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A B S T R A C T

In this work the preparation, characterization and performance of Y-zeolite as catalyst for electro-Fenton

treatment of pesticides was carried out. Initially iron supported Y-zeolite (Fe-Y) was prepared and

evaluated for the degradation of imidacloprid and chlorpyrifos. Kinetic studies determined that the

pesticides removal followed a pseudo-first-order kinetic model. However, the reusability of this catalyst

was not appropriated and to enhance its recyclability, Fe-Y catalyst was embedded in alginate (Al-Fe-Y).

The new catalyst showed similar degradation efficiency; and the recyclability was improved. This study

demonstrated that Al-Fe-Y could be efficiently used to remove commonly pesticides, imidacloprid and

chlorpyrifos, from aqueous medium.

� 2015 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights

reserved.
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Introduction

Groundwater pollution is very difficult to mitigate due to the
high residence time, the hard access and the ease of spreading long
distances. A common approach for managing polluted groundwa-
ter is to remove or contain contaminant sources and to address
down-gradient contamination using pump-and-treat (P&T) tech-
nology [1]. This technology is a classic ex-situ treatment which
consists in two stages: pumping, where the polluted plume is
extracted by pumping wells; and treatment, in which the
pollutants are removed from the extracted water. The water
treatment can be performed using mechanical, physical, biological,
and chemical methods. However, it is necessary to take into
account two main factors, the high amount of water to be treated
and the nature of the pollution, in order to achieve an effective
treatment.

The appearance of newly emerging organic contaminants is
increasing in the groundwater [2]. These pollutants penetrate into

the water body due to the runoff from urban areas, return flows

from agricultural fields and leaching [3,4]; furthermore, they are
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difficult to treat using conventional treatment technologies.

Therefore, different approaches are being explored to accomplish

an appropriated treatment of these pollutants [4–9]. Recently, the

electro-Fenton process has attracted great interest from the

scientific community because this treatment can be used to

remove a wide variety of organic pollutants, including pesticides

[10,11]. This technology combines the classical Fenton treatment

with the electrochemical oxidation. Thus, the electrical current

induces the in situ generation of H2O2 via reduction of oxygen, and

the catalytic reaction is propagated by Fe2+ regeneration, which

can take place by reduction of Fe3+ with H2O2, hydroperoxyl

radical, organic radical intermediates, or directly at the cathode.
In order to couple this process to the P&T technology, it is

necessary to design a system that can operate in continuous mode.
In this context, the electro-Fenton treatment using heterogeneous
catalyst arises. The iron immobilization onto a support provides a
physical retention of the catalyst avoiding the iron release in the
treated water. For this reason, this specific field attracted the
attention of scientific researches worldwide [12–15]. In the last
years, our research group has invested great efforts in the design of
electro-Fenton reactors as well as developed several catalysts, iron
alginate gel beads and iron-sepiolite, for heterogeneous Fenton
and electro-Fenton degradation of dyes [11,16–19]. From these
previous studies, it was determined that inorganic supports, such
as clays, were adequate to perform heterogeneous catalyst.
shed by Elsevier B.V. All rights reserved.
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Zeolite is a well-known low-cost material widely used for
metal removal [20,21] and in recent times, the scientific
community increased its attention to use it as catalyst support.
Fukuchi et al. [22] used iron-supported natural zeolite for the
degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-
like system and Kiran et al. [23] utilized iron-modified zeolite
catalyst for photocatalytic Fenton oxidation of sodium dodecyl
sulfate. However, we could not find information about testing,
iron supported zeolite as catalyst for the electro-Fenton
treatment of pesticides. Therefore, the aim of this work is the
development of a new electro-Fenton process using iron
supported zeolite (Fe-Y) to treat pesticides typically present in
groundwater. In this case, a Y-type zeolite, NaY, was selected due
to its stable structure, large pore volume and cation exchange
capacity; the presence of aluminum ions in the framework results
in negative charges that are balanced with cations [24]. Initially
the preparation and characterization of Fe-Y was performed and
then the developed catalyst was tested for the electro-Fenton
degradation of two model pesticides of different nature,
imidacloprid and chlorpyrifos.

Material and Methods

Materials

Zeolite NaY supplied by Sigma-Aldrich (Barcelona, Spain) was
evaluated as support for the catalyst.

Pesticide solutions were prepared using pesticide-grade
Pestanal analytical standard provided by Sigma–Aldrich (Barce-
lona, Spain) at a desired concentration (Table 1).

Iron stock solution was obtained by dissolving Fe2(SO4)3�nH2O
(Sigma-Aldrich, Barcelona, Spain) in deionized water, each desired
concentration was obtained by diluting this stock solution.

Na-alginate and CaCl2 were analytical grade and supplied by
Sigma-Aldrich (Barcelona, Spain).

Zeolite acid pre-treatment

Acid pre-treatment of Y zeolite was performed following Pazos
et al. [25]. A suspension of zeolite and 0.1 M H2SO4 (ratio
1:10 g:mL) was maintained in agitation (150 ppm) at 25 8C for
24 hours. After that, the suspension was filtered through filter
Table 1
Type, CAS number, structure, solubility and concentration of studied pesticides.

Pesticide Type CAS number 

Imidacloprid
1-(6-chloro-3-pyridyemethyl)–

N-nitroimidazolidine-2-yliedeneamine

chloronicotinyl

nitroguanidine

13826-41-3 

Chlorpiryfos O, O-diethyl

O-(3, 5, 6-trichloro-2-pyridyl)-

phosphorothioate

organophosphate 2921-88-2 
paper and the zeolite was dried 24 hours in oven at 60 8C,
separated from the paper and preserved.

Adsorption assays

Batch adsorption assays were carried out in 250 mL Erlenmeyer
flasks by mixing 3 g of pre-treated Y zeolite with a constant volume
(150 mL) of the iron aqueous solution at a desired concentration.
The flasks were agitated in an incubator (Thermo Forma) at
150 rpm and 20 8C. In order to analyse iron adsorption, samples
were taken of the supernatant and were centrifuged (Sigma 3K-18)
during 15 min at 5000 rpm to remove solid. Atomic Absorption
Spectroscopy (Agilent 240FS) was used to measure the iron that
remained unsorbed in the supernatant liquid.

Iron uptake (q) concentration was determined by the following
equation:

q ¼ ðAi � A f Þ/m (1)

Where Ai is the initial amount of iron in solution (mg), Af is the
final amount of iron in solution (mg) and m is the mass of utilized Y
zeolite (g).

All the adsorption studies were repeated three times; the
reported value is the average of measurements, the experimental
error was calculated as the standard deviation, which was below
3% in all cases.

Catalyst preparation

The Fe-Y obtained from the adsorption assays, at a concentra-
tion of 52.21 mg g�1, was directly used as catalyst and was also
tested embedded in alginate gel. For the later, a suspension of Na-
alginate (3%) containing Fe-Y was dropped on a solution of 0.2 M
CaCl2 to create the spherical alginate beads with the Fe-Y zeolite
entrapped into its structure.

Characterization of catalyst

Fourier-transform infrared (FT-IR) spectra of the Y zeolite
and Fe-Y were recorded on an FT-IR spectrometer (model FT-IR/
4100, Jasco). The samples were ground into powder and dried in
an oven at 60 8C for 1 h. The potassium bromide (KBr) pellet
Structure Solubility water

20 8C (mg�L�1)

Concentration

(mg�L�1)

610 100

2 1.3
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press method was used to improve the signal in the infrared
spectra.

In order to evaluate the morphological status of the developed
catalysts Scanning Electron Microscopy and Energy Dispersive
Spectrometry (SEM/EDS) were performed on a JEOL JSM-6700F
equipped with an EDS Oxford Inca Energy 300 SEM using an
accelerating voltage of 20 kV (Electron Microscopy Service,
C.A.C.T.I., University of Vigo).

Batch electro-Fenton treatments

Several batch experiments were done in an electro-Fenton cell
reactor with a working volume of 0.15 L (Fig. 1) [11]. The reactor
was filled with the catalyst and an aqueous solution of pesticide at
a desired concentration. This solution was agitated with a
magnetic stirred in order to avoid concentration gradients. For
all experiments, the electrolyte utilized was 0.01 M Na2SO4. A
cathode of graphite sheet (CARBON LORRAINE, France) and a
Boron-Doped Diamond (BDD) (DIACHEM1, Germany) anode were
connected to a power supply at a constant voltage of 5 V (HP model
3662) [26]. The electrodes (surface 11 cm2) were placed opposite
to each other with an electrode gap of 6 cm. A continuous bubbling
(1 L min�1) of air at atmospheric pressure was located into the
reactor on the cathode surroundings, this flow started 10 minutes
before the electro-Fenton process in order to reach a stationary O2

concentration. This was carried out for the in situ generation of
H2O2 by the electrochemical reduction of oxygen.

Pesticide analysis

Pesticide concentration in the samples was determined by
means of HPLC (Agilent 1100) equipment with an XDF-C8 reverse-
phase column (150 x 4.6 mm i.d., 5 mm). Prior to injection, the
samples were filtered through a 0.45 mm Teflon filter. The injection
volume was set at 20 mL, and the isocratic eluent (acetonitrile and
water) was pumped at a rate of 1 mL min�1. Detection was
Fig. 1. Schematic diagram of electro-Fenton experimental setup in batch process:

cathode (1), anode (2), power supply (3), air (4), magnetic stirrer (5).
performed with a diode array detector at 270 nm for the
imidacloprid measurement and 291 nm for chlorpyrifos, and the
column temperature was maintained at room temperature.

In order to identify the transformation products obtained in the
pesticide degradation several samples were analyzed with a HPLC-
MS (Agilent 1100) equipment with a LC column Luna 5u C18 100A.
Filtration through a 0.45 mm Teflon filter was done before the
injection. In this case the isocratic eluent was 98% (aqueous
solution 1 nM of sodium formiate and 0.1% of formic acid) and 2%
(acetonitrile and a 0.1% of formic acid) that was pumped at a rate of
0.4 mL min�1 for 40 minutes. Detection was carried out with a
diode array detector at 220 nm and the column temperature was
maintained at 35 8C. The coupled mass spectrometer employed
was a Hewlett-Packard 5989B with a detection range from 10 to
2000 Da.

Measurement of process efficiency

In addition to analyzing the pesticide concentration and
therefore its removal during the experiments, other specific
energetic parameters are useful. In this study the energy
consumption per pesticide mass was evaluated following the
equation:

Energy consumption ðkWh=kg pesticideÞ ¼ I � V � t
Dmpesticide

(2)

where I is the average applied current (A), V is the cell voltage (V),
t is the treatment time (h) and Dm is the pesticide mass
removed (kg).

Results and discussion

In this study, the developments of new catalysts using Fe-Y and
Fe-Y embedded in alginate (Al-Fe-Y) were described for their use in
the electro-Fenton treatment. To evaluate the electro-Fenton
process using the developed catalysts, two pesticides of different
solubility, imidacloprid (high solubility) and chlorpyrifos (low
solubility), were selected as representative pesticides in ground-
water [27–29].

Iron adsorption onto Y zeolite

The first step for developing the electro-Fenton catalyst was to
evaluate the adsorption capacity of the selected support. For that
purpose, batch adsorption assays at different concentrations were
accomplished using NaY zeolite. It was noticed that for the several
Fe(III) tested concentrations, ranged from 50-1000 mg L�1, no iron
was detected in the liquid medium after adsorption. In these
experiments, the colour of the zeolite changed from white to red
brown and the pH in the liquid medium increased up a value
around 5. This fact is in accordance with several authors that have
reported that zeolites can increase the pH in their surroundings
[25,30]. Therefore, it was assumed that this change of colour was
due to the iron precipitation as hydroxide or oxide. Hence, zeolite
was pre-treated with acid to assure a proper iron adsorption in
the zeolite and to avoid the iron precipitation on the zeolite
surface due to the high pH in the medium [25]. In Fig. 2, the iron
adsorptions and the pH in the suspensions, using untreated and
acid pre-treated zeolite NaY, are shown. The pH in the medium,
using pre-treated zeolite, was maintained around 3. As it was
expected, the iron adsorption of pre-treated zeolite was lower;
however this fact permits to assure that the iron is entrapped in the
zeolite structure and not precipitated on the surface.



Fig. 4. Isothermal adsorption of Fe-Y: filled circles indicate experimental data and

the line indicates the simulated Freundlich model (qe = 32.12�Ce
0.43; R2 = 0.9946).

Fig. 2. Adsorption tests using untreated zeolite (filled circles Fe solution; filled

squares pH) and acid-pretreated zeolite (filled triangles Fe solution; filled diamonds

pH) at an initial iron concentration in solution of 500 mg L�1.
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Acid pre-treated zeolite maintained the pH in the solution at a
value around 3, which leaded to a lower and slower iron adsorption
because none precipitation over the clay structure is produced.

After that, the kinetic study was performed with the acid pre-
treated zeolite NaY. This study permits to determine the equilibrium
time and reaction order of the studied system. Pseudo-first and
pseudo-second-order models were evaluated to find the best fitted
model for the experimental obtained data. From the obtained data
can be stated that 60 minutes is the necessary time to reach the
equilibrium. Based on the correlation coefficients (R2) obtained for
both models, it was determined that the behaviour of the Fe(III)
adsorption into pre-treated zeolite followed a kinetic of pseudo-
second-order (Fig. 3) following the equation:

t=qt ¼ 1=ðq2
e � k2Þ þ t=qe (3)

where qt (mg�g
�1) is the iron uptake at time t (min), qe is the iron

uptake at equilibrium and k2 the second-order (g�(mg�min)�1)
equilibrium rate constant. This pseudo-second-order kinetic is in
accordance with the findings of others authors using high specific
surface clays as kaolinite or sepiolite [17,31].

Adsorption isotherms are characterized by constant values,
which express the surface properties and affinity of the adsorbent
Fig. 3. Adsorption kinetic of Fe-Y: filled circles indicate experimental data and the

line indicates the adjustment to a pseudo-second-order kinetic equation (t/

qt = 7.89e-10 + 0.4845 t; R2 = 0.9996).
[32]. Therefore, adsorption isotherms assays with the pretreated
clay were carried out to determine the adsorbed mass of iron per
mass of Y zeolite for Fe (III) concentrations ranging from 50 to
1000 mg L�1.

Langmuir, Henry and Freundlich isotherms were used to
evaluate the experimental data. The evaluations of these models
were carried out and the best model was established by the
comparison of the correlation coefficients. From the studied
isotherms, Freundlich fitted well to the experimental data (Fig. 4)
suggesting that a physical adsorption took place. The Freundlich
isotherm can be represented as the following equation:

qe ¼ kFC
1
n
e (4)

where kF (mg1�1/n�L1/n�g�1) is the Freundlich constant and n is a
constant that characterizes the affinity between the sorbent
and the solute. It is generally stated that values of n in the range 1-
10 represent good adsorption and less than 1 poor adsorption
characteristics. In the present study, n value was 2.3 meaning
that the physical adsorption of Fe onto sepiolite has a high affinity
[33].

Fe-Y characterization

The Fe-Y obtained in the adsorption assays was characterized
using FTIR and SEM analysis in order to determine the presence
and distribution of Fe.

The FT-IR spectra show the characteristic signs of zeolite NaY
with well-defined signals in the 450-1200 cm�1 [34]. The signal
appearing in the region of 1000-1100 cm�1 is attributable to the
extensions of asymmetric vibrations of the units (Si/Al)O4 [34] and
the asymmetric extensions of the chains Al-O-Si in the zeolite can
be clearly identified at the 1025 cm�1 signal [35]. The signal
appearing at about 1635 cm�1 is due to lattice water molecules and
the signal of 3425 cm�1 is characteristic of the surface hydroxyl
groups [34,35]. NaY zeolite shows characteristic bands at 578 and
791 cm�1, associated with external connections between tetrahe-
dra, which are sensitive to the entire structure. These bands are
displaced slightly to lower wavenumbers when iron is present
in the zeolite because the Fe-O bonds are longer than the Si-O
bonds [36], therefore it seems that the presence of Fe in the zeolite
results in a slight modification of the IR spectrum. Although the
characteristic band at 686 cm �1 associated with the Si-O- bonds
Fe [36] did not appear.



Fig. 6. Degradation profile of chlorpyrifos using the heterogeneous electro-Fenton

with Fe-Y with an iron concentration of 50 mg L�1.

Table 2
EDS compositional output of spectrum of zeolite and Fe-Y with normalized

abundances.

Element Y Zeolite Fe-Y

Weight (%) Atomic (%) Weight (%) Atomic (%)

OK 47.66 60.87 53.90 68.21

NaK 4.26 3.79 1.87 1.65

AlK 11.97 9.07 8.31 6.24

SiK 36.11 26.27 29.61 21.34

SK - - 1.04 0.66

FeK - - 5.26 1.91

ABBREVIATIONS Fe-Y, iron supported Y zeolite; Al-Fe-Y, iron supported Y zeolite

embedded in alginate gel.
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Therefore, to evaluate the distribution of iron in the Fe-Y, SEM/
EDS images were performed. From these analyses the presence of
iron in the supported zeolite (5.26% weight (Table 2)) and the
homogeneous distribution can be clearly appreciated.

Electro-Fenton treatment of pesticides using Fe-Y

Initially, the electro-Fenton treatment of a solution of the
neonicotinoid pesticide imidacloprid (100 mg L�1) was treated
using the heterogeneous catalyst Fe-Y. Several concentrations of
iron were tested (700 mg L�1, 350 mg L�1and 50 mg L�1) in order
to evaluate the influence of the catalyst concentration. For this
purpose, the necessary amount of Fe-Y with an iron content of
52.21 mg g�1 was placed in the 0.15 L cylindrical electro-Fenton
cell and an electric field of 5 V was applied [26]. It is well known
that in the electro-Fenton reaction the pH plays an important role
because the catalyst inactivation is produced at pH values higher
than 4, reducing the efficiency of the treatment [37]. However, in
this study the pH in the reaction mixture was not controlled during
the experiments because it decreased from 6 to 3 by the action of
acid-pretreated catalyst. This fact presents a great advantage
because the developed catalyst permits the application of the
treatment without pH adjustment and favors the degradation rate.

In Fig. 5, the degradation profiles of imidacloprid using different
amounts of catalyst in solution are shown. The highest concentra-
tion of iron in solution produces a slight increase on the degradation
rate; however, after 120 minutes the removals reached for all
tested iron concentrations were around 98%. Dealing with energy
consumption, 50 mg L�1 and 350 mg L�1 of iron concentration
Fig. 5. Degradation profiles of imidacloprid using the heterogeneous electro-Fenton

with Fe-Y at different concentrations of iron: 50 mg L�1 (filled circles), 350 mg L�1

(white circles), 700 mg L�1 (filled triangles).
require 8.1 and 8.2 kW h�kg pesticide
�1 respectively, while 700 mg L�1

of iron requires 11.2 kW h�kg pesticide
�1. According with previous

studies [38] the degradation rate was limited by the H2O2

production due to the applied voltage. Therefore this fact was the
limiting factor instead of catalyst concentration.

Analysis of imidacloprid degradation compounds were per-
formed using HPLC-MS. As it was predictable, a similar degradation
pathway (5-hydroxy derivative and 6-chloronicotinic acid) than
our previous study [26] was found, when the imidacloprid
molecule was mineralized by the electro-Fenton process using
iron alginate beads.

The kinetic behaviour of the system was studied and the
concentration data through the time were adjusted to several
kinetic models. For all catalyst concentrations, the reduction of
pollutant concentration fitted well with the pseudo-first-order
kinetic expression (R2 0.99) during initial treatment times. This
fact is in accordance with the results reported by Kaichouh et al.
[39] in the degradation of herbicides imazapyr and imazaquin by
hydroxyl radicals generated in electro-Fenton process.

After that, the heterogeneous electro-Fenton treatment of low
solubility pesticide, chlorpyrifos was carried out. This pesticide is an
organophosphate insecticide that acts on the nervous system of
insects by inhibiting acetylcholinesterase. Based on the previous
results, the treatment was carried out using the lowest iron
concentration of 50 mg L�1. As it can be observed in the degradation
profile (Fig. 6), even though after 5 minutes, 96% of degradation was
reached; it hinders the study of degradation intermediates. Due
to the low concentration of chlorpyrifos, that can be found in
groundwater systems, the experiments were carried out at a
concentration 1.3 mg L�1, which is quickly removed by means of this
new heterogeneous process while the energy cost is much higher
than for imidacloprid degradation (264.9 kW h�kg pesticide

�1). In this
case typical intermediate products [40], such as 3,5,6-trichloro-2-
pyridinol or dieyhylthiophosphate, were not detected in the HPLC-
MS. This can be attributed to the high kinetic removal of this
pesticide and the low concentration. Similarly to the kinetic analysis
of imidacloprid degradation, a high regression coefficient (R2 0.99),
was obtained when the chlorpyrifos concentration decay was
fitted to a pseudo-first-order kinetic expression during initial
treatment times.

As zeolite has a well known adsortive properties [20,21], the
pesticide retained onto zeolite after the electro-Fenton treatment
was analysed by mixing 1 g of dried zeolite with 10 mL of
acetonitrile for 120 minutes. Results showed that after treatment



Fig. 7. Degradation profile of imidacloprid using the heterogeneous electro-Fenton

process when Fe-Y (filled circles) and Al-Fe-Y (filled triangles) are recycled with an

iron concentration of 50 mg L�1.
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there was not pesticide adsorbed on the zeolite. Therefore the
reduction on pesticides concentration was due to its degradation
through electro-Fenton reactions.

Fe-Y Recyclability

To analyze the applicability of the developed catalyst to operate
in successive cycles, several electro-Fenton treatments were carried
out in a feed-back process. With the object of reducing the
operational cost and taking into account the slight differences
between the degradation levels reached using different amounts of
catalyst, the iron concentration selected for these studies was the
lowest, 50 mg L�1. The electro-Fenton treatment of the highly
soluble pesticide, imidacloprid (100 mg L�1), was carried out and
the degradations obtained after first, second and third cycle were,
98%, 88% and 86%, respectively and energy consumption was 8.1,
13.5 and 12.2 kW h�kg pesticide

�1 respectively (Fig. 7). These results
confirm that the catalytic activity of the Fe-Y was slightly reduced
and the energy consumption slightly increased. Iron leaching was
measured during the assays and negligible metal concentration was
determined in the liquid supernatant. To analyze the reduction of
the catalyst activity, the reaction mixture liquid was filtrated and the
amount of catalyst was weighted after third cycle. It was found that a
loss of weight around 8% of catalyst. This fact was attributed to the
loss of Fe-Y between each batch as a result of its physical appearance
as powder. Therefore, it was postulated that an improvement of
physical properties of the catalyst should be done.
Fig. 8. SEM images of surface morphology of Al-Fe-Y (l
Electro-Fenton treatment of pesticide using Al-Fe-Y

Catalyst characterization

Our previous studies [11,16,26] have determined that the
entrapment of iron in hydrogels increases the efficiency of the
electro-Fenton processes operating in continuous mode, however
the physical resistance of the alginate beads was reduced after
several batches and iron leaching occurred. Recently, Dogan [41]
and Ghadiri at al. [42] have demonstrated that the combination of
clay mineral with alginate improves alginate mechanical char-
acteristics and adsorption properties. Therefore in this study a
hybrid biocomposite made of alginate and Fe-Y was developed.

For this aim, the Fe-Y, developed in the aforementioned studies,
was entrapped in Ca-alginate. It is well known that Na-alginate
solution rapidly gelled upon contact with divalent cations (Ca2+)
and carboxyl groups of the alginate polymer chains. By using this
characteristic, composite beads Al-Fe-Y were prepared. For the
practical application, bead particles have advantages in terms of
applicability to a wide variety of process configurations in terms of
reusability for repeated runs and recovery. The physical charac-
terization of the new catalyst was performed using SEM/EDS
microscopy (Fig. 8). The polymeric beads show similar surface
morphology and spherical shape than those reported by Shawky
[43] where alginate/montmorillonite composite beads were
developed. The presence and homogenous distribution of Fe in
the beads was confirmed by EDS mapping analysis (Fig. 8), where
white points represent the presence of iron, and which corre-
sponds with the zeolite that can be observed on SEM image.

Electro-Fenton treatment of imidacloprid with Al-Fe-Y

With the intention of testing the new developed catalyst,
the electro-Fenton treatment of the imidacloprid pesticide
(100 mg L�1) was carried out for analyzing the degradation
process. The treatment was accomplished in similar way to the
previous studies, using an iron concentration of 50 mg L�1. For this
purpose 4.3 g of alginate beads, containing 0.14 g of Fe-Y, were
used in the reactor.

In Fig. 7 the degradation profile of the electro-Fenton treatment
of the studied pesticide using the developed catalyst Al-Fe-Y is
shown. The results were elucidated comparing the imidacloprid
degradation profile using Fe-Y with a final concentration of iron in
the reaction mixture of 50 mg L�1. As it can be seen, similar
degradation profiles were obtained; therefore the entrapment did
not modify Fe-Y activity. The previous studies have demonstrated
that the reusability of the catalyst is a key factor in the development
of heterogeneous electro-Fenton treatment. Therefore, several
cycles were accomplished using the same Al-Fe-Y beads (Fig. 7).
The catalyst activity showed similar performance in the different
cycles reaching a removal higher than 93% in all cases. Furthermore,
energy consumption was 10.8, 11.3 and 10.6 kW h�kg pesticide

�1 for
eft and centre) and EDS mapping of Al-Fe-Y (right).
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first, second and third cycle respectively. The study of pesticide
adsorption at the studied conditions on Al-Fe-Y beads showed that
an adsorption lower than 5% is attained when beads are in contact for
more than 60 minutes as postulated Rosales et al. [11] for dye
adsorption on alginate beads. Therefore, it was demonstrated that
this new catalyst Al-Fe-Y shows a stable background of catalytic
activity for the electro-Fenton treatment of pesticide polluted
groundwater.

Conclusions

The reported experimental studies demonstrated that hetero-
geneous catalysts using Al-Fe-Y could be efficiently used to
remove commonly applied pesticides, imidacloprid and chlorpyri-
fos, from aqueous medium. The short-time of treatment, necessary
to degrade the pollutants, opens a promising way to the developed
electro-Fenton technology using heterogeneous catalysts, as a new
alternative to be coupled with the P&T process for groundwater
remediation. No intermediate products were detected at the end of
the treatment; therefore a completed mineralization can be
achieved. Accordingly, the process developed in this work can
be postulated as an environmental friendly treatment.
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