and for the AbcMidi (right) packages.

9.2. LIdS Experimental Validaࢢon 157

when spliࢰng idenࢢfiers for the tree package. This seࢰng only splits hardwords, which
clearly is not enough for the analyzed packages idenࢢfier sets. The Split seࢰng helps
to illustrate that LIdS outperforms a simple hard spliࢰng technique, accuracy means
in Table 9.3 and f-measures means in Table 9.4 support this statement. Taking advan-
tage of the custom corpus-based dicࢢonary (the CorpDict seࢰng) improves all the re-
sults, mainly because it introduces package specific abbreviaࢢons, i.e., abbreviaࢢons
not found in the abbreviaࢡons or programming dicࢢonaries (e.g, “ana”→ “anacrusis”,
“syll”→ “syllable”). This helps to answer RQ3, the empirical data shows that for every
seࢰng, accuracy, precision and recall means increase when using the custom corpus-
based dicࢢonary in the analyzed packages. This increase is higher for the AbcMidi pack-
age, mainly because the corpus is bigger (∼ 30 000 words, versus the ∼ 2 000 words
for the tree package), and it includes a more specialized vocabulary, allowing for the
custom corpus-based dicࢢonary to capture a set of terms more representaࢢve of the
applicaࢢon domain.

The main reasons for not reaching 100% precision, in theHardSplit seࢰng is straight-
forward: the analyzed so[ware packages have many mulࢢ-term idenࢢfiers composed
of so[words. Regarding the LIdS approach, the main reasons for failing splits are:
over-spliࢰng, spliࢰng abbreviaࢢons or expressions used by the developers that are
not present in the dicࢢonaries (e.g., spliࢰng “downoct”, in the set {down, o, ct}, and
the set in the oracle is {down, oct}); unexpected words found in the idenࢢfier that are
validated by the general english dicࢢonary (e.g., the oracle split set for “gotends” is
{got, ends}, but LIdS resulࢢng split set is {go, tends}); and invented words by the pro-
grammer that are not valid in any dicࢢonary but are reasonably perceived by humans
(e.g., “chording” is used to represent the acࢢon of making chords, but this is not a valid
english word, so its split set ends up being erroneously {c, hording}). The LIdS algo-
rithm can cope with an heterogeneous set of dicࢢonaries, and the most natural soluࢢon
to address these issues is to devise methods for creaࢢng new and improved dicࢢonaries,
that can be�er capture the specifics of the vocabulary used by programers in so[ware
development. Which means that improving the results is possible without changing
the algorithm itself, but providing more accurate dicࢢonaries. Furthermore, these im-
proved dicࢢonaries can be used by other dicࢢonary based approaches for idenࢢfiers
spliࢰng.

158 9. Experimental Validaࢢon

Although all the measures illustrated in the previous sub-secࢢon show that LIdS per-
formed well for the analyzed programs, there is sࢢll not enough evidence to generalize
its effecࢢveness for all programs, or other programming languages. The data analyzed
and the results presented along this secࢢon are available online, including all the dic-
onariesࢢ and oracles used 5.

9.2.5 Threats to Validity

One shortcoming of the validaࢢon approach is the existence of errors in the oracle,
either errors by typos or misspelling, or because the manual approach (split or term
expansion) was not exactly the same as the intent of the original programmer. When
manually creaࢢng the oracle some terms were not included because there was not a
clear consensus amongst the authors on how to split or expand a given idenࢢfier. Al-
though these cases would provide good examples to evaluate the performance of the
spliࢰng technique, we were afraid to end up including errors in the oracle, which would
end up by jeopardizing the evaluaࢢon results.

Another shortcoming of the evaluaࢢon is that someࢢmes the exact split or term
chosen by the algorithm is not syntacࢢcally equal to the manual split but semanࢢcally
equivalent, this is the case of plurals (e.g., “chord” versus “chords”), or transiࢢve verbs
(e.g., “trim” versus “trimming”). The evaluaࢢon uses a syntacࢢc exact match, meaning
that all these examples result in a incorrect split/expansion. This issue is mainly related
with the evaluaࢢon of the resulࢢng splits and terms.

Another shortcoming of this experiment is the fact that it was applied to a couple
of so[ware systems only, with a reduced number of idenࢢfiers. Therefore, the set of
analyzed idenࢢfiers is not enough to generalize the results obtained for these specific
so[ware systems to all so[ware packages.

5 Available from http://conclave.di.uminho.pt/articles/ (Last accessed: 10-08-2014).

http://conclave.di.uminho.pt/articles/

9.3. LIdS Experimental Comparison 159

9.3 LIdS Experimental Comparison

In order to verify the performance of LIdS against other state-of-the-art approaches,
two more experiments were conducted. The following research quesࢢon was defined:

• RQ4: What is the performance of LIdS compared with other state-of-the-art ap-
proaches for spliࢰng and expanding idenࢢfiers?

To compare the performance of several techniques, all the approaches need to be
applied in the same seࢰng: same program idenࢢfiers, same oracle, same measures,
etc. To hold true to these assumpࢢons, instead of devising new experiences, some case
studies described in [58] and [61] were used. The data provided by the authors includes
the oracles, allowing other approaches to compute splits on the same idenࢢfiers, and
assume the same correct answers. The goal of the following experiences is to re-create
the original experience, but including the LIdS approach. All the LIdS results achieved in
this secࢢon use the CorpDict seࢰng, described in Secࢢon 9.2; unless stated otherwise,
the documentaࢢon corpus and custom corpus-based dicࢢonary were created for each
analyzed package.

9.3.1 First Experiment

The subjects for the first experiment, described in [58], are two programs: JHotDraw 6,
a framework for technical and structured graphics, wri�en in Java; and Lynx 7, a text-
based web browser wri�en in C. Both projects are open-source, so the source code is
readily available. Table 9.5 highlights some characterisࢢcs about these packages.

The study follows the design described by Guerrouj et al. in [58], so that the results
can be compared. The main independent variable is the approach used to compute
the split and expansion set, which is compared to the gold set provided by the oracle.
The oracles (provided by Guerrouj et al.) were created by first extracࢢng some random
idenࢢfiers from each source package, and then manually split idenࢢfiers, and expand
abbreviaࢢons to full terms, more details in [58]. LIdS was applied to the idenࢢfiers

6Available from: http://www.jhotdraw.org/ (Last accessed: 07-03-2014).
7Available from: http://lynx.isc.org/ (Last accessed 07-03-2014).

http://www.jhotdraw.org/
http://lynx.isc.org/

160 9. Experimental Validaࢢon

JHotDraw Lynx

Release 5.1 2.8.5
Files 155 247
Size (KLOC) 16 174
Idenࢢfiers (> 2 chars) 2 348 12 194

Table 9.5: JHotDraw and Lynx main characterisࢢcs.

from the oracle for each package, precision, recall and f-measure were computed for
the resulࢢng splits. Table ?? and 9.7 summarize the results found in [58], including two
new approaches: LIdS and INTT. This new data helps to answer RQ4. Comparing the
ability to split and expand idenࢢfiers, the new approaches f-measure mean values are
close to the ones from TRIS and TIDIER. For the JHotDraw package, LIdS achieved a f-
measure mean of 0.9603, which is very close to TRIS and TIDIER. For the Lynx package,
LIdS achieved a f-measure mean of 0.8593, lower than TRIS f-measure 0.9206, but close
to TIDIER f-measure mean 0.8525. Results are be�er for the JHotDraw package mainly
because of the same reasons already highlighted in [58]: this package follows coding
standards and most of the idenࢢfiers are composed of hard words, opposed to the Lynx
project, where a more ad-hoc set of rules were used to create mulࢢ-term idenࢢfiers,
and hard words were less used.

The plot in Figure 9.2 illustrates the f-measure means for both packages, using the
different approaches. For the JHotDraw package all the values are above 0.90, but for
Lynx, there is a clear gap between CamelCase and Samurai approaches, and TIDIER,
TRIS, LIdS and INTT approaches. Mainly because Lynx idenࢢfiers use more techniques to
shorten idenࢢfiers, and create abbreviaࢢons, harder to split by techniques best suited
to split hard words.

9.3.2 Second Experiment

The next experiment, based on [61], aims to compare the techniques ability to split
a mulࢢ-term idenࢢfier strings. In their paper Hill et al. use the Ludiso oracle which
contains a set of 2 731 idenࢢfiers from a collecࢢon of 2 117 open source program wri�en
in C, C++ and Java; and the manual splits created by human annotators. State-of-the-art

9.3. LIdS Experimental Comparison 161

Metric Approach 1Q Median Mean 3Q σ

Precision

Camel Case 1.0000 1.0000 0.9244 1.0000 0.2424
Samurai 1.0000 1.0000 0.9316 1.0000 0.2244
TIDIER 1.0000 1.0000 0.9716 1.0000 0.1472
TRIS 1.0000 1.0000 0.9804 1.0000 0.2025
INTT 1.0000 1.0000 0.9623 1.0000 0.1704
LIdS 1.0000 1.0000 0.9591 1.0000 0.1728

Recall

Camel Case 1.0000 1.0000 0.9203 1.0000 0.2502
Samurai 1.0000 1.0000 0.9367 1.0000 0.2129
TIDIER 1.0000 1.0000 0.8984 1.0000 0.2158
TRIS 1.0000 1.0000 0.9084 1.0000 0.1213
INTT 1.0000 1.0000 0.9606 1.0000 0.1760
LIdS 1.0000 1.0000 0.9641 1.0000 0.1583

F-measure

Camel Case 1.0000 1.0000 0.9217 1.0000 0.2476
Samurai 1.0000 1.0000 0.9325 1.0000 0.2200
TIDIER 1.0000 1.0000 0.9233 1.0000 0.1791
TRIS 1.0000 1.0000 0.9328 1.0000 0.1614
INTT 1.0000 1.0000 0.9607 1.0000 0.1733
LIdS 1.0000 1.0000 0.9603 1.0000 0.1670

Table 9.6: Precision, recall, and f-measure for several approaches on
JHotDraw.

... ..
CamelCase

.
Samurai

.
TIDIER

.
TRIS

.
INTT

.
LIdS

.0 .

0.5

.

1

.

0.92

.

0.93

.

0.92

.

0.93

.

0.96

.

0.96

.

0.39

.

0.46

.

0.85

.

0.92

.

0.83

.

0.86

.

. ..JHotDraw

. ..Lynx

Figure 9.2: F-measure means for JHotDraw and Lynx using different
approaches.

162 9. Experimental Validaࢢon

Metric Approach 1Q Median Mean 3Q σ

Precision

Camel Case 0.0000 0.5000 0.4065 0.7500 0.4147
Samurai 0.0000 0.5000 0.4767 1.0000 0.4089
TIDIER 0.8000 1.0000 0.8609 1.0000 0.2674
TRIS 1.0000 1.0000 0.9344 1.0000 0.1369
INTT 0.7500 1.0000 0.8294 1.0000 0.3215
LIdS 0.8000 1.0000 0.8539 1.0000 0.2868

Recall

Camel Case 0.0000 0.3333 0.3705 0.6667 0.4066
Samurai 0.0000 0.3333 0.4569 1.0000 0.4101
TIDIER 0.7500 1.0000 0.8499 1.0000 0.2684
TRIS 1.0000 1.0000 0.9138 1.0000 0.2060
INTT 0.7500 1.0000 0.8244 1.0000 0.3269
LIdS 1.0000 1.0000 0.8681 1.0000 0.2711

F-measure

Camel Case 0.0000 0.4000 0.3851 0.7273 0.4086
Samurai 0.0000 0.4000 0.4634 1.0000 0.4084
TIDIER 0.6667 1.0000 0.8525 1.0000 0.2664
TRIS 1.0000 1.0000 0.9206 1.0000 0.2055
INTT 0.7500 1.0000 0.8258 1.0000 0.3245
LIdS 0.8333 1.0000 0.8593 1.0000 0.2796

Table 9.7: Precision, recall, and f-measure for several approaches on Lynx.

approaches are applied to the idenࢢfiers in the oracle, and their ability to correctly split
the idenࢢfiers set is measured by means of accuracy, precision and recall, and analyzed
by groups (e.g., programming language, idenࢢfier subsets).

Accuracy is a binary measure (as before), if the technique output split is exactly
equal to the corresponding split in the oracle the accuracy value is 1, but if there is any
difference between the technique output and the oracle the accuracy value is 0. For
this experiment the programming, acronyms, and abbreviaࢡons dicࢢonaries described
in previous secࢢons were used. The oracle is composed from thousands of programs,
it was not feasible to compute the custom corpus-based dicࢢonary for every so[ware
package. Instead, a documentaࢢon corpus was created that includes the natural lan-
guage text for the top three programs found in the oracle (mozilla-source, mysql and
cinelerra), a custom corpus-based dicࢢonary was created from this corpus and used by
LIdS.

Table 9.8 mirrors the results compiled in [61] but includes the LIdS approach re-
sults, which achieved an accuracy mean of 0.67 when spliࢰng the idenࢢfiers from the

9.3. LIdS Experimental Comparison 163

Technique All C C++ Java

Samurai_all 0.82 0.79 0.85 0.83
Samurai_cpp 0.81 0.77 0.85 0.81
GenTest_lg_all 0.80 0.78 0.82 0.78
INTT 0.75 0.70 0.78 0.78
GenTest_med_java 0.74 0.75 0.77 0.71
CS 0.71 0.68 0.72 0.72
DTW 0.69 0.75 0.66 0.65
LIdS 0.67 0.69 0.72 0.60
Greedy_lg 0.60 0.59 0.66 0.54
Greedy_sm 0.56 0.58 0.59 0.51
Count 2 663 885 887 891
% of data 100% 33% 33% 33%

Table 9.8: Mean per-idenࢢfier accuracy for each programming language
subset for the Ludiso oracle.

Ludiso oracle. The major reason for LIdS accuracy to be lower than most of the other
approaches is over-spliࢰng. For example, the result of spliࢰng “GGGPP_CDMA2000”
with LIdS is the set {ggg, pp, c, dma, 2000}, the oracle correct split is {GGGPP,CDMA,

2000}. The excessive split occurs because the strings “GGGPP” and “CDMA” are not
present in any dicࢢonary used. The only way to overcome similar situaࢢons is using
the custom corpus-based dicࢢonary to gather such strings, but this dicࢢonary was not
created for the package where this idenࢢfier was extracted from. Although, there is
no assurance that every abbreviaࢢon string would be added to every package custom
corpus-based dicࢢonary, at least some of them would be expected to, increasing the
approach overall accuracy.

Besides accuracy, precision and recall measures were also made. These are calcu-
lated in a slightly different way than in the previous experience, since the goal now is to
measure the correct splits, and not the resulࢢng set of terms. Table 9.9 summarizes the
intra-technique results for precision and recall using different approaches presented in
[61], but including the LIdS approach. The newly introduced technique results achieved
a precision mean of 0.90, a recall mean of 0.96, which translated in a f-measure mean
of 0.92. These results are close and in line with other approaches. The main reason
for having a precision under 100% is the over-spliࢰng introduced by spliࢰng specific
abbreviaࢢons not presented in any dicࢢonary as discussed previously. This data helps

164 9. Experimental Validaࢢon

to answer RQ4: LIdS ability for correctly split idenࢢfiers is in line with other approaches.

9.3.3 Threats to Validity

Regarding both comparison experiments, the major threats to validity are concerned
with the oracles, and how the resulࢢng splits are compared. Even if a lot of effort is
dedicated to making sure the oracles are accurate, some issues are always present: ac-
tual typos (e.g. “buf”→ “bufer”); ambiguous splits - different programmers split the
same idenࢢfier in a different ways (e.g, “invalid-username”→ {invalid, user, name}
versus {invalid, username}); semanࢢcally equivalent splits but syntacࢢcally different;
linguisࢢc issues (e.g., “reparse” is o[en considered a unique term but it is not an english
word) for example. Regarding the oracles that contain the exact set of terms, i.e., ab-
breviaࢢons are expanded, there are some issues with the exact expansion chosen (e.g.,
“auth”→ “authenࢡcate” versus “authenࢡcaࢡon”), or lack of consistency, i.e., abbre-
viaࢢons lacking an expansion, just to make it clear abbreviaࢢons considered acronyms
(e.g., HTML, XML, SQL) are usually not expanded in the oracles. A human looking at
the resulࢢng split for each idenࢢfiers can cope with most of these issues, but all the
processes that compute metrics over the resulࢢng splits are done automaࢢcally, intro-
ducing some measurement errors.

The extra data files (including results) required for both experimental comparisons
discussed in this secࢢon are available online8.

9.4 Concept Mapper Locate Experimental Validaࢢon

The previous chapters describe the underlying technique used in the Conclave system
for feature locaࢢon, based on kPSS. This secࢢon describes the preliminary evaluaࢢon
done, to verify if this technique introduces benefits over other common techniques
in the context of PC. In currently available IDEs, common search faciliࢢes provided to
the users, are sࢢll match based approaches, so the following research quesࢢon was
formulated:

8Available from: http://conclave.di.uminho.pt/articles/ (Last accessed: 10-08-2014).

http://conclave.di.uminho.pt/articles/

9.4. Concept Mapper Locate Experimental Validaࢢon 165

Technique Measure All C C++ Java

Samurai_all
P 0.97 0.96 0.98 0.98
R 0.96 0.94 0.97 0.97
F 0.96 0.95 0.97 0.97

Samurai_cpp
P 0.98 0.98 0.98 0.98
R 0.95 0.93 0.96 0.96
F 0.96 0.94 0.97 0.97

GenTest_lg_all
P 0.97 0.97 0.97 0.96
R 0.96 0.94 0.96 0.98
F 0.96 0.95 0.96 0.96

INTT
P 0.98 0.99 0.99 0.98
R 0.93 0.91 0.94 0.95
F 0.96 0.95 0.95 0.96

GenTest_med_Java
P 0.95 0.97 0.98 0.98
R 0.97 0.94 0.97 0.95
F 0.95 0.95 0.97 0.96

CS
P 1.00 1.00 1.00 1.00
R 0.90 0.88 0.90 0.91
F 0.94 0.92 0.94 0.95

DTW
P 0.93 0.94 0.92 0.92
R 0.94 0.96 0.91 0.95
F 0.93 0.95 0.91 0.93

LIdS
P 0.90 0.90 0.91 0.87
R 0.96 0.96 0.97 0.96
F 0.92 0.92 0.93 0.91

Greedy_lg
P 0.89 0.89 0.91 0.86
R 0.97 0.96 0.98 0.98
F 0.92 0.91 0.94 0.91

Greedy_sm
P 0.88 0.89 0.90 0.86
R 0.97 0.96 0.98 0.98
F 0.92 0.91 0.93 0.91

Table 9.9: Mean precision (P), recall (R), and f-measure (F) for each
programming language subset for the Ludiso oracle, sorted by mean overall

accuracy.

166 9. Experimental Validaࢢon

RQ1: How does the kpss scoring funcࢢon performs, when compared to amatch scoring
funcࢢon, for finding relevant elements of the code given a search query?

To help answering this quesࢢon the following experience was performed:

Step 1: in order to ease the process of replicaࢢng this experience, the benchmarks pro-
vided by Dit et al9 were used, instead of devising a new data set. Each benchmark
contains a set of bug reports, and corresponding funcࢢon sets that was changed
to resolve the bug (referred as the gold set) – more details about the benchmark
in [41];

Step 2: the tleࢢ for each bug report was extracted, stop words10 were removed, and
the resulࢢng set was archived as keywords;

Step 3: for each bug report, the locate funcࢢon to compute a rank was called, using the
match scoring funcࢢon, the keyword set computed in Step 2, and seࢰng as range
the Method program element;

Step 4: Step 3 was replicated but using the kpss scoring funcࢢon;

Step 5: effecࢢveness measure for each resulࢢng rank was calculated.

The effecࢢveness measure is calculated by analyzing the computed rank in order,
and its value is the first posiࢢon of the rank that is a relevant funcࢢon. Methods that
are part of the set of funcࢢons changed to resolve the bug (the gold set) are considered
relevant. The rank posiࢢon can be compared for different scoring methods to measure
which rank produced the best results. This approach was also used in [120] and [127]
for comparing feature locaࢢon techniques performance.

Table 9.10 presents some informaࢢve data about the analyzed so[ware packages:
jedit11 (version 4.3),mucommander12 (version 0.8.5), and jabref13 (version 2.6); all writ-
ten in Java. The results of the experience are presented in Table 9.11. They show that for

9Available from: http://www.cs.wm.edu/semeru/data/benchmarks/ (Last accessed: 29-01-
2014).

10Common words that tend to convey low semanࢢcs (e.g. “the”, “a”, “to”) [100].
11Available from: http://jedit.org/ (Last accessed: 29-01-2014).
12Available from: http://www.mucommander.com/ (Last accessed: 29-01-2014).
13Available from: http://jabref.sourceforge.net/ (Last accessed: 29-01-2014).

http://www.cs.wm.edu/semeru/data/benchmarks/
http://jedit.org/
http://www.mucommander.com/
http://jabref.sourceforge.net/

9.4. Concept Mapper Locate Experimental Validaࢢon 167

So[ware Number of Number of Number of Number of
Package Source Files Idenࢢfiers Methods Issues

jedit-4.3 465 23606 4934 150
mu-0.8.5 1069 27501 7489 92
jabref-2.6 480 19921 3901 39

Table 9.10: Informaࢢon about the analyzed packages during the Concept
Mapper locate funcࢢon empirical validaࢢon.

So[ware Scoring Analyzed Be�er Eff. Worst Eff.
Package Funcࢢon Issues Measure Measure

jedit-4.3 match 150 35 78
kpss 78 35

mu-0.8.5 match 92 17 51
kpss 51 17

jabref-2.6 match 39 4 20
kpss 20 4

Table 9.11: Results of the empirical validaࢢon for the Concept Mapper
locate funcࢢon.

these so[ware packages, the kPSS based scoring approach produced a be�er effecࢢve
measure result, that the simple match funcࢢon. The match funcࢢon simply compares
the two sets of words (search keywords, and terms from the idenࢢfier), and the score is
computed by normalizing the number of common words and the total of words. For the
jedit package, the kPSS based scoring approach achieved a be�er result 78 ,mesࢢ i.e.,
a be�er posiࢢon in the rank for the first relevant method found. For the mucomman-
der package, the kPSS based scoring funcࢢon achieved a be�er result 51 ,mesࢢ and 20
mesࢢ for the jabref package. The remaining mesࢢ either both approaches scored the
same, or none of the relevant funcࢢons were found in any resulࢢng rank.

9.4.1 Threats to Validity

Although these results are saࢢsfactory, they do not provide enough empirical data to
generalize the performance of kPSS based techniques. Also, the keywords used to build

168 9. Experimental Validaࢢon

the queries and the funcࢢons gold sets are a threat to validity because: (i) the keywords
set was built automaࢢcally from reports tlesࢢ that someࢢmes lack relevant terms, or
use only ambiguous words (e.g. “bug”), a human would be more prone to devise a set of
terms (a[er reading the report) that would create a more accurate rank; (ii) someࢢmes,
when fixing bugs, the actual defect is really not related to the concepts funcࢢons are
addressing, which translates in changing code unrelated to search queries.

Modern searching features, explore the use of regular expressions, and similar ap-
proaches, for improving text based search. The match funcࢢon could explore such
approaches to improve the number of word matching, instead of blindly comparing
strings, to be�er mimic currently available soluࢢons.

9.5 Mappings Experimental Validaࢢon

Previous experiences draw conclusions about the merits and benefits of using the Con-
cept Mapper framework to perform concept locaࢢon by searching elements in the on-
tologies, and comparing the relatedness of the elements using a kPSS based scoring
approach. In general, given the previous results, the kPSS scoring funcࢢon, exploring
the terms extracted from each element of the source code (resulࢢng from spliࢰng and
expanding idenࢢfiers), provides sound results for building relaࢢons between elements
for the analyzed case studies. Besides searching, the Concept Mapper framework, al-
lows the creaࢢon of mappings between elements of different ontologies (domains).
A common example of interest is a mapping between the problem domain, and the
program domain, illustrated in the previous chapter, to help relaࢢng concepts in the
applicaࢢon domain with the source code elements that are responsible for addressing
them.

The goal of this specific experience is to measure the benefits for the program main-
tainer of such mappings, while performing so[ware maintenance acࢢviࢢes. The follow-
ing research quesࢢon was formulated:

RQ1: Are there any benefits of building a mapping between the problem domain and
program domain, from a maintainers point of view while performing so[ware
maintenance tasks?

9.5. Mappings Experimental Validaࢢon 169

To help answering this quesࢢon the following experience was undertaken:

Step 1: a so[ware system already included in Conclave was selected for this experi-
ence, in parࢢcular the tree so[ware package, because of its relaࢢvely small size.

Step 2: an obvious and simple bug was introduced in the source code, and a bug report
was created to describe the faulty behavior of the tool.

Step 3: two small and simple exercises were created, containing the bug report, a wid-
get for submiࢰng and verifying the correct answer, which is to determine the
funcࢢon that contains the bug. The only difference between the two exercises is
the mechanism available to browse the source code:

Version A: in this version, the source code navigaࢢon window displays the com-
plete set of funcࢢons available in the code using a one level straigh�orward
list; the maintainer can select a funcࢢon to inspect its source code, or choose
to view the enࢢre source code.

Version B: in this version, using the problem ontology available in Conclave a sec-
ond browsing level is introduced. The maintainer can choose one of the
concepts available in the ontology, and see the rank of funcࢢons (automat-
ically generated) related with each concept. The maintainer can then select
a funcࢢon from the rank, to inspect its source code, or choose to view the
enࢢre source code.

Step 4: a simple webpage, including a small set of instrucࢢons was created, to comprise
the survey, including the exercises described in Step 3. Appendix E illustrates the
webpages. At the meࢢ of this wriࢢng, the survey is sࢢll available online14.

Step 5: the link for the survey created in Step 4 was passed along a set of people with
background in so[ware development, and they were invited to complete the pro-
posed exercises and submit some feedback. Besides the feedback, the number
of funcࢢons inspected, the number of failed tries, and the meࢢ required to com-
plete each exercise were measured.

14Available from: http://conc-survey.di-um.org/ (Last accessed: 29-10-2014).

http://conc-survey.di-um.org/

170 9. Experimental Validaࢢon

Total Version A Version B

Correct answer submi�ed 52 24 28
Average funcࢢons visited 6 10 2
Average failed tries 1 2 0
Average meࢢ (in seconds) 279 520 85

Table 9.12: Measures results for the mappings analysis survey.

9.5.1 Results Discussion

At the meࢢ of this wriࢢng, there were already around 130 visits to the exercises pages
(for both versions), and around 50 correct answers submi�ed (also for both versions).
Roughly, this means that around 30 people parࢢcipated in the survey, 22 of whom sub-
mi�ed some feedback using the survey form.

Table 9.12 summarizes data gathered during survey parࢢcipaࢢon concerning auto-
maࢢcally collected measures: (i) number of funcࢢons visited, (ii) number of failed tries,
and (iii) the meࢢ spent while performing the exercise. These measurements were gath-
ered via accesses to the exercises pages, which means that may be some values that are
not precisely correct. For example, the meࢢ spend to complete an exercise is measured
by compuࢢng the difference between the absolute meࢢ when the parࢢcipant first vis-
its the exercises page, and the absolute meࢢ when the parࢢcipant successfully submits
the correct answer. Of course whoever is compleࢢng the exercise may be for example
mulࢢ-tasking, i.e., performing other tasks at the same ,meࢢ jeopardizing the absolute
meࢢ spent to complete the exercise. Other problems are, for example, open the exer-
cise page at a given ,meࢢ but only actually a�empt to complete the exercise later, or
in the next day. Nevertheless, analyzing Table 9.12, there is a general trend of higher
average values, concerning not only the meࢢ taken15, but also funcࢢons visited, for the
exercise version A, and a general trend of lower average values for version B. There are
a general set of details concerning the exercises themselves that have some influence
of these trends, which are discussed in the next secࢢon.

Besides automaࢢc measurements, the parࢢcipants were invited to submit feedback
15Due to the shortcomings of measuring meࢢ using pages access and HTTP sessions, meࢢ spans higher

than 1 hour are not included for average calculaࢢons.

9.5. Mappings Experimental Validaࢢon 171

using a free text form available in the survey webpage. To draw conclusions about the
parࢢcipants point of view, while performing the role of so[ware maintainers, the list
of submi�ed feedbacks messages were analyzed and categorized. Table 9.13 describes
the devised categories, and the distribuࢢon values for the set of submi�ed messages.
A total of 22 parࢢcipants submi�ed a feedback message, 21 of which describe a prefer-
ence for the interface presented in version B, over the interface for version A. None of
the parࢢcipants submi�ed a message that would express their preference for version
A, over version B, and only 1 parࢢcipant submi�ed a message that does not include any
explicit statement concerning this detail. Some examples of statements used to sustain
the preferences of version B used by the parࢢcipants include: “The second step helps
on organizing the funcࢡons on their meaning/semanࢡc, making the debugging process
easier”, “The grouping of funcࢡons by concept greatly increased the speed of my prob-
lem resoluࢡon.”, “... the key words shown in the first columnwere very important to find
the correct answer faster.”, “... because funcࢡons are well organized according to their
role, thus it was possible to find the error in a short ,”meࢡ and “The concept arrange-
ment of the code methods simplified the process of finding the Bug ...”, and “... because
it organizes the funcࢡons by topics and makes the task of finding the bug easier.”.

Although the parࢢcipants knew nothing about the mappings between the program
and problem domain acࢢng in the background, given the submi�ed feedback, there is
almost a general consensus that the organizaࢢon and features used in version B clearly
have benefits (e.g., faster pinpoint of buggy elements, enhanced source code brows-
ing) when compared to version A. The conceptual navigaࢢon approach to browse source
code featured in version B, is built on top of the mapping between the problem domain,
and the program domain. This helps to answer the iniࢢal research quesࢢon devised for
this experiment. For the selected use case, and for the proposed task, the feedback
gathered from the survey parࢢcipants indicates that there are benefits in building and
exploring a mapping between the problem domain to aid maintainers performing so[-
ware maintenance tasks. Some of the parࢢcipants also commented some problems
with the exercises, for example: “search a[er finding the first one influences directly
the search of the second step”, this and other issues concerning this experiment are
discussed in the next secࢢon.

172 9. Experimental Validaࢢon

Category Total Total (%)

A - Prefer Version A over version B 0 0%
B - Prefer Version B over version A 21 95%
N - None of the above 1 5%

Total 22 100%

Table 9.13: Feedback distribuࢢon for the mappings analysis survey
feedback.

9.5.2 Threats to Validity

This secࢢon discusses some issues and threats to validity concerning the experiment
described in the previous secࢢon.

The first detail to point out is the bug complexity. The bug introduced in the code is
very simple, and immediately spo�ed. Although this can jeopardize the final results in
the sense that it may be too easy too find the bug, the actual goal of the experience is
not to measure the ability of the parࢢcipants to debug the code, but to enhance the con-
cept locaࢢon tasks, i.e., find the culprit zone of code faster. Another concern regarding
the introduced bug, is that it is the same in both exercises. If the parࢢcipant success-
fully finds the answer in version A, of course its behavior is already biased for version
B. The problem with providing different exercises to overcame this detail is in finding
pairs of tasks with exactly the same complexity. In the next iteraࢢon of similar exper-
iments, randomly choosing the first proposed exercise version would help addressing
this shortcoming.

Concerning the automaࢢc measures accuracy (e.g. number of funcࢢons inspected,
meࢢ to complete exercise), although more complex approaches could be used to at-
tempt to increase the accuracy of such measures, the underlying proprieࢢes of the HTTP
layer, and the fact that the person is not observed while performing the proposed tasks,
are always an issue. The only way to completely overcome such issues is to have parࢢc-
ipants compleࢢng the survey in a controlled environment. This is also being pondered
for a future iteraࢢon of similar surveys.

The described experiment, even with its shortcomings, already provides some in-

9.6. The Development Point of View 173

sight on the general preference from the maintainers point of view of the benefits of
exploring mappings between the program domains, while performing so[ware mainte-
nance acࢢviࢢes for the studied cases. However, more studies are sࢢll required before
generalizing these claims. Also, designing and using interfaces specially nkeredࢢ for
maintenance tasks, provided a good insight and helped clarifying some ideas concern-
ing so[ware maintenance acࢢviࢢes.

9.6 The Development Point of View

There is another relevant scope concerning this work, that does not have a straigh�or-
ward empirically evaluaࢢon. The iniࢢal research quesࢢon refers to the benefits of using
ontology-aware applicaࢢons, in the context of PC. But the benefits of adopࢢng ontolo-
gies is not evident only on the final applicaࢢon results, but are also clear in the imple-
mentaࢢon of such applicaࢢons. The method described for modeling informaࢢon, and
related tools, namely the topics discussed in Chapter 6 and 7, enable the implementa-
onࢢ of techniques and algorithms in a clear and simple manner, with many advantages
right out of the box. There is no straigh�orward way to measure this, and present em-
pirical evidence of such benefits. Hence, the remaining of this secࢢon is a walkthrough
of an example that helps to emphasize the advantages noted while using this approach
to implement most of the applicaࢢons describes in this document.

Program idenࢢfiers vocabulary normalizaࢢon is a common task in program under-
standing approaches, i.e., split (and expand when required) program idenࢢfiers strings
to sets of more meaningful terms. The Conclave environment also undertakes such a
task, in order to improve searching and mapping results. Program 9.1 illustrates the
code used to enrich the ontology with the sets of splits, and terms, calculated for each
idenࢢfier extracted from the source code, wri�en in Perl. LIdS, introduced in the previ-
ous chapter, is the tool used to split and expand idenࢢfiers.

Line 1-2 simply load the required libraries: Conclave OTK, and Lingua IdSpli�er. Line
4-5 create instances to abstract the ontology, and for the spliࢰng algorithm. In line 7,
the ontology is queried to retrieve the set of idenࢢfiers available in the program domain,
and line 9 iterates and processes each idenࢢfier individually. For each idenࢢfier, in line

174 9. Experimental Validaࢢon

1 use Conclave : :OTK;
2 use Lingua : : I d S p l i t t e r ;
3

4 my $ontology = Conclave : : OTK−>new($base_uri) ;
5 my $sp l i t ter = Lingua : : IdSpl i t ter−>new() ;
6

7 my @identifiers = $ontology−>get_instances (’ I d e n t i f i e r ’) ;
8

9 foreach my $id (@identifiers) {
10 my $name = $ontology−>get_data_prop ($id , ’ hasString ’) ;
11 my ($spl i ts , $terms) = $spl i t ter−>sp l i t ($name) ;
12

13 $ontology−>add_data_prop ($id , ’ hasSpl its ’ , $sp l i t s) ;
14 $ontology−>add_data_prop ($id , ’hasTerms ’ , $terms) ;
15 }

Program 9.1: Program, wri�en in Perl, to populate the program ontology
with the splits and terms, computed by LIdS, for each idenࢢfier found in the

source code.

10, the specific idenࢢfier string is retrieved from the ontology, and in line 11 the sets of
splits and terms are computed using LIdS. Finally, lines 13-14 store the resulࢢng sets in
the ontology. This snippet of code is clear, simple, and easy to read. Yet, implements a
rather complex task.

There are some subtle advantages of such an approach. The LIdS tool, that splits the
idenࢢfier is developed outside the scope of this code. Its effecࢢveness can be improved
without having to change the approach for loading the informaࢢon to the ontology.
Also, other tools can be used, but everything else will just work. Such tools are not re-
quired to know nothing about the language being processed, or parsing techniques. The
above code undertakes its task correctly without even knowing in which programming
language the code is wri�en. Other tools that take advantage of the splits and terms set
can always take advantage of such informaࢢon, once its available in the ontology. The
task is defined using ontology operaࢢons, regardless of the backend where the ontology
is being stored (e.g, file, triple store), and format (e.g., OWL), which means that even,
because of other requirements, any shi[in format or storage backend is performed
in the background, this task will conࢢnue to be able to perform its work successfully.
Also, spliࢰng and expanding idenࢢfiers is a task that does not require understanding

9.6. The Development Point of View 175

of source code, it can be executed with a small set of sub-elements extracted from the
program. Abstracࢢng such details allows for a general implementaࢢon of the task.

These advantages allow the definiࢢon of tasks, entailed in an applicaࢢon, in a generic
way, and most of the discarding details that do not contribute for the operaࢢon at hand,
e.g., the parsing technique used to parse source code and extract idenࢢfiers does not
contribute to the split and expansion quality of the spliࢰng technique adopted.

176 9. Experimental Validaࢢon

Summary

• This chapter describes some experimental validaࢢons undertaken to empirical
measure the benefits of the devised approaches for some parࢢcular problems.
Fully evaluate an applicaࢢon may take longer than building it, nevertheless eval-
uaࢢon pushes applicaࢢons to a more mature and scalable state, and that can cope
with real world scenarios.

• The results achieved for kPSS synsets analysis, and LIdS spliࢰng approach, show
that these techniques provide results that do not jeopardize the final experi-
ments.

• Source code search based on keywords, can potenࢢally enhance concept locaࢢon
acࢢviࢢes. The ontology based concept locaࢢon searching feature, for the studied
cases, outperforms a simple string matching approach (based on the effecࢢve
measure).

• The final experience, discussed in Secࢢon 9.5, helps drawing conclusions about
the benefits of exploring mappings between domains, in parࢢcular the program
and problem domain, to enhance programmers maintenance acࢢviࢢes. The de-
sign of interfaces specially cra[ed to aid in so[ware maintenance tasks can also
potenࢢally enhance PC acࢢviࢢes in general.

• Besides the applicaࢢons and tools, this work also contributes to the way such
tools and applicaࢢons are designed and implemented. Providing a set of tools
and frameworks, that allow the implementaࢢon of clear, simple, and easy to read
tasks in the context of PC.

Part IV

Conclusion

177

Chapter 10

Final Remarks

A story has no beginning or end: arbitrarily one chooses thatmoment
of experience from which to look back or from which to look ahead.

Graham Greene

This dissertaࢢon describes work undertaken in the field of so[ware engineering, in
the domain of program understanding. This chapter discusses some final thoughts and
reflexions about this work.

Program comprehension, and related fields of research, are becoming even more
relevant in todays world, where the dependency on so[ware systems, and the direct
impact they have on everyday life is drasࢢcally increasing. Also, as meࢢ goes by so[-
ware tends to increase in size and complexity. So[ware maintenance and evoluࢢon
tasks are central acࢢviࢢes in the scope of so[ware engineering. In order to undertake
these knowledge intensive acࢢviࢢes, programmers and maintainers dwell most of their
meࢢ in so[ware comprehension and understanding processes, synthesizing informa-
onࢢ obtained from different sources. One of the most relevant steps to achieve the
understanding of a program (or a part of it), is relaࢢng source code elements, with the
real world concepts they are addressing. This is a challenging endeavor mainly due to
the different levels of abstracࢢons and languages used, on one side, the natural lan-
guages used to describe and discuss real world concepts, and the languages used to
write so[ware (programming languages). The study of the mental representaࢢons, and

179

180 10. Final Remarks

the underlying human cogniࢢve processes, allows the development of techniques and
implementaࢢon of tools that assist in this process, promoࢢng a faster and be�er un-
derstanding. This work promotes the adopࢢon of ontologies entailed semanࢢcs and
knowledge representaࢢon techniques, to build models of the program, and related do-
mains, in order to enhance so[ware understanding acࢢviࢢes.

In order to achieve this goal, the generic workflow illustrated in Figure 8.11 is pro-
posed. The workflow defines a set of generic steps, starࢢng from the original so[ware
system, and ending with a set of heterogenous views of the program (e.g., graphs, map-
pings, annotated code) that emphasize specific traits of interest. The generic workflow
is split in three major stages: (i) process the program and related arࢢfacts to create
resources; (ii) process resources to convey relevant informaࢢon to build and populate
ontologies; and, (iii) process ontologies to infer knowledge and build views of the so[-
ware.

During the first stage, the so[ware system under analysis is processed using an ar-
bitrary set of tools. The set of tools is not closed, i.e., any arbitrary tool can be added
to process the system, and provide some kind of conclusion or analysis about the pro-
gram, or other arࢢfact included or related with the so[ware. Besides allowing any type
of tool to contribute to the process, it enables the combinaࢢon of results of these tools
without extra effort from the final applicaࢢon.

During the second stage, the informaࢢon in the resources produced during the first
stage is conveyed to an ontology. This data normalizaࢢon, allows applicaࢢons to explore
the available informaࢢon using a single notaࢢon and paradigm. Conclave OTK takes a
vital role in this stage. Using OTK operaࢢons, relevant data is easily and effecࢢvely trans-
ported to an ontology, increasing its semanࢢcs. Higher level applicaࢢons, i.e., applica-
onsࢢ for programmers and maintainers to study so[ware systems, exploit the informa-
onࢢ available in ontologies using OTK. These applicaࢢons benefit from data computed
by other tools, and are easily used across programming languages, or paradigms, since
all the informaࢢon is readily available (e.g., not required to parse the source code, or
normalize idenࢢfiers), of course someࢢmes, the required data to compute some result
may not be available in the ontology. In this case, the best approach is to start by de-
vising a tool that conveys the required informaࢢon, and then go back and implement

181

the final applicaࢢon exploring the data previously stored in the ontology. This allows
for other applicaࢢons to explore the same informaࢢon later, and also makes composing
results with other tools easier.

During the third and final stage, applicaࢢons targeࢢng end users1, produce specific
views of interest of the so[ware system. The Conclave OTK toolkit allows building ap-
plicaࢢons, that explore the informaࢢon available in the ontologies, to aid programmers
and maintainers. At this stage, all the informaࢢon collected during the analysis stage is
normalized and available in ontologies, applicaࢢons are not concerned with perform-
ing low level operaࢢons (e.g., parsing) and can retrieve the required informaࢢon using
Conclave OTK operaࢢons, Program 9.1 illustrates an example applicaࢢon. The Conclave
Concept Mapper, described in Chapter 7, is a more complex example of an applicaࢢon
that performs searches and mappings exploring the informaࢢon available in the mod-
els. This approach allows applicaࢢons to be quickly developed, free from dealing with
programming languages details, e.g., Conclave Concept Mapper explores program iden-
fiersࢢ gathered from source code, but does not parse any program, or does not know
how to build an idenࢢfiers table, such tasks are delegated to other tools or stages.

Some final remarks, and recalling the iniࢢal research quesࢢon:

• Regarding program comprehension there is no doubt that it is a very important
area of research with many benefits for the industry, and society in general. Most
techniques are based in the same steps: gather informaࢢon, reason about in-
formaࢢon gathered, provide a combined view for the original source code and
the synthesized informaࢢon. During this work, one general goal was to provide
generic tools that perform common tasks (e.g., collect idenࢢfiers, gather funcࢢon
definiࢢons, split and expand program idenࢢfiers) and make the informaࢢon avail-
able in the model for other applicaࢢons to explore. This allows the implementa-
onࢢ of more language agnosࢢc tools, and the composiࢢon of results easier.

• The adopࢢon of ontologies allowed to store informaࢢon, computed from hetero-
geneous sources, with a clear semanࢢcs. Mechanisms inherent to this technology
allow to query and update informaࢢon in a clear and effecࢢve way. Ontologies

1Programmers and maintainers performing so[ware understanding acࢢviࢢes.

182 10. Final Remarks

are used as a universal type, to store arbitrary data, and provide a common lan-
guage (semanࢢcs) for tools to share informaࢢon and results.

• The use of ontologies does not break only the boundaries of produced informa-
onࢢ or inferred knowledge, i.e., the normalizaࢢon of informaࢢon to be explored
by heterogeneous applicaࢢons. But also allows to overcome domain boundaries,
i.e., combine and explore informaࢢon from different domains (e.g., mappings be-
tween the problem and program domain). Tools, using a single mechanism, are
able to query different domains (e.g., the program domain, the applicaࢢon do-
main), in order to build semanࢢc relaࢢons between elements at different levels
of abstracࢢon, and described using different languages. Using the mechanisms
provided by OTK, applicaࢢons can query ontologies for informaࢢon in different
domains, and relate elements in the program domain, with elements in the ap-
plicaࢢon domain, for example. This enhances the applicaࢢons that can be build
in the context of PC.

• Tools introduced in Chapter 8, and the experiments described in Chapter 9, pro-
vide evidence of the benefits of this work for enhancing program comprehen-
sion acࢢviࢢes. Benefits concerning not only the final applicaࢢons developed, but
also during the development process. The presented case studies during the ex-
perimental evaluaࢢons, the introduced applicaࢢons, and the mappings between
domains, created using Conclave Concept Mapper, show that for the discussed
analysis there are benefits on using the proposed approach for enhancing pro-
gram comprehension.

• The generic tools developed during this work are available freely, for researchers
interested in reproducing some of the results illustrated, or use them in their own
research. There was a major concern, while developing the introduced frame-
works, to implement them as generic and modular as possible, so they are eas-
ily applied in other domains, and are easily extended when required. The most
prominent frameworks and tools, including corresponding web sites, are enumer-
ated in Secࢢon 1.3.

• The work discussed in this document relates to many different research areas

10.1. Future Work 183

(e.g., Natural Language Processing, compilers technology, inference engines, on-
tology formats). Although, this situaࢢon can be daunࢢng at first, the synergy
between different disciplines can eventually provide be�er overall results. This
synergy is in line with current state-of-the-art approaches in the context of so[-
ware engineering.

In sum, mappings between the problem domain, the program domain, and other re-
lated domains, provide benefits to enhance program comprehension while perform-
ing so[ware evoluࢢon and maintenance tasks. These mappings help building relaࢢons
between real world concepts, and program elements, a required acࢢvity for so[ware
programmers and maintainers while building a mental model of the system, and con-
sequently understanding the program, or a part of it.

10.1 Future Work

This secࢢon describes some trends for future work. Topics related with this work In
parࢢcular include:

• Develop more tools during the first stage of the so[ware analysis workflow, build-
ing more resources about the program with parࢢcular emphasis on non-source
code content (e.g., documentaࢢon), and runࢢme analysis.

• Expand the set of classes, relaࢢons, and proprieࢢes in the ontologies, to capture
more informaࢢon about the domains.

• Increase the informaࢢon conveyed to the ontologies, from the currently gener-
ated resources, and also from adding the resources to the available toolchain.

• Expand Conclave OTK set of available methods, to provide more features for up-
daࢢng, and querying, informaࢢon available in the ontologies.

184 10. Final Remarks

• Extend the domain specific language and the Conclave Concept Mapper, to al-
low the creaࢢon of new mappings between elements, and to improve searching
features.

• Sࢢll, in Conclave Concept Mapper, devise new scoring funcࢢons, to compute re-
latedness scores between elements in the different domains.

• Add more end-user applicaࢢons to the Conclave environment, more tools to pro-
cess programs and domain arࢢfacts to convey more informaࢢon, and increase
the collecࢢon of so[ware systems available to explore.

• Conࢢnue to devise more experiments to empirically measure the efficiency of
the devised tools, and in parࢢcular how to compare applicaࢢons that address the
same problems.

And topics more likely to spawn new research endeavors:

• Devise the automaࢢc creaࢢon of interfaces, from the domain representaࢢon of
the program and other domains (e.g., the problem domain), to build tools that
enhance programmers so[ware maintenance and evoluࢢon acࢢviࢢes.

• Given that informaࢢon and knowledge about the program (and related domains)
semanࢢcs is well defined, it is possible to export this informaࢢon to a format out-
side the family of ontologies. This means transporࢢng the informaࢢon of interest
back and forth to another modeling approach, to perform more arbitrary compu-
taࢢons.

• Modern development communiࢢes explore and use a set of common tools, out-
side the scope of the so[ware package itself, e.g., version control systems, wikis,
issues and bug tracking systems. These can provide useful informaࢢon and insight
to improve already discussed models (e.g., the applicaࢢon domain), or spawn the
creaࢢon of new models of interest. For instance, the creaࢢon of a model to rep-
resent the so[ware changes as recorded by the version control system, including
commits messages. A mapping between this domain and the problem domain
could provide informaࢢon about which changes are related to which concepts
from the applicaࢢon domain.

Appendices

185

Appendix A

Introducࢢon to the Haskell Notaࢢon

Haskell is a purely funcࢢonal and strongly typed programming language. A very brief
and summarized introducࢢon to the language notaࢢon follows. More informaࢢon about
the language, and detailed resources about its notaࢢon are available in the Haskell of-
ficial website1. Some of the illustrated examples use the Glasgow Haskell Compiler2

interacࢢve environment (ghci) to calculate expressions.

Funcࢢons Definiࢢons and Signatures

A funcࢢon in Haskell is clearly defined, and has a clear signature, that defines the type
of inputs that the funcࢢon takes, and the type of results the funcࢢon computes. For
example, the signature for a funcࢢon called square, that given an integer computes its
square, can be as follows:

square :: Int → Int

This reads as: the square funcࢢon takes and integer, and its result is an integer. Func-
onsࢢ can have arbitrary numbers of arguments, for example a funcࢢon for compuࢢng
the maximum of four numbers can have the following signature:

1Available from: http://haskell.org/ (Last accessed: 20-09-2014).
2Available from: http://www.haskell.org/ghc/ (Last accessed: 20-09-2014).

187

http://haskell.org/
http://www.haskell.org/ghc/

188 A. Introducࢢon to the Haskell Notaࢢon

max :: Int → Int → Int → Int → Int

To generalize this funcࢢon to take as input an arbitrary list of numbers, the signature
could be changed to take as input a list of integers, and the result is the maximum
integer:

max :: [Int] → Int

Most of the ,mesࢢ funcࢢon signatures can be omi�ed, in which case the compiler will
derive them. But sࢢll they are very useful, especially for humans reading the code, to
explicitly state which are the arguments to the funcࢢon and the final result.

The funcࢢon body follows the signature, for example the complete definiࢢon for the
square funcࢢon could be as follows:

square :: Int → Int
square n = n ∗ n

The integer value that the funcࢢon takes as argument is referred using n. The result of
the funcࢢon its simply to compute the square of n. Intermediate values can be com-
puted inside the funcࢢon definiࢢon. For example, to define a funcࢢon that computes
the cube (n3) of an integer value, using the square funcࢢon:

cube :: Int → Int
cube n = let

sq = square n
in
sq ∗ n

Where, the let keyword is used to start a secࢢon of intermediate calculaࢢons, and the
in keyword defines the final expression that calculates the funcࢢon result.

The $ sign is used in funcࢢon definiࢢons to avoid the use of parenthesis, anything
appearing a[er takes precedence. The following expressions are equivalent:

ghci> square (3 + 2)
25
ghci> square $ 3 + 2
25

189

Declaring New Data Types

New data types can be defined in Haskell using the data keyword. For example, the
following statement defines a new data type called Point2D, which is composed of two
integers (x and y, the point coordinates):

data Point2D = Point2D { x :: Int, y :: Int }

New members of this structure are created using the constructor (a funcࢢon) that is
automaࢢcally available, and passing the corresponding values is order:

ghci> Point2D 4 6
Point2D {x = 4, y = 6}

The names of the fields in the data type definiࢢon are used as acessors to the values.
For example, to get the x coordinate of a point p:

ghci> let p = Point2D 4 6
ghci> x p
4

Someࢢmes, no new data structure is actually required, but to be more clear on values
semanࢢcs, an alias can be given to other types. For example, in the previous Point2D
data type definiࢢon, the Int value is the type for coordinates, to be more explicit an alias
for the Int type named Coordinate can be created using the type keyword:

type Coordinate = Int

Now, the Coordinate type can be used, instead of Int. Updaࢢng the previous example,
the data type definiࢢon can be wri�en as:

data Point2D = Point2D { x :: Coordinate, y :: Coordinate }

A new data type can also be defined using possible alternaࢢves. For example the boolean
data type has two alternaࢢves: true or false, different alternaࢢves are grouped together
using a verࢢcal bar:

data Bool = True | False

190 A. Introducࢢon to the Haskell Notaࢢon

Lists

A list stores a set of elements of the same type. A list is the denoted by a square brackets
[and], and its elements are separated by commas. For example a list of integers:

[1,2,3,4,5,6]

Or a list of strings:

["hello", "world"]

Concatenaࢢng lists is done using the double + sign operator:

ghci> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]

And, strings are also lists of characters:

ghci> "hello" ++ " " ++ "world"
"hello world"

The .. operator is used to create lists:

ghci> [1..10]
[1,2,3,4,5,6,7,8,9,10]

A different step can be used:

ghci> [1,3..10]
[1,3,5,7,9]

And an infinite list can be created, if no upper bound is given:

ghci> [1..]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,
46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,...

191

Lists can also be defined by comprehension, using expressions similar to the common
mathemaࢢcal notaࢢon:

ghci> [x | x <- [1..10]]
[1,2,3,4,5,6,7,8,9,10]
ghci> [x | x <- [1..10], x > 5]
[6,7,8,9,10]
ghci> [square x | x <- [1..10]]
[1,4,9,16,25,36,49,64,81,100]
ghci> [(x,y) | x <- [1,2], y <- [3,4]]
[(1,3),(1,4),(2,3),(2,4)]

The @ sigil has a special meaning in list comprehension expressions, it is used to select
elements from a list when alternaࢢves are available. For example, to select only the
True elements from a list of elements of the Boolean type defined earlier:

ghci> [x | x @ True <- [True, False, True]]
[True,True]

Some Built-in Funcࢢons

This secࢢon describes some commonly used funcࢢons, available in Haskell. The map
funcࢢon, given a funcࢢon and a list, applies the argument funcࢢon to every element of
the list. The result is a list containing the individual results of calling the funcࢢon given
as argument for each element in the original list. The following example applies the
square funcࢢon to a list of numbers:

ghci> map square [1,2,3,4,5]
[1,4,9,16,25]

The filter funcࢢon takes as argument a filtering funcࢢon (required to return a boolean
value) and a list of elements, and returns the list of elements for which the filtering
funcࢢon returns a true value. The following example filters the set of numbers that are
greater that 5:

192 A. Introducࢢon to the Haskell Notaࢢon

ghci> filter (>5) [1..10]
[6,7,8,9,10]

The zip funcࢢon returns the pairwise interleaving of the two lists given as arguments,
for example:

ghci> zip ['a','b','c'] [1,2,3]
[('a',1),('b',2),('c',3)]

The concat funcࢢon concatenates lists of lists in a single list, for example:

ghci> concat [[1,2],[3,4]]
[1,2,3,4]

Miscellaneous

Comments for a single line are declared using a double dash:

-- This is a single line comment

Mulࢢline comments usa the following syntax:

{-
Multiline
comment.

-}

Appendix B

Introducࢢon to Template Toolkit

Template Toolkit (henceforth abbreviated TT) is a fast, all purpose, template processing
system. It is o[en used to produce HTML, but can be used to efficiently produce other
formats (e.g., XML, plain text). TT has a simple templaࢢng language that is used to write
templates. Other tools can use the templates to build their final (or any required inter-
mediate output). For example, the OTK toolkit described in Chapter 6 uses templates
to build SPARQL queries. Templates can be stored in their own files, so they can be
edited by people that are not proficient with the programming language in which the
actual tool is wri�en (e.g., data experts, output format expert). TT is wri�en in Perl.
This appendix briefly introduces the templaࢢng notaࢢon for wriࢢng templates.

The major purpose of a template when processed, is to output a set of staࢢc data
previously defined, and a set of dynamic data, computed in runࢢme. The template
weaves both data sets together, and then produces the devised output. For example,
the following template snippet can be used to build the header secࢢon of an HTML file:

<HEAD>
<TITLE>[% t i t l e %]</TITLE>

</HEAD>

Where the HEAD and TITLE tags are staࢢc, they do not change between template pro-
cessing, but the actual tleࢢ of the page can change. Everything between [% and %] is
expected to be wri�en in TT templaࢢng language, and is processed by the template en-
gine to produce the desired output, while everything outside is staࢢc data to be wri�en

193

194 B. Introducࢢon to Template Toolkit

directly to the output. In this template title is a variable, when the template is pro-
cessed it is replaced by an arbitrary value set by the code that calls the template. The
final output the snippet of HTML where the tleࢢ variable (including the delimiter tags)
is replaced by the tleࢢ of the page, hence producing the final output. For example, the
following Perl code can be used to call this template:

my $tt = Template->new;
my $vars = { title => "Template Toolkit Page" };
$tt->process('header.tt', $vars);

Where a new template processor is created The result of execuࢢng this code would be:

<HEAD>
<TITLE>Template Toolkit Page</TITLE>

</HEAD>

Where the title variable was replaced with the value defined in $vars, and everything
else in the template was simply piped to the output.

TT allows for more complex expressions to be used inside templates. In fact, there
is almost a programming language to write templates [29]. The remaining of this intro-
ducࢢon to TT introduces in more detail some direcࢢves commonly used in templates
illustrated in this document. For more details and a complete descripࢢon refer to the
official documentaࢢon and related resources1.

Include

The INCLUDE direcࢢve is used to insert the result of processing a template, inside an-
other template. For example, the following template builds a HTML page by includ-
ing some HTML direcࢢves, and including the result of processing the header.tt and
body.tt templates to compose the enࢢre output.

<!DOCTYPE html>
<HTML>
[% INCLUDE ’header . tt ’ %]
[% INCLUDE ’body. tt ’ %]

1Available from: http://www.template-toolkit.org/ (Last accessed: 08-09-2014).

http://www.template-toolkit.org/

195

</HTML>

The direcࢢve is replaced with the result of processing the included template in the out-
put. This is a useful approach to keep templates simple, and easy to maintain, and is also
used to generate dynamic content in runࢢme, by selecࢢng which templates to include
dynamically.

Foreach

The FOREACH direcࢢve is used to iterate over lists, processing the foreach block for each
element. For example, the following template builds an unsorted list using HTML, for
the elements in the persons array. In every new iteraࢢon of the cycle, the person
variable is instanࢢated with the next element in the array.

[% FOREACH person IN persons %]

[% person %]
[% END %]

For example, the following snippet of Perl code, using the above template:

my $tt = Template->new;
my $vars = { persons => ['Ann', 'John', 'Peter', 'Sarah' };
$tt->process('foreach.tt', $vars);

Would produce the following output:

Ann</ LI >
John</ LI >
Peter </ LI >
Sarah</ LI >

196 B. Introducࢢon to Template Toolkit

Appendix C

Introducࢢon to SPARQL and OTK Queries

SPARQL is a query language for databases, or documents, that handle data in RDF for-
mat. It is used to query and update informaࢢon stored in RDF format, in the same
sense as SQL is used to query and update informaࢢon stored in a relaࢢonal database.
A SPARQL query consists in pa�erns of triples, including disjuncࢢons and conjuncࢢons
of triples. A triple is defined by three elements that unambiguously define three ele-
ments, a triple definiࢢon ends with a single dot, or may end with a semicolon, in which
case the source (the first element of the triple) is assumed to be the same as in the
previous triple.

Conclave OTK uses a set of SPARQL queries to perform the acࢢons required for the
operaࢢons provided by its API, since the ontologies are stored in a RDF format. SPARQL
queries are defined in templates, and the actual queries executed are built in runࢢme.
There are two versions of SPARQL: (i) SPARQL 1.0 defines queries for retrieving infor-
maࢢon; and, (ii) SPARQL 1.1 defines queries to update and insert new data; both are
recommended by W3C. SPARQL 1.0 specifics four query forms for retrieving data, OTK
only explores one form: SELECT queries, which are used to retrieve data in a table like
format (e.g., XML, CSV). SPARQL 1.1 specifies its own query forms, OTK only uses INSERT
queries, to add new informaࢢon to the ontology.

All query forms allow a block for seࢰng prefixes, that define shortcuts to write el-
ements. Variables are defined using a ? prefix. The graph, i.e., defines the triples data
set to use, in OTK a graph is used to store one individual ontology (e.g., the program on-

197

198 C. Introducࢢon to SPARQL and OTK Queries

tology, the problem ontology). For example, the following query retrieves the available
set of classes from the ontology:

PREFIX rdf : <http : / /www.w3. org/1999/02/22−rdf−syntax−ns#>
PREFIX owl : <http : / /www.w3. org/2002/07/owl#>

SELECT ? class
FROM <[% graph %]>
WHERE {

? class rdf : type owl : Class .
}

It stars by defining two prefixes: “rdf” and “owl”, i.e., wriࢢng “rdf:type” is exactly the
same as wriࢢng “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”, and “owl:class”
is exactly the same as wriࢢng “http://www.w3.org/2002/07/owl#Class”. Also in this
query ?class acts as a variable, which means that in the query result (a set) this variable
is the only variable being instanࢢated, once for each class available in the ontology,
with the name of the class. The FROM clause defines from which graph (ontology) to
retrieve the informaࢢon.

Table C.1 describes some templates used in OTK, to render common queries. All
templates assume the following set of prefixes is defined.

PREFIX rdf : <http : / /www.w3. org/1999/02/22−rdf−syntax−ns#>
PREFIX owl : <http : / /www.w3. org/2002/07/owl#>
PREFIX xsd : <http : / /www.w3. org/2001/XMLSchema#>
PREFIX rdfs : <http : / /www.w3. org/2000/01/rdf−schema#>

199

Add Class Get Classes

INSERT DATA {
GRAPH <[% graph %]> {
[% name %] rdf : type owl : Class .
[% FOREACH c IN parents −%]
[% name %] rdfs : subClassOf [% c %] .
[%− END %]

}
}

SELECT ?c
FROM <[% graph %]>
WHERE {

?c rdf : type owl : Class
}

Add Instance Get Instances

INSERT DATA {
GRAPH <[% graph %]> {
[% name %] rdf : type [% class %] ;

rdf : type owl : NamedIndividual .
}

}

SELECT ? i
FROM <[% graph %]>
WHERE {

? i rdf : type [% class %]
}

Add Object Propriety

INSERT DATA {
GRAPH <[% graph %]> {
[% subject %] [% relation %] [% target %] .
[% relation %] rdf : type owl : ObjectProperty .

}
}

Add Data Propriety

INSERT DATA {
GRAPH <[% graph %]> {
[% subject %] [% relation %] ”[% target %]”^^xsd : [% type %] .
[% relation %] rdf : type owl : DatatypeProperty .

}
}

Table C.1: OTK query templates for some common operaࢢons.

200 C. Introducࢢon to SPARQL and OTK Queries

Appendix D

Program Ontology Template

<?xml version =”1.0” encoding=”UTF−8”?>

<!DOCTYPE rdf :RDF [
<!ENTITY owl ”http : / /www.w3. org/2002/07/owl#” >
<!ENTITY xsd ”http : / /www.w3. org/2001/XMLSchema#” >
<!ENTITY rdfs ”http : / /www.w3. org/2000/01/rdf−schema#” >
<!ENTITY rdf ”http : / /www.w3. org/1999/02/22−rdf−syntax−ns#” >

]>

<rdf :RDF xmlns=”[% base_uri %]”
xml : base=”[% base_uri %]”
xmlns : rdfs =”http : / /www.w3. org/2000/01/rdf−schema#”
xmlns : owl=”http : / /www.w3. org/2002/07/owl#”
xmlns : xsd=”http : / /www.w3. org/2001/XMLSchema#”
xmlns : rdf=”http : / /www.w3. org/1999/02/22−rdf−syntax−ns#”>

<owl : Ontology rdf : about=”[% base_uri %]”/>

<!−− OBJECT PROPERTIES −−>
[% INCLUDE ’obj_props . tt ’ %]

<!−− DATA PROPERTIES −−>
[% INCLUDE ’data_props . tt ’ %]

<!−− CLASSES −−>
[% INCLUDE ’ classes . tt ’ %]

</rdf :RDF>

Object Proprieࢢes Template

201

202 D. Program Ontology Template

<owl : ObjectProperty rdf : about=”#hasFunctionCall”>
<rdf : type rdf : resource=”&owl ; TransitiveProperty ”/>
<rdfs : range rdf : resource=”#Function”/>
<rdfs :domain rdf : resource=”#ProgramElement”/>

</owl : ObjectProperty>
<owl : ObjectProperty rdf : about=”#hasIdent i f ier ”>

<rdf : type rdf : resource=”&owl ; FunctionalProperty”/>
<rdfs : range rdf : resource=”# Ident i f i e r ”/>
<rdfs :domain rdf : resource=”#Function”/>
<rdfs :domain rdf : resource=”#TypeDefinition”/>
<rdfs :domain rdf : resource=”#Variable”/>

</owl : ObjectProperty>
<owl : ObjectProperty rdf : about=”#hasType”>

<rdfs :domain rdf : resource=”#ProgramElement”/>
<rdfs : range rdf : resource=”#TypeDefinition”/>

</owl : ObjectProperty>
<owl : ObjectProperty rdf : about=”# inF i l e ”>

<rdf : type rdf : resource=”&owl ; TransitiveProperty ”/>
<rdfs : range rdf : resource=”#F i l e ”/>
<rdfs :domain rdf : resource=”#ProgramElement”/>

</owl : ObjectProperty>
<owl : ObjectProperty rdf : about=”#inFunction”>

<rdfs : range rdf : resource=”#Function”/>
<rdfs :domain rdf : resource=”#LocalVariable”/>
<rdfs :domain rdf : resource=”#Parameter”/>

</owl : ObjectProperty>
<owl : ObjectProperty rdf : about=”#inMethod”>

<rdfs : range rdf : resource=”#Method”/>
<rdfs :domain rdf : resource=”#LocalVariable”/>
<rdfs :domain rdf : resource=”#Parameter”/>

</owl : ObjectProperty>
<owl : ObjectProperty rdf : about=”#inClass”>

<rdfs : range rdf : resource=”#Class”/>
<rdfs :domain rdf : resource=”#ClassVariable”/>
<rdfs :domain rdf : resource=”#Method”/>

</owl : ObjectProperty>

Data Proprieࢢes Template

<owl : DatatypeProperty rdf : about=”#hasIdString”>
<rdfs :domain rdf : resource=” I d e n t i f i e r ”/>
<rdfs : range rdf : resource=”&xsd ; str ing ”/>

</owl : DatatypeProperty>
<owl : DatatypeProperty rdf : about=”#hasFullPath”>

<rdfs :domain rdf : resource=”#F i l e ”/>
<rdfs : range rdf : resource=”&xsd ; str ing ”/>

</owl : DatatypeProperty>

203

<owl : DatatypeProperty rdf : about=”#hasFileName”>
<rdfs :domain rdf : resource=”#F i l e ”/>
<rdfs : range rdf : resource=”&xsd ; str ing ”/>

</owl : DatatypeProperty>
<owl : DatatypeProperty rdf : about=”#isMain”>

<rdf : type rdf : resource=”&owl ; FunctionalProperty”/>
<rdfs :domain rdf : resource=”#Function”/>
<rdfs : range rdf : resource=”&xsd ; boolean”/>

</owl : DatatypeProperty>
<owl : DatatypeProperty rdf : about=”#hasLineBegin”>

<rdfs :domain rdf : resource=”#ProgramElement”/>
<rdfs : range rdf : resource=”&xsd ; int ”/>

</owl : DatatypeProperty>
<owl : DatatypeProperty rdf : about=”#hasLineEnd”>

<rdfs :domain rdf : resource=”#ProgramElement”/>
<rdfs : range rdf : resource=”&xsd ; int ”/>

</owl : DatatypeProperty>
<owl : DatatypeProperty rdf : about=”#hasSpl its”>

<rdfs :domain rdf : resource=”# Ident i f i e r ”/>
<rdfs : range rdf : resource=”&xsd ; str ing ”/>

</owl : DatatypeProperty>
<owl : DatatypeProperty rdf : about=”#hasTerms”>

<rdfs :domain rdf : resource=”# Ident i f i e r ”/>
<rdfs : range rdf : resource=”&xsd ; str ing ”/>

</owl : DatatypeProperty>

Classes Template

<owl : Class rdf : about=”#Comment”>
<rdfs : subClassOf rdf : resource=”#ProgramElement”/>

</owl : Class >
<owl : Class rdf : about=”#Conditional”>

<rdfs : subClassOf rdf : resource=”#Statement”/>
</owl : Class >
<owl : Class rdf : about=”#CustomStruct”>

<rdfs : subClassOf rdf : resource=”#TypeDefinition”/>
</owl : Class >
<owl : Class rdf : about=”#Expression”>

<rdfs : subClassOf rdf : resource=”#ProgramElement”/>
</owl : Class >
<owl : Class rdf : about=”#F i l e ”>

<rdfs : subClassOf rdf : resource=”&owl ; Thing”/>
</owl : Class >
<owl : Class rdf : about=”#Macro”>

<rdfs : subClassOf rdf : resource=”#ProgramElement”/>
</owl : Class >
<owl : Class rdf : about=”#TypeDecl”>

204 D. Program Ontology Template

<rdfs : subClassOf rdf : resource=”#ProgramElement”/>
</owl : Class >
<owl : Class rdf : about=”#Function”>

<rdfs : subClassOf rdf : resource=”#ProgramElement”/>
</owl : Class >
<owl : Class rdf : about=”#Method”>

<rdfs : subClassOf rdf : resource=”#ProgramElement”/>
</owl : Class >
<owl : Class rdf : about=”#Class”>

<rdfs : subClassOf rdf : resource=”#ProgramElement”/>
</owl : Class >
<owl : Class rdf : about=”#Constructor”>

<rdfs : subClassOf rdf : resource=”#ProgramElement”/>
</owl : Class >
<owl : Class rdf : about=”#GlobalVariable”>

<rdfs : subClassOf rdf : resource=”#Variable”/>
</owl : Class >
<owl : Class rdf : about=”#ClassVariable”>

<rdfs : subClassOf rdf : resource=”#Variable”/>
</owl : Class >
<owl : Class rdf : about=”# Ident i f i e r ”>

<rdfs : subClassOf rdf : resource=”#ProgramElement”/>
</owl : Class >
<owl : Class rdf : about=”#LocalVariable”>

<rdfs : subClassOf rdf : resource=”#Variable”/>
</owl : Class >
<owl : Class rdf : about=”#Loop”>

<rdfs : subClassOf rdf : resource=”#Statement”/>
</owl : Class >
<owl : Class rdf : about=”#NumberType”>

<rdfs : subClassOf rdf : resource=”#TypeDefinition”/>
</owl : Class >
<owl : Class rdf : about=”#Parameter”>

<rdfs : subClassOf rdf : resource=”#Variable”/>
</owl : Class >
<owl : Class rdf : about=”#PointerType”>

<rdfs : subClassOf rdf : resource=”#TypeDefinition”/>
</owl : Class >
<owl : Class rdf : about=”#ProgramElement”>

<rdfs : subClassOf rdf : resource=”&owl ; Thing”/>
</owl : Class >
<owl : Class rdf : about=”#Statement”>

<rdfs : subClassOf rdf : resource=”#ProgramElement”/>
</owl : Class >
<owl : Class rdf : about=”#StringType”>

<rdfs : subClassOf rdf : resource=”#TypeDefinition”/>
</owl : Class >
<owl : Class rdf : about=”#TypeDefinition”>

<rdfs : subClassOf rdf : resource=”#ProgramElement”/>

205

</owl : Class >
<owl : Class rdf : about=”#Variable”>

<rdfs : subClassOf rdf : resource=”#ProgramElement”/>
</owl : Class >

206 D. Program Ontology Template

Appendix E

Survey Pages

Front Page

207

208 E. Survey Pages

Exercise - Version A

209

Exercise - Version B

210 E. Survey Pages

Bibliography

[1] Oxford English Dicࢡonary, Second Ediࢡon. 1989.

[2] IEEE Standard for so[ware daintenance. IEEE Std 1219-1998, 1998.

[3] S.L. Abebe and P. Tonella. Natural language parsing of program element names
for concept extracࢢon. In IEEE 18th Internaࢡonal Conference on Program Com-
prehension (ICPC), pages 156–159. IEEE, 2010.

[4] J.J. Almeida, S. Araújo, N. Carvalho, I. Dias, A. Oliveira, A. Santos, and A. Simões.
The Per-Fide corpus: A new resource for corpus-based terminology, contrasࢢve
linguisࢢcs and translaࢢon studies. In Tony Berber Sardinha and Telma de Lurdes
São Bento Ferreira, editors, Working with Portuguese Corpora, pages 177–200.
Bloomsbury Publishing, April 2014.

[5] Gi. Ammons, D. Mandelin, R. Bodík, and J.R. Larus. Debugging temporal speci-
ficaࢢons with concept analysis. In Proceedings of the ACM SIGPLAN 2003 Con-
ference on Programming Language Design and Implementaࢡon, PLDI ’03, pages
182–195, New York, NY, USA, 2003. ACM.

[6] G. Antoniol and Y.-G. Guéhéneuc. Feature idenࢢficaࢢon: a novel approach and a
case study. In Proceedings of the 21st IEEE Internaࢡonal Conference on So[ware
Maintenance (ICSM), pages 357–366, Sept 2005.

[7] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Et-
tore Merlo. Recovering traceability links between code and documentaࢢon. So[-
ware Engineering, IEEE Transacࢡons on, 28(10):970–983, 2002.

211

212 Bibliography

[8] O. Arafat and D. Riehle. The commenࢢng pracࢢce of open source. In Proceedings
of the 24th ACM SIGPLAN conference companion on Object oriented program-
ming systems languages and applicaࢡons, pages 857–864. ACM, 2009.

[9] D. Becke� and B. McBride. RDF/XML Syntax Specificaࢢon (Revised). W3C Rec-
ommendaࢡon, 10, 2004.

[10] T.J. Biggerstaff, B.G. Mitbander, and D. Webster. The concept assignment problem
in program understanding. In Proceedings of the 15th internaࢡonal conference
on So[ware Engineering, pages 482–498. IEEE Computer Society Press, 1993.

[11] J. Bohnet, S. Voigt, and J. Dollner. Locaࢢng and understanding features of com-
plex so[ware systems by synchronizing ,-meࢢ collaboraࢢon- and code-focused
views on execuࢢon traces. In 16th IEEE Internaࢡonal Conference on Program
Comprehension (ICPC), pages 268–271, June 2008.

[12] C.A. Brewster and Y. Wilks. Ontologies, taxonomies, thesauri learning from texts.
2004.

[13] R. Brooks. Using a behavioral theory of program comprehension in so[ware en-
gineering. In Proceedings of the 3rd Internaࢡonal Conference on So[ware Engi-
neering, ICSE ’78, pages 196–201, Piscataway, NJ, USA, 1978. IEEE Press.

[14] R. Brooks. Towards a theory of the comprehension of computer programs. Inter-
naࢡonal journal of man-machine studies, 18(6):543–554, 1983.

[15] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Improving the tokenisaࢢon of
idenࢢfier names. In 25th European Conference onObject-Oriented Programming.
Springer, Jul 2011.

[16] B. Caprile and P. Tonella. Nomen est omen: Analyzing the language of funcࢢon
idenࢢfiers. In 6th Working Conference on Reverse Engineering, pages 112–122.
IEEE, 1999.

[17] B. Caprile and P. Tonella. Restructuring program idenࢢfier names. In Proceedings
of the Internaࢡonal Conference on So[ware Maintenance, pages 97–107. IEEE,
2000.

Bibliography 213

[18] N.R. Carvalho. An ontology toolkit for problem domain concept locaࢢon in pro-
gram comprehension. In Proceedings of the 2013 Internaࢡonal Conference on
So[ware Engineering, pages 1415–1418. IEEE Press, 2013.

[19] N.R. Carvalho, J.J. Almeida, P.R. Henriques, and M.J.V. Pereira. Conclave:
Ontology-driven measurement of semanࢢc relatedness between source code el-
ements and problem domain concepts. In Beniamino Murgante, Sanjay Misra,
AnaMariaA.C. Rocha, Carmelo Torre, JorgeGustavo Rocha, MariaIrene Falcão,
David Taniar, BernadyO. Apduhan, Osvaldo Gervasi, and other, editors, Compu-
taࢡonal Science and Its Applicaࢡons – ICCSA 2014, volume 8584 of Lecture Notes
in Computer Science, pages 116–131. Springer Internaࢢonal Publishing, 2014.

[20] N.R. Carvalho, J.J. Almeida, P.R. Henriques, and M.J. Varanda. From source code
idenࢢfiers to natural language terms. Journal of Systems and So[ware, 2014
(forthcoming).

[21] N.R. Carvalho, J.J. Almeida, M.J.V. Pereira, and P.R. Henriques. Probabilisࢢc synset
based concept locaࢢon. In Alberto Simões, Ricardo Queirós, and Daniela da Cruz,
editors, SLATE’12 — Symposium on Languages, Applicaࢡons and Technologies,
volume 21, pages 239–253. OASIC – Open Access Series in Informaࢢcs, Schloss
Dagstuhl – Leibniz-Zentrum für Informaࢢk, Dagstuhl Publishing, Germany, June
2012.

[22] N.R. Carvalho, J.J. Almeida, M.J.V. Pereira, and P.R. Henriques. Probabilisࢢc synset
based concept locaࢢon. In SLATE’12 — Symposium on Languages, Applicaࢡons
and Technologies, pages 239–253, June 2012.

[23] N.R. Carvalho, J.J. Almeida, M.J.V. Pereira, and P.R. Henriques. Conclave: Wriࢢng
Programs to Understand Programs. In Maria João Varanda Pereira, José Paulo
Leal, and Alberto Simões, editors, 3rd Symposium on Languages, Applicaࢡons
and Technologies, volume 38 of OpenAccess Series in Informaࢡcs (OASIcs), pages
19–34, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
maࢢk.

214 Bibliography

[24] N.R. Carvalho, J.J. Almeida, and A. Simões. Weaving OML in a general purpose
programming language. In Raul Barbosa and Luis Caires, editors, INForum’11 —
Simpósio de Informáࢡca (CoRTA2011 track), pages 184–197, Coimbra, Portugal,
Setembro 2011.

[25] N.R. Carvalho, A. Simões, and J.J. Almeida. OML: a scripࢢng approach for manip-
ulaࢢng ontologies. In CISTI’11 - 6ª Conferência Ibérica de Sistemas e Tecnologias
de Informação, pages 624–629, Chaves, Portugal, June 2011.

[26] N.R. Carvalho, A. Simões, and J.J. Almeida. Open source so[ware documentaࢢon
mining for quality assessment. In Advances in Informaࢡon Systems and Tech-
nologies, volume 206 of Advances in Intelligent Systems and Compuࢡng, pages
785–794. Springer Berlin Heidelberg, 2013.

[27] N.R. Carvalho, A. Simões, and J.J. Almeida. DMOSS: open source so[ware docu-
mentaࢢon assessment. Computer Science and Informaࢡon Systems, 2014 (forth-
coming).

[28] N.R. Carvalho, A. Simões, J.J. Almeida, P.R. Henriques, and M.J.V. Pereira. PFTL:
A systemaࢢc approach for describing filesystem tree processors. In Raul Bar-
bosa and Luis Caires, editors, INForum’11—Simpósio de Informáࢡca (CoRTA2011
track), pages 222–233, Coimbra, Portugal, Setembro 2011.

[29] D. Chamberlain, D. Cross, and A. Wardley. Perl Template Toolkit. O’Reilly Media,
Inc., 2011.

[30] E. Charniak and D. McDermo�. Introducࢡon to Arࢡficial Intelligence. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1985.

[31] K. Chen and V. Rajlich. Case study of feature locaࢢon using dependence graph.
Internaࢡonal Conference on Program Comprehension, 0:241, 2000.

[32] K. Chen and V. Rajlich. Ripples: Tool for change in legacy so[ware. In Proceedings
of the IEEE Internaࢡonal Conference on So[ware Maintenance (ICSM), ICSM ’01,
Washington, DC, USA, 2001. IEEE Computer Society.

Bibliography 215

[33] E.J. Chikofsky and J.H. Cross II. Reverse engineering and design recovery: A tax-
onomy. IEEE so[ware, 7(1):13–17, 1990.

[34] B. Cleary, C. Exton, J. Buckley, and M. English. An empirical analysis of infor-
maࢢon retrieval based concept locaࢢon techniques in so[ware comprehension.
Empirical So[ware Engineering, 14(1):93–130, 2009.

[35] A. Corazza, S. Di Marࢢno, and V. Maggio. Linsen: An efficient approach to split
idenࢢfiers and expand abbreviaࢢons. In 28th IEEE Internaࢡonal Conference on
So[ware Maintenance (ICSM), pages 233–242. IEEE, 2012.

[36] J. Corbet, G. Kroah-Hartman, and A. McPherson. Linux kernel development.
White Paper - The Linux Foundaࢢon, December 2010.

[37] T.A. Corbi. Program understanding: Challenge for the 1990s. IBM Systems Jour-
nal, 28(2):294–306, 1989.

[38] S.C. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman.
Indexing by latent semanࢢc analysis. Journal of the American Society for Infor-
maࢡon Science, 41(6):391–407, 1990.

[39] T.S. Dillon, E. Chang, and P. Wongthongtham. Ontology-based so[ware engi-
neering - so[ware engineering 2.0. In 19th Australian Conference on So[ware
Engineering (ASWEC), pages 13–23, March 2008.

[40] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol. Can be�er idenࢢfier split-
ngࢢ techniques help feature locaࢢon? In IEEE 19th Internaࢡonal Conference on
Program Comprehension (ICPC), pages 11–20. IEEE, 2011.

[41] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature locaࢢon in source
code: a taxonomy and survey. Journal of So[ware: Evoluࢡon and Process,
25(1):53–95, 2013.

[42] M. Dowson. The ariane 5 so[ware failure. SIGSOFT So[w. Eng. Notes, 22(2),
March 1997.

[43] A. Drozdek. Data Structures and algorithms in C++. Cengage Learning, 2012.

216 Bibliography

[44] S. Düwel. Enhancing system analysis by means of formal concept analysis. In Con-
ference on advanced informaࢡon systems engineering 6th doctoral consorࢡum,
1999.

[45] M. Eaddy, AV. Aho, G. Antoniol, and Y.-G. Guéhéneuc. Cerberus: Tracing re-
quirements to source code using informaࢢon retrieval, dynamic analysis, and
program analysis. In 16th IEEE Internaࢡonal Conference on Program Compre-
hension (ICPC), pages 53–62, June 2008.

[46] D. Edwards, S. Simmons, and N. Wilde. An approach to feature locaࢢon in dis-
tributed systems. Journal of Systems and So[ware, 79(1):57 – 68, 2006.

[47] A. Egyed, G. Binder, and P. Grunbacher. Strada: A tool for scenario-based feature-
to-code trace detecࢢon and analysis. In Companion to the Proceedings of the
29th Internaࢡonal Conference on So[ware Engineering, ICSE COMPANION ’07,
pages 41–42, Washington, DC, USA, 2007. IEEE Computer Society.

[48] T. Eisenbarth, R. Koschke, and D. Simon. Derivaࢢon of feature component maps
by means of concept analysis. In 5th European Conference on So[ware Mainte-
nance and Reengineering, pages 176–179, 2001.

[49] T. Eisenbarth, R. Koschke, and D. Simon. Feature-driven program understanding
using concept analysis of execuࢢon traces. In Program Comprehension, 2001.
IWPC 2001. Proceedings. 9th Internaࢡonal Workshop on, pages 300–309, 2001.

[50] A.D. Eisenberg and K. De Volder. Dynamic feature traces: finding features in un-
familiar code. In So[ware Maintenance, 2005. ICSM’05. Proceedings of the 21st
IEEE Internaࢡonal Conference on, pages 337–346, Sept 2005.

[51] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker. Mining source code to auto-
maࢢcally split idenࢢfiers for so[ware analysis. In Mining So[ware Repositories,
2009. MSR’09. 6th IEEE Internaࢡonal Working Conference on, pages 71–80. IEEE,
2009.

Bibliography 217

[52] H. Feild, D. Binkley, and D. Lawrie. An empirical comparison of techniques for
extracࢢng concept abbreviaࢢons from idenࢢfiers. In Proceedings of the Interna-
onalࢡ Conference on So[ware Engineering and Applicaࢡons, 2006.

[53] W. Ford, W. Topp, and W.H. Ford. Data Structureswith C++Using STL, 2/e. Pearson
Educaࢢon India, 2002.

[54] B. Ganter and R. Wille. Formal Concept Analysis: Mathemaࢡcal Foundaࢡons.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st ediࢢon, 1997.

[55] D. Gašević, N. Kaviani, and M. Milanović. Ontologies and so[ware engineering.
In Steffen Staab and Rudi Studer, editors, Handbook on Ontologies, Internaࢢonal
Handbooks on Informaࢢon Systems, pages 593–615. Springer Berlin Heidelberg,
2009.

[56] L. Guerrouj. Context-Aware Source Code Idenࢡfier Spliࢯng and Expansion for
So[ware Maintenance. PhD thesis, École Polytechnique de Montréal, 2013.

[57] L. Guerrouj, M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc. Tidier: an idenࢢ-
fier spliࢰng approach using speech recogniࢢon techniques. Journal of So[ware
Maintenance and Evoluࢡon: Research and Pracࢡce, 2011.

[58] L. Guerrouj, P. Galinier, Y. Gueheneuc, G. Antoniol, and M. Di Penta. Tris: A fast
and accurate idenࢢfiers spliࢰng and expansion algorithm. In Reverse Engineering
(WCRE), 2012 19th Working Conference on, pages 103–112. IEEE, 2012.

[59] M. A. K Halliday. Language as system and language as instance: The corpus as a
theoreࢢcal construct. 65:61–77, 1992.

[60] S. Harispe, S. Ranwez, S. Janaqi, and J Montmain. Semanࢢc measures for the
comparison of units of language, concepts or enࢢࢢes from text and knowledge
base analysis. CoRR, 2013.

[61] E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker. An empirical study
of idenࢢfier spliࢰng techniques. Empirical So[ware Engineering, 19:1–27, 2013.

218 Bibliography

[62] E. Hill, L. Pollock, and K. Vijay-Shanker. Automaࢢcally capturing source code con-
text of nl-queries for so[ware maintenance and reuse. In Proceedings of the
31st Internaࢡonal Conference on So[ware Engineering, ICSE ’09, pages 232–242,
Washington, DC, USA, 2009. IEEE Computer Society.

[63] I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to
OWL: the making of a Web Ontology Language. Web Semanࢡcs: Science, Services
and Agents on the World Wide Web, 1(1):7–26, 2003.

[64] S. Horwitz and T. Reps. The use of program dependence graphs in so[ware en-
gineering. In Proceedings of the 14th Internaࢡonal Conference on So[ware En-
gineering, ICSE ’92, pages 392–411, New York, NY, USA, 1992. ACM.

[65] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, January 1990.

[66] IANA. MIME Media Types. Web site: h�p://www.iana.org/assignments/media-
types/index.html (Last accessed: 02-09-2014), 2014.

[67] T. Janssen, R. Abreu, and A.J.C. van Gemund. Zoltar: A toolset for automaࢢc fault
localizaࢢon. In 2009 IEEE/ACM Internaࢡonal Conference on Automated So[ware
Engineering, pages 662–664. IEEE, 2009.

[68] D. Jin. Ontological Adapࢡve Integraࢡon of Reverse Engineering Tools. PhD thesis,
2004.

[69] T. Joachims. Text categorizaࢡon with support vector machines: Learning with
many relevant features. Springer, 1998.

[70] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Retschitzegger,
W. Schwinger, and M. Wimmer. Li[ing metamodels to ontologies: A step to the
semanࢢc integraࢢon of modeling languages. In Oscar Nierstrasz, Jon Whi�le,
David Harel, and Gianna Reggio, editors, Model Driven Engineering Languages
and Systems, volume 4199 of Lecture Notes in Computer Science, pages 528–542.
Springer Berlin Heidelberg, 2006.

Bibliography 219

[71] W. Keller. Mapping objects to tables. In Proceedings of the European Conference
on Pa�ern Languages of Programming and Compuࢡng, volume 19, 1997.

[72] G. Kennedy. Introducࢢon to corpus linguisࢢcs (studies in language and linguis-
.(csࢢ 1998.

[73] C. Kiefer, A. Bernstein, and J. Tappolet. Analyzing so[ware with iSPARQL. In
Proceedings of the Internaࢡonal Workshop on Semanࢡc Web Enabled So[ware
Engineering (SWESE), 2007.

[74] G. Klyne, J.J. Carroll, and B. McBride. Resource descripࢢon framework (rdf): Con-
cepts and abstract syntax. W3C recommendaࢡon, 10, 2004.

[75] H. Knublauch. Ontology-driven so[ware development in the context of the se-
manࢢc web: An example scenario with protege/owl. In 1st Internaࢡonal work-
shop on the model-driven semanࢡc web (MDSW2004). Monterey, California,
USA.[WWW document] h�p://www. knublauch. com/publicaࢢons/MDSW2004.
pdf, 2004.

[76] J. Lacasta, J. Nogueras-Iso, F.J. Lopez-Pellicer, P.R. Muro-Medrano, and F.J.
Zarazaga-Soria. ThManager: An open source tool for creaࢢng and visualizing
SKOS. Informaࢡon Technology and Libraries, 26(3):39–51, 2007.

[77] T.K. Landauer, P.W. Foltz, and D. Laham. An introducࢢon to latent semanࢢc anal-
ysis. Discourse processes, 25(2-3):259–284, 1998.

[78] C. La�ner and V. Adve. LLVM: a compilaࢢon framework for lifelong program
analysis transformaࢢon. In Internaࢡonal Symposium on Code Generaࢡon and
Opࢡmizaࢡon, pages 75–86, March 2004.

[79] D. Lawrie and D. Binkley. Expanding idenࢢfiers to normalize source code vocab-
ulary. In 27th IEEE Internaࢡonal Conference on So[ware Maintenance (ICSM),
pages 113–122. IEEE, 2011.

[80] D. Lawrie, D. Binkley, and C. Morrell. Normalizing source code vocabulary. In 17th
Working Conference on Reverse Engineering (WCRE), pages 3–12. IEEE, 2010.

220 Bibliography

[81] D. Lawrie, H. Feild, and D. Binkley. Syntacࢢc idenࢢfier conciseness and consis-
tency. In 6th IEEE Internaࢡonal Workshop on Source Code Analysis and Manipu-
laࢡon (SCAM), pages 139–148. IEEE, 2006.

[82] D. Lawrie, H. Feild, and D. Binkley. Extracࢢng meaning from abbreviated idenࢢ-
fiers. In 7th IEEE Internaࢡonal Working Conference on Source Code Analysis and
Manipulaࢡon (SCAM), pages 213–222. IEEE, 2007.

[83] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? a study of
idenࢢfiers. In 14th Internaࢡonal Conference on Program Comprehension (ICPC),
2006.

[84] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. Effecࢢve idenࢢfier names for
comprehension and memory. Innovaࢡons in Systems and So[ware Engineering,
3(4):303–318, 2007.

[85] S.W. Lee and R.A Gandhi. Ontology-based acࢢve requirements engineering
framework. In So[ware Engineering Conference, 2005. APSEC ’05. 12th Asia-
Pacific. IEEE, Dec 2005.

[86] M.M. Lehman and F.N. Parr. Program evoluࢢon and its impact on so[ware en-
gineering. In Proceedings of the 2nd Internaࢡonal Conference on So[ware Engi-
neering, ICSE ’76, pages 350–357, Los Alamitos, CA, USA, 1976. IEEE Computer
Society Press.

[87] C.E. Leiserson, R.L. Rivest, C. Stein, and T.H. Cormen. Introducࢡon to algorithms.
The MIT press, 2001.

[88] D.B. Lenat. CYC: a large-scale investment in knowledge infrastructure. Commu-
nicaࢡons of the ACM, 38(11):33–38, 1995.

[89] S. Letovsky. Cogniࢢve processes in program comprehension. Journal of Systems
and So[ware, 7(4):325 – 339, 1987.

[90] V. Levenshtein. Binary codes capable of correcࢢng deleࢢons, inserࢢons, and re-
versals. Soviet Physics Doklady, 10:707–710, 1966.

Bibliography 221

[91] D.C. Li�man, J. Pinto, S. Letovsky, and E. Soloway. Mental models and so[ware
maintenance. Journal of Systems and So[ware, 7(4):341 – 355, 1987.

[92] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature locaࢢon via informaࢢon
retrieval based filtering of a single scenario execuࢢon trace. In Proceedings of
the twenty-second IEEE/ACM internaࢡonal conference on Automated so[ware
engineering, pages 234–243. ACM, 2007.

[93] K. Lukoit, N. Wilde, S. Stowell, and T. Hennessey. Tracegraph: immediate visual
locaࢢon of so[ware features. In So[ware Maintenance, 2000. Proceedings. In-
ternaࢡonal Conference on, pages 33–39, 2000.

[94] N. Madani, L. Guerrouj, M. Di Penta, Y. Gueheneuc, and G. Antoniol. Recognizing
words from source code idenࢢfiers using speech recogniࢢon techniques. In So[-
ware Maintenance and Reengineering (CSMR), 2010 14th European Conference
on, pages 68–77. IEEE, 2010.

[95] J.I. Maleࢢc and A. Marcus. Using latent semanࢢc analysis to idenࢢfy similariࢢes
in source code to support program understanding. In Tools with Arࢡficial Intel-
ligence, 2000. ICTAI 2000. Proceedings. 12th IEEE Internaࢡonal Conference on,
pages 46–53, 2000.

[96] C.D. Manning, P. Raghavan, and H. Schütze. Introducࢡon to informaࢡon retrieval.
Cambridge University Press, 2008.

[97] F. Manola, E. Miller, et al. RDF Primer. W3C Recommendaࢡon, 10, 2004.

[98] A. Marcus and J.I. Maleࢢc. Recovering documentaࢢon-to-source-code traceabil-
ity links using latent semanࢢc indexing. In So[ware Engineering, 2003. Proceed-
ings. 25th Internaࢡonal Conference on, pages 125–135. IEEE, 2003.

[99] A. Marcus, A. Sergeyev, V. Rajlich, and J.I. Maleࢢc. An informaࢢon retrieval ap-
proach to concept locaࢢon in source code. In Reverse Engineering, 2004. Pro-
ceedings. 11th Working Conference on, pages 214–223. IEEE, 2004.

222 Bibliography

[100] J.H. Marࢢn and D. Jurafsky. Speech and Language Processing: An Introducࢡon
to Natural Language Processing, Computaࢡonal Linguisࢡcs, and Speech Recog-
niࢡon, 2nd Ediࢡon. Prenࢢce Hall, 2009.

[101] P. Marࢢns, N.R Carvalho, J.P. Fernandes, J.J. Almeida, and J. Saraiva. A framework
for modular and customizable so[ware analysis. In Computaࢡonal Science and
Its Applicaࢡons–ICCSA 2013, pages 443–458. Springer, 2013.

[102] J. McCarthy. Circumscripࢢon—a form of non-monotonic reasoning. Arࢡficial
intelligence, 13(1):27–39, 1980.

[103] D.L. McGuinness, F. van Harmelen, et al. OWL Web Ontology Language Overview.
W3C Recommendaࢡon, 10:2004–03, 2004.

[104] A. Miles, B. Ma�hews, D. Becke�, D. Brickley, M. Wilson, and N. Rogers. SKOS:
A language to describe simple knowledge structures for the web. In XTech 2005
Conference Proceedings, 2005.

[105] A. Miles, B. Ma�hews, M. Wilson, and D. Brickley. SKOS Core: Simple Knowl-
edge Organisaࢢon for the Web. In Proceedings of the Internaࢡonal Conference
on Dublin Core and Metadata Applicaࢡons, pages 12–15, 2005.

[106] G. Miller and C. Fellbaum. Wordnet: An electronic lexical database, 1998.

[107] G.A. Miller. The magical number seven, plus or minus two: some limits on our
capacity for processing informaࢢon. Psychological review, 63(2):81, 1956.

[108] G.A. Miller. WordNet: a lexical database for English. Communicaࢡons of the ACM,
38(11):39–41, 1995.

[109] B. Moࢢk, P. Patel-Schneider, and B Parsia. OWL 2 Web Ontology Language. 2009.

[110] G.C. Murphy, M. Kersten, M.P.. Robillard, and D. Čubranić. The emergent struc-
ture of development tasks. In AndrewP. Black, editor, ECOOP 2005 - Object-
Oriented Programming, volume 3586 of Lecture Notes in Computer Science,
pages 33–48. Springer Berlin Heidelberg, 2005.

Bibliography 223

[111] M.L. Nelson. A survey of reverse engineering and program comprehension. Arxiv
preprint cs/0503068, 2005.

[112] A. Olszak and B.N. Jørgensen. Featureous: A tool for feature-centric analysis of
java so[ware. In Program Comprehension (ICPC), 2010 IEEE 18th Internaࢡonal
Conference on, pages 44–45, June 2010.

[113] D.L. Parnas and M. Lawford. Inspecࢢon’s role in so[ware quality assurance. So[-
ware, IEEE, 20(4):16 – 20, 2003.

[114] T. J. Parr and R. W. Quong. Antlr: A predicated-ll(k) parser generator. So[ware:
Pracࢡce and Experience, 25(7):789–810, 1995.

[115] N. Pennington. Sࢢmulus structures and mental representaࢢons in expert com-
prehension of computer programs. Cogniࢡve psychology, 19(3):295–341, 1987.

[116] S. Pepper. The TAO of Topic Maps: Finding the Way in the Age of Infoglut. In
Proceedings of XML Europe 2000 Conférence, 2000.

[117] J. Pérez, M. Arenas, and C. Guࢢerrez. Semanࢢcs and complexity of sparql. In The
Semanࢡc Web-ISWC 2006, pages 30–43. Springer, 2006.

[118] M. Petrenko, V. Rajlich, and R. Vanciu. Parࢢal domain comprehension in so[ware
evoluࢢon and maintenance. In 16th IEEE Internaࢡonal Conference on Program
Comprehension (ICPC), pages 13–22, June 2008.

[119] D. Poshyvanyk, Y.-G. Gueheneuc, A Marcus, G. Antoniol, and V. Rajlich. Combin-
ing probabilisࢢc ranking and latent semanࢢc indexing for feature idenࢢficaࢢon.
In 14th IEEE Internaࢡonal Conference on Program Comprehension (ICPC), pages
137–148, 2006.

[120] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and V. Rajlich. Feature
locaࢢon using probabilisࢢc ranking of methods based on execuࢢon scenarios and
informaࢢon retrieval. IEEE Transacࢡons on So[ware Engineering, 33(6):420–432,
2007.

224 Bibliography

[121] D. Poshyvanyk and A. Marcus. Combining formal concept analysis with infor-
maࢢon retrieval for concept locaࢢon in source code. In 15th IEEE Internaࢡonal
Conference on Program Comprehension (ICPC), pages 37–48, June 2007.

[122] D. Poshyvanyk, M. Petrenko, A. Marcus, Xinrong X., and Dapeng L. Source code
exploraࢢon with google. In 22nd IEEE Internaࢡonal Conference on So[ware
Maintenance (ICSM), pages 334–338, Sept 2006.

[123] C. Po�s. So[ware-engineering research revisited. So[ware, IEEE, 10(5):19–28,
2002.

[124] E. Prud’Hommeaux, A. Seaborne, et al. Sparql query language for rdf. W3C rec-
ommendaࢡon, 15, 2008.

[125] V. Rajlich and N. Wilde. The role of concepts in program comprehension. In
Program Comprehension, 2002. Proceedings. 10th Internaࢡonal Workshop on,
pages 271–278. IEEE, 2002.

[126] D. Raࢢu. Reverse engineering domain models from source code. In Internaࢡonal
Workshop on Reverse Engineering Models from So[ware Arࢡfacts (REM’09),
pages 13–16, 2009.

[127] M. Revelle, B. Dit, and D. Poshyvanyk. Using data fusion and web mining to sup-
port feature locaࢢon in so[ware. In IEEE 18th Internaࢡonal Conference on Pro-
gram Comprehension (ICPC), pages 14–23. IEEE, 2010.

[128] M.P. Robillard. Topology analysis of so[ware dependencies. ACM Trans. So[w.
Eng. Methodol., 17(4):18:1–18:36, August 2008.

[129] M.P. Robillard and G.C. Murphy. Concern graphs: Finding and describing con-
cerns using structural program dependencies. In Proceedings of the 24th Interna-
onalࢡ Conference on So[ware Engineering, ICSE ’02, pages 406–416, New York,
NY, USA, 2002. ACM.

[130] M.P. Robillard and G.C. Murphy. Automaࢢcally inferring concern code from pro-
gram invesࢢgaࢢon acࢢviࢢes. InAutomated So[ware Engineering, 2003. Proceed-
ings. 18th IEEE Internaࢡonal Conference on, pages 225–234, Oct 2003.

Bibliography 225

[131] M.P. Robillard and G.C. Murphy. Feat: A tool for locaࢢng, describing, and analyz-
ing concerns in source code. In Proceedings of the 25th Internaࢡonal Conference
on So[ware Engineering, ICSE ’03, pages 822–823, Washington, DC, USA, 2003.
IEEE Computer Society.

[132] M.P. Robillard and G.C. Murphy. Represenࢢng concerns in source code. ACM
Trans. So[w. Eng. Methodol., 16(1), February 2007.

[133] S. Rogerson. The chinook helicopter disaster. IMIS Journal, 12(2), 2002.

[134] S. Rugaber. Program comprehension for reverse engineering. In AAAI Workshop
on AI and Automated Program Understanding, San Jose, California, pages 106–
110, 1992.

[135] S. Rugaber. The use of domain knowledge in program understanding. Annals of
So[ware Engineering, 9(1-2):143–192, 2000.

[136] S. Rugaber and K. Sࢢrewalt. Model-driven reverse engineering. So[ware, IEEE,
21(4):45–53, July 2004.

[137] H. Safyallah and K. Sarࢢpi. Dynamic analysis of so[ware systems using execuࢢon
pa�ern mining. In 14th IEEE Internaࢡonal Conference on Program Comprehen-
sion (ICPC), pages 84–88, 2006.

[138] A. Santos, J.J. Almeida, and N.R. Carvalho. Structural alignment of plain text
books. In Nicole�a Calzolari et al., editors, Proceedings of the Eight Internaࢡonal
Conference on Language Resources and Evaluaࢡon (LREC’12), Istanbul, Turkey,
may 2012. European Language Resources Associaࢢon (ELRA).

[139] Z.M. Saul, V. Filkov, P. Devanbu, and C. Bird. Recommending random walks. In
Proceedings of the the 6th Joint Meeࢡng of the European So[ware Engineering
Conference and the ACM SIGSOFT Symposium on The Foundaࢡons of So[ware
Engineering, ESEC-FSE ’07, pages 15–24, New York, NY, USA, 2007. ACM.

[140] I. Serra and R. Girardi. A process for extracࢢng non-taxonomic relaࢢonships of
ontologies from text. Intelligent Informaࢡon Management, 3:119, 2011.

226 Bibliography

[141] T.M. Sha[and I. Vessey. The relevance of applicaࢢon domain knowledge: Char-
acterizing the computer program comprehension process. J. Manage. Inf. Syst.,
15(1):51–78, June 1998.

[142] D. Shepherd, Z.P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker. Using natural lan-
guage program analysis to find and understand acࢢon-oriented concerns. In Int.
Conf. on Aspect-oriented So[ware Development, 2007.

[143] D. Shepherd, L. Pollock, and K. Vijay-Shanker. Towards supporࢢng on-demand
virtual remodularizaࢢon using program graphs. In Proceedings of the 5th Inter-
naࢡonal Conference on Aspect-oriented So[ware Development, AOSD ’06, pages
3–14, New York, NY, USA, 2006. ACM.

[144] Ben Shneiderman. So[ware psychology: Human factors in computer and infor-
maࢡon systems. Winthrop Publishers, 1980.

[145] Ben Shneiderman and Richard Mayer. Syntacࢢc/semanࢢc interacࢢons in pro-
grammer behavior: A model and experimental results. Internaࢡonal Journal of
Computer & Informaࢡon Sciences, 8(3):219–238, 1979.

[146] A. Simões. Parallel corpora word alignment and applicaࢢons. Master’s thesis,
Escola de Engenharia - Universidade do Minho, 2004.

[147] A. Simões. Extracção de Recursos de Tradução com base em Dicionários Proba-
bilísࢡcos de Tradução. PhD thesis, Escola de Engenharia, Universidade do Minho,
Braga, 2008.

[148] A. Simões and J.J. Almeida. Library::* — a toolkit for digital libraries. In ElPub
2002 - Technology Interacࢡons, 2002.

[149] A. Simões, J.J. Almeida, and N.R. Carvalho. Defining a probabilisࢢc translaࢢon
dicࢢonaries algebra. In Luís Correia, Luís Paulo Reis, José Cascalho, Luís Gomes,
Hélia Guerra, and Pedro Cardoso, editors, XVI Portuguese Conference on Arࢡficial
Inteligence - EPIA, pages 444–455, Angra do Heroismo, Azores, September 2013.

[150] A. Simões, N.R. Carvalho, and J.J. Almeida. Generaࢢng flex lexical analyzers
for perl parse::yapp. In Alberto Simões, Ricardo Queirós, and Daniela da Cruz,

Bibliography 227

editors, SLATE’12 — Symposium on Languages, Applicaࢡons and Technologies,
volume 21, pages 239–253. OASIC – Open Access Series in Informaࢢcs, Schloss
Dagstuhl – Leibniz-Zentrum für Informaࢢk, Dagstuhl Publishing, Germany, June
2012.

[151] Gregor Snelࢢng. Concept laࢰces in so[ware analysis. In B. Ganter, G. Stumme,
and R. Wille, editors, Formal Concept Analysis, volume 3626 of Lecture Notes in
Computer Science, pages 272–287. Springer Berlin Heidelberg, 2005.

[152] Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge.
So[ware Engineering, IEEE Transacࢡons on, pages 595–609, 1984.

[153] M.-A.D Storey, F.D Fracchia, and H.A Müller. Cogniࢢve design elements to sup-
port the construcࢢon of a mental model during so[ware exploraࢢon. Journal of
Systems and So[ware, 44(3):171–185, 1999.

[154] A. Sureka. Source code idenࢢfier spliࢰng using yahoo image and web search
engine. In Proceedings of the First Internaࢡonal Workshop on So[ware Mining,
pages 1–8. ACM, 2012.

[155] T. Tilley, R. Cole, P. Becker, and P. Eklund. A survey of formal concept analysis sup-
port for so[ware engineering acࢢviࢢes. In B. Ganter, G. Stumme, and R. Wille,
editors, Formal Concept Analysis, volume 3626 of Lecture Notes in Computer Sci-
ence, pages 250–271. Springer Berlin Heidelberg, 2005.

[156] M. Trifu. Using dataflow informaࢢon for concern idenࢢficaࢢon in object-oriented
so[ware systems. In Proceedings of European Conference on So[ware Mainte-
nance and Reengineering (CSMR’08), pages 193–202. IEEE, 2008.

[157] B. Vatant. Ontology-driven topic maps. In XML Europe, pages 03–03, 2004.

[158] Anneliese Von Mayrhauser and A Marie Vans. Program comprehension during
so[ware maintenance and evoluࢢon. Computer, 28(8):44–55, 1995.

[159] N. Walkinshaw, M. Roper, and M. Wood. Feature locaࢢon and extracࢢon using
landmarks and barriers. In So[ware Maintenance, 2007. ICSM 2007. IEEE Inter-
naࢡonal Conference on, pages 54–63, Oct 2007.

228 Bibliography

[160] F.W. Warr and M.P. Robillard. Suade: Topology-based searches for so[ware in-
vesࢢgaࢢon. In Proceedings of the 29th Internaࢡonal Conference on So[ware En-
gineering, ICSE ’07, pages 780–783, Washington, DC, USA, 2007. IEEE Computer
Society.

[161] N. Wilde, J.A. Gomez, T. Gust, and D. Strasburg. Locaࢢng user funcࢢonality in
old code. In So[ware Maintenance, 1992. Proceerdings., Conference on, pages
200–205, Nov 1992.

[162] N. Wilde and M.C. Scully. So[ware reconnaissance: Mapping program features
to code. Journal of So[ware Maintenance: Research and Pracࢡce, 7(1):49–62,
1995.

[163] René Wi�e, Yonggang Zhang, and Jürgen Rilling. Empowering so[ware main-
tainers with semanࢢc web technologies. In Enrico Franconi, Michael Kifer, and
Wolfgang May, editors, The Semanࢡc Web: Research and Applicaࢡons, volume
4519 of Lecture Notes in Computer Science, pages 37–52. Springer Berlin Heidel-
berg, 2007.

[164] W.E. Wong, S.S. Gokhale, J.R. Horgan, and K.S. Trivedi. Locaࢢng program features
using execuࢢon slices. In Proceedings of the IEEE Symposium on Applicaࢡon-
Specific Systems and So[ware Engineering and Technology, pages 194–203,
1999.

[165] M. Würsch, G. Ghezzi, G. Reif, and H.C. Gall. Supporࢢng developers with natural
language queries. In Proceedings of the 32NdACM/IEEE Internaࢡonal Conference
on So[ware Engineering - Volume 1, ICSE ’10, pages 165–174, New York, NY, USA,
2010. ACM.

[166] Suresh Yadla, Jane Huffman Hayes, and Alex Dekhtyar. Tracing requirements to
defect reports: an applicaࢢon of informaࢢon retrieval techniques. Innovaࢡons
in Systems and So[ware Engineering, 1(2):116–124, 2005.

[167] A.Y. Yao. Cvssearch: Searching through source code using cvs comments. In Pro-
ceedings of the IEEE Internaࢡonal Conference on So[ware Maintenance (ICSM),
ICSM ’01, Washington, DC, USA, 2001. IEEE Computer Society.

Bibliography 229

[168] S. Yong-feng and Z. Yan-ping. Comparison of text categorizaࢢon algorithms.
Wuhan university Journal of natural sciences, 9(5):798–804, 2004.

[169] M.V. Zelkowitz and D.R. Wallace. Experimental models for validaࢢng technology.
Computer, 31(5):23–31, 2002.

[170] M. Zhivich and R.K. Cunningham. The real cost of so[ware errors. IEEE Security
and Privacy Magazine, 2009.

	Página 1
	Página 2
	Página 3
	Página 4
	NunoCarvalhoPhD.pdf
	Acronyms
	I Introduction
	Introduction
	The Problem
	Motivations
	Main Contributions
	Document Outline

	II Background And State-of-the-Art
	Program Comprehension
	Mental Models and the Cognitive Process
	Bottom-Up Theories
	Top-Down Theories
	Other Approaches

	Concept and Feature Location
	Formal Concept Analysis
	Static Analysis
	Dynamic Analysis
	Textual Approaches
	Combined Techniques
	Other Approaches
	Tools

	Program Identifiers Normalization
	Current Approaches

	Knowledge Domains
	The Problem Domain
	The Program Domain

	Ontologies
	Introduction and Definition
	Representation and Formats
	Tools and Libraries
	Ontologies and Software Engineering

	Information Retrieval
	Precision and Recall
	LSI
	tf-idf

	Natural Language Processing
	Parsing
	Lemmatization
	Part-of-Speech Tagging
	Parallel Corpora
	Probabilistic Translation Dictionaries
	Semantic Relatedness
	Tools and Frameworks
	NLP and Software Engineering

	III Ontology-based Concept Location
	Domain Knowledge Representation
	The Program Domain
	Classes and Instances
	Data and Object Proprieties

	The Problem Domain
	Query Domains
	Conclave OTK – The Ontology Toolkit
	Formal Definitions
	Operations and Information Handling

	The Concept Mapper
	The Query Language
	The locate Function
	The map Function
	The Scoring Function
	kPSS Based Scoring Function
	Probabilistic Synonyms Sets

	Conclave Concept Mapper

	The Conclave Environment
	From Code to Resources: Clang Conclave
	From Identifiers to Sets of Full Terms: Lingua IdSplitter
	The Splitting Approach
	Documentation Corpus
	Custom Corpus-based Dictionary
	Other Dictionaries

	From Software File Tree to Ontologies: DMOSS Toolkit
	First Pass: Gathering Information
	Second Pass: Reducing Results
	Building Reports
	Toolkit Plugins
	Traits Versus Plugins

	Generalizing the Creation and Population of Ontologies: Conclave Utils
	Initializing Ontologies
	Populating Ontologies

	The Conclave Environment
	Conclave Tour

	Experimental Validation
	kPSS Experimental Validation
	Results and Discussion

	LIdS Experimental Validation
	Creating the Oracles
	Accuracy
	Precision and Recall
	Results Discussion
	Threats to Validity

	LIdS Experimental Comparison
	First Experiment
	Second Experiment
	Threats to Validity

	Concept Mapper Locate Experimental Validation
	Threats to Validity

	Mappings Experimental Validation
	Results Discussion
	Threats to Validity

	The Development Point of View

	IV Conclusion
	Final Remarks
	Future Work

	Appendices
	Introduction to the Haskell Notation
	Introduction to Template Toolkit
	Introduction to SPARQL and OTK Queries
	Program Ontology Template
	Survey Pages

