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Abstract. Shortcut fusion is a well-known optimization technique for
functional programs. Its aim is to transform multi-pass algorithms into
single pass ones, achieving deforestation of the intermediate structures
that multi-pass algorithms need to construct. Shortcut fusion has already
been extended in several ways. It can be applied to monadic programs,
maintaining the global effects, and also to obtain circular and higher-
order programs. The techniques proposed so far, however, only consider
programs defined as the composition of a single producer with a single
consumer. In this paper, we analyse shortcut fusion laws to deal with
programs consisting of an arbitrary number of function compositions.

1 Introduction

Shortcut fusion [1] is an important optimization technique for functional pro-
grams. It was proposed as a technique for the elimination of intermediate data
structures generated in function compositions fc o fp, where a producer fp ::a — t
builds a data structure ¢, which is then traversed by a consumer fc::t — b to
produce a result. When some conditions are satisfied, we may transform these
programs into equivalent ones that do not construct the intermediate structure ¢.

Extended forms of shortcut fusion have also been proposed to eliminate in-
termediate structures in function compositions in which the producer and the
consumer share some additional context information. These extensions transform
compositions feco fp, where fp:: a — (t,z) and fe:: (¢,2) — b, into circular [2,
3] and higher-order [3,4] equivalent programs, and have increased the applica-
bility of shortcut fusion. Nevertheless, they consider programs consisting of the
composition between two functions only. As a consequence, it is not possible
to (straightforwardly) apply such techniques to programs that rely on multiple
traversal strategies, like compilers and advanced pretty-printing algorithms [5].
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The main contribution of this paper is to present generalized forms of shortcut
fusion which apply to an arbitrary number of function compositions of the form
fno---of1, for n > 2. We establish sufficient conditions on each f; that guarantee
that consecutive fusion steps are applicable when following both a left-to-right
and a right-to-left strategy. By means of what we call chain laws, we show how
to obtain the intermediate fused definitions in such a way that further fusion
steps apply. The formulation of the chain laws is the result of combining two
fusion approaches: that of shortcut fusion and the one used in the formulation of
fusion laws known as acid rain [6]. Our fusion method, characterised by requiring
certain conditions on the functions involved in the compositions, differs from that
employed by warm fusion [7].

We analyse two cases of multi-traversal programs: a) the standard case where
only a data structure is passed between producer and consumer, and b) programs
where in each composition, besides a data structure, some additional information
is passed. Case b) is particularly interesting because it is the case where circular
and higher-order programs are derived by applying fusion. The type of circular
programs we derive are the natural representation of Attribute Grammars (AG)
in a lazy setting [8,9]. In the AG community, however, a multi-pass program is
usually derived from an AG (i.e., from a circular program) [10, 11]. In this paper
we study and prove correctness of the opposite transformation, that is, we study
how a circular program (i.e., an AG) is derived from a multi-pass one.

Throughout the paper we will use Haskell notation, assuming a cpo semantics
in terms of pointed cpos, but without the presence of the seq function [12]. For
the sake of presentation, we will focus on definitions, laws, and examples over
the list datatype only. A generic formulation of all concepts and laws developed
in the paper, as well as their proofs, valid for a wide range of datatypes, is
presented in an extended version of the paper.

The paper is organized as follows. In Section 2 we review shortcut fusion
while in Section 3 we do so with the laws that serve for the derivation of circular
and higher-order programs. In Section 4 we analyse the problem of fusing multi-
traversal programs and present laws that give conditions for the derivation of
circular and higher-order programs in those cases. Section 5 concludes the paper.

2 Shortcut fusion

Shortcut fusion [1] is a program transformation technique for the elimination of
intermediate data structures generated in function compositions. This technique
is a consequence of parametricity properties, known as “free theorems” [13], as-
sociated with polymorphic functions. For its application, shortcut fusion requires
the consumer to process all the elements of the intermediate data structure in
a uniform way. This condition is established by requiring that the consumer is
expressible as a fold [14], a program scheme that captures function definitions
by structural recursion. For example, for lists, fold is defined as:

fold 2(bya—b—0b)—[a]l—b

fold (nil, cons) [] = nil



fold (nil, cons) (a: as) = cons a (fold (nil, cons) as)

This function is equivalent to the well-known foldr function [14]. It traverses
the list and replaces [] by the constant nil and the occurrences of (:) by function
cons. The pair (nil, cons) is called an algebra. We denote by iny = ([], (:)) the
algebra composed by the list constructors. For example, the function that selects
the elements of a list that satisfy a given predicate:

filter 2 (a — Bool) — [a] — [a]
fiter pr(] =]
filter pr (a: as) = if pr a then a: filter pr as else filter pr as
can be written in terms of fold as follows:
filter pr = fold (fnil, fcons) where fnil =]
feons a r = if pr a then a: r else r

On the other hand, the producer must be a function such that the computation
that builds the output data structure consists of the repeated application of the
data type constructors. To meet this condition the producer is required to be
expressible in terms of a function, called build [1], which carries a “template” (a
polymorphic function) that abstracts the occurrences of the constructors of the
intermediate data type. In the case of lists:

build == (Vb.(b,a —>b—b)—c—b)—c— [a]
build g = g ing,

The polymorphic type of g ensures that it can only construct its result of type
b by using the operations of its argument algebra of type (b,a — b — b).
As a result, build returns a list that is uniformly constructed by the repeated
application of the list constructors [] and (:). For example, the function that
constructs the list of numbers between n and 1:

down :: Int — [Int]
down 0 =[]
down n = n: down (n — 1)
can be written in terms of build as follows:
down = build gd where gd (nil, cons) 0 = nil
gd (nil, cons) n = cons n (gd (nil, cons) (n — 1))

The essential idea behind shortcut fusion is then to replace, in the producer,
the occurrences of the intermediate datatype’s constructors (abstracted in the
“template” of the build) by appropriate values/functions specified within the
consumer (the algebra carried by the fold). As a result, one obtains a definition
that computes the same as the original composition but without building the

intermediate data structure. This transformation is usually referred to as the
fold/build law.

Law 1 (FOLD/BUILD FOR LISTS) fold (nil, cons) o build g = g (nil, cons)

To see an example of application of this law, let us consider the function that
computes the factors of a number:

factors = Int — [Int]



factors n = filter (‘isFactorOf‘ n) (down (n ‘div‘ 2))
where z ‘“isFactorOf‘ n = n ‘mod‘ z == 0

Since filter is a fold and down a build, we can apply the law to eliminate
the intermediate list. If we define fd pr = filter pr o down, then factors n =
fd (“isFactorOf‘ n) (n ‘div* 2) and by Law 1 we obtain fd pr = gd (fnil, fcons).
Inlining we get the following recursive definition for fd pr:

fdpro=1]

fd pr n=1if pr n then n: fd pr (n — 1) else fd pr (n — 1)

It is possible to formulate an extended form of shortcut fusion which captures
the case when the intermediate data structure is generated as part of another
structure. This extension has been fundamental for the formulation of shortcut
fusion laws for monadic programs [15,16], and for the derivation of (monadic)
circular and higher-order programs [3]. It is based on an extended form of build:

buildy : (Vb . (bya—b—0b)—c— Nb)—c— N [a]

buildy g = g ing,
where N represents a data structure in which the produced list is contained.
Technically, N is a functor, i.e. a type constructor N of kind * — x equipped
with a function mapy :: (a — b) — (N a — N b), which preserves identities and
compositions: mapy id = id and mapy (f o g) = mapy f o mapy g.

The above is a natural extension of the standard build function. In fact, build
can be obtained from buildy by considering the identity functor corresponding
to the identity type constructor: type N a = a and mapy f = f.

Based on this extended form of build an extended shortcut fusion law can be
formulated (see [15] for a proof):

Law 2 (EXTENDED FOLD/BUILD) For strictness-preserving * N,
mapy (fold (nil, cons)) o buildy g = g (nil, cons)

To see an example consider the following composition, where filterLen is the
function that, given a list of numbers, returns a pair formed by a list containing
the positive numbers together with the length of the output list.

sumFilLen = (sum X id) o filterLen

sum i Numa=[a] —a

sum [] =0

sum (a:as) = a+ sum as

filterLen it Num a = [a] — ([a], Int)
filterLen [] =([],0)

filterLen (z : zs) = if £ > 0 then (z : ys,1+ 1) else (ys, ()
where (ys, ) = filterLen zs
where (f x g) is defined as (f x g) (z,y) = (f z, g y); id is the identity function.
To simplify the expression of sumFilLen we first observe that filterLen can be
written as a build y with functor N a = (a, Int) and mapy f = f x id.

4 By strictness-preserving we mean that mapy preserves strict functions, i.e. if f is
strict, then so is mapn f.



filterLen = build n gfL
where
gfL (nil, cons) [] = (nil,0)
gfL (nil, cons) (x : xs) = if x > 0 then (cons = ys, 1+ 1) else (ys, )
where (ys, ) = gfL (nil, cons) s
It is easy to see that sum is a fold: sum = fold (0, (+)). Then, by applying Law 2
we can deduce: sumFilLen = (fold (0, (+)) x id) o buildn gfL = gfL (0, (+))),
which corresponds to the following recursive definition:
sumFilLen [] = (0,0)
sumFilLen (z : xs) = if > 0 then (z + 5,1+ 1) else (s,1)
where (s,0) = sumFilLen zs

3 Circular and higher-order programs

In this section we review the laws that make it possible to derive circular as well
as higher-order programs from function compositions that communicate through
an intermediate pair (¢, z), where ¢ is a data structure and z some additional
information. The derivation can be done both for pure and monadic programs
(see [3]), and like for shortcut fusion, it requires both consumer and producer to
be expressible in terms of certain program schemes. The consumer is required
to be a structural recursive definition that can be written as a pfold, a program
scheme which is similar to fold but that additionally takes a constant parameter
for its computation. For lists, it corresponds to the following definition:

pfold :: (z > bya —b—z—b) — ([a],z) = b

pfold (hnil, hcons) ([], z) = hnil z

pfold (hnil, heons) (a : as, z) = hcons a (pfold (hnil, hcons) (as, z)) z
The producer is required to be expressible in terms of a kind of build function,
called buildp, that returns a pair formed by a data structure and a value instead
of simply a data structure. For lists:

buildp = Vb.(b,a—b—b) —c— (bz2) = c—([a],2)

buildp g = g ing,
Note that buildp corresponds to buildy with functor N a = (a, z) for some z.

3.1 Derivation of circular programs

The derivation of purely functional circular programs is stated by the following
law (see [3] for further details and a proof). To improve the understanding of
circular definitions we frame their circular arguments.

Law 3 (PFOLD/BUILDP)
pfold (hnil, hcons) (buildp g ¢) = v
where (v,[z]) = g (knil, kcons) c

knil = hnil
kecons © r = hcons x r



To see an example, let us consider addLen = addL o filterLen where:
addL ([],1) =]
addL (z :xzs,1) = (z + 1) : addL (zs,1)
First, we express addL and filterLen in terms of pfold and buildp, respectively:
addL = pfold (hnil, hcons) where hnil | = []
heconszrl=(xz+1):r
filterLen = buildp gfL
where gfL is the same function presented in Section 2. Then, by applying Law 3
we derive the following circular definition:
addLen xs = ys

where (ys,) = gk zs
gk [] = ([1,0)
gk (z:zs) = if > 0 then ((z +) :ys, 1+ n) else (ys, n)
where (ys, n) = gk zs

Law 3 can be generalized similarly to extended shortcut fusion. The general-
ization works on an extended form of buildp and represents the case where the
intermediate pair is produced within another structure given by a functor N.

buildpy == (Vb.(bya—b—b)—c— N (bz))— c— N ([a],2)

buildp 5y g = g ing,
Observe that buildp 5 = buildps for M a = N (a, 2).

For the formulation of the new law it is necessary to assume that functor N
possesses an associated polymorphic function ey :: N a — a that projects a value
of type a from a structure of type N a. A free theorem [13] associated with the
type of ey states that f oex = ey omapy f, for every f.

The desired generalization of Law 3 is as follows. Let f $z = f z.

Law 4 (prOLD/BUILDPN) Let (N,en) be a strictness-preserving.

pfold (hnil, hcons) o ey o buildpy g$ ¢ = v
where (v,[z]) = en (g (knil, kcons) c)

knil = hnil
kcons © v = hcons x r

3.2 Derivation of higher-order programs

Starting from the same kind of compositions used to derive circular programs it
is possible to derive, by alternative laws, higher-order programs [3]. Higher-order
programs are sometimes preferred over circular ones as they are not restricted
to a lazy evaluation setting and their running performance is often better than
that of their circular equivalents.

The transformation into higher-order programs is based on the fact that
every pfold can be expressed in terms of a higher-order fold. For example, given



pfold (hnil, hcons) :: ([a], z) — b, with hnil::z — b and hcons::a — b — z — b,
we can write it as a fold of type [a] — z — b:

pfold (hnil, hcons) (zs, z) = fold (knil, kcons) xs z

where knil = Az — hnil z:: 2 — b and kcons € 1 = Az — heons x (r z) z =
a — (z = b) — (# — b). With this relationship at hand we can state the
following law, which is the instance to our context of a more general program
transformation technique called lambda abstraction [17].

Law 5 (H-O PFOLD/BUILDP) For left-strict hcons,b

pfold (hnil, hcons) (buildp g ¢) = f 2
where (f,2) = g (knil, kcons) ¢
knil = Az — hnil z
kcons x v = Az — heons z (r z) z

Like in Law 3, g (knil, kcons) returns a pair, but now composed by a function
of type z — b and a value of type z. The final result then corresponds to the
application of the function to that value.

To see an example of the use of this law, let us consider again the composition
addLen = addL o filterLen. By applying Law 5 we get the following definition:

addLen zs = f 1

where (f,1) = gk zs
gk [] = (Al—=[],0)
gk (z:as)=if 2 >0then (Ml — (z+1):f 1,1+ 1) else (f',1')
where (f',1') = gk zs
The following is a generalization of the previous law.

Law 6 (H-0 PFOLD/BUILDPN) Let (N, en) be a strictness-preserving functor.

pfold (hnil, hcons) o ey o buildpy g$c=f 2
where (f,z) = en (g (knil, kcons) c)
knil = Az — hnil 2z
keons x v = Az — hcons x (r 2) z

4 Multiple intermediate structure deforestation

In this section we analyse how can we deal with a sequence of compositions
fno---0o fi, for n > 2. We start with the analysis of the standard case in
which a single data structure is generated in each composition. Our aim is to
look at the conditions the functions f; need to satisfy in order to be possible
to derive a monolithic definition from such a composition. We then turn to
the analysis of situations in which the intermediate data structures are passed
between functions inside a pair. As we saw in Section 3, compositions of this
kind give rise to circular and higher-order definitions.

® By left-strict we mean strict on the first argument, that is, hcons (L, z) = L.



4.1 Standard case

Let us suppose that in every composition f;1 o f; only an intermediate data
structure is passed between the functions. To derive a monolithic definition from
the whole sequence f, o--- o f; the involved functions need to satisfy certain
conditions. Clearly, f; needs to be a producer while f,, a consumer. Functions
fo,..., fn_1 are more interesting since they all need to be both consumers and
producers in order to be possible to fuse them with their neighbour functions.

Suppose, for example, that we want to test whether a number is perfect. A
number is said to be perfect when it is equal to the sum of its factors:

perfect n = sumFactors n ==mn

sumPFactors n = sum (factors n)

Notice that two intermediate lists are generated by sumFactors: one by factors
and the other in the composition of sum with factors. If we want to eliminate
those data structures the essential expression to fuse is sum o filter pro down. As
shown in Section 2, down is a producer. On the other hand, sum is a consumer
as it can be written as a fold. Concerning filter pr, it is a consumer, but it can
also be a producer maintaining its formulation as a fold, appealing to the notion
of an algebra transformer, traditionally used in the context of fusion laws known
as acid rain [6]. Similar to the “template” of a build, a transformer makes it
possible to abstract the occurrences of the constructors of the data structure
produced as result from the body of a fold, or which is the same, from the
operations of the algebra carried by a fold. In the case of filter pr, we can write:

filter pr = fold (7 ing,)
where 7 (nil, cons) = (nil, \a r — if pr a then cons a r else r)

The algebra transformer 7::V b . (b,a — b — b) — (bya — b — b) simply
abstracts the list constructors from the algebra ([],Aa r — if pr a then a:
r else r) of the fold for filter pr by replacing its occurrences by the components
of an arbitrary algebra (nil, cons). As mentioned above, transformers are useful
in the context of acid rain laws because they permit to specify producers given by
folds. The following is an acid rain law with a transformer between list algebras.

Law 7 (FOLD-FOLD FUSION FOR LISTS)

7uVb.(bja—b—0b)— (b,a’ —b—b)
=
fold (nil, cons) o fold (7 ing) = fold (T (nil, cons))

Acid rain laws can be expressed in terms of shortcut fusion [18]. For example,
Law 7 can be seen as a particular case of Law 1. In fact, by defining gfold k =
fold (7 k) it follows that fold (7 ing) = build gfold.

Returning to the composition sum o filter pr o down, there are various ways
in which fusion can proceed in this case. One way is to proceed from left-to-right
by first fusing sum with filter pr, and then fusing the result with down. For
fusing sum o filter pr we can apply Law 7, obtaining as result fold (7 (0, (+))).
Fusing this fold with down by Law 1 we obtain gd (7 (0,(+))) as final result.



An equivalent alternative is to proceed from right-to-left by first fusing
filter pr with down and then fusing the result with sum. Fusion of filter prodown
is performed by applying Law 1, obtaining gd (7 iny) as result; this coincides
with the function fd pr shown in Section 2. If we now want to fuse sum with
gd (7 ing) then we first need to rewrite this function as a build. It is in such
a situation that a new law, that we call chain law, comes into play. It states
conditions under which the composition of a consumer with a producer, such
that the consumer happens to be also a producer, can be fused resulting in a
function that can be directly expressed as a producer. The key idea of this law
is the appropriate combination of the fusion approaches represented by short-
cut fusion and acid rain. We present the case of the chain law for an algebra
transformer with same type as in Law 7.

Law 8 (CHAIN LAW FOR LISTS)

T7uVb.(bja—b—0b)— (bya' —b—b)
=
fold (7 iny,) o build g = build (g o)

Applying this law we have that filter pr o down = build (gd o 7), which can be
directly fused with sum, obtaining gd (7 (0, (+))) as before. To see its recursive
definition, let us define sfd pr = gd (7 (0, (+))). Inlining,

sfd pr 0=20

sfd pr n = if pr n then n + sfd pr (n — 1) else sfd pr (n — 1)

It is then natural to state a chain law associated with the extension of build.

Law 9 (EXTENDED CHAIN LAW) For strictness-preserving N,

7uVb.(bja—b—0b)— (bya’ —>b—b)
=
mapy (fold (1 ing)) o buildy g = buildy (goT)

The next law describes a more general situation where the transformer 7
returns an algebra whose carrier is the result of applying a functor W to the
carrier of the input algebra. Law 9 is then the special case when W is the
identity functor. By NW we denote the composition of functors N and W, that
is, NW a = N (W a) and map 5y f = mapy (mapy, f).

Law 10 Let W be a functor. For strictness-preserving N,

TuVb.(bya—b—b) = (Wbhba—Whb— WHh)
=
mapy (fold (7 ing)) o buildy g = buildyw (goT)

4.2 Derivation of programs with multiple circularities

We now analyse laws that make it possible the derivation of programs with
multiple circularities. We consider that the sequence of compositions f, 0---o f;



is such that a pair (¢;,2;) of a data structure ¢; and a value z; is generated in
each composition. Like before, f; needs to be a producer, f,, a consumer, whereas
fo,..., fn_1 need to be simultaneously consumers and producers. Therefore, in
this case the sequence of compositions is of the form pfoldo ---o pfold o buildp.

Like in the standard case, we want to analyse the transformation in both
directions: from left-to-right and right-to-left. We will see that in this case there
are significant differences between the transformation in each direction, not in
the result, but in the complexity of the laws that need to be applied.

Right-to-left transformation. Following a similar approach to the one used
for the standard case, when the transformation proceeds from right to left it
is necessary to state sufficient conditions that permit us to establish when the
composition of a pfold with a buildp is again a buildp. Interestingly, the resulting
definition would be not only a producer (a buildp) that can be fused with the
next pfold in the sequence, but by Law 3 it would be also a circular program that
internally computes a pair (v, z) formed by the result of the program (v) and
the circular argument (z). Therefore, by successively fusing the compositions
in the sequence from right to left we finally obtain a program with multiple
circular arguments, one for each fused composition. During this process, we
incrementally introduce a new circular argument at every fusion step without
affecting the circular arguments previously introduced.

At the i-th step, the calculated circular program internally computes a nested
product of the form ((... (v, 2:),...),21), where v; is the value returned by that
program and z1, ..., 2; are the circular arguments introduced so far. As a conse-
quence of this, at each step it is necessary to employ an extended shortcut fusion
law because the pair (¢;, 2;) to be consumed by the next pfold is generated within
the structure formed by the nested product. Thus, we will be handling extensions
with functors of the form N a = ((...(a, 2;),...),21)-

Therefore, to deal with this process appropriately we need to state a chain
law in the sense of Law 9 but now associated with the composition of a pfold
with an extended buildp. Given a transformer ¢ ::V b . (b,a — b — b) —
(z > W bad - Wb— 2z— W), where W is a functor and, for each
algebra k, 0 k = (01 k,02 k), it is possible to derive an algebra transformer:
TuVb.(bya—b—b) — (Wbda— Whb— Wh)suchthat 7 k = (11 k, 72 k)
with i k=01 kzand m kxr=o09kxr z for a fixed z. Such a o is used in
the next law to represent a case when the consumer, given by a pfold, is also a
producer. In fact, observe that the pfold in the law has type ([a'], 2) — ([a], y).

Law 11 (CHAIN RULE) Let (N, ey) be a strictness-preserving functor, and M a =
N (a,z). Let W a = (a,y), for some type y. Let o k = (o1 k, 09 k).
cuxVb.(bba—b—b)—(z—>Whbd—-Wb—z— Wb
=
pfold (o inp)oenobuildpy gSc=1p
where (p,[2]) = ex (buildpy; (goT) c)
Thk=(nk,mk)
T1 k= g1 k
mkrr=oykzr|z]

10



Ezample 1. Consider the following program that given a set of points in a plane
returns the maximum distance between the points located above the average
height and the highest point below the average height. We assume that the
height of all points is non-negative.
type Point = (Float, Float)
type Height = Float
type Distance = Float
distance = maxDistance o takePoints o avrgHeight 0 0
avrgHeight :: Height — Integer — [Point] — ([Point], Height)
avrgHeight h 1 [] = ([], h / fromInteger 1)
avrgHeight h 1 ((z,y): ps) = let (ps’, avH) = avrgHeight (y + h) (1 4+ 1) ps
in ((z,y): ps’, avH)
takePoints :: ([ Point], Height) — ([ Point], Point)
takePoints ([], avH) = ([], (0,0))
takePoints ((z,y) : ps, avH) = let (ps’, hp) = takePoints (ps, avH)
in if y > avH then ((z,y) : ps’, hp)
else (ps’,if y > snd hp then (z,y) else hp)
mazxDistance :: ([ Point], Point) — Distance
mazDistance ([], hp) =0
mazDistance ((z,y) : ps, hp@Q(hz, hy))
= sqrt ((z — hz)? + (y — hy)?) ‘maz* mazDistance (ps, hp)
To apply the rules, first we need to express these functions in terms of the
corresponding program schemes.
avrgHeight = buildp gavrgH
where gavrgH (nil, cons) h 1 [] = (nil, h / fromInteger I)
gavrgH (nil, cons) h I ((z,y) : ps)
= let (ps’, avH) = gavrgH (nil, cons) (y + h) (14 1) ps
in (cons (z,y) ps’, avH)
takePoints = pfold (tnil, tcons)
where tnil avH = ([],(0,0))
teons (z,y) r avH = let (ps,hp) = r
in if y > avH then ((z,y) : ps, hp)
else (ps,if y > snd hp then (z,y) else hp)
maxDistance = pfold (hnil, hcons)
where hnil hp =0
heons (x,y) r hp@Q(hx, hy) = sqrt ((z — hx)? + (y — hy)?) ‘maz‘ r
Since (tnil, tcons) can be expressed as ¢ iny, where o is a transformer:
o (nil, cons) = (AavH — (nil, (0,0))
Az, y) ravH —
let (ps, hp) =r
in if y > avH then (cons (z,y) ps, hp)

11



else (ps,if y > snd hp then (z,y) else hp))
our program corresponds to the following composition:
distance = pfold (hnil, hcons) o pfold (o inr) o buildp gavrgH 0 0
The transformation from right to left essentially proceeds by first applying
Law 11 and then Law 4. The program that is finally obtained is the following;:

distance inp = v
where (v,[u]) = w

(w,[2]) = gk 00 inp
gk h 1] =1((0,(0,0)), h / fromInteger 1)
gk b1 ((z,y):ps) =

let (ps’, avH) = gk (y + h) (1 +1) ps

in (let (gs, hp) = ps’

inif y >
then (sqrt ((z — fst[u])? + (y — snd[u])?) ‘maz* ¢s, hp)

else (gs,if y > snd hp then (z, y) else hp), avH)

Left-to-right transformation. When the transformation is in left to right
order we worry about the opposite situation. Except for the last step, at each
intermediate stage of the transformation process we are interested in that the
definition that results from a fusion step is a consumer. If that is the case then
it is guaranteed that we can successively apply fusion until cover all function
compositions. It is then necessary to state sufficient conditions to establish when
the composition of two pfolds is again a pfold.
The following acid rain law is inspired in fold-fold fusion (Law 7).

Law 12 (PFOLD-PFOLD FUSION)

cuVb.(ba—b—0b)—(2—bd —b—2z2—0)
=
pfold (hnil, hcons) (pfold (o iny) ¢) = v
where (v,[ 2]) = pfold (o (knil, kcons)) ¢
knil = hnil
kcons x v = hcons z r

Like fold-fold fusion, this law can also be formulated in terms of shortcut
fusion. By defining gpfold k = pfold (o k), it follows that pfold (o inp) =
buildp gpfold. Then, by Law 3 we obtain the same result.

Observe that, unlike the right to left transformation, now we do not need to
worry about any data structure (a nested pair) inside which fusion is performed.
A nested pair is in fact created, but on the result side of the consumers that are
successively calculated. It is interesting to see how the nested pair that appears
in the final circular program is incrementally generated in each transformation.
In the left-to-right transformation the nested pair is generated from inside to
outside, i.e. the pair generated in each fusion step contains the previous existing
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pair, whereas in the right-to-left transformation the nested pair is generated from
outside to inside.

Returning to the example of function distance, the transformation from left
to right essentially proceeds by simply applying Law 12 and then Law 3. The
program that is finally obtained is of course the same.

4.3 Derivation of higher-order programs

During the transformation to a higher-order program we will deal again with
a nested structure. Instead of a nested pair we will incrementally construct a
structure of type (21 — (22 — (- — (2 — a,2;) -+ +), 22), 21) where the zs are
the types of the context parameters that are passed in the successive compo-
sitions. So, a structure of this type is a pair (p1,21) composed by a function
p1, which returns a pair (ps, z2) such that ps is a function that returns again a
pair, and so on. Associated to each of these structures we can define a functor
Na= (21— (22— (- — (2 — a,2;) ), 22),21) whose projection function
en : N a — a is given by iterated function application: ex(p1,21) = p; z; where
(pjs 2j) = Pj—1 2j-1, J = 2,1.

Like for circular programs, we will see differences in the process of derivation
of a a higher-order program when we transform a sequence of compositions
fno---o fi from right to left and left to right. Again one of the differences is
the order in which the nested structure is generated.

Right-to-left transformation. For the transformation in this direction we
need to consider again the situation in which the consumer (a pfold) composed
with a producer (a buildp) is again a buildp, The situation is similar to the one
faced with Law 11 with the only difference that now we are in the context of
a higher-order program derivation. Given a transformer o ::V b . (b,a — b —
b) = (2 —> Wba' — Wb— z— Wh), where W is a functor and, for each
algebra k, o k = (01 k,09 k), it is possible to derive an algebra transformer:
TuVbh.(bya—b—b)— (22— Wh,a — (22— Whb)— (2 — W b)) such that
Tk=(mkmnk)withnk=X—o kzandnkzr= z—oykaz(rz)z.
Observe that the pfold in the next law has type ([a'], z) — ([a], ).

Law 13 (H-O CHAIN RULE) Let (N,ey) be a strictness-preserving functor and
M a=N (a,z). Let W a = (a,y), for some type y. Let o k = (01 k,09 k).

cxVb.(ba—b—b)—(z—>Whbd—-Wb—z— Wb
=
pfold (o inp)oenobuildpy g c=f 2
where (f, z) = ey (buildp,; (go7) ¢)
Thk=(nk,mk)
mmk=Xz—o1kz
Tokrzr=Xz—oykax(rz)z

The higher-order program derivation in right to left order applied to distance
essentially proceeds by first applying Law 13 and then Law 6. As result we obtain
the following higher-order program:
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distance inp = f u
where (f,u) =g z
(g,2) = gk 00 inp
gk hl[]=(z— (Au—0,(0,0)),h/ fromInteger 1)
gk b1 ((z,y):ps) =
let (ps’, avH) = gk (y+h) (1 +1) ps
in(A\z —
let (gs, hp) = ps’ 2
inif y> =z
then (\u — sqrt ((z — fst u)? + (y — snd u)?) ‘maz* (gs u), hp)
else (\u — ¢s u,if y > snd hp then (z, y) else hp), avH)

Left-to-right transformation. For the transformation in this other direction
we proceed similarly as we did for circular programs. The same considerations
hold in this case. The calculation of the successive consumers from left to right
is performed using the following acid rain law:

Law 14 (H-O PFOLD-PFOLD FUSION)

c:x:Vb.(bja—b—0b)—(z—bd -b—2z2—0D)
=
pfold (hnil, hcons) (pfold (o ing) ¢) = f z
where (f, z) = pfold (o (knil, kcons)) ¢
knil = Az — hnil 2
keons © v = Az — hcons x (r z) z

This law can also be formulated in terms of shortcut fusion. By defining
gpfold k = pfold (o k), we have that pfold (o ing) = buildp gpfold. Then, by
Law 5 we obtain the same result.

Concerning the example of function distance, the higher-order program deriva-
tion from left to right essentially proceeds by applying Law 14 and then Law 5.

5 Conclusions

In this paper, we have presented an approach, based on shortcut fusion, to
achieve deforestation in an arbitrary number of function compositions. Our
work generalizes standard shortcut fusion [1], circular shortcut fusion [3] and
higher-order shortcut fusion [3]. The derivation of circular programs is strongly
associated with attribute grammar research [10,11], and we expect our work
to clarify even further their similar nature. The derivation of higher-order pro-
grams is motivated by efficiency. Indeed, as the programs we consider here are of
the same kind as the ones we have benchmarked in [19], we expect the derived
higher-order programs to be significantly more efficient when compared to their
multiple traversal and circular counterparts.
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Our approach is calculational and establishes sufficient conditions for fusion
to proceed. For now, we have not focused on implementation details, that we
are considering to present in an extended version of this paper as well as fur-
ther demonstrational examples that have not been included here due to space
limitations.
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