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Abstract—One key issue to design parallel applications that
scale on multicore systems is how to overcome the memory
bottleneck. This paper presents a study of the impact of data
structure layouts in locality of memory references, providing
insights on strategies to ameliorate the memory bottleneck.
The paper compares the performance of Java and C++ STL
collections and presents the impact of locality of reference
optimisations in a molecular dynamics simulation case study.
The case study shows that the selected data structure layout has
impact on single core performance, becoming a critical factor
in the application scalability on multicore systems. Moreover,
data collections provided in the Java language compromise
performance due to pointer chasing and lack of spatial locality
of memory references.

Keywords-locality; collections; multicore; Java;

I. INTRODUCTION

The gap between CPU frequency and memory has in-
creased over the last decades. Introducing multiple levels
of memory hierarchy ameliorates the impact of this gap on
performance. However, memory hierarchy is only effective
if programs provide locality of reference in data access.
Memory bottleneck is one main obstacle to performance
scalability in many-core platforms since several cores share
the available memory bandwidth. On the other hand, it is
expected that the available bandwidth to access local caches
will scale proportionally to the number of cores. Current
platforms provide a fixed amount of L1 and L2 cache
per core, independently from the total number of cores.
Furthermore, there is a current trend to include a L3 cache
shared among all cores, whose size and bandwidth scales
proportionally to the number of cores.

Parallel programs should exhibit temporal and/or spatial
locality of reference in data access in order to scale on many-
core platforms. Data intensive applications are characterised
by performing few operations per data item. Exploiting
locally when these applications fall in the class of the so-
called regular applications (e.g., matrix operations) is well
known and usually resorts to partitioning data into blocks
that can fit in cache [1]. Data intensive irregular applications
that rely on pointer based data structures, such as graphs, are
harder to optimise due to their intrinsic usage of pointers
to access data and to their less-predictable pattern of data
access.

II. DATA STRUCTURE LAYOUT

An appropriate data structure layout can optimise the
performance of a collection by improving locality of ref-
erence, for instance, by using knowledge about the access
pattern made by an application. The Array of Pointers (AoP)
layout (Figure 1a) is a popular layout due to its support
for abstract data types. Memory references (or pointers
to memory addresses) serve the purpose of being able to
abstract the concrete type of the object pointed to. This
kind of layout is usually adopted by systems with automatic
memory management systems like garbage collectors in
virtual machines (e.g., Java).

The AoS layout (Figure 1b) improves spatial locality
by storing data fields continuously in memory, as in SoA,
which stores fields into separate arrays. Choosing the best
alternative between AoS and SoA depends on how the
algorithm accesses the data. The SoA provides better locality
if the algorithm does not require all fields of the original
structure in the same time-frame. The AoS is the alternative
used for problems that require all fields of the structure at
once. The AoS layout is difficult to implement in Java since
it is not possible to use explicit pointers to data. It is also
more difficult to usse if the data fields are not of the same
type. The AoP layout requires additional space to hold the
array of pointers, when compared to AoS/SoA layouts, but
provides more flexibility to manage the storage of data.

Several authors explored techniques to automatically im-
prove locality in Java applications by relying solely on
changes to the Java Virtual Machine (JVM). Hirzel et. al.
[2] evaluate several improvements to data layouts in order
to transparently improve spatial locality. The technique is
based on sorting objects during garbage copying, which
places objects in consecutive memory addresses. However,
this technique still maintains the AoP layout and thus cannot
avoid the overhead of pointer indirection.

Spatial locality in object collections can be improved by
transforming an AoP implementation into an AoS or a SoA.
In the latter case, the fields of the objects are converted into
arrays, which normally involves removing the encapsulation
of data. This provides better performance, but it might
enforce significant restructuring of the code.



(a) Array of Pointers (AoP) (b) Array of Structures
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Figure 1. AoP, AoS and SoA views of attributes of structures in a collection

Wimmer et. al. [3] propose an improvement to the JVM
to automatically inline object fields by placing the parent
and children objects in consecutive memory places and
by replacing memory accesses by address arithmetic. The
authors point out that using arrays as inlining parents is
complex because the Java byte-codes for accessing array
elements have no static type information. They claim that
an automatic AoP to AoS transformation at JVM level
is impossible without a global data flow analysis. Thus,
automatically transforming AoP to SoA layouts seems not
feasible at JVM level.

Automatically improving data layouts in languages with
explicit pointers (e.g., C++) is not feasible due to the
possibility of pointer arithmetic.

Temporal locality can be improved in all the presented
layouts by tiling accesses to the object collection, dividing
data objects into blocks (e.g., by performing a domain
decomposition). If each block fits in cache and it is accessed
multiple times, data will remain in cache and will be reused
many times, decreasing the number of cache misses. In the
case of AoP layout both the pointer array and data to must
fit in the cache in order to exploit temporal locality.

III. JAVA GENERICS AND BOXING PROBLEMS

Java collections implementations add an implicit pointer-
resolving layer to collections since they rely on AoP layouts.
For instance, in array-based collections (e.g., ArrayList)
elements are accessed via a memory reference and may
not have the actual object elements in contiguous memory
addresses. Moreover, primitive data types are boxed and
accessed as an object.

The root of the problem is the Java designer’s option to
use a single collection implementation for all data types,
enforcing the use of pointers to encapsulate the concrete
type of the contained data. Thus, Java built-in collections
use the AoP layout by default. The C++ Standard Template
Library (STL) follows a different approach, since it relies on
C++ template instantiation mechanism to generate a concrete
implementation for each template instance (i.e., data type).
Thus, the common case in STL is the use of AoS layouts.
The drawback is the generation of bigger code since a

different implementation is required for each data type. Note
that STL collections also enforce considerable application
restructuring to use a SoA layout.

IV. BENCHMARK METHODOLOGY

Hardware performance counters available in modern pro-
cessors provide valuable performance data for software
optimisation. This paper assess the performance of data
layouts using hardware performance counters gathered with
the PAPI 4.2.1 library [4]. The ultimate metric is the number
of clock cycles (#CC, measured with the PAPI TOT CYC
event), since it is directly proportional to the execution time.
The number of completed instructions (#I, gathered with
PAPI TOT INS) is an estimation of the implementation
complexity, whereas the number of references to the L1
data cache (L1.REFS, PAPI L1 DCA) and L1 misses (
L1.MISS, PAPI L1 DCM) reflect the memory behaviour.
Performance data was gathered on a machine with dual
X5650 processor (i7, 6-core architecture, 2.66 GHz with 12
MB of shared L3 cache per processor), running CentOS
6.2. Results in Java where collected with the OpenJDK
1.6.0 22, in 64-Bit Server mode (it provides better results
than the recent Oracle JRE 1.7.0 5). C++ results where
collected with Intel compiler icpc 12.1. Presented results are
the median of five executions, collected after an additional
execution for warm-up (this is essential in Java due to the
JIT approach). In general only misses in L1 data cache
are presented since the second level and third level show
similar trend-line. Most results are gathered in Java and
C++. In this study it was surprising to discover that in
most benchmarks the obtained metrics for #CC and L1.MISS
are pretty close in Java and C++, even in the presence of
huge differences in #I and L1.REFS (generally higher in
Java). This is due to the memory-bound nature of our case
studies, with instruction execution rates largely bellow the
peek performance. Thus, inefficient code with more #I and
L1.REFS are easily accommodated by the unused execution
units. #CC and L1.MISS on these case studies are much
more dependent on the effectiveness of the machine memory
hierarchy subsystem, which is the same for C++ and Java.



(a) LLoP (b) LLoS (c) ALoP (d) ALoS

Figure 2. Array-List and Linked-List representations considered

V. IMPACT OF COLLECTIONS DATA LAYOUT

Java and C++ STL collections can be classified into four
broad classes of data layouts: Vectors, Lists, Trees and Maps.
This study focus on Lists and Vectors, by testing standard
Linked-Lists (LL) and Array-Lists (AL) collections against
optimised data structures (Figure 2). In Java, LinkedList
and ArrayList collections enforce the storage of pointers
to objects (e.g., LLoP and ALoP layouts). An optimised
Linked-List (LLoS) which is similar to a list container in
C++ STL was developed for this study. In C++ the LLoP and
ALoP layouts are simulated by using collections of pointers
(e.g., list and vector of pointers to data structures). In C++,
a vector uses the ALoS layout, whereas in Java this layout is
simulated by using arrays of primitive types. Note that Java
native collections do not support the LLoS layout and the
ALoS layout is only possible when using arrays of primitive
data types.

Figure 2a (LLoP) shows why Java collections introduce
“unnecessary” pointer-resolving operations: one pointer to
the object and another pointer to the next element in the
collection. In the optimised Linked-List implementation
(Figure 2b, LLoS) the object in the collection contains the
pointer to the next element in the list; this optimisation
eliminates the redundant pointer between the list element
and the data object. As for Array-Lists, in Figure 2c (ALoP),
although there is contiguity in the memory addresses of the
pointers to the objects, since it is an indexable structure,
there is pointer-resolving operation in order to get the object
data. The methodology applied in the last figure (ALoS) is
the same as previously showed: elimination of the pointer-
resolving operations to objects.

To asses the performance characteristics of those col-
lections this study performed a benchmark that sums all
elements in the collection. The main goal of the test is
to verify the overhead of indirection levels in collections
and to compare the performance of Java and C++ in data
intensive applications. This benchmark is a data intensive
test case since each element in the collection is accessed
only once. On the other hand, the test case is amenable for
the exploitation of spatial locality, since data elements in the
collection are accessed by their logical order.
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Figure 4. Sum bechmark weak scalability

Figure 3 shows benchmark results for the sum of 107

elements (integers):

• The optimised linked-list (LLoS) provides better perfor-
mance (i.e., less clock cycles) when compared against
Java’s native linked-list (LLoP). This is due mainly to
better spatial locality (lesser L1 data cache misses),
resulting from a more effective usage of cache lines,
since both the data and pointer to next datum can fit
into the same cache line.

• LLoS and ALoP show similar memory behaviour in
terms of cache misses since both involve a single
pointer indirection, in LLoS to access the next element
and in ALoP to access to the element pointed to.
However, ALoP performs better in terms of clock
cycles (almost half execution time) since there is no
dependence among loop iterations as in any Linked
List. This allows the processor to dynamically unroll
the loop, partially hiding the latency of cache misses.

• The array version (ALoS) has lowest cache references
as well as misses, indicating that one of the major
overheads in previous implementations is due to pointer
resolving operations - here the number of cache refer-
ences approximates the number of elements in the list to
be processed (107 elements) and the number of misses
approximates the number of cache lines that must be
fetched from lower memory levels (1/16 of memory
references), meaning that there is little overhead in this
representation.
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Figure 3. Performance of Array-List and Linked-List representations in the sum benchmark.
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Figure 6. MD scalability.

• When comparing C++ and Java implementations we
see that the actual performance is similar in terms of
clock cycles and L1 misses despite the fact the the Java
version has much higher number of instructions and L1
references. This is due to the data intensive nature of
this case study as explained before.

One important question is how these layouts impact
application scalability. Figure 4 shows the performance on
12 cores (maximum available on the test machine). The
results present the performance by running the test case
with a 12-fold increase in the data set (usually called weak
scalability). The figure present results for summing 106 and
107 elements per core. The former data size is smaller than
the L3 cache size. From these results it can be observed
that the performance drop off is proportional to number of
misses in L1 data cache. Thus, the alternatives consuming
more cache/memory bandwidth also present the worst weak
scalability (note that figures presents the speed-ups, which
are less than 1). Actually only the ALoS layout scales
reasonably well and only for the data set that fits in the L3
cache. Thus, in addition to presenting the lowest sequential
execution time the ALoS is also the version which scales
better due to better locality of memory references.

VI. MOLECULAR DYNAMICS SIMULATIONS

Molecular dynamics (MD) is a technique of computer
simulation where a set of particles (atoms) interact during
a certain period of time. For each pair of particles there is
an interaction (force). Initially, positions and velocities are
assigned to the particles in the domain. Then, the forces
acting on each particle are computed and the resulting
particle acceleration. The new position for each particle is
then computed based on the particle velocity and on the time
step. The process is repeated for a given number simulation
steps. The most time consuming part of the simulation
process is the force computation [5] which involves a nested
loop across all pairs of particles.

Figure 5 show a performance comparison of three dif-
ferent basic MD simulation versions using different data
layouts. The first version is the one provided in the Java
Grande Forum (JGF) MD benchmark [6] which implements
the collection of particles with an array of pointers to
objects (Particles in this case). The AoS version results
from the adapation of the JGF MD benchmark to store
particle information in a single array, where the information
of the particle i is stored in the 9 ’ i position of the array
(each particle has nine fields: position in x, y and z axis,
velocity/force in x, y and z directions). The SoA version
stores each particle field in a different array.

The SoA version provides the shortest runtime. The
improvement results from better locality of references (less
L1 cache misses). The AoP version provides the fewer
number of instructions since it avoids data copies required
in other versions. Despite this, it performs worse than the
SoA version, due to less locality of data accesses. The
AoS version is not attractive, since particle fields are not
used all at once in this case study. The graph also shows
results by improving temporal locality using a traditional
tilling approach (versions tagged with a M). It can be seen
that only the AoP and AoS performance benefits from this
improvement (clock cycles results), since SoA already has
good locality (note that this performance is explained by
better usage of L2 and L3 levels of cache).



instructions

0e+00

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

A
o
P

A
o
P
−
M

A
o
S

A
o
S
−
M

S
o
A

S
o
A
−
M

clock cycles

0e+00

1e+09

2e+09

3e+09

A
o
P

A
o
P
−
M

A
o
S

A
o
S
−
M

S
o
A

S
o
A
−
M

L1 refs

0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

2.5e+09

A
o
P

A
o
P
−
M

A
o
S

A
o
S
−
M

S
o
A

S
o
A
−
M

L1 misses

0.0e+00

2.0e+06

4.0e+06

6.0e+06

8.0e+06

1.0e+07

1.2e+07

1.4e+07

A
o
P

A
o
P
−
M

A
o
S

A
o
S
−
M

S
o
A

S
o
A
−
M

Figure 5. Performance of MD implementations.

Figure 6 compares the scalability of the SoA version
against the base JGF AoP implementation and a version
exploring temporal locality (Tiling). The better locality of
the SoA version provides better scalability, but the AoP
with Tiling also performs well. Note that this machine is a
dual processor, each one with 6-cores and hyper-threading.
This explains why the performance improvements in SoA
do not increase linearly when using the second processor
(i.e., move from 6 to 12 cores) and the lower improvement
when using 24 cores (hyper threading provides 24 virtual
cores mapped into 12 physical ones). Interestingly, the base
JGF MD (AoP) benefits from using the second processor,
since each processor provides a memory bank (i.e., NUMA
configuration) and since this version lacks of locality it
can slightly benefit from the additional memory bandwidth
provided by the second processor. It is worth to note that the
lack of scalability of the base JGF (AoP) implementation is
only observed on modern multicore machines.

VII. CONCLUSION

This paper identified the systematic use of AoP layout
as one main source of overhead in Java collections. This
overhead is mainly due to pointer indirection and to the lack
of spatial locality in data access. This overhead can be the
main limitation to scalability on multicore systems, for both
Java and C++ STL collections.

This paper showed that SoA and AoS data layouts are
effective strategies to improve spatial locality, which pro-
vides better application scalability on multicore systems.
AoS/SoA layouts may enforce an increase on the number
of instructions and more lines of code (around 15% in our
case studies).

The presented study focused mainly read-only data struc-
tures, but the proposed techniques can also be applied to
mutable data structures by using hybrid layouts.
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