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Abstract

The build-up of biofilms on metals surfaces may lead to severe corrosion, especially in the presence of sulphate-reducing bacteria (SRB). To
prevent the deterioration of material caused by biofilms it is necessary to understand the processes governing biofilm development including
mechanisms of cell adhesion. Additionally, corrosion of metallic surfaces due to bacteria may lead to the dissolution of metallic elements that may
further affect adhesion and biofilm development. A study was carried out to evaluate how the presence of nickel in the substrata affects the adhesion
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ability of Desulfovibrio desulfuricans. The substrata tested were stainless steel 304 (SS), metallic nickel (Ni) and polymethylmetacrylate (
a non-metallic material used as control. The influence of nickel on SRB growth and its relation to adhesion was also checked. A s
significant difference in the number of adhered cells to the materials tested was detected, with higher bacterial number on nickel, follo
and finally by PMMA. The higher number of SRB adhered to steel compared with PMMA may be explained by differences in hydropho
roughness and in the electron-acceptor character of the substrata. Additionally, bacterial growth was found to be positively affected by tce
of nickel as revealed by a significant increase in the specific growth rate of SRB in the presence of increased nickel concentrations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The presence of micro-organisms on metal surfaces and their
ability to carry out specific biochemical reactions can alter the
physical/chemical conditions at the metal surface and lead to
microbiologically influenced corrosion (MIC). Microbes in a
biofilm may provoke or accelerate corrosion in several ways,
e.g., by creating concentration and differential aeration cells,
directly oxidising/reducing metallic atoms/ions and producing
corrosive metabolic by-products that destroy the passivating
films [1].

An important type of micro-organisms associated with cor-
rosion failures of engineering structures made of cast iron, mild
steel and stainless steel, aluminium, copper and their alloys in
both aquatic and terrestrial environments, under anoxic and oxy-
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Atomique, CEA/Saclay, b̂atiment 458, 91191 Gif-sur-Yvette Cedex, France.
Tel.: +33169081620; fax: +33169081586.

E-mail addresses: fil.lopes@free.fr, falopes@deb.uminho.pt (F.A. Lopes).

genated conditions, are the sulphate-reducing bacteria (
[2–5]. SRB belong to a group of morphologically and nu
tionally diverse anaerobic bacteria, which utilise sulphate
other oxidized sulphur compounds) as an electron-accept
the dissimilation of organic compounds and produce sulp
[6]. The activities of SRB in natural and man-made syst
are of great concern to many different industrial operation
particular, nuclear power plants, service water systems, oi
and shipping industries are seriously affected by these ba
[2,7].

Bacterial adhesion is considered the first stage in the fo
tion of a biofilm. Substratum hydrophobicity has been con
ered one of the most important physico–chemical param
involved in bacterial adhesion. An increase in hydrophobici
frequently associated to an increase in the number of ad
cells to a substratum[8]. However, some studies reported
decrease in bacterial adhesion to metallic surfaces with
increase of hydrophobicity[9].

Also it appears that the ions released from the steel su
have a direct effect on the microbial growth and metabo
that influence bacteria–metal interaction and bacterial adhe
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For instance, sensitised stainless steel 304 surfaces presented a
higher number of adhered cells compared to solution-annealed
or oxidized surfaces. This was attributed to the increased release
of iron from those surfaces that are susceptible to intergranular
corrosion and to the fundamental role of this metal in microbial
growth and metabolism[10].

Additionally, as emphasized by Feron[11], the alloying ele-
ments (chromium, nickel, molybdenum, vanadium, etc.) added
to steels in order to improve their corrosion resistance might
markedly affect bacterial growth, the attachment of bacterial
cells to steel surfaces and the biofilm development.

The present work was undertaken to investigate the influ-
ence of nickel as part of the substratum composition on the
adhesion ability ofDesulfovibrio desulfuricans by studying the
attachment of the bacteria to stainless steel 304 (SS), metal-
lic nickel (Ni) and polymethylmetacrylate (PMMA), which is a
non-metallic material and was used as control. Briefly, stainless
steel is essentially a low carbon steel, containing chromium at
12% or more by weight. The corrosion resistance of stainless
steel is due to the formation of a thin passive film[12]. This
passive film is an amorphous structure of chemisorbed oxygen
bonding to the surface with an electrostatic bonding between
oxygen anions and metal cations[13]. This passive layer pro-
vides corrosion resistance in a wide variety of environments
although it can break down under a number of environments
including the presence of chloride, some organic acids and
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15 min with high-purity nitrogen and then autoclaved at 120◦C
for 20 min.

2.2. Materials

The substrata used in the adhesion experiments were small
squared surfaces (1 cm× 1 cm× 0.2 cm thickness) of stainless
steel 304 (UNS S 30400), nickel and polymethylmetacrylate.

The stainless steel (cold-rolled surface with a pickling fin-
ish) used had the following composition: C, 0.05%; Cr, 17%;
Ni, 8.1%; Mn, 1.34%; Si, 0.36%; Cu, 0.19%; Mo, 0.18%; Co,
0.13%; V, 0.09%, the remaining mass consisting of Fe. The
coupons of nickel (rolled-surface) presented a high purity (more
than 99% Ni). Surface roughness was measured using a Surftest
SV-502. All the specimens were analysed randomly three times
for several parameters such as the mean surface roughness (Ra),
the more universally recognised parameter of roughness, which
is the arithmetic mean of the absolute departures of the rough-
ness profile from the mean line,RZ is the height of 10 irregular
peaks in the profile,Rq is the average value of the square rate
of the peak height andRmax corresponds to the maximum peak
detected on the profile.

The coupons were cleaned with a commercial detergent,
rinsed in tap water, rinsed in ethanol 96% and finally rinsed
with filtered-sterilised distilled water. Following this procedure,
they were stored in a dessiccator until use for the contact angle
m
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alides[13]. Nickel is an element included in many alloys, s
s stainless steel, to increase their corrosion resistance. Ni
lso the base metal in a group of highly specialised alloys

n high temperature waters, such as in nuclear power rea
he resistance to corrosion in different environments is clo
elated to its passive behaviour. The chemical compositio
he passive film is still under debate; this layer consists eith
xide or of hydroxide[14,15].

. Materials and methods

.1. Bacterial strain and growth conditions

The sulphate-reducing bacterium used in this study wa
trainD. desulfuricans DSM 642. The strain was stored at 4◦C
n the culture medium and transferred monthly to maintain
ility. This kind of bacteria has been frequently reported t

nvolved in microbiologically influenced corrosion[2,3].
Pure cultures ofD. desulfuricans were grown in 50 mL cul

ure medium in 100 mL serum-bottles, with continuous sha
t 26◦C. The culture growth medium used was a modified P
ate medium C with the following composition (g L−1): NH4Cl,
.1; CaCl2·2H2O, 0.008; MgSO4·7H2O, 0.06; FeSO4·7H20,
.007; yeast extract, 0.25; trace elements (B, Co, Cu,
n), 0.05 mg L−1 (each); Na2EDTA·2H2O, 0.02; KH2PO4,
.1; Na2HPO4·12H2O, 0.22. Sodium lactate (50%) was u
s organic substrate with a concentration of approxim
3 g L−1 and K2SO4 7.8 g L−1 as sulphate source. As a medi
eductant, 430 mg L−1 of Na2S·9H2O was used and 1 mL L−1

f 1 g L−1 of resazurin was added as a redox indicator. A
djusting the pH at 7, the medium was purged approxim
is
d
s.

f
f

e

,

easurements and adhesion assays.

.3. Adhesion assays

After approximately 40–46 h, corresponding to the ex
ential growth phase, the bacterial cells were harve
y centrifugation (10 min, 5000 rpm), washed with the

ure medium without lactate or yeast extract (ionic stre
f the medium = 0.164 mol L−1) and resuspended in th
olution to a concentration of approximately 4.3× 107 ±
.3× 106 cells mL−1 (assay 1) and 7.0× 106 ± 5.5× 105

ells mL−1 (assay 2). These bacterial concentrations were d
ined by 4,6 diamidino-2-phenylindole (DAPI, Sigma–Aldri

taining using conventional epifluorescence microscopy.
To maintain the anoxic conditions, the autoclaved centri

ubes were previously purged with nitrogen and the was
rocedure of the cells was performed under nitrogen atmosp

Three coupons of each of the materials tested (SS, N
MMA) were used in the adhesion assays. The coupons

nserted into a 24 well plate and 1.5 mL of the cellular s
ension was added to each well. In order to avoid oxy
iffusion into the suspension, a paraffin layer was laid over
ell. The plate was then kept in an orbital shaker at 26◦C and
00 rpm for 1 h. The incubation time was optimised to allo
aximum of initially adhered cells per unit of coupon surf

data not shown). After incubation, coupons were gently ri
ith filtered-sterilised distilled water in order to remove poo
dhered bacteria. Each coupon was then immersed in form
yde 37% for at least 5 min to fix the cells, rinsed with filter
terilised water, stained with a 0.1 mg L−1 DAPI solution for
min and finally rinsed with filtered-sterilised water bef



F.A. Lopes et al. / Colloids and Surfaces B: Biointerfaces 46 (2005) 127–133 129

microscopic observation. Attached cells were enumerated by
epifluorescence microscopy (Axioskop Zeiss, Germany) under
oil immersion. Cells were enumerated at 1000× magnification
and 20–30 different fields were randomly selected and counted
for each surface. The adhesion assays were repeated twice.

2.4. Contact angles

The contact angles were measured automatically with the
aid of an image analysis system (Kruss-GmbH, Hamburg, Ger-
many). The images were recorded by a video camera connected
to a PC, with an automatic measuring system (G2/G40). The
contact angles were determined according to the sessile drop
technique. The measurements were carried out at room temper-
ature using high-purity water, diiodomethane and formamide as
reference liquids. The data of surface tension components of
the test liquids are given inTable 1. For each type of material,
three replicates of at least 20 contact angle measurements were
performed.

In order to obtain bacterial lawns for contact angle measure-
ments, bacteria were grown as previously described and washed
with a phosphate buffer (NaCl, 8.5 g L−1; KH2PO4, 0.27 g L−1;
Na2HPO4, 1.42 g L−1). A 5.1× 108 cells mL−1 suspension was
then collected on 0.45�m pore diameter filters. Filters were
maintained for 30 min in Petri dishes containing 1% (w/v) agar
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tension, respectively. The subscript (s) denotes the solid surface
(material or cells) and (l) refers to the liquid used in each mea-
surement.

2.6. Hydrophobicity

The degree of hydrophobicity of each material including bac-
terial cells was calculated according to the approach of Van Oss
et al.[17].

�GTot
SWS = �GLW

SWS+ �GAB
SWS (2)

�GLW
SWS = −2

(√
γLW

s −
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γLW
w

)2

(3)

�GAB
SWS = 4
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γ+

s γ−
w +

√
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s γ−
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w γ−
w

)
(4)

where�GTot
SWS is the total surface free energy of interaction

between two surfaces of a solid material (s) immersed in water
(w),�GAB

SWSand�GLW
SWSare the corresponding polar and apolar

components, respectively.
According to the definition of hydrophobicity proposed by

Van Oss and Giese[18], a surface is considered hydropho-
bic when the free surface energy of interaction between its
molecules in the presence of water (�GSWS) is negative. Other-
wise it is considered hydrophilic.
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ith 10% (v/v) glycerol to establish constant moisture con
16], The filters were then fixed onto microscope glass slid

.5. Surface tension

The surface tensions of each material and bacterial cells
alculated according to the approach of Van Oss et al.[17], using
he values of the contact angles formed by water, formamid
iiodomethane on each material surface and on the bac

awns.
The surface tension and its related parameters were esti

y applying the following equation:

1 + cosθ)γl = 2

[√
γLW

s γLW
l +

√
γ+

s γ−
l +

√
γ−

s γ+
l

]
(1)

hereθ is the contact angle,γ l the total surface tension,γLW, γ+

ndγ− are the van der Waals, electron-acceptor and elec
onor parameters of the polar component (γAB) of the surface

able 1
urface tension components of water, diiodomethane et formamide (va
J m−2 at 20◦C)

urface tension (mJ m−2)

iquid γTot γLW γ+ γ−

ater 72.80 21.80 25.50 25.
ormamide 58.00 39.00 2.28 39.
iiodomethane 50.80 50.80 0.0 0.

LW, apolar component of surface tension;γAB, polar component of surfac
ension;γ+, electron-acceptor parameter of the polar component of surfac
ion;γ−, electron-donor parameter of the polar component of surface te
Tot, total surface tension.
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.7. Effect of nickel on bacterial growth

In order to evaluate the influence of nickel onD. desulfuri-
ans growth, nickel was added to the standard culture mediu
iCl2·6H2O. Nickel (Ni2+) was tested at the following conce

rations: 0.10; 0.85; 8.52 and 85.2�M. The control containe
o nickel. All tested concentrations were assayed at lea

riplicate.
The culture medium was prepared as described above.

o four days old cultures were used as sources of bac
nocula. After inoculation, the cultures were incubated with c
inuous stirring (150 rpm) at 26◦C and growth was followed b
ptical density at 620 nm. Average specific growth rates

hen determined for bacterial suspensions developed wit
ifferent nickel concentrations.

.8. Statistical analysis

Adhesion experiments were performed in duplicate, eac
sing three coupons of stainless steel, nickel and polyme
etacrylate. The results were expressed as mean± standard
eviation (S.D.). To evaluate differences between means

confidence level of 95%, one-way analysis of varia
ANOVA) and a non-parametric Kruskall–Wallis tests were
ied out using the SPSS software (version 11). It shoul
ointed out that the ANOVA test only allows knowing if t
ompared groups differ, but it does not specify where the
ificant difference is located. In order to find out which gro
ere significantly different to one another, post-hoc compa

Bonferroni test) was applied.
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3. Results

3.1. Adhesion assays

Fig. 1 presents the results of the adhesion assays, showing
that the three materials exhibited different susceptibilities to bac-
terial colonization. A statistically significant difference across
the colonization of the three substrates was detected (Kruskall–
Wallis test first and second adhesion assays,p = 0.0 < 0.05).
A maximum of adhered cells was observed on nickel, fol-
lowed by stainless steel 304 and polymethylmetacrylate. The
same pattern was found independently of the initial bacterial
concentration.

3.2. Surface roughness

Table 2presents the surface roughness parameters determined
for PMMA, SS and Ni substrata.

The results suggest that stainless steel was the rougher sur-
face. However, the roughness parameters determined for stain-
less steel and nickel surfaces were similar.

3.3. Contact angles and surface tension

After determining the contact angle of water, formamide and
d thyl-
m s
w
T sub-
s –van
d lar
i
a

Table 3
Surface tension and surface tension components of the substrata and bacterial
cells (values in mJ m−2 at 20◦C) and contact angles (values in◦) of stainless
steel (SS), polymethylmetacrylate (PMMA), nickel (Ni) and the bacterial lawn
with water (θW), diiodomethane (θD) and formamide (θF)

PMMA SS Ni D. desulfuricans

θW 70.18± 3.13 74.93± 5.01 59.10± 2.38 43.07± 2.05
θF 47.94± 3.39 42.73± 2.85 58.87± 3.91 59.75± 4.48
θD 44.40± 2.24 45.58± 2.50 30.14± 1.04 68.66± 3.80
γLW 37.33 36.70 44.16 23.62
γ+ 0.78 2.28 0.0 0.06
γ− 9.74 3.89 33.06 59.75
γAB 5.51 5.95 0.0 3.90
γTot 42.84 42.65 44.16 27.52

Contact angle results are indicated as average value± standard deviation.θW,
water contact angle;θF, formamide contact angle;θD, diiodomethane contact
angle;γLW, apolar component of surface tension;γAB, polar component of sur-
face tension;γ+, electron-acceptor parameter of the polar component of surface
tension;γ−, electron-donor parameter of the polar component of surface tension;
γTot, total surface tension.

According to the results presented inTable 3, all tested
materials had similar total surface tension values and were
predominantly electron donors (γ− � γ+) with a very small
electron-acceptor parameter (γ+), especially PMMA and bac-
terial cells. Therefore, theγAB (γAB = 2[γ+γ−]1/2) parameter
presented very low values for these two surfaces. While nickel
presented no electron-acceptor ability at all, stainless steel was
characterised by the highest value ofγ+.

In all cases, the apolar component (γLW) had a much greater
contribution for the overall value of surface tension than the
polar component (γAB). Results also showed that nickel is char-
acterised by the highest value ofγ− (electron-donor parameter
of the polar component of the surface tension).

F (a) F y,
7

T
R el 304

M

P 0.12
S 1.98
N 1.15

R hnes f
t

iiodomethane on stainless steel 304, nickel and polyme
etacrylate and on the bacterial lawns (Table 3), surface tension
ere calculated following the Van Oss approach[17] (Table 3).
his approach considers that the surface tension of a given
tance comprises two components, one related to Lifshitz
er Waals interactions (γLW) and another associated to po

nteractions (γAB) of electron-acceptor electron-donor type,γ+

ndγ−, respectively[19].

ig. 1. Adhesion ofDesulfovibrio desulfuricans to PMMA, SS and Ni.
.03× 106 ± 5.48× 105 suspended cells mL−1.

able 2
oughness parameters of polymethylmetacrylate (PMMA), stainless ste

aterial Ra (�m) Rz (�m)

MMA 0.047± 0.008 0.553±
S 1.177± 0.081 11.257±
i 1.000± 0.214 8.687±
esults are indicated as average value± standard deviation.Ra, average roug

he square rate of the heights,Rmax, maximum peak detected on the profile.
irst assay, 4.32× 107 ± 2.34× 106 suspended cells mL−1; (b) second assa

(SS) and nickel (Ni) surfaces

Rq (�m) Rmax (�m)

8 0.068± 0.013 0.967± 0.305
4 1.580± 0.173 14.053± 3.130
7 1.345± 0.280 10.963± 1.282

s;RZ, height of 10 irregular peaks in the roughness profile;Rq, average value o
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Table 4
Surface free energy of interaction between two surfaces of material (s) immersed
in water (�GSWS) and its apolar and polar components for the different materials
and for the bacterial cells (values in mJ m−2 at 20◦C)

Material/cells �GLW
SWS �GAB

SWS �GTot
SWS

PMMA −4.15 −32.14 −36.29
SS −3.86 −43.58 −47.45
Ni −7.81 14.14 6.33
D. desulfuricans −0.07 51.42 51.35

�GLW
SWS, apolar component of the surface free energy of interaction between

two surfaces of material (s) immersed in water;�GAB
SWS, polar component of the

surface free energy of interaction between two surfaces of material (s) immersed
in water;�GTot

SWS, total surface free energy of interaction between two surfaces
of material (s) immersed in water.

3.4. Hydrophobicity

By calculating the surface tension of each material and of the
cells, it was possible to determine the corresponding degrees of
hydrophobicity (Table 4).

Unlike Ni, PMMA and SS are hydrophobic surfaces (neg-
ative values of�GSWS). The bacterial cells have a significant
hydrophilic character.

3.5. Effect of nickel on D. desulfuricans growth

Fig. 2 presents the results of a representative assay where
suspended SRB were cultivated with different nickel concentra-
tions. It appears that nickel had a positive impact on bacterial
growth when compared to the control, especially for nickel con-
centrations up to 8.52�M.

Table 5presents the values of the specific growth rates of
SRB with different nickel concentrations. The values of the
specific growth rates ofD. desulfuricans suspensions were sig-
nificantly higher compared to the control when nickel was added
to the culture medium in the following concentrations 0.85,

F th for
a cellu
c tratio
a

Table 5
Specific growth rates ofD. desulfuricans with different concentrations of nickel

Ni2+ (�M) µ (h−1)

Control 0.023± 0.004
0.10 0.034± 0.005
0.85 0.048± 0.010
8.52 0.039± 0.003
85.2 0.045± 0.002

Values are reported as average± standard deviation.

8.52 and 85.20�M (Anova test,p = 0 < 0.05 and Bonferroni test,
p<0.05).

4. Discussion

The results of the adhesion assays (Fig. 1) show the highest
bacterial density in the case of nickel followed by stainless steel
and polymethylmethacrylate.

Since nickel presented the lowest hydrophobicity (Table 4)
but a surface tension and roughness similar to stainless steel
(Tables 2 and 3), it can be concluded that in the present case these
properties are not able to differentiate the adhesion mechanism
of D. desulfuricans to the two metallic materials. Furthermore,
although Ni showed the highest electron-donor ability (γ−) of
the three materials (Table 3), which could in theory positively
affect the bacterial interaction by establishing acid–base Lewis
interactions with the microbial cell,D. desulfuricans presented
no electron-acceptor ability (γ+) (Table 3), so no acid–base
Lewis interactions could be expected to be established. This
suggests that this kind of interaction might not have a particular
influence on the bacterial adhesion to this surface.

Stainless steel 304 was characterised by a higher rough-
ness than PMMA. This might also explain the higher number
of adhered cells on the metallic substratum[20,21] although
some other studies demonstrated no correlation between stain-
l r
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ig. 2. Influence of nickel (Ni) concentration on suspended culture grow
representative assay. (The absorbance values were transformed into

oncentration using calibration curves determined for each nickel concen
nd for the control medium.)
lar
n

ess steel roughness and bacterial adhesion[22]. On the othe
and, its higher degree of hydrophobicity compared with
lastic material might also influence the bacterial adhesio

he metallic substratum[8]. Additionally, the surface tensio
alues of substrata (Table 3) suggest that the adhesion ofD.
esulfuricans, characterised by a high electron-donor ab
γ−), may be favored to the stainless steel surface that pres
higher electron-acceptor character (γ+) than PMMA.
Our results show that factors other than physical pro

ies, such as roughness, surface tension and hydrophobici
learly influencing bacterial adhesion to nickel surface.

Another hypothesis to explain our results is the effec
he surface chemical composition on bacterial adhesion.
revious study, Feron[11] showed that the attachment ofDesul-

ovibrio vulgaris to alloyed steels was mainly related to
teel composition and to the toxic effect of the alloying
ents. George et al.[10] demonstrated that the released of i

rom sensitised stainless surface may favour the attachm
seudomonas species to this surface. Sreekumari et al.[23] also
roved that high nitrogen steels is a preferred substratum
ared to stainless 304 L for nitrifying bacteria adhesion.
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The data obtained in the present work (Fig. 2 andTable 5)
revealed that nickel positively affected the growth rate ofD.
desulfuricans. In fact, concentrations of nickel between 0.85
and 85.20�M markedly increased the specific growth rate of
D. desulfuricans (Table 5). Furthermore, bacteria growing in
Ni implemented media were consuming substrates (lactate and
sulphate) and producing acetate significantly faster than in the
control medium, which is in good agreement with the data of
the specific growth rates. It should be pointed out that there
are contrasting reports on the effects of metal ions on sulphate-
reducing bacteria[11,24,25]but unfortunately direct compari-
son between studies is not possible due to the use of different
growth media and experimental conditions that may change
metal’s bioavailability: pH, presence or absence of reducing
agents, metal chelators, presence of phosphate and carbonate
buffers, organic ligands in the growth medium[26,27].

Under the conditions of this experiment (SRB were devel-
oped in a modified Postgate C medium containing no nickel),
nickel seemed to be limiting for the growth ofD. desulfuricans.
Nickel ion has been shown to be an essential micronutrient for
many micro-organisms[28,29]. Moreover, it has been recog-
nised that it is incorporated into at least four microbial enzymes
[30], such as the hydrogenase of sulphate-reducing bacteria.
While nickel seemed to be a growth-rate limiting factor, lac-
tate is considered a stoichiometric limiting nutrient, being the
first nutrient to become exhausted during theD. desulfuricans
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should therefore be greater at the nickel surface compared to
the stainless steel substratum. The availability of nickel ions at
the surface may be an important factor influencing the initial
attachment of SRB cells[34].

Although no proven explanation for the mechanism of adhe-
sion ofD. desulfuricans to nickel substratum can be given at the
moment, it may be speculated that cellular structures on SRB
surface or chemotaxis towards a nickel releasing surface may
play a role in the observed phenomena. In fact, bacterial chemo-
taxis towards metallic surfaces was previously demonstrated
[35]. Furthermore, the adhesion of the sulphate-reducer to nickel
may be associated to cellular structures, such as adhesins, that
establish specific interactions with nickel, as it has been recog-
nised for the interaction LPS/Fe[36]. It could be speculated that
this specific structure of bacterial surface, besides mediating the
microbial adhesion to the metallic substratum, may also be part
of a metal-uptake system. Several studies previously emphasized
the relevance of highly specific interactions between metallic
substrata and structures of the outermost surface of sulphate-
reducing bacteria. Ĺopez-Jiḿenez et al.[37] demonstrated that
SRB strains isolated from a biofouling gas pipeline were able to
produce adhesion proteins (adhesins) when put in contact with
carbon steel. Beech and Gaylard[38] have shown that a spe-
cific surface macromolecule, a lipopolysaccharide (LPS), was
involved in the adhesion ofD. desulfuricans to mild steel sur-
faces. It was also suggested that extracellular sulphur-containing
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rowth. It should be emphasized that kinetic limiting factor l
ts the growth rate but not necessarily the extent of the rea
31]. In fact, SRB started to grow with the same lactate
entration and reached the same residual concentration o
rganic compound at the stationary phase of growth, lea

o a similar cellular concentration, except for the highest te
ickel concentration (85.20�M), suggesting that this concent

ion is slightly inhibitory for the stoichiometry of the microb
eactions (data not shown).

According to our results on the effect of nickel on SRB gro
nd the referred literature, the possible release of small am
f nickel from the metallic surface[14,32] could explain the
igher number of adhered cells to this surface.

The absence of nickel and a lower roughness could ex
he lower attachment to PMMA as compared to the two me
aterials, but do not explain the differences observed bet

he two metals (SS and Ni) because both contain nickel, alth
ith different mass percentages, and display similar rough
n the other hand, the values of hydrophobicity and the elec
cceptor parameter of the surface tension (γ+) can be used t
ompare the behaviour of SS and PMMA, but do not justify
xtent of adhesion to nickel.

The difference of SRB adhesion on stainless steel and n
urfaces may be explained by the following: stainless stee
ivity in an aqueous environment is due to an intact and tena
hromium oxide layer. In the present conditions, this film
ides a protective coating over the surface, that prevent
issolution of metal species and, therefore, reduced nicke
entration is expected at the solid/liquid interface. In the ca
ickel, there is a film of hydroxide with a not negligible so
ility in the present conditions[33]. The concentration of nick
is
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h
.
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roteins and amino functional groups may contribute to
ttachment of micro-organisms to metal substrata[39].

The authors suggest that these mechanisms should be
ned in detail in the follow up of the present work.

. Conclusion

Adhesion ofD. desulfuricans was shown to be more sign
cant on Ni surfaces than on SS or PMMA surfaces. De
ts high hydrophobicity, PMMA supported less bacteria as c
ared to the metallic surfaces due to a smaller value of roug
nd to the absence of nickel. Concerning the metallic surf
ifferences in hydrophobicity and in surface tension (γ+) did not

ustify the higher adhesion to nickel as compared to stai
teel. A difference in nickel availability at the metallic surfa
ay be an important factor influencing the initial attachm
f SRB cells to SS and nickel. It could be that the adhe
f D. desulfuricans to these surfaces is not mediated by u
hysico–chemical interactions but rather by specific interac

nvolving cellular structures on the SRB surface or by a che
axis mechanism towards a nickel releasing surface.

A future step will be to check the existence of a struc
f SRB surface engaged in adhesion and its specific intera
ith nickel or the chemotaxis phenomena in order to a b
nderstanding of the mechanism of adhesion ofD. desulfuricans

o nickel substratum.
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