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Abstract

The theme of this PhD Thesis is mainly related to the areas of Game Theory
and Industrial Organization. This work develops concretely two problems re-
lated with the Hotelling model of spatial competition. The first one consists
in the introduction of incomplete information on the production costs of the
two firms in the Hotelling model. Under explicit conditions on the production
costs, we determine the Bayesian-Nash equilibrium prices for every probab-
ility distribution of the production costs. The second problem addresses an
extension of the Hotelling model from the line to a network. In this prob-
lem, we establish conditions, depending on the production cost of the firms
and in the network structure, that guarantee the existence of a Nash price
equilibrium for all kind of networks. Furthermore, the explicit formula of the
equilibrium prices is determined. Using an approach similar to the one used
in the first problem, the case of incomplete information on the production
costs of the firms in the network was also studied. Both problems analyse the
two classical variations of the Hotelling model: linear transportation costs
and quadratic transportation costs. Under linear transportation costs, we
also analysed the case when the transportation costs can vary according to
the firms.
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Resumo

O tema desta tese de doutoramento insere-se, principalmente, nas areas de
Teoria de Jogos e Organizagao Industrial. Neste trabalho desenvolveram-se
concretamente dois problemas relacionados com o modelo de Hotelling de
competicao espacial. O primeiro consiste na introducao de informacao in-
completa nos custos de producao das duas firmas no modelo de Hotelling.
Com condigoes explicitas sobre os custos de produgao, foram determinados os
equilibrios Bayesianos de Nash em precos para qualquer distribuicao de prob-
abilidade dos custos de producao. O segundo problema aborda uma extensao
do modelo de Hotelling na linha para uma rede (network). No ambito deste
problema foram estabelecidas condigoes, dependendo dos custos de producao
de cada empresa e da estrutura da rede, que garantem a existéncia de um
equiibrio de Nash em precos para todos o tipos de redes. Para além da
garantia de existéncia, a formula explicita dos pregos em equilibrio é determ-
inada. Usando uma abordagem semelhante a usada no primeiro problema foi
ainda estudado o caso de informacao incompleta nos custos de producgao das
firmas na rede. Em ambos os problemas foram analisadas as duas variacoes
classicas do modelo de Hotelling: custos de transporte lineares e custos de
transporte quadraticos. Para custos de transporte lineares foi ainda analisado

0 caso em que os custos de transporte podem variar com a firma.
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Introduction

Since the seminal work of Hotelling [25], the model of spatial competition
has been seen by many researchers as an attractive framework for analyzing
oligopoly markets (see [9] 24], 27, 30, 3], 32}, 33, 37, 38]).

In his model, Hotelling present a city represented by a line segment where
a uniformly distributed continuum of consumers have to buy a homogeneous
commodity. Consumers have to support linear transportation costs when
buying the commodity in one of the two firms of the city. The firms com-
pete in a two-staged location-price game, where simultaneously choose their
location and afterwards set their prices in order to maximize their profits.
Hotelling concluded that firms would agglomerate at the center of the line, an
observation referred as the “Principle of Minimum Differentiation”. In 1979,
D’Aspremont et al. [2] show that the “Principle of Minimum Differentiation”
is invalid, since there was no price equilibrium solution for all possible loca-
tions of the firms, in particular when they are not far enough from each other.
Moreover, in the same article, D’Aspremont et al. introduce a modification
in the Hotelling model, considering quadratic transportation costs instead of
linear. The introduction of this feature removed the discontinuities verified
in the profit and demand functions, which was a problem in Hotelling model
and they show that, under quadratic transportation costs, a price equilib-
rium exists for all locations and a location equilibrium exists and involves
maximum product differentiation, i.e. the firms opt to locate at the extremes
of the line.
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Hotelling and D’Aspremont et al. consider that the production costs of
both firms are equal to zero. Ziss [41] introduce a modification in the model
of D’Aspremont et al. by allowing for different production costs between the
two firms and examines the effect of heterogeneous production technologies
on the location problem. Ziss shows that a price equilibrium exists for all
locations and concludes that when the difference between the production
costs is small, a price and location equilibrium exists in which the firms
prefer to locate in different extremes of the line. However, if the difference
between the production costs is sufficiently large, a location equilibrium does
not exist.

Using linear transportation costs, Boyer et al. [5] study the case where
the firms choose sequentially their location and then compete in delivered
prices (see [26]) assuming that the first mover has perfect information, while
the second mover does not know if the opponent firm has a low or high
production cost. Using quadratic transportation costs, a similar model but
under mill pricing setting was studied by Boyer et al. [6] and by Biscaia and
Sarmento [4] in the case where firms simultaneously choose their locations.
However, Boyer et al. [6] and Biscaia and Sarmento [4] consider that the
uncertainty on the productions costs exists only during the first subgame
in location strategies. Then the production costs are revealed to the firms
before the firms have to choose their optimal price strategies and so the
second subgame has complete information.

In the first part of this work (Chapter (1)) we study the Hotelling model
with incomplete information on the production costs of both firms. We do
not study the Hotelling models in which the location choice by the firms
plays a major rule, but models of price competition under spatial nature and
we study the linear and quadratic cases separately. With linear transport-
ation costs, we assume that the location of firms is fixed at the extremes
of the line, avoiding the problem of non existence of equilibrium pointed by

D’Aspremont et al. [2] and so we do not study the first subgame in loca-
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tion strategies. However, with quadratic transportation costs we consider all
possible locations for the firms in the line. With linear transportation costs,
we consider a more general model, where the transportation cost depends on
the firm.

Our main goal is to study the price formation in the second subgame
with incomplete information on the production costs of both firms. The
incomplete information consists on each firm knowing its production cost
but being uncertain about the competitor’s cost as usual in oligopoly theory
( see [11], 12, M3| 14, 15, 16, 17, 21, 28, 29]). We show that the first and
second moments of the probability distribution in the production costs are
the only relevant information for the price formation and all the other relevant
economic quantities.

We introduce the definition of local optimum price strategy that is char-
acterized by a local optimum property and by a duopoly property. We say
that a price strategy for both firms is a local optimum price strategy if (i)
any small deviation of a price of a firm provokes a decrease in its own ex-
ante profit (local optimum property); and (ii) both firms have non-empty
market for every pair of production costs (duopoly property). We observe
that a Nash price equilibrium satisfying the duopoly property has to be a
local optimum price strategy.

First, we introduce a bounded costs condition that defines a bound for
the production costs in terms only of the exogenous variables that are the
transportation cost and the road length of the segment line (and, in the
quadratic case, the localization of both firms). We prove that the second
subgame has a local optimum price strategy with the duopoly property if
and only if the condition holds and that the local optimum price strategy
for the firms is unique. Then, we introduce a mild additional bounded costs
condition and we prove that under these two conditions, the local optimum
price strategy is a Bayesian-Nash price strategy. Furthermore, we compute

explicitly the formula for the local optimum price strategy that is simple and
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leaves clear the influence of the relevant economic exogenous quantities in
the price formation. In particular, we observe that the local optimum price
strategy does not depend on the distributions of the production costs of the
firms, except on their first moments. We note that the novelty and elegance of
the proof consists in computing explicitly the expected prices of the optimal
strategies before computing the optimal strategies. Our techniques allowed
the results to be universal in the incomplete information scenario because
they apply to all probability distributions in the production costs.

We explicitly compare the ex-ante and ex-post profits, consumer surplus
and welfare. We prove that, under specific bounded costs conditions, the
ex-post profit of a firm is smaller than its ex-ante profit if and only if the
production cost of the other firm is greater than its expected cost. We do a
comparative analysis of profits, consumer surplus and welfare with complete
and incomplete information.

Other models have been developed where the line in the Hotelling model
is replaced by other topologies as for example in the Salop Model [37], where
the line is replaced by the circle, or in the Spokes model [9]. In the second
part of this work (Chapter [2) we introduce the Hotelling town model, ex-
tending the Hotelling model to a network, where the firms are located at
the neighbourhood of the nodes and the consumers are distributed along the
edges (roads), that can have different sizes. This part of the work is related
with the area of network games (see [8, 20] 19, 23]). However, these studies
locate firms and consumers at nodes, following the modeling methodology
common in social network analysis. In particular, the edges in these only
serve the purpose of connecting two nodes. The networks presented here are
fundamentally different because consumers are assumed uniformly distrib-
uted along the edges of the network.

Again, we study the linear and quadratic cases separately. Moreover, in
the linear case, we consider that transportation costs that consumers have

to support can be different for each firm of the network.
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We extend the definition of local optimum price strategy to the Hotelling
network and, similarly as in Chapter [l we introduce (weak) bounded condi-
tions on production costs and road lengths that depend on the maximum and
minimum values of the production costs, on the road lengths in the network
and on the transportation costs. Under the (weak) bounded conditions, we
prove that the price competition game has a local optimum price strategy.
Under other (strong) bounded conditions that depend also on the maximum
node degree of the network, we prove that the local optimum price strategy
is a Nash price equilibrium strategy. We give an explicit series expansion
formula for the Nash price equilibrium that shows explicitly how the Nash
price equilibrium of a firm depends on the production costs, road market sizes
and firms locations. Furthermore, the influence of a firm in the Nash price
equilibrium of other firm decreases exponentially with the distance between
the firms.

Assuming that the firms could not know the entire network, we introduce

the idea of space bounded information (see Subsections [2.1.4)and [2.2.3]), that

defines how deep a firm can see in the network from its location in terms of
the production costs, node degrees and road sizes and we show how a firm
can estimate its own local optimum price.

With linear transportation costs, we study the location game and we prove
that, if the firms are located at the neighbourhood of the nodes of degree
greater than 2, the local optimal localization strategy is achieved when the
firms are at the vertices of the network (see Subsection [2.1.3)).

In Section [2.3] considering that the firms are located at the vertices of
the network, we extend the Hotelling model with linear transportation cost
allowing that the firms in the network can charge different transportation
costs. In Section [2.4]we deal with the problem of uncertainty on the Hotelling
network and we find the Bayesian Nash equilibrium strategy in prices.

Finally, in the conclusions we discuss the results and we present some

possible directions of future works.
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Chapter 1
Hotelling model

This chapter contains a general presentation of the classical Hotelling model
where the firms have different production costs and introduces the price
competition in the Hotelling model with uncertainty in the production costs
of both firms. We consider the two usual approaches of the Hotelling model,
and we study separately the scenarios of linear and quadratic transportation

costs.

1.1 Linear transportation costs

In this section, we consider that the firms have associated different transport-
ation costs t4 and tp and we study the Hotelling model [25] with uncertainty
in the production costs of both firms with linear transportation costs. For the
linear Hotelling model with firms located at the boundaries of the segment
line, we study the price competition in a scenario of incomplete information
in the production costs of both firms.

We introduce the bounded uncertain costs BUC'1 condition that defines a
bound for the costs in terms of the transportation cost and the road length of
the line. Under the bounded costs BUC'1 condition we compute the unique
local optimum price strategy for the firms with the property that the mar-

17



ket shares of both firms are not empty for any outcome of production costs.
We introduce a mild additional bounded uncertain costs BUC?2 and, under
the BUC1 and BUC?2 conditions, we prove that the local optimum price
strategy is a Bayesian-Nash price strategy. Finally, we do a complete ana-
lysis of profits, consumer surplus and welfare under complete and incomplete
information.

In the last subsection we present the results of the section where the
linear transportation costs are equal to both firms, t4 = tg = t, as originally

presented by Hotelling.

1.1.1 Hotelling model under complete information

The buyers of a commodity will be supposed uniformly distributed along a
line with length [. In the two ends of the line there are two firms A and B,
located at positions 0 and [ respectively, selling the same commodity with
unitary production costs ¢y, and cg. No customer has any preference for
either seller except on the ground of price plus transportation cost t4 or tg.

Denote A’s price by ps and B’s price by pg. The point of division
x = x(pa,pp) €]0,1[ between the regions served by the two entrepreneurs
is determined by the condition that at this place it is a matter of indifference
whether one buys from A or from B (see Figure [L.1]).

A x B
® i nd
| I |
» ! !

0
tp(l-x)+pp

»la »
’ ¥ '

Iy xX+py

Figure 1.1: Hotelling’s linear city with different transportation costs

The point z is the location of the indifferent consumer to buy from firm

A or firm B, if
pA+tAx:pB+tB(l—x)

18



Solving for z, we obtain

x:pB_pA+tBl
ta+1ip .

Both firms have a non-empty market share if and only if x €]0,1[ . Hence,

both firms have a non-empty market share if and only if the prices satisfy

—tBl<pB—pA <tgl (1.1)

We note that
[pa — pp| <min{ta,tp}!
implies inequality (1.1]). Assuming inequality (1.1]), both firms A and B have

a non-empty demand (z and [ —z) and the profits of the two firms are defined

respectively by

—pa+tipl
T4 = (pa—ca)r = (pa—ca) P —PATTE ; (1.2)
ta+tp
nd +tal
T = (PB - CB) (l - x) = (PB - CB) M. (1.3)

ta+tip

Two of the fundamental economic quantities in oligopoly theory are the
consumer surplus C'S and the welfare W. The consumer surplus is the gain
of the consumers community for given price strategies of both firms. The
welfare is the gain of the state that includes the gains of the consumers
community and the gains of the firms for given price strategies of both firms.
Let us denote by vy the total amount that consumers are willing to pay
for the commodity. The total amount v(y) that a consumer located at y pays

for the commodity is given by

pat+tay if 0 <y <ua;
v(y) = .
ppt+tep(l—y) frx<y<l.

19



The consumer surplus C'S is the difference between the total amount that a

consumer is willing to pay vy and the total amount that the consumer pays
v(y) l
CS = / vy — v(y)dy. (1.4)
0

The welfare W is given by adding the profits of firms A and B with the
consumer surplus

W =CS +m4+mp. (1.5)

Definition 1.1.1. A price strategy (]_?A’EB) for both firms is a local optimum
price strategy if (i) for every small deviation of the price p, the profit ma of
firm A decreases, and for every small deviation of the price Py the profit mg of
firm B decreases (local optimum property); and (ii) the indifferent consumer

exists, i.e. 0 < x < (duopoly property).

Let us compute the local optimum price strategy (p P B). Differentiating
w4 with respect to p4 and g with respect to pp and equalizing to zero, we
obtain the first order conditions (FOC). The FOC imply that

1
QA:§(20A+CB+(tA+2tB)l) (1.6)

and .
]_?B:§(CA+QCB+(2tA+tB)l). (1.7)

We note that the first order conditions refer to jointly optimizing the profit
function ((1.2]) with respect to the price p4 and the profit function with
respect to the price pg.

Since the profit functions and are concave, the second-order
conditions for this maximization problem are satisfied and so the prices

and ([1.7)) are indeed maxima for the functions ([1.2)) and (1.3]), respectively.
The corresponding equilibrium profits are given by

— (CB — CA + (tA +2tB) l)2
=A 9(tA—|—tB>

(1.8)

20



and ( + (2t +1 )l)2
CA — CB A B
f— . ]_.
TB 9(ts+tp) (1.9)

Furthermore, the indifferent consumer location corresponding to the maxim-

izers p N and p 5 of the profit functions 74 and np is

CB —CA—i-(tA—i-QtB)l
3(tA+tB) .

g:

Finally, for the pair of prices (BA’ EB) to be a local optimum price strategy, we
need assumption to be satisfied with respect to these pair of prices. We
observe that assumption is satisfied with respect to the pair of prices
(p N QB) if and only if the following condition with respect to the production

costs is satisfied.

Definition 1.1.2. The Hotelling model satisfies the bounded costs (BC)
condition, if
—(tA —I—QtB)l <cgp—cy < (QtA —f—tB) l.

We note that

lca —cp| <3 min{ta,tp}l

implies the BC' condition.

We note that under the BC' condition the prices are higher than the
production costs p 4> CA and Py > CB- Hence, there is a local optimum
price strategy if and only if the BC' condition holds. Furthermore, under the
BC condition, the pair of prices (p P B) is the local optimum price strategy.

We note that, if a Nash price equilibrium satisfies the duopoly property
then it is a local optimum price strategy. However, a local optimum price
strategy is only a local strategic maximum. Hence, the local optimum price
strategy to be a Nash equilibrium must also be global strategic maximum.
We are going to show that this is the case.

Following D’Aspremont et al. [2], we note that the profits of the two

firms, valued at local optimum price strategy are globally optimal if they are
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at least as great as the payoffs that firms would earn by undercutting the
rivals’ price and supplying the whole market.

Firm A may gain the whole market, undercutting its rival by setting
p%ZQB—tAl—e, with € > 0.

In this case the profit amounts to

1
T = (BB—tAZ—e—cA) l=3Qep—2cat(tp—ta)l) I —el.

A similar argument is valid for store B. Undercutting this rival, setting
Py =p,—tsl—e¢
it would earn
M 1
ml = (py—tel—c—cp) I =5 (2ea—2ep+(ta—ts)]) [ — el

The conditions for such undercutting not to be profitable are w4, > 7} and

mp > 7. Hence, since € > 0, proving that

(CB — CA + (tA + 2tB) l>2 >
9(tA+tB) -

1
g(QCB—QCA—F(tB—tA)Z) { (1.10)

is sufficient to prove that 4, > 73, Similarly, proving that

(CA —cp+ (tB + QtA) l)2
9 (tA + tB)

1
Z §(20A—203—|—(tA—tB)l) { (111)

is sufficient to prove that gz > 7.
However, conditions and are satisfied because they are equi-
valent to
(ca—cp+ (2t +1t5)1)*> >0

22



and
(cg —ca+ (ta+2tp)1)*> > 0.

Therefore, if (p,,p,) is a local optimum price strategy then (p,.p,) is a
Nash price equilibrium.
By equation (1.4]), the consumer surplus C'S with respect to the local

optimum price strategy (p " ]_DB) is given by

I
CS = / vp — v(x)de
0

Stg+4ty 2 ca +2CBZ—|— (CB —Cp+ (tA—FQtB) l)2
6 3 18(ta + tp)

:UTZ—

(1.12)

By equation ((1.5)), the welfare W is given by

ta+tp ca+2cp
W = [ — = — l
= 18 3 '
i 2(CA—CB)<tA—4tB>l—5tAtBl2+5(CA—CB)2
18(tA+tB) .

1.1.2 Incomplete information on the production costs

The incomplete information consists in each firm to know its production
cost but to be uncertain about the competitor’s cost. In this subsection,
we introduce a simple notation that is fundamental for the elegance and
understanding of the results presented in this section.

Let the triples (14,€Q4,q4) and (Ip, {25, qp) represent (finite, countable
or uncountable) sets of types I4 and Ip with o-algebras 24 and Qp and
probability measures g4 and ¢g, over I4 and Ig, respectively.

We define the expected values F4(f), Eg(f) and E(f) with respect to

23



the probability measures ¢4 and ¢p as follows:

Ea(f) = | f(zw)dga(z); Ep(f) = | f(zw)dgs(w)

Ia Ip

and

E(f) = / [ 7o) dan(w)dan(s),

Let ca : Iy — Ry and cp : Ig — R} be measurable functions where ¢ =
ca(z) denotes the production cost of firm A when the type of firm Ais z € 14
and ¢! = cp(w) denotes the production cost of firm B when the type of firm
B is w € Ig. Furthermore, we assume that the expected values of ¢4 and cp

are finite

B(en) = Ealen) = | cidaa(a) < o0

Iy

E(cg) = Ep(cp) = /I cpdgp(w) < .
B

We assume that dga(z) denotes the probability of the belief of the firm B
on the production costs of the firm A to be ¢%. Similarly, we assume that
dgp(w) denotes the probability of the belief of the firm A on the production
costs of the firm B to be c}.

The simplicity of the following cost deviation formulas is crucial to express
the main results of this section in a clear and understandable way. The cost

deviations of firm A and firm B
AA:IA—>R5r and AB:IB—>R8’

are given respectively by A4(z) = ¢ — E(ca) and Ag(w) = ¢4 — E(cp). The

cost deviation between the firms

AcilAXIB—)RS_

24



is given by Ac¢(z,w) = ¢ — ¢%. Since the meaning is clear, we will use

through the section the following simplified notation:
Ay =A0A4(2); Ap=Ap(w) and Ac = Ac(z,w).

The expected cost deviation Ag between the firms is given by Ap = E(ca) —
E(cp). Hence,
Ao — A= A4 — Ap.

Let V4 and Vg be the variances of the production costs ¢4 and cpg, respect-

ively. We observe that
E(Ac) = Ap; E(AY) = Ea(A%) =Va; E(A%) = Eg(A%) = Va. (1.13)

Furthermore,

EA(AZ) = AR+ Va+ Ap (Ap — 2Ap); (1.14)
Ep(A%) = A%+ Ve + Ap (Ap +2A4); (1.15)
E(AY) = A%+ Va+ Vp. (1.16)

1.1.3 Local optimal price strategy under incomplete

information

In this section, we introduce incomplete information in the classical Hotelling
game and we find the local optimal price strategy. We introduce the bounded
uncertain costs condition that allows us to find the local optimum price
strategy.

A price strategy (pa, pp) is given by a pair of functions p4 : [4 — R and
pp : I — R where p = pa(z) denotes the price of firm A when the type of
firm A is z € 14 and p% = pp(w) denotes the price of firm B when the type
of firm B is w € Ig. We note that F(pa) = Fa(pa) and E(ps) = Eg(ps).

25



The indifferent consumer x : 14 x Ig — (0,1) is given by

z,w:p%_pi_{—tBl
ta+tpg

T

(1.17)

The ex-post profit of the firms is the effective profit of the firms given a
realization of the production costs for both firm. Hence, it is the main
economic information for both firms. However, the incomplete information
prevents the firms to have access to their ex-post profits except after the
firms have already decided their price strategies. The ez-post profits w4 :
Iy x Ip — RS and 757 : 4 x Ip — RY are given by

EP

mA (z,w) = ma(z,w) = (ph — ) 7

and

g (2,w) = mp(z,w) = (pp — cp) (L — ™).

The ex-ante profit of the firms is the expected profit of the firm that knows
its production cost but are uncertain about the production cost of the com-
petitor firm. The ez-ante profits 754 : I, — R{ and 754 : Ip — R{ are
given by

wh4(2) = Ep(nff) and 7E%(w) = Ex(nED). (1.18)

We note that, the ezpected profit E(m§T) of firm A is equal to Ex(754) and
the expected profit E(mET) of firm B is equal to E(rE4).

The incomplete information forces the firms to have to choose their price
strategies using their knowledge of their ex-ante profits, to which they have
access, instead of the ex-post profits, to which they do not have access except

after the price strategies are decided.

Definition 1.1.3. A price strategy (EA’]_)B) for both firms is a local optimum
price strategy if (i) for every z € I4 and for every small deviation of the price
p’, the ez-ante profit 7EA(2) of firm A decreases, and for every w € Ip and

for every small deviation of the price Py the ex-ante profit 54 (w) of firm B
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decreases (local optimum property); and (ii) for every z € I, and w € Ig the

indifferent consumer exists, i.e. 0 < x*" <1 (duopoly property).

We introduce the BUC'1 condition that has the crucial economical in-
formation that can be extracted from the exogenous variables. The BUC'1
condition allow us to know if there is, or not, a local optimum price strategy

in the presence of uncertainty for the production costs of both firms.

Definition 1.1.4. The Hotelling model satisfies the bounded uncertain costs
(BUC1) condition, if

—Q(tA—i-QtB)l < AE —3AC < 2(2t,4+t3) l,

for all z € Iy and for all w € Ip.

We note that
|3 AC — AE| <6 min{tA,tB}l

implies BUC' condition.
For i € {A, B}, we define

m o : z M _ z
c —Eréll{;{ci} and ¢; —r?eai({ci}.

Let
A = M _ om
St 9
Thus, the bounded uncertain costs and location BUC'1 is implied by the
following stronger SBUC'1 condition.

Definition 1.1.5. The Hotelling model satisfies the strong bounded uncer-
tain costs (SBUC1) condition, if

A < 3 min{ta,tp}l.
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The following theorem is a key economical result in oligopoly theory.
First, it tells us about the existence, or not, of a local optimum price strategy
only by accessing a simple inequality in the exogenous variables and so avail-
able to both firms. Secondly, it gives us explicit and simple formulas that
allow the firms to know the relevance of the exogenous variables in their price

strategies and corresponding profits.

Theorem 1.1.1. There is a local optimum price strateqy (]_?A,]_QB) iof and only
if the BUC'1 condition holds. Under the BUC'1 condition, the expected prices

of the local optimum price strateqy are given by

ta+2t A

E@p,) = % [+ E(cy) — ?E; (1.19)
2t t A

BE(p,) = % I+ B(en) + 2L (1.20)

Furthermore, the local optimum price strategy (p A,}_yB) 15 unique and it 18

given by
AA w AB

55 =By + 5 (1.21)

]_)Z:E(Z_)A)+ 9

We observe that the difference between the expected prices of both firms
has a very useful and clear economical interpretation in terms of the localiz-
ation and expected cost deviations.

tg —ta A
E(p,) — E(py) = Bg +TE

Furthermore, for different production costs, the differences between the op-
timal prices of a firm are proportional to the differences of the production

costs

z1 22
21 22 Ci —Cy4

Z_)A Z_)A 2 '

and w, s
wi W2 CB B CB

]_93 EB 2 :
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for all zq, 29 € I4 and wy, ws € Ig. Hence, half of the production costs value
is incorporated in the price.

The ex-post profit of the firms is the effective profit of the firms given
a realization of the production costs for both firms. Hence it is the main
economic information for both firms. By equation , the ex-post profit
of firm A is

(2(ta+2t5) — 304 —2A5) (2(ta +2t5)] + Ap — 3A0)

EP o
i (2 w) = 36 (ta + t5)

and the ex-post profit of firm B is

(2 (275,4 —l—tB)l —3Ap +2AE) (2 (QtA —l—tB)l — Ag +3Ac)
36 (tA —|-tB)

i (z,w) =

The ex-ante profit of a firm is the expected profit of the firm that knows its
production cost but is uncertain about the production costs of the competitor

firm. Since the ex-post profit of firm A, 757 (z, w), is given by

(2<tA+2tB)l — 3AA — QAE) (2(tA+2tB)l+AE+3(C}§ —Ci‘))
36(15,4-1-253) ’

the ex-ante profit of firm A, 754(2), is

(2 (tA + 2753)[ — BAA — 2AE) (2 (tA + QtB)l + AE + 3<E(CB) — CZ))

36 (IfA + tB)
Hence,
2 2 —3A4 —2AR)?
() = 2Uat 2tp) = 304 B) (1.22)
36 (ta +tp)
Similarly, the ex-ante profit of firm B is
_ 2
TEA () = (2(2ta+tp)l —3Ap+2AE) ' (1.23)

36 (tA -+ tB>
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Let a4 and ap be given by
as =max{F(cp) —cp:we Ig} and ap =max{E(ca) — % : 2z € I4}.

The following corollary gives us the information of the market size of both
firms by giving the explicit localization of the indifferent consumer with re-

spect to the local optimum price strategy.

Corollary 1.1.1. Under the BUC'1 condition, the indifferent consumer z*"

15 given by
2 Ap—3A
£z,w _ tA+ tB l—f- E 3 C‘ (124)
3(tA+tB) G(tA +tB)

The pair of prices @A’BB) satisfies

P —Ch = aa/2 pp—cp>ag/2 (1.25)

Proof of Theorem and Corollary|1.1.1).

Under incomplete information, each firm seeks to maximize its ex-ante profit.
From ([1.18)), the ex-ante profit for firm A is given by

WA?A(CA) = /I(pA_CA)( = 40 )dCIB(w)

tat+1ip
z z E(pB)_pIZLX—i_tBl)
= —c .

(P2 4) ( tA+in
From the first order condition FOC applied to the ex-ante profit of firm A
we obtain - o

py= At (Z;BH A (1.26)
Similarly,

(1.27)

w w w E(pA)_pw+tAl
WgA(CB) = (pp — cp) < At fB )
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and, by the FOC, we obtain

w CptE@a)+tal
p =2 (QA) A (1.28)

Then, from ((1.26)) and ([1.28]),

E(ca) + E(ps) + sl

E(pa) = 5 ;
Elpy) = E(cp) + E2(pA) + tAl'

Solving the system of two equations, we obtain that

ta+ 2t 2F(ca)+ Elc
E( A) A ; Bl (A)3 (B)7
2t +t E(ca)+2F
E( ) A3 Bl (CA) - (CB)'

Hence, equalities ((1.19) and ([1.20]) are satisfied. Replacing ((1.20]) in (|1.26]
and replacing ((1.19) in ([1.28]) we obtain that

ﬁ_i_tA‘}‘ztB E(CA)-FQE(CB)'

Z: l
B 2t4+t 2F(cy)+ Elc
p}§=73+ A3 Ly (A)6 (B).

Hence, equation ([1.21)) is satisfied.
Replacing in equation 1' the values of p , and p, given by the equation
(1.21)) we obtain that the indifferent consumer x*" is given by
o ta+2tp 3(c%% —c4)+ E(ca) — E(cp)

3(ta+tgp) 6(ta+tp)

Hence, equation (1.24)) is satisfied. Therefore, (p,,p,) satisfies property (ii)
if and only if the BUC'1 condition holds.
Since the ex-ante profit functions (1.26) and (1.27)) are concave, the

31



second-order conditions for this maximization problem are satisfied and so
the prices p? and p}; are indeed maxima for the functions (1.26) and (1.27),
respectively. Therefore, the pair (Q'Z, Qg) satisfies property (i) and so @2’ ]_og)
is a local optimum price strategy.

Let us prove that p? and p? satisfy inequalities (1.25). By equation
(T.21),

ta+2tp _ §+ E(CA)—FQE(CB)'

Py T Ty 2 6 ’
w w 2tat+tp . % 2E(ca)+ E(cp)
EB_CB:TZ_7+ 5 .

By the BUC' condition, for every w € Iz, we obtain

6(p’ —ci) —2(ta+2tp)l=—3ch + E(ca) + 2 E(cp)
= 3(E(cp) — cg) —3(ch — cg) + E(ca) — E(cp)

>3 (E(CB) — C%) -2 (tA + 2253) l.
Similarly, by the BUC'1 condition, for every z € I4, we obtain

6(py —cp) —22ta+1p)l =—=3cg+2E(ca) + E(cp)
=3(E(ca) = ci) = 3(cp — ¢4) — Elca) + E(cp)
>3 (E(CA) — CZA) -2 (2tA +tB> l.

Hence, inequalities ([1.25)) are satisfied. O

1.1.4 Bayesian Nash equilibrium

We note that, if a Bayesian-Nash price equilibrium satisfies the duopoly
property then it is a local optimum price strategy. However, a local optimum
price strategy is only a local strategic maximum. Hence, the local optimum

price strategy to be a Bayesian-Nash equilibrium must also be global strategic
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maximum. In this subsection, we are going to show that this is the case.
Following D’Aspremont et al. [2], we note that the profits of the two
firms, valued at local optimum price strategy are globally optimal if they are
at least as great as the payoffs that firms would earn by undercutting the
rivals’s price and supplying the whole market for all admissible subsets of

types I4 and Ip.

Definition 1.1.6. A price strategy (p,,p,) for both firms is a Bayesian-
Nash, if for every z € Ia and for every deviation of the price p? the ex-
ante profit 754(2) of firm A decreases, and for every w € Iy and for every

deviation of the price Py the ex-ante profit m54(w) of firm B decreases.

Let (p A’BB) be the local optimum price strategy. Given the type wy of

firm B, firm A may gain the whole market, undercutting its rival by setting
M — wo .
pa (wo) =DPpg —tal—¢€, withe>0

Hence, by BUC1 condition p}(wg) < p3 for all z € I4. We observe that

if firm A chooses the price pY (wp) then, by equalities (1.17) and (1.21)), the
whole market belongs to Firm A for all types w of firm B with ¢ > ¢"°. Let

w_ M
x(w;wy) = min {17 pp — pa (wo) + tBl} ‘

ta+tp

Thus, the expected profit with respect to the price p’(wy) for firm A is

REAM () = / (1 (w0) — &) (w; wo) dgs(w).

Let wys € I such that ¢z = c%. Since ¢"M > c¢*° for every wy € Ig, we

obtain
WEAM(UJO) < (p%(wo) - Cil) I < @%(wM) — )l (1.29)

Given the type zg of firm A, firm B may gain the whole market, undercutting
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its rival by setting
M .20 :
pg (20) =p3 —tpl —¢, with e > 0.

Hence, by BUC1 condition p¥(zy) < p% for all w € Ig. We observe that

if firm B chooses the price p¥ (zy) then, by equalities (1.17)) and (1.21)), the
whole market belongs to Firm B for all types z of firm A with ¢ > ¢*. Let

M _MZ trl
I(Z;zg):max{O,pB (0) = P2 +tp }

ta+1p

Thus, the ezpected profit with respect to the price p¥ (2) of firm B is

REAM(20) = / (1 (20) — ) (1 — (2 20)) dga(2).

Ia

Let 23 € I such that ¢ = c}. Since ¢ > ¢* for every z, € I4, we

obtain

g (20) < (P (20) — ) 1< (0 (2n0) = €B) 1. (1.30)

Remark 1.1.1. Under the BUC1 condition, the strategic equilibrium (p ,,p )
is the unique pure Bayesian-Nash equilibrium with the duopoly property if for

every z € I, and every w € Ipg,
PEAM) < 7BA) and  TEMM(z) <xBw).  (L3D)

Let
X;j =3¢ +2E(c;) + E(c;) — 6" +2(t; — t) 1

and
Yij=2(t;+2t;)) |+ E(c;) + 2 E(c;) — 3¢},

Definition 1.1.7. The Hotelling model satisfies the bounded uncertain costs
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(BUC?2) condition, if
6(ta+tp) Xapl <Yig (1.32)

and
6(ta+tp) Xpal < Y5 4 (1.33)

Thus, the bounded uncertain costs condition BUC?2 is implied by the
following stronger SBUC'2 condition.
Let

tm =min{ta,tp} and  ty = max{ta,tp}.

Definition 1.1.8. The Hotelling model satisfies the strong bounded uncer-
tain costs (SBUC?2) condition, if

_ 2 _9 2
0R < (3tm ty + t’")l
tar

We observe that the SBUC?2 condition implies SBUC'1 condition and so
implies the BUC'1 condition.

Theorem 1.1.2. If the Hotelling model satisfies the BUC1 and BUC?2 con-
ditions the local optimum price strategy (BA’BB) 15 a Bayesian-Nash equilib-

TIUM.

Corollary 1.1.2. If the Hotelling model satisfies SBUC?2 condition the local

optimum price strategy (p " QB) 15 a Bayesian-Nash equilibrium.

Proof. By equalities (1.22) and (1.23)), we obtain that w54 (za) < 754(2)

and 754 (wy) < 7wEA(w) for all z € I, and for all w € Ig. Hence, put-

ting conditions ([1.29)), (1.30) and ((1.31)) together, we obtain the following

sufficient condition for the local optimum price strategy (p A,]_)B) to be a

Bayesian-Nash equilibrium:

EA

(P (war) =X)L < wi(zar)  and (py (2ar) — €)1 < mp (war). (1.34)
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By equalities ([1.22]) and ((1.23)) we obtain that

A () = (2(ta+2tp) L+ E(ca) + 2 E(cp) — 3ci)* _ Yig

-4 36 (ta +13) 36 (ta +tp)
and

7TEA(’LUM) _ (2(2tA+tB)l+2E(CA)—|—E(CB)—301\34)2 _ YE2§,A .

=B 36 (tg +tp) 36 (ty +tp)

Also, from ((1.1.10)), we know that

P (wy) — v = pRt —tal—e—clf

1
= 6(30%/[+2E(CA) + E(cg) — 6y +2(tg —ta)l) — ¢

1

= 6 AB — €.

and
p%/‘[(ZM)—Cg = BZM_tBl_G_CTg

1

= 6(3C%+E(CA)+2E(CB)—6Cg+2(t3—tA)l)—€
1

= EXB’A_G.

Hence, condition ([1.34]) holds if inequalities (1.32)) and ((1.33)) are satisfied. [J

1.1.5 Comparative profit analysis

From now on, we assume that the BUC'1 condition holds and that the price
strategy (p P B) is the local optimum price strategy determined in Theorem
11

We observe that the difference between the ex-post profits of both firms
has a very useful and clear economical interpretation in terms of the expected

cost deviations.
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Let X = Ap(2tq +tg) — Aa(ta + 2tp). The difference 75F (2, w) —

wBP (2, w) is given by

tg —ta 24 2X+(AE—3AC) (4(tA+tB) —AA—AB)
3 12(tA—|—tB)

Furthermore, for different production costs, the differences between the ex-

post profit of firm A, 757 (2, w) — 74 (25, w), is given by

(¢ — ) (4ta+2t5) L = A+ 3(ch + Elea) — il — 7))
12 (ta + tp) .

The difference between the ex-post profit of firm B, &7 (2, w) — 5P (2, wy),

is given by

(cg” —cg') (4 (2ta+tp) I+ Ap 4 3(ch + E(cp) — cg' — c5’))
12 (tA + tB)

for all z, 21,29 € 14 and w, wy,ws € Ip.

We observe that the difference between the ex-ante profits of both firms
has a very useful and clear economical interpretation in terms of the expected
cost deviations.

The difference 754 (2) — &4 (w) is given by

tg —ta l2 (AA—l—AB) (3 (AA — AB) —|—4AE> + (4X — 8 Ap (tA—i-tB))l
+
3 12(ta +tp)

Furthermore, for different production costs, the differences between the ex-

ante profits of firm A, 754(2;) — 754(2,) is given by

(¢ —¢3) (A(ta+2tp) I +3(2E(ca) — ¢ —¢F) —4Ap)
12 (ta + tp)

and the differences between the ex-ante profits of firm B, 754(w;) — x5 (wy),
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is given by

(cgr—cp) (4 (2ta+1tp)l+3(2E(cp) — cyt —cy?) +4AR)
12(ta +tp)

for all z, 21,29 € 14 and w, wy,ws € Ip.

The difference between the ex-post and the ex-ante profit for a firm is
the real deviation from the realized gain of the firm and the expected gain
of the firm knowing its own production cost but being uncertain about the
production cost of the other firm. It is the best measure of the risk involved
for the firm given the uncertainty in the production costs of the other firm.

The difference between the ex-post profit and the ex-ante profit for firm A is

A
mi’ (@) - xie) = Gy Gtat+2tn)l—2480 —3A4).

The difference between the ex-post profit and the ex-ante profit for firm B is

A
B (z,w) — B (w) = m (2(2ta+1t5)+2A5 —3Ap).

Definition 1.1.9. The Hotelling model satisfies the A-bounded uncertain
costs (A — BUC') condition, if for all z € I,

3AA+2AE <2(t,4+2t3)l.

The Hotelling model satisfies the B-bounded uncertain costs (B — BUC)

condition, if for allw € Ig
3Ap —2Agp < 2(2tA —|—tB) l.

The following corollary tells us that the sign of the risk of a firm has the
opposite sign of the deviation of the competitor firm realized production cost

from its average. Hence, under incomplete information the sign of the risk
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of a firm is not accessible to the firm. However, the probability of the sign

of the risk of a firm to be positive or negative is accessible to the firm.

Corollary 1.1.3. Under the A-bounded uncertain costs (A — BUC') condi-
tion,

b (z,w) < 754(2)  if and only if Ap <O. (1.35)

Under the B-bounded uncertain costs (B — BUC') condition,

18P (z,w) < 2B w)  if and only if A, < 0. (1.36)

The proof of the above corollary follows from a simple manipulation of
the previous formulas for the ex-post and ex-ante profits.

The expected profit of the firm is the expected gain of the firm. We
observe that the ex-ante and the ex-posts profits of both firms are strictly
positive with respect to the local optimum price strategy. Hence, the expec-
ted profits of both firms are also strictly positive. Since the ex-ante profit

m54(2) of firm A is equal to

9N —12A,4 ((ta+2tp)l — Ap) +4((ta+2tp)l — AR)?
36(tA+tB) ’

from (1.13]), we obtain that the expected profit of firm A is given by

((tA—i-QtB)l—AE)Q Va
9(tg+tp) 4(ta+tp)

E(xi") =

Similarly, the expected profit of firm B is given by

(2ta+tp)l+ Ag)? Vg
9(ta+tp) 4(ta+tp)

E(xg") =

The difference between the ex-ante and the expected profit of a firm is the
deviation from the expected realized gain of the firm given the realization

of its own production cost and the expected gain in average for different
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realizations of its own production cost, but being in both cases uncertain
about the production costs of the competitor firm. It is the best measure
of the quality of its realized production cost in terms of the expected profit

over its own production costs.
Corollary 1.1.4. The difference between the ex-ante profit and the expected
profit for firm A is

AA(4(tA+2tB)Z—3AA—4AE)+3VA
12 (ta +tB) '

E(@i") — o5 (2) = (1.37)

The difference between the ex-ante profit and the expected profit for firm B

18

B AB(4<2tA+tB)l—3AB+4AE)+3VB
12(tA+tB) .

(1.38)

Proof. Let X = (t4+2tp)l — Ag. Hence,

4X%2—(2X —3A4)2+9V,
36 (tA—l-tB)
Ap(4X —3A4)+3Vy
12(ts +tp)

E(x") — xi4(2)

and so equality ((1.37) holds. The proof of equality ([1.38) follows similarly.
O

1.1.6 Comparative consumer surplus and welfare ana-
lysis
The ex-post consumer surplus is the realized gain of the consumers com-

munity for given outcomes of the production costs of both firms. Under

incomplete information, by equation ([1.4)), the ex-post consumer surplus is

5tB —|—4tA l2 B 4E(CB) +2E(CA) —|—3AB
6 6

CSEY = ypl — I+ Ky, (1.39)
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where
(2 (tA + 2153)[ —3Ac + AE)z

72 (ta +1tp)

The expected value of the consumer surplus is the expected gain of the

K, =

consumers community for all possible outcomes of the production costs of

both firms. The expected value of the consumer surplus E(CS*T) is given

by

B(CSEF) — /I /IA@EquA(@qu(w)

5t 4t )
— gl %F ~ 5 (2B(cn) + E(ca) + Uy

where
(2(ta+2tp)l—2Ap)*+9(Va+ Vp)

72(ta+tp)
We note that, from equalities (1.13]) and ((1.16)), the expected value of K7 is

U, =

(2(ta+2tp)l+ Ap)2 —6 E(Ac) (2(ta +2t5) L+ Ag) + 9E(AZ)

U= 72 (ta + tp)
 @Ua+2tp)l+ Ap)? —6AE(2(ta+ 2tp)l + Ag) +9(Va+ Vs + AR)

B 72(ta +tp)

(2(ta +2tg)l —2AE)>+9(Va+ Vp)

72 (ta+1p)

The difference between the ex-post consumer surplus and the expected
value of the consumer surplus measures the difference between the gain of
the consumers for the realized outcomes of the production costs of both
firms and the expected gain of the consumers for all possible outcomes of
the production costs of both firms. Hence, it measures the risk taken by the

consumers for different outcomes of the production costs of both firms.

Corollary 1.1.5. The difference between the ex-post consumer surplus and
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the expected value of the consumer surplus, CS¥Y — E(CSFT), is

Ap ] (ta+2tp) (Ap — Ax)
2T

;4 (Be - 3AC)2 —4AL —9(Vy+ Vi)
6(ta+tg) 72(ta +tp) ‘

Proof. Let X =2(t4+2tg)l. Hence,

CSPF — B(CSPY) =
Ap . (X =3Ac+Ap)?— (X —-2A5)2—-9(V4+Vg)

=T i 72 (ta + t5)
_ Ap, 6X(Ap—Ac)+ (Ap —3Ac)2 —4A% —9(Vy+ Vp)
2 72(ta+tg)
Ap. X(Ap—Ax) (Ap—3Ac)2—4A2 —9(Vy+Vp)
2 12(ta+ tp) 72 (ta +tg)

]

The ex-post welfare is the realized gain of the state that includes the gains
of the consumers community and the gains of the firms for a given outcomes

of the production costs of both firms.
By equation ((1.5)), the ex-post welfare is

(tA—}-tB)Z +5tatlp 2_4E(CB) +2FE(ca) +3Ap

WEP = vpl— I+ Ko+ K
~ooTur 18 (ta + tp) 6 T2t s,
(1.40)
where
o, (ts =) (Ap = 3A¢) =3 (A4 (204 + tp) + Ap (ta +2t5))
? 18 (ts +t5)
and

C3A0(9A¢ —2A5) — A2
B 72(ty +tp) '

The expected value of the welfare is the expected gain of the state for all

K

possible outcomes of the production costs of both firms. The expected value
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of the welfare E(W*') is given by

E(WEP) = /I ) /1 ) W5 dga(z) dgp(w)

_ (ta+tp)* +5tatp , 2E(c) + E(ca), Ap(dip—ta)
18 (ta +tp) 3 9(ta+1tp)

:UTZ

[ 4 Us,
(1.41)

where

I — 27 (Va+ Vi) +20A%
2T 72(ta+1tg)

We note that, from equalities (1.13]) and ((1.16)), the expected value of Kj is

27 B(A2) — 6 E(Ac) Ap — A2

U, =
? 72(ta+tp)
T (Va+ Ve +A%) —6A%L — AL 2T (Va+ Vi) +20A%
72(ta + L) 72(ta+ts)

The difference between the ex-post welfare and the expected value of the
welfare measures the difference in the gains of the state between the realized
outcomes of the production costs of both firms and the expected gain of the
state for all possible outcomes of the production costs of both firms. Hence, it
measures the risk taken by the state for different outcomes of the production

costs of both firms.

Corollary 1.1.6. The difference between the ex-post welfare and the expected
value of welfare, WX — E(WFF), is

Aultat5tp) + Ap(Btattp) | (AL~ Vi~ Vi)~ 280 A5~ TA]

6(ts+1p) 24 (ta +tp)

Proof. From equalities ([1.40) and (1.41)) we obtain that

AB AE (4tB _tA)

WEP — E(WFPY = ——= [+ K3+ K4 + [ — U,
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We note that

3Ac (9Ac —2AE) —21A]25—27(VA+VB)
72(15,44—253)

0(AL — Vi — Vi) — 2A0 Ap — TAL

24 (ts +tp) '

K5 - K4—U2:

Hence,

AB QAE(4tB—tA)

EP—E EP _ _=b K
b =) y It 18 (ta + tp) e
L (45— 1) (Ap —3A0) = 3(Aa (214 + o) + Ap (ta +210)
18(ta +tp)
A
+(4tB—tA)(AE—Ac)—3(AA(2tA+tB)+AB(tA+2tB))l
6(tA+tB)
A
+(4tB_tA)(AB_AA>_3(tA(2AA+AB)+tB(AA+2AB>>l
6(tA+tB)
Ap QAB(tB—tA)—AA(tA-i—E)tB)
| [+ K,
2 + 6(tA+tB) T+ s
A
_ B(5tA+tB)+AA(tA+5tB)Z+K5‘
6(ta+1tp)

1.1.7 Complete versus Incomplete information

Let us consider the case where the production costs are revealed to both

firms before they choose the prices. In this case, the competition between

the firms is under complete information.

A price strategy (pG!, p%!) is given by a pair of functions p§! : Iy x Iy —
Ry and p%! : Iy x Ip — R{ where pG!(z,w) denotes the price of firm A and
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%! (2, w) denotes the price of firm B when the type of firm A is z € I4 and
the type of firm B is w € Ip.

Under the BC' condition, by equations and , the Nash price
strategy (pG!, p%§’) is given by

2 t 2t
pS(zw) =5+ 5 (Ac) + %l
and 2 2t t
+
Pyl (zw) = ea— 5 (Do) + =521,

By equation (1.8)), the profit 7§’ : I4 x Ip — R{ of firm A is given by

5 (z,w0) =

((ta+2tp)l — Ap)?
9(ta+tp) '

Similarly, by equation ([1.9), the profit 75! : Iy x Ip — R{ of firm B is given

by
((2ta+tg)l + Ag)?
9(ta+tp) '

Using equality ((1.15)), the expected profit Ep(xG!) for firm A is given by

g (2,w) =

((tA—{-QtB)l—AA —AE)2 + Vg
9(ta+tp)

Ep(x§") =

Similarly, using equality (1.14)) the expected profit E4(z%!) for firm B is

given by
(2ta+tp)l —Ap+ Ap)? 4+ Va
9(ta+1tp)

The expected profit E(zG!) for firm A is given by

Ex(rg') =

((ta+2tp)l — AR+ Vai+Vp

E(x§") = O (rt i)

45



Similarly, the expected profit E(z$!) for firm B is given by

(2ta+tp)l +AR)2+Vi+Vp

E(xg") = O (st i)

By equation (1.12), the consumer surplus is given by

Stg+4ta 2 As+ E(ca) +2A5 +2E(cp)

CS(z,w) = vpl — . 3 I+ 7y,
(1.42)
where
7 (ta+2tp)l — Ac)?
! 18 (ts +tp)
The expected value of the consumer surplus E(CS ol ) is
t 4t E 2F
B(CST (2 u)) = vyt - 22T B2 2Ben) g,

where

((ta+2tp)l —AR)?*+Va+ Vg
18 (ta + tp) ‘

We note that, from equalities (1.13]) and ((1.16)), the expected value of Z; is

Wy =

(ta+2t)? 12 —2(ta+2tp)l E(Ac) + E(AZ)
18 (tA +tB)
(ta +2tp)2 12 —2Ap (ta+2tp) l + AL+ V4 + Vp
18 (tA —l—tB)
(ta+2tp)l — AR)* +Va+Vp
18 (ta +tgp) '

W1 -

By equation (1.13), the welfare is given by

ta+tp 2 Ay+ E(ca) +2Ap+2E(cp)

CI
—opl —
w (Z,'LU) Ur 18 3

1+ 7y,
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where
. —5tAtBl2+2Acl(tA —4tB) +5A%«

Lo =
? 18 (ts +t5)
The expected value of the welfare E(W ) is given by

ta+1tp 12 B E(CA) + QE(CB)

crI o B
EW* (z,w)) =vrl 13 3

[+ Wy

where

_ —btatplP+2Agl(ta —4tp) +5(AL +Va+ Vi)
18 (tA—l-tB)

W

We note that, from equalities (1.13]) and ((1.16)), the expected value of Z; is

—btatgl?+2E(Ac)l(ta —4tp) + 5 E(AZ)
18 (ta +tg)
—5tatgl? +2Apl(ta—4tg) +5 (AL + Vi + Vp)
18 (ta +tp)

Wy, =

Corollary 1.1.7. The difference between the ex-post profit and the profit,

under complete information, for firm A, =5°(z,w) — 741 (z,w), is

(Aa —Ap)(Ax+2A5) = (2(ta +2tp)l —2A¢) (284 + Ap)
36 (tA —i—tB) '

(1.43)

The difference between the ex-post profit and the profit, under complete in-

formation, for firm B, w5F(z,w) — 7§ (2, w), is

(Ap— Ax)(Ap +2A4) — (2204 +15) 1+ 2A0) (285 + Ay)
36 (tA —i—tB) ’

(1.44)
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Proof. Let CI = (ta+ 2tp)l — Ac. Hence,

(20T +Ap— AN (2CT — Ay —2Ap) — 40T

EP el _
(Ap — A)(—Aa —2Ap) +2CI(—2A4 — Ap)

36 (ta+tp)

and so equality ((1.43) holds. The proof of equality ((1.44) follows similarly.
O

Corollary 1.1.8. The difference between the ex-ante profit Eg(mh?) and
Ep(xSl) for firm A is
Ag (BAs—4((ta+2tg)l — Ag)) Vs

E EP — F CIy _ o .
p(@i) ~ Eplms) 36 (ta + 1) 0 (ta + tn)

The difference between the ex-ante profit Ex(z57) and EA(z%Y) for firm B

18

Ap (5Ap —4((2ta+1tp)l+ Ap)) Va
E(7EPY _ B (xS0 = B _ .
A(EB ) A(EB ) 36 (tA +tB) g(tA +tB)

The proof of the above corollary follows from a simple manipulation of
the previous formulas for the ex-post and ex-ante profits.
The difference between the expected profits of firm A with complete and

incomplete information is given by

BVa—4Vp

E(xi") — E(zq") = 36 (tr + 1n)

(1.45)

The difference between the expected profits of firm B with complete and

incomplete information is given by

BV -4V,

E(@g") — E(zg") = 36 (ta+1n)

(1.46)

Corollary 1.1.9. The difference between the ex-post consumer surplus and
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the consumer surplus, under complete information, CS*Y — CS°!, is

Aa(5ta+dtp) + Ap(dta+5tp) ) (Ap— Ay —480) (Ap — Ay)

18 (ta + tp) 72(ta+ tg) i

Therefore, equation (1.47)) determines in which cases it is better to have
uncertainty in the production costs instead of complete information in terms

of consumer surplus CSE¥ > cser.

Proof. From equalities ((1.39)) and ((1.42)), we obtain that

2A 4 + A
@EP—@CE%HKPKQ,
where )
i (2(ta+2t5) 1 =3Ac + Ap)
! 72(ts+tp) '
and )
K, = (ta+205) 1= Ac)

18 (ta +1tp)
Let X = (ta + 2tp)l. We note that

(2X —3Ac+ Ap)? — 4(X — Ag)?

K — Ky, =

72 (tA—l—tB)
44X (Ap—Ac)+ (Ap— 3A0)? — 4 A%
B 72(ts+tp)
4X (Ap—Ax) + (Ap— Ax —2A0) —4 AL
B 72(ts +tp)
_ (ta+2tp) (Ap — Ay) . (Ap—As—4Ac) (Ap — Ay)
18 (ta +1tp) 72(ts+tp) '
Hence, CSTF — €S is given by expression ((1.47)). O

The difference between expected value of the consumer surplus and the
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expected value of the consumer surplus under complete information, is

5(Va+Vg)
BE(CSPP) — BE(CS°T) = ————%. 1.48
(CS™T) ~ B(CS) = 5ol (1.48)
Therefore, in expected value the consumer surplus is greater with incomplete
information than with complete information.
The difference between the ex-post welfare and the welfare, under com-

plete information, is given by

2AA+ABZ— 2Acl(tA—4tB)—|—5A%
6 18(tA—|-tB)

WEP el = + K3 + Ky,

where

(dtp —ta) (Ap —3Ac) —3(Aa(2ta+1tp)+ Ap(ta+2tp))

K5 = I
’ 18 (ta+ L5)
and
P 3Ac(9Ac —2Ag) — A%
T 72 (ta + t5) '
Hence,
WEP —WCI _ AA(tA —tB)‘f‘AB (tB —tA) l—|— 7A% _6ACAE_A125*
- - 18 (ta +tg) 72 (ta +1p)

(1.49)
Therefore, equation determines in which cases it is better to have
uncertainty in the production costs instead of complete information in terms
of welfare WP > w!.
The difference between expected value of the welfare and the expected
value of the welfare under complete information, is
7(Va+ Vg)

EW"P) — EWT) = T2(ts+tp) (1.50)

Therefore, in expected value the welfare is greater with incomplete informa-
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tion than with complete information.

1.1.8 Example: Symmetric Hotelling

A Hotelling game is symmetric, if (I4,Q4,94) = (Ip,Qp,qp) and ¢ = c4 =
cg. Hence, we observe that all the formulas of this section hold with the

following simplifications
Agp=0; E(c)=E(ca)=FE(cg) and V=V, =Vp.

The bounded uncertain costs in the symmetric case can be written in the
following simple way.

Definition 1.1.10. The symmetric Hotelling model satisfies the bounded
uncertain costs (BUC1) condition, if

—2(2tA+tB>l < 3Ac <2(t,4+2t3)l

for all z € T4 and for all w € Ip.

Definition 1.1.11. The symmetric Hotelling model satisfies the bounded

uncertain costs (BUC2) condition, if

(2 (tA + QtB)l—{— BE(C) — 36]\/[)2
6(ta+tp)

(SCM—I—?)E(C)—6Cm+2(t3—tA)l)l <

and

(2(tg+2ta)l+3E(c) — 3cp)?
6(ta+tp) '

(3CM+3E(C>—6Cm+2(tA—tB)l)l <

Under the BUC1 condition, the expected prices of the local optimum

price strategy have the simple expression

2
I+ E(c) and E(QB):MZ—FE(C).

ta+2t

p) ="
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By Proposition [I.1.1] for the Hotelling game with incomplete symmetric

information, the local optimum price strategy (pa, pg) has the form

. _tA—{-QtB

Ax o 2tatip
]_)A 3 -

l—f-E(C)'f‘T, Py 3

A
1+E(c)+73.

The ex-post profit of firm A and firm B are, respectively

(2(ta+2t5) 1 —3A4) (2(ta +2t5) ] — 3A¢)

EP _
Ta (2,0) 36 (ta +tp)
and
TEP (2 w) = (2(2ta+tp)l—3AB)(2(2ta +tB)l+3AC)'

36 (ta +1tp)

Let X = Ap (2ta+tp) —As(ta+2tp). The difference between the ex-post
profits of both firms is given by

tg —ta l2—|— 2X+3AC(AA+AB—4(tA—|—tB)>
3 12(ts +tp)

Eip(zv ’LU) - Egp(z> ’LU) =

Furthermore, for different production costs, the difference between the ex-

post profit of firm A, 757 (2, w) — 74 (25, w), is given by

(X — i) (A(ta+2tp)l+3(cp+ E(c) — ¢ — X))
12 (ts + tp)

and the difference between the ex-post profit of firm B, 757 (2, w; ) —mEP (2, wy),

is given by

(e — ) (4 (24 + 1) 1+ 3 (5 + B(e) — et — i)
12 (tA -+ tB)

for all z, z1, 20 € I4 and w, wy,ws € Ip.
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The ex-ante profit profit of firm A and firm B are, respectively

EA _(Q(tA+2tB)l—3AA)2
Ta () 36 (ta +t5)

and

EA _(2(2tA+tB)l—3AB)2
5 (W) = 36 (ta +15) ’

The difference between the ex-ante profits of both firms is given by

tp—1ta 3Ac(Aa+Ap)+4X1
32—zt (w) = =5 12(ta + t5)

Furthermore, for different production costs, the difference between the ex-

ante profits of firm A, 754(2;) — 754(2,), is given by

(cF—cF)[A{ta+2tp)l+3(2E(c) — & —cF))
12(ts +tp) |

Similarly, 754 (w;) — w54 (wy) is given by

(cg? —cy) (42ta+tp)l +3(2E(c) — g — )
12(ta +tp)

for all z, 21,29 € 14 and w, wy,ws € Ip.
The difference between the ex-post profit and the ex-ante profit for firm
Alis
EP Ap

A (Z,w)—£§A<z) = m (Q(tA+2tB)l—3AA).

The difference between the ex-post profit and the ex-ante profit for firm B is

Ay
12 (tA -+ tB)

EP

7EP(z,w) — 74 (w) = (2(2ta+tp)l —3Ap).

We observe that that the A— BUC and B — BUC conditions are implied by
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the BUC'1 condition. Hence, Corollary can be rewritten without any

restriction, i.e.

7hP(z,w) < oh4(2)  if and only if Ap < 0;

and

7BP(z,w) < 7B w)  if and only if Ay < 0.

The expected profit of firm A and firm B are, respectively,

~ ((ta+2tp)0)? 1%
Blxa) = 9(ta+tp) 4(tg+tp)
and )
E(ﬂ' ):<(2tA+tB)l) Vv

- 9(ta+tp) 4(tga+tg)
The difference between the ex-ante profit and the expected profit for firm A

is
Ap(A(ta+2tp)l—3A4)+3V
12 (ta +tg) '

The difference between the ex-ante profit and the expected profit for firm B

E(xi") — it (2) =

18

AB(4(2tA+tB)l—3AB)+3V

E(xg") — g’ (w) = 12 (ta + tp)

The ex-post consumer surplus is

%E‘szl— otg+4ta 2 2E(C)+ABZ+ (Q(tA—I—QtB)l—?)AC)Z
6 2 72(ts+tp)

The expected value of the consumer surplus is

B dtp+4ta
6

4(ta+2tg)* 12+ 18V
72(ta+tp)

E(CSEP) = vyl I?—E(c)l +

The difference between the ex-post consumer surplus and the expected value
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of the consumer surplus is

A (tA+2tB)+AB(2tA+tB) AZ, -2V
CSPP — B(CSPP)y = =4 1+ =¢ .
T (€57 6(ta+1tp) 8(ta+1p)
The ex-post welfare is
ta+tp)*+5tatp 3 A2
WEP: | — ( l2—E +—C—W,
=T 18 (ta + t5) (c) 8(tatts)
where
W — Ay (tA—i-E)tB)—l—AB (tB+5tA)l
' 6(ts+tg) '
The expected value of the welfare E(W ") is given by
ta+tp)*+5tatp 3V
BOVPP) = gl — & ?— Bl — ———.
(W) = or 18 (t4 + t5) (©) 4(ta+tp)

The difference between the ex-post welfare and the expected value of welfare

18

AA(tA+5tB)+AB(5tA+tB)Z+ 3(A%—2V)

WEP — B WEP - _
- (=) 6(ta+tp) 8(ta+tp)

The expected profits Ep(rG!) for firm A and E4(x%!) for firm B are
given by
(ta+2tg)l —AQ)?*+V

E CIy _

and
(2ta+tp)l—Ap)2+V

9 (t 4+t B)
The expected profits for firm A and B are given, respectively by

Ex(n') =

(ta+2tp)2 12 +2V

E(@q") = 3 (s 1)
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and
(2ty +tp)* 2 +2V

E(xg") = 5 (s 1 1)

The expected value of the consumer surplus E(CS) is

Stg+4ty
6

ta+2tp)2 2 +2V
18 (ZfA—l-tB)

E(CS“ (z,w)) = vpl — I?— E(c)l + (

The expected value of the welfare E(W ) is given by

10V —5t,tpl?
18 (lfA—l—tB)

ta+1tp
18

EW (z,w)) =vpl — I?—E(c)l+

The difference between the ex-post profit and the profit, under complete
information, for firm A, is

Ac(BAs+4AB) —2(ta+2tp)l (2A4 + Ap)
36 (ta+tp)

mi’ (zw) = 25! (z,w) =

The difference between the ex-post profit and the profit, under complete

information, for firm B, is

—AC(5AB +4AA) —2(2tA—|—f}B)l(2AB —|—AA)
36 (tA—l-tB)

13" (2, w) — 15 (z,0) =

The difference between the ex-ante profit and the expected profit, under
complete information, for firm A is
Ay (5A, —4(ta+2tp)1) 14

En(nBPY — En(xCl) — _ .
sma) = Bp(ra) 36 (ta+tp) 9(ts+tp)

The difference between the ex-ante profit and the expected profit, under
complete information, for firm B is
Ap (bAg —4 2ty +tp)l) Vv

B (wEPY _ B (xC1) — _ ‘
Almg) = Balrp) 36 (t4 + tp) 9(ts+tp)
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The differences between the expected profits with complete and incomplete

information for firm A and firm B are given by

Vv

E(xi") — E(z3") = E(z5") — E(z3") = 36(ta + 1p)

The difference between the ex-post consumer surplus and the consumer sur-

plus, under complete information, is

CSEP_CSC[:AA(5tA+4tB)+AB(4tA+5tB)Z 5A% ‘
Lo —Lo 18 (ta + Lp) T2(tat tn)

The difference between expected value of the consumer surplus and the ex-

pected value of the consumer surplus under complete information, is

10V

E(CS®") — E(CS) = T2(ta+1p)

The difference between the ex-post welfare and the welfare, under complete

information, is

AA(tA—tB)+AB(tB—tA)Z+ 7AZ

WEP o WCI — ]
— — 18(ta+1tp) 72 (ta +1p)

The difference between expected value of the welfare and the expected value

of the welfare under complete information, is

1%

E(EEP) - E(EC]> = 36 (tA + tB)

1.1.9 Firms with the same transportation cost

In this subsection we present the results of the section where the linear trans-
portation costs are equal to both firms, t4 = tg = t, as originally presented
by Hotelling.

The point z is the location of the indifferent consumer to buy from firm

o7



A or firm B, and it is given by

_ pp—pattl
r=
2t
Definition 1.1.12. The Hotelling model satisfies the bounded costs (BC)
condition, if

lca — cp| < 3tl.
Under the BC' condition, the local optimum price strategy (p A,z_oB) is

given by

1 1
QA:tl—l-g(QcA—i-cB) and QB:tl—l—g(cA—i-ZcB).

and the corresponding equilibrium profits are given by

3t —cn)?
Ty = ( +1C8Bt CA) and Tp =

(3tl+ca—cp)?
18¢ '

We note that if (p ,,p,) is a local optimum price strategy then (p . p,) is a
Nash price equilibrium.
The consumer surplus C'S with respect to the local optimum price strategy

(p,,Ppy) 1s given by

3 CA+2€B (CB—CA+3tl)2
CS=wvpl—=tl*— l
T 3 T 361
and the welfare W is given by
1 ca+cp 5(cq — cp)?
=opl—=—t*— [ :
W=vrl=y > T 3w

Definition 1.1.13. The Hotelling model satisfies the bounded uncertain
costs (BUC1) condition, if

’3AC —AE’ < 6tl,
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for all z € 14 and for all w € Ip.

Definition 1.1.14. The Hotelling model satisfies the strong bounded uncer-
tain costs (SBUC1) condition, if

A < 3tl.

Corollary 1.1.10. There is a local optimum price strategy (]_QA,]_?B) if and
only if the BUC'1 condition holds. Under the BUC1 condition, the expected

prices of the local optimum price strateqy are given by

Ap
E(BA) =tl+ E(ca) — ?;

A
E(p,) =tl+ E(cp) + ?E

Furthermore, the local optimum price strateqy (]_?A,]_?B) 1s unique and it 18

given by
2 Aa. A
P =E@p,)+ = ph=Ep,) +—.

2 2

The ex-post profit of firm A is

(6tl+Ap—3Ac)(6tl+Ap —3Ac—3Ap)
721

i (z,w) =

and the ex-post profit of firm B is

<6tl—AE+3A0)(6tl—AE+3AC—3AA)
72t

75 (z,w) =

The ex-ante profit of firm A is

£EA(2) (611 —3A, —2Ap)?
= 721
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and the ex-ante profit of firm B is

(6t —3Ap+2Ag)?
721

5 (w) =

Definition 1.1.15. The Hotelling model satisfies the bounded uncertain
costs (BUC?2) condition, if

(E(ca) + 2 E(cp) —3¢)”
121

3 (N +clf —2¢) + E(ca) — E(cp) < 3tl+
and

(2 E(CA) + E(CB) — 30%)2.

3 (N +clf —2¢p) + E(cg) — E(ca) < 3tl+ T

Definition 1.1.16. The Hotelling model satisfies the strong bounded uncer-
tain costs (SBUC?2) condition, if

TA < 3tl

Theorem 1.1.3. If the Hotelling model satisfies the BUC1 and BUC2 con-
ditions the local optimum price strategy (BA’BB) 15 a Bayesian-Nash equilib-

TIUM.

Corollary 1.1.11. If the Hotelling model satisfies SBUC?2 condition the

local optimum price strategy (]2 " ]_9B) 15 a Bayesian-Nash equilibrium.

Now, we present some results of comparative analysis of profits, consumer
surplus and welfare.
The difference between the ex-post profits of both firms is given by

P (z,w) — 757 (2, w) 7 :

Furthermore, for different production costs, the difference between the ex-
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post profit of firm A, 757 (21, w) — 74 (29, w) is given by

(¢ — i) (121 = Ap +3(ch + Elca) = & — )
241 '

The difference between the ex-post profit of firm B, 757 (z, w;) — x&F (2, wy),

is given by

(gt —cg) (12t + A+ 3 (¢4 + E(cg) — ¢t — c5))
24t

for all z, 21,29 € I4 and w,wy,ws € Ig. The difference between the ex-ante
profits of both firms is given by
(4tl —Ax—Ap)(3(Ap —Ax) —4Ag)

i (z) — 15t (w) = 517 :

Furthermore, for different production costs, the differences between the ex-

ante profits of a firm are given by

(€2 — ) (3(4t1+2E(ca) — ¢ —¢3) — 4A)
24 ¢

EfA(Zl) - EEA(ZZ) =

and

(¢t —c3)(3(4tl+2E(cg) —cg — ) +4AR)
24 ¢

m5t (wy) — m5 (ws) =

for all z, 21,29 € I4 and w,wy,wy € Ig. The difference between the ex-post

profit and the ex-ante profit for firm A is

A
il (2 w) — x5 (2) = 57 (611 - 285~ 3A4)

and the difference between the ex-post profit and the ex-ante profit for firm
B is
EP _ Ay
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Definition 1.1.17. The Hotelling model satisfies the A-bounded uncertain
costs (A — BUC') condition, if for all z € 14

3As+2Ap <6t

The Hotelling model satisfies the B-bounded uncertain costs (B — BUC)

condition, if for all w € Ip

Under the A-bounded uncertain costs (A — BUC') condition,

i (z,w) < £h4(2)  if and only if Ap < 0.

Under the B-bounded uncertain costs (B — BUC) condition,

18P (z,w) < rE4(w)  if and only if Ay < 0.

The expected profit of firm A is given by

(Btl—Agp)?  Va

B(xi") = 18t @ 8¢

and the expected profit of firm B is given by

(Btl+ Ag)? Vg

The difference between the ex-ante profit and the expected profit for firm A
is
Aa(12t1 —3A4 —4Ag) + 3V,

24t

and the difference between the ex-ante profit and the expected profit for firm

E(xi") — i (z) =
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B is
Ap(12tl —3Ap+4Ag)+3Vp
24t ’

Under incomplete information, the ex-post consumer surplus is

E(xg") — a5t (w) =

5 z Apl  (6t1—3A¢+ Ap)?
EP _ B R - = X :
C¢S™ =yl 2tl 3(2E(CB)+E(CA)) 9 T 144 ¢ 7

and the expected value of the consumer surplus is given by

— 2
B(CSPP) = url= 348~ L (2 Blen)+ Bley) + P22 O a T V)

and the difference between the ex-post consumer surplus and the expected

value of the consumer surplus is
_AA + Ap I+ (AE — 3Ag)2 — 4AJQE — Q(VA + VB)

EP EPY _

The ex-post welfare, W is

E(CA) =+ E(CB) + AA + AB [ 3Ac<2 AE — 9Ac) =+ (AE)2

1
I— =2 —
Tt Ty 2 1441 )

the expected value of the welfare is given by

E(ca)+ E(cp) - 27 (Va+ Vi) + 20 A%,
2 144t

1
E@@“ﬁ:ka—Zu2—

and the difference between the ex-post welfare and the expected value of

welfare is

_AA+ABZ+Q(A%_VA_VB)_QACAE_’?AQE
2 481 '

wEP o E(wEP) —

Under complete information, the expected profit, Eg(zG!), for firm A is

given by
(Btl—Aa— Ap)*+ Vg

18¢

Ep(zq") =
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and the expected profit, E4(x%!), for firm B is given by

(Btl—Ap+Ag)*+Vy

Falrs') = 181
The expected profit E(xG!) for firm A is given by

(B3tl—Ap)?+Va+ Vg
18¢

E(x@{") =

and the expected profit E(r4!) for firm B is given by

(Btl+Ap)*+Vs+ Vg

E(r) = 5

Under complete information, the consumer surplus is given by

_ 2
CS o) = wpl — Sypp _ Blea) +2B(ca) + Aa 4285, (3¢1=Ac)

2 3 36t

and expected value of the consumer surplus E(CS) is

E 26 tl— Ap)?
E(@CI(%U’)):UTZ—;HZ— (CA)_; (CB)Z+(3 E3)6:VA+VB.

The welfare is given by

E(ca) + E(cg) + Aa+ Agp - 5AZ,
2 36t

1
W (2, w) :le—Ztlz—

and the expected value of the welfare E(W ) is

1 E(ca) + E(cp)

AQ
BV (z,w) = opl - 3t 5Va+ Vet Ap)

5 L+ 361 '

The difference between the ex-post profit and the profit, under complete
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information, for firm A, &% (z,w) — 7§ (2, w), is

(Aa —Ap)(Aa+2Ap) =231l - Ac) (2A4 + Ap)
721

and the difference between the ex-post profit and the profit, under complete

information, for firm B, 757 (2, w) — 74! (2, w), is

(AB — AA)(AB +2AA) —2(3tl+Ac) (2AB+AA)
72t .

The difference between the ex-ante profit Eg(r4") and Ep(x§!) for firm A
Is
A (5AL—4(3tL—Ap) Ve
72t 181
and the difference between the ex-ante profit Fa(r5F) and E4(x%!) for firm

B is

Ep(@i”) — Ep(zq’) =

Ap (5Ap —4(3tl+ Ag)) Va
72t 18t
The differences between the expected profits of the firms with complete and

Ea(zg") — Ea(zy) =

incomplete information are given by

5Va—4Vp

5V — AV,
E(@{") - E(xS") = T SR

and  B(x§") - B(z§) = 2

The difference between the ex-post consumer surplus and the consumer sur-

plus, under complete information, is

CSEP o CScI _ (AA + AB)Z + (AB - AA)(AB - AA - 4AC)
_ _ 4 144 ¢

and the difference between expected value of the consumer surplus and the

expected value of the consumer surplus under complete information, is

5 (VA + VB)

EP\ o A
E(CS™) - E(CS™) TAAT
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The difference between the ex-post welfare and the welfare, under complete

information, is

7T(Ac)? — 6 AcAp — (Ag)?
1441

WEP o WCI —

and the difference between expected value of the welfare and the expected

value of the welfare under complete information, is

) - poren) = Varts)

1.2 Quadratic transportation costs

In this section, we study the Hotelling model [25] with uncertainty in the pro-
duction costs of both firms with quadratic transportation costs as presented
by d’Aspremont el at. [2].

We introduce the bounded uncertain costs and location BUCL1 condi-
tion that defines a bound for the costs in terms of the transportation cost,
the road length of the line and the location of the firms. Under the bounded
costs BUC'L1 condition we compute the unique local optimum price strategy
for the firms with the property that the market shares of both firms are not
empty for any outcome of production costs. We introduce a mild additional
bounded uncertain costs BUCL2 and, under the BUCL1 and BUCL2 con-
ditions, we prove that the local optimum price strategy is a Bayesian-Nash
price strategy.

We introduce the BUC'L3 condition and we study the optimal localization
and price strategies under incomplete information on the production costs of
the firms and. Under the BUCL3, and assuming that the firms choose the
Bayesian-Nash price strategy, we show that the maximal differentiation is a
local optimum for the localization strategy of both firms. Finally, we do a

complete analysis of profits, consumer surplus and welfare under complete
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Figure 1.2: Hotelling’s linear city with quadratic transportation costs

and incomplete information.

1.2.1 Hotelling model under complete information

The buyers of a commodity will be supposed uniformly distributed along a
line with length [, where two firms A and B located at respective distances
a and b from the endpoints of the line sell the same commodity with unitary
production costs cy and cg. We assume without loss of generality that a > 0,
b>0and [ —a—0b2> 0. No customer has any preference for either seller
except on the ground of price plus transportation cost t.

Denote A’s price by pa and B’s price by pg. The point of division
x = z(pa,pp) €]0,1[ between the regions served by the two entrepreneurs
is determined by the condition that at this place it is a matter of indifference
whether one buys from A or from B (see Figure . The point z is the

location of the indifferent consumer to buy from firm A or firm B, if
patt(x—a)P=ppg+t(l—>b—2x)?

Let
m=Il—a—-—b and A;=a-0.

Solving for z, we obtain

p—pa L+ 4
T = + .
2tm 2

Both firms have a non-empty market share if, and only if, x €]0,[ . Hence,
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the prices will have to satisfy
[pa —pp —tmA| <tml (1.51)

Assuming inequality (1.51)), both firms A and B have a non-empty demand
(x and [ — ) and the profits of the two firms are defined respectively by

— [+ A
Ta = (pa—ca)x=(pa—ca) (pgmfA +— l) (1.52)
and
— [—A
g = (pp—cp)(l—x) = (pp — cB) (p/;tﬂszJr 5 l). (1.53)

Two of the fundamental economic quantities in oligopoly theory are the
consumer surplus C'S and the welfare W. The consumer surplus is the gain
of the consumers community for given price strategies of both firms. The
welfare is the gain of the state that includes the gains of the consumers
community and the gains of the firms for given price strategies of both firms.

Let us denote by vy the total amount that consumers are willing to pay
for the commodity. The total amount v(y) that a consumer located at y pays

for the commodity is given by

o(y) = pa+t(y—a)? if0<y<u;
V= ppttll—b—y? ifz<y<l

The consumer surplus C'S' is the difference between the total amount that a

consumer is willing to pay vy and the total amount that the consumer pays

v(y) l
CS = /0 vr — v(y)dy. (1.54)

The welfare W is given by adding the profits of firms A and B with the

68



consumer surplus

W =CS+my+ mp. (155)

Definition 1.2.1. A price strategy (QA,QB) for both firms is a local optimum
price strategy if (i) for every small deviation of the price p, the profit w4 of
firm A decreases, and for every small deviation of the price pg the profit mg of
firm B decreases (local optimum property); and (ii) the indifferent consumer

exists, i.e. 0 < z < (duopoly property).

Let us compute the local optimum price strategy (p " QB). Differentiating
w4 with respect to p4 and g with respect to pp and equalizing to zero, we
obtain the first order conditions (FOC). The FOC imply that

A 1
p,=tm (l+?l)+§(20,4+03) (1.56)

and A .
py=tm <l—?l) +§(CA+2CB). (1.57)

We note that the first order conditions refer to jointly optimizing the profit
function ((1.52) with respect to the price p4 and the profit function ((1.53))
with respect to the price pg.

Since the profit functions and are concave, the second-order
conditions for this maximization problem are satisfied and so the prices
and are indeed maxima for the functions ((1.52)) and (1.53), respectively.

The corresponding equilibrium profits are given by

(m(3l—|—A1)t+cB —CA)Q
= 1.58
A 1Stm ( )

wnd (m (31— At )?
m —A)t+ca—cp
= . 1.59
Tp 18tm ( )

Furthermore, the indifferent consumer location corresponding to the maxim-
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izers p " and Py of the profit functions 74 and np is

Finally, for the pair of prices (]2 P B) to be a local optimum price strategy, we
need assumption to be satisfied with respect to these pair of prices. We
observe that assumption is satisfied with respect to the pair of prices
(p P B) if and only if the following condition with respect to the production

costs is satisfied.

Definition 1.2.2. The Hotelling model satisfies the bounded costs and loc-
ation (BCL) condition, if

lca —cp —tm A <3tml.

We note that under the BC'L condition the prices are higher than the
production costs p L > Ca and py, > cp. Hence, there is a local optimum
price strategy if and only if the BC'L condition holds. Furthermore, under
the BCL condition, the pair of prices (p A,}_QB) is the local optimum price
strategy.

A strong restriction that the BC'L condition imposes is that A¢ converges
to 0 when m tends to 0, i.e. when the differentiation in the localization tends
to vanish.

We note that, if a Nash price equilibrium satisfies the duopoly property
then it is a local optimum price strategy. However, a local optimum price
strategy is only a local strategic maximum. Hence, the local optimum price
strategy to be a Nash equilibrium must also be global strategic maximum.
In this section, we are going to show that this is the case.

Following D’Aspremont et al. [2], we note that the profits of the two
firms, valued at local optimum price strategy are globally optimal if they are
at least as great as the payoffs that firms would earn by undercutting the

rivals’ price and supplying the whole market.
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Let (pa, pg) be the local optimum price strategy. Firm A may gain the

whole market, undercutting its rival by setting

Y =p, —tm(l—Ay).

In this case the profit amounts to
M 2
Ta =3 (cg —ca+tmA)) L
A similar argument is valid for store B. Undercutting this rival, setting

it would earn

8 =2 (ca—cp—tmA) L

The conditions for such undercutting not to be profitable are 7, > 7'('% and

mp > 7. Hence, proving that

(m(3l+Al)t+CB—CA)2 >

2
e > < (tm A= Ac) | (1.60)

is sufficient to prove that 7, > 74, Similarly, proving that

(m (31— Ay)t+ca—cp)?

>
18tm -

(Ac —tmA) 1 (1.61)

Wl Do

is sufficient to prove that mp > 7.
However, conditions and are satisfied because they are equi-
valent to
(mBl—A)t+ca—cp)?>0

and
(m 31+ A)t+cp—ca)’ > 0.
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Therefore, if (p,,p,) is a local optimum price strategy then (p,.p,) is a
Nash price equilibrium.

We are going to find when the maximal differentiation is a local optimum
strategy assuming that the firms in second subgame choose the Nash price
equilibrium strategy. For a complete discussion see Ziss [41].

We note that from ((1.56|) and ((1.58]), we can write the profit of firm A as

S (py = ca)?
AT 2t(l—a—0)

Since P
Py _ 2
da 3t(l @),

we obtain that

on P, —Ca
8;;:_615(_[A_a—b)2 (ca—cg+t(l—a—0)(I4+3a+0D)).

Similarly, we obtain that

aEB_ Py —CB
ob  6t(l—a—b)

s (ca—cg—t(l—a—-b)(l+a+3D)).

Therefore, the maximal differentiation (a,b) = (0,0) is a local optimum

strategy if and only if

%4(0, ) = _Q%t_FCA (ca—cp+11%) <0
and
ag;bB((LO) = 1—936;[263 (ca—cp—1t1*) <0
Since
]_9%;[20,4>0 and E%t_l263>0

the maximal differentiation (a,b) = (0,0) is a local optimum strategy if and
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only if

lea — cp| < tI2.

Throughout this section, consider
A
X, =vpl— §l3+tlb(l—b) —tml (z— ?l)

and
- mt

36
By equation ((1.54)), the consumer surplus C'S with respect to the local op-

timum price strategy (p P B) is given by

X, (4517 + 610, +5A7).

T l
@:/UT—QA—t(y—a)Zdy—f-/v—]gB—t(l—b—y)Qdy
0 T

t
:leJrf(l—a—b)tJr(b(l—b)t—pB)l—gl?’

Hence,
ca+2cp (tm (314 A;) +cp — ca)?
S =X, — l . 1.62
== 3 * 36tm (1.62)
Adding (1.58]), (1.59) and ([1.62]), we obtain the welfare
ca+cp 5(ca —cp) 5(ca —cp)?
W =X, — [ — A+ ——— + Xs. 1.63
- 2 18 L T (1.63)

1.2.2 Incomplete information on the production costs

The incomplete information consists in each firm to know its production
cost but to be uncertain about the competitor’s cost. In this subsection, we
introduce a simple notation that is fundamental for the elegance and under-
standing of the results presented in this section. This notation has already

been introduced in subsection [1.1.2] However, we duplicate the information
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in order to guarantee the independence of the sections.

Let the triples (14,Q4,q4) and (I, g, qp) represent (finite, countable
or uncountable) sets of types I, and Ip with o-algebras Q4 and Qp and
probability measures g4 and ¢g, over I4 and Ig, respectively.

We define the expected values E(f), Ep(f) and E(f) with respect to

the probability measures ¢4 and ¢p as follows:

Ealf) = | f(zw)dga(z); Es(f) = | [z w)dgs(w)

Ia Ip

and

B(f) = / [ 1) dapu)aan(s),

Let cq : [a — R} and cp : Ig — RS be measurable functions where ¢ =
ca(z) denotes the production cost of firm A when the type of firm Ais z € I4
and ¢ = cp(w) denotes the production cost of firm B when the type of firm
B is w € Ig. Furthermore, we assume that the expected values of ¢4 and cp

are finite

E(ca) = Ealca) = / 3 dga(z) < oo;

Ia

E(cg) = Eg(cp) = /I cp dgp(w) < oo.
B

We assume that dga(z) denotes the probability of the belief of the firm B
on the production costs of the firm A to be ¢%. Similarly, we assume that
dgp(w) denotes the probability of the belief of the firm A on the production
costs of the firm B to be c§.

The simplicity of the following cost deviation formulas is crucial to express
the main results of this section in a clear and understandable way. The cost

deviations of irm A and firm B

AA:[A%R(T and ABIIB%R;{
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are given respectively by Ay(z) = ¢ — E(ca) and Ag(w) = ¢ — E(cp). The

cost deviation between the firms
AC : [A X [B — RS_

is given by Ac(z,w) = ¢4 — ). Since the meaning is clear, we will use

through the section the following simplified notation:
Axs=A4x(2); Ap=Ap(w) and Ac = Ac(z,w).

The ezpected cost deviation Ag between the firms is given by Ag = E(ca) —
E(cp). Hence,
Ac—Ap=A4 —Ap.

Let V4 and Vg be the variances of the production costs c4 and cpg, respect-

ively. We observe that
E(Ac) = Ap; E(AY) = Ea(A%) =Va;, E(A%) = Ep(A%) = Vp. (1.64)

Furthermore,

Es(AZ) = AR +Va+ Ap (Ap —2Ap); (1.65)
Ep(A%) =A% + Vg + Ap (Ap +2A,); (1.66)
(A%) = AL+ Va+ Vp. (1.67)

1.2.3 Local optimal price strategy under incomplete
information

In this section, we introduce incomplete information in the classical Hotelling

game and we find the local optimal price strategy. We introduce the bounded

uncertain costs condition that allows us to find the local optimum price

strategy.
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A price strategy (pa, pg) is given by a pair of functions p4 : [4 — R and
pp : Ip — Ry where p3 = pa(z) denotes the price of firm A when the type of
firm A is z € 14 and p% = pp(w) denotes the price of firm B when the type
of firm B is w € Ig. We note that E(pa) = Ea(pa) and E(pg) = Ep(ps).
The indifferent consumer x : I, x Iz — (0,1) is given by

P —pattm(+A)

HW — . 1.68
v 2tm ( )

The ex-post profit of the firms is the effective profit of the firms given a
realization of the production costs for both firm. Hence, it is the main
economic information for both firms. However, the incomplete information
prevents the firms to have access to their ex-post profits except after the
firms have already decided their price strategies. The ez-post profits w&* :
Ir x I — RE and w&F : I, x Ip — R{ are given by

mi (z,w) = ma(z,w) = (ph — i) @

zZ,Ww

and

Tg (z,w) = 1p(z,w) = (pp — cp) (I — ™).

The ex-ante profit of the firms is the expected profit of the firm that knows
its production cost but are uncertain about the production cost of the com-
petitor firm. The ez-ante profits 754 : I, — R} and 754 : Iy — R are
given by

wh4(2) = Ep(nff) and B4 (w) = Ex(nED). (1.69)

We note that, the expected profit E(75F) of firm A is equal to E4(754) and
the expected profit E(wEF) of firm B is equal to Eg(nE4).

The incomplete information forces the firms to have to choose their price
strategies using their knowledge of their ex-ante profits, to which they have
access, instead of the ex-post profits, to which they do not have access except

after the price strategies are decided.
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Definition 1.2.3. A price strategy (BA,]_)B) for both firms is a local optimum
price strategy if (i) for every z € I4 and for every small deviation of the price
p’, the ez-ante profit 7EA(2) of firm A decreases, and for every w € Ip and
for every small deviation of the price Py the ex-ante profit 54 (w) of firm B
decreases (local optimum property); and (ii) for every z € 14 and w € Ip the

indifferent consumer exists, i.e. 0 < x*" < I (duopoly property).

We introduce the BUC'L1 condition that has the crucial economical in-
formation that can be extracted from the exogenous variables. The BUC'L1
condition allow us to know if there is, or not, a local optimum price strategy

in the presence of uncertainty for the production costs of both firms.

Definition 1.2.4. The Hotelling model satisfies the bounded uncertain costs
and location (BUCL1) condition, if

|Ap —3Ac+2Atm| <6tml.

for all z € I4 and for all w € Ip.

A strong restriction that the BUC'L1 condition imposes is that Ao con-
verges to 0 when m tends to 0, i.e. when the differentiation in the localization
tends to vanish.

For i € {A, B}, we define

mo__ : z M z
o' = Izlélln{cl} and ¢ = I?GH}X{CZ}
Let
A= max {c— '}

i,j€{A,B}
Thus, the bounded uncertain costs and location BUC'L1 is implied by the
following stronger SBUC'L1 condition.

Definition 1.2.5. The Hotelling model satisfies the bounded uncertain costs
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and location (SBUCL1) condition, if
A < tim.

The following theorem is a key economical result in oligopoly theory.
First, it tells us about the existence, or not, of a local optimum price strategy
only by accessing a simple inequality in the exogenous variables and so avail-
able to both firms. Secondly, it gives us explicit and simple formulas that
allow the firms to know the relevance of the exogenous variables in their price

strategies and corresponding profits.

Theorem 1.2.1. There is a local optimum price strateqy (BA’BB) if and only
if the BUCL1 condition holds. Under the BUCL1 condition, the expected

prices of the local optimum price strategy are given by

E(p,)=tm <l + %) + E(ca) — %; (1.70)
E(p,) =tm <l—%) +E(CB)+%. (1.71)

Furthermore, the local optimum price strategy (]_QA,]_?B) 1s unique and it 18

given by
Ap

: Da. w
QA:E(BA)_’_?; ]_)B:E(BB)—'—T' (1.72)

We observe that the difference between the expected prices of both firms
has a very useful and clear economical interpretation in terms of the localiz-

ation and expected cost deviations.

E(BA) - E(BB) - 3

Furthermore, for different production costs, the differences between the op-

timal prices of a firm are proportional to the differences of the production
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costs

21 22
21 72 CA _ CA
Py =Py 9
and 0 s
w1 _ w2 Cp —Cp
Py - =

for all z1, 29 € I4 and wq,wy € Ig. Hence, half of the production costs value
is incorporated in the price.

The ex-post profit of the firms is the effective profit of the firms given
a realization of the production costs for both firms. Hence it is the main
economic information for both firms. By equation , the ex-post profit
of firm A is

72tm

P (z,w) =

and the ex-post profit of firm B is

a5 (z,w) =

(2tm(3l—Al) —3A3+2AE) (Ztm(Bl—Al) —AE+3AC>
2tm

The ex-ante profit of a firm is the expected profit of the firm that knows its
production cost but is uncertain about the production costs of the competitor
firm. Since 4% (2, w) is given by
(2tm(Bl4+A) —3A4—2Ar)2tm 3L+ A) + A+ 3(ch —c4))
72tm ’

the ex-ante profit of firm A, 754(2), is

(th(?)l—i-Al) —3AA —QAE) (2tm(3l+Al)+AE+3(E(cB) _Cil))
2tm

Hence,
(th(?)l—f—Al) - SAA - QAE)Z

72tm

it (z) =

(1.73)
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Similarly, the ex-ante profit of firm B is

72tm '

T (w) =

(1.74)
Let s and ap be given by
ay =max{F(cp) —cp:w e Ig} and ap =max{E(ca) — % : 2z € I4}.

The following corollary gives us the information of the market size of both
firms by giving the explicit localization of the indifferent consumer with re-

spect to the local optimum price strategy.

Corollary 1.2.1. Under the BUCL1 condition, the indifferent consumer

x®" is given by
1 A Ap —3A¢
U= — [+ — _— 1.75
£ 73 ( T3 ) T T orm (1.75)
The pair of prices @A’BB) satisfies
P —Ch = aa/2 pp—cp > ag/2 (1.76)

Proof of Theorem and Corollary|1.2.1).

Under incomplete information, each firm seeks to maximize its ex-ante profit.

From (1.69)), the ex-ante profit for firm A is given by

; (P —D% L+ A
w6 = [ e (B ) )
B

2tm
E(pp) —pi | 1+ A
= (p5— ) 1.
- ) (Pt (1.77)
From the first order condition FOC applied to the ex-ante profit of firm A
we obtain - (14 A
py =t (pB); m(l+ Ay (1.78)
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Similarly,

w oy [ Ea)—DE 14
) = 0 - ) (DB 4 TR,
and, by the FOC, we obtain

Then, from ((1.78) and (1.79)),

E(ps) = E(ca) + E(pB;-i- tm (I + A,);
)
2

E(pp) = E(cg)+ E(pa) +tm (1 —A)

Solving the system of two equations, we obtain that

E(pa) =tm (l + %) | Blen) +2B(ca),

3 ;
E(pg) =tm (l - %) + Eca) +32E(CB)'

Hence, equalities (1.70)) and (1.71) are satisfied. Replacing (1.71)) in ([1.78)
and replacing ((1.70)) in (1.79)) we obtain that

A 5 F 2F
pzztm(z+_l>+c_A+ (ca) + 2 E(cs).

3 2 6 ’
A w 2K E

Hence, equation ([1.72)) is satisfied.

Replacing in equation 1) the values of p , and p, given by the equation
(1.72) we obtain that the indifferent consumer z** is given by

L () A 3(h— ) + Blea) — B(cn)
2 3 12tm
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Hence, equation (1.75) is satisfied. Therefore, (p N ]_93) satisfies property (ii)
if and only if the BUC'L1 condition holds.
Since the ex-ante profit functions (1.77) and (1.2.3)) are concave, the

second-order conditions for this maximization problem are satisfied and so
the prices p? and p are indeed maxima for the functions (1.77) and (1.2.3),
respectively. Therefore, the pair (]_92, BE) satisfies property (i) and so (]22, 12%)
is a local optimum price strategy.

Let us prove that 20 and Py satisfy inequalities 1) By equation
(11.72)),

z z Al Ci} E (CA) 2F (CB) .
p —cq—tm(l+—3>——2+ 5 ;
w w Al c¥ 2E(64)+E(CB)
Py —cp=tm (l—?)—é—i— .

By the BUCL1 condition, for every w € Ig, we obtain

3
= 3(E(cp) — cg) —3(ch — ¢g) + E(ca) — E(cp)
>3 (E(cg) —cp)—6tl—2Atm.

A
6 (QZ—cj—tm (l—{——l)) =—-3c4 + E(ca) +2E(cp)

Similarly, by the BUCL1 condition, for every z € 4, we obtain

A
6 (E;; —ch—tm (z— ?)) — —3¢ + 2 E(ca) + E(cp)

= 3(Blea) — ¢3) — 3 (el — &) — Blea) + Blep)
>3 (E(ca) — ) —6tL+2Atm.

Hence, inequalities ([1.76]) are satisfied. H
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1.2.4 Bayesian Nash equilibrium

We note that, if a Bayesian-Nash price equilibrium satisfies the duopoly
property then it is a local optimum price strategy. However, a local optimum
price strategy is only a local strategic maximum. Hence, the local optimum
price strategy to be a Bayesian-Nash equilibrium must also be global strategic
maximum. In this subsection, we are going to show that this is the case.
Following D’Aspremont et al. [2], we note that the profits of the two
firms, valued at local optimum price strategy are globally optimal if they are
at least as great as the payoffs that firms would earn by undercutting the
rivals’s price and supplying the whole market for all admissible subsets of

types I, and Ip.

Definition 1.2.6. A price strategy (BA,]_?B) for both firms is a Bayesian-
Nash, if for every z € I and for every deviation of the price P the ex-
ante profit TH4(2) of firm A decreases, and for every w € Ig and for every

deviation of the price p the ez-ante profit 7EA(w) of firm B decreases.

Let (p A’BB) be the local optimum price strategy. Given the type wq of

firm B, firm A may gain the whole market, undercutting its rival by setting
i (w) =py —tm(l—A;) — € with e > 0.

Hence, by BUCL1 condition p}(wg) < p% for all 2 € I4. We observe that

if firm A chooses the price p}f(wg) then by equalities (1.68)) and (1.72) the
whole market belongs to Firm A for all types w of firm B with ¢¥ > ¢*°. Let

x(UJ;wo):min{l’pB pA(w0)+l+ l}'

2tm 2

Thus, the expected profit with respect to the price p’(wp) for firm A is

A8 ) = [ () = €3) s ) dga(u).

Ip
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Let wys € Ip such that ¢ = cM. Since ™ > ¢} for every wy € Ip, we

obtain

s M (wo) < (P (wo) = ¢3) 1< (P (war) — )1 (1.80)
Given the type z; of firm A, firm B may gain the whole market, undercutting
its rival by setting

P (%) =py —tm(l+A;)—e with e>0.

Hence, by BUCL1 condition p¥(zy) < p% for all w € Iz. We observe that

if firm B chooses the price p¥(zg) then by equalities (1.68) and ([1.72)) the
whole market belongs to Firm B for all types z of firm A with ¢ > ¢*. Let

Y (20) — P2 +Z+Az}‘

x(z; 20) = max{(), St 5

Thus, the expected profit with respect to the price p (2) of firm B is

TEMYaa) = [ (9 o) — ) (0= a5 20) daa(2)

Iy

Let zp € 14 such that ¢ = Al Since ¢®M > ¢* for every 2y € I, we

obtain
mi M (z0) < (P (20) = ) 1 G () — )L (1Y)

Remark 1.2.1. Under the BUCL1 condition, the strategic equilibrium (QA,QB)
15 the unique pure Bayesian Nash equilibrium with the duopoly property if for

every z € I4 and every w € I,
PEAMw) < 7EAz)  and 7BV < 7EAw). (182)

Definition 1.2.7. The Hotelling model satisfies the bounded uncertain costs
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and location (BUCL2) condition, if

A (el — E(ca) —2E
Ap+3 (M +c —207) + 1 (3c) — E(ca) (c) _

31 =
— Ay)? M _ E(ca) — 2 E(cp))”
< tm (31— A)) +_(3cA (ca) (cB)) (183)
31 12tml
and
A (3cM —E(cg) —2E
—Ap+3 (N +cl —20p) - (3 g?) (ca))
2
tm 31+ A2 (3¢ — E(cg) —2E(ca))
< . 1.84
B 31 " 12tml (1.84)

Thus, the bounded uncertain costs condition BUC'L2 is implied by the
following stronger SBUC'L2 condition.

Definition 1.2.8. The Hotelling model satisfies the strong bounded uncer-
tain costs and location (SBUC'L2) condition, if

6A <lItm

We observe that the SBUC'L2 condition implies SBUC' L1 condition and
so implies the BUCL1 condition.

Theorem 1.2.2. If the Hotelling model satisfies the BUCL1 and BUCL2
conditions the local optimum price strategy (p " ]_)B) 15 a Bayesian Nash equi-

librium.

Corollary 1.2.2. If the Hotelling model satisfies SBUCL2 condition the

local optimum price strategy (p " ]_)B) 15 a Bayesian Nash equilibrium.

Proof. By equalities (1.73)) and (1.74), we obtain that 754(zy) < 754(2)
and &4 (wy,) < 7EA(w) for all 2 € I4 and for all w € Ig. Hence, putting

conditions ([1.80]), (1.81)) and ((1.82) together, we obtain the following suffi-

cient condition for the local optimal strategic prices (p n ]_)B) to be a Bayesian

85



Nash equilibrium:
(P4 (wy) =)L < mft(zm)  and  (py (2ar) — ) L < mp (war). (1.85)

By equalities (1.73]) and ((1.74)) we obtain that

(2tm (314 A)) + E(ca) +2 E(cg) — 3cX)?

EA _
A" (an) = 2tm
and
EA g )_(2tm(31—Al)—|—2E(cA)+E(cB)—30%)2
sB AT 2tm '
Also, from ([1.72)), we know that
P (wy) — 7 = Pt —tm(l—Ay) —e—cy
1
= 6(4thl+3cg+2E(cA)+E(cB)—6072)—6.
and
p¥(zn) — cp = p—tm(l+A) —e—cg

1
= 5 (—dtm A+ 3N + E(ca) +2E(cg) —6cE) — e
Hence, condition ([1.85)) holds if

12tml(4tmA; +3c¥ +2FE(ca) + E(eg) —6c7) <
< (2tm(3l+ A) + E(ca) +2E(cg) — 34?2 (1.86)

and

12¢ml(—4tm A + 3 + E(ca) +2E(cp) —678) <
(2tm (31— A)) +2E(ca) + E(cg) — 3c¥)2 (1.87)

Finally, we note that inequality (1.86)) is equivalent to inequality (1.83]) and
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that inequality ((1.87)) is equivalent to inequality ((1.84)). O

1.2.5 Optimum localization equilibrium under incom-

plete information

We note that from ((1.72)) and (1.73)), we can write the profit of firm A as

z 2
£t = Sl
- 2t(l—a—10)
Since 5
P’ 2
—= = ——t(l
da 3 (I +a)
we have
aEEA B Py—ca

Do = Toi( —a_pp (20 -a=D)(+3a+0) =30, -24).

Similarly, we obtain that

Or* Pp—CB

ob  12t(l —a —b)? (=2t(l—a—=>b)(l4+3b+a)—3A+2Ag).

Therefore, the maximal differentiation (a,b) = (0,0) is a local optimum

strategy if and only if

92?(0, ):_7—’142;;“‘ (2t12+3A4+2Ag) <0
and P b —cp
5 (0,0) = == (2t +3A5 —2A5) <0
Since
Bt ad 2o
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the maximal differentiation (a,b) = (0,0) is a local optimum strategy if and

only if the following condition holds.

Definition 1.2.9. The Hotelling model satisfies the bounded uncertain costs
and location (BUCL3) condition, if

2t1’+3A4+2A >0

for all z € I and
2t +3A5 —2Ap >0

for allw e Ig .

1.2.6 Comparative profit analysis

From now on, we assume that the BUCL1 condition holds and that the price
strategy (p P B) is the local optimum price strategy determined in Theorem
21

Let Ay = Ay + A and Ay = Ay — Ag. We observe that the differ-
ence between the ex-post profits of both firms, 74 (z, w) — 7EP (2, w), has a
very useful and clear economical interpretation in terms of the expected cost

deviations and is given by

16t2m21Al —|—2tm(3ZA2 —A1A1)+(AE—3A0) (8tlm—A1)
24tm '

Furthermore, for different production costs, the differences between the ex-

post profit of firm A, 757 (21, w) — 757 (29, w), is given by

(% — i) 4tm@Bl+A) — Ap +3(cp + E(ca) — i — 7))
24tm

and, similarly, 75F (2, w;) — 757 (2, wy) is given by

(gt —cB) (Atm (3l —A) + A +3(c4 + Ecg) — cgt —cg?))
24tm
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for all z, z1, 20 € I4 and w, wy,ws € Ip.
We observe that the difference between the ex-ante profits of both firms
has a very useful and clear economical interpretation in terms of the expected

cost deviations.

Adtml—A)(A(tmA —Ag) —3A
EEA(Z)_EEA(U)):( 1)( (24th E) 2)'

Furthermore, for different production costs, the differences between the ex-

ante profit of firm A, 754(21) — 75§4(2,), is given by

(¢ — ) (Atm B+ M) — 4Ap +3(2B(ca) — & — %)
24tm

and, similarly, 74 (w,) — 754 (w,) is given by

(gt —cy) (Atm (3l —A) +4Ag+3(2E(cg) — cgt — )
24tm

for all z, z1, 20 € I4 and w, wy,ws € Ip.

The difference between the ex-post and the ex-ante profit for a firm is
the real deviation from the realized gain of the firm and the expected gain
of the firm knowing its own production cost but being uncertain about the
production cost of the other firm. It is the best measure of the risk involved
for the firm given the uncertainty in the production costs of the other firm.

The difference between the ex-post profit and the ex-ante profit for firm A is

- 24tm

P (2, w) — T4 (2)

2tm 31+ A) —2A5 —3A4).

The difference between the ex-post profit and the ex-ante profit for firm B is

A
2P (z,w) — 7EA (w) = 24;‘m (2tm (31— A) +2A5 —3Ap).

Definition 1.2.10. The Hotelling model satisfies the A-bounded uncertain
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costs and location (A — BUCL) condition, if for all z € I,

The Hotelling model satisfies the B-bounded uncertain costs and location
(B — BUCL) condition, if for all w € Ip

The following corollary tells us that the sign of the risk of a firm has the
opposite sign of the deviation of the competitor firm realized production cost
from its average. Hence, under incomplete information the sign of the risk
of a firm is not accessible to the firm. However, the probability of the sign

of the risk of a firm to be positive or negative is accessible to the firm.

Corollary 1.2.3. Under the A-bounded uncertain costs (A — BUCL) con-
dition,

7hP(z,w) < oh4(2)  if and only if Ap <O0. (1.88)

Under the B-bounded uncertain costs (B — BUCL) condition,
a5l (z,w) < oM w)  if and only if A, < 0. (1.89)

The proof of the above corollary follows from a simple manipulation of
the previous formulas for the ex-post and ex-ante profits.

The expected profit of the firm is the expected gain of the firm. We
observe that the ex-ante and the ex-posts profits of both firms are strictly
positive with respect to the local optimum price strategy. Hence, the expec-
ted profits of both firms are also strictly positive. Since the ex-ante profit

w54 (2) of firm A is equal to

. 9A124—IZAA(tm(3l+Al)—AE)+4(tm(31+Al)—AE)2
B 72tm ’

i (2)
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from (1.64)), we obtain that the expected profit of firm A is given by

(tm 31+ A) = Ap)? Vi

E(x5") = :
(") 18¢tm 8tm

Similarly, the expected profit of firm B is given by

(tm (31— A)) + Ag)? n Vs

E(xkP) = .
(T5") 18tm 8tm

The difference between the ex-ante and the expected profit of a firm is the
deviation from the expected realized gain of the firm given the realization
of its own production cost and the expected gain in average for different
realizations of its own production cost, but being in both cases uncertain
about the production costs of the competitor firm. It is the best measure
of the quality of its realized production cost in terms of the expected profit

over its own production costs.

Corollary 1.2.4. The difference between the ex-ante profit and the expected
profit for firm A is

AA(4tm(31+Al) —3AA—4AE)—|—3VA
24tm '

(1.90)

The difference between the ex-ante profit and the expected profit for firm B

18

. AB (4tm(3l—Al) —3AB+4AE) +3VB
24tm '

(1.91)

Proof. Let Z =2tm (31+ A;) — 2 Apg. Hence,

72— (Z =304 V4

B(xi") - zi*(2) 2tm * Stm
 AA2Z-3A4)+3Va
- 24tm '
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and so equality ((1.90) holds. The proof of equality ((1.91)) follows similarly.
O

1.2.7 Comparative consumer surplus and welfare ana-
lysis

Consider throughout this subsection that X =tm (31 + A,).

The ex-post consumer surplus is the realized gain of the consumers com-
munity for given outcomes of the production costs of both firms. Under
incomplete information, by equation ({1.54)), the ex-post consumer surplus is
E(CA)+2E(CB) AB (2tm(3[+Al)+AE—3Ac)2

[ S

CSPF =X, —
== ! 3 2 144t m

The expected value of the consumer surplus is the expected gain of the con-
sumers community for all possible outcomes of the production costs of both

firms. The expected value of the consumer surplus E(CS*F) is given by

B(es™) = [ [ 05" daa(z) daa(w)

I J1I4
E(CA) +2E(CB) l—l— 4(tm(3[+Al) — AE)2—|—9(VA—|—VB)

3 144t m

- X, —

We note that, from equalities (1.64]) and ((1.67)), the expected value of

(2tm(3l+Al) +AE — 3Ac)2
144tm
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is given by

(2X +Ap)? — 6 E(Ac) (2X + Ap) + 9 E(AZ)

144t m
22X+ AR —6A52X +Ap)+9(Va+ Vs + A2)
N 144tm
AX = AR +9(Va+Vp)

144t m

The difference between the ex-post consumer surplus and the expected
value of the consumer surplus measures the difference between the gain of
the consumers for the realized outcomes of the production costs of both
firms and the expected gain of the consumers for all possible outcomes of
the production costs of both firms. Hence, it measures the risk taken by the

consumers for different outcomes of the production costs of both firms.

Corollary 1.2.5. The difference between the ex-post consumer surplus and

the expected value of the consumer surplus, CS*Y — E(CSET), is

Aa+Ap . Ap—Ac (Ap —3A0)2 —4AZ — 9 (Vy+ V)
- I+ A+
4 12 144tm

Proof.

@EP o E(@EP) —

Ap 22X +Ap—3Ac)*—4(X —Ap)?—9(Va+ Vp)
=+
2 144t m

Ap 12X (Ap—Ag)+ (Ap —3A¢)2 —4A2 —9(Vy + Vp)
— By

2 144t m
B AE—AC—QABHAE—ACA . (Ap —3A0)2 —4A% —9(Vy+ Vi)
- 4 12 ! 144t m
__AA+ABZ+AE—ACA +(AE—3AC)2—4A?E—9(VA+VB)
- 4 12 ! 144tm
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The ex-post welfare is the realized gain of the state that includes the gains
of the consumers community and the gains of the firms for a given outcomes
of the production costs of both firms. By equation (1.55)), the ex-post welfare

1S

WEP _ 5(AE—3A0)+3(AA—A3) AZ_AA+AB+E(CA)+E(CB)
_ 36 2

+ X5+ Xy + X,

[+

where
P (BAc — Agr)(9Ac + Ag)
3 144tm '

The expected value of the welfare is the expected gain of the state for all

possible outcomes of the production costs of both firms. The expected value
of the welfare E(W¥F) is given by

BWEP) = / B / WP dga (=) dgs(w)

E E 5A
=X, + Xy — (ca) + Ecn) ; _ E A+ U
2 18
where
U 20 A% +27 (V4 + Vp)
2 = .

144t m

We note that, from equalities ((1.64)) and ((1.67)), the expected value of X3 is
given by

27E(A2C) —6F(Ag) Ap — A%
144tm
27 (A% + Va4 + V) — TAZ
144tm
20 A% + 27 (V4 + Vp)
144t m ’

The difference between the ex-post welfare and the expected value of the

welfare measures the difference in the gains of the state between the realized
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outcomes of the production costs of both firms and the expected gain of
the state for all possible outcomes of the production costs of both firms.
Hence, it measures the risk taken by the state for different outcomes of the
production costs of both firms. The difference between the ex-post welfare
and the expected value of welfare is

Aa+ Ap Ap — Ay)

EEP o E(wEP) — I+

5 3 A+ Xy

where

9L Vu - Vi) 280 Ay —TAY
1 48tm ’

1.2.8 Complete versus Incomplete information

Let us consider the case where the production costs are revealed to both
firms before they choose the prices. In this case, the competition between
the firms is under complete information.

A price strategy (pG!, p§l) is given by a pair of functions p§! : I4 x Ip —
Ry and p§! : Iy x Ip — R} where pG!(z,w) denotes the price of firm A and
p4I (2, w) denotes the price of firm B when the type of firm A is z € I4 and
the type of firm B is w € Ip.

Under the BC' condition, by equations and , the Nash price
strategy (pG!, p§’) is given by

A A
Bil(z,w) =tm (l—i-?l) —i—cA—TC

and A A
Bgl(z,w) =tm (l—?l) +CB+?C.

By equation (1.58)), the profit 747 : 4 x Ip — R of firm A is given by

(m <3Z+Al)t—Ac)2
18tm

7 (z,w) =
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Similarly, by equation (1.59)), the profit 7§’ : Iy x Ig — R{ of firm B is
given by

75 (z,w0) =

(m (31— A)t+Ag)?
18tm ‘
Using equality (1.66]), the expected profit Ez(7G!) for firm A is given by

(mt(Bl+4) —As—Ap)?+Vp

EB(E%I) - 18tm

Similarly, using equality (1.65)), the expected profit E4(x%!) for firm B is

given by
(mt(3l — Al) — AB + AE)Q + VA
18tm

The expected profit E(xG!) for firm A is given by

Ex(r') =

mt(3l+A) —Ag)?+Va+V,
E(ng):( ( l)l8tmE) B

Similarly, the expected profit E(x4!) for firm B is given by

(mt (31— A)+Ap)*+Va+Vp

E CI —
(z5') 18¢tm

By equation ((1.62), the consumer surplus is given by

E(ca) +2FE(cg) + As+2Ap I (tm 31+ 4A;) — Ag)?

CI
— X,
C57(zw) ! 3 36tm ’

Using equality ((1.67), we obtain that the expected value of the consumer
surplus E(CS) is

E(CA) + 2E<CB) H_(tm (?)l + Al) - AE)Q —+ VA + VB

cr1 v
E(CS™ (2 w)) = X 3 36tm
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By equation ((1.63)), the welfare is given by
E(CA)+E(CB)+AA+AB 5AC 5A2
cr C
=X — [ — A
Wz w) = X 2 8 ' 36im

Using equality ([1.67), we obtain that the expected value of the welfare
E(W®) is given by

+ Xo.

2
B (o, w) = X, — 2V EB(en) ) 585\ 585+ Vat Vi)

A X,.

s T T Setm

Corollary 1.2.6. The difference between the ex-post profit and the profit,
under complete information, for firm A, =5F (z,w) — 71 (z,w), is

(Ax — Ap)(As+2Ap) — 2%7;23[ +A)) — Ac) (284 + AB)_ (1.92)

The difference between the ex-post profit and the profit, under complete in-

formation, for firm B, n5F(z,w) — 74! (2, w), is

(Ap —Aa)(Ap+2A4) - 27(;%& — M)+ A0) 285+ As) (1.93)

Proof. Let CI =tm (314 A;) — Ac. Hence,

EP __cI _(2[C+AB—AA>(QC[—AA—QAB)—4C[2
_ (Ap—Ap)(—A4—2Ap) +2CI(—2A4 — Ap)
B 2tm

and so equality ((1.92)) holds. The proof of equality ((1.93) follows similarly.

]

Corollary 1.2.7. The difference between the ex-ante profit Eg(z5”) and
Ep(xSl) for firm A is

Ap (BA4—4(tmBl+A)—A Vi
Ep(x5") — Ep(zq") = 1524 (7255 : E))_18fm'
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The difference between the ex-ante profit Ea(z5F) and EA(z&!) for firm B

5

Ap BA —4(tmBl-A)+Ap) Vi
72t 18tm’

Ex(n5") — Ea(zl') =

The proof of the above corollary follows from a simple manipulation of
the previous formulas for the ex-post and ex-ante profits.
The difference between the expected profits of firm A with complete and

incomplete information is given by

5Vy—4Vp

B(xk") - B§) = ZA—

(1.94)
The difference between the expected profits of firm B with complete and
incomplete information is given by

B(xf") - Bag) = 2 (1.95)

Corollary 1.2.8. The difference between the ex-post consumer surplus and
the consumer surplus, under complete information, CS¥Y — C S is
Ap — Ay (Ap — Ap)(Ap —Ax —4A0)

AA—l—AB
A . 1.
T et 144t m (1.96)

Therefore, equation (1.96]) determines in which cases it is better to have
uncertainty in the production costs instead of complete information in terms

of consumer surplus CSFP >~ s8¢t

Proof. Let X =tm (31+ A;). The difference between the ex-post consumer
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surplus and the consumer surplus, under complete information, is

As+2Ap Ap (2X—|—AE—3A0)2 (X—Ac)2

EP CI

C87 —C57 = ———— -7+ 44 im 36tm
_2AA+ABZ+(2X—2A0+AE_AC)2_(2X—2A0)2
N 6 144tm
_ 284485, X(Ap—As) | (Ap— A)(Ap — A —4Ac)

6 36tm 144t m
284485, (BLHA)(Ap—A) | (Ap—A4) (A~ Ay~ 4Ag)

6 36 144t m
_BatAp, A=Ay (A= Ay (Ap— Ay —4Ac)

4 36tm 144t m

]

The difference between expected value of the consumer surplus and the

expected value of the consumer surplus under complete information, is

5 (VA + VB)

E EP - F CI —
(s - p(eser) - 2t

(1.97)
Therefore, in expected value the consumer surplus is greater with incomplete
information than with complete information.
The difference between the ex-post welfare and the welfare, under com-
plete information, is
Ap — Ay TAL —6Ac Ap — A%

WEP _ WCI — A
— — 18 Lt 144t m

(1.98)

Therefore, equation (1.98]) determines in which cases it is better to have
uncertainty in the production costs instead of complete information in terms

of welfare WEF > w!.

The difference between expected value of the welfare and the expected
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value of the welfare under complete information, is

T(Va+Vp)

EPYy _ cry _
BWPP) - BTy = 1AL

(1.99)

Therefore, in expected value the welfare is greater with incomplete informa-

tion than with complete information.

1.2.9 Example: Symmetric Hotelling

A Hotelling game is symmetric, if (I4,Q4,94) = (Ip,p,qp) and ¢ = c4 =
cg. Hence, we observe that all the formulas of this section hold with the

following simplifications
Agp=0; E(c)=E(ca)=EFE(cg) and V=V, =Vp.

The bounded uncertain costs in the symmetric case can be written in the

following simple way.

Definition 1.2.11. The symmetric Hotelling model satisfies the bounded
uncertain costs (BUCL1) condition, if

|2Altm—3Ac| <6tml.

for all z € T4 and for all w € Ip.

The Hotelling model with incomplete symmetric information satisfies the
bounded uncertain costs (BUCL2) condition, if

A (M — E(e)) - tm (31 —A)?  3(cM—E(c))?

M . m
6(c™ =)+ I = 3 T

and

A (M — E(e)) - tm 31+ Ay)? N 3 (M — E(c))?
l - 31 4tml
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Under the BUC'1 condition, the expected prices of the local optimum

price strategy have the simple expression

E(p,) =tm <l+ %) + E(c); E(p,) =tm <l — %) + E(c)

By Proposition [1.2.1] for the Hotelling game with incomplete symmetric

information, the local optimum price strategy (pa, pp) has the form

Ay
2 ’

Ap

pa=E{p,)+ 5

The ex-post profit of firm A and firm B are, respectively

2tm 31+ A) —3A4) (2tm (31 +A) — 3A¢)

EP _
T (2w) = T2tm
and
EgP(Z,w) _ (2tm (31— A;) —3Ap)(2tm (31— A)) —|—3A(;)'

2tm

The difference between the ex-post profits, 747 (2, w) — 757 (2, w), of both

firms is given by

16t2m21Al—|—2tm(3ZAc —Al (AA+AB)) —BAC (8tlm—AA —AB)
24tm '

Furthermore, for different production costs, the difference between the ex-

post profit of firm A, 757 (2, w) — 75 (25, w), is given by

(=) AtmBl+A)+3(ch+ E(ca) — ¢ — )
24tm

and, for different production costs, the difference between the ex-post profit
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of firm B, nEP(z,w,) — &P (2, ws), is given by

(cg’ —cg') (dtm (31— Ay) +3(ch + Elcp) — cg' — )
24tm

for all z, 21,29 € I4 and w, wy, ws € Ig. The ex-ante profit profit of firm A

and firm B are, respectively

(2tm(3l+A1) —3AA)2

FEA _
mat(2) = 2tm
and 2em (31— A) — 3Ap)?
E§A<w) _ ( m( B l) - B) .

2tm
The difference between the ex-ante profits of both firms is given by

(4tml—AA _AB) (4thl —3Ac)

i (z) — ot (w) = T

Furthermore, for different production costs, the differences between the ex-

ante profits of a firm are given by

(G —ci)(@tmBl+A)+32E(c) =} —cX))
24tm

i (z) — o () =

and

(¢t —cB) (Atm (3l —A) +3(2E(c) — g — )
24tm

EgA(wl) - ZgA(U&) =

for all z, 21,29 € I4 and w,wy,wy € Ig. The difference between the ex-post

profit and the ex-ante profit for firm A is

A
i’ (2 w) — 25(2) = 5 th (2tm (31+A) —3A,).

102



The difference between the ex-post profit and the ex-ante profit for firm B is

 24tm

5 (z,w) — a5 (w)

We observe that that the A— BUCL and B — BUC'L conditions are implied
by the BUCL1 condition. Hence, Corollary can be rewritten without

any restriction, i.e.

il (z,w) < £84(2) if and only if Ap < 0;

and

7Bl (z,w) < 7B w) if and only if Ay < 0.

The expected profit of firm A and firm B are

tm(3l+AZ)2+ \% EP

) _tm(3l—A1)2+ V
18 8tm’

E(rEPY — :
(wa”) 18 8tm

The difference between the ex-ante profit and the expected profit for firm A
is
Apg(4tmBl+A) —3A4)+3V

24tm '

The difference between the ex-ante profit and the expected profit for firm B

is
AB (4tm(3l—Al) —3AB)+3V

E(np’) — o5t (w) = Y

The ex-post consumer surplus is

Ap . (2tm(314+A) —3Ac0)
EP __ . =B l C
CS™" =X, ~ E()l - 1+ i .

The expected value of the consumer surplus is

4t m? (3Z+AZ)2 + 18V
144t m '

E(CS*PY =X, — E(c)l +
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The difference between the ex-post consumer surplus and the expected value

of the consumer surplus is

CAatAp, Ao 9AZ — 18V

EP EP
E l A+
The ex-post welfare is
A 27 A2
EP _ _ _=¢ c
W= =X, + Xo— E(c)l 3 Al+144tm’

The expected value of the welfare E(W ") is given by

B SAEA 27 (V4 + Vp)

EWEY=X,+ X, — E
W) = Xa 4+ Xo = B(e) L = == A 144t m

The difference between the ex-post welfare and the expected value of welfare

18

A A A AZ -2
ATAB, ) A+ 9(As —2V)
2 3 48tm
The expected profit Ez(zG?) for firm A is given by

wEP o E(wEP) —

(mt(3l+A) — A2+ V
18tm

Ep(x{") =

and the expected profit E4(x$!) for firm B is given by

(mt (31— Ay) —AB)2 +V
18tm

Ex(z") =

The expected profits for firm A and B are given by

m2t2 (31 + A2 +2V
B = O and  B(x§) =

m2t2 (BZ—AZ)2+2V
18tm ’
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The expected value of the consumer surplus E(CS) is

2m? (31 +A)*+2V

cr v
E(CS*(z,w)) = X1 — E(cg)l + T

The expected value of the welfare E(W ') is given by

0V mt
+ D452+ 610 +5A2).

cr _ _ -
EW" (z,w)) = X3 E(cB)l+36tm %6

The difference between the ex-post profit and the profit, under complete
information, for firm A, is
EP cI Ac<5AA+4AB>—2tm(3l+Al)(2AA+AB)

EA (Z7w)_EA (Z7w): 72tm N

The difference between the ex-post profit and the profit, under complete
information, for firm B, is

EB (Z7w)_£B (Z7w): 72tm :

The difference between the ex-ante profit and the expected profit, under

complete information, for firm A is

AA (5AA—4tm(31+Al))_ \%
72t 18tm’

Ep(ri") — Ep(z") =
The difference between the ex-ante profit and the expected profit, under

complete information, for firm B is

AB (5AB—4tm(3l—Al))_ V
72t 18tm’

Ex(ni") — Ea(zly') =

The differences between the expected profits with complete and incomplete
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information for firm A and firm B are given by

V
E(@i") — E(@q") = E(zi") — E(z") = i

The difference between the ex-post consumer surplus and the consumer sur-
plus, under complete information, is
Ay + Ap Ac 5A2C

CSEP _0gCel = ZAT 2B 2O A .
== ¢S 4 36 T 1adtm

The difference between expected value of the consumer surplus and the ex-

pected value of the consumer surplus under complete information, is

v
EP\ _ cIy _
B(CS™") — B(CS) = 1

The difference between the ex-post welfare and the welfare, under complete

information, is

A 7 A2
=2¢ Al + c
18 144t m

The difference between expected value of the welfare and the expected value

WEP _WCI —

of the welfare under complete information, is

TV
WEPY — B(wCT) —
B( )~ El ) 2tm’
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Chapter 2

Hotelling Network

The Hotelling town model consists of a network of consumers and firms. The
consumers (buyers) are located along the edges (roads) of the network and
the firms (shops) are located at neighborhoods of the vertices (nodes) of the
network. Every road has two vertices and in a neighborhood of every vertex
is located a single firm. The degree k of the vertex is given by the number of
incident edges. If the degree k is greater that 2 then the vertex is a crossroad
of k roads; if the degree k is equal to 2 then the vertex is a junction between
two roads; and if k£ is equal to 1 the vertex is in the end of a road with no
exit. Every consumer will buy one unit of the commodity from only one firm
in the network and each firm will charge its customers the same price for the
commodity.

A Hotelling town price strategy P consists of a vector whose coordinates
are the prices p; of each firm F;. Every firm F; is located at a position y; in
a neighborhood of a vertex ¢ € V, where V is the set of all vertices of the
Hotelling town. A consumer located at a point x of the network who decides

to buy at firm F; spends

E(x;i,P) = p; + T(t;, d(x, y;))
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the price p; charged by the firm F; plus a value, T, that depends on the trans-
portation cost t; and on minimal distance measured in the network between
the position y; of the firm F; and the position x of the consumer. Given a
price strategy P, the consumer will choose to buy in the firm F, p) that

minimizes his expenditure
v(xz,P) = argmin;ey E(x;1, P).
Hence, for every firm F;, the market
M@, P)={x:v(z,P)=1i}

consists of all consumers who minimize their expenditures by opting to buy
in firm F;. The road market size l; ; of a road R;; is the Lebesgue measure
(or length) of the road R; ;, because the consumers are uniformly distributed
along the roads. The market size S(i,P) of the firm F; is the Lebesgue
measure of M(i,P). The Hotelling town production cost C is the vector
whose coordinates are the production costs ¢; of the firms F;. The Hotelling

town profit II(P, C) is the vector whose coordinates

are the profits of the firms F;. The local firms of a consumer located at a
point z in a road R;; with vertices 7 and j are the firms F; and Fj. For
every vertex ¢ let N; be the set of all neighboring vertices j for which there
is a road R, ; connecting the vertices. A price strategy P determines a local

market structure if every consumer buys from one of his local firms, i.e.

M(@i,P)c | Riy

JEN;

If a price strategy P determines a local market structure then for every road
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R, ; there is one consumer located at a point x; ; € It; ; who is indifferent to
the local firm from which he going to buy his commodity, i.e. E(z;i,P) =
E(z;5,P).

We denote by ¢y (resp. ¢,) the maximum (resp. minimum) production

cost of the Hotelling town
cy =max{c; :i €V} and ¢, =min{¢ i € V}.

We denote by Iy, (resp. [,,) the maximum (resp. minimum) road length of

the Hotelling town
Iy =max{le:e€ E} and [, =min{l.:e€ E},

where FE is the set of all edges of the Hotelling town. Let A(c) be the maximal
difference between the firm’s production cost of the commodity, A(l) be the
maximal difference between the road lengths in the network and As(l) be

the maximal difference between the square road lengths in the network
Ale)=cy—cm » A)=ly—1, and Ay(l)=10, -1,

We introduce the weak-bound W B condition that defines a bound for the
A(c) and A(l) (A(e) and As(1), in the quadratic transportation cost case)

in terms of the transportation cost ¢t and the minimal road length [, of the

network (see sections [2.1.1{ and [2.2.1). We prove that a Hotelling town net-

work satisfying the W B condition has a unique local optimum price strategy
P%, ie. the profit of every firm is optimal for small perturbations of its
own price. We prove that if a Hotelling town network satisfying the W B
condition the local optimum price strategy P¥ determines a local market
structure. Furthermore, if there is a Nash price equilibrium P* then the

Nash price equilibrium is the local optimum price strategy PY. However,

in sections [2.1.2] and [2.2.2 we exhibit simple Hotelling town networks that
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satisfy the W B condition but the local optimum price strategy is not a Nash
price equilibrium.
We denote by ks (resp. ky,) the maximum (resp. minimum) node degree

of the Hotelling town
ky = max{k;: 1€V} and k, =min{k;:ie€V}.

We introduce the strong-bound SB condition that defines a bound for A(c)
and A(l) (A(c) and Ay(1), in the quadratic transportation cost case) in terms

of the transportation cost ¢, the minimal road length [,, and also on the

maximum node degree kj; (see Subsections [2.1.2| and [2.2.2). We prove that

a Hotelling town network satisfying the SB condition has a unique Nash
price equilibrium P*. Since the S B condition implies the W B condition, the
Nash price equilibrium P* is equal to the local optimum price strategy P”.
We give an explicit series expansion formula for the Nash price equilibrium
P*. This formula has the feature to show explicitly how the Nash price
equilibrium of a firm depends on the production costs, road market sizes and
firms locations of its local neighborhood network structure. Furthermore,
the influence of a firm in the Nash price equilibrium of other firm decreases
exponentially with the distance between the firms.

We say that a firm has n-space bounded information, if the firm knows the
production costs of the other firms and the road lengths of the network up to
n consecutive nodes of distance. Given a Hotelling town network satisfying
the W B condition, every firm with n-space bounded information can readily
compute a price p;(n) that estimates its own local optimum price pZ, with
exponential precision depending upon n. In addition, the firm can then easily
estimate the profit obtained with the local optimum price strategy, also with
exponential precision depending upon n.

A localization strategy for the firms in the network consists in every firm
F; to choose its position in the neighborhood of its vertex i. For every given

localization strategy, we assume the firms opt for their Nash price strategy.
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A local optimal localization strategy is achieved when for every firm F; small
perturbations in its location no longer result in improved profits for the firm
F;. In Subsection [2.1.3] we prove that a Hotelling town network with linear
transportation costs satisfying the SB condition and with k,, > 3 has a
local optimal localization strategy, whereby every firm F; is located at the
corresponding node ¢. Furthermore, the network can also have nodes with
degree 2 under appropriate symmetric assumptions.

We say that a price strategy has the profit degree growth property if the
profits of the firms increase with the degree of the nodes in the neighborhoods
in which they are located. In Subsection we introduce the degree-bound
DB condition that gives a new bound for A(c) and A(l) and we prove that
for a Hotelling town network with linear transportation costs satisfying the
W B and DB conditions the Nash price strategy P* has the profit degree
growth property.

For example, the Hotelling town networks, where all firms have the same
production costs and all roads have the same length, satisfy the SB and
DB conditions. Therefore, these networks have a Nash price equilibrium
satisfying the profit degree growth property. Furthermore, if k,, > 3 the
firms have a local optimal localization strategy whereby they are located at
the corresponding nodes. The original idea of the Hotelling town model was

presented in [30].

2.1 Linear transportation costs

This section extends the Hotelling model with linear transportation costs to
networks.
A consumer located at a point x of the network who decides to buy at
firm F; spends
E(z;i,P) =p; + td(x,y;)

the price p; charged by the firm F; plus the transportation cost that is pro-
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portional ¢ to the minimal distance measured in the network between the

position y; of the firm F; and the position x of the consumer.

2.1.1 Local optimal equilibrium price strategy

For every v € V| let ¢, = d(v,y,) and j(v) be the node with the property
that y, is at the road R, jw). The shift location matriz S(v) associated to
node v is defined by

€ ifi=wvandje N,\{j(v)};
—€, ifi=wvandj=j);
sij(v)=4q € ifj=vandie N,\{j(v)};
—€, if j=wvandi=jv);

0 otherwise.

\

The distance izy = d(y;,y;) between the location of firms F; and F} is given
by
l@j == li7j + Z Si,j(v)- (21)
ve{i,j}

Let € = max,cy €,. Hence, for every 7,7 € V we have
l@j —2e¢ S ii,j S li,j + 2e.

We observe that, for every road R, ; there is an indifferent consumer located

at a distance
0< Tij = (2 t)_l(pj — Di +tiz7j) < i,"j (22)

of firm F; if and only if |p; —p;| <t ZNZ] Thus, a price strategy P determines
a local market structure if and only if |p; — p;| < tl~m~ for every road R, ;.
Hence, if

Ipi —pj| <tl; —2te (2.3)
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then condition ([2.2)) is satisfied. Therefore, if condition (2.3 holds then the
price strategy P determines a local market structure.
Let k; denote is the cardinality of the set NN; that is equal to the degree of

the vertex i. If the price strategy determines a local market structure then

S, P)=2—k)eit+ Y i

JEN;

and
m(P,C) = (pi—¢)S(>,P)

= 207 (pi— ) <2t (2—ki)e+ Z pj —pi+ tii,j) (2.4)

JEN;

Given a pair of price strategies P and P* and a firm F;, we define the
price vector 15(2', P, P*) whose coordinates are p; = p; and p; = p;, for every
j € V\{i}. Let P and P* be price strategies that determine local market
structures. The price strategy P~ is a local best response to the price strategy
P, if for every i € V the price strategy 15(2, P, P”) determines a local market

structure and

om(P(i, P, P),C) _ 9*m;(P(i, P, P*),C)

5. 8}? < 0.

The Hotelling town admissible market size L is the vector whose coordin-

ates are the admissible local firm market sizes

1
Lz‘ = kj_ Z l@j.

! jeN;

The Hotelling town neighboring market structure K is the matrix whose
elements are (i) k;; = k; !, if there is a road R;; between the firms F; and
F;; and (ii) k; ; = 0, if there is not a road R;; between the firms F; and Fj.
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The Hotelling town firm deviation is the vector Y whose coordinates are

Y; =kt ((2 — ki) e+ Z Si,j(j)> .

JEN;
Let 1 denote the identity matrix.

Lemma 2.1.1. Let P and P* be price strategies that determine local market
structures. The price strateqgy P* is the local best response to price strategy
P if and only if

(C+t(L+ Y))+1KP (2.5)

P =
2

N | —

and the price strategies P(z’, P, P*) determine local market structures for all
eV .

Proof. By (2.4), the profit function m;(P,C) of firm Fj;, in a local market

structure, is given by

JEN;

Let f’(z’, P,P") be the price vector whose coordinates are p; = p;

¢ and p; =
p;, for every j € V \ {i}. Since P and P* are local price strategies, the
local best response of firm F; to the price strategy P, is given by computing

om(P(i,P,P*),C)/0p; = 0. Hence,

1 2t (2 —k; 1 >
p;‘zé <Ci+(T)€i+thli,j+pj>- (2.6)

By (2.1)), we obtain

. 1 275(2—]@) t 1
pi:i Ci—i-TEi-i-Ez Z Si7j<v)+k_iztli7j+pj

b jEN; velig) JEN;

114



We note that

Z ZSW(U):Z‘SU +ZS” (ki —2) ez+25”

JEN; ve{i,j} JEN; JEN; JEN;
Hence,
1 ! ,
p2:5 Ci—i-z (Z—ki)ei—i—Zsi,j(j) k Ztl”—i—p] .
’ JEN; JEN;

Therefore, since 9*m;(P (i, P,P*),C)/dp? = —k;/t < 0, the local best re-

sponse strategy prices P* is given by

P =_ (C+t(Y+L)+KP).

N)I»—t

]

Definition 2.1.1. A Hotelling town satisfies the weak bounded length and
costs (W B) condition, if

Ale) + tA(D) < tl,, — 6te.

Hence, the W B condition implies € < [,,,/6.
Let P and P* be price strategies that determine local market structures.
A price strategy P* is a local optimum price strategy if P is the local best

response to P*.

Proposition 2.1.1. If the Hotelling town satisfies the W B condition, then

there is unique local optimum price strategqy given by

pPL — %(1—1K>_ (C+t(L+Y))
— ig (K™ (C+t(L+Y)). (2.7)
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The local optimum price strateqy P determines a local market structure.

Furthermore, the local optimal equilibrium prices pF are bounded by

1 1
tlm+§(ci+cm)—2te§pf§th—|—§(ci—|—cM)—|—2te. (2.8)
The local optimal profit & = w2 (P, C) of firm F; is given by

T (P, C) = (2)" ks (pi — )

and it 1s bounded by

(8t) M ki (2t 1y, — A(c) —4te)> < ml(P,C) < (8t) ' ki (2t 1 + Alc) +4te)?.

Corollary 2.1.1. Consider a Hotelling town where all firms are located at
the nodes. If A(c) + tA(l) < tl,,, then there is unique local optimum price
strategy given by

Pr =) 2 ™mEK"(C+tL).
m=0

The local optimum price strategy P" determines a local market structure.

Furthermore, the local optimal equilibrium prices p¥ are bounded by

1 1

tln + §(Ci+cm) <pl<tly+ 5 (c;i +cm).

The local optimal profit 7t = nE(P, C) of firm F; is given by
m (P, C) = (2t)"" ki (pf — &;)?

and it is bounded by

(8t) " ks (2t L, — Ae)? < wh(P, C) < (8t) ' k; (2t Ly + Alc))™.
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Proof of Proposition |2.1.1].
The matrix K is a stochastic matrix (i.e., > kij = 1, for every i € V).
Thus, we have ||K|| = 1. Hence, the matrix @) is well-defined by

1 1 —1 0
— _ - — —(m+1) m
=3 (1 2 K) 2.2 K

m=0

and () is also a non-negative and stochastic matrix. By Lemma |2.1.1] a local

optimum price strategy satisfy equality (2.5). Therefore,

Pt = 1(1—1K)1(C+t(L+Y))

2 2
m=0

and so P satisfies (2.7). By construction,

=Y Qiuleo +t (L, +Y2)). (2.9)

veV

Let us prove that the price strategy P is local, i.e., the indifferent consumer

x;; satisfies 0 < z; ; < ZNZ] for every R;; € E. We note that

b < Ly =k," Y Ly < . (2.10)

JENy

We note that
—ky,e < ZSU? ) < kye

JEN,
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Hence, if k, = 1 then

—e<e—€e<Y, =k (ev—stU,j(j)) <€ +€e<2¢ (2.11)
JENy
if k, = 2 then
—e<Y,=k* Z sv;(j) <€ (2.12)
JEN,

and if k, > 3 then

2—]{}1} _ . Q_k:v
" (—:U—egy;_k;vl<(2—kv)ev+28m(])>§ " €y + €.

Hence,
—2e< —e,—e<Y, =k} <(2 — k) e+ Y sw-(j)> <e. (2.13)
JENy

Therefore, from (2.11)), (2.12) and (2.13)), we have

—2e<Y,=k* ((2—1@,)%%— st,j(j)> < 2e. (2.14)

JENy

Since Q is a nonnegative and stochastic matrix, we obtain

D Qiul(Cm + thy —2t€) = Coy +tly — 2t e

veV

and

S Quulear +thy +2te) = car +thy + 2te.
veV

Hence, putting (2.9)), (2.10)) and (2.14) together we obtain that

cm+tlm—2t6§pf <ecyttly+2te.
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Since the last relation is satisfied for every firm, we obtain
—(enr = e+ t(lar — ln) +4t€) <pf —pf < eap — e + (I — ln) + 4 te.

Therefore,
L L
IpF — p¥| < Ae) +tA(D) + 4te.

Hence, by the W B condition, we conclude that
Ipf — P < tlyn —2te

Thus, by equation (2.3), we obtain that the indifferent consumer is located
at 0 < @;; < l~” for every road R;; € E. Hence, the price strategy Pr is

local and is the unique local optimum price strategy.

From (12.9), (2.10) and (2.14]), we obtain
pr > ZQi,v(t I —2t€) + Z Qi Cm + Qi Ci.

vevV veV\{i}

By construction of matrix Q, we have Q);; > 1/2. Furthermore, since Q is

stochastic,

> Qv <1/2,
veV\{i}
Y ovev Qintln =tly and Y-\, Qi2t€ =2te. Hence,
L 1
p; > tl, —2te+ 5 (Ci +Cm).
Similarly, we obtain

1
pl-L <tly+2te+ §(Ci+cM),

and so the local optimal equilibrium prices p! are bounded and satisfy (2.8)).
We can write the the profit function (2.4)) of firm F; for the price strategy
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PL as

rF = m(PL,C) = (2t) Y (pF — ) <2t (2= ki) e — kipl + ) (pf + tl;j))
JEN;

(2.15)

Since P* satisfies the best response function (2.6)), we have

2t (2 — k; 1 -
2]?7{-: = aﬁ-%ei—i—k— Z <tli,j +pf> .
i ijGNi

Therefore, ZjENi <t L] +ij> = 2k;pF — kic; + 2t (ki — 2) ¢;, and replacing
this sum in the profit function (2.15)), we obtain

mr = (26) N (pl — i) (ki pf 4+ 2kipf — ki ci) = (2) 7 ki (pf — ).
Hence, using the price bounds (2.8]), we conclude
(26) ki (tl, — A(c)/2 —2te)* <l < (2) Tk (Hlar + Ale)/2 + 2t €)?

]

Consider the two networks presented in Figure [2.1

1 2
s )
8
1 4 5 6
8
7
6
2 4 3
(a) Star Network (b) Regular Network

Figure 2.1: Hotelling networks satisfying WB condition
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For network [2.1a] the parameter values are ¢, =0, ¢; =0, l,, = 7, lyy = 8,
A(l) = 1 and kj; = 3. For network the parameter values are ¢; = 0,
¢; =0, 1, =51y =6, A(l) = 1 and kj; = 2. Both networks satisfies the
W B condition. Hence, by Proposition [2.1.1] there is a local optimum price
strategy P¥. The local optimal prices for network are given by

. 23 22 47 47
pl:t 59 6 A A
33 6 6

and the correspondent profits are given by

. 529 242 2209 2209
b=t (=2, 22 2= 2=
69 727 72

The local optimal prices for network are given by

Loy (2B
pi_ 4727472

and the correspondent profits are given by
L 441 121 529 121
b=t [ —=, == 222 =)
167 47167 4
We say that a price strategy P has the profit degree growth property if
k; > kj = WZ(P,C) > Wj(P,C)

for every i,7 € V.

Lemma 2.1.2. Let F; be a firm located in a node of degree k; and F; a firm

located in a node of degree k;. Then, TF > 7er if and only if

ki — k; < (p]L - Cj)2 - (sz - Ci)2
k; (pi — ci)?
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Let p; = pf' —¢; and p; = pJL — ¢ represent the unit profit of firms F; and
Fj located at nodes of degree k; and kj, respectively. Let 6(p) = p/" — pf,

Proof of Lemmal[2.1.9

If F; is a firm located in a node of degree k;, then

T = (2t) " ks (pF — ¢)® = (2t) "k D5

Similarly, if F; is a firm located in a node of degree k;, then
mf = (20 ki (pf — ei)® = (20 ki = (20) 7 (ky + 0(k)) (p; +0(p))
Hence,

2wt = ki +k;0(p) (2p; + 0(p)) + 0(k) (p; + 0(p))?
= 2tm) + k; 0(p) (b5 + pi) + 0(k) 3,

2t (nl — ) =k; (b — by) (Bj + bi) + 0(k) 0 = k; (7 — 5) + (ki — k;) D:-
Therefore,
=2 =2
ki — k; >pjj2pi‘
kj b;

Tr > Wf if and only if

]

Definition 2.1.2. A Hotelling town network satisfies the degree bounded
lengths and costs (DB) condition if

Ale) +tA(l) < <\/1 1k — 1) (tlyy — A(C)/2 — 2t€) — dte.
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Theorem 2.1.1. A Hotelling town network satisfying the W B and DB con-
ditions has the profit degree growth property.

Proof. Let F; and F}j be firms in the Hotelling town network such that &; > &;.

We need to prove that 7} > 7¥. From Lemma we say that m) > 7} if
and only if
ki 0(p) (B; + Bi) + 0(k) B; > 0. (2.16)

Since k; > k;, then 6(k) > 0. Hence, if 8(p) > 0, i.e. p; > p;, then condition

(2.16) is satisfied.
Let us now consider the case where §(p) < 0. Condition (2.16]) is equi-

valent to
ki 0(p)> — 2k; pi 0(p) — (k) p; < 0. (2.17)

Solving the second degree equation k; 8(p)? — 2k; p; 0(p) — 0(k) p; = 0, we
obtain

005)2 =i (1 1001/, )

Let f(0(k), k;) be the function given by

f(O(k), kj) = \/1+6(k)/k; — 1.

We note that f(6(k), k;) > 0and 0(p)— = —f(0(k), k;) p;. If0(p)- < 0(p) <O
then condition (2.17)) is satisfied. By hypothesis 6(p) < 0 and, so, if

f(O(k), k;) pi > —6(p) (2.18)

then (2.17) is satisfied.
Since 0(p) = p; — p;, from (2.8) we have [0(p)| < A(c) +tA(l) +4te.
Hence, if
fO(k), kj)pi > Alc) +tA(l) +4te (2.19)

then (2.18) is satisfied. Noting that f(8(k), k;) > f(1,ky) = /1 + 1/kn—1,
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if
Ale) +tA() +4te < (\/1+1/1<:M—1) Bi (2.20)

then (2.19) is satisfied. By (12.8)), we have p; > tl,, — A(c)/2 — 2te. Hence,
if

A(e) +tA(l) +dte < <\/1 1k — 1) (tl, — A(c)/2 —2te)  (2.21)

then (2.20) is satisfied. Hence, if condition ([2.21)) is satisfied, then (2.16]) is
satisfied, 7 > 7T]-L for every firms F; and Fj such that k; > k;, and, so, the
network has the profit degree growth property. O

We are going to present an example satisfying the W B condition but not
the DB condition. Furthermore, we will show that in this example does not
has the profit degree growth property. Consider the Hotelling town network
presented in Figure 2.2l The parameter values are ¢; = 0, ¢; = 0, l,,, = 5,

Figure 2.2: Network not satisfying the DB condition

Hence, Network satisfies the W B condition. Hence, by Proposition
there is a local optimum price strategy P%. The profits valued at the

local optimal prices are given by

L 48387 21904 27556 21904 14641
B 1058 7 529 7 529 7 529 ' 1058 )
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Network does not satisfy the DB condition and does not has the profit
degree growth property, since ki > k3 and 7t > 7}

The two networks presented in Figure satisfies the DB condition.
Hence, both networks have the profit degree growth property.

2.1.2 Nash equilibrium price strategy

The price strategy P* is a best response to the price strategy P, if

(ﬁz - Ci) S(Zv P(i’ P? P*)) > (pg - Ci) S(Zv P;)a

for all 4 € V and for all price strategies P whose coordinates satisfy p; > ¢;
and p}; = p; for all j € V'\ {i}. A price strategy P is a Hotelling town Nash

equilibrium if P* is the best response to P*.

Lemma 2.1.3. In a Hotelling town satisfying the W B condition, if there is
a Nash price P* then P* is unique and P* = P.

Hence, the local optimum price strategy P is the only candidate to
be a Nash equilibrium price strategy. However, P* might not be a Nash
equilibrium price strategy because there can be a firm F; that by decreasing
his price is able to absorb markets of other firms in such a way that increases
its own profit. Therefore, the best response price strategy P%* to the local

optimum price strategy P* might be different from P*.

Proof of Lemma[2.1.5
Suppose that P* is a Nash price strategy and that P* # P%. Hence, P* does

not determine a local market structure, i.e., there exists ¢ € V such that
M(iv P*) §Z UjGNiRiJ'

Hence, there exists j € N; such that M(j,P*) = 0 and, therefore, 7} = 0.
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Moreover, in this case, we have that
p; > pr + thi,j.

Consider, now, that Fj changes his price to p; = ¢; + t A(l) + 4te. Since
pf > ¢ and ¢; — ¢; < A(c) we have that

p;—Di <pj—ci=c;+tA(l)+4te—c; < Alc) +tA(l)+4te
Since the Hotelling town satisfies the W B condition, we obtain

pj—pr<tly —2te<tl;—2te<tl,

Hence, M (7,P(5,P*,P)) > 0 and m; = (tA(l) +4te) S(j,P(5,P*,P)) > 0.
Therefore, F; will change its price and so P* is not a Nash equilibrium price
strategy. Hence, if there is a Nash price P* then P* = PL. n

Let Ujen,R;; be the I-neighbourhood N (i,1) of a firm i € V. Let
Ujen, Uken, Rj be the 2-neighbourhood N (i,2) of a firm i € V.

Lemma 2.1.4. In a Hotelling town satisfying the W B condition,
M (i, P(i, PL, P2")) € N(i,2)

for everyi € V.

Hence, a consumer z € R;; might not buy in its local firms F; and
F,. However, the consumer x € R;j still has to buy in a firm Fj that is a

neighboring firm of its local firms F; and Fy, i.e. i € N; U Nj.

Proof of Lemma |2.1.4)
By contradiction, let us consider a consumer z € M (i, P(i,PL, P%*)) and

z & N(i,2). The price that consumer z pays to buy in firm F} is given by
e=p;+1 <ii1,i2 + zVi27i3 +d (yi3> Z)) >pi+t (li1,i2 + liz,i3 —2e+d (%3, Z))
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where p; = piL’* is the coordinate of the vector P(i, PX, PL*) and for the
2-path (R;, iy, Ri,.is) with i3 = 4. If the consumer z buys at firm Fj,, then
the price that has to pay is

€= pi, +td (yig, 2).
Since, by hypothesis, z € M (i, P(i, PY, P™*)), we have e < é&. Therefore
pi < pé —t <Zi1,i2 + lz‘27i3 — 26) .

1
By 1} pl < tly +2te+ §<Cl +cpr) for all ¢ € V. Since [;; > 1,,, for all
R;; € E,

1
pi < tly + §(CM+Ci3) —2tl, +4te < CM—FtA(l) —tl, +4te.

Furthermore,
pi— i <A(c)+tA(l) —tl, +4te.

By the W B condition, p; — ¢; < 0. Hence, 7riL ™ < 0 which contradicts the

fact that p; is the best response to P* (since 7& > 0). Therefore, z € N (i, 2)
and M (i, P(i, P, PL™)) € N(4,2). O

Definition 2.1.3. A Hotelling town satisfies the strong bounded length and
costs (SB) condition, if

(2tl, — A(c) —4te)?

A+ A = 0 T o

— 3te.

The SB condition implies the W B condition, and so under the SB con-
dition the only candidate to be a Nash equilibrium price strategy is the local

optimum strategy price P, On the other hand, the condition

A(e) +1A() < — L

— — 3te.
_8]{3M(ZM+€) ¢
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together with the
WB

condition implies the S B condition. Hence, we note that the condition

A(e) +1A(l) < — Ll

— —6te.
_8]{3M(ZM+€) ¢

implies the W B and SB conditions.

Theorem 2.1.2. If a Hotelling town satisfies the SB condition then there is

a unique Hotelling town Nash equilibrium price strateqy P* = PL.

Hence, the Nash equilibrium price strategy for the Hotelling town sat-
isfying the SB condition determines a local market structure, i.e. every
consumer located at x € R, ; spends less by shopping at his local firms Fj
or F; than in any other firm in the town and so the consumer at x will buy
either at his local firm F; or at his local firm F}.

For € small enough, a cost and length uniform Hotelling town, i.e. ¢, =
cy and [,, = [y, has a unique pure network Nash price strategy which

satisfies the profit degree growth property.

Corollary 2.1.2. Consider a Hotelling town where all firms are located at

the nodes. If ot A
ti, — Alc
8tk ln

Ale) + tA(l) <

then there is a unique Hotelling town Nash equilibrium price strategy P* =
Pt

Proof of Theorem (2.1.2.
By Proposition and Lemma [2.1.3] if there is a Nash equilibrium price
strategy P* then P* is unique and P* = P’.

We note that if M(i, P(i, P*, P»*)) C N(i,1) for every i € V then
].3(2', PX PX*) = pF and so P* is a Nash equilibrium.
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By Lemma 2.1.4] we have that M (i, P(i, PL, PX*)) € N(i,2) for every i € V.
Now, we will prove that the SB condition implies that firm F; earns more
competing only in the 1-neighborhood than competing in a 2-neighborhood.
By Proposition [2.1.1

7l > 207 ki (L, — Ac)/2 — 2t €)? (2.22)

By Lemma [2.1.4]

m(PE,PELPE).C) < (pi—ca)Y g+ Y. L

JEN; keN;\{i}

(VAN
<
|
D
S

=

where p; = piL’* is the coordinate of the vector 15(2, PX P%*). Hence,

Wz(p(?,, PL, PL’*), C) S (pz — Cz‘) Z Z (lng + E) S (pl - Cl)kl kM (lM + 6).
JEN; kGN]’

(2.23)
By contradiction, let us consider a consumer z € M(i,f’(z’,PL,PL’*)) and
z ¢ N(i,1). Let iy € N; be the vertex such that z € N (i, 1). The price that

consumer z pays to buy in firm Fj is given by
e =pi+th,+td(yy,z)>pi+tlh,+td(y,z) —te
If the consumer y buys at firm Fj,, then the price that has to pay is
é=pp, +td(yi,, 2).
Since, by hypothesis, z € M (i, 15(2', P, P%*)), we have e < é. Therefore

Di <pl-L,2 —tliﬂé + te.
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1
By 1) ph <tly+2te+ é(CM + ¢;,). Since l;;, > l,,,, we have

1
pi < th—|—§(cM+ci2) +2te—tl, +te<cy+tA(l)+3te.

Thus,
pi—c < Alc) +tA(l) + 3te.

Hence, from we obtain
(P, PLPE) Q) < kikar (g + €) (A(c) +t A(l) + 3te).
By the SB condition,
(P, PL PE) C) < (28) ki (tl, — Alc) /2 — 2t €)% (2.24)

Hence, by inequalities and (2.24), 7% > m;(P(i,PY,PL*), C), which
contradicts the fact that p; is the best response to P¥. Therefore, z € N(i,1)
and M (i, P(i, P*, PL*)) € N'(i,1). Hence, P(i, PY, P*) = pF and so P* is
a Nash equilibrium. O

We are going to present an example satisfying the W B condition but not
the SB condition. Furthermore, we will show that in this example the local
optimum price strategy do not form a Nash price equilibrium. Consider the
Hotelling town network presented in figure [2.3]

The parameter values are ¢; = 0, ¢; = 0, l,,, =4, [,y = 7, A(l) = 3 and
kys = 3. Hence, Network satisfies the W B condition. By Proposition
the local optimal equilibrium prices and the correspondent profits are

pL 16 14 31 37 L_y 128 98 961 1369
= _ — — . — | mw = _— D, — | .
3737676 ) 3797727 72

We will show that the local optimum price strategy is not a Nash equilibrium.

The profits of the firms are given by 7 = p; S(i, PL), and the local market
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2

Figure 2.3: Star Network not satisfying the SB condition

sizes S(i, P*) are

b ki pF
S(i,PF) = 4 = 22
Hence, the local market sizes are
14 31

37
127

Suppose that firm F5, decides to lower its price in order to capture the market

of firm F;. The firm F; captures the market of F}, excluding Fj

from the

game, if the firm F}, charges a price ps such that p,+4t < pl or, equivalently

pe < 4/3t. Let us consider po = 4/3t — §, where ¢ is sufficiently small.

Hence, for this new price, firm F, keeps the market M (2, P¥) and, since

the price of Fy at location of F} is less that pl, firm F, gains at

market of firm Fj. Thus, the new market M(2,P) of firm F; is

S(2,P) > S(1,P%) + S(2,PL). Therefore, S(2,P) > 31/3 and so
4 ) 31 124

31

least the
such that

Thus 7y > 98¢/9 = %, and so firm F; prefers to alter its price pY. Therefore,

P’ is not a Nash equilibrium price.

The two networks presented in figure satisfies the SB condition.
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Hence, the local optimum price strategy P is also a Nash equilibrium price

strategy.

2.1.3 Strategic optimal location

The marginal rate of the price of a firm F; located at y; with respect to the

deviation of the localization of the firm is given by

op; [de; =t (Qu 9Y;/Oe; + Z Qi 8}/}/862-)

JEN;
2—k  2Q; ;
= 1 (@l 5 G
ki ki JEN; kj

The marginal rate of the profit of a firm F; located at y; with respect to the
deviation of the localization of the firm is given by

ork/0e; = Opt | Oe;.

ki (pi — i)
t
Definition 2.1.4. Let us explicit w(¢;) the dependence of w; on the parameter
€. We say that a firm F; is node local stable if there is € > 0 such that
mi(0) > mi(e;) for every 0 < ¢; < €, with respect to the local optimum price
strateqy. A Hotelling network is firm node local stable if every firm in the

network is node stable.

If node 7 has degree k; = 2, let us define

Qiv Qi)

U, =
Ky 10

where v is uniquely determined by {v} = N; \ {j(i)} and j(i) is the node
with the property that y; is at the road R; ;)

Theorem 2.1.3. The marginal rate of the profit of a firm F; located at y; with
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respect to the deviation of the localization of the firm satisfies the following

mequalities:
(i) Case k; > 1. Then OtF/de; > 0.
(ii) Case k; = 2.

(a) If U; > 0 then Onl/de; > 0;
(b) if U; < 0 then OnF/de; < 0;
(c) if Uy =0 then OnF/de; = 0.

(iii) Case k; >3 and k, > 3, for every v € N;. Then Orl/0e; < 0.

(iv) Case k; > 4 and k, > 2, for every v € N;. Then drF /de¢; < 0.

Hence, a Hotelling town network satisfying the W B condition and with
k., > 3 has a local optimal localization strategy, whereby every firm F; is
located at the corresponding node i.

We observe that firms F; with node degree k; = 1 are node local unstable.
Firms F; with k; = 2 are node local unstable, except for networks satisfying
special symmetric properties. Firms F; with k; = 3 whose neighboring firms
have nodes degree greater or equal to 3 are node local stable. Furthermore,
firms F; with k; > 4 whose neighboring firms have nodes degree greater or

equal to 2 are node local stable.

Proof of Theorem [2.1.5,
From Theorem we have

Pl =) Qivlc, + 1Ly +1Y,), (2.25)

veV

and



Hence,

<) . oyt 0e:.

ki L — )
87riL/862- = (p+

L

-, we only have to study

Hence, to study the influence of ¢; in the profit =

the signal of dpF/de;. By ([2.25), we have

Opf'/0e; =Y Opl/0Y, - OY, /Dc;.

veV

Since, for every v € V, OpF/0Y, =t Q;.,, we have

Opl/Oei =t Qi DY, /Oe;.

veV

Recall that
1 .
Y, = ]f_ (Z Sv,j(]) — €& (kv - 2))
v \jen,

Hence, for v = 7, we have

for v € N;, we have

Y, /de; = 0)0e; (kisv,i(i)> _ 4l

and for v ¢ N;, we have 9Y;/0¢; = 0. Therefore,

2—ki  2Qi;0 Qi
@pf/@ez =t Qm’ — ) + =1
ki kj) g kj

If kK, =1, then

apf/ﬁﬁ' = tQZ‘,i > 0.
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If k;, = 2, then

ki K

where j € N; and j # j(i). If k; > 3, then

2 — I 1
2 Qu k_j)

! JEN;

opy 0e; < t (sz

By construction, @;; > 1/2 and Z]ENZ_ Qi; < 1/2. Hence, if k, > 3, for
every v € N;, then

6 6
Furthermore, if k; > 4 and k, > 2, for every v € N;, then

opL/0e; < t (_—1 + 1) = 0.

Oploe; < t (_—1 + 1) = 0.

4 4
m
2.1.4 Space bounded information
Given m + 1 vertices xg,...,x, with the property that there are roads

Rigays- -+ Ra, 1, the (ordered) m path R is
R=(Ryyuys---» Rxm_1,xm)-

Let R(i,7;m) be the set of all m (ordered) paths R = (Rygzys- - - Rapyamn)
starting at ¢+ = x¢ and ending at 7 = z,,. Given a m order path R =

(Rygw1s- -+ » Ry 1.2 ), the corresponding weight is
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The matrix K° is the identity matrix and, for n > 1, the elements of the

matrix K™ are

K= > k(R).
ReR(i,5;m)
Definition 2.1.5. A Hotelling town has n space bounded information (n-
) if for every 1 < m < n, for every firm F; and for every non-empty set
R(i,5;m): (1) firm F; knows the cost ¢; and the average length road L; and
the firm deviation Y; of firm F;; (it) for every m path R € R(i,j;m), firm
F; knows the corresponding weight k(R).

The n local optimal price vector is

P(n)=Y 27 "VK™(C+t(L+Y)).
m=0
We observe that in a n-I Hotelling town, the firms might not be able to
compute K, C, L or Y. However, every firm F; is able to compute his n

local optimal price p;(n)

n

pi(n) =Y 27N R, + (L, + V7).

m=0 veV

By ([2.5)), the best response P’ to P(n) is given by

1 1
P = 3 (C+t(L—|—Y))+§KP(n)

1 n

= 5 (C+tL+Y)+ > 27K (C 4+t (L+Y))

m=0

n+1

= ) 27 "UK™ (C+t(L+Y)) =Pn+1)
m=0

Hence, P(n + 1) is the best response to P(n) for n sufficiently large.
Let G denote the number of nodes in the network and let e = A(c) +
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3t(lM+26)

Theorem 2.1.4. A Hotelling town satisfying the W B condition has a local
optimum price strateqgy PY that is well approzimated by the n local optimal
price P(n) with the following 2=™ bound

0 < pF—pi(n) <27V (epr 4+t (Iyy + 26)).
The profit w;(P) is well approzimated by m;(P(n)) with the following bound
|mi(P") — mi(P(n))| <272 Gt~ (ep +t (Ing +2€)) (ke +4te).

Proof. By Proposition if a Hotelling town satisfies the W B condition

then there is local optimum price strategy P¥ given by

Pr =) "2 (™IK™ (C+t(L+Y)).

m=0

Considering Q = Y o°_ 2~ (M*DK™ we can write the equilibrium prices as

pk = Z Qiv(co+t(Ly+Y,)), where @Q;,= Z 2_(m+1)k§2}.
veV m=0
For the space bounded information Hotelling town, the n local optimal price
P(n) is given by
P(n) =Y 27 "K™(C+t(L+Y))
m=0
and

n

pi(n) = Z Qiv(n)(cy +t(Ly,+Y,)), where Q;u(n)= Z 2_(m+1)k21v.

veV m=0
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The difference R;(n) between pF and p;(n) is positive and is given by

Ri(n) = Z (Qiw — Qiw(n)) (co +1(Ly +Y3)).

veV

We note that .
Qin — Qin(n) = Z 2*(m+1)k£’;'

m=n+1

Since 0 < k‘% <1, for all m € N and all 7, € V and
Z 9= (m+1) — 9—(n+1)
m=n+1

we have that
Qi,v - Qi,v(n) S 27(n+1)_

Hence,
Ri(n) <) 270 (¢, + £ (L, +Y3)).

veV

Since L, <y, Y, <2¢€ and ¢, < ¢j7, we have that
Ri(n) <27 G (epr + t (I + 2€)). (2.26)

Therefore,
0 < pF—pi(n) <27V G (car +t (I + 2¢)).

The profit for firm F; for the local optimal price is given by

JEN;

and the profit for firm F; when all firms have n-space bounded information
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18

Z; = Z(Pj(n) — pi(n) + thi; + Rja(n)) — 2t (ki — 2) €
JEN;

JEN;

Since pF = p;(n) + Ri(n), we can write the local equilibrium profit (2.27) for
firm ¢ as

mi(PY) = (26)7" (pi(n) — ¢ + Ri(n)) Z;
Hence,
mi(PY) = m(P(n)) + (20) ( ) — ¢ ZRm )Zz)

The difference between the equilibrium profit and the profit where all firms

have n-space bounded information is

m(PY) — m(P(n)) = (26)! ((pi(”) — i) > Rji(n) + Ri(n) Zz‘) :

JEN;

Hence,

mi(PY) — mi(P(n)| < (20)7 ( —c) ) IR(n)] + Ri( )Z> -

JEN;
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Since pf — pf +tl; <2tl; <2t (ly +2¢€), we have

Let Z = A(c) +t (Iy + 2¢€). Since p;(n) — ¢; < pF — ¢;, from (2.8) we have
pi(n) —¢; < A(e) +t(ly +2€) = Z. Hence,

| (PY)—m;(P(n))| < (2t)~ (ZZU%]Z )|+ 2t Ri(n )(ki(lM—FQE)—i-QE))

JEN;

Let Zy = ey + t(ly + 2€). By (2.26), R;(n) < 2™ G Z);. Then, also,
|R;i(n)| <2-™*D G Z),. Therefore,

D |Rja(n)| <27 kG Zy.

JEN;

Hence,

Im(PL) — m(P(n)] < 27D Gt Zyy (ki (A(e) + 3t (Ing +2€)) +4te).

2.1.5 Static Analysis

For simplicity of notation, in this subsection, we assume that the firms are
located at the nodes of the network. Let s be the gross consumer surplus,
i.e., the maximum consumer willingness to pay for the commodity. Let us
assume that the market is covered, i.e., s is sufficiently large for all consumers

to be willing to buy. The utility for each consumer x is given by

U,=s—p—td(x)
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where p is the price to pay and d(z) is the distance between x and the
location of the firm where it buys. Since the consumers with the lowest
utility are the indifferent consumers, we may say that the market is covered
if the indifferent consumer buys. Hence, if P is a local price strategy then

the market is covered if for every road R; ;

Thus, the market is covered if

s> pz—i-p]—i—tlw

; (2.28)

1
Let us define s; ; = s — 3 (pi +pj +tl; ;). We note that s; ; > 0.

Recall that the Hotelling town admissible market size L is the vector whose

Li=k") 1y

JEN;

Let a € V, j€ N;and b € V\ {i, N;}. Hence, 0L;/0c, =0, OL;/0t = 0 and

coordinates are

8L,/0lw = k’i_l, 8[@/8[17] = k/’]_l and 8Lb/8li7j = 0. (229)
Similarly, we have
(()lw/@Ll = k?i, alw/ﬁLJ = ]fj and 8li’j/aLb = 0. (230)

By Proposition [2.1.1], if a Hotelling town satisfies the SB condition then the

unique Hotelling town Nash equilibrium price for firm F; is given by

pi =) Quoles L), where Q=Y 2 VR
m=0

veV

Let us define A;(r,s) = k71 Qi + k71 Qs
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Corollary 2.1.3. If a Hotelling town satisfies the SB condition, equilibrium
prices are increasing in production costs, admissible local firm market sizes,

transportation cost and road lengths.

Proof. Let a € V. Hence,

Op;/0ca = Qia =Y _ 27" 1 >0, (2.31)
m=0
Op; /0Ly =t Qia =1 » 27" E" >0 (2.32)
m=0
and
Op; /0t = QiwLy > 0. (2.33)
veV

Let R.s € E. Since 0L,/0l,s = 0, for v # r and v # s, from (2.29) and
(2.32), we have

Op;/Ols = > Op; /0Ly 0L, /0l

veV
— Op:/OL, - OL, /0l + Op! /OL, - OL,/0l,...
= (k' Qip + k' Qi) =t Ai(r,s) >0 (2.34)

From (2.31), (2.32)), (2.33) and ([2.34)), prices are increasing in production

costs, admissible local firm market sizes, transportation cost and road lengths.
m

Corollary 2.1.4. If a Hotelling town satisfies the SB condition, equilibrium
profits are decreasing in his own production cost and increasing in production
costs of other firms, admissible local firm market sizes, transportation costs

and road lengths.

Proof. From Proposition if F} is a firm located at a node of degree k;,
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his profit in equilibrium is given by
= (2t) " ki (pf — @)%

Hence,
ot /Op; = kit (pf — ). (2.35)

Let a € V' \ {i}. From ({2.35) and (£2.31]), we get
aﬂ-:/aca = aﬂ-z*/ap;k : ap:/aca = kz til (pr - ci) Qi,a > 0.

Similarly,

Since Q;; < 1, O} /Jc; < 0. Hence, profits are increasing in production costs
of other firms and are decreasing in own production cost.
Let b € V. From (2.35)) and (2.32), we get

on} /0Ly, = Om; [Op; - Op; /0Ly = ki (pf — ¢;) Qip >0

and profits are increasing in admissible local firm market sizes.

From ([2.35) and ({2.33)), we get
o[t = O Jop; - 00 /00— 7 o — e

- kz t_ (p;( - Ci) Z Qi,va - k_ t_2 (pz - 62)2

143



Then, Orf /0t > 0 if and only if

C; >p: — 2t Z Qi,'uLv = Z Qi,'u (Cv _tLv)

veV veV

Since @ is stochastic, ¢; = ) o, Qi ¢i, and O /0t > 0 if and only if

> Qivlci—co+tL) > 0. (2.36)
veV
Since L, > I, then ¢; —c,+t L, > ¢,y —cpr+t 1, = tl, —A(c). By the WB
condition, ¢; — ¢, +t L, > 0. Since Q is a non-negative matrix, condition
(2.36) holds and Ox} /0t > 0. Hence, profits are increasing in transportation

cost.

Let R, s € E. From ([2.35) and (2.34)

on;/ol,, = On;/Op;-0p;/Ol, s =k; ! (p; — i)t Ai(r, s)
= ki (pf —¢;) Ai(r,s) > 0.

Hence, profits are increasing in road lengths. O]

The road consumer surplus CS; ;(P) for the road R;; is the integral of
the difference s — E(z; P) between the valuation s of the consumers for the
commodity and the expenditure E(xz;P) for all the consumers living in the
road R; ;. Then,

lij

csy; = CSi,j(P*):/i,]s_p;‘_tl'dl'+/ s—p;—t(li;—x)de
0 x

i
t
t
= Sli,j + (4 t)_l(p;k — p;k +tli7j)2 — EZZJ — p;( l@j. (237)

Corollary 2.1.5. If a Hotelling town satisfies the SB condition, the road

consumer surplus on road R; ;, CS; ;(P), is decreasing in production costs,

144



decreasing in other road lengths, increasing in own length, decreasing in trans-
portation costs, increasing in admissible local firm market sizes L; and L; and

decreasing in other admissible local firm market sizes.

Proof. From ([2.37)), we have

0CS;;/0p; = —(Qt)_l(p; —p; +tl) =—x;; (2.38)
and

Since 0 < zj; < l;;, 0CS};/0p; < 0 and 9CS};/dp; < 0.
Let a € V. Hence, from (2.38)), (2.39) and ([2.31]) and

oCS;;/0c, = 0CS;;/0p; - Op;/0c, + OCS;;/Op; - Opj/Oca
= —2;,;Qia+t (x;kj —1ij) Qja-

Since Q is a non-negative matrix, 9C'S;; /Oc, < 0 and road consumer surplus

on road R; ; is decreasing in production costs.
Let b € V'\ {4,j}. Hence, from (2.38)), (2.39), (2.32)), (2.30)),

oCS;; /0Ly, = 0CS;,;/0p; - Op; /0Ly + OCS;;/0p; - Op; /0Ly
= —.T;j t Qz‘,b + (ij — li,j) t Qj,b'
Since Q is a non-negative matrix, 9C'S}; /0L, < 0 and consumer surplus on

road R;; is decreasing in other admissible local firm market sizes.

Similarly, from (2.38)), (2.39), (2.32)), (2.30)

0CS:,J0L; = OCS:;[0p: - Opt /0L + OCS:, [0p’ - O JOL; + 51, ki
= —.Clﬁzj t Qi,i + (ij — li,j) t Qj,i + Sij k’z
= taj; (Qji — Qig) — tli; Qji+ si k.
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If
t
— (li,j Qji + x:‘] (Qii — QJ%>)

Sij > ]{}Z
then 0CS};/0L; > 0. Otherwise, 0CS};/0L; < 0.
Similarly,
805;?]/8[/3 = t‘r;k,j (Qj,j — Qi,j) — tlZ'J' Qj,j + Si.j ]Cj.
If
Sij > 1 (L Qis + 275 (Qij — Qs5))

J

then 0C'S},;/0L; > 0. Otherwise, dCS};/0L; < 0.

Since we consider the valuation s sufficiently large, we have C'S};/0L; > 0
and C'S},;/0L; > 0. Hence, road consumer surplus on road R;; is increasing

in admissible local firm market sizes L; and L;.

From (2.37), (2.33), [@.39) and (2.33)

oCS;; /ot =
2,
= 0CS;;/0p; - Op; /Ot + OCS};/Op; - Op; /Ot + w7 ; (lz}j — x;‘]) — 7]
2,
= _xi,j Z Qi,v Lv + (.CL’L]- — l@j) Z Qj,v Lv + xi,j (l@j — :Ci,j) — 77]
veV veV
=Ty (Z(va = Qiw) Ly +1ij — I”> —lij (Z Qjw Ly + 7j> .
veV veV
Li,j :
Since 0 < x7; < l;; and ) oy Qjv Ly + 73 > 0, if
] i
> Qo= Qi) Lo+l — 25, < Y QjuLy+ 73 (2.40)

veV veV
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then 9CS};/0t < 0. But condition (2.40) is equivalent to

1
> QuoLy+aly = 5l > 0. (2.41)

veV
Since Ly > by, then Y7 o, Qo Ly > > oy Qi b = L. Hence,

1 1 1
Z QiwLy + 27 — 5 lij = lm+ai; — 3 lij > lm — 5 Lij-
veV
From the WB condition we know that l,, > l5/2. Hence, l,,, > [; /2,
condition (2.41)) holds, and 9CS};/0t < 0. Therefore, consumer surplus on

road R;; is decreasing in transportation cost.

Let R,, € E\ {R;;}. Hence, from (2.38), (2.39) and ([2.34)

oCS;; /ol = 0CS;;/dp; - Op; /Ol s+ OCS;;/0p; - Op /Ol s
= —ZL';:thi(T, 3) + (i[f* — li,j) tAj(T, S).

,J
Hence, 0C'S? j /Ol s < 0 and road consumer surplus on road R, ; is decreasing

in other road lengths.

From (12.37), (2.38)), (2.39) and (2.34)

oCS;;/0l;; = 0CS;;/0p; - Op; /Ol + OCS;;/Op; - Opj /Ol j + si
= —xi; t Ai(i,7) + (27 — Lij) t Aj(i, 5) + sij
x:,j t (AJ(Zv.]) - Az(za])) - lZ,JtAJ(Zaj) + Sij-
If Sij > li,j tAJ(Z,j> + I;j t (Al(l,j) — AJ(Z,j)) then CS:J/alZJ > 0. Other-
wise, C'S7;/0l; ; < 0. Since we consider the valuation s sufficiently large, we

have CS};/0l;; > 0 and road consumer surplus on road R;; is increasing in

local road length. O]
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The (total) consumer surplus C'S(P) is

CS(P)= > CSi;(P).

R; ;eE

Hence, C'S* = C'S(P”) is given by

CS* =4t Y (4tsliy+ (0] —pi)* — 2ty (0 +p)) — 1) . (2.42)
R; ;elE

Corollary 2.1.6. If a Hotelling town satisfies the SB condition, the con-

sumer surplus is decreasing in production costs, increasing in road lengths,

decreasing in transportation costs and increasing in admissible local firm mar-

ket sizes.

Proof. Let D(u,w) = p}, — pl, — t L. From (2.42), we obtain that, for any
road IR,

9CS™ 0py = (28)7" (0, — Py — tluw) = D(g;w) <0 (2.43)
and
D
DCS* Jopt = (24)L (pt — Pt — tly ) = (;”t’ ) <o, (2.44)

Let a € V. From (2.42)), (2.43)), (2.44)) and (2.31))

0CS™[0c, = (2t)71 Y~ (D(i,j) - 0p}/dca + D(j,i) - Op} /)

R; ;€E

= 267" > D(i.j) Qia + D(j,1) Qja-

RLJ‘EE

Since D(i,j) < 0, D(j,7) < 0 and Q is non-negative, 0C'S*/dc, < 0 and

consumer surplus is decreasing in production costs.
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From (12.42)), (2.43)), (2.44), (2.32) and (2.30)

805*/8La = (2t)71 Z D<Zvj> ap?/aLa—i_D(.]?Z) ap;/a[/a—i_

R; ;€E
+ (4t)_1 Z (4t8 — 2t (p; —|—p:<) — 2t2 li,j) 8[2'7]'/8[/&
R; ;€FE
= @207 Y D) tQua+ D)t Qja+ ke Y Sap
R@jEE beN,
1 >k *
+ 5 D @5 —p—ph—tha) Fa
beN,
1 o .
= 5 Z D(Zaj)Qi,a+D(]7Z)Qj,a+kaZsa,b

R; ;eE beN,

Since we consider s sufficiently high, 0C'S*/0L, > 0 and consumer surplus

is increasing in admissible local firm market sizes.

From (12.42), (2.43), (2.44) and (2.33)

oCs /ot = (2t)™" Y (D(i,j) - 0p; /0t + D(j,i) - Op}/Ot) —

R; elE
— @0 () + 1
R@jEE
= (Qt)_l Z D(l,]) ZQi,v Lv + D(j,l) ZQj,’U Lv -
RiijE veV veV
- 207 W -+
R; ;eE

Since D(i,7) < 0, D(j,4) < 0 and (pj—p;)*+t*17; > 0, we have 0C'S* /9t < 0.

Hence, consumer surplus is decreasing in transportation cost.
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Let R, s € E. From ({2.42)), (2.43)), (2.44) and (2.34)

0CS™[0l,s = (2t)7" > D(i,5) - 0p; /Ol + D(j,i) - O /Olys + sr.s

Ri,jEE

= (267" > D(i,j) t Ai(r,s) + D(i, §) t Aj(r,s) + 5,6

Ri,]'GE

1 . .
= 3 28,5+ R;ED(ZJ) Ai(r,s)+ D(j,1) Aj(r, s)

Since we consider s sufficiently high, 0C'S*/dl,. s > 0 and consumer surplus

is increasing road lengths. O

The (total) welfare W(P) is

W(P)=> m(P)+CS(P).

iV
Hence, W* = W (P") is given by
* —1 * * * *\ 2 272
W=t > 2t (2s—ci—c;)+2 (0] —p}) (¢ — i) — (p—p;)* —£* 12,

Ri,jEE

(2.45)

Corollary 2.1.7. If a Hotelling town satisfies the SB condition, the welfare
is increasing in road lengths and in local firm market sizes. The marginal

rates on production and transportation costs are inconclusive.

Proof. Let G(u,w) = py — ¢y — pu + ¢ From ([2.45)), we obtain that for any
road I,

W Jop, = (1) (e — e —pu e = S 2
and .
OW™/0p;, = (21) ™ (Pu — Cu — P + Cu) = — <;’tw> (2.47)
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Let a € V. From (2.46)), (2.47) and (2.31))

OW*/oc, = (26)" Y G(i,j)-0p;/dca — G(i, j) - Op}/dca

Ri,j ek

= (2 t>_1 Z G(Zuj) (Qi,a - Qj,a) .

Ri7j eFE

Let H(i,j) =25 —c¢;—c; —;;. From ({2.45)), (2.46), (2.47) (2.32) and (2.30)

OW* /0L, = (20)7" Y G(i.j)-8p}/0La — G(i.]) - Op/OLa +
R@jEE
1
+ § Z (28 — C; — C]’ - tli,j) . 8li,j/8La

Ri’jEE

= @07 Y 1Qu L) ~ QG ) + 5 S Ha bk,

R; ;€E bENa
= 2 X ) @@tk Y HD)

R; ;eE beN,

Since we consider s sufficiently high, 0W* /0L, > 0 and welfare is increasing

in admissible local firm market sizes.
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From (12.45)), (2.46)), (2.47) and

ow*fot = (2t)7" > G(i,j) - 0p; /0t — G(i,j) - Op; /ot —

R; ;€E

— Q207> 20 —p)) (¢ —a) = (0 —p})* + 1
R; ;€E

= 207" Y G,4) D Lo (Qin — Q) +
R; ;eE veEV

+ 2077 > 25— 1)) (e — )+ (0 —p))* =71
R; ;€E

= @207 D 2605 Lo(Qiw— Qi) | +

Ri,jEE veV

+ 20720 — ;) (ci—cj)+ (0 —p})* = 217;) .

Let R,, € E. From (2.45), (2.46), (£-47) and (2.34)

oW ol = (26)7" > Gli,j) - Op;/0lns — G(i, j) - Op}/Olys +

R, ;€E
+ % (2s—c, —cs—tlg)
1
- eyt Y (G(i,j) (tAi(r, ) =t Aj(r,9)) + 5 H(r,s))
R;;€E

! (Z G0, ) (Ai(r,s) = Ai(r. ) + H(r s>>.

Ri’jEE

Since we consider s sufficiently high, 9W*/0l, ; > 0 and welfare is increasing

road lengths. []
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2.2 Quadratic transportation costs

This section extends the Hotelling model with quadratic transportation costs
to networks.
A consumer located at a point x of the network who decides to buy at
firm F; spends
E(z;i,P) = p; +td*(z, ;)

the price p; charged by the firm F; plus the transportation cost that is pro-
portional ¢ to the square of the minimal distance measured in the network

between the position y; of the firm F; and the position x of the consumer.

2.2.1 Local optimal equilibrium price strategy

For every v € V, let €, = d(v,y,) and j(v) be the node with the property
that y, is at the road R, jw). The shift location matriz S(v) associated to
node v is defined by

e, ifi=wvandjeN,\{j(v)};
—¢, ifi=wvandj=j);
sij(v)=4q € ifj=vandie N,\{j(v)};
—€, if j=vandi=j);

L 0 otherwise.

The distance I;; = d(y;, ;) between the location of firms F; and Fj is given
by
lNZ"j = l@j + Z Siyj(i)). (248)

ved{i,j}

Let € = max,cy €,. Hence, for every 7,7 € V we have

l@j —2¢€ S Zi,j S li,j + 2e€.

153



We observe that, for every road R, ; there is an indifferent consumer located

at a distance ~
pj—pi+tlF; -

0< Tij = 2tl~ A < li,j (249)
Z’J

of firm F; if and only if |p; —p;| <t Z?J Thus, a price strategy P determines
a local market structure if and only if [p; — p;| < tl;2 ; for every road R ;.
Hence, if

|pi _pj| <t (l@j - 26)2 = tl?,j — 425[1‘7]' €+ 4t€2 (250)

then condition ([2.49) is satisfied. Therefore, if condition (2.50) holds then
the price strategy P determines a local market structure.
Let k; denote is the cardinality of the set N; that is equal to the degree of

the vertex i. If the price strategy determines a local market structure then

S, P)=2—k)eit+ Y i

JEN;

and
m(P,C) = (ni—¢)S(,P)

Pi — Ci pj_pi‘i‘tl?j
= 2t(2— ki) e —=]. (251

jGNi i’j

Given a pair of price strategies P and P* and a firm F;, we define the
price vector 15(2', P, P*) whose coordinates are p; = p} and p; = p;, for every
j € V\{i}. Let P and P* be price strategies that determine local market
structures. The price strategy P~ is a local best response to the price strategy
P, if for every i € V the price strategy P (i, P, P*) determines a local market
structure and

om(P(i, P, P),C) _ 9*m;(P(i, P, P*),C)

o5, (’9}? < 0.
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~ 1

Let l; = > icn, . The Hotelling town admissible market size L is the
irj

vector whose coordinates are the admissible local firm market sizes

1
Li = = lz j o
l; Z !
JEN;
The Hotelling town neighboring market structure K is the matrix whose
elements are (i) k; ; = l ! ll ]1, if there is a road R; ; between the firms F; and

F;; and (ii) k; ; = O, if there is not a road R, ; between the firms F; and Fj.

The Hotelling town firm deviation is the vector Y whose coordinates are

Y, = ~Z-_1 ((2 — ki) e+ Z Si,j(j)> .

JEN;
Let 1 denote the identity matrix.

Lemma 2.2.1. Let P and P* be price strategies that determine local market
structures. The price strateqy P* is the local best response to price strateqy
P if and only if

P =— (C+t(L+ Y))+%KP (2.52)

N | —

and the price strategies 13(2', P, P*) determine local market structures for all
eV .

Proof.
By (2.51)), the profit function m;(P, C) of firm F;, in a local market structure,
is given by

(P, C) = (2t) ' (pi — &) <2t Y& + Z bi — pz +tl2 )

JEN; J

Let P( P.P*) be the price vector whose coordinates are p; = p; and p; =

b;

p;, for every j € V \ {i}. Since P and P* are local price strategies, the
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local best response of firm F; to the price strategy P, is given by computing
om(P(i,P,P*),C)/0p; = 0. Hence,

1 2t (2 — k
pZ‘:§<ci+ (A i+ = Z“m > (2.53)

l ’EN

p;‘k:§ Ci‘l—l— ZZS” Ztl”—}—~

Li JEN; ve{i,j} ]eN lij

We note that

Z Zsm(v):Zs” —1—23” (ki —2) EZ+ZSH

JEN; ve{i,j} JEN; JEN; JEN;
Hence,
. 1 t ,
pi=5|at= 2=k)e+ Y sii(h) | + th” .
( JEN; jEN ZJ

Therefore, since 9%m;(P(i,P,P*),C)/d0p? = —I;/t < 0, the local best re-

sponse strategy prices P* is given by
L, 1
P = 3 (C+t(Y+L)+KP).

]

Definition 2.2.1. A Hotelling town satisfies the weak bounded length and
costs (W B) condition, if

A(C) +t2o(l) < t (I —2€)2 — At e (In + Ln).

Let P and P* be price strategies that determine local market structures.
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A price strategy P* is a local optimum price strategy if P* is the local best

response to P*.

Proposition 2.2.1. If the Hotelling town satisfies the W B condition, then

there is unique local optimum price strategy given by

P = %(1—11{) (C+t(L+Y))
= i2 (mIDK™ (C+t(L+Y)). (2.54)

The local optimum price strategy P determines a local market structure.

Furthermore, the local optimal equilibrium prices p¥ are bounded by
2 1 L 2 1
t(lm —2¢€)” + §(ci+cm) <p;/ <t(ly+2€°+ 3 (ci +cm)- (2.55)
The local optimal profit 7t = nF(P, C) of firm F; is given by
(P, C) = (20)'; (p} — ¢;)’

and it 1s bounded by

ki (21 (L, — 2€)2 — A(c))?
8t (lM + 26)

ki (2t (I +2€)* + A(c))?

Lp,C) <
sm (P, 0) < 8t (I — 2¢)

Corollary 2.2.1. Consider a Hotelling town where all firms are located at
the nodes. If A(c) +t Aqg(l) < ti2,, then there is unique local optimum price
strateqy given by

Pr =) 2 "VEK"(C+tL).

m=0

The local optimum price strategy P determines a local market structure.
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Furthermore, the local optimal equilibrium prices p¥ are bounded by

1 1
tlfn—{—§(ci+cm) Spf Stl%—i—i(ci—l—cM).

The local optimal profit 7t = nF(P, C) of firm F; is given by

1
T (P,C)=(2t)" (0} =) Y —
JEN; 0]
and it 1s bounded by
ki (212, — A(c))? I ki (213, + A(c))?
uc <7 (P
8ty sm (P 0) < 8ti,

Proof of Proposition[2.2.1]

Let, first, prove that K is a stochastic matrix (i.e., Y.\ ki; = 1, for every

jev
L - 1
i€V). Since k;; =1; '} and [; = > jen, = we have
1:7j
Sk = Sk = DL = T - S
ij = iy = i tig Tl i 1 L.
jev JEN; JEN; JEN; > ien, T jEN; i
Z’7j
Then, K is a stochastic matrix, and we have ||K|| = 1. Hence, the matrix Q

is well-defined by

1 1 —1 0
=-—(1-=K = 9—(m+1) m
Q- (1-3%) =%

m=0

and () is also a non-negative and stochastic matrix. By Lemma [2.2.1] a local
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optimum price strategy satisfy equality (2.52)). Therefore,

Pt = %(1—%K)1(C+t(L+Y))

= ) 2 ™UK" (C+t(L+Y)),

m=0

and so P” satisfies (2.54). By construction,

pE =" Qinleo +t(Ly + Y2)). (2.56)

veV

Let us prove that the price strategy P~ is local, i.e., the indifferent consumer

x;; satisfies 0 < z; ; < l~z] for every R;; € E. We note that

I — 2€ 1 ~ 1 1 Iy +2¢
n - <[ t= < <
i T <l = L < T ST (2.57)
Iy, — 2€ JENw liu,j layy+2¢
Hence,
Iy — 2 ~ l 2
S SIFEFRNED NEEL =0 SN
Y jeEN, JEN, Y jeN,
Therefore,
L (L, — 2€) < Ly < lps (Ips + 2¢). (2.58)

We note that

Ifk,=1then Y, = [ * <€y + D ien, sw-(j)>, and from (|2.57

—€(lyy—2€) < (I, —2€) (6, —€) <Y, < (lpy+2¢€) (ey +€) < 2€(lps + 2¢€);
(2.59)
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if k, =2 then Y, = [;! > jen, Sv,j(7), and from (2.57

lm_2626§K,SZM+2€

—€(lyy —2€) = — 2e=¢c(ly+2¢€);  (2.60)

and if k, > 3 then Y, = [ ((2 —kv) €+ ien, sw-(j)), and from ([2.57

Iy — 2 l 2
(ke = 2) e+ k) T ngng; U2 = k) ey + ke
Hence, if k, > 3 then
Iy, — 2¢€
—2¢€(ly, —2€) < — ’ (ky (e +€)) <Y, <e(lpy+2e€). (2.61)

Therefore, from ([2.59)), (2.60) and (2.61]), we have

—2¢€(ln—2€) <Y, =11 (Z Sp;(J) — €u(ky — 2)) <2e(lp+2¢€). (2.62)

JEN,
Since Q is a nonnegative and stochastic matrix, we obtain

ZQi,v(Cm Ft (I —2€)%) = cp +t (I — 2€)?

veV

and
ZQi,v(CM +t(ly +2€)%) =cpy +t Iy +26€)2

veV

Hence, putting (2.56)), (2.58)) and (2.62) together we obtain that

Cm (2 —4dlpe+4) <prF<cy+t(3,+4lLye+46e).

Therefore,
Cm +t (L —26)* < pF <epr 4+t (I +2¢€)>

160



Since the last relation is satisfied for every firm, we obtain
pE—pb > — (car — o + H(Do(l) + de(lar + 1))
and
Pt —pt < enr — e+ (Do (l) + delar + 1)

Therefore,
Pt — 07| < Ale) + (Do) +4elar + 1n)).

Hence, by the W B condition, we conclude that
pi = pil <t(lm—2€).

Thus, by equation ([2.50]), we obtain that the indifferent consumer is located
at 0 < 2;; < l~” for every road R;; € E. Hence, the price strategy P is

local and is the unique local optimum price strategy.

From ([2.56)), (2.58)) and (2.62)), we obtain
pr > Z Qivt(ln —26€)* + Z Qi Cm + Qi ci.

veV veV\{i}

By construction of matrix Q, we have @);; > 1/2. Furthermore, since Q is

stochastic,

> Qv <1/2,

veV\{i}
> e Qiwt(lm — 2€)* = t(l,, — 2¢€)?. Hence,
L 2 1

pi >t (lm —26€)° + 3 (¢ + em)-

Similarly, we obtain

1
pi <t +26)° + 5 (e +em),

161



and so the local optimal equilibrium prices p! are bounded and satisfy (2.55)).
We can write the the profit function (2.51)) of firm F; for the price strategy

Pl as

L L ~1/, L 7L pJL+tl~l'2j
m =m(P,C) = (2t)" (py — ) | 2t (2 — ki) & — lip; +Z T

JEN; li
(2.63)
Since P* satisfies the best response function (2.53)), we have
L 72

L
2pi =¢ +
i ¢ JEN; li

L 72
<t - -
Therefore, 3y, ]% =20 pt —l;c; — 2t (2 — k;) ;, and replacing this

1,3
sum in the profit function (2.63)), we obtain
mF =207 (pf — )l (pF — i) = (2) 7 i (pF — ).

Hence, since

k; ~ k;
<lz§ )
Iy +2¢ — Iy — 2€

using the price bounds ([2.55)), we conclude

ki (2t (I — 2€)% — Ac))?

ki (2t (L +2€)? + A0))?
St(lM+26) !

<77 <
== 8t (I — 2¢)

]

Let a € V, Ry, € E and d € V' \ {i}. The marginal rates of the local
optimal equilibrium prices pF are positive with respect to the production
costs ¢,, admissible local firm market sizes L,, transportation costs ¢ and

road lengths I, .. The marginal rates of the local optimal equilibrium profit
L

m; are negative with respect to the production costs ¢; and positive with

respect to the production costs ¢4, admissible local firm market sizes L,
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transportation costs ¢ and road lengths ;.

2.2.2 Nash equilibrium price strategy

The price strategy P* is a best response to the price strategy P, if
(B; — i) S(i, P(i, P,P*)) > (p} — ¢;) S(i, P,

for all 4 € V and for all price strategies P, whose coordinates satisfy p; > ¢;
and p}; = p; for all j € V'\ {i}. A price strategy P is a Hotelling town Nash

equilibrium if P* is the best response to P*.

Lemma 2.2.2. In a Hotelling town satisfying the W B condition, if there is
a Nash price P* then P* is unique and P* = P".

Hence, the local optimum price strategy P is the only candidate to
be a Nash equilibrium price strategy. However, P* might not be a Nash
equilibrium price strategy because there can be a firm F; that by decreasing
his price is able to absorb markets of other firms in such a way that increases
its own profit. Therefore, the best response price strategy PX* to the local

optimum price strategy P* might be different from P*.

Proof of Lemma[2.2.3.
Suppose that P* is a Nash price strategy and that P* # P%. Hence, P* does

not determine a local market structure, i.e., there exists ¢ € V such that
M(i,P*) & Ujen, Ry ;.

Hence, there exists j € N; such that M(j,P*) = 0 and, therefore, 75 = 0.

Moreover, in this case, we have that

* * 72
p; >p; +tl ;.
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Consider, now, that F; changes his price to p; = ¢; +t Aq(l) +4t e (Iar + ).
Since pf > ¢; and ¢; — ¢; < A(c) we have that

pj—p; =¢;+t A (1) +4te(lar+ 1) —pf <Ae) +tAx(l) +4te(la+ ).
Since the Hotelling town satisfies the W B condition, we obtain

pj =Dt <t(lm—262<t(li;—2¢)? <t

Hence, M (j,P(j,P*,P)) > 0 and

;= (tAg(l) + At e (Iyg + 1)) S, P(j, P*, P)) > 0.

Therefore, F; will change its price and so P* is not a Nash equilibrium price
strategy. Hence, if there is a Nash price P* then P* = P’ m

Let Ujen, Ri; be the I-neighbourhood N (i,1) of a firm i € V. Let
Ujen, Uren, Rjx be the 2-neighbourhood N(i,2) of a firm i € V.

Lemma 2.2.3. In a Hotelling town satisfying the W B condition,
M (i, P(i, PL, P**)) c N(i,2)

for everyi € V.

Hence, a consumer x € R;; might not buy in its local firms F}; and
F,. However, the consumer x € R;j, still has to buy in a firm F; that is a

neighboring firm of its local firms F}; and Fy, i.e. i € N; U Ny.

Proof of Lemma [2.2.5,
By contradiction, let us consider a consumer z € M (i, P(i,PL, PX*)) and

z & N(i,2). The price that consumer z pays to buy in firm Fj is given by

~ ~ 2
€ =D; +t <li1,i2 + liz,is + d (’yi3, Z)) Z Pi +t (li1,i2 + li2,i3 —2¢ + d (yi3, Z)>2
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where p; = piL’* is the coordinate of the vector P(i, PX, PL*) and for the
2-path (R;, iy, Ri,.is) with i3 = 4. If the consumer z buys at firm Fj,, then
the price that has to pay is

€= pé +td? (Yiss 2).
Since, by hypothesis, z € M (i, P(i, PY, P™*)), we have e < é. Therefore
pi <Pk =t (L iy 4 liyiy — 2 €)= 2t (Liyiy + linis — 2€) d(yiy, 2).
Since l;; > 1, for all R, ; € F,
pi <ph =4t (In — €)” — 4t (L, — €) d(ys,, 2).
By (2.53), p¥ <t (I +2€)? + cur for all i € V. Hence,
pi <cy+t(ly +26)* —4t (I, — 6)2 — 4t (L —€) d(yis, 2).
Furthermore,

pi—c < Ale)+t(y+2e)?—4t (I, —e)’
= A()+t A1) =3t +4te(ly + 1) +4tlh,e+4te> —4té
= Al)+tAs(l) =t (I —2€)* +4te(lyr +1n) +2t (262 = 12).

Since [,, > 2¢€, by the W B condition, p; —¢; < 0. Hence, 7riL’* < 0 which con-
tradicts the fact that p; is the best response to P (since 7~ > 0). Therefore,
z e N(i,2) and M (i, P(i, P, PL™)) c N(4,2). O

Definition 2.2.2. A Hotelling town satisfies the strong bounded length and
costs (SB) condition, if

(2t (L, — 2€)* — A(c))?

A(S) + £ Ag(l) <
(c) +182(0) < 8t kar (Inr + 2¢)2

- 4t€(lM + lm)
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The SB condition implies the W B condition, and so under the SB con-
dition the only candidate to be a Nash equilibrium price strategy is the local

optimum strategy price P*. On the other hand, the condition

t13,
Ae) +tAq(1) <

~ SkM(lM—|—26)2 —4t6(lM—|—lm).

together with the W B condition implies the SB condition. Hence, we note
that the condition

t(lp —2¢€)*
Ao +tdll) s g =9

5 —4t€(lM—|—lm).

implies the W B and SB conditions.

Theorem 2.2.1. If a Hotelling town satisfies the SB condition then there is

a unique Hotelling town Nash equilibrium price strateqy P* = P".

Hence, the Nash equilibrium price strategy for the Hotelling town sat-
isfying the SB condition determines a local market structure, i.e. every
consumer located at x € R, ; spends less by shopping at his local firms F;
or F; than in any other firm in the town and so the consumer at x will buy
either at his local firm F; or at his local firm Fj.

For € small enough, a cost and length uniform Hotelling town, i.e. ¢, =

cy and [, = 7, has a unique pure network Nash price strategy.

Corollary 2.2.2. Consider a Hotelling town where all firms are located at

th des. [
e nodes. If (2”3” - A(C))Q
Stk l%

Ae) +tAq(l) <
then there is a unique Hotelling town Nash equilibrium price strateqy P* =
P~
Proof of Theorem [2.2.1,.

By Proposition [2.2.1] and Lemma [2.2.2] if there is a Nash equilibrium price
strategy P* then P* is unique and P* = PL.
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We note that if M (i, P(i, P*, P»*)) c N(i,1) for every i € V then
P(i, P, PL*) = p* and so PF is a Nash equilibrium.
By Lemmal[2.2.3] we have that M (i, P(i, PY, P»*)) ¢ N(i,2) for every i € V.
Now, we will prove that the SB condition implies that firm F; earns more

competing only in the 1-neighborhood than competing in a 2-neighborhood.
By Proposition [2.2.T]

L k(2 (I — 26)2 — A(c))?
2 8t (Iys + 2¢) (2.64)

By Lemma [2.2.3]

Wi(ls(iaPL,PL’*)ac) < (pz‘—Cz')Z Zz‘,j—f— Z ng

jEN; kEN;\{i}

IN
<
|
D
S

>

where p; = piL’* is the coordinate of the vector 15(2', PX, P%*). Hence,

m(P(6, PYPY*),C) < (pi— i) D > (i +€) < (05 — ci)ki ks (Ias + ).

JEN; kEN;

(2.65)
By contradiction, let us consider a consumer z € M(i,f’(i,PL,PL’*)) and
2z & N(i,1). Let iy € N; be the vertex such that z € N (ip,1). The price that

consumer z pays to buy in firm Fj is given by
e=p;i+t (g +d Wi 2)? > pi+t(ligy — 26+ d(ysy, 2))%
If the consumer y buys at firm Fj,, then the price that has to pay is
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Since, by hypothesis, z € M (i, f’(z, PX, P%*)), we have e < é. Therefore

pi < pzl; — t(lmé — 26)2 — 2t(ll’12 — 2€)d(yi2,2).

1
By (2.55), p < t(lM+26)2—|—§(CM+Ci2) < cy+t (Lyr+2€)?. Since by > U,

we have

Di <CM+t(lM+2€)2_t(lm_2€>2_2t(lm_26)d<yi27’2)'

Thus,
pi—ci <A()+t(y+2€)? —t(Ln—2¢€)

Hence, from ([2.65)) we obtain

(P (i, PE,PL*), C) < ik (I +€) (A(e) +t (I +2€)2 =t (I, — 2€)%) .
Hence,

m(P(i, PL,P*), C) < kikar (lar +2€) (Ale) +t(lar +2€)° —t (I, — 26)?) .

By the SB condition,

ki (2t (bn +2€)* = A(c))?

(D(; PL pLx*

(2.66)

By inequalities and , 7k > (P, PL,PE*), C), which contra-
dicts the fact that p; is the best response to P, Therefore, z € N (,1) and
M(i,P(i,P* PL*)) € N(i,1). Hence, P(i, P, P™*) = pl and so P' is a
Nash equilibrium. O

We are going to present an example satisfying the W B condition but not
the SB condition. Furthermore, we will show that in this example the local
optimal prices do not form a Nash price equilibrium. Consider the Hotelling

town network presented in figure[2.4l The parameter values are ¢; = 0, ¢; = 0,
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2

Figure 2.4: Star Network not satisfying the SB condition

lm =5, lyy = 7, Ag(l) = 24 and ky; = 3. Hence, Network satisfies the
W' B condition. By Proposition the local optimal equilibrium prices

are

pl_ 3780 6455 3816 9023
N 107 7 2147 107’ 214

and the correspondent profits are

L 34020 8333405 1213488 11630647
a 107 7 91592 ' 11449 * 91592

We will show that the local optimum price strategy is not a Nash equilibrium.
The profits of the firms are given by 7 = p; S(i, P%), and the local market

sizes S(i, P*) are

Lyl
 PL) = i _ LD
Hence, the local market sizes are
6455 3816 9023
Ly _ q. Ly _ ) Ly _ ) Ly _

Suppose that firm F5, decides to lower its price in order to capture the market
of firm F;. The firm F; captures the market of F}, excluding F; from the
game, if the firm F, charges a price p, such that p,+25¢ < p¥ or, equivalently
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po < 1105¢/107. Let us consider p, = 1105¢/107 — &, where ¢ is sufficiently
small. Hence, for this new price, firm F, keeps the market M (2,PL) and,
since the price of Fy at location of F} is less that pl, firm F, gains at least
the market of firm Fj. Thus, the new market M (2, P) of firm F; is such that
S(2,P) > S(1,PY) + S(2,PF). Therefore, S(2,P) > 5143/428 and so

1105 5143 11366030 5143
T >p25(2,P):( > = - )

107 ) 428 91592 428
8333405
Thus m, > —————1t = 7k, and so firm F, prefers to alter its price pl.

91592
Therefore, P is not a Nash equilibrium price.

2.2.3 Space bounded information

The notation in this subsection has already been introduced in subsection
2.2.3l However, we duplicate the information in order to guarantee the inde-

pendence of the sections.

Given m + 1 vertices xq, ..., x, with the property that there are roads
Rigars--s Rep 1 2, the (ordered) m path R is
R= (Rxo,xn e aRxm—1,zm)'

Let R(i,j;m) be the set of all m (ordered) paths R = (R zyy- -y Repp yz)
starting at ¢ = x9 and ending at j = x,. Given a m order path R =
(Ryga1s---» Ry 1.2 ), the corresponding weight is

m—1

E(R) = [ Fagwroir-
q=0

The matrix K° is the identity matrix and, for n > 1, the elements of the
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matrix K™ are

K= > k(R).
ReR(i,j;m)
Definition 2.2.3. A Hotelling town has n space bounded information (n-
) if for every 1 < m < n, for every firm F; and for every non-empty set
R(i,j;m): (1) firm F; knows the cost ¢; and the average length road L; and
the firm deviation Y; of firm F;; (i) for every m path R € R(i,j;m), firm
F; knows the corresponding weight k(R).

The n local optimal price vector is

P(n)=Y 27 "IK"(C+t(L+Y)).
m=0
We observe that in a n-I Hotelling town, the firms might not be able to
compute K, C, L or Y. However, every firm F; is able to compute his n

local optimal price p;(n)

pi(n) =27 N (e, 4t (Ly + VL)
m=0

veV

By (2.52)), the best response P’ to P(n) is given by

1 1
_ % (C+tL+Y)+ Y 2K (C 4t (L+Y))
m=0
n+1
= Y 27MIK™(C+t(L+Y)) =Pn+1).
m=0

Hence, P(n + 1) is the best response to P(n) for n sufficiently large.
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Let GG denote the number of nodes in the network and let

A t(l 2¢)?
e= (‘3)7 (Ag+ i + 2 (Iyg + 2¢).
m— 2€

Theorem 2.2.2. A Hotelling town satisfying the W B condition has a local
optimum price strateqy P" that is well approzimated by the n local optimal
price P(n) with the following 27" bound

0 < pl—pitn) <27CFVG (epr + t (I + 2€)?).
The profit m;( P) is well approzimated by m;( P(n)) with the following bound
|mi(P") — m(P(n))| <272 Gt (epr 4+t (g + 2€)?) (kie+4te).

Proof. By Proposition if a Hotelling town satisfies the W B condition

then there is local optimum price strategy P¥ given by
Pl = i 2~ MHDK™ (C+t(L+Y)).
m=0
Considering Q =>"~_, 2-(m+DK™ we can write the equilibrium prices as
pk = Z Qiv(co +t(Ly+Y,)), where Q;,= i 2’(7”“)]{22}.
veV m=0

For the space bounded information Hotelling town, the n local optimal price

P(n) is given by

P(n) = zn: 2~ (MDK™ (C+t(L+Y))

m=0
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and

n

pi(n) = Qin(n) (cy + (L, +Y,)),  where Qi(n) =Y 27 Vgm

veV m=0

The difference R;(n) between pF and p;(n) is positive and is given by

Ri(n) = Z (Qiv — Qin(n)) (cv +t(Ly +Y,)).

veV

We note that .
Qiv — Qin(n) = Z 2‘“"“)’%-

m=n-+1

Since 0 < k7, <1, for all m € N and all 7,v € V' and
Z 9= (m+1) — g—(n+1)
m=n+1

we have that
Qi,v - Qi,v(n) S 2—(n+1)'

Hence,
Ri(n) <) 270 (¢, + 1 (L, +Y2)).

veV
Since L, < Iy (Ins + 2€), Yy, < 2€e(lpy + 2€) and ¢, < ¢y, we have that
Ri(n) < 27D G (epr +t (Ins + 2€)2). (2.67)

Therefore,

0<pl—pi(n) <27V G (epr 4t (I + 2€)%).
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The profit for firm F; for the local optimal price is given by

(P = (20)7 (pF — 1) <2t el—f—zpj — +tl2> (2.68)

JEN; ll »J

and the profit for firm F; when all firms have n-space bounded information

18

m(P(n)) = (2t)" (pi(n) — ;) ( Jeit D ) o) + 1 )

JEN;

Let R;;(n) = R;(n) — R;(n) and

pi(n) + Rj;(n) +t12,
7, — €Z+ij ) ]() j
JEN; livj
Py —p +tl2
SR CRISIE S
JEN; l”

Since pF = p;(n) + R;(n), we can write the local equilibrium profit (2.68)) for

firm 7 as

mi(PY) = (20)7" (pi(n) — ¢ + Ri(n)) Zi

Hence,

m(PY) = m(P(n)) + (2)~ ((Pz(n) —¢;) Z Rjii(n) + Ri(n) Zz’)

ion i

The difference between the equilibrium profit and the profit where all firms

have n-space bounded information is

m(PY) — m(P(n)) = (20)" <<pi<n> Ce Y ) z) |

]ENZ 7’7j
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Hence,

[mi(PY) — mi(P(n)] < (26)7 ( &)Y 1Byall Ri(n) Zz'> :

JEN; i

Since

i ]<2tl”§2t(lM+2€)

17]

we have
Let Z = A(e) +t (ly + 2 €)% Since p;(n) — ¢; < pF — ¢;, from (2.55) we have

pi(n) —c; < Ale) +t(lyr +2¢€)* = Z. Hence,

7, (PE) =, (P(n))] < (2t)" ( Z'R” +2tRi(n)(kl-(lM+26)+26))

JEN; 17

Let Zy = car +t (I + 2€)*. By (2.67), Ri(n) < 27"V G Zy. Then, also,
|R;;(n)] <2-0"*D G Zy,. Therefore,

2 ‘R“ o Mgz,

= iy Ly — 2€

We note that

+2t(ly +2¢) =
€

I
Hence,
I (P — m(P(n))] < 27D Gt Zyy (kie +4te).
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2.3 Different transportation costs

This section extends the Hotelling model with different linear transportation
costs to networks. For simplicity of notation, we assume that the firms are
located at the nodes of the network.
A consumer located at a point x of the network who decides to buy at
firm F; spends
E(x;i,P) =p; + t;d(x,1)

the price p; charged by the firm F; plus the transportation cost that is pro-
portional ¢; to the minimal distance measured in the network between the

position ¢ of the firm F; and the position = of the consumer.

2.3.1 Local optimal equilibrium price strategy

We observe that, for every road R;; there is an indifferent consumer located

at a distance
pi—pittili;
ti + 1 ”

0< Tij =

of firm Fj if and only if —¢;[,; < p; — p; < t;1;;. Thus, a price strategy P

determines a local market structure if and only if
—t; li,j <pi —pj < tj l@j (269)

for every road R; ;.

If the price strategy determines a local market structure then

S(i,P)=>

JEN;
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and

m(P,C) = (pi—c) S P)

D =i+t
= (pz‘—Ci)Z ’ t~+t4] .. (2.70)
JEN; v

Given a pair of price strategies P and P* and a firm F;, we define the
price vector P( P, P*) whose coordinates are p; = p} and p; = p;, for every
j € V\ {i}. Let P and P* be price strategies that determine local market
structures. The price strategy P™ is a local best response to the price strategy
P, if for every i € V the price strategy P (i, P, P*) determines a local market

structure and

om;(P(i,P,P*),C O*m,(P(i, P, P*),C
n(PGPPIC) (. PnPEPPIO)

Opi Ip;
Let T; = > ———. The Hotelling town admissible market size L is

the vector whose coordinates are the admissible local firm market sizes

Li=T7" Ztth

The Hotelling town neighboring market structure K is the matrix whose

elements are (i) k; ; = if there is a road R;; between the firms F;

T; (t; + tj) ’
and F; and (ii) k;; = 0, if there is not a road R;; between the firms F; and

F};. Let 1 denote the identity matrix.

Lemma 2.3.1. Let P and P* be price strategies that determine local market

structures. The price strateqy P* is the local best response to price strateqy

P if and only if

1 1
P:§(C+L)+2KP (2.71)
and the price strategies P(i, P, P*) determine local market structures for all
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eV .
Proof. By (2.70)), the profit function m;(P,C) of firm F;, in a local market

structure, is given by

— Pi +t] li,j
ti+t;

n(P.C)=(p—c;) Y 2

JEN;

Let P(i, P, P*) be the price vector whose coordinates are j; = p* and pj =
pj, for every j € V' \ {i}. Since P and P* are local price strategies, the
local best response of firm F; to the price strategy P, is given by computing

om(P(i,P,P*),C)/0p; = 0. Hence,

1 1 Dj +t] lij
L (PTRLI N ¢ LL7 ALYI) 2.72
JEN;

Therefore, since 0°m;(P(i, P,P*),C)/0p? = —2T; < 0, the local best re-

sponse strategy prices P* is given by

P*=- (C+L+KP).

N | —

]

We denote by ¢y (resp. t,,) the maximum (resp. minimum) transporta-

tion cost of the Hotelling town
ty =max{t;: i€V} and ¢, =min{t;:i€ V}.

Let A(t) = tar — by

Definition 2.3.1. A Hotelling town satisfies the weak bounded length and
costs (W B) condition, if

tn U

It — It
A(c) + MM o
tth
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Let P and P* be price strategies that determine local market structures.
A price strategy P* is a local optimum equilibrium if P* is the local best

response to P*.

Proposition 2.3.1. If the Hotelling town satisfies the W B condition, then

there is unique local optimum price strategqy given by

1
pL— % (1— %K) (C+I)= Zz Mg (G4 D). (2.73)

The local optimum price strategy P determines a local market structure.

Furthermore, the local optimal equilibrium prices p¥ are bounded by

Int?, 1 . lutd, 1
+-(ci+em) <py <—=+-(ci+cu) (2.74)
ty 2 9

The local optimal profit 7t = nF(P, C) of firm F; is given by

Wf(P7C):E(pf_Cl>2

and it is bounded by

. 2 2 , 2 2
k'z (lmtm o A<C)) S 7TiL S k’L (lMtM + A(C)) )

b +tu 134 2 ti + 1ty tm 2

Proof. Let, first prove that K is a stochastic matrix (i.e., > ., ki; = 1, for

every i € V). Since

jev

1 1
T; = and k= —
;; ti+1 LTt ty)

Eil J
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we have

41 _ 1

jev JEN; JEN; Rz
1 1
- I Z .
Lot 1t
doieN, T JEN: J
JEN: t; + tj
Then K is a stochastic matrix, and we have |K|| = 1. Hence, the matrix @

is well-defined by

1 1.\"' &
=-—(1-=K = 9~ (m+1) m
Q-3 (1-5%) =%

and () is also a non-negative and stochastic matrix. By Lemma [2.3.1] a local
optimum price strategy satisfy equality (2.71]). Therefore,

1 1 \"! >
PL:§<1—§K) (C+L)=Zz—<m+1>Km(C+L),
m=0

and so P” satisfies (2.73)). By construction,

pE=>" Qivlcs + Ly). (2.75)

veV

Let us prove that the price strategy P” is local, i.e., the indifferent consumer
x;; satisfies 0 < x;; < l; ; for every R; ; € E.
We note that

k, 1 k.,
t+1 ST”:Zt LSt (2.76)
v T tm JEN, U+j vt ilm
Hence,
tv+tm<T_1<tU+tM
k, — % = k,
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and, therefore,

tottm ot <L -1 Y tilyy  tottu, tulu
ky ty + tar Sttt ko to+tm

v

Hence,

2
L T2, < ton U (ty +tm)L
- ty + 1ty

2
< bl (b tar) _ Dty

; 2.
= tuttm = tm (2.77)

tp

Since Q is a nonnegative and stochastic matrix, we obtain

L, t2 L, 12
ZQi,v (Cm+ m):Cm+ y o

t
veV M M

and

Ly t2 Ly t2
ZQN’ (CM+ J‘i M) =cpy + ]\i M.

veV

Hence, putting (2.75)) and ([2.77)) together we obtain that

L, 2 Ly 2
tay tm

Since the last relation is satisfied for every firm, we obtain

— (e — em + — ) < pF—ph < ey — e+ -
( M tm tm ) bem b M lm Iy
Therefore,

ytd, —1,t3
pF — pk| < Ae) + HAL_mm,
j t tar

Hence, by the W B condition, we conclude that

Ipf = pF| <t -

Thus, by equation (2.69)), we obtain that the indifferent consumer is located
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at 0 < z;; < l;; for every road R;; € E. Hence, the price strategy P~ is

local and is the unique local optimum price strategy.

From (2.75) and (2.77), we obtain

2
sz Z Z Qi,vlrzﬁ + Z Qi,v Cm + Qi,i C;.

vev Mo e\

By construction of matrix Q, we have );; > 1/2. Furthermore, since Q is

stochastic,
Lnt2, L t2
> Qin<1/2, and ZQW e
L tm
veV\{i} veV
Hence,
I t2, et e
& Cm
p’L tM 2
Similarly, we obtain
D; < —+—(Ci+CM),
tm 2

and so the local optimal equilibrium prices p! are bounded and satisfy ([2.74)).
We can write the the profit function (2.70)) of firm F; for the price strategy

PL as

+tl
rt = m(P*,C) = (o} — ) ( pir 4 Y Pt ik ) (2.78)

. t; +1t;

Since P* satisfies the best response function ([2.72)), we have

2pk =¢; + — A T
b C+EZ ti+t;
JEN;
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Therefore,

L

L 4t
SR oyl T T,
jen, il

and replacing this sum in the profit function (2.78)), we obtain
ml=F =) (—pf T+ 2pf T — ¢ T3) = T (pf — i)’
Hence, from ([2.76]), and using the price bounds ([2.74]), we conclude

k; I t2 2 k; Ly 12 2
: momo_A(e)/2) <wk< ’ M A(e)/2]) .
t; +tym ( Ty (C)/ ) =T t; +tm ( tm + (c)/ >

]

Let a € V, Ry, € E and d € V \ {i}. The marginal rates of the local
optimal equilibrium prices pF are positive with respect to the production
costs ¢,, admissible local firm market sizes L,, transportation costs ¢ and

road lengths [, .. The marginal rates of the local optimal equilibrium profit
L

m; are negative with respect to the production costs ¢; and positive with

respect to the production costs ¢4, admissible local firm market sizes L,

transportation costs ¢ and road lengths ;.

2.3.2 Nash equilibrium price strategy

The price strategy P* is a best response to the price strategy P, if
(pi — i) S, P(i. P, P")) > (pf — i) S(i, ),

for all 4 € V and for all price strategies P whose coordinates satisfy p; > ¢;
and p}; = p; for all j € V'\ {i}. A price strategy P is a Hotelling town Nash

equilibrium if P* is the best response to P*.

Lemma 2.3.2. In a Hotelling town satisfying the W B condition, if there is
a Nash price P* then P* is unique and P* = P".
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Hence, the local optimum price strategy P is the only candidate to
be a Nash equilibrium price strategy. However, P* might not be a Nash
equilibrium price strategy because there can be a firm F; that by decreasing
his price is able to absorb markets of other firms in such a way that increases
its own profit. Therefore, the best response price strategy P%* to the local

optimum price strategy P* might be different from P*.

Proof of Lemma[2.5.3.
Suppose that P* is a Nash price strategy and that P* # P%. Hence, P* does

not determine a local market structure, i.e., there exists ¢ € V such that
M (i, P*) & Ujen, Ry ;.

Hence, there exists j € N; such that M(j,P*) = 0 and, therefore, 7} = 0.

Moreover, in this case, we have that
p; > pi +tiliy
Consider, now, that F}; changes his price to

Its, — 1L, t3
t ty

Since pf > ¢; and ¢; — ¢; < A(c) we have that
I ts, — L t3, I t3, — b t3,

— C; S A(C) +

p.] pz p] 1 J tth tth

Since the Hotelling town satisfies the W B condition, we obtain

pj — i <tmln <t li;.
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Hence, M (j,P(5,P*,P)) > 0 and

I ts, — L, t3, B T
=\ S(],P(],P 7P))>O
Ut

Therefore, F; will change its price and so P* is not a Nash equilibrium price
strategy. Hence, if there is a Nash price P* then P* = PL. O

Definition 2.3.2. A Hotelling town satisfies the W B1 condition, if

Iy 3
M@+KM—%%+A@W§%%.

m

Let Ujen,R;; be the I-neighbourhood N(i,1) of a firm ¢ € V. Let
Ujen, Uren, R;, be the 2-neighbourhood N (i,2) of a firm i € V.

Lemma 2.3.3. In a Hotelling town satisfying the W B1 condition,
M(i, P(i, P*, P**)) c N(i,2)

for everyi € V.

Hence, a consumer z € R;j; might not buy in its local firms F; and
F,. However, the consumer x € R still has to buy in a firm Fj that is a

neighboring firm of its local firms F; and Fy, i.e. i € N; U Nj.

Proof of Lemma[2.5.3.

By contradiction, let us consider a consumer z € M(i, P(i, P*,P™*)) and
2z & N(i,n), with n > 2. The price that consumer z pays to buy in firm F;
is given by
e=p;+t; (Z lijijoy +d (g, Z)>
j=1

where p; = pl* is the coordinate of the vector P(i, P¥, PX*) and for the

n-path (R;, i,, Risiss - - -+ Riyinyr) With 43 = 4. If the consumer z buys at firm
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F; then the price that has to pay is

n+1?

e = pi[;rkl =+ tin+1 d (in+1, Z)

Since, by hypothesis, z € M (i, f’(i, PX, P"*)), we have e < é. Therefore
pi < p{;H —t; (Z lij,ij+1) + (tin 1 — ti) d (ing1, 2).
j=1

By inequality (2.74)),

+Lewra)
tm QCM Ci

for all « € V. Since l;; > [,,, for all R, ; € F,

ZM t2 1 .
th + §(CM + Cin+1) —ntily, + (tin+1 - ti) d (Z”'H’ z)

)

Since n > 2, d(in41,2) <ly and t; ., —t; < A(t) we obtain that

in+1

1
-+ —(CM + Ci7l+1) — Qtz lm + A(t) lM

I3,
§ < ——
bis Ty

Since t; > t,, and ¢, <¢; <cp for all 7 € V we conclude that

By the W B1 condition, p; — ¢; < 0. Hence, 7riL ™ < 0 which contradicts the
fact that p; is the best response to P* (since 7 > 0). Therefore, z € N(4,2)

and M (i, P(i, P, PL*)) c N (4,2).

Definition 2.3.3. A Hotelling town satisfies the strong bounded length and

costs (SB) condition, if

I 2, (20 12 — A(e) tar)?
A ot + A Iy < m .
)+ AW S e i+ tar)
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The SB condition implies the W B condition, and so under the SB con-
dition the only candidate to be a Nash equilibrium price strategy is the local

optimum strategy price P~.

Theorem 2.3.1. If a Hotelling town satisfies the SB condition then there is

a unique Hotelling town Nash equilibrium price strateqy P* = PL.

Hence, the Nash equilibrium price strategy for the Hotelling town sat-
isfying the SB condition determines a local market structure, i.e. every
consumer located at € R;; spends less by shopping at his local firms F;
or F; than in any other firm in the town and so the consumer at z will buy

either at his local firm F; or at his local firm Fj.

Proof of Theorem [2.5.1].
By Proposition and Lemma [2.3.2] if there is a Nash equilibrium price
strategy P* then P* is unique and P* = P’.

We note that if M(i, P(i,PY,P®*)) c N(i,1) for every i € V then
].5(2', PX PX*) = pF and so P* is a Nash equilibrium.
We note that the SB condition implies the W B1 condition. Hence, by
Lemma [2.3.3] we have that M (i, P(i, P*,P™*)) c N(i,2) for every i € V.
Now, we will prove that the SB condition implies that firm F; earns more

competing only in the 1-neighborhood than competing in a 2-neighborhood.
By Proposition [2.3.1]

. 2 2
> k; (lm b A§6)> (2.79)

ti +tu tar

By Lemma [2.3.3]

m(P(i,P*, P1*),C) < (pi — ;) Z Z L < (pi —ci)kiky b (2.80)

JEN; kEN;

where p; = pf’* is the coordinate of the vector 15(2', PL PLY).
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By contradiction, let us consider a consumer z € M (i, P(i, PL, PX*)) and
z ¢ N(i,1). Let iy € N; be the vertex such that z € N(i5, 1). The price that

consumer z pays to buy in firm Fj is given by
e=p;+t (i, +d(is, 2)).
If the consumer z buys at firm Fj,, then the price that has to pay is
€ =pi +ti, d (s, 2).
Since, by hypothesis, z € M (i, P(i, PY, P™*)), we have e < é&. Therefore
pi < pé —tiligy + (ti, — ti) d (42, 2).

By inequality ([2.74]),
It 1
py < Ai A +5(em + i)

forallt e V. Since l; ; > [,,, for all R; ; € E,

l t2 1 .
Ai M+ glear +cig) = tiln + (tiy — ;) d iz, 2).

)

Since d (i, 2) < lpy and t;, —t; < A(t) we obtain that

i

Ivtd, 1
" +§@rm@—u%+A@W.

Since t; > t,, and ¢, <c¢; <cp for all i € V we conclude that

v B3,
pi —C < A(C)+

— b b + A() Ly

m
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Hence, from ([2.80) we obtain

- I t3
(P (i, P, PL*), C) < ki kas Ly (A(c) + Ai Mt Lo + A(2) zM) .

m

By the SB condition,

ki (202 — A(c) ty)

i(P(i, P, P"*),C

(2.81)

Hence, by inequalities and , b > 7Ti<f)(i,PL,PL’*),C), which
contradicts the fact that p; is the best response to PL. Therefore, z € N (i,1)
and M (i, P(i, P*, P*)) € N(i,1). Hence, P(i, PX, P*) = p! and so P* is
a Nash equilibrium. O

2.4 Uncertainty on the Hotelling Network

In this section, we introduce incomplete information, considering uncertainty
on the production costs of the firms, in the Hotelling network with linear
transportation costs, and we find the Bayesian Nash equilibrium in prices.

For simplicity of notation, we consider a Hotelling town model where the
firms are located at the nodes and where each firm has a specific space of
price strategies associated with their production costs.

For every v € V, let the triples (I,,$),, q,) represent (finite, countable or
uncountable) sets of types [, with o-algebras 2, and probability measures
¢y over I,. Hence dg,(z,) denotes the probability of the common believes of

the other firms on the production costs of the firm F, to be cZv.

The Hotelling town production cost C is the vector (c1, .. ., cy,) whose co-
ordinates ¢, : I, = [¢™, cM] C [cm, cir] € RY are measurable functions. The

Hotelling town average production cost E(C) is the vector (E(c1), ..., E(cn,))
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whose coordinates are the expected production costs

E(c,) = / v dgy(zy) < 0.

Iy

A price strategy P is the vector (py, ..., py,) whose coordinates p, : I, — R{
are measurable functions. The average E(P) of the price strategy P is the

vector (E(p1),...,E(py,)) whose coordinates are the expected prices

E(p,) = /I Py dgy(2,).

For each road R
by

i, the indifferent consumer z;; : I; x I; = (0,1; ;) is given

v DY —pT At
2 = b p2t I (2.82)

Let the type of the neighbours of a firm F; of degree k; be denoted by Zy, =

(2i1, Zi2y -+ Zik;) Which is a vector of dimension k;. Consider that Iy, =
Iiy x1io...x I, The ex-post market size of firm Fj, SEP . I x Iy, — Ry,
is given by

SFPGI.P) =" a7, (2.83)

JEN;

The ex-post profit of firm F;, 7FF : I; x Iy, — R{, is given by

Wfp(zi7ZNi) = WfP(PaCaZi,ZNi)
= (pf — ) SPP(I,P) = (pf —¢f') > a7, (2.84)

JEN;

We assume that dgqy,(Zy,) denotes the probability of the belief of the firm F;

. . . ZN; i1 Zi,2 2k,
on the production costs of its neighbours to be C* = (¢;5', ¢/, ..., ¢ 7).

We note that

dgn,(Zy,) = dgin(zi1) dgia(zi2) - - dgik; (Zig,)-
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The ex-ante market size of firm Fj, SF4 : I, — RY, is given by

7

SPAR) = [ SRR oy (zy) = 30 PRI )

2t
INi JEN;

The ex-ante profit of firm Fj, 74 : [; — R{, is given by

M) = 7P, C, )
- / 7P (1 T da (Zog) = (07 — ) SPA(6, P)
INi
s E(pj) —pi' +tli
= (i =) >y = oY 1, (2.86)
JEN;

The expected profit of firm F;, E(m;), is given by
E(m;) = / mP M (2) dgi(z;) = / / " (21, Zw,) dqn, (Zy,) dg;(z:)
I LIy,

2.4.1 Local optimal equilibrium price strategy

Given a pair of price strategies P and P* and a firm F;, we define the price
vector f’(i,P,P*) whose coordinates are p; = p; and p; = p;, for every
j € V\{i}. Let P and P* be price strategies that determine local market
structures. The price strategy P~ is a local best response to the price strategy
P, if for every i € V the price strategy 15(2', P, P”) determines a local market

structure and

anA(f)(iapaP*)ac7zi) — and 827TiEA(P<i7P7P*)7C7Zi)

Bp: 8? < 0.

Consider that L and K represent, respectively, the admissible market size

vector and the neighboring market structure matrix defined in section [2.1.1

Lemma 2.4.1. Let P and P* be price strategies that determine local market

structures. The price strateqgy P* is the local best response to price strategy
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P if and only if
1
P*:5 (C+ KE(P)+tL). (2.87)

and the price strategies 13(1', P, P*) determine local market structures for all

1 €V . Furthermore,

(E(C)+tL)+ ! KE(P). (2.88)

E(P") = >

N | —

Proof. From ([2.86]), the ex-ante profit for firm F; in a local market structure
is given by

T—c .
7TiEA<ZZ'> = bi 9 ¢ L (Z E(pj) —pl-’ + tli,j> (289)

JEN;

Let f’(z’, P, P*) be the price vector whose coordinates are p; = p}

¢ and p; =
p;, for every j € V \ {i}. Since P and P* are local price strategies, the
local best response of firm F; to the price strategy P, is given by computing

OrFAP(i,P,P*), E(C), z)/0p; = 0. Hence,

Zi ¥ 1 Zi 1
Pt =35 (Ci +t Z E(p;) + tlz‘,j) : (2.90)

' jEN;

and equation ([2.87) is satisfied.
Then,

B = [ 9 dad=) = 5 <E<cz~> to Y B+ t@-)

i t jEN;

Therefore, since &*xPA(P (i, P,P*),C, 2)/0p? = —ki/t < 0, the local best
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response strategy prices P* satisfy

E(P") == (E(C) +tL+KE(P)).

N | —

O

Let P and P* be price strategies that determine local market structures.
A price strategy P* is a local optimum price strategy if P* is the local best
response to P*.

Let

Qij=> 27 g
m=0

Proposition 2.4.1. If the Hotelling town satisfies the W B condition, then

there is unique Bayesian local optimal equilibrium price strategy given by

P’ =_- (C+ KE(P")+tL) (2.91)

DO | —

where

E(PE):%(1—%K)_ (E(C)+1tL).

Furthermore, the Bayesian local optimal equilibrium price PY determines a

local market structure and the local optimal equilibrium prices p¥ are bounded

by

tlm+_cfz_|_mSpi17E§th+_cil+m_ (292)
2 4 2 4
Proof. The matrix K is a stochastic matrix (i.e., ZjeV k;; = 1, for every

i € V). Thus, we have ||K|| = 1. Hence, the matrix @ is well-defined by

1 1.\ ! &
_ = - _ —(m+1) grm
Q= (1 : K) > 2 K

m=0
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and @ is also a non-negative and stochastic matrix. By Lemmal[2.4.1] a local
optimum price strategy satisfy equality (2.88)). Therefore,

1 1_\"! i e
E(PE):§(1—§K) (E(C)+1tL) :;2 K™ (E(C) +tL).
(2.93)
By construction,
= Qiu(E(c)) +tLy). (2.94)

veV

From equality (2.87]), we obtain that the Bayesian local optimal equilibrium

price P¥ has coordinates

%, 1
piE = 3 (cZ k: ZEp] —I—tl”>
JEN;
1
= 3 (cl i Z(ZQJU (cy +tL)+tlm>>. (2.95)
JEN,; \veV

Let us prove that the price strategy P¥ is local, i.e., the indifferent consumer

x;7 satisfies 0 < ;77 < [;; for every R;; € E which, from (2.82), is

7’7]
equivalent to

pit — pjj’E’ <tl;;. (2.96)

Since ¢, < FE(¢,) < ¢y for every v € V', from (2.94)) we obtain that for every
1eV
> Qinlem +tLy) < E@P) <> Qinlear +tLy). (2.97)
veV veV

We note that
o < Ly =k, Y 1y <l (2.98)

JENy
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Since Q is a nonnegative and stochastic matrix we obtain

ZQi,v(Cm + tlm) =Cpy + tlm

veV

and
ZQi,U(CM "—th) = CMpm +th
veV

Hence, putting (2.97) and ([2.98]) together, we obtain that
Cm +tln < E(pF) < cy +tiy.

Then,

1 1
2i B 2
sy (Ci +E§:CM+th+tli,j> <

b jen;

(3 + ear + 2t L)

N | —

and

1 1 1
zi B 2 2

' jEN;

Therefore,
Cm +tlm S plz“E S Cym +th

Since the last relation is satisfied for every firm, we obtain

—(ear — Cm +tlar — b)) < piP — pf-j’E < enr — Cm A+t — ).

Therefore,

pit — p?"E] < Ae) +tA().
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Hence, by the W B condition, we conclude that

P = | <t

Thus, by equation (2.96)), we obtain that the indifferent consumer is located
at 0 < ;77 < l;; for every road R;; € E. Hence, the price strategy P¥ is

local and is the unique local optimal equilibrium price strategy.

From ([2.94) and (2.98)), we obtain
E(pf) > Z Qivtly, + Z Qi Cm + Qii E(ci).

veV veV\{i}

By construction of matrix Q, we have Q);; > 1/2. Furthermore, since Q is

stochastic,
Z Qi < 1/2,
veV\{i}
and ) o, Qiotly = tl,. Hence,

E(F) >t + % (E(ci) + cm).

Similarly, we obtain

E(pF) <tly + % (E(c;) + cm).

Hence
2B 5 1 +1§ tl+1(E()+ )+t
P = P T T mT =z G Cm i
1 = 9 ¢ k@ 9 »J
JEN;
>tl+1 +1(E()+ )
m A~ Y - 7 Cm)-
> 20 1 c
Similarly,

. 1 1
pZ-ZZ’E <tly+ 5 c; + Z (E(CZ) + CM).
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and so the Bayesian local optimal equilibrium prices pf are bounded and

satisfy (12.92)). ]

Proposition 2.4.2. If the Hotelling town satisfies the W B condition, the

EAE
(

ex-ante local optimal profit m; z;) of firm F; is given by

ki (7" — ci')?

7

2t

i v (z) = 7 fA(PPE(C), %) =

and is bounded by

32t - 32t

Proof. We can write the ex-ante profit function (2.89)) of firm F; with respect
to the local optimum price strategy P¥ by

() = (26) 7 (0] — ) ( T D (B + tlw)> (2.99)

JEN;

Since P¥ satisfies the best response function (2.87)), we have

2]9:“ —CZ1+ Z _’_tlzj)

]GN

Therefore,

JEN;

and replacing this sum in the profit function (2.99)), we obtain

mEAE () = (26 (0 F — )R

)
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Using the price bounds (2.92)), we conclude

ki (4tl, + E(c;) + ¢ —2¢])? EA,E( ) < ki (4tly + E(c;) +cu — 2¢7)?
321 =T )= 321 ’

[]

2.4.2 Bayesian Nash equilibrium price strategy

The price strategy P* is a best response to the price strategy P, if
(Bi — i) ST P (0, P PY)) > (pf — ) S, P,

for all 4 € V and for all price strategies P; whose coordinates satisfy p; > ¢;
and p}; = p; for all j € V'\ {i}. A price strategy P~ is a Hotelling town Nash

equilibrium if P* is the best response to P*.

Lemma 2.4.2. In a Hotelling town satisfying the W B condition, if there is
a Bayesian Nash price P* then P* is unique and P* = P¥.

Hence, the Bayesian local optimum price strategy P¥ is the only can-
didate to be a Nash equilibrium price strategy. However, P might not be
a Bayesian Nash equilibrium price strategy because there can be a firm F;
that by decreasing his price is able to absorb markets of other firms in such a
way that increases its own profit. Therefore, the best response price strategy

P®* to the optimal local price strategy P¥ might be different from P¥.

Proof of Lemma |2.4.2.
Suppose that P* is a Nash price strategy and that P* # P¥. Hence, P* does

not determine a local market structure, i.e., there exists ¢ € V such that

Hence, there exists j € N; such that M (j, P*) = 0 and, therefore, ﬂfA’* =0.
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Moreover, in this case, we have that
p;j’* > E(pf) + tli’j.

Consider, now, that F; changes his price to p; = cjj +t A(l). Since E(p}) > ¢,

and ¢}’ — ¢, < A(c) we have that
p; —E@)) = ¢ +tA(l) — E(p}) < ¢ +tA(l) — e < Alc) +tA(1).

Since the Hotelling town satisfies the W B condition, A(c) +t A(l) < ti,,, we
have

Hence, M (j,P(j,P*,P)) > 0 and 74 = (¢;+t A(1)) SPA(5, P(j, P*, P)) > 0.
Therefore, F; will change its price and so P* is not a Nash equilibrium price
strategy. Hence, if there is a Nash price P* then P* = P¥. ]

Lemma 2.4.3. In a Hotelling town satisfying the W B condition,
M(i, P(i, P®, PP*)) c N(i,2)

for every i € V.

Hence, a consumer z € R;; might not buy in its local firms F; and
F. However, the consumer x € R;j still has to buy in a firm Fj that is a

neighboring firm of its local firms F; and Fy, i.e. i € N; U Nj.

Proof of Lemma[2.4.3.

By contradiction, let us consider a consumer z € M (i, P(i, P¥, PZ*)) and
z & N(i,2). For every type z; € I;, the price that consumer z pays to buy in
firm F; is given by

€= pfi +1 (lil,iQ + li27i3 +d (yi37 Z))
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where p; = p* is the coordinate of the vector P(i, P¥ PP*) and for the
2-path (R, iy, Ri,.is) with i3 = 4. If the consumer z buys at firm Fj,, then
the price that has to pay for every type z;, € I;, is

Zq

€= pi;”E +td (yis, 2).

Since, by hypothesis, z € M(i, P(i,P?, P*)), we have e < &. Therefore, for

every types z; € I; and z;, € I;,, we have

p? < p;?s —t (li1,i2 + liQ,is) :

. 1/ . Bl
By 2-92,pf“E§tzM+§(c§z+w

forall R;; € F,

) for all ¢ € V. Since l;; > 1,,,

1 Z E 1
P <t + g <cl-;3 + W) — 2t < car +EA() — .

Furthermore,
pit =t < Ale) +tA(l) — tl,.

By the W B condition, p;" — ¢;* < 0. Hence, 7riE ™ < 0 which contradicts the
fact that p; is the best response to P¥ (since 7 > 0). Therefore, z € N(4,2)
and M (i, P(i, P¥ PP*)) c N(i,2). O

Definition 2.4.1. A Hotelling town satisfies the strong bounded length and
costs (SB) condition, if

(21, — A(c))?
8t ks s

Ae) +tA(l) < (2.100)

Theorem 2.4.1. If a Hotelling town satisfies the SB condition then there is

a unique Hotelling town Bayesian Nash equilibrium price strateqy P* = PF.

Hence, the Nash equilibrium price strategy for the Hotelling town sat-

isfying the SB condition determines a local market structure, i.e. every
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consumer located at € R;; spends less by shopping at his local firms F;
or Fj than in any other firm in the town and so the consumer at x will buy

either at his local firm F; or at his local firm Fj.

Proof of Theorem
By Proposition 1] and Lemma [2.4.2] if there is a Bayesian Nash equilib-
rium price strategy P* then P* is unique and P* = P¥,

We note that if M (i, P(i, P? PP*)) c N(i,1) for every i € V then
].3(2, PZ P%*) = pF and so P” is a Nash equilibrium.
By Lemma [2.4.3, we have that M (i, P( PE PE*)) C N(i,2) foreveryi € V.
Now, we will prove that condition O) implies that firm F; earns more
competing only in the 1—neighborhood than competing in a 2-neighborhood.
By Lemma [2.4.3]

PAB(i, PP, PP*), C, %) < (p?’—c‘?)z i+ Y L
< zl_ zl Z Zl]ka

where p; = p2* is the coordinate of the vector P(i, P¥ P¥*). Hence,

PAPGEPE PP, Coz) < (0 =)D Y i < (0 — ¢ Vi koas L

JEN; kEN;

(2.101)
By contradiction, let us consider a consumer z € M(i, P(i, P, PZ*)) and
2z & N(i,1). Let i5 € N; be the vertex such that z € N (ig,7). The price that

consumer z pays to buy in firm Fj is given by

e=pi+tl;, +td(yi,,2).
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If the consumer y buys at firm Fj,, then the price that has to pay is
€ :pi +td(yi27z)'
Since, by hypothesis, z € M (i, f’(i, PZ PE*)), we have e < é. Therefore

pi < pi — i,

E(Cz) —|— Chr

1
By ([2.92 pfﬁth-f—ﬁ(Ci—i- 5

). Since ; ;, > L, we have

1 E(c;

Thus,

Hence, from ([2.101f) we obtain
TPAP, PP, PPY), C, 2) < kikarlar (A(e) +EA(D).
By the SB condition,

mEAP (i, PY PE), C2) < (26) Vi (t, — Ale)/2)% (2.102)

By Proposition and ([2.102)),

() 2 20 Kt — A(0)/2)" > 74P, PP PP), C, z),

]

which contradicts the fact that p; is the best response to P¥. Therefore,
z e N(i,1) and M(i,P(i,PE PP*)) € N(i,1). Hence, P(i, PP PE*) = pF

and so P¥ is a Bayesian Nash equilibrium. O]
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2.5 Future Work: General model

This section presents the initial ideas of the general model for the Hotelling
model, allowing that firms can have entire markets and compete with other
that its neighbours.

Let S;; € E denote the set of edges where F; and Fj divide consumers

Si =k, 0), (K, 1),.. .}

Let l;; denote the length of the roads Ry; and let L;; and L;; denote the
length between node ¢ and node k& and between node j and node [, respect-
ively.

For every edge shared by firm F; and Fj, Ry, there is an indifferent

consumer located at distance

pj —Pi  Lji— Lig + iy

from firm F;. Hence,

Dj — Di n Lii— 3L+l
2t 2

is the distance of the indifferent consumer to the node k.
Let MC; denote the market of the network that belongs exclusively to
firm Fj, i.e., the set of edges where all the consumers buy at F;. Hence, the

total market of firm F;, M; is given by

p] pz 3,0 3 Li,k + lk,l
M, = MC;
22 ;
JEN (k,1)€S; ;

and the profit of F; is given by

7 = (pi — i) MCi + (pi — ¢ Z Z pﬂ p kg

2
]EN k l)esz 5J
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Hence

on; D; 2p + ¢ L'l—SL'k—i—lkl
3 _MC J 1 7 J» (2} )
. +§ E + 5
JEN (k,1)ES;

From the FOC, we obtain

2) ) i =2tMCHY . Y pity . Y ety Y. (L3 Lixt)

JEN (k,1)€S; ; JEN (k,1)€S; ; JEN (k,1)€S;, ; JEN (k,1)ES; ;

Let ki = .oy Z(kJ)eSij denote the number of markets shared by firm F;
and let NV; denote the set of firms that share a market with F;. Hence

2hipi =2t MCi+ > pit(Sij) +hici+t Y Y (Ljg— 3L+ i)

JEN; JEN; (k,1)ES;,;

Let Bz = ZjENi Z(k,Z)ESi,j (LjJ -3 LiJg + lkJ). Then

2]€Z‘pi = ij ﬁ(Sm) + k;c; —i—t(QMCZ' + Bz)

JEN;

and

P = 2k S b t(Siy) + +2i(2MCZ-+Bi)

JEN;

Let K be the matrix defined by

~ MC’

M; .
ki
and B
ki



Hence,

(1-%1{) P:% (C+t(2M+B)).

—1
1
Since K is a stochastic matrix, <1 —3 K) exists, and

P:% (1—%K)_1 (C+t(21\7[+]§)>.
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Conclusions

In the first part of this work, we studied the linear and quadratic Hotelling
model with uncertainty on the production costs. We introduced a new con-
dition on the exogenous variables that we called the BUC1 (BUCL1, in the
quadratic transportation cost case) condition. We proved that there is a
local optimum price strategy if and only if the BUC1 (BUCL1) condition is
satisfied. We gave the explicit formula for the local optimum price strategy
and we observed that the formula does not depend on the distributions of
the production costs of the firms, except on their first moments. Further-
more, the local optimum price strategy determines prices for both firms that
are affine with respect to the expected costs of both firms and to its own
costs. The corresponding expected profits are quadratic in the expected cost
of both firms, in its own cost and in the transportation cost. We did the
ex-ante versus ex-post analysis of the profits. We proved that, under the
A — BUC and B — BUC' conditions, the ex-post profit of a firm is smaller
than its ex-ante profit if and only if the production cost of the competitor
firm is greater than its expected cost. Then, we proved that the A — BUC
and B — BUC' conditions are implied by the BUC1 (BUCL1) condition,
if the distribution of the production costs of both firms coincide (symmet-
ric Hotelling). We introduced a new condition on the exogenous variables
that we called the BUC2 (BUCL2) condition and we proved that under the
BUC1 (BUCL1) and BUC2 (BUCL2) conditions, the local optimum price

strategy is a Bayesian-Nash price strategy.
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With quadratic transportation costs, assuming that the firms choose the
Bayesian-Nash price strategy, we showed in which conditions the maximal
differentiation is a local optimum for the localization strategy of both firms.

In the second part of this work, we presented a model of price competition
in a network, extending the linear city presented by Hotelling with linear
and quadratic transportation costs to a network where firms are located at
the neighbourhood of the nodes and consumers distributed along the edges.
Under a condition on lengths and costs (W B condition), we found the local
optimum price strategy P* for which the Hotelling town has a local market
structure, i.e. the consumers prefer to buy at the local firms. Under a
condition on lengths and costs and maximum node degree (SB condition),
we proved that under the SB condition, the Nash equilibrium price strategy
P* exists and that P* = P¥. We gave an explicit series expansion formula
for the Nash price equilibrium that shows explicitly how the Nash price
equilibrium of a firm depends on the production costs, road market sizes
and firm locations. Furthermore, the influence of a firm in the Nash price
equilibrium of other firm decreases exponentially with the distance between
the firms. We introduced the notion of space bounded information in the
Hotelling town and we showed that firms that only have local knowledge
of network are still able to compute good approximations of local optimum
prices. All this results were obtained for linear and quadratic transportation
costs.

With linear transportation costs, we presented additional results: (a)
we proved that, if the firms are located at the neighbourhood of the nodes
of degree greater than 2, the local optimal localization of the firms is at
the vertices of the network; (b) we determined the Nash equilibrium price
strategy for a Hotelling network where each firm has associated a different
transportation cost; (¢) we determined the Bayesian-Nash equilibrium price
strategy with uncertainty on the production costs in the hotelling model;

and (d) under a condition on lengths and costs, we showed that the local
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optimum profits of the firms increases with the degree of the nodes in which
they are located.

Further, research work can consist (i) on finding sufficient and necessary
conditions for the local optimum price strategy to be a Nash equilibrium; (ii)
to solve the localization problem by studying the cases where the firms are
not located at the ends of the segment line; (iii) extend the Hotelling town

model to general case, without a local market structure.
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