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Abstract

The theme of this PhD Thesis is mainly related to the areas of Game Theory

and Industrial Organization. This work develops concretely two problems re-

lated with the Hotelling model of spatial competition. The first one consists

in the introduction of incomplete information on the production costs of the

two firms in the Hotelling model. Under explicit conditions on the production

costs, we determine the Bayesian-Nash equilibrium prices for every probab-

ility distribution of the production costs. The second problem addresses an

extension of the Hotelling model from the line to a network. In this prob-

lem, we establish conditions, depending on the production cost of the firms

and in the network structure, that guarantee the existence of a Nash price

equilibrium for all kind of networks. Furthermore, the explicit formula of the

equilibrium prices is determined. Using an approach similar to the one used

in the first problem, the case of incomplete information on the production

costs of the firms in the network was also studied. Both problems analyse the

two classical variations of the Hotelling model: linear transportation costs

and quadratic transportation costs. Under linear transportation costs, we

also analysed the case when the transportation costs can vary according to

the firms.
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Resumo

O tema desta tese de doutoramento insere-se, principalmente, nas áreas de

Teoria de Jogos e Organização Industrial. Neste trabalho desenvolveram-se

concretamente dois problemas relacionados com o modelo de Hotelling de

competição espacial. O primeiro consiste na introdução de informação in-

completa nos custos de produção das duas firmas no modelo de Hotelling.

Com condições expĺıcitas sobre os custos de produção, foram determinados os

equiĺıbrios Bayesianos de Nash em preços para qualquer distribuição de prob-

abilidade dos custos de produção. O segundo problema aborda uma extensão

do modelo de Hotelling na linha para uma rede (network). No âmbito deste

problema foram estabelecidas condições, dependendo dos custos de produção

de cada empresa e da estrutura da rede, que garantem a existência de um

equíıbrio de Nash em preços para todos o tipos de redes. Para além da

garantia de existência, a fórmula expĺıcita dos preços em equiĺıbrio é determ-

inada. Usando uma abordagem semelhante à usada no primeiro problema foi

ainda estudado o caso de informação incompleta nos custos de produção das

firmas na rede. Em ambos os problemas foram analisadas as duas variações

clássicas do modelo de Hotelling: custos de transporte lineares e custos de

transporte quadráticos. Para custos de transporte lineares foi ainda analisado

o caso em que os custos de transporte podem variar com a firma.
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Introduction

Since the seminal work of Hotelling [25], the model of spatial competition

has been seen by many researchers as an attractive framework for analyzing

oligopoly markets (see [9, 24, 27, 30, 31, 32, 33, 37, 38]).

In his model, Hotelling present a city represented by a line segment where

a uniformly distributed continuum of consumers have to buy a homogeneous

commodity. Consumers have to support linear transportation costs when

buying the commodity in one of the two firms of the city. The firms com-

pete in a two-staged location-price game, where simultaneously choose their

location and afterwards set their prices in order to maximize their profits.

Hotelling concluded that firms would agglomerate at the center of the line, an

observation referred as the “Principle of Minimum Differentiation”. In 1979,

D’Aspremont et al. [2] show that the “Principle of Minimum Differentiation”

is invalid, since there was no price equilibrium solution for all possible loca-

tions of the firms, in particular when they are not far enough from each other.

Moreover, in the same article, D’Aspremont et al. introduce a modification

in the Hotelling model, considering quadratic transportation costs instead of

linear. The introduction of this feature removed the discontinuities verified

in the profit and demand functions, which was a problem in Hotelling model

and they show that, under quadratic transportation costs, a price equilib-

rium exists for all locations and a location equilibrium exists and involves

maximum product differentiation, i.e. the firms opt to locate at the extremes

of the line.
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Hotelling and D’Aspremont et al. consider that the production costs of

both firms are equal to zero. Ziss [41] introduce a modification in the model

of D’Aspremont et al. by allowing for different production costs between the

two firms and examines the effect of heterogeneous production technologies

on the location problem. Ziss shows that a price equilibrium exists for all

locations and concludes that when the difference between the production

costs is small, a price and location equilibrium exists in which the firms

prefer to locate in different extremes of the line. However, if the difference

between the production costs is sufficiently large, a location equilibrium does

not exist.

Using linear transportation costs, Boyer et al. [5] study the case where

the firms choose sequentially their location and then compete in delivered

prices (see [26]) assuming that the first mover has perfect information, while

the second mover does not know if the opponent firm has a low or high

production cost. Using quadratic transportation costs, a similar model but

under mill pricing setting was studied by Boyer et al. [6] and by Biscaia and

Sarmento [4] in the case where firms simultaneously choose their locations.

However, Boyer et al. [6] and Biscaia and Sarmento [4] consider that the

uncertainty on the productions costs exists only during the first subgame

in location strategies. Then the production costs are revealed to the firms

before the firms have to choose their optimal price strategies and so the

second subgame has complete information.

In the first part of this work (Chapter 1) we study the Hotelling model

with incomplete information on the production costs of both firms. We do

not study the Hotelling models in which the location choice by the firms

plays a major rule, but models of price competition under spatial nature and

we study the linear and quadratic cases separately. With linear transport-

ation costs, we assume that the location of firms is fixed at the extremes

of the line, avoiding the problem of non existence of equilibrium pointed by

D’Aspremont et al. [2] and so we do not study the first subgame in loca-

12



tion strategies. However, with quadratic transportation costs we consider all

possible locations for the firms in the line. With linear transportation costs,

we consider a more general model, where the transportation cost depends on

the firm.

Our main goal is to study the price formation in the second subgame

with incomplete information on the production costs of both firms. The

incomplete information consists on each firm knowing its production cost

but being uncertain about the competitor’s cost as usual in oligopoly theory

( see [11, 12, 13, 14, 15, 16, 17, 21, 28, 29]). We show that the first and

second moments of the probability distribution in the production costs are

the only relevant information for the price formation and all the other relevant

economic quantities.

We introduce the definition of local optimum price strategy that is char-

acterized by a local optimum property and by a duopoly property. We say

that a price strategy for both firms is a local optimum price strategy if (i)

any small deviation of a price of a firm provokes a decrease in its own ex-

ante profit (local optimum property); and (ii) both firms have non-empty

market for every pair of production costs (duopoly property). We observe

that a Nash price equilibrium satisfying the duopoly property has to be a

local optimum price strategy.

First, we introduce a bounded costs condition that defines a bound for

the production costs in terms only of the exogenous variables that are the

transportation cost and the road length of the segment line (and, in the

quadratic case, the localization of both firms). We prove that the second

subgame has a local optimum price strategy with the duopoly property if

and only if the condition holds and that the local optimum price strategy

for the firms is unique. Then, we introduce a mild additional bounded costs

condition and we prove that under these two conditions, the local optimum

price strategy is a Bayesian-Nash price strategy. Furthermore, we compute

explicitly the formula for the local optimum price strategy that is simple and

13



leaves clear the influence of the relevant economic exogenous quantities in

the price formation. In particular, we observe that the local optimum price

strategy does not depend on the distributions of the production costs of the

firms, except on their first moments. We note that the novelty and elegance of

the proof consists in computing explicitly the expected prices of the optimal

strategies before computing the optimal strategies. Our techniques allowed

the results to be universal in the incomplete information scenario because

they apply to all probability distributions in the production costs.

We explicitly compare the ex-ante and ex-post profits, consumer surplus

and welfare. We prove that, under specific bounded costs conditions, the

ex-post profit of a firm is smaller than its ex-ante profit if and only if the

production cost of the other firm is greater than its expected cost. We do a

comparative analysis of profits, consumer surplus and welfare with complete

and incomplete information.

Other models have been developed where the line in the Hotelling model

is replaced by other topologies as for example in the Salop Model [37], where

the line is replaced by the circle, or in the Spokes model [9]. In the second

part of this work (Chapter 2) we introduce the Hotelling town model, ex-

tending the Hotelling model to a network, where the firms are located at

the neighbourhood of the nodes and the consumers are distributed along the

edges (roads), that can have different sizes. This part of the work is related

with the area of network games (see [8, 20, 19, 23]). However, these studies

locate firms and consumers at nodes, following the modeling methodology

common in social network analysis. In particular, the edges in these only

serve the purpose of connecting two nodes. The networks presented here are

fundamentally different because consumers are assumed uniformly distrib-

uted along the edges of the network.

Again, we study the linear and quadratic cases separately. Moreover, in

the linear case, we consider that transportation costs that consumers have

to support can be different for each firm of the network.

14



We extend the definition of local optimum price strategy to the Hotelling

network and, similarly as in Chapter 1, we introduce (weak) bounded condi-

tions on production costs and road lengths that depend on the maximum and

minimum values of the production costs, on the road lengths in the network

and on the transportation costs. Under the (weak) bounded conditions, we

prove that the price competition game has a local optimum price strategy.

Under other (strong) bounded conditions that depend also on the maximum

node degree of the network, we prove that the local optimum price strategy

is a Nash price equilibrium strategy. We give an explicit series expansion

formula for the Nash price equilibrium that shows explicitly how the Nash

price equilibrium of a firm depends on the production costs, road market sizes

and firms locations. Furthermore, the influence of a firm in the Nash price

equilibrium of other firm decreases exponentially with the distance between

the firms.

Assuming that the firms could not know the entire network, we introduce

the idea of space bounded information (see Subsections 2.1.4 and 2.2.3), that

defines how deep a firm can see in the network from its location in terms of

the production costs, node degrees and road sizes and we show how a firm

can estimate its own local optimum price.

With linear transportation costs, we study the location game and we prove

that, if the firms are located at the neighbourhood of the nodes of degree

greater than 2, the local optimal localization strategy is achieved when the

firms are at the vertices of the network (see Subsection 2.1.3).

In Section 2.3, considering that the firms are located at the vertices of

the network, we extend the Hotelling model with linear transportation cost

allowing that the firms in the network can charge different transportation

costs. In Section 2.4 we deal with the problem of uncertainty on the Hotelling

network and we find the Bayesian Nash equilibrium strategy in prices.

Finally, in the conclusions we discuss the results and we present some

possible directions of future works.
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Chapter 1

Hotelling model

This chapter contains a general presentation of the classical Hotelling model

where the firms have different production costs and introduces the price

competition in the Hotelling model with uncertainty in the production costs

of both firms. We consider the two usual approaches of the Hotelling model,

and we study separately the scenarios of linear and quadratic transportation

costs.

1.1 Linear transportation costs

In this section, we consider that the firms have associated different transport-

ation costs tA and tB and we study the Hotelling model [25] with uncertainty

in the production costs of both firms with linear transportation costs. For the

linear Hotelling model with firms located at the boundaries of the segment

line, we study the price competition in a scenario of incomplete information

in the production costs of both firms.

We introduce the bounded uncertain costs BUC1 condition that defines a

bound for the costs in terms of the transportation cost and the road length of

the line. Under the bounded costs BUC1 condition we compute the unique

local optimum price strategy for the firms with the property that the mar-

17



ket shares of both firms are not empty for any outcome of production costs.

We introduce a mild additional bounded uncertain costs BUC2 and, under

the BUC1 and BUC2 conditions, we prove that the local optimum price

strategy is a Bayesian-Nash price strategy. Finally, we do a complete ana-

lysis of profits, consumer surplus and welfare under complete and incomplete

information.

In the last subsection we present the results of the section where the

linear transportation costs are equal to both firms, tA = tB = t, as originally

presented by Hotelling.

1.1.1 Hotelling model under complete information

The buyers of a commodity will be supposed uniformly distributed along a

line with length l. In the two ends of the line there are two firms A and B,

located at positions 0 and l respectively, selling the same commodity with

unitary production costs cA and cB. No customer has any preference for

either seller except on the ground of price plus transportation cost tA or tB.

Denote A’s price by pA and B’s price by pB. The point of division

x = x(pA, pB) ∈]0, l[ between the regions served by the two entrepreneurs

is determined by the condition that at this place it is a matter of indifference

whether one buys from A or from B (see Figure 1.1).

Figure 1.1: Hotelling’s linear city with different transportation costs

The point x is the location of the indifferent consumer to buy from firm

A or firm B, if

pA + tA x = pB + tB (l − x)

18



Solving for x, we obtain

x =
pB − pA + tB l

tA + tB
.

Both firms have a non-empty market share if and only if x ∈]0, l[ . Hence,

both firms have a non-empty market share if and only if the prices satisfy

−tB l < pB − pA < tA l (1.1)

We note that

|pA − pB| < min{tA, tB} l

implies inequality (1.1). Assuming inequality (1.1), both firms A and B have

a non-empty demand (x and l−x) and the profits of the two firms are defined

respectively by

πA = (pA − cA)x = (pA − cA)
pB − pA + tB l

tA + tB
; (1.2)

and

πB = (pB − cB) (l − x) = (pB − cB)
pA − pB + tA l

tA + tB
. (1.3)

Two of the fundamental economic quantities in oligopoly theory are the

consumer surplus CS and the welfare W . The consumer surplus is the gain

of the consumers community for given price strategies of both firms. The

welfare is the gain of the state that includes the gains of the consumers

community and the gains of the firms for given price strategies of both firms.

Let us denote by vT the total amount that consumers are willing to pay

for the commodity. The total amount v(y) that a consumer located at y pays

for the commodity is given by

v(y) =

{
pA + tA y if 0 < y < x;

pB + tB (l − y) if x < y < l.

19



The consumer surplus CS is the difference between the total amount that a

consumer is willing to pay vT and the total amount that the consumer pays

v(y)

CS =

∫ l

0

vT − v(y)dy. (1.4)

The welfare W is given by adding the profits of firms A and B with the

consumer surplus

W = CS + πA + πB. (1.5)

Definition 1.1.1. A price strategy (p
A
, p

B
) for both firms is a local optimum

price strategy if (i) for every small deviation of the price p
A

the profit πA of

firm A decreases, and for every small deviation of the price p
B

the profit πB of

firm B decreases (local optimum property); and (ii) the indifferent consumer

exists, i.e. 0 < x < l (duopoly property).

Let us compute the local optimum price strategy (p
A
, p

B
). Differentiating

πA with respect to pA and πB with respect to pB and equalizing to zero, we

obtain the first order conditions (FOC). The FOC imply that

p
A

=
1

3
(2 cA + cB + (tA + 2 tB) l) (1.6)

and

p
B

=
1

3
(cA + 2 cB + (2 tA + tB) l). (1.7)

We note that the first order conditions refer to jointly optimizing the profit

function (1.2) with respect to the price pA and the profit function (1.3) with

respect to the price pB.

Since the profit functions (1.2) and (1.3) are concave, the second-order

conditions for this maximization problem are satisfied and so the prices (1.6)

and (1.7) are indeed maxima for the functions (1.2) and (1.3), respectively.

The corresponding equilibrium profits are given by

πA =
(cB − cA + (tA + 2 tB) l)2

9 (tA + tB)
(1.8)

20



and

πB =
(cA − cB + (2 tA + tB) l)2

9 (tA + tB)
. (1.9)

Furthermore, the indifferent consumer location corresponding to the maxim-

izers p
A

and p
B

of the profit functions πA and πB is

x =
cB − cA + (tA + 2 tB) l

3 (tA + tB)
.

Finally, for the pair of prices (p
A
, p

B
) to be a local optimum price strategy, we

need assumption (1.1) to be satisfied with respect to these pair of prices. We

observe that assumption (1.1) is satisfied with respect to the pair of prices

(p
A
, p

B
) if and only if the following condition with respect to the production

costs is satisfied.

Definition 1.1.2. The Hotelling model satisfies the bounded costs (BC)

condition, if

−(tA + 2 tB) l < cB − cA < (2 tA + tB) l.

We note that

|cA − cB| < 3 min{tA, tB} l

implies the BC condition.

We note that under the BC condition the prices are higher than the

production costs p
A
> cA and p

B
> cB. Hence, there is a local optimum

price strategy if and only if the BC condition holds. Furthermore, under the

BC condition, the pair of prices (p
A
, p

B
) is the local optimum price strategy.

We note that, if a Nash price equilibrium satisfies the duopoly property

then it is a local optimum price strategy. However, a local optimum price

strategy is only a local strategic maximum. Hence, the local optimum price

strategy to be a Nash equilibrium must also be global strategic maximum.

We are going to show that this is the case.

Following D’Aspremont et al. [2], we note that the profits of the two

firms, valued at local optimum price strategy are globally optimal if they are

21



at least as great as the payoffs that firms would earn by undercutting the

rivals’ price and supplying the whole market.

Firm A may gain the whole market, undercutting its rival by setting

pMA = p
B
− tA l − ε, with ε > 0.

In this case the profit amounts to

πM
A =

(
p
B
− tA l − ε− cA

)
l =

1

3
(2 cB − 2 cA + (tB − tA) l) l − ε l.

A similar argument is valid for store B. Undercutting this rival, setting

pMB = p
A
− tB l − ε,

it would earn

πM
B =

(
p
A
− tB l − ε− cB

)
l =

1

3
(2 cA − 2 cB + (tA − tB) l) l − ε l.

The conditions for such undercutting not to be profitable are πA ≥ πM
A and

πB ≥ πM
B . Hence, since ε > 0, proving that

(cB − cA + (tA + 2 tB) l)2

9 (tA + tB)
≥ 1

3
(2 cB − 2 cA + (tB − tA) l) l (1.10)

is sufficient to prove that πA ≥ πM
A . Similarly, proving that

(cA − cB + (tB + 2 tA) l)2

9 (tA + tB)
≥ 1

3
(2 cA − 2 cB + (tA − tB) l) l (1.11)

is sufficient to prove that πB ≥ πM
B .

However, conditions (1.10) and (1.11) are satisfied because they are equi-

valent to

(cA − cB + (2 tA + tB) l)2 ≥ 0

22



and

(cB − cA + (tA + 2 tB) l)2 ≥ 0.

Therefore, if (p
A
, p

B
) is a local optimum price strategy then (p

A
, p

B
) is a

Nash price equilibrium.

By equation (1.4), the consumer surplus CS with respect to the local

optimum price strategy (p
A
, p

B
) is given by

CS =

∫ l

0

vT − v(x)dx

= vT l −
5 tB + 4 tA

6
l2 − cA + 2 cB

3
l +

(cB − cA + (tA + 2 tB) l)2

18(tA + tB)
.

(1.12)

By equation (1.5), the welfare W is given by

W = vT l −
tA + tB

18
l2 − cA + 2 cB

3
l +

+
2 (cA − cB)(tA − 4 tB) l − 5 tA tB l

2 + 5(cA − cB)2

18 (tA + tB)
.

1.1.2 Incomplete information on the production costs

The incomplete information consists in each firm to know its production

cost but to be uncertain about the competitor’s cost. In this subsection,

we introduce a simple notation that is fundamental for the elegance and

understanding of the results presented in this section.

Let the triples (IA,ΩA, qA) and (IB,ΩB, qB) represent (finite, countable

or uncountable) sets of types IA and IB with σ-algebras ΩA and ΩB and

probability measures qA and qB, over IA and IB, respectively.

We define the expected values EA(f), EB(f) and E(f) with respect to
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the probability measures qA and qB as follows:

EA(f) =

∫
IA

f(z, w) dqA(z); EB(f) =

∫
IB

f(z, w) dqB(w)

and

E(f) =

∫
IA

∫
IB

f(z, w) dqB(w)dqA(z).

Let cA : IA → R+
0 and cB : IB → R+

0 be measurable functions where czA =

cA(z) denotes the production cost of firm A when the type of firm A is z ∈ IA
and cwB = cB(w) denotes the production cost of firm B when the type of firm

B is w ∈ IB. Furthermore, we assume that the expected values of cA and cB

are finite

E(cA) = EA(cA) =

∫
IA

czA dqA(z) <∞;

E(cB) = EB(cB) =

∫
IB

cwB dqB(w) <∞.

We assume that dqA(z) denotes the probability of the belief of the firm B

on the production costs of the firm A to be czA. Similarly, we assume that

dqB(w) denotes the probability of the belief of the firm A on the production

costs of the firm B to be cwB.

The simplicity of the following cost deviation formulas is crucial to express

the main results of this section in a clear and understandable way. The cost

deviations of firm A and firm B

∆A : IA → R+
0 and ∆B : IB → R+

0

are given respectively by ∆A(z) = czA−E(cA) and ∆B(w) = cwB−E(cB). The

cost deviation between the firms

∆C : IA × IB → R+
0
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is given by ∆C(z, w) = czA − cwB. Since the meaning is clear, we will use

through the section the following simplified notation:

∆A = ∆A(z); ∆B = ∆B(w) and ∆C = ∆C(z, w).

The expected cost deviation ∆E between the firms is given by ∆E = E(cA)−
E(cB). Hence,

∆C −∆E = ∆A −∆B.

Let VA and VB be the variances of the production costs cA and cB, respect-

ively. We observe that

E(∆C) = ∆E; E(∆2
A) = EA(∆2

A) = VA; E(∆2
B) = EB(∆2

B) = VB. (1.13)

Furthermore,

EA(∆2
C) = ∆2

B + VA + ∆E (∆E − 2 ∆B); (1.14)

EB(∆2
C) = ∆2

A + VB + ∆E (∆E + 2 ∆A); (1.15)

E(∆2
C) = ∆2

E + VA + VB. (1.16)

1.1.3 Local optimal price strategy under incomplete

information

In this section, we introduce incomplete information in the classical Hotelling

game and we find the local optimal price strategy. We introduce the bounded

uncertain costs condition that allows us to find the local optimum price

strategy.

A price strategy (pA, pB) is given by a pair of functions pA : IA → R+
0 and

pB : IB → R+
0 where pzA = pA(z) denotes the price of firm A when the type of

firm A is z ∈ IA and pwB = pB(w) denotes the price of firm B when the type

of firm B is w ∈ IB. We note that E(pA) = EA(pA) and E(pB) = EB(pB).
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The indifferent consumer x : IA × IB → (0, l) is given by

xz,w =
pwB − pzA + tB l

tA + tB
. (1.17)

The ex-post profit of the firms is the effective profit of the firms given a

realization of the production costs for both firm. Hence, it is the main

economic information for both firms. However, the incomplete information

prevents the firms to have access to their ex-post profits except after the

firms have already decided their price strategies. The ex-post profits πEP
A :

IA × IB → R+
0 and πEP

B : IA × IB → R+
0 are given by

πEP
A (z, w) = πA(z, w) = (pzA − czA)xz,w

and

πEP
B (z, w) = πB(z, w) = (pwB − cwB) (l − xz,w).

The ex-ante profit of the firms is the expected profit of the firm that knows

its production cost but are uncertain about the production cost of the com-

petitor firm. The ex-ante profits πEA
A : IA → R+

0 and πEA
B : IB → R+

0 are

given by

πEA
A (z) = EB(πEP

A ) and πEA
B (w) = EA(πEP

B ). (1.18)

We note that, the expected profit E(πEP
A ) of firm A is equal to EA(πEA

A ) and

the expected profit E(πEP
B ) of firm B is equal to EB(πEA

B ).

The incomplete information forces the firms to have to choose their price

strategies using their knowledge of their ex-ante profits, to which they have

access, instead of the ex-post profits, to which they do not have access except

after the price strategies are decided.

Definition 1.1.3. A price strategy (p
A
, p

B
) for both firms is a local optimum

price strategy if (i) for every z ∈ IA and for every small deviation of the price

pz
A

the ex-ante profit πEA
A (z) of firm A decreases, and for every w ∈ IB and

for every small deviation of the price pw
B

the ex-ante profit πEA
B (w) of firm B
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decreases (local optimum property); and (ii) for every z ∈ IA and w ∈ IB the

indifferent consumer exists, i.e. 0 < xz,w < l (duopoly property).

We introduce the BUC1 condition that has the crucial economical in-

formation that can be extracted from the exogenous variables. The BUC1

condition allow us to know if there is, or not, a local optimum price strategy

in the presence of uncertainty for the production costs of both firms.

Definition 1.1.4. The Hotelling model satisfies the bounded uncertain costs

(BUC1) condition, if

−2 (tA + 2 tB) l < ∆E − 3 ∆C < 2 (2 tA + tB) l,

for all z ∈ IA and for all w ∈ IB.

We note that

|3 ∆C −∆E| < 6 min{tA, tB} l

implies BUC condition.

For i ∈ {A,B}, we define

cmi = min
z∈Ii
{czi } and cMi = max

z∈Ii
{czi }.

Let

∆ = max
i,j∈{A,B}

{cMi − cmj }

Thus, the bounded uncertain costs and location BUC1 is implied by the

following stronger SBUC1 condition.

Definition 1.1.5. The Hotelling model satisfies the strong bounded uncer-

tain costs (SBUC1) condition, if

∆ < 3 min{tA, tB} l.
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The following theorem is a key economical result in oligopoly theory.

First, it tells us about the existence, or not, of a local optimum price strategy

only by accessing a simple inequality in the exogenous variables and so avail-

able to both firms. Secondly, it gives us explicit and simple formulas that

allow the firms to know the relevance of the exogenous variables in their price

strategies and corresponding profits.

Theorem 1.1.1. There is a local optimum price strategy (p
A
, p

B
) if and only

if the BUC1 condition holds. Under the BUC1 condition, the expected prices

of the local optimum price strategy are given by

E(p
A

) =
tA + 2 tB

3
l + E(cA)− ∆E

3
; (1.19)

E(p
B

) =
2 tA + tB

3
l + E(cB) +

∆E

3
. (1.20)

Furthermore, the local optimum price strategy (p
A
, p

B
) is unique and it is

given by

pz
A

= E(p
A

) +
∆A

2
; pw

B
= E(p

B
) +

∆B

2
. (1.21)

We observe that the difference between the expected prices of both firms

has a very useful and clear economical interpretation in terms of the localiz-

ation and expected cost deviations.

E(p
A

)− E(p
B

) =
tB − tA

3
+

∆E

3

Furthermore, for different production costs, the differences between the op-

timal prices of a firm are proportional to the differences of the production

costs

pz1
A
− pz2

A
=
cz1A − c

z2
A

2
.

and

pw1

B
− pw2

B
=
cw1
B − c

w2
B

2
.
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for all z1, z2 ∈ IA and w1, w2 ∈ IB. Hence, half of the production costs value

is incorporated in the price.

The ex-post profit of the firms is the effective profit of the firms given

a realization of the production costs for both firms. Hence it is the main

economic information for both firms. By equation (1.1.10), the ex-post profit

of firm A is

πEP
A (z, w) =

(2 (tA + 2 tB)l − 3 ∆A − 2 ∆E) (2 (tA + 2 tB)l + ∆E − 3 ∆C)

36 (tA + tB)

and the ex-post profit of firm B is

πEP
B (z, w) =

(2 (2 tA + tB)l − 3 ∆B + 2 ∆E) (2 (2 tA + tB)l −∆E + 3 ∆C)

36 (tA + tB)
.

The ex-ante profit of a firm is the expected profit of the firm that knows its

production cost but is uncertain about the production costs of the competitor

firm. Since the ex-post profit of firm A, πEP
A (z, w), is given by

(2 (tA + 2 tB)l − 3 ∆A − 2 ∆E) (2 (tA + 2 tB)l + ∆E + 3 (cwB − czA))

36 (tA + tB)
,

the ex-ante profit of firm A, πEA
A (z), is

(2 (tA + 2 tB)l − 3 ∆A − 2 ∆E) (2 (tA + 2 tB)l + ∆E + 3 (E(cB)− czA))

36 (tA + tB)
.

Hence,

πEA
A (z) =

(2 (tA + 2 tB) l − 3 ∆A − 2 ∆E)2

36 (tA + tB)
. (1.22)

Similarly, the ex-ante profit of firm B is

πEA
B (w) =

(2 (2 tA + tB) l − 3 ∆B + 2 ∆E)2

36 (tA + tB)
. (1.23)
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Let αA and αB be given by

αA = max{E(cB)− cwB : w ∈ IB} and αB = max{E(cA)− czA : z ∈ IA}.

The following corollary gives us the information of the market size of both

firms by giving the explicit localization of the indifferent consumer with re-

spect to the local optimum price strategy.

Corollary 1.1.1. Under the BUC1 condition, the indifferent consumer xz,w

is given by

xz,w =
tA + 2 tB

3 (tA + tB)
l +

∆E − 3 ∆C

6 (tA + tB)
. (1.24)

The pair of prices (p
A
, p

B
) satisfies

pz
A
− czA ≥ αA/2; pw

B
− cwB ≥ αB/2. (1.25)

Proof of Theorem 1.1.1 and Corollary 1.1.1.

Under incomplete information, each firm seeks to maximize its ex-ante profit.

From (1.18), the ex-ante profit for firm A is given by

πEA
A (czA) =

∫
IB

(pzA − czA)

(
pwB − pzA + tB l

tA + tB

)
dqB(w)

= (pzA − czA)

(
E(pB)− pzA + tB l

tA + tB

)
.

From the first order condition FOC applied to the ex-ante profit of firm A

we obtain

pzA =
czA + E(pB) + tB l

2
. (1.26)

Similarly,

πEA
B (cwB) = (pwB − cwB)

(
E(pA)− pwB + tA l

tA + tB

)
, (1.27)
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and, by the FOC, we obtain

pwB =
cwB + E(pA) + tA l

2
. (1.28)

Then, from (1.26) and (1.28),

E(pA) =
E(cA) + E(pB) + tB l

2
;

E(pB) =
E(cB) + E(pA) + tA l

2
.

Solving the system of two equations, we obtain that

E(pA) =
tA + 2 tB

3
l +

2E(cA) + E(cB)

3
;

E(pB) =
2 tA + tB

3
l +

E(cA) + 2E(cB)

3
.

Hence, equalities (1.19) and (1.20) are satisfied. Replacing (1.20) in (1.26)

and replacing (1.19) in (1.28) we obtain that

pzA =
czA
2

+
tA + 2 tB

3
l +

E(cA) + 2E(cB)

6
;

pwB =
cwB
2

+
2 tA + tB

3
l +

2E(cA) + E(cB)

6
.

Hence, equation (1.21) is satisfied.

Replacing in equation (1.17) the values of p
A

and p
B

given by the equation

(1.21) we obtain that the indifferent consumer xz,w is given by

xz,w =
tA + 2 tB

3 (tA + tB)
l +

3 (cwB − czA) + E(cA)− E(cB)

6 (tA + tB)

Hence, equation (1.24) is satisfied. Therefore, (p
A
, p

B
) satisfies property (ii)

if and only if the BUC1 condition holds.

Since the ex-ante profit functions (1.26) and (1.27) are concave, the
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second-order conditions for this maximization problem are satisfied and so

the prices pz
A

and pw
B

are indeed maxima for the functions (1.26) and (1.27),

respectively. Therefore, the pair (pz
A
, pw

B
) satisfies property (i) and so (pz

A
, pw

B
)

is a local optimum price strategy.

Let us prove that pz
A

and pw
B

satisfy inequalities (1.25). By equation

(1.21),

pz
A
− czA =

tA + 2 tB
3

l − czA
2

+
E(cA) + 2E(cB)

6
;

pw
B
− cwB =

2 tA + tB
3

l − cwB
2

+
2E(cA) + E(cB)

6
.

By the BUC1 condition, for every w ∈ IB, we obtain

6 (pz
A
− czA)− 2 (tA + 2 tB) l = −3 czA + E(cA) + 2E(cB)

= 3 (E(cB)− cwB)− 3 (czA − cwB) + E(cA)− E(cB)

> 3 (E(cB)− cwB)− 2 (tA + 2 tB) l.

Similarly, by the BUC1 condition, for every z ∈ IA, we obtain

6 (pw
B
− cwB)− 2 (2 tA + tB) l = −3 cwB + 2E(cA) + E(cB)

= 3 (E(cA)− czA)− 3 (cwB − czA)− E(cA) + E(cB)

> 3 (E(cA)− czA)− 2 (2 tA + tB) l.

Hence, inequalities (1.25) are satisfied.

1.1.4 Bayesian Nash equilibrium

We note that, if a Bayesian-Nash price equilibrium satisfies the duopoly

property then it is a local optimum price strategy. However, a local optimum

price strategy is only a local strategic maximum. Hence, the local optimum

price strategy to be a Bayesian-Nash equilibrium must also be global strategic
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maximum. In this subsection, we are going to show that this is the case.

Following D’Aspremont et al. [2], we note that the profits of the two

firms, valued at local optimum price strategy are globally optimal if they are

at least as great as the payoffs that firms would earn by undercutting the

rivals’s price and supplying the whole market for all admissible subsets of

types IA and IB.

Definition 1.1.6. A price strategy (p
A
, p

B
) for both firms is a Bayesian-

Nash, if for every z ∈ IA and for every deviation of the price pz
A

the ex-

ante profit πEA
A (z) of firm A decreases, and for every w ∈ IB and for every

deviation of the price pw
B

the ex-ante profit πEA
B (w) of firm B decreases.

Let (p
A
, p

B
) be the local optimum price strategy. Given the type w0 of

firm B, firm A may gain the whole market, undercutting its rival by setting

pMA (w0) = pw0

B
− tA l − ε, with ε > 0

Hence, by BUC1 condition pMA (w0) ≤ pzA for all z ∈ IA. We observe that

if firm A chooses the price pMA (w0) then, by equalities (1.17) and (1.21), the

whole market belongs to Firm A for all types w of firm B with cw ≥ cw0 . Let

x(w;w0) = min

{
l,
pwB − pMA (w0) + tB l

tA + tB

}
.

Thus, the expected profit with respect to the price pMA (w0) for firm A is

πEA,M
A (w0) =

∫
IB

(
pMA (w0)− czA

)
x(w;w0) dqB(w).

Let wM ∈ IB such that cwM
B = cMB . Since cwM ≥ cw0 for every w0 ∈ IB, we

obtain

πEA,M
A (w0) ≤

(
pMA (w0)− czA

)
l ≤ (pMA (wM)− czA) l (1.29)

Given the type z0 of firm A, firm B may gain the whole market, undercutting
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its rival by setting

pMB (z0) = pz0
A
− tB l − ε, with ε > 0.

Hence, by BUC1 condition pMB (z0) ≤ pwB for all w ∈ IB. We observe that

if firm B chooses the price pMB (z0) then, by equalities (1.17) and (1.21), the

whole market belongs to Firm B for all types z of firm A with cz ≥ cz0 . Let

x(z; z0) = max

{
0,
pMB (z0)− pzA + tB l

tA + tB

}
Thus, the expected profit with respect to the price pMB (z0) of firm B is

πEA,M
B (z0) =

∫
IA

(
pMB (z0)− cwB

)
(l − x(z; z0)) dqA(z).

Let zM ∈ IA such that czMA = cMA . Since czM ≥ cz0 for every z0 ∈ IA, we

obtain

πEA,M
B (z0) ≤

(
pMB (z0)− cwB

)
l ≤ (pMB (zM)− cwB) l. (1.30)

Remark 1.1.1. Under the BUC1 condition, the strategic equilibrium (p
A
, p

B
)

is the unique pure Bayesian-Nash equilibrium with the duopoly property if for

every z ∈ IA and every w ∈ IB,

πEA,M
A (w) ≤ πEA

A (z) and πEA,M
B (z) ≤ πEA

B (w). (1.31)

Let

Xi,j = 3 cMj + 2E(ci) + E(cj)− 6 cmi + 2 (tj − ti) l

and

Yi,j = 2 (ti + 2 tj) l + E(ci) + 2E(cj)− 3 cMi .

Definition 1.1.7. The Hotelling model satisfies the bounded uncertain costs
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(BUC2) condition, if

6 (tA + tB)XA,B l ≤ Y 2
A,B (1.32)

and

6 (tA + tB)XB,A l ≤ Y 2
B,A. (1.33)

Thus, the bounded uncertain costs condition BUC2 is implied by the

following stronger SBUC2 condition.

Let

tm = min{tA, tB} and tM = max{tA, tB}.

Definition 1.1.8. The Hotelling model satisfies the strong bounded uncer-

tain costs (SBUC2) condition, if

9 ∆ <

(
3 t2m − 2 tM + 2 tm

tM

)
l

We observe that the SBUC2 condition implies SBUC1 condition and so

implies the BUC1 condition.

Theorem 1.1.2. If the Hotelling model satisfies the BUC1 and BUC2 con-

ditions the local optimum price strategy (p
A
, p

B
) is a Bayesian-Nash equilib-

rium.

Corollary 1.1.2. If the Hotelling model satisfies SBUC2 condition the local

optimum price strategy (p
A
, p

B
) is a Bayesian-Nash equilibrium.

Proof. By equalities (1.22) and (1.23), we obtain that πEA
A (zM) ≤ πEA

A (z)

and πEA
B (wM) ≤ πEA

B (w) for all z ∈ IA and for all w ∈ IB. Hence, put-

ting conditions (1.29), (1.30) and (1.31) together, we obtain the following

sufficient condition for the local optimum price strategy (p
A
, p

B
) to be a

Bayesian-Nash equilibrium:

(pMA (wM)− cmA ) l ≤ πEA
A (zM) and (pMB (zM)− cmB ) l ≤ πEA

B (wM). (1.34)

35



By equalities (1.22) and (1.23) we obtain that

πEA
A (zM) =

(2 (tA + 2 tB) l + E(cA) + 2E(cB)− 3 cMA )2

36 (tA + tB)
=

Y 2
A,B

36 (tA + tB)

and

πEA
B (wM) =

(2 (2 tA + tB) l + 2E(cA) + E(cB)− 3 cMB )2

36 (tA + tB)
=

Y 2
B,A

36 (tA + tB)
.

Also, from (1.1.10), we know that

pMA (wM)− cmA = pwM

B
− tA l − ε− cmA

=
1

6
(3 cMB + 2E(cA) + E(cB)− 6 cmA + 2 (tB − tA) l)− ε

=
1

6
XA,B − ε.

and

pMB (zM)− cmB = pzM
A
− tB l − ε− cmB

=
1

6
(3 cMA + E(cA) + 2E(cB)− 6 cmB + 2 (tB − tA) l)− ε

=
1

6
XB,A − ε.

Hence, condition (1.34) holds if inequalities (1.32) and (1.33) are satisfied.

1.1.5 Comparative profit analysis

From now on, we assume that the BUC1 condition holds and that the price

strategy (p
A
, p

B
) is the local optimum price strategy determined in Theorem

1.1.1.

We observe that the difference between the ex-post profits of both firms

has a very useful and clear economical interpretation in terms of the expected

cost deviations.
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Let X = ∆B (2 tA + tB) − ∆A (tA + 2 tB). The difference πEP
A (z, w) −

πEP
B (z, w) is given by

tB − tA
3

l2 +
2X + (∆E − 3 ∆C) (4 (tA + tB)−∆A −∆B)

12 (tA + tB)
.

Furthermore, for different production costs, the differences between the ex-

post profit of firm A, πEP
A (z1, w)− πEP

A (z2, w), is given by

(cz2A − c
z1
A ) (4 (tA + 2 tB) l −∆E + 3 (cwB + E(cA)− cz1A − c

z2
A ))

12 (tA + tB)
.

The difference between the ex-post profit of firm B, πEP
B (z, w1)−πEP

B (z, w2),

is given by

(cw2
B − c

w1
B ) (4 (2 tA + tB) l + ∆E + 3 (czA + E(cB)− cw1

B − c
w2
B ))

12 (tA + tB)

for all z, z1, z2 ∈ IA and w,w1, w2 ∈ IB.

We observe that the difference between the ex-ante profits of both firms

has a very useful and clear economical interpretation in terms of the expected

cost deviations.

The difference πEA
A (z)− πEA

B (w) is given by

tB − tA
3

l2 +
(∆A + ∆B) (3 (∆A −∆B) + 4 ∆E) + (4X − 8 ∆E (tA + tB)) l

12 (tA + tB)
.

Furthermore, for different production costs, the differences between the ex-

ante profits of firm A, πEA
A (z1)− πEA

A (z2) is given by

(cz2A − c
z1
A ) (4 (tA + 2 tB) l + 3 (2E(cA)− cz1A − c

z2
A )− 4 ∆E)

12 (tA + tB)

and the differences between the ex-ante profits of firm B, πEA
B (w1)−πEA

B (w2),
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is given by

(cw2
B − c

w1
B ) (4 (2 tA + tB) l + 3 (2E(cB)− cw1

B − c
w2
B ) + 4 ∆E)

12 (tA + tB)

for all z, z1, z2 ∈ IA and w,w1, w2 ∈ IB.

The difference between the ex-post and the ex-ante profit for a firm is

the real deviation from the realized gain of the firm and the expected gain

of the firm knowing its own production cost but being uncertain about the

production cost of the other firm. It is the best measure of the risk involved

for the firm given the uncertainty in the production costs of the other firm.

The difference between the ex-post profit and the ex-ante profit for firm A is

πEP
A (z, w)− πEA

A (z) =
∆B

12 (tA + tB)
(2 (tA + 2 tB) l − 2 ∆E − 3 ∆A) .

The difference between the ex-post profit and the ex-ante profit for firm B is

πEP
B (z, w)− πEA

B (w) =
∆A

12 (tA + tB)
(2 (2 tA + tB) l + 2 ∆E − 3 ∆B) .

Definition 1.1.9. The Hotelling model satisfies the A-bounded uncertain

costs (A−BUC) condition, if for all z ∈ IA

3 ∆A + 2 ∆E < 2 (tA + 2 tB) l.

The Hotelling model satisfies the B-bounded uncertain costs (B − BUC)

condition, if for all w ∈ IB

3 ∆B − 2 ∆E < 2 (2 tA + tB) l.

The following corollary tells us that the sign of the risk of a firm has the

opposite sign of the deviation of the competitor firm realized production cost

from its average. Hence, under incomplete information the sign of the risk
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of a firm is not accessible to the firm. However, the probability of the sign

of the risk of a firm to be positive or negative is accessible to the firm.

Corollary 1.1.3. Under the A-bounded uncertain costs (A − BUC) condi-

tion,

πEP
A (z, w) < πEA

A (z) if and only if ∆B < 0. (1.35)

Under the B-bounded uncertain costs (B −BUC) condition,

πEP
B (z, w) < πEA

B (w) if and only if ∆A < 0. (1.36)

The proof of the above corollary follows from a simple manipulation of

the previous formulas for the ex-post and ex-ante profits.

The expected profit of the firm is the expected gain of the firm. We

observe that the ex-ante and the ex-posts profits of both firms are strictly

positive with respect to the local optimum price strategy. Hence, the expec-

ted profits of both firms are also strictly positive. Since the ex-ante profit

πEA
A (z) of firm A is equal to

9 ∆2
A − 12 ∆A ((tA + 2 tB) l −∆E) + 4 ((tA + 2 tB) l −∆E)2

36 (tA + tB)
,

from (1.13), we obtain that the expected profit of firm A is given by

E(πEP
A ) =

((tA + 2 tB) l −∆E)2

9 (tA + tB)
+

VA
4 (tA + tB)

.

Similarly, the expected profit of firm B is given by

E(πEP
B ) =

((2 tA + tB) l + ∆E)2

9 (tA + tB)
+

VB
4 (tA + tB)

.

The difference between the ex-ante and the expected profit of a firm is the

deviation from the expected realized gain of the firm given the realization

of its own production cost and the expected gain in average for different
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realizations of its own production cost, but being in both cases uncertain

about the production costs of the competitor firm. It is the best measure

of the quality of its realized production cost in terms of the expected profit

over its own production costs.

Corollary 1.1.4. The difference between the ex-ante profit and the expected

profit for firm A is

E(πEP
A )− πEA

A (z) =
∆A (4 (tA + 2 tB) l − 3 ∆A − 4 ∆E) + 3VA

12 (tA + tB)
. (1.37)

The difference between the ex-ante profit and the expected profit for firm B

is

E(πEP
B )− πEA

B (w) =
∆B (4 (2 tA + tB) l − 3 ∆B + 4 ∆E) + 3VB

12 (tA + tB)
. (1.38)

Proof. Let X = (tA + 2 tB) l −∆E. Hence,

E(πEP
A )− πEA

A (z) =
4X2 − (2X − 3 ∆A)2 + 9VA

36 (tA + tB)

=
∆A (4X − 3 ∆A) + 3VA

12 (tA + tB)

and so equality (1.37) holds. The proof of equality (1.38) follows similarly.

1.1.6 Comparative consumer surplus and welfare ana-

lysis

The ex-post consumer surplus is the realized gain of the consumers com-

munity for given outcomes of the production costs of both firms. Under

incomplete information, by equation (1.4), the ex-post consumer surplus is

CSEP = vT l −
5 tB + 4 tA

6
l2 − 4E(cB) + 2E(cA) + 3 ∆B

6
l +K1, (1.39)
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where

K1 =
(2 (tA + 2 tB) l − 3 ∆C + ∆E)2

72 (tA + tB)
.

The expected value of the consumer surplus is the expected gain of the

consumers community for all possible outcomes of the production costs of

both firms. The expected value of the consumer surplus E(CSEP ) is given

by

E(CSEP ) =

∫
IB

∫
IA

CSEPdqA(z) dqB(w)

= vT l −
5 tB + 4 tA

6
l2 − l

3
(2E(cB) + E(cA)) + U1

where

U1 =
(2 (tA + 2 tB) l − 2 ∆E)2 + 9 (VA + VB)

72 (tA + tB)
.

We note that, from equalities (1.13) and (1.16), the expected value of K1 is

U1 =
(2 (tA + 2 tB) l + ∆E)2 − 6E(∆C) (2 (tA + 2 tB) l + ∆E) + 9E(∆2

C)

72 (tA + tB)

=
(2(tA + 2tB)l + ∆E)2 − 6∆E(2(tA + 2tB)l + ∆E) + 9(VA + VB + ∆2

E)

72(tA + tB)

=
(2 (tA + 2 tB) l − 2 ∆E)2 + 9 (VA + VB)

72 (tA + tB)
.

The difference between the ex-post consumer surplus and the expected

value of the consumer surplus measures the difference between the gain of

the consumers for the realized outcomes of the production costs of both

firms and the expected gain of the consumers for all possible outcomes of

the production costs of both firms. Hence, it measures the risk taken by the

consumers for different outcomes of the production costs of both firms.

Corollary 1.1.5. The difference between the ex-post consumer surplus and
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the expected value of the consumer surplus, CSEP − E(CSEP ), is

−∆B

2
l +

(tA + 2 tB) (∆B −∆A)

6 (tA + tB)
l +

(∆E − 3 ∆C)2 − 4 ∆2
E − 9 (VA + VB)

72 (tA + tB)
.

Proof. Let X = 2 (tA + 2 tB) l. Hence,

CSEP − E(CSEP ) =

= −∆B

2
l +

(X − 3 ∆C + ∆E)2 − (X − 2 ∆E)2 − 9 (VA + VB)

72 (tA + tB)

= −∆B

2
l +

6X (∆E −∆C) + (∆E − 3 ∆C)2 − 4 ∆2
E − 9 (VA + VB)

72 (tA + tB)

= −∆B

2
l +

X (∆B −∆A)

12 (tA + tB)
+

(∆E − 3 ∆C)2 − 4 ∆2
E − 9 (VA + VB)

72 (tA + tB)

The ex-post welfare is the realized gain of the state that includes the gains

of the consumers community and the gains of the firms for a given outcomes

of the production costs of both firms.

By equation (1.5), the ex-post welfare is

WEP = vT l−
(tA + tB)2 + 5 tA tB

18 (tA + tB)
l2− 4E(cB) + 2E(cA) + 3 ∆B

6
l+K2+K3,

(1.40)

where

K2 =
(4 tB − tA) (∆E − 3 ∆C)− 3 (∆A (2 tA + tB) + ∆B (tA + 2 tB))

18 (tA + tB)
l

and

K3 =
3 ∆C (9 ∆C − 2 ∆E)−∆2

E

72 (tA + tB)
.

The expected value of the welfare is the expected gain of the state for all

possible outcomes of the production costs of both firms. The expected value
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of the welfare E(WEP ) is given by

E(WEP ) =

∫
IB

∫
IA

WEPdqA(z) dqB(w)

= vT l −
(tA + tB)2 + 5 tA tB

18 (tA + tB)
l2 − 2E(cB) + E(cA)

3
l − ∆E (4 tB − tA)

9 (tA + tB)
l + U2,

(1.41)

where

U2 =
27 (VA + VB) + 20 ∆2

E

72 (tA + tB)
.

We note that, from equalities (1.13) and (1.16), the expected value of K3 is

U2 =
27E(∆2

C)− 6E(∆C) ∆E −∆2
E

72 (tA + tB)

=
27 (VA + VB + ∆2

E)− 6 ∆2
E −∆2

E

72 (tA + tB)
=

27 (VA + VB) + 20 ∆2
E

72 (tA + tB)
.

The difference between the ex-post welfare and the expected value of the

welfare measures the difference in the gains of the state between the realized

outcomes of the production costs of both firms and the expected gain of the

state for all possible outcomes of the production costs of both firms. Hence, it

measures the risk taken by the state for different outcomes of the production

costs of both firms.

Corollary 1.1.6. The difference between the ex-post welfare and the expected

value of welfare, WEP − E(WEP ), is

−∆A (tA + 5 tB) + ∆B (5 tA + tB)

6 (tA + tB)
l +

9 (∆2
C − VA − VB)− 2 ∆C ∆E − 7 ∆2

E

24 (tA + tB)

Proof. From equalities (1.40) and (1.41) we obtain that

WEP − E(WEP ) = −∆B

2
l +K3 +K4 +

∆E (4 tB − tA)

9 (tA + tB)
l − U2.
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We note that

K5 = K4 − U2 =
3 ∆C (9 ∆C − 2 ∆E)− 21 ∆2

E − 27 (VA + VB)

72 (tA + tB)

=
9 (∆2

C − VA − VB)− 2 ∆C ∆E − 7 ∆2
E

24 (tA + tB)
.

Hence,

WEP − E(WEP ) = −∆B

2
l +

2 ∆E (4 tB − tA)

18 (tA + tB)
+K5+

+
(4 tB − tA) (∆E − 3 ∆C)− 3 (∆A (2 tA + tB) + ∆B (tA + 2 tB))

18 (tA + tB)
l

= −∆B

2
l +K5+

+
(4 tB − tA) (∆E −∆C)− 3 (∆A (2 tA + tB) + ∆B (tA + 2 tB))

6 (tA + tB)
l

= −∆B

2
l +K5+

+
(4 tB − tA) (∆B −∆A)− 3 (tA (2 ∆A + ∆B) + tB (∆A + 2 ∆B))

6 (tA + tB)
l

= −∆B

2
l +

2 ∆B (tB − tA)−∆A (tA + 5 tB)

6 (tA + tB)
l +K5

= −∆B (5 tA + tB) + ∆A (tA + 5 tB)

6 (tA + tB)
l +K5.

1.1.7 Complete versus Incomplete information

Let us consider the case where the production costs are revealed to both

firms before they choose the prices. In this case, the competition between

the firms is under complete information.

A price strategy (pCI
A , pCI

B ) is given by a pair of functions pCI
A : IA× IB →

R+
0 and pCI

B : IA× IB → R+
0 where pCI

A (z, w) denotes the price of firm A and
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pCI
B (z, w) denotes the price of firm B when the type of firm A is z ∈ IA and

the type of firm B is w ∈ IB.

Under the BC condition, by equations (1.6) and (1.7), the Nash price

strategy (pCI
A , pCI

B ) is given by

pCI

A
(z, w) = cB +

2

3
(∆C) +

tA + 2 tB
3

l

and

pCI

B
(z, w) = cA −

2

3
(∆C) +

2 tA + tB
3

l.

By equation (1.8), the profit πCI
A : IA × IB → R+

0 of firm A is given by

πCI
A (z, w) =

((tA + 2 tB) l −∆C)2

9 (tA + tB)
.

Similarly, by equation (1.9), the profit πCI
B : IA× IB → R+

0 of firm B is given

by

πCI
B (z, w) =

((2 tA + tB) l + ∆C)2

9 (tA + tB)
.

Using equality (1.15), the expected profit EB(πCI
A ) for firm A is given by

EB(πCI
A ) =

((tA + 2 tB) l −∆A −∆E)2 + VB
9 (tA + tB)

Similarly, using equality (1.14) the expected profit EA(πCI
B ) for firm B is

given by

EA(πCI
B ) =

((2 tA + tB) l −∆B + ∆E)2 + VA
9 (tA + tB)

The expected profit E(πCI
A ) for firm A is given by

E(πCI
A ) =

((tA + 2 tB) l −∆E)2 + VA + VB
9 (tA + tB)

.
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Similarly, the expected profit E(πCI
B ) for firm B is given by

E(πCI
B ) =

((2 tA + tB) l + ∆E)2 + VA + VB
9 (tA + tB)

.

By equation (1.12), the consumer surplus is given by

CSCI(z, w) = vT l −
5 tB + 4 tA

6
l2 − ∆A + E(cA) + 2 ∆B + 2E(cB)

3
l + Z1,

(1.42)

where

Z1 =
((tA + 2 tB) l −∆C)2

18 (tA + tB)
.

The expected value of the consumer surplus E(CSCI) is

E(CSCI(z, w)) = vT l −
5 tB + 4 tA

6
l2 − E(cA) + 2E(cB)

3
l +W1

where

W1 =
((tA + 2 tB) l −∆E)2 + VA + VB

18 (tA + tB)
.

We note that, from equalities (1.13) and (1.16), the expected value of Z1 is

W1 =
(tA + 2 tB)2 l2 − 2 (tA + 2 tB) l E(∆C) + E(∆2

C)

18 (tA + tB)

=
(tA + 2 tB)2 l2 − 2 ∆E (tA + 2 tB) l + ∆2

E + VA + VB
18 (tA + tB)

=
((tA + 2 tB) l −∆E)2 + VA + VB

18 (tA + tB)
.

By equation (1.13), the welfare is given by

WCI(z, w) = vT l −
tA + tB

18
l2 − ∆A + E(cA) + 2 ∆B + 2E(cB)

3
l + Z2,
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where

Z2 =
−5 tA tB l

2 + 2 ∆C l (tA − 4 tB) + 5 ∆2
C

18 (tA + tB)

The expected value of the welfare E(WCI) is given by

E(WCI(z, w)) = vT l −
tA + tB

18
l2 − E(cA) + 2E(cB)

3
l +W2

where

W2 =
−5 tA tB l

2 + 2 ∆E l (tA − 4 tB) + 5 (∆2
E + VA + VB)

18 (tA + tB)
.

We note that, from equalities (1.13) and (1.16), the expected value of Z2 is

W2 =
−5 tA tB l

2 + 2E(∆C) l (tA − 4 tB) + 5E(∆2
C)

18 (tA + tB)

=
−5 tA tB l

2 + 2 ∆E l (tA − 4 tB) + 5 (∆2
E + VA + VB)

18 (tA + tB)
.

Corollary 1.1.7. The difference between the ex-post profit and the profit,

under complete information, for firm A, πEP
A (z, w)− πCI

A (z, w), is

(∆A −∆B)(∆A + 2 ∆B)− (2 (tA + 2 tB) l − 2 ∆C) (2∆A + ∆B)

36 (tA + tB)
. (1.43)

The difference between the ex-post profit and the profit, under complete in-

formation, for firm B, πEP
B (z, w)− πCI

B (z, w), is

(∆B −∆A)(∆B + 2 ∆A)− (2 (2 tA + tB) l + 2 ∆C) (2∆B + ∆A)

36 (tA + tB)
. (1.44)

47



Proof. Let CI = (tA + 2 tB) l − ∆C . Hence,

πEP
A (z, w)− πCI

A (z, w) =
(2CI + ∆B −∆A)(2CI −∆A − 2 ∆B)− 4CI2

36 (tA + tB)

=
(∆B −∆A)(−∆A − 2 ∆B) + 2CI(−2∆A − ∆B)

36 (tA + tB)

and so equality (1.43) holds. The proof of equality (1.44) follows similarly.

Corollary 1.1.8. The difference between the ex-ante profit EB(πEP
A ) and

EB(πCI
A ) for firm A is

EB(πEP
A )− EB(πCI

A ) =
∆A (5 ∆A − 4 ((tA + 2 tB) l −∆E))

36 (tA + tB)
− VB

9 (tA + tB)
.

The difference between the ex-ante profit EA(πEP
B ) and EA(πCI

B ) for firm B

is

EA(πEP
B )− EA(πCI

B ) =
∆B (5 ∆B − 4 ((2 tA + tB) l + ∆E))

36 (tA + tB)
− VA

9 (tA + tB)
.

The proof of the above corollary follows from a simple manipulation of

the previous formulas for the ex-post and ex-ante profits.

The difference between the expected profits of firm A with complete and

incomplete information is given by

E(πEP
A )− E(πCI

A ) =
5VA − 4VB
36 (tA + tB)

. (1.45)

The difference between the expected profits of firm B with complete and

incomplete information is given by

E(πEP
B )− E(πCI

B ) =
5VB − 4VA
36 (tA + tB)

. (1.46)

Corollary 1.1.9. The difference between the ex-post consumer surplus and
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the consumer surplus, under complete information, CSEP − CSCI , is

∆A (5 tA + 4 tB) + ∆B (4 tA + 5 tB)

18 (tA + tB)
l +

(∆B −∆A − 4 ∆C) (∆B −∆A)

72 (tA + tB)
.

(1.47)

Therefore, equation (1.47) determines in which cases it is better to have

uncertainty in the production costs instead of complete information in terms

of consumer surplus CSEP > CSCI .

Proof. From equalities (1.39) and (1.42), we obtain that

CSEP − CSCI =
2 ∆A + ∆B

6
l +K1 −K2,

where

K1 =
(2 (tA + 2 tB) l − 3 ∆C + ∆E)2

72 (tA + tB)
.

and

K2 =
((tA + 2 tB) l −∆C)2

18 (tA + tB)
.

Let X = (tA + 2 tB) l. We note that

K1 −K2 =
(2X − 3 ∆C + ∆E)2 − 4 (X −∆C)2

72 (tA + tB)

=
4X (∆E −∆C) + (∆E − 3 ∆C)2 − 4 ∆2

C

72 (tA + tB)

=
4X (∆B −∆A) + (∆B −∆A − 2 ∆C)2 − 4 ∆2

C

72 (tA + tB)

=
(tA + 2 tB) (∆B −∆A)

18 (tA + tB)
l +

(∆B −∆A − 4 ∆C) (∆B −∆A)

72 (tA + tB)
.

Hence, CSEP − CSCI is given by expression (1.47).

The difference between expected value of the consumer surplus and the
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expected value of the consumer surplus under complete information, is

E(CSEP )− E(CSCI) =
5 (VA + VB)

72 (tA + tB)
. (1.48)

Therefore, in expected value the consumer surplus is greater with incomplete

information than with complete information.

The difference between the ex-post welfare and the welfare, under com-

plete information, is given by

WEP −WCI =
2∆A + ∆B

6
l − 2 ∆C l (tA − 4 tB) + 5 ∆2

C

18 (tA + tB)
+K3 +K4,

where

K3 =
(4 tB − tA) (∆E − 3 ∆C)− 3 (∆A (2 tA + tB) + ∆B (tA + 2 tB))

18 (tA + tB)
l

and

K4 =
3 ∆C (9 ∆C − 2 ∆E)−∆2

E

72 (tA + tB)
.

Hence,

WEP −WCI =
∆A (tA − tB) + ∆B (tB − tA)

18 (tA + tB)
l +

7 ∆2
C − 6 ∆C ∆E −∆2

E

72 (tA + tB)
(1.49)

Therefore, equation (1.49) determines in which cases it is better to have

uncertainty in the production costs instead of complete information in terms

of welfare WEP > WCI .

The difference between expected value of the welfare and the expected

value of the welfare under complete information, is

E(WEP )− E(WCI) =
7 (VA + VB)

72 (tA + tB)
. (1.50)

Therefore, in expected value the welfare is greater with incomplete informa-
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tion than with complete information.

1.1.8 Example: Symmetric Hotelling

A Hotelling game is symmetric, if (IA,ΩA, qA) = (IB,ΩB, qB) and c = cA =

cB. Hence, we observe that all the formulas of this section hold with the

following simplifications

∆E = 0; E(c) = E(cA) = E(cB) and V = VA = VB.

The bounded uncertain costs in the symmetric case can be written in the

following simple way.

Definition 1.1.10. The symmetric Hotelling model satisfies the bounded

uncertain costs (BUC1) condition, if

−2 (2 tA + tB) l < 3 ∆C < 2 (tA + 2 tB) l

for all z ∈ IA and for all w ∈ IB.

Definition 1.1.11. The symmetric Hotelling model satisfies the bounded

uncertain costs (BUC2) condition, if

(3 cM + 3E(c)− 6 cm + 2 (tB − tA) l) l ≤ (2 (tA + 2 tB) l + 3E(c)− 3 cM)2

6 (tA + tB)

and

(3 cM + 3E(c)− 6 cm + 2 (tA − tB) l) l ≤ (2 (tB + 2 tA) l + 3E(c)− 3 cM)2

6 (tA + tB)
.

Under the BUC1 condition, the expected prices of the local optimum

price strategy have the simple expression

E(p
A

) =
tA + 2 tB

3
l + E(c) and E(p

B
) =

2 tA + tB
3

l + E(c).
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By Proposition 1.1.1, for the Hotelling game with incomplete symmetric

information, the local optimum price strategy (pA, pB) has the form

pz
A

=
tA + 2 tB

3
l + E(c) +

∆A

2
; pw

B
=

2 tA + tB
3

l + E(c) +
∆B

2
.

The ex-post profit of firm A and firm B are, respectively

πEP
A (z, w) =

(2 (tA + 2 tB) l − 3 ∆A) (2 (tA + 2 tB) l − 3 ∆C)

36 (tA + tB)

and

πEP
B (z, w) =

(2 (2 tA + tB) l − 3 ∆B) (2 (2 tA + tB) l + 3 ∆C)

36 (tA + tB)
.

Let X = ∆B (2 tA + tB)−∆A (tA + 2 tB). The difference between the ex-post

profits of both firms is given by

πEP
A (z, w)− πEP

B (z, w) =
tB − tA

3
l2 +

2X + 3 ∆C (∆A + ∆B − 4 (tA + tB))

12 (tA + tB)

Furthermore, for different production costs, the difference between the ex-

post profit of firm A, πEP
A (z1, w)− πEP

A (z2, w), is given by

(cz2A − c
z1
A ) (4 (tA + 2 tB) l + 3 (cwB + E(c)− cz1A − c

z2
A ))

12 (tA + tB)

and the difference between the ex-post profit of firmB, πEP
B (z, w1)−πEP

B (z, w2),

is given by

(cw2
B − c

w1
B ) (4 (2 tA + tB) l + 3 (czA + E(c)− cw1

B − c
w2
B ))

12 (tA + tB)

for all z, z1, z2 ∈ IA and w,w1, w2 ∈ IB.
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The ex-ante profit profit of firm A and firm B are, respectively

πEA
A (z) =

(2 (tA + 2 tB) l − 3 ∆A)2

36 (tA + tB)

and

πEA
B (w) =

(2 (2 tA + tB) l − 3 ∆B)2

36 (tA + tB)
.

The difference between the ex-ante profits of both firms is given by

πEA
A (z)− πEA

B (w) =
tB − tA

3
l2 +

3 ∆C (∆A + ∆B) + 4X l

12 (tA + tB)

Furthermore, for different production costs, the difference between the ex-

ante profits of firm A, πEA
A (z1)− πEA

A (z2), is given by

(cz2A − c
z1
A ) (4 (tA + 2 tB) l + 3 (2E(c)− cz1A − c

z2
A ))

12 (tA + tB)
.

Similarly, πEA
B (w1)− πEA

B (w2) is given by

(cw2
B − c

w1
B ) (4 (2 tA + tB) l + 3 (2E(c)− cw1

B − c
w2
B ))

12 (tA + tB)

for all z, z1, z2 ∈ IA and w,w1, w2 ∈ IB.

The difference between the ex-post profit and the ex-ante profit for firm

A is

πEP
A (z, w)− πEA

A (z) =
∆B

12 (tA + tB)
(2 (tA + 2 tB) l − 3 ∆A) .

The difference between the ex-post profit and the ex-ante profit for firm B is

πEP
B (z, w)− πEA

B (w) =
∆A

12 (tA + tB)
(2 (2 tA + tB) l − 3 ∆B) .

We observe that that the A−BUC and B−BUC conditions are implied by
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the BUC1 condition. Hence, Corollary 1.1.3 can be rewritten without any

restriction, i.e.

πEP
A (z, w) < πEA

A (z) if and only if ∆B < 0;

and

πEP
B (z, w) < πEA

B (w) if and only if ∆A < 0.

The expected profit of firm A and firm B are, respectively,

E(πA) =
((tA + 2 tB) l)2

9 (tA + tB)
+

V

4 (tA + tB)
.

and

E(πB) =
((2 tA + tB) l)2

9 (tA + tB)
+

V

4 (tA + tB)
.

The difference between the ex-ante profit and the expected profit for firm A

is

E(πEP
A )− πEA

A (z) =
∆A (4 (tA + 2 tB) l − 3 ∆A) + 3V

12 (tA + tB)
.

The difference between the ex-ante profit and the expected profit for firm B

is

E(πEP
B )− πEA

B (w) =
∆B (4 (2 tA + tB) l − 3 ∆B) + 3V

12 (tA + tB)
.

The ex-post consumer surplus is

CSEP = v l − 5 tB + 4 tA
6

l2 − 2E(c) + ∆B

2
l +

(2 (tA + 2 tB) l − 3 ∆C)2

72 (tA + tB)
.

The expected value of the consumer surplus is

E(CSEP ) = vT l −
5 tB + 4 tA

6
l2 − E(c) l +

4 (tA + 2 tB)2 l2 + 18V

72 (tA + tB)
.

The difference between the ex-post consumer surplus and the expected value
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of the consumer surplus is

CSEP − E(CSEP ) = −∆A (tA + 2 tB) + ∆B (2 tA + tB)

6 (tA + tB)
l +

∆2
C − 2V

8 (tA + tB)
.

The ex-post welfare is

WEP = vT l −
(tA + tB)2 + 5 tA tB

18 (tA + tB)
l2 − E(c) +

3 ∆2
C

8 (tA + tB)
−W1,

where

W1 =
∆A (tA + 5 tB) + ∆B (tB + 5 tA)

6 (tA + tB)
l.

The expected value of the welfare E(WEP ) is given by

E(WEP ) = vT l −
(tA + tB)2 + 5 tA tB

18 (tA + tB)
l2 − E(c) l − 3V

4 (tA + tB)
.

The difference between the ex-post welfare and the expected value of welfare

is

WEP − E(WEP ) = −∆A (tA + 5 tB) + ∆B (5 tA + tB)

6 (tA + tB)
l +

3 (∆2
C − 2V )

8 (tA + tB)

The expected profits EB(πCI
A ) for firm A and EA(πCI

B ) for firm B are

given by

EB(πCI
A ) =

((tA + 2 tB) l −∆A)2 + V

9 (tA + tB)

and

EA(πCI
B ) =

((2 tA + tB) l −∆B)2 + V

9 (tA + tB)

The expected profits for firm A and B are given, respectively by

E(πCI
A ) =

(tA + 2 tB)2 l2 + 2V

9 (tA + tB)
.
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and

E(πCI
B ) =

(2 tA + tB)2 l2 + 2V

9 (tA + tB)
.

The expected value of the consumer surplus E(CSCI) is

E(CSCI(z, w)) = vT l −
5 tB + 4 tA

6
l2 − E(c) l +

(tA + 2 tB)2 l2 + 2V

18 (tA + tB)
.

The expected value of the welfare E(WCI) is given by

E(WCI(z, w)) = vT l −
tA + tB

18
l2 − E(c) l +

10V − 5 tA tB l
2

18 (tA + tB)
.

The difference between the ex-post profit and the profit, under complete

information, for firm A, is

πEP
A (z, w)− πCI

A (z, w) =
∆C (5 ∆A + 4 ∆B)− 2 (tA + 2 tB) l (2∆A + ∆B)

36 (tA + tB)
.

The difference between the ex-post profit and the profit, under complete

information, for firm B, is

πEP
B (z, w)− πCI

B (z, w) =
−∆C(5 ∆B + 4 ∆A)− 2 (2 tA + tB) l (2∆B + ∆A)

36 (tA + tB)
.

The difference between the ex-ante profit and the expected profit, under

complete information, for firm A is

EB(πEP
A )− EB(πCI

A ) =
∆A (5 ∆A − 4 (tA + 2 tB) l)

36 (tA + tB)
− V

9 (tA + tB)
.

The difference between the ex-ante profit and the expected profit, under

complete information, for firm B is

EA(πEP
B )− EA(πCI

B ) =
∆B (5 ∆B − 4 (2 tA + tB) l)

36 (tA + tB)
− V

9 (tA + tB)
.
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The differences between the expected profits with complete and incomplete

information for firm A and firm B are given by

E(πEP
A )− E(πCI

A ) = E(πEP
B )− E(πCI

B ) =
V

36 (tA + tB)
.

The difference between the ex-post consumer surplus and the consumer sur-

plus, under complete information, is

CSEP − CSCI =
∆A (5 tA + 4 tB) + ∆B (4 tA + 5 tB)

18 (tA + tB)
l +

5 ∆2
C

72 (tA + tB)
.

The difference between expected value of the consumer surplus and the ex-

pected value of the consumer surplus under complete information, is

E(CSEP )− E(CSCI) =
10V

72 (tA + tB)
.

The difference between the ex-post welfare and the welfare, under complete

information, is

WEP −WCI =
∆A (tA − tB) + ∆B (tB − tA)

18 (tA + tB)
l +

7 ∆2
C

72 (tA + tB)
.

The difference between expected value of the welfare and the expected value

of the welfare under complete information, is

E(WEP )− E(WCI) =
7V

36 (tA + tB)
.

1.1.9 Firms with the same transportation cost

In this subsection we present the results of the section where the linear trans-

portation costs are equal to both firms, tA = tB = t, as originally presented

by Hotelling.

The point x is the location of the indifferent consumer to buy from firm
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A or firm B, and it is given by

x =
pB − pA + t l

2 t
.

Definition 1.1.12. The Hotelling model satisfies the bounded costs (BC)

condition, if

|cA − cB| < 3 t l.

Under the BC condition, the local optimum price strategy (p
A
, p

B
) is

given by

p
A

= t l +
1

3
(2 cA + cB) and p

B
= t l +

1

3
(cA + 2 cB).

and the corresponding equilibrium profits are given by

πA =
(3 t l + cB − cA)2

18 t
and πB =

(3 t l + cA − cB)2

18 t
.

We note that if (p
A
, p

B
) is a local optimum price strategy then (p

A
, p

B
) is a

Nash price equilibrium.

The consumer surplus CS with respect to the local optimum price strategy

(p
A
, p

B
) is given by

CS = vT l −
3

2
t l2 − cA + 2 cB

3
l +

(cB − cA + 3 t l)2

36 t

and the welfare W is given by

W = vT l −
1

4
t l2 − cA + cB

2
l +

5 (cA − cB)2

36t
.

Definition 1.1.13. The Hotelling model satisfies the bounded uncertain

costs (BUC1) condition, if

|3 ∆C −∆E| < 6 t l,
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for all z ∈ IA and for all w ∈ IB.

Definition 1.1.14. The Hotelling model satisfies the strong bounded uncer-

tain costs (SBUC1) condition, if

∆ < 3 t l.

Corollary 1.1.10. There is a local optimum price strategy (p
A
, p

B
) if and

only if the BUC1 condition holds. Under the BUC1 condition, the expected

prices of the local optimum price strategy are given by

E(p
A

) = t l + E(cA)− ∆E

3
;

E(p
B

) = t l + E(cB) +
∆E

3
.

Furthermore, the local optimum price strategy (p
A
, p

B
) is unique and it is

given by

pz
A

= E(p
A

) +
∆A

2
; pw

B
= E(p

B
) +

∆B

2
.

The ex-post profit of firm A is

πEP
A (z, w) =

(6 t l + ∆E − 3 ∆C)(6 t l + ∆E − 3 ∆C − 3 ∆B)

72 t

and the ex-post profit of firm B is

πEP
B (z, w) =

(6 t l −∆E + 3 ∆C)(6 t l −∆E + 3 ∆C − 3 ∆A)

72 t
.

The ex-ante profit of firm A is

πEA
A (z) =

(6 t l − 3 ∆A − 2 ∆E)2

72 t
.
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and the ex-ante profit of firm B is

πEA
B (w) =

(6 t l − 3 ∆B + 2 ∆E)2

72 t
.

Definition 1.1.15. The Hotelling model satisfies the bounded uncertain

costs (BUC2) condition, if

3
(
cMA + cMB − 2 cmA

)
+ E(cA)− E(cB) ≤ 3 t l +

(
E(cA) + 2E(cB)− 3 cMA

)2
12 t l

and

3
(
cMA + cMB − 2 cmB

)
+ E(cB)− E(cA) ≤ 3 t l +

(
2E(cA) + E(cB)− 3 cMB

)2
12 t l

.

Definition 1.1.16. The Hotelling model satisfies the strong bounded uncer-

tain costs (SBUC2) condition, if

7 ∆ < 3 t l

Theorem 1.1.3. If the Hotelling model satisfies the BUC1 and BUC2 con-

ditions the local optimum price strategy (p
A
, p

B
) is a Bayesian-Nash equilib-

rium.

Corollary 1.1.11. If the Hotelling model satisfies SBUC2 condition the

local optimum price strategy (p
A
, p

B
) is a Bayesian-Nash equilibrium.

Now, we present some results of comparative analysis of profits, consumer

surplus and welfare.

The difference between the ex-post profits of both firms is given by

πEP
A (z, w)− πEP

B (z, w) =
6 t l (∆A −∆B) + (∆E − 3 ∆C) (8 t l −∆A −∆B)

24 t
.

Furthermore, for different production costs, the difference between the ex-
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post profit of firm A, πEP
A (z1, w)− πEP

A (z2, w) is given by

(cz2A − c
z1
A ) (12 t l −∆E + 3 (cwB + E(cA)− cz1A − c

z2
A ))

24 t
.

The difference between the ex-post profit of firm B, πEP
B (z, w1)−πEP

B (z, w2),

is given by

(cw2
B − c

w1
B ) (12 t l + ∆E + 3 (czA + E(cB)− cw1

B − c
w2
B ))

24 t

for all z, z1, z2 ∈ IA and w,w1, w2 ∈ IB. The difference between the ex-ante

profits of both firms is given by

πEA
A (z)− πEA

B (w) =
(4 t l −∆A −∆B) (3 (∆B −∆A)− 4 ∆E)

24 t
.

Furthermore, for different production costs, the differences between the ex-

ante profits of a firm are given by

πEA
A (z1)− πEA

A (z2) =
(cz2A − c

z1
A ) (3 (4 t l + 2E(cA)− cz1A − c

z2
A )− 4 ∆E)

24 t

and

πEA
B (w1)− πEA

B (w2) =
(cw2

B − c
w1
B ) (3 (4 t l + 2E(cB)− cw1

B − c
w2
B ) + 4 ∆E)

24 t

for all z, z1, z2 ∈ IA and w,w1, w2 ∈ IB. The difference between the ex-post

profit and the ex-ante profit for firm A is

πEP
A (z, w)− πEA

A (z) =
∆B

24 t
(6 t l − 2 ∆E − 3 ∆A)

and the difference between the ex-post profit and the ex-ante profit for firm

B is

πEP
B (z, w)− πEA

B (w) =
∆A

24 t
(6 t l + 2 ∆E − 3 ∆B) .
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Definition 1.1.17. The Hotelling model satisfies the A-bounded uncertain

costs (A−BUC) condition, if for all z ∈ IA

3 ∆A + 2 ∆E < 6 t l.

The Hotelling model satisfies the B-bounded uncertain costs (B − BUC)

condition, if for all w ∈ IB

3 ∆B − 2 ∆E < 6 t l.

Under the A-bounded uncertain costs (A−BUC) condition,

πEP
A (z, w) < πEA

A (z) if and only if ∆B < 0.

Under the B-bounded uncertain costs (B −BUC) condition,

πEP
B (z, w) < πEA

B (w) if and only if ∆A < 0.

The expected profit of firm A is given by

E(πEP
A ) =

(3 t l −∆E)2

18 t
+
VA
8 t

and the expected profit of firm B is given by

E(πEP
B ) =

(3 t l + ∆E)2

18 t
+
VB
8 t
.

The difference between the ex-ante profit and the expected profit for firm A

is

E(πEP
A )− πEA

A (z) =
∆A (12 t l − 3 ∆A − 4 ∆E) + 3VA

24 t

and the difference between the ex-ante profit and the expected profit for firm
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B is

E(πEP
B )− πEA

B (w) =
∆B (12 t l − 3 ∆B + 4 ∆E) + 3VB

24 t
.

Under incomplete information, the ex-post consumer surplus is

CSEP = vT l −
3

2
t l2 − l

3
(2E(cB) + E(cA))− ∆B l

2
+

(6 t l − 3 ∆C + ∆E)2

144 t
,

and the expected value of the consumer surplus is given by

E(CSEP ) = vT l−
3

2
t l2− l

3
(2E(cB)+E(cA))+

(6 t l − 2 ∆E)2 + 9 (VA + VB)

144 t

and the difference between the ex-post consumer surplus and the expected

value of the consumer surplus is

CSEP − E(CSEP ) = −∆A + ∆B

4
l +

(∆E − 3 ∆C)2 − 4 ∆2
E − 9 (VA + VB)

144 t
.

The ex-post welfare, WEP , is

vT l −
1

4
t l2 − E(cA) + E(cB) + ∆A + ∆B

2
l − 3 ∆C(2 ∆E − 9 ∆C) + (∆E)2

144 t
,

the expected value of the welfare is given by

E(WEP ) = vT l −
1

4
t l2 − E(cA) + E(cB)

2
l +

27 (VA + VB) + 20 ∆2
E

144 t

and the difference between the ex-post welfare and the expected value of

welfare is

WEP − E(WEP ) = −∆A + ∆B

2
l +

9 (∆2
C − VA − VB)− 2 ∆C ∆E − 7 ∆2

E

48 t
.

Under complete information, the expected profit, EB(πCI
A ), for firm A is

given by

EB(πCI
A ) =

(3 t l −∆A −∆E)2 + VB
18 t
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and the expected profit, EA(πCI
B ), for firm B is given by

EA(πCI
B ) =

(3 t l −∆B + ∆E)2 + VA
18 t

.

The expected profit E(πCI
A ) for firm A is given by

E(πCI
A ) =

(3 t l −∆E)2 + VA + VB
18 t

and the expected profit E(πCI
B ) for firm B is given by

E(πCI
B ) =

(3 t l + ∆E)2 + VA + VB
18 t

.

Under complete information, the consumer surplus is given by

CSCI(z, w) = vT l −
3

2
t l2 − E(cA) + 2E(cB) + ∆A + 2∆B

3
l +

(3 t l −∆C)2

36 t

and expected value of the consumer surplus E(CSCI) is

E(CSCI(z, w)) = vT l−
3

2
t l2− E(cA) + 2E(cB)

3
l+

(3 t l −∆E)2 + VA + VB
36 t

.

The welfare is given by

WCI(z, w) = vT l −
1

4
t l2 − E(cA) + E(cB) + ∆A + ∆B

2
l +

5 ∆2
C

36t

and the expected value of the welfare E(WCI) is

E(WCI(z, w)) = vT l −
1

4
t l2 − E(cA) + E(cB)

2
l +

5 (VA + VB + ∆2
E)

36t
.

The difference between the ex-post profit and the profit, under complete
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information, for firm A, πEP
A (z, w)− πCI

A (z, w), is

(∆A −∆B)(∆A + 2 ∆B)− 2 (3 t l −∆C) (2∆A + ∆B)

72 t

and the difference between the ex-post profit and the profit, under complete

information, for firm B, πEP
B (z, w)− πCI

B (z, w), is

(∆B −∆A)(∆B + 2 ∆A)− 2 (3 t l + ∆C) (2∆B + ∆A)

72 t
.

The difference between the ex-ante profit EB(πEP
A ) and EB(πCI

A ) for firm A

is

EB(πEP
A )− EB(πCI

A ) =
∆A (5 ∆A − 4 (3 t l −∆E))

72 t
− VB

18 t

and the difference between the ex-ante profit EA(πEP
B ) and EA(πCI

B ) for firm

B is

EA(πEP
B )− EA(πCI

B ) =
∆B (5 ∆B − 4 (3 t l + ∆E))

72 t
− VA

18 t
.

The differences between the expected profits of the firms with complete and

incomplete information are given by

E(πEP
A )−E(πCI

A ) =
5VA − 4VB

72 t
; and E(πEP

B )−E(πCI
B ) =

5VB − 4VA
72 t

.

The difference between the ex-post consumer surplus and the consumer sur-

plus, under complete information, is

CSEP − CSCI =
(∆A + ∆B) l

4
+

(∆B −∆A)(∆B −∆A − 4 ∆C)

144 t

and the difference between expected value of the consumer surplus and the

expected value of the consumer surplus under complete information, is

E(CSEP )− E(CSCI) =
5 (VA + VB)

144 t
.

65



The difference between the ex-post welfare and the welfare, under complete

information, is

WEP −WCI =
7 (∆C)2 − 6 ∆C∆E − (∆E)2

144 t

and the difference between expected value of the welfare and the expected

value of the welfare under complete information, is

E(WEP )− E(WCI) =
7 (VA + VB)

144 t
.

1.2 Quadratic transportation costs

In this section, we study the Hotelling model [25] with uncertainty in the pro-

duction costs of both firms with quadratic transportation costs as presented

by d’Aspremont el at. [2].

We introduce the bounded uncertain costs and location BUCL1 condi-

tion that defines a bound for the costs in terms of the transportation cost,

the road length of the line and the location of the firms. Under the bounded

costs BUCL1 condition we compute the unique local optimum price strategy

for the firms with the property that the market shares of both firms are not

empty for any outcome of production costs. We introduce a mild additional

bounded uncertain costs BUCL2 and, under the BUCL1 and BUCL2 con-

ditions, we prove that the local optimum price strategy is a Bayesian-Nash

price strategy.

We introduce the BUCL3 condition and we study the optimal localization

and price strategies under incomplete information on the production costs of

the firms and. Under the BUCL3, and assuming that the firms choose the

Bayesian-Nash price strategy, we show that the maximal differentiation is a

local optimum for the localization strategy of both firms. Finally, we do a

complete analysis of profits, consumer surplus and welfare under complete
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Figure 1.2: Hotelling’s linear city with quadratic transportation costs

and incomplete information.

1.2.1 Hotelling model under complete information

The buyers of a commodity will be supposed uniformly distributed along a

line with length l, where two firms A and B located at respective distances

a and b from the endpoints of the line sell the same commodity with unitary

production costs cA and cB. We assume without loss of generality that a ≥ 0,

b ≥ 0 and l − a − b ≥ 0. No customer has any preference for either seller

except on the ground of price plus transportation cost t.

Denote A’s price by pA and B’s price by pB. The point of division

x = x(pA, pB) ∈]0, l[ between the regions served by the two entrepreneurs

is determined by the condition that at this place it is a matter of indifference

whether one buys from A or from B (see Figure 1.2). The point x is the

location of the indifferent consumer to buy from firm A or firm B, if

pA + t (x− a)2 = pB + t (l − b− x)2

Let

m = l − a− b and ∆l = a− b.

Solving for x, we obtain

x =
pB − pA

2 tm
+
l + ∆l

2
.

Both firms have a non-empty market share if, and only if, x ∈]0, l[ . Hence,
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the prices will have to satisfy

|pA − pB − tm∆l| < tm l (1.51)

Assuming inequality (1.51), both firms A and B have a non-empty demand

(x and l − x) and the profits of the two firms are defined respectively by

πA = (pA − cA)x = (pA − cA)

(
pB − pA

2 tm
+
l + ∆l

2

)
(1.52)

and

πB = (pB − cB) (l − x) = (pB − cB)

(
pA − pB

2 tm
+
l −∆l

2

)
. (1.53)

Two of the fundamental economic quantities in oligopoly theory are the

consumer surplus CS and the welfare W . The consumer surplus is the gain

of the consumers community for given price strategies of both firms. The

welfare is the gain of the state that includes the gains of the consumers

community and the gains of the firms for given price strategies of both firms.

Let us denote by vT the total amount that consumers are willing to pay

for the commodity. The total amount v(y) that a consumer located at y pays

for the commodity is given by

v(y) =

{
pA + t (y − a)2 if 0 < y < x;

pB + t (l − b− y)2 if x < y < l.

The consumer surplus CS is the difference between the total amount that a

consumer is willing to pay vT and the total amount that the consumer pays

v(y)

CS =

∫ l

0

vT − v(y)dy. (1.54)

The welfare W is given by adding the profits of firms A and B with the
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consumer surplus

W = CS + πA + πB. (1.55)

Definition 1.2.1. A price strategy (p
A
, p

B
) for both firms is a local optimum

price strategy if (i) for every small deviation of the price p
A

the profit πA of

firm A decreases, and for every small deviation of the price pB the profit πB of

firm B decreases (local optimum property); and (ii) the indifferent consumer

exists, i.e. 0 < x < l (duopoly property).

Let us compute the local optimum price strategy (p
A
, p

B
). Differentiating

πA with respect to pA and πB with respect to pB and equalizing to zero, we

obtain the first order conditions (FOC). The FOC imply that

p
A

= tm

(
l +

∆l

3

)
+

1

3
(2 cA + cB) (1.56)

and

p
B

= tm

(
l − ∆l

3

)
+

1

3
(cA + 2 cB). (1.57)

We note that the first order conditions refer to jointly optimizing the profit

function (1.52) with respect to the price pA and the profit function (1.53)

with respect to the price pB.

Since the profit functions (1.52) and (1.53) are concave, the second-order

conditions for this maximization problem are satisfied and so the prices (1.56)

and (1.57) are indeed maxima for the functions (1.52) and (1.53), respectively.

The corresponding equilibrium profits are given by

πA =
(m (3 l + ∆l) t+ cB − cA)2

18 tm
(1.58)

and

πB =
(m (3 l −∆l) t+ cA − cB)2

18 tm
. (1.59)

Furthermore, the indifferent consumer location corresponding to the maxim-
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izers p
A

and p
B

of the profit functions πA and πB is

x =
l

2
+

∆l

6
+
cB − cA

6 tm
.

Finally, for the pair of prices (p
A
, p

B
) to be a local optimum price strategy, we

need assumption (1.51) to be satisfied with respect to these pair of prices. We

observe that assumption (1.51) is satisfied with respect to the pair of prices

(p
A
, p

B
) if and only if the following condition with respect to the production

costs is satisfied.

Definition 1.2.2. The Hotelling model satisfies the bounded costs and loc-

ation (BCL) condition, if

|cA − cB − tm∆l| < 3 tm l.

We note that under the BCL condition the prices are higher than the

production costs p
A
> cA and p

B
> cB. Hence, there is a local optimum

price strategy if and only if the BCL condition holds. Furthermore, under

the BCL condition, the pair of prices (p
A
, p

B
) is the local optimum price

strategy.

A strong restriction that the BCL condition imposes is that ∆C converges

to 0 when m tends to 0, i.e. when the differentiation in the localization tends

to vanish.

We note that, if a Nash price equilibrium satisfies the duopoly property

then it is a local optimum price strategy. However, a local optimum price

strategy is only a local strategic maximum. Hence, the local optimum price

strategy to be a Nash equilibrium must also be global strategic maximum.

In this section, we are going to show that this is the case.

Following D’Aspremont et al. [2], we note that the profits of the two

firms, valued at local optimum price strategy are globally optimal if they are

at least as great as the payoffs that firms would earn by undercutting the

rivals’ price and supplying the whole market.
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Let (pA, pB) be the local optimum price strategy. Firm A may gain the

whole market, undercutting its rival by setting

pMA = p
B
− tm (l −∆l).

In this case the profit amounts to

πM
A =

2

3
(cB − cA + tm∆l) l.

A similar argument is valid for store B. Undercutting this rival, setting

pMB = p
A
− tm (l + ∆l),

it would earn

πM
B =

2

3
(cA − cB − tm∆l) l.

The conditions for such undercutting not to be profitable are πA ≥ πM
A and

πB ≥ πM
B . Hence, proving that

(m (3 l + ∆l) t+ cB − cA)2

18 tm
≥ 2

3
(tm∆l −∆C) l (1.60)

is sufficient to prove that πA ≥ πM
A . Similarly, proving that

(m (3 l −∆l) t+ cA − cB)2

18 tm
≥ 2

3
(∆C − tm∆l) l (1.61)

is sufficient to prove that πB ≥ πM
B .

However, conditions (1.60) and (1.61) are satisfied because they are equi-

valent to

(m (3 l −∆l) t+ cA − cB)2 ≥ 0

and

(m (3 l + ∆l) t+ cB − cA)2 ≥ 0.
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Therefore, if (p
A
, p

B
) is a local optimum price strategy then (p

A
, p

B
) is a

Nash price equilibrium.

We are going to find when the maximal differentiation is a local optimum

strategy assuming that the firms in second subgame choose the Nash price

equilibrium strategy. For a complete discussion see Ziss [41].

We note that from (1.56) and (1.58), we can write the profit of firm A as

πA =
(p

A
− cA)2

2 t (l − a− b)
.

Since
∂p

A

∂a
= −2

3
t (l + a),

we obtain that

∂πA

∂a
= −

p
A
− cA

6 t (l − a− b)2
(cA − cB + t (l − a− b) (l + 3 a+ b)) .

Similarly, we obtain that

∂πB

∂b
=

p
B
− cB

6 t (l − a− b)2
(cA − cB − t (l − a− b) (l + a+ 3 b)) .

Therefore, the maximal differentiation (a, b) = (0, 0) is a local optimum

strategy if and only if

∂πA

∂a
(0, 0) = −

p
A
− cA

6 t l2
(
cA − cB + t l2

)
< 0

and
∂πB

∂b
(0, 0) =

p
B
− cB

6 t l2
(
cA − cB − t l2

)
< 0

Since
p
A
− cA

6 t l2
> 0 and

p
B
− cB

6 t l2
> 0

the maximal differentiation (a, b) = (0, 0) is a local optimum strategy if and
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only if

|cA − cB| < t l2.

Throughout this section, consider

X1 = vT l −
t

3
l3 + t l b (l − b)− tm l

(
l − ∆l

3

)
and

X2 =
mt

36
(45 l2 + 6 l∆l + 5 ∆2

l ).

By equation (1.54), the consumer surplus CS with respect to the local op-

timum price strategy (p
A
, p

B
) is given by

CS =

∫ x

0

vT − pA − t (y − a)2 dy +

∫ l

x

v − p
B
− t (l − b− y)2 dy

= vT l + x2 (l − a− b) t+ (b (l − b) t− pB) l − t

3
l3

Hence,

CS = X1 −
cA + 2 cB

3
l +

(tm (3 l + ∆l) + cB − cA)2

36 tm
. (1.62)

Adding (1.58), (1.59) and (1.62), we obtain the welfare

W = X1 −
cA + cB

2
l − 5 (cA − cB)

18
∆l +

5 (cA − cB)2

36 tm
+X2. (1.63)

1.2.2 Incomplete information on the production costs

The incomplete information consists in each firm to know its production

cost but to be uncertain about the competitor’s cost. In this subsection, we

introduce a simple notation that is fundamental for the elegance and under-

standing of the results presented in this section. This notation has already

been introduced in subsection 1.1.2. However, we duplicate the information
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in order to guarantee the independence of the sections.

Let the triples (IA,ΩA, qA) and (IB,ΩB, qB) represent (finite, countable

or uncountable) sets of types IA and IB with σ-algebras ΩA and ΩB and

probability measures qA and qB, over IA and IB, respectively.

We define the expected values EA(f), EB(f) and E(f) with respect to

the probability measures qA and qB as follows:

EA(f) =

∫
IA

f(z, w) dqA(z); EB(f) =

∫
IB

f(z, w) dqB(w)

and

E(f) =

∫
IA

∫
IB

f(z, w) dqB(w)dqA(z).

Let cA : IA → R+
0 and cB : IB → R+

0 be measurable functions where czA =

cA(z) denotes the production cost of firm A when the type of firm A is z ∈ IA
and cwB = cB(w) denotes the production cost of firm B when the type of firm

B is w ∈ IB. Furthermore, we assume that the expected values of cA and cB

are finite

E(cA) = EA(cA) =

∫
IA

czA dqA(z) <∞;

E(cB) = EB(cB) =

∫
IB

cwB dqB(w) <∞.

We assume that dqA(z) denotes the probability of the belief of the firm B

on the production costs of the firm A to be czA. Similarly, we assume that

dqB(w) denotes the probability of the belief of the firm A on the production

costs of the firm B to be cwB.

The simplicity of the following cost deviation formulas is crucial to express

the main results of this section in a clear and understandable way. The cost

deviations of firm A and firm B

∆A : IA → R+
0 and ∆B : IB → R+

0
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are given respectively by ∆A(z) = czA−E(cA) and ∆B(w) = cwB−E(cB). The

cost deviation between the firms

∆C : IA × IB → R+
0

is given by ∆C(z, w) = czA − cwB. Since the meaning is clear, we will use

through the section the following simplified notation:

∆A = ∆A(z); ∆B = ∆B(w) and ∆C = ∆C(z, w).

The expected cost deviation ∆E between the firms is given by ∆E = E(cA)−
E(cB). Hence,

∆C −∆E = ∆A −∆B.

Let VA and VB be the variances of the production costs cA and cB, respect-

ively. We observe that

E(∆C) = ∆E; E(∆2
A) = EA(∆2

A) = VA; E(∆2
B) = EB(∆2

B) = VB. (1.64)

Furthermore,

EA(∆2
C) = ∆2

B + VA + ∆E (∆E − 2 ∆B); (1.65)

EB(∆2
C) = ∆2

A + VB + ∆E (∆E + 2 ∆A); (1.66)

E(∆2
C) = ∆2

E + VA + VB. (1.67)

1.2.3 Local optimal price strategy under incomplete

information

In this section, we introduce incomplete information in the classical Hotelling

game and we find the local optimal price strategy. We introduce the bounded

uncertain costs condition that allows us to find the local optimum price

strategy.
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A price strategy (pA, pB) is given by a pair of functions pA : IA → R+
0 and

pB : IB → R+
0 where pzA = pA(z) denotes the price of firm A when the type of

firm A is z ∈ IA and pwB = pB(w) denotes the price of firm B when the type

of firm B is w ∈ IB. We note that E(pA) = EA(pA) and E(pB) = EB(pB).

The indifferent consumer x : IA × IB → (0, l) is given by

xz,w =
pwB − pzA + tm (l + ∆l)

2 tm
. (1.68)

The ex-post profit of the firms is the effective profit of the firms given a

realization of the production costs for both firm. Hence, it is the main

economic information for both firms. However, the incomplete information

prevents the firms to have access to their ex-post profits except after the

firms have already decided their price strategies. The ex-post profits πEP
A :

IA × IB → R+
0 and πEP

B : IA × IB → R+
0 are given by

πEP
A (z, w) = πA(z, w) = (pzA − czA)xz,w

and

πEP
B (z, w) = πB(z, w) = (pwB − cwB) (l − xz,w).

The ex-ante profit of the firms is the expected profit of the firm that knows

its production cost but are uncertain about the production cost of the com-

petitor firm. The ex-ante profits πEA
A : IA → R+

0 and πEA
B : IB → R+

0 are

given by

πEA
A (z) = EB(πEP

A ) and πEA
B (w) = EA(πEP

B ). (1.69)

We note that, the expected profit E(πEP
A ) of firm A is equal to EA(πEA

A ) and

the expected profit E(πEP
B ) of firm B is equal to EB(πEA

B ).

The incomplete information forces the firms to have to choose their price

strategies using their knowledge of their ex-ante profits, to which they have

access, instead of the ex-post profits, to which they do not have access except

after the price strategies are decided.
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Definition 1.2.3. A price strategy (p
A
, p

B
) for both firms is a local optimum

price strategy if (i) for every z ∈ IA and for every small deviation of the price

pz
A

the ex-ante profit πEA
A (z) of firm A decreases, and for every w ∈ IB and

for every small deviation of the price pw
B

the ex-ante profit πEA
B (w) of firm B

decreases (local optimum property); and (ii) for every z ∈ IA and w ∈ IB the

indifferent consumer exists, i.e. 0 < xz,w < l (duopoly property).

We introduce the BUCL1 condition that has the crucial economical in-

formation that can be extracted from the exogenous variables. The BUCL1

condition allow us to know if there is, or not, a local optimum price strategy

in the presence of uncertainty for the production costs of both firms.

Definition 1.2.4. The Hotelling model satisfies the bounded uncertain costs

and location (BUCL1) condition, if

|∆E − 3 ∆C + 2 ∆l tm| < 6 tm l.

for all z ∈ IA and for all w ∈ IB.

A strong restriction that the BUCL1 condition imposes is that ∆C con-

verges to 0 when m tends to 0, i.e. when the differentiation in the localization

tends to vanish.

For i ∈ {A,B}, we define

cmi = min
z∈Ii
{czi } and cMi = max

z∈Ii
{czi }.

Let

∆ = max
i,j∈{A,B}

{cMi − cmj }

Thus, the bounded uncertain costs and location BUCL1 is implied by the

following stronger SBUCL1 condition.

Definition 1.2.5. The Hotelling model satisfies the bounded uncertain costs
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and location (SBUCL1) condition, if

∆ < t lm.

The following theorem is a key economical result in oligopoly theory.

First, it tells us about the existence, or not, of a local optimum price strategy

only by accessing a simple inequality in the exogenous variables and so avail-

able to both firms. Secondly, it gives us explicit and simple formulas that

allow the firms to know the relevance of the exogenous variables in their price

strategies and corresponding profits.

Theorem 1.2.1. There is a local optimum price strategy (p
A
, p

B
) if and only

if the BUCL1 condition holds. Under the BUCL1 condition, the expected

prices of the local optimum price strategy are given by

E(p
A

) = tm

(
l +

∆l

3

)
+ E(cA)− ∆E

3
; (1.70)

E(p
B

) = tm

(
l − ∆l

3

)
+ E(cB) +

∆E

3
. (1.71)

Furthermore, the local optimum price strategy (p
A
, p

B
) is unique and it is

given by

pz
A

= E(p
A

) +
∆A

2
; pw

B
= E(p

B
) +

∆B

2
. (1.72)

We observe that the difference between the expected prices of both firms

has a very useful and clear economical interpretation in terms of the localiz-

ation and expected cost deviations.

E(p
A

)− E(p
B

) =
2 tm∆l + ∆E

3
.

Furthermore, for different production costs, the differences between the op-

timal prices of a firm are proportional to the differences of the production
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costs

pz1
A
− pz2

A
=
cz1A − c

z2
A

2
.

and

pw1

B
− pw2

B
=
cw1
B − c

w2
B

2
.

for all z1, z2 ∈ IA and w1, w2 ∈ IB. Hence, half of the production costs value

is incorporated in the price.

The ex-post profit of the firms is the effective profit of the firms given

a realization of the production costs for both firms. Hence it is the main

economic information for both firms. By equation (1.72), the ex-post profit

of firm A is

πEP
A (z, w) =

(2 tm (3 l + ∆l)− 3 ∆A − 2 ∆E) (2 tm (3 l + ∆l) + ∆E − 3 ∆C)

72 tm

and the ex-post profit of firm B is

πEP
B (z, w) =

(2 tm (3 l −∆l)− 3 ∆B + 2 ∆E) (2 tm (3 l −∆l)−∆E + 3 ∆C)

72 tm
.

The ex-ante profit of a firm is the expected profit of the firm that knows its

production cost but is uncertain about the production costs of the competitor

firm. Since πEP
A (z, w) is given by

(2 tm (3 l + ∆l)− 3 ∆A − 2 ∆E) (2 tm (3 l + ∆l) + ∆E + 3 (cwB − czA))

72 tm
,

the ex-ante profit of firm A, πEA
A (z), is

(2 tm (3 l + ∆l)− 3 ∆A − 2 ∆E) (2 tm (3 l + ∆l) + ∆E + 3 (E(cB)− czA))

72 tm

Hence,

πEA
A (z) =

(2 tm (3 l + ∆l)− 3 ∆A − 2 ∆E)2

72 tm
. (1.73)
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Similarly, the ex-ante profit of firm B is

πEA
B (w) =

(2 tm (3 l −∆l)− 3 ∆B + 2 ∆E)2

72 tm
. (1.74)

Let αA and αB be given by

αA = max{E(cB)− cwB : w ∈ IB} and αB = max{E(cA)− czA : z ∈ IA}.

The following corollary gives us the information of the market size of both

firms by giving the explicit localization of the indifferent consumer with re-

spect to the local optimum price strategy.

Corollary 1.2.1. Under the BUCL1 condition, the indifferent consumer

xz,w is given by

xz,w =
1

2

(
l +

∆l

3

)
+

∆E − 3 ∆C

12 tm
. (1.75)

The pair of prices (p
A
, p

B
) satisfies

pz
A
− czA ≥ αA/2; pw

B
− cwB ≥ αB/2. (1.76)

Proof of Theorem 1.2.1 and Corollary 1.2.1.

Under incomplete information, each firm seeks to maximize its ex-ante profit.

From (1.69), the ex-ante profit for firm A is given by

πEA
A (z) =

∫
IB

(pzA − czA)

(
pwB − pzA

2 tm
+
l + ∆l

2

)
dqB(w)

= (pzA − czA)

(
E(pB)− pzA

2 tm
+
l + ∆l

2

)
. (1.77)

From the first order condition FOC applied to the ex-ante profit of firm A

we obtain

pzA =
czA + E(pB) + tm (l + ∆l)

2
. (1.78)
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Similarly,

πEA
B (w) = (pwB − cwB)

(
E(pA)− pwB

2 tm
+
l −∆l

2

)
,

and, by the FOC, we obtain

pwB =
cwB + E(pA) + tm (l −∆l)

2
. (1.79)

Then, from (1.78) and (1.79),

E(pA) =
E(cA) + E(pB) + tm (l + ∆l)

2
;

E(pB) =
E(cB) + E(pA) + tm (l −∆l)

2
.

Solving the system of two equations, we obtain that

E(pA) = tm

(
l +

∆l

3

)
+
E(cB) + 2E(cA)

3
;

E(pB) = tm

(
l − ∆l

3

)
+
E(cA) + 2E(cB)

3
.

Hence, equalities (1.70) and (1.71) are satisfied. Replacing (1.71) in (1.78)

and replacing (1.70) in (1.79) we obtain that

pzA = tm

(
l +

∆l

3

)
+
czA
2

+
E(cA) + 2E(cB)

6
;

pwB = tm

(
l − ∆l

3

)
+
cwB
2

+
2E(cA) + E(cB)

6
.

Hence, equation (1.72) is satisfied.

Replacing in equation (1.68) the values of p
A

and p
B

given by the equation

(1.72) we obtain that the indifferent consumer xz,w is given by

xz,w =
1

2

(
l +

∆l

3

)
+

3(cwB − czA) + E(cA)− E(cB)

12 tm
.
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Hence, equation (1.75) is satisfied. Therefore, (p
A
, p

B
) satisfies property (ii)

if and only if the BUCL1 condition holds.

Since the ex-ante profit functions (1.77) and (1.2.3) are concave, the

second-order conditions for this maximization problem are satisfied and so

the prices pz
A

and pw
B

are indeed maxima for the functions (1.77) and (1.2.3),

respectively. Therefore, the pair (pz
A
, pw

B
) satisfies property (i) and so (pz

A
, pw

B
)

is a local optimum price strategy.

Let us prove that pz
A

and pw
B

satisfy inequalities (1.76). By equation

(1.72),

pz
A
− czA = tm

(
l +

∆l

3

)
− czA

2
+
E(cA) + 2E(cB)

6
;

pw
B
− cwB = tm

(
l − ∆l

3

)
− cwB

2
+

2E(cA) + E(cB)

6
.

By the BUCL1 condition, for every w ∈ IB, we obtain

6

(
pz
A
− czA − tm

(
l +

∆l

3

))
= −3 czA + E(cA) + 2E(cB)

= 3 (E(cB)− cwB)− 3 (czA − cwB) + E(cA)− E(cB)

> 3 (E(cB)− cwB)− 6 t l − 2 ∆l tm.

Similarly, by the BUCL1 condition, for every z ∈ IA, we obtain

6

(
pw
B
− cwB − tm

(
l − ∆l

3

))
= −3 cwB + 2E(cA) + E(cB)

= 3 (E(cA)− czA)− 3 (cwB − czA)− E(cA) + E(cB)

> 3 (E(cA)− czA)− 6 t l + 2 ∆l tm.

Hence, inequalities (1.76) are satisfied.

82



1.2.4 Bayesian Nash equilibrium

We note that, if a Bayesian-Nash price equilibrium satisfies the duopoly

property then it is a local optimum price strategy. However, a local optimum

price strategy is only a local strategic maximum. Hence, the local optimum

price strategy to be a Bayesian-Nash equilibrium must also be global strategic

maximum. In this subsection, we are going to show that this is the case.

Following D’Aspremont et al. [2], we note that the profits of the two

firms, valued at local optimum price strategy are globally optimal if they are

at least as great as the payoffs that firms would earn by undercutting the

rivals’s price and supplying the whole market for all admissible subsets of

types IA and IB.

Definition 1.2.6. A price strategy (p
A
, p

B
) for both firms is a Bayesian-

Nash, if for every z ∈ IA and for every deviation of the price pz
A

the ex-

ante profit πEA
A (z) of firm A decreases, and for every w ∈ IB and for every

deviation of the price pw
B

the ex-ante profit πEA
B (w) of firm B decreases.

Let (p
A
, p

B
) be the local optimum price strategy. Given the type w0 of

firm B, firm A may gain the whole market, undercutting its rival by setting

pMA (w0) = pw0

B
− tm (l −∆l)− ε, with ε > 0.

Hence, by BUCL1 condition pMA (w0) ≤ pzA for all z ∈ IA. We observe that

if firm A chooses the price pMA (w0) then by equalities (1.68) and (1.72) the

whole market belongs to Firm A for all types w of firm B with cw ≥ cw0 . Let

x(w;w0) = min

{
l,
pwB − pMA (w0)

2 tm
+
l + ∆l

2

}
.

Thus, the expected profit with respect to the price pMA (w0) for firm A is

πEA,M
A (w0) =

∫
IB

(
pMA (w0)− czA

)
x(w;w0) dqB(w).
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Let wM ∈ IB such that cwM = cMB . Since cwM ≥ cw0
B for every w0 ∈ IB, we

obtain

πEA,M
A (w0) ≤

(
pMA (w0)− czA

)
l ≤ (pMA (wM)− czA) l (1.80)

Given the type z0 of firm A, firm B may gain the whole market, undercutting

its rival by setting

pMB (z0) = pz0
A
− tm (l + ∆l)− ε, with ε > 0.

Hence, by BUCL1 condition pMB (z0) ≤ pwB for all w ∈ IB. We observe that

if firm B chooses the price pMB (z0) then by equalities (1.68) and (1.72) the

whole market belongs to Firm B for all types z of firm A with cz ≥ cz0 . Let

x(z; z0) = max

{
0,
pMB (z0)− pzA

2 tm
+
l + ∆l

2

}
.

Thus, the expected profit with respect to the price pMB (z0) of firm B is

πEA,M
B (z0) =

∫
IA

(
pMB (z0)− cwB

)
(l − x(z; z0)) dqA(z).

Let zM ∈ IA such that czMA = cMA . Since czM ≥ cz0 for every z0 ∈ IA, we

obtain

πEA,M
B (z0) ≤

(
pMB (z0)− cwB

)
l ≤ (pMB (zM)− cwB) l. (1.81)

Remark 1.2.1. Under the BUCL1 condition, the strategic equilibrium (p
A
, p

B
)

is the unique pure Bayesian Nash equilibrium with the duopoly property if for

every z ∈ IA and every w ∈ IB,

πEA,M
A (w) ≤ πEA

A (z) and πEA,M
B (z) ≤ πEA

B (w). (1.82)

Definition 1.2.7. The Hotelling model satisfies the bounded uncertain costs
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and location (BUCL2) condition, if

∆E + 3
(
cMA + cMB − 2 cmA

)
+

∆l (3 cMA − E(cA)− 2E(cB))

3 l
≤

≤ tm (3 l −∆l)
2

3 l
+

(
3 cMA − E(cA)− 2E(cB)

)2
12 tm l

(1.83)

and

−∆E + 3
(
cMA + cMB − 2 cmB

)
− ∆l (3 cMB − E(cB)− 2E(cA))

3 l
≤

≤ tm (3 l + ∆l)
2

3 l
+

(
3 cMB − E(cB)− 2E(cA)

)2
12 tm l

. (1.84)

Thus, the bounded uncertain costs condition BUCL2 is implied by the

following stronger SBUCL2 condition.

Definition 1.2.8. The Hotelling model satisfies the strong bounded uncer-

tain costs and location (SBUCL2) condition, if

6 ∆ < l tm

We observe that the SBUCL2 condition implies SBUCL1 condition and

so implies the BUCL1 condition.

Theorem 1.2.2. If the Hotelling model satisfies the BUCL1 and BUCL2

conditions the local optimum price strategy (p
A
, p

B
) is a Bayesian Nash equi-

librium.

Corollary 1.2.2. If the Hotelling model satisfies SBUCL2 condition the

local optimum price strategy (p
A
, p

B
) is a Bayesian Nash equilibrium.

Proof. By equalities (1.73) and (1.74), we obtain that πEA
A (zM) ≤ πEA

A (z)

and πEA
B (wM) ≤ πEA

B (w) for all z ∈ IA and for all w ∈ IB. Hence, putting

conditions (1.80), (1.81) and (1.82) together, we obtain the following suffi-

cient condition for the local optimal strategic prices (p
A
, p

B
) to be a Bayesian
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Nash equilibrium:

(pMA (wM)− cmA ) l ≤ πEA
A (zM) and (pMB (zM)− cmB ) l ≤ πEA

B (wM). (1.85)

By equalities (1.73) and (1.74) we obtain that

πEA
A (zM) =

(2 tm (3 l + ∆l) + E(cA) + 2E(cB)− 3 cMA )2

72 tm

and

πEA
B (wM) =

(2 tm (3 l −∆l) + 2E(cA) + E(cB)− 3 cMB )2

72 tm
.

Also, from (1.72), we know that

pMA (wM)− cmA = pwM

B
− tm (l −∆l)− ε− cmA

=
1

6
(4 tm∆l + 3 cMB + 2E(cA) + E(cB)− 6 cmA )− ε.

and

pMB (zM)− cmB = pzM
A
− tm (l + ∆l)− ε− cmB

=
1

6
(−4 tm∆l + 3 cMA + E(cA) + 2E(cB)− 6 cmB )− ε.

Hence, condition (1.85) holds if

12 tm l (4 tm∆l + 3 cMB + 2E(cA) + E(cB)− 6 cmA ) ≤

≤ (2 tm (3 l + ∆l) + E(cA) + 2E(cB)− 3 cMA )2 (1.86)

and

12 tm l (−4 tm∆l + 3 cMA + E(cA) + 2E(cB)− 6 cmB ) ≤

(2 tm (3 l −∆l) + 2E(cA) + E(cB)− 3 cMB )2. (1.87)

Finally, we note that inequality (1.86) is equivalent to inequality (1.83) and
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that inequality (1.87) is equivalent to inequality (1.84).

1.2.5 Optimum localization equilibrium under incom-

plete information

We note that from (1.72) and (1.73), we can write the profit of firm A as

πEA
A (z) =

(pz
A
− cA)2

2 t (l − a− b)
.

Since
∂pz

A

∂a
= −2

3
t (l + a)

we have

∂πEA
A

∂a
=

p
A
− cA

12 t (l − a− b)2
(−2 t (l − a− b) (l + 3 a+ b)− 3 ∆A − 2 ∆E) .

Similarly, we obtain that

∂πEA
B

∂b
=

p
B
− cB

12 t (l − a− b)2
(−2 t (l − a− b) (l + 3 b+ a)− 3 ∆B + 2 ∆E) .

Therefore, the maximal differentiation (a, b) = (0, 0) is a local optimum

strategy if and only if

∂πEA
A

∂a
(0, 0) = −

p
A
− cA

12 t l2
(
2 t l2 + 3 ∆A + 2 ∆E

)
< 0

and
∂πEA

B

∂b
(0, 0) = −

p
B
− cB

12 t l2
(
2 t l2 + 3 ∆B − 2 ∆E

)
< 0

Since
p
A
− cA

6 t l2
> 0 and

p
B
− cB

6 t l2
> 0
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the maximal differentiation (a, b) = (0, 0) is a local optimum strategy if and

only if the following condition holds.

Definition 1.2.9. The Hotelling model satisfies the bounded uncertain costs

and location (BUCL3) condition, if

2 t l2 + 3 ∆A + 2 ∆E > 0

for all z ∈ IA and

2 t l2 + 3 ∆B − 2 ∆E > 0

for all w ∈ IB .

1.2.6 Comparative profit analysis

From now on, we assume that the BUCL1 condition holds and that the price

strategy (p
A
, p

B
) is the local optimum price strategy determined in Theorem

1.2.1.

Let ∆1 = ∆A + ∆B and ∆2 = ∆A − ∆B. We observe that the differ-

ence between the ex-post profits of both firms, πEP
A (z, w)− πEP

B (z, w), has a

very useful and clear economical interpretation in terms of the expected cost

deviations and is given by

16 t2m2 l∆l + 2 tm (3 l∆2 −∆l ∆1) + (∆E − 3 ∆C) (8 t l m−∆1)

24 tm
.

Furthermore, for different production costs, the differences between the ex-

post profit of firm A, πEP
A (z1, w)− πEP

A (z2, w), is given by

(cz2A − c
z1
A ) (4 tm (3 l + ∆l)−∆E + 3 (cwB + E(cA)− cz1A − c

z2
A ))

24 tm

and, similarly, πEP
B (z, w1)− πEP

B (z, w2) is given by

(cw2
B − c

w1
B ) (4 tm (3 l −∆l) + ∆E + 3 (czA + E(cB)− cw1

B − c
w2
B ))

24 tm
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for all z, z1, z2 ∈ IA and w,w1, w2 ∈ IB.

We observe that the difference between the ex-ante profits of both firms

has a very useful and clear economical interpretation in terms of the expected

cost deviations.

πEA
A (z)− πEA

B (w) =
(4 tm l −∆1) (4 (tm∆l −∆E)− 3 ∆2)

24 tm
.

Furthermore, for different production costs, the differences between the ex-

ante profit of firm A, πEA
A (z1)− πEA

A (z2), is given by

(cz2A − c
z1
A ) (4 tm (3 l + ∆l)− 4 ∆E + 3 (2E(cA)− cz1A − c

z2
A ))

24 tm

and, similarly, πEA
B (w1)− πEA

B (w2) is given by

(cw2
B − c

w1
B ) (4 tm (3 l −∆l) + 4 ∆E + 3 (2E(cB)− cw1

B − c
w2
B ))

24 tm

for all z, z1, z2 ∈ IA and w,w1, w2 ∈ IB.

The difference between the ex-post and the ex-ante profit for a firm is

the real deviation from the realized gain of the firm and the expected gain

of the firm knowing its own production cost but being uncertain about the

production cost of the other firm. It is the best measure of the risk involved

for the firm given the uncertainty in the production costs of the other firm.

The difference between the ex-post profit and the ex-ante profit for firm A is

πEP
A (z, w)− πEA

A (z) =
∆B

24 tm
(2 tm (3 l + ∆l)− 2 ∆E − 3 ∆A) .

The difference between the ex-post profit and the ex-ante profit for firm B is

πEP
B (z, w)− πEA

B (w) =
∆A

24 tm
(2 tm (3 l −∆l) + 2 ∆E − 3 ∆B) .

Definition 1.2.10. The Hotelling model satisfies the A-bounded uncertain
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costs and location (A−BUCL) condition, if for all z ∈ IA

3 ∆A + 2 ∆E < 2 tm (3 l + ∆l).

The Hotelling model satisfies the B-bounded uncertain costs and location

(B −BUCL) condition, if for all w ∈ IB

3 ∆B − 2 ∆E < 2 tm (3 l −∆l).

The following corollary tells us that the sign of the risk of a firm has the

opposite sign of the deviation of the competitor firm realized production cost

from its average. Hence, under incomplete information the sign of the risk

of a firm is not accessible to the firm. However, the probability of the sign

of the risk of a firm to be positive or negative is accessible to the firm.

Corollary 1.2.3. Under the A-bounded uncertain costs (A − BUCL) con-

dition,

πEP
A (z, w) < πEA

A (z) if and only if ∆B < 0. (1.88)

Under the B-bounded uncertain costs (B −BUCL) condition,

πEP
B (z, w) < πEA

B (w) if and only if ∆A < 0. (1.89)

The proof of the above corollary follows from a simple manipulation of

the previous formulas for the ex-post and ex-ante profits.

The expected profit of the firm is the expected gain of the firm. We

observe that the ex-ante and the ex-posts profits of both firms are strictly

positive with respect to the local optimum price strategy. Hence, the expec-

ted profits of both firms are also strictly positive. Since the ex-ante profit

πEA
A (z) of firm A is equal to

πEA
A (z) =

9 ∆2
A − 12 ∆A (tm (3 l + ∆l)−∆E) + 4 (tm (3 l + ∆l)−∆E)2

72 tm
,
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from (1.64), we obtain that the expected profit of firm A is given by

E(πEP
A ) =

(tm (3 l + ∆l)−∆E)2

18 tm
+

VA
8 tm

.

Similarly, the expected profit of firm B is given by

E(πEP
B ) =

(tm (3 l −∆l) + ∆E)2

18 tm
+

VB
8 tm

.

The difference between the ex-ante and the expected profit of a firm is the

deviation from the expected realized gain of the firm given the realization

of its own production cost and the expected gain in average for different

realizations of its own production cost, but being in both cases uncertain

about the production costs of the competitor firm. It is the best measure

of the quality of its realized production cost in terms of the expected profit

over its own production costs.

Corollary 1.2.4. The difference between the ex-ante profit and the expected

profit for firm A is

E(πEP
A )− πEA

A (z) =
∆A (4 tm (3 l + ∆l)− 3 ∆A − 4 ∆E) + 3VA

24 tm
. (1.90)

The difference between the ex-ante profit and the expected profit for firm B

is

E(πEP
B )− πEA

B (w) =
∆B (4 tm (3 l −∆l)− 3 ∆B + 4 ∆E) + 3VB

24 tm
. (1.91)

Proof. Let Z = 2 tm (3 l + ∆l)− 2 ∆E. Hence,

E(πEP
A )− πEA

A (z) =
Z2 − (Z − 3 ∆A)2

72 tm
+

VA
8 tm

=
∆A (2Z − 3 ∆A) + 3VA

24 tm
.
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and so equality (1.90) holds. The proof of equality (1.91) follows similarly.

1.2.7 Comparative consumer surplus and welfare ana-

lysis

Consider throughout this subsection that X = tm (3 l + ∆l).

The ex-post consumer surplus is the realized gain of the consumers com-

munity for given outcomes of the production costs of both firms. Under

incomplete information, by equation (1.54), the ex-post consumer surplus is

CSEP = X1 −
E(cA) + 2E(cB)

3
l − ∆B

2
l +

(2 tm (3 l + ∆l) + ∆E − 3 ∆C)2

144 tm
.

The expected value of the consumer surplus is the expected gain of the con-

sumers community for all possible outcomes of the production costs of both

firms. The expected value of the consumer surplus E(CSEP ) is given by

E(CSEP ) =

∫
IB

∫
IA

CSEPdqA(z) dqB(w)

= X1 −
E(cA) + 2E(cB)

3
l +

4 (tm (3 l + ∆l)−∆E)2 + 9 (VA + VB)

144 tm
.

We note that, from equalities (1.64) and (1.67), the expected value of

(2 tm (3 l + ∆l) + ∆E − 3 ∆C)2

144 tm
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is given by

(2X + ∆E)2 − 6E(∆C) (2X + ∆E) + 9E(∆2
C)

144 tm

=
(2X + ∆E)2 − 6 ∆E (2X + ∆E) + 9 (VA + VB + ∆2

E)

144 tm

=
4 (X −∆E)2 + 9 (VA + VB)

144 tm
.

The difference between the ex-post consumer surplus and the expected

value of the consumer surplus measures the difference between the gain of

the consumers for the realized outcomes of the production costs of both

firms and the expected gain of the consumers for all possible outcomes of

the production costs of both firms. Hence, it measures the risk taken by the

consumers for different outcomes of the production costs of both firms.

Corollary 1.2.5. The difference between the ex-post consumer surplus and

the expected value of the consumer surplus, CSEP − E(CSEP ), is

−∆A + ∆B

4
l +

∆E −∆C

12
∆l +

(∆E − 3 ∆C)2 − 4 ∆2
E − 9 (VA + VB)

144 tm
.

Proof.

CSEP − E(CSEP ) =

= −∆B

2
l +

(2X + ∆E − 3 ∆C)2 − 4 (X −∆E)2 − 9 (VA + VB)

144 tm

= −∆B

2
l +

12X (∆E −∆C) + (∆E − 3 ∆C)2 − 4 ∆2
E − 9 (VA + VB)

144 tm

=
∆E −∆C − 2 ∆B

4
l +

∆E −∆C

12
∆l +

(∆E − 3 ∆C)2 − 4 ∆2
E − 9 (VA + VB)

144 tm

= −∆A + ∆B

4
l +

∆E −∆C

12
∆l +

(∆E − 3 ∆C)2 − 4 ∆2
E − 9 (VA + VB)

144 tm
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The ex-post welfare is the realized gain of the state that includes the gains

of the consumers community and the gains of the firms for a given outcomes

of the production costs of both firms. By equation (1.55), the ex-post welfare

is

WEP =
5(∆E − 3∆C) + 3(∆A −∆B)

36
∆l −

∆A + ∆B + E(cA) + E(cB)

2
l +

+ X1 +X2 +X3,

where

X3 =
(3 ∆C −∆E) (9 ∆C + ∆E)

144 tm
.

The expected value of the welfare is the expected gain of the state for all

possible outcomes of the production costs of both firms. The expected value

of the welfare E(WEP ) is given by

E(WEP ) =

∫
IB

∫
IA

WEPdqA(z) dqB(w)

= X1 +X2 −
E(cA) + E(cB)

2
l − 5 ∆E

18
∆l + U2

where

U2 =
20 ∆2

E + 27 (VA + VB)

144 tm
.

We note that, from equalities (1.64) and (1.67), the expected value of X3 is

given by

U2 =
27E(∆2

C)− 6E(∆C) ∆E −∆2
E

144 tm

=
27 (∆2

E + VA + VB)− 7 ∆2
E

144 tm

=
20 ∆2

E + 27 (VA + VB)

144 tm
.

The difference between the ex-post welfare and the expected value of the

welfare measures the difference in the gains of the state between the realized
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outcomes of the production costs of both firms and the expected gain of

the state for all possible outcomes of the production costs of both firms.

Hence, it measures the risk taken by the state for different outcomes of the

production costs of both firms. The difference between the ex-post welfare

and the expected value of welfare is

WEP − E(WEP ) =
∆A + ∆B

2
l +

∆B −∆A)

3
∆l +X4

where

X4 =
9 (∆2

C − VA − VB)− 2 ∆C ∆E − 7 ∆2
E

48 tm
.

1.2.8 Complete versus Incomplete information

Let us consider the case where the production costs are revealed to both

firms before they choose the prices. In this case, the competition between

the firms is under complete information.

A price strategy (pCI
A , pCI

B ) is given by a pair of functions pCI
A : IA× IB →

R+
0 and pCI

B : IA× IB → R+
0 where pCI

A (z, w) denotes the price of firm A and

pCI
B (z, w) denotes the price of firm B when the type of firm A is z ∈ IA and

the type of firm B is w ∈ IB.

Under the BC condition, by equations (1.56) and (1.57), the Nash price

strategy (pCI
A , pCI

B ) is given by

pCI

A
(z, w) = tm

(
l +

∆l

3

)
+ cA −

∆C

3

and

pCI

B
(z, w) = tm

(
l − ∆l

3

)
+ cB +

∆C

3
.

By equation (1.58), the profit πCI
A : IA × IB → R+

0 of firm A is given by

πCI
A (z, w) =

(m (3 l + ∆l) t−∆C)2

18 tm
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Similarly, by equation (1.59), the profit πCI
B : IA × IB → R+

0 of firm B is

given by

πCI
B (z, w) =

(m (3 l −∆l) t+ ∆C)2

18 tm
.

Using equality (1.66), the expected profit EB(πCI
A ) for firm A is given by

EB(πCI
A ) =

(mt (3 l + ∆l)−∆A −∆E)2 + VB
18 tm

Similarly, using equality (1.65), the expected profit EA(πCI
B ) for firm B is

given by

EA(πCI
B ) =

(mt (3 l −∆l)−∆B + ∆E)2 + VA
18 tm

The expected profit E(πCI
A ) for firm A is given by

E(πCI
A ) =

(mt (3 l + ∆l)−∆E)2 + VA + VB
18 tm

Similarly, the expected profit E(πCI
B ) for firm B is given by

E(πCI
B ) =

(mt (3 l −∆l) + ∆E)2 + VA + VB
18 tm

By equation (1.62), the consumer surplus is given by

CSCI(z, w) = X1−
E(cA) + 2E(cB) + ∆A + 2 ∆B

3
l+

(tm (3 l + ∆l)−∆C)2

36 tm
,

Using equality (1.67), we obtain that the expected value of the consumer

surplus E(CSCI) is

E(CSCI(z, w)) = X1−
E(cA) + 2E(cB)

3
l+

(tm (3 l + ∆l)−∆E)2 + VA + VB
36 tm

.
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By equation (1.63), the welfare is given by

WCI(z, w) = X1 −
E(cA) + E(cB) + ∆A + ∆B

2
l − 5 ∆C

18
∆l +

5 ∆2
C

36 tm
+X2.

Using equality (1.67), we obtain that the expected value of the welfare

E(WCI) is given by

E(WCI(z, w)) = X1−
E(cA) + E(cB)

2
l− 5 ∆E

18
∆l +

5 (∆2
E + VA + VB)

36 tm
+X2.

Corollary 1.2.6. The difference between the ex-post profit and the profit,

under complete information, for firm A, πEP
A (z, w)− πCI

A (z, w), is

(∆A −∆B)(∆A + 2 ∆B)− 2 (tm (3 l + ∆l)−∆C) (2∆A + ∆B)

72 tm
. (1.92)

The difference between the ex-post profit and the profit, under complete in-

formation, for firm B, πEP
B (z, w)− πCI

B (z, w), is

(∆B −∆A)(∆B + 2 ∆A)− 2 (tm (3 l −∆l) + ∆C) (2∆B + ∆A)

72 tm
. (1.93)

Proof. Let CI = tm (3 l + ∆l)−∆C . Hence,

πEP
A (z, w)− πCI

A (z, w) =
(2 IC + ∆B −∆A)(2CI −∆A − 2 ∆B)− 4CI2

72 tm

=
(∆B −∆A)(−∆A − 2 ∆B) + 2CI(−2∆A − ∆B)

72 tm

and so equality (1.92) holds. The proof of equality (1.93) follows similarly.

Corollary 1.2.7. The difference between the ex-ante profit EB(πEP
A ) and

EB(πCI
A ) for firm A is

EB(πEP
A )− EB(πCI

A ) =
∆A (5 ∆A − 4 (tm (3 l + ∆l)−∆E))

72 t
− VB

18 tm
.
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The difference between the ex-ante profit EA(πEP
B ) and EA(πCI

B ) for firm B

is

EA(πEP
B )− EA(πCI

B ) =
∆B (5 ∆B − 4 (tm (3 l −∆l) + ∆E))

72 t
− VA

18 tm
.

The proof of the above corollary follows from a simple manipulation of

the previous formulas for the ex-post and ex-ante profits.

The difference between the expected profits of firm A with complete and

incomplete information is given by

E(πEP
A )− E(πCI

A ) =
5VA − 4VB

72 tm
. (1.94)

The difference between the expected profits of firm B with complete and

incomplete information is given by

E(πEP
B )− E(πCI

B ) =
5VB − 4VA

72 tm
. (1.95)

Corollary 1.2.8. The difference between the ex-post consumer surplus and

the consumer surplus, under complete information, CSEP − CSCI is

∆A + ∆B

4
l +

∆B −∆A

36
∆l +

(∆B −∆A)(∆B −∆A − 4 ∆C)

144 tm
. (1.96)

Therefore, equation (1.96) determines in which cases it is better to have

uncertainty in the production costs instead of complete information in terms

of consumer surplus CSEP > CSCI .

Proof. Let X = tm (3 l+ ∆l). The difference between the ex-post consumer
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surplus and the consumer surplus, under complete information, is

CSEP − CSCI =
∆A + 2 ∆B

3
l − ∆B

2
l +

(2X + ∆E − 3 ∆C)2

144 tm
− (X −∆C)2

36 tm

=
2 ∆A + ∆B

6
l +

(2X − 2 ∆C + ∆E −∆C)2 − (2X − 2 ∆C)2

144 tm

=
2 ∆A + ∆B

6
l +

X (∆B −∆A)

36 tm
+

(∆B −∆A) (∆B −∆A − 4 ∆C)

144 tm

=
2 ∆A + ∆B

6
l +

(3 l + ∆l) (∆B −∆A)

36
+

(∆B −∆A) (∆B −∆A − 4 ∆C)

144 tm

=
∆A + ∆B

4
l +

∆B −∆A

36 tm
∆l +

(∆B −∆A) (∆B −∆A − 4 ∆C)

144 tm

The difference between expected value of the consumer surplus and the

expected value of the consumer surplus under complete information, is

E(CSEP )− E(CSCI) =
5 (VA + VB)

144 tm
. (1.97)

Therefore, in expected value the consumer surplus is greater with incomplete

information than with complete information.

The difference between the ex-post welfare and the welfare, under com-

plete information, is

WEP −WCI =
∆B −∆A

18
∆l +

7 ∆2
C − 6 ∆C ∆E −∆2

E

144 tm
(1.98)

Therefore, equation (1.98) determines in which cases it is better to have

uncertainty in the production costs instead of complete information in terms

of welfare WEP > WCI .

The difference between expected value of the welfare and the expected
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value of the welfare under complete information, is

E(WEP )− E(WCI) =
7 (VA + VB)

144 tm
. (1.99)

Therefore, in expected value the welfare is greater with incomplete informa-

tion than with complete information.

1.2.9 Example: Symmetric Hotelling

A Hotelling game is symmetric, if (IA,ΩA, qA) = (IB,ΩB, qB) and c = cA =

cB. Hence, we observe that all the formulas of this section hold with the

following simplifications

∆E = 0; E(c) = E(cA) = E(cB) and V = VA = VB.

The bounded uncertain costs in the symmetric case can be written in the

following simple way.

Definition 1.2.11. The symmetric Hotelling model satisfies the bounded

uncertain costs (BUCL1) condition, if

|2 ∆l tm− 3 ∆C | < 6 tm l.

for all z ∈ IA and for all w ∈ IB.

The Hotelling model with incomplete symmetric information satisfies the

bounded uncertain costs (BUCL2) condition, if

6 (cM − cm) +
∆l (cM − E(c))

l
≤ tm (3 l −∆l)

2

3 l
+

3 (cM − E(c))2

4 tm l

and

6 (cM − cm)− ∆l (cM − E(c))

l
≤ tm (3 l + ∆l)

2

3 l
+

3 (cM − E(c))2

4 tm l
.
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Under the BUC1 condition, the expected prices of the local optimum

price strategy have the simple expression

E(p
A

) = tm

(
l +

∆l

3

)
+ E(c);E(p

B
) = tm

(
l − ∆l

3

)
+ E(c)

By Proposition 1.2.1, for the Hotelling game with incomplete symmetric

information, the local optimum price strategy (pA, pB) has the form

pzA = E(p
A

) +
∆A

2
; pwB = E(p

B
) +

∆B

2
.

The ex-post profit of firm A and firm B are, respectively

πEP
A (z, w) =

(2 tm (3 l + ∆l)− 3 ∆A) (2 tm (3 l + ∆l)− 3 ∆C)

72 tm

and

πEP
B (z, w) =

(2 tm (3 l −∆l)− 3 ∆B) (2 tm (3 l −∆l) + 3 ∆C)

72 tm
.

The difference between the ex-post profits, πEP
A (z, w) − πEP

B (z, w), of both

firms is given by

16 t2m2 l∆l + 2 tm (3 l∆C −∆l (∆A + ∆B))− 3 ∆C (8 t l m−∆A −∆B)

24 tm
.

Furthermore, for different production costs, the difference between the ex-

post profit of firm A, πEP
A (z1, w)− πEP

A (z2, w), is given by

(cz2A − c
z1
A ) (4 tm (3 l + ∆l) + 3 (cwB + E(cA)− cz1A − c

z2
A ))

24 tm

and, for different production costs, the difference between the ex-post profit
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of firm B, πEP
B (z, w1)− πEP

B (z, w2), is given by

(cw2
B − c

w1
B ) (4 tm (3 l −∆l) + 3 (czA + E(cB)− cw1

B − c
w2
B ))

24 tm

for all z, z1, z2 ∈ IA and w,w1, w2 ∈ IB. The ex-ante profit profit of firm A

and firm B are, respectively

πEA
A (z) =

(2 tm (3 l + ∆l)− 3 ∆A)2

72 tm

and

πEA
B (w) =

(2 tm (3 l −∆l)− 3 ∆B)2

72 tm
.

The difference between the ex-ante profits of both firms is given by

πEA
A (z)− πEA

B (w) =
(4 tm l −∆A −∆B) (4 tm∆l − 3 ∆C)

24 tm

Furthermore, for different production costs, the differences between the ex-

ante profits of a firm are given by

πEA
A (z1)− πEA

A (z2) =
(cz2A − c

z1
A ) (4 tm (3 l + ∆l) + 3 (2E(c)− cz1A − c

z2
A ))

24 tm

and

πEA
B (w1)− πEA

B (w2) =
(cw2

B − c
w1
B ) (4 tm (3 l −∆l) + 3 (2E(c)− cw1

B − c
w2
B ))

24 tm

for all z, z1, z2 ∈ IA and w,w1, w2 ∈ IB. The difference between the ex-post

profit and the ex-ante profit for firm A is

πEP
A (z, w)− πEA

A (z) =
∆B

24 tm
(2 tm (3 l + ∆l)− 3 ∆A) .
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The difference between the ex-post profit and the ex-ante profit for firm B is

πEP
B (z, w)− πEA

B (w) =
∆A

24 tm
(2 tm (3 l −∆l)− 3 ∆B) .

We observe that that the A−BUCL and B−BUCL conditions are implied

by the BUCL1 condition. Hence, Corollary 1.2.3 can be rewritten without

any restriction, i.e.

πEP
A (z, w) < πEA

A (z) if and only if ∆B < 0;

and

πEP
B (z, w) < πEA

B (w) if and only if ∆A < 0.

The expected profit of firm A and firm B are

E(πEP
A ) =

tm (3 l + ∆l)
2

18
+

V

8 tm
;E(πEP

B ) =
tm (3 l −∆l)

2

18
+

V

8 tm
.

The difference between the ex-ante profit and the expected profit for firm A

is

E(πEP
A )− πEA

A (z) =
∆A (4 tm (3 l + ∆l)− 3 ∆A) + 3V

24 tm
.

The difference between the ex-ante profit and the expected profit for firm B

is

E(πEP
B )− πEA

B (w) =
∆B (4 tm (3 l −∆l)− 3 ∆B) + 3V

24 tm
.

The ex-post consumer surplus is

CSEP = X1 − E(c) l − ∆B

2
l +

(2 tm (3 l + ∆l)− 3 ∆C)2

144 tm
.

The expected value of the consumer surplus is

E(CSEP ) = X1 − E(c) l +
4 t2m2 (3 l + ∆l)

2 + 18V

144 tm
.
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The difference between the ex-post consumer surplus and the expected value

of the consumer surplus is

CSEP − E(CSEP ) = −∆A + ∆B

4
l − ∆C

12
∆l +

9 ∆2
C − 18V

144 tm

The ex-post welfare is

WEP = X1 +X2 − E(c) l − ∆C

3
∆l +

27 ∆2
C

144 tm
,

The expected value of the welfare E(WEP ) is given by

E(WEP ) = X1 +X2 − E(c) l − 5 ∆E

18
∆l +

27 (VA + VB)

144 tm
.

The difference between the ex-post welfare and the expected value of welfare

is

WEP − E(WEP ) =
∆A + ∆B

2
l − ∆C)

3
∆l +

9 (∆2
C − 2V )

48 tm
.

The expected profit EB(πCI
A ) for firm A is given by

EB(πCI
A ) =

(mt (3 l + ∆l)−∆A)2 + V

18 tm

and the expected profit EA(πCI
B ) for firm B is given by

EA(πCI
B ) =

(mt (3 l −∆l)−∆B)2 + V

18 tm

The expected profits for firm A and B are given by

E(πCI
A ) =

m2 t2 (3 l + ∆l)
2 + 2V

18 tm
and E(πCI

B ) =
m2 t2 (3 l −∆l)

2 + 2V

18 tm
.
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The expected value of the consumer surplus E(CSCI) is

E(CSCI(z, w)) = X1 − E(cB) l +
t2m2 (3 l + ∆l)

2 + 2V

36 tm
.

The expected value of the welfare E(WCI) is given by

E(WCI(z, w)) = X1 − E(cB) l +
10V

36 tm
+
mt

36
(45 l2 + 6 l∆l + 5 ∆2

l ).

The difference between the ex-post profit and the profit, under complete

information, for firm A, is

πEP
A (z, w)− πCI

A (z, w) =
∆C (5 ∆A + 4 ∆B)− 2 tm (3 l + ∆l) (2∆A + ∆B)

72 tm
.

The difference between the ex-post profit and the profit, under complete

information, for firm B, is

πEP
B (z, w)− πCI

B (z, w) =
−∆C (5 ∆B + 4 ∆A)− 2 tm (3 l −∆l) (2∆B + ∆A)

72 tm
.

The difference between the ex-ante profit and the expected profit, under

complete information, for firm A is

EB(πEP
A )− EB(πCI

A ) =
∆A (5 ∆A − 4 tm (3 l + ∆l))

72 t
− V

18 tm
.

The difference between the ex-ante profit and the expected profit, under

complete information, for firm B is

EA(πEP
B )− EA(πCI

B ) =
∆B (5 ∆B − 4 tm (3 l −∆l))

72 t
− V

18 tm
.

The differences between the expected profits with complete and incomplete
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information for firm A and firm B are given by

E(πEP
A )− E(πCI

A ) = E(πEP
B )− E(πCI

B ) =
V

72 tm
.

The difference between the ex-post consumer surplus and the consumer sur-

plus, under complete information, is

CSEP − CSCI =
∆A + ∆B

4
l − ∆C

36
∆l +

5∆2
C

144 tm
.

The difference between expected value of the consumer surplus and the ex-

pected value of the consumer surplus under complete information, is

E(CSEP )− E(CSCI) =
10V

144 tm
.

The difference between the ex-post welfare and the welfare, under complete

information, is

WEP −WCI = −∆C

18
∆l +

7 ∆2
C

144 tm

The difference between expected value of the welfare and the expected value

of the welfare under complete information, is

E(WEP )− E(WCI) =
7V

72 tm
.
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Chapter 2

Hotelling Network

The Hotelling town model consists of a network of consumers and firms. The

consumers (buyers) are located along the edges (roads) of the network and

the firms (shops) are located at neighborhoods of the vertices (nodes) of the

network. Every road has two vertices and in a neighborhood of every vertex

is located a single firm. The degree k of the vertex is given by the number of

incident edges. If the degree k is greater that 2 then the vertex is a crossroad

of k roads; if the degree k is equal to 2 then the vertex is a junction between

two roads; and if k is equal to 1 the vertex is in the end of a road with no

exit. Every consumer will buy one unit of the commodity from only one firm

in the network and each firm will charge its customers the same price for the

commodity.

A Hotelling town price strategy P consists of a vector whose coordinates

are the prices pi of each firm Fi. Every firm Fi is located at a position yi in

a neighborhood of a vertex i ∈ V , where V is the set of all vertices of the

Hotelling town. A consumer located at a point x of the network who decides

to buy at firm Fi spends

E(x; i,P) = pi + T (ti, d(x, yi))
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the price pi charged by the firm Fi plus a value, T , that depends on the trans-

portation cost ti and on minimal distance measured in the network between

the position yi of the firm Fi and the position x of the consumer. Given a

price strategy P, the consumer will choose to buy in the firm Fv(x,P) that

minimizes his expenditure

v(x,P) = argmini∈VE(x; i,P).

Hence, for every firm Fi, the market

M(i,P) = {x : v(x,P) = i}

consists of all consumers who minimize their expenditures by opting to buy

in firm Fi. The road market size li,j of a road Ri,j is the Lebesgue measure

(or length) of the road Ri,j, because the consumers are uniformly distributed

along the roads. The market size S(i,P) of the firm Fi is the Lebesgue

measure of M(i,P). The Hotelling town production cost C is the vector

whose coordinates are the production costs ci of the firms Fi. The Hotelling

town profit Π(P,C) is the vector whose coordinates

πi(P,C) = (pi − ci)S(i,P)

are the profits of the firms Fi. The local firms of a consumer located at a

point x in a road Ri,j with vertices i and j are the firms Fi and Fj. For

every vertex i let Ni be the set of all neighboring vertices j for which there

is a road Ri,j connecting the vertices. A price strategy P determines a local

market structure if every consumer buys from one of his local firms, i.e.

M(i,P) ⊂
⋃
j∈Ni

Ri,j.

If a price strategy P determines a local market structure then for every road
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Ri,j there is one consumer located at a point xi,j ∈ Ri,j who is indifferent to

the local firm from which he going to buy his commodity, i.e. E(x; i,P) =

E(x; j,P).

We denote by cM (resp. cm) the maximum (resp. minimum) production

cost of the Hotelling town

cM = max{ci : i ∈ V } and cm = min{ci : i ∈ V }.

We denote by lM (resp. lm) the maximum (resp. minimum) road length of

the Hotelling town

lM = max{le : e ∈ E} and lm = min{le : e ∈ E},

where E is the set of all edges of the Hotelling town. Let ∆(c) be the maximal

difference between the firm’s production cost of the commodity, ∆(l) be the

maximal difference between the road lengths in the network and ∆2(l) be

the maximal difference between the square road lengths in the network

∆(c) = cM − cm , ∆(l) = lM − lm and ∆2(l) = l2M − l2m.

We introduce the weak-bound WB condition that defines a bound for the

∆(c) and ∆(l) (∆(c) and ∆2(l), in the quadratic transportation cost case)

in terms of the transportation cost t and the minimal road length lm of the

network (see sections 2.1.1 and 2.2.1). We prove that a Hotelling town net-

work satisfying the WB condition has a unique local optimum price strategy

PL, i.e. the profit of every firm is optimal for small perturbations of its

own price. We prove that if a Hotelling town network satisfying the WB

condition the local optimum price strategy PL determines a local market

structure. Furthermore, if there is a Nash price equilibrium P∗ then the

Nash price equilibrium is the local optimum price strategy PL. However,

in sections 2.1.2 and 2.2.2, we exhibit simple Hotelling town networks that
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satisfy the WB condition but the local optimum price strategy is not a Nash

price equilibrium.

We denote by kM (resp. km) the maximum (resp. minimum) node degree

of the Hotelling town

kM = max{ki : i ∈ V } and km = min{ki : i ∈ V }.

We introduce the strong-bound SB condition that defines a bound for ∆(c)

and ∆(l) (∆(c) and ∆2(l), in the quadratic transportation cost case) in terms

of the transportation cost t, the minimal road length lm and also on the

maximum node degree kM (see Subsections 2.1.2 and 2.2.2). We prove that

a Hotelling town network satisfying the SB condition has a unique Nash

price equilibrium P∗. Since the SB condition implies the WB condition, the

Nash price equilibrium P∗ is equal to the local optimum price strategy PL.

We give an explicit series expansion formula for the Nash price equilibrium

P∗. This formula has the feature to show explicitly how the Nash price

equilibrium of a firm depends on the production costs, road market sizes and

firms locations of its local neighborhood network structure. Furthermore,

the influence of a firm in the Nash price equilibrium of other firm decreases

exponentially with the distance between the firms.

We say that a firm has n-space bounded information, if the firm knows the

production costs of the other firms and the road lengths of the network up to

n consecutive nodes of distance. Given a Hotelling town network satisfying

the WB condition, every firm with n-space bounded information can readily

compute a price pi(n) that estimates its own local optimum price pLi , with

exponential precision depending upon n. In addition, the firm can then easily

estimate the profit obtained with the local optimum price strategy, also with

exponential precision depending upon n.

A localization strategy for the firms in the network consists in every firm

Fi to choose its position in the neighborhood of its vertex i. For every given

localization strategy, we assume the firms opt for their Nash price strategy.
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A local optimal localization strategy is achieved when for every firm Fi small

perturbations in its location no longer result in improved profits for the firm

Fi. In Subsection 2.1.3, we prove that a Hotelling town network with linear

transportation costs satisfying the SB condition and with km ≥ 3 has a

local optimal localization strategy, whereby every firm Fi is located at the

corresponding node i. Furthermore, the network can also have nodes with

degree 2 under appropriate symmetric assumptions.

We say that a price strategy has the profit degree growth property if the

profits of the firms increase with the degree of the nodes in the neighborhoods

in which they are located. In Subsection 2.1.1 we introduce the degree-bound

DB condition that gives a new bound for ∆(c) and ∆(l) and we prove that

for a Hotelling town network with linear transportation costs satisfying the

WB and DB conditions the Nash price strategy P∗ has the profit degree

growth property.

For example, the Hotelling town networks, where all firms have the same

production costs and all roads have the same length, satisfy the SB and

DB conditions. Therefore, these networks have a Nash price equilibrium

satisfying the profit degree growth property. Furthermore, if km ≥ 3 the

firms have a local optimal localization strategy whereby they are located at

the corresponding nodes. The original idea of the Hotelling town model was

presented in [30].

2.1 Linear transportation costs

This section extends the Hotelling model with linear transportation costs to

networks.

A consumer located at a point x of the network who decides to buy at

firm Fi spends

E(x; i,P) = pi + t d(x, yi)

the price pi charged by the firm Fi plus the transportation cost that is pro-
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portional t to the minimal distance measured in the network between the

position yi of the firm Fi and the position x of the consumer.

2.1.1 Local optimal equilibrium price strategy

For every v ∈ V , let εv = d(v, yv) and j(v) be the node with the property

that yv is at the road Rv,j(v). The shift location matrix S(v) associated to

node v is defined by

si,j(v) =



εv if i = v and j ∈ Nv \ {j(v)} ;

−εv if i = v and j = j(v) ;

εv if j = v and i ∈ Nv \ {j(v)} ;

−εv if j = v and i = j(v) ;

0 otherwise.

The distance l̃i,j = d(yi, yj) between the location of firms Fi and Fj is given

by

l̃i,j = li,j +
∑

v∈{i,j}

si,j(v). (2.1)

Let ε = maxv∈V εv. Hence, for every i, j ∈ V we have

li,j − 2 ε ≤ l̃i,j ≤ li,j + 2 ε.

We observe that, for every road Ri,j there is an indifferent consumer located

at a distance

0 < xi,j = (2 t)−1(pj − pi + t l̃i,j) < l̃i,j (2.2)

of firm Fi if and only if |pi− pj| < t l̃i,j. Thus, a price strategy P determines

a local market structure if and only if |pi − pj| < t l̃i,j for every road Ri,j.

Hence, if

|pi − pj| < t li,j − 2 t ε (2.3)
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then condition (2.2) is satisfied. Therefore, if condition (2.3) holds then the

price strategy P determines a local market structure.

Let ki denote is the cardinality of the set Ni that is equal to the degree of

the vertex i. If the price strategy determines a local market structure then

S(i,P) = (2− ki) εi +
∑
j∈Ni

xi,j

and

πi(P,C) = (pi − ci)S(i,P)

= (2 t)−1(pi − ci)

(
2 t (2− ki) εi +

∑
j∈Ni

pj − pi + t l̃i,j

)
.(2.4)

Given a pair of price strategies P and P∗ and a firm Fi, we define the

price vector P̃(i,P,P∗) whose coordinates are p̃i = p∗i and p̃j = pj, for every

j ∈ V \ {i}. Let P and P∗ be price strategies that determine local market

structures. The price strategy P∗ is a local best response to the price strategy

P, if for every i ∈ V the price strategy P̃(i,P,P∗) determines a local market

structure and

∂πi(P̃(i,P,P∗),C)

∂p̃i
= 0 and

∂2πi(P̃(i,P,P∗),C)

∂p̃2i
< 0.

The Hotelling town admissible market size L is the vector whose coordin-

ates are the admissible local firm market sizes

Li =
1

ki

∑
j∈Ni

li,j.

The Hotelling town neighboring market structure K is the matrix whose

elements are (i) ki,j = k−1i , if there is a road Ri,j between the firms Fi and

Fj; and (ii) ki,j = 0, if there is not a road Ri,j between the firms Fi and Fj.
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The Hotelling town firm deviation is the vector Y whose coordinates are

Yi = k−1i

(
(2− ki) εi +

∑
j∈Ni

si,j(j)

)
.

Let 1 denote the identity matrix.

Lemma 2.1.1. Let P and P∗ be price strategies that determine local market

structures. The price strategy P∗ is the local best response to price strategy

P if and only if

P∗ =
1

2
(C + t (L + Y)) +

1

2
KP (2.5)

and the price strategies P̃(i,P,P∗) determine local market structures for all

i ∈ V .

Proof. By (2.4), the profit function πi(P,C) of firm Fi, in a local market

structure, is given by

πi(P,C) = (2 t)−1(pi − ci)

(
2 t (2− ki) εi +

∑
j∈Ni

pj − pi + t l̃i,j

)
.

Let P̃(i,P,P∗) be the price vector whose coordinates are p̃i = p∗i and p̃j =

pj, for every j ∈ V \ {i}. Since P and P∗ are local price strategies, the

local best response of firm Fi to the price strategy P, is given by computing

∂πi(P̃(i,P,P∗),C)/∂p̃i = 0. Hence,

p∗i =
1

2

(
ci +

2 t (2− ki)
ki

εi +
1

ki

∑
j∈Ni

t l̃i,j + pj

)
. (2.6)

By (2.1), we obtain

p∗i =
1

2

ci +
2 t (2− ki)

ki
εi +

t

ki

∑
j∈Ni

∑
v∈{i,j}

si,j(v) +
1

ki

∑
j∈Ni

t li,j + pj

 .
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We note that∑
j∈Ni

∑
v∈{i,j}

si,j(v) =
∑
j∈Ni

si,j(i) +
∑
j∈Ni

si,j(j) = (ki − 2) εi +
∑
j∈Ni

si,j(j).

Hence,

p∗i =
1

2

(
ci +

t

ki

(
(2− ki) εi +

∑
j∈Ni

si,j(j)

)
+

1

ki

∑
j∈Ni

t li,j + pj

)
.

Therefore, since ∂2πi(P̃(i,P,P∗),C)/∂p̃2i = −ki/t < 0, the local best re-

sponse strategy prices P∗ is given by

P∗ =
1

2
(C + t (Y + L) + K P) .

Definition 2.1.1. A Hotelling town satisfies the weak bounded length and

costs (WB) condition, if

∆(c) + t∆(l) < t lm − 6 t ε.

Hence, the WB condition implies ε < lm/6.

Let P and P∗ be price strategies that determine local market structures.

A price strategy P∗ is a local optimum price strategy if P∗ is the local best

response to P∗.

Proposition 2.1.1. If the Hotelling town satisfies the WB condition, then

there is unique local optimum price strategy given by

PL =
1

2

(
1− 1

2
K

)−1
(C + t (L + Y))

=
∞∑

m=0

2−(m+1)Km (C + t (L + Y)) . (2.7)
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The local optimum price strategy PL determines a local market structure.

Furthermore, the local optimal equilibrium prices pLi are bounded by

t lm +
1

2
(ci + cm)− 2 t ε ≤ pLi ≤ t lM +

1

2
(ci + cM) + 2 t ε. (2.8)

The local optimal profit πL
i = πL

i (P,C) of firm Fi is given by

πL
i (P,C) = (2t)−1 ki (pLi − ci)2

and it is bounded by

(8t)−1 ki (2t lm−∆(c)− 4 t ε)2 ≤ πL
i (P,C) ≤ (8t)−1 ki (2 t lM + ∆(c) + 4 t ε)2.

Corollary 2.1.1. Consider a Hotelling town where all firms are located at

the nodes. If ∆(c) + t∆(l) < t lm, then there is unique local optimum price

strategy given by

PL =
∞∑

m=0

2−(m+1)Km (C + tL) .

The local optimum price strategy PL determines a local market structure.

Furthermore, the local optimal equilibrium prices pLi are bounded by

t lm +
1

2
(ci + cm) ≤ pLi ≤ t lM +

1

2
(ci + cM).

The local optimal profit πL
i = πL

i (P,C) of firm Fi is given by

πL
i (P,C) = (2t)−1 ki (pLi − ci)2

and it is bounded by

(8t)−1 ki (2t lm −∆(c))2 ≤ πL
i (P,C) ≤ (8t)−1 ki (2 t lM + ∆(c))2.
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Proof of Proposition 2.1.1.

The matrix K is a stochastic matrix (i.e.,
∑

j∈V ki,j = 1, for every i ∈ V ).

Thus, we have ‖K‖ = 1. Hence, the matrix Q is well-defined by

Q =
1

2

(
1− 1

2
K

)−1
=

∞∑
m=0

2−(m+1) Km

and Q is also a non-negative and stochastic matrix. By Lemma 2.1.1, a local

optimum price strategy satisfy equality (2.5). Therefore,

PL =
1

2

(
1− 1

2
K

)−1
(C + t (L + Y))

=
∞∑

m=0

2−(m+1) Km (C + t (L + Y)) ,

and so PL satisfies (2.7). By construction,

pLi =
∑
v∈V

Qi,v(cv + t (Lv + Yv)). (2.9)

Let us prove that the price strategy PL is local, i.e., the indifferent consumer

xi,j satisfies 0 < xi,j < l̃i,j for every Ri,j ∈ E. We note that

lm ≤ Lv = k−1v

∑
j∈Nv

lv,j ≤ lM . (2.10)

We note that

−kv ε ≤
∑
j∈Nv

sv,j(j) ≤ kv ε
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Hence, if kv = 1 then

−ε ≤ εv − ε ≤ Yv = k−1v

(
εv +

∑
j∈Nv

sv,j(j)

)
≤ εv + ε ≤ 2 ε; (2.11)

if kv = 2 then

−ε ≤ Yv = k−1v

∑
j∈Nv

sv,j(j) ≤ ε; (2.12)

and if kv ≥ 3 then

2− kv
kv

εv − ε ≤ Yv = k−1v

(
(2− kv) εv +

∑
j∈Nv

sv,j(j)

)
≤ 2− kv

kv
εv + ε.

Hence,

−2 ε ≤ −εv − ε ≤ Yv = k−1v

(
(2− kv) εv +

∑
j∈Nv

sv,j(j)

)
≤ ε. (2.13)

Therefore, from (2.11), (2.12) and (2.13), we have

−2 ε ≤ Yv = k−1v

(
(2− kv) εv +

∑
j∈Nv

sv,j(j)

)
≤ 2 ε. (2.14)

Since Q is a nonnegative and stochastic matrix, we obtain∑
v∈V

Qi,v(cm + t lm − 2 t ε) = cm + t lm − 2 t ε

and ∑
v∈V

Qi,v(cM + t lM + 2 t ε) = cM + t lM + 2 t ε.

Hence, putting (2.9), (2.10) and (2.14) together we obtain that

cm + t lm − 2 t ε ≤ pLi ≤ cM + t lM + 2 t ε.
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Since the last relation is satisfied for every firm, we obtain

− (cM − cm + t(lM − lm) + 4 t ε) ≤ pLi − pLj ≤ cM − cm + t(lM − lm) + 4 t ε.

Therefore,

|pLi − pLj | ≤ ∆(c) + t∆(l) + 4 t ε.

Hence, by the WB condition, we conclude that

|pLi − pLj | < t lm − 2 t ε.

Thus, by equation (2.3), we obtain that the indifferent consumer is located

at 0 < xi,j < l̃i,j for every road Ri,j ∈ E. Hence, the price strategy PL is

local and is the unique local optimum price strategy.

From (2.9), (2.10) and (2.14), we obtain

pLi ≥
∑
v∈V

Qi,v(t lm − 2 t ε) +
∑

v∈V \{i}

Qi,v cm +Qi,i ci.

By construction of matrix Q, we have Qi,i > 1/2. Furthermore, since Q is

stochastic, ∑
v∈V \{i}

Qi,v < 1/2,

∑
v∈V Qi,vt lm = t lm and

∑
v∈V Qi,v2 t ε = 2 t ε. Hence,

pLi ≥ t lm − 2 t ε+
1

2
(ci + cm).

Similarly, we obtain

pLi ≤ t lM + 2 t ε+
1

2
(ci + cM),

and so the local optimal equilibrium prices pLi are bounded and satisfy (2.8).

We can write the the profit function (2.4) of firm Fi for the price strategy
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PL as

πL
i = πi(P

L,C) = (2t)−1(pLi − ci)

(
2 t (2− ki) εi − ki pLi +

∑
j∈Ni

(pLj + t l̃i,j)

)
(2.15)

Since PL satisfies the best response function (2.6), we have

2 pLi = ci +
2 t (2− ki)

ki
εi +

1

ki

∑
j∈Ni

(
t l̃i,j + pLj

)
.

Therefore,
∑

j∈Ni

(
t l̃i,j + pLj

)
= 2 ki p

L
i − ki ci + 2 t (ki − 2) εi, and replacing

this sum in the profit function (2.15), we obtain

πL
i = (2t)−1(pLi − ci)

(
−ki pLi + 2 ki p

L
i − ki ci

)
= (2t)−1 ki (pLi − ci)2.

Hence, using the price bounds (2.8), we conclude

(2t)−1 ki (t lm −∆(c)/2− 2 t ε)2 ≤ πL
i ≤ (2t)−1 ki (t lM + ∆(c)/2 + 2 t ε)2.

Consider the two networks presented in Figure 2.1.

1

2

3

4

7

8

8

(a) Star Network

1 2

34

5

6

6

5

(b) Regular Network

Figure 2.1: Hotelling networks satisfying WB condition
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For network 2.1a the parameter values are εi = 0, ci = 0, lm = 7, lM = 8,

∆(l) = 1 and kM = 3. For network 2.1b the parameter values are εi = 0,

ci = 0, lm = 5, lM = 6, ∆(l) = 1 and kM = 2. Both networks satisfies the

WB condition. Hence, by Proposition 2.1.1, there is a local optimum price

strategy PL. The local optimal prices for network 2.1a are given by

pLi = t

(
23

3
,
22

3
,
47

6
,
47

6

)
and the correspondent profits are given by

πL = t

(
529

6
,
242

9
,
2209

72
,
2209

72

)
.

The local optimal prices for network 2.1b are given by

pLi = t

(
21

4
,
11

2
,
23

4
,
11

2

)
and the correspondent profits are given by

πL = t

(
441

16
,
121

4
,
529

16
,
121

4

)
.

We say that a price strategy P has the profit degree growth property if

ki > kj ⇒ πi(P,C) > πj(P,C)

for every i, j ∈ V .

Lemma 2.1.2. Let Fi be a firm located in a node of degree ki and Fj a firm

located in a node of degree kj. Then, πL
i > πL

j if and only if

ki − kj
kj

>
(pLj − cj)2 − (pLi − ci)2

(pLi − ci)2
.
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Let p̄i = pLi − ci and p̄j = pLj − cj represent the unit profit of firms Fi and

Fj located at nodes of degree ki and kj, respectively. Let θ(p) = pLi − pLj ,

θ(k) = ki − kj and θ(p̄) = p̄i − p̄j.

Proof of Lemma 2.1.2.

If Fj is a firm located in a node of degree kj, then

πL
j = (2t)−1 kj (pLj − cj)2 = (2t)−1 kj p̄

2
j .

Similarly, if Fi is a firm located in a node of degree ki, then

πL
i = (2t)−1 ki (pLi − ci)2 = (2t)−1 ki p̄

2
i = (2t)−1 (kj + θ(k)) (p̄j + θ(p̄))2 .

Hence,

2 t πL
i = kj p̄

2
j + kj θ(p̄) (2 p̄j + θ(p̄)) + θ(k) (p̄j + θ(p̄))2

= 2 t πL
j + kj θ(p̄) (p̄j + p̄i) + θ(k) p̄2i ,

and so

2 t (πL
i − πL

j ) = kj (p̄i − p̄j) (p̄j + p̄i) + θ(k) p̄2i = kj (p̄2i − p̄2j) + (ki − kj) p̄2i .

Therefore,

πL
i > πL

j if and only if
ki − kj
kj

>
p̄2j − p̄2i
p̄2i

.

Definition 2.1.2. A Hotelling town network satisfies the degree bounded

lengths and costs (DB) condition if

∆(c) + t∆(l) <
(√

1 + 1/kM − 1
)

(t lm −∆(c)/2− 2 t ε)− 4 t ε.
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Theorem 2.1.1. A Hotelling town network satisfying the WB and DB con-

ditions has the profit degree growth property.

Proof. Let Fi and Fj be firms in the Hotelling town network such that ki > kj.

We need to prove that πL
i > πL

j . From Lemma 2.1.2 we say that πL
i > πL

j if

and only if

kj θ(p̄) (p̄j + p̄i) + θ(k) p̄2i > 0. (2.16)

Since ki > kj, then θ(k) > 0. Hence, if θ(p̄) > 0, i.e. p̄i > p̄j, then condition

(2.16) is satisfied.

Let us now consider the case where θ(p̄) < 0. Condition (2.16) is equi-

valent to

kj θ(p̄)
2 − 2 kj p̄i θ(p̄)− θ(k) p̄2i < 0. (2.17)

Solving the second degree equation kj θ(p̄)
2 − 2 kj p̄i θ(p̄) − θ(k) p̄2i = 0, we

obtain

θ(p̄)± = p̄i

(
1±

√
1 + θ(k)/kj

)
.

Let f(θ(k), kj) be the function given by

f(θ(k), kj) =
√

1 + θ(k)/kj − 1.

We note that f(θ(k), kj) > 0 and θ(p̄)− = −f(θ(k), kj) p̄i. If θ(p̄)− < θ(p̄) < 0

then condition (2.17) is satisfied. By hypothesis θ(p̄) < 0 and, so, if

f(θ(k), kj) p̄i > −θ(p̄) (2.18)

then (2.17) is satisfied.

Since θ(p̄) = p̄i − p̄j, from (2.8) we have |θ(p̄)| < ∆(c) + t∆(l) + 4 t ε.

Hence, if

f(θ(k), kj) p̄i > ∆(c) + t∆(l) + 4 t ε (2.19)

then (2.18) is satisfied. Noting that f(θ(k), kj) > f(1, kM) =
√

1 + 1/kM−1,
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if

∆(c) + t∆(l) + 4 t ε <
(√

1 + 1/kM − 1
)
p̄i (2.20)

then (2.19) is satisfied. By (2.8), we have p̄i ≥ t lm −∆(c)/2 − 2 t ε. Hence,

if

∆(c) + t∆(l) + 4 t ε <
(√

1 + 1/kM − 1
)

(t lm −∆(c)/2− 2 t ε) (2.21)

then (2.20) is satisfied. Hence, if condition (2.21) is satisfied, then (2.16) is

satisfied, πL
i > πL

j for every firms Fi and Fj such that ki > kj, and, so, the

network has the profit degree growth property.

We are going to present an example satisfying the WB condition but not

the DB condition. Furthermore, we will show that in this example does not

has the profit degree growth property. Consider the Hotelling town network

presented in Figure 2.2. The parameter values are εi = 0, ci = 0, lm = 5,

1

2

3

4

5

5 8

85

5

Figure 2.2: Network not satisfying the DB condition

lM = 8, ∆(l) = 3 and kM = 3.

Hence, Network 2.2 satisfies the WB condition. Hence, by Proposition

2.1.1, there is a local optimum price strategy PL. The profits valued at the

local optimal prices are given by

πL = t

(
48387

1058
,
21904

529
,
27556

529
,
21904

529
,
14641

1058

)
.
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Network 2.2 does not satisfy the DB condition and does not has the profit

degree growth property, since k1 > k3 and πL
3 > πL

1 .

The two networks presented in Figure 2.1 satisfies the DB condition.

Hence, both networks have the profit degree growth property.

2.1.2 Nash equilibrium price strategy

The price strategy P∗ is a best response to the price strategy P, if

(p̃i − ci)S(i, P̃(i,P,P∗)) ≥ (p′i − ci)S(i,P′i),

for all i ∈ V and for all price strategies P′i whose coordinates satisfy p′i ≥ ci

and p′j = pj for all j ∈ V \ {i}. A price strategy P∗ is a Hotelling town Nash

equilibrium if P∗ is the best response to P∗.

Lemma 2.1.3. In a Hotelling town satisfying the WB condition, if there is

a Nash price P∗ then P∗ is unique and P∗ = PL.

Hence, the local optimum price strategy PL is the only candidate to

be a Nash equilibrium price strategy. However, PL might not be a Nash

equilibrium price strategy because there can be a firm Fi that by decreasing

his price is able to absorb markets of other firms in such a way that increases

its own profit. Therefore, the best response price strategy PL,∗ to the local

optimum price strategy PL might be different from PL.

Proof of Lemma 2.1.3.

Suppose that P ∗ is a Nash price strategy and that P∗ 6= PL. Hence, P∗ does

not determine a local market structure, i.e., there exists i ∈ V such that

M(i,P∗) 6⊂ ∪j∈Ni
Ri,j.

Hence, there exists j ∈ Ni such that M(j,P∗) = 0 and, therefore, π∗j = 0.
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Moreover, in this case, we have that

p∗j > p∗i + t l̃i,j.

Consider, now, that Fj changes his price to pj = cj + t∆(l) + 4 t ε. Since

p∗i > ci and cj − ci ≤ ∆(c) we have that

pj − p∗i < pj − ci = cj + t∆(l) + 4 t ε− ci ≤ ∆(c) + t∆(l) + 4 t ε

Since the Hotelling town satisfies the WB condition, we obtain

pj − p∗i < t lm − 2 t ε ≤ t li,j − 2 t ε ≤ t l̃i,j.

Hence, M(j, P̃(j,P∗,P)) > 0 and πj = (t∆(l) + 4 t ε)S(j, P̃(j,P∗,P)) > 0.

Therefore, Fj will change its price and so P∗ is not a Nash equilibrium price

strategy. Hence, if there is a Nash price P∗ then P∗ = PL.

Let ∪j∈Ni
Ri,j be the 1-neighbourhood N (i, 1) of a firm i ∈ V . Let

∪j∈Ni
∪k∈Nj

Rj,k be the 2-neighbourhood N (i, 2) of a firm i ∈ V .

Lemma 2.1.4. In a Hotelling town satisfying the WB condition,

M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2)

for every i ∈ V .

Hence, a consumer x ∈ Rj,k might not buy in its local firms Fj and

Fk. However, the consumer x ∈ Rj,k still has to buy in a firm Fi that is a

neighboring firm of its local firms Fj and Fk, i.e. i ∈ Nj ∪Nk.

Proof of Lemma 2.1.4.

By contradiction, let us consider a consumer z ∈ M(i, P̃(i,PL,PL,∗)) and

z /∈ N (i, 2). The price that consumer z pays to buy in firm Fi is given by

e = pi + t
(
l̃i1,i2 + l̃i2,i3 + d (yi3 , z)

)
≥ pi + t (li1,i2 + li2,i3 − 2 ε+ d (yi3 , z))
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where pi = pL,∗i is the coordinate of the vector P̃(i,PL,PL,∗) and for the

2-path (Ri1,i2 , Ri2,i3) with i1 = i. If the consumer z buys at firm Fi3 , then

the price that has to pay is

ẽ = pLi3 + t d (yi3 , z).

Since, by hypothesis, z ∈M(i, P̃(i,PL,PL,∗)), we have e < ẽ. Therefore

pi < pLi3 − t (li1,i2 + li2,i3 − 2 ε) .

By (2.8), pLi ≤ t lM + 2 t ε +
1

2
(ci + cM) for all i ∈ V . Since li,j ≥ lm for all

Ri,j ∈ E,

pi < t lM +
1

2
(cM + ci3)− 2 t lm + 4 t ε ≤ cM + t∆(l)− t lm + 4 t ε.

Furthermore,

pi − ci < ∆(c) + t∆(l)− t lm + 4 t ε.

By the WB condition, pi − ci < 0. Hence, πL,∗
i < 0 which contradicts the

fact that pi is the best response to PL (since πL
i > 0). Therefore, z ∈ N (i, 2)

and M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2).

Definition 2.1.3. A Hotelling town satisfies the strong bounded length and

costs (SB) condition, if

∆(c) + t∆(l) ≤ (2 t lm −∆(c)− 4 t ε)2

8 t kM (lM + ε)
− 3 t ε.

The SB condition implies the WB condition, and so under the SB con-

dition the only candidate to be a Nash equilibrium price strategy is the local

optimum strategy price PL. On the other hand, the condition

∆(c) + t∆(l) ≤ t l2M
8 kM (lM + ε)

− 3 t ε.
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together with the

WB

condition implies the SB condition. Hence, we note that the condition

∆(c) + t∆(l) ≤ t l2m
8 kM (lM + ε)

− 6 t ε.

implies the WB and SB conditions.

Theorem 2.1.2. If a Hotelling town satisfies the SB condition then there is

a unique Hotelling town Nash equilibrium price strategy P∗ = PL.

Hence, the Nash equilibrium price strategy for the Hotelling town sat-

isfying the SB condition determines a local market structure, i.e. every

consumer located at x ∈ Ri,j spends less by shopping at his local firms Fi

or Fj than in any other firm in the town and so the consumer at x will buy

either at his local firm Fi or at his local firm Fj.

For ε small enough, a cost and length uniform Hotelling town, i.e. cm =

cM and lm = lM , has a unique pure network Nash price strategy which

satisfies the profit degree growth property.

Corollary 2.1.2. Consider a Hotelling town where all firms are located at

the nodes. If

∆(c) + t∆(l) ≤ (2 t lm −∆(c))2

8 t kM lM

then there is a unique Hotelling town Nash equilibrium price strategy P∗ =

PL.

Proof of Theorem 2.1.2.

By Proposition 2.1.1 and Lemma 2.1.3, if there is a Nash equilibrium price

strategy P∗ then P∗ is unique and P∗ = PL.

We note that if M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 1) for every i ∈ V then

P̃(i,PL,PL,∗) = pLi and so PL is a Nash equilibrium.

128



By Lemma 2.1.4, we have that M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2) for every i ∈ V .

Now, we will prove that the SB condition implies that firm Fi earns more

competing only in the 1-neighborhood than competing in a 2-neighborhood.

By Proposition 2.1.1,

πL
i ≥ (2 t)−1 ki (t lm −∆(c)/2− 2 t ε)2 (2.22)

By Lemma 2.1.4,

πi(P̃(i,PL,PL,∗),C) ≤ (pi − ci)
∑
j∈Ni

l̃i,j +
∑

k∈Nj\{i}

l̃j,k


≤ (pi − ci)

∑
j∈Ni

∑
k∈Nj

l̃j,k,

where pi = pL,∗i is the coordinate of the vector P̃(i,PL,PL,∗). Hence,

πi(P̃(i,PL,PL,∗),C) ≤ (pi − ci)
∑
j∈Ni

∑
k∈Nj

(lj,k + ε) ≤ (pi − ci)ki kM (lM + ε).

(2.23)

By contradiction, let us consider a consumer z ∈ M(i, P̃(i,PL,PL,∗)) and

z /∈ N (i, 1). Let i2 ∈ Ni be the vertex such that z ∈ N (i2, 1). The price that

consumer z pays to buy in firm Fi is given by

e = pi + t l̃i,i2 + t d (yi2 , z) ≥ pi + t li,i2 + t d (yi2 , z)− t ε.

If the consumer y buys at firm Fi2 , then the price that has to pay is

ẽ = pLi2 + t d (yi2 , z).

Since, by hypothesis, z ∈M(i, P̃(i,PL,PL,∗)), we have e < ẽ. Therefore

pi < pLi2 − t li,i2 + t ε.
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By (2.8), pLi2 ≤ t lM + 2 t ε+
1

2
(cM + ci2). Since li,i2 ≥ lm, we have

pi < t lM +
1

2
(cM + ci2) + 2 t ε− t lm + t ε ≤ cM + t∆(l) + 3 t ε.

Thus,

pi − ci < ∆(c) + t∆(l) + 3 t ε.

Hence, from (2.23) we obtain

πi(P̃(i,PL,PL,∗),C) < ki kM (lM + ε) (∆(c) + t∆(l) + 3 t ε) .

By the SB condition,

πi(P̃(i,PL,PL,∗),C) < (2 t)−1 ki (t lm −∆(c)/2− 2 t ε)2. (2.24)

Hence, by inequalities (2.22) and (2.24), πL
i > πi(P̃(i,PL,PL,∗),C), which

contradicts the fact that pi is the best response to PL. Therefore, z ∈ N (i, 1)

and M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 1). Hence, P̃(i,PL,PL,∗) = pLi and so PL is

a Nash equilibrium.

We are going to present an example satisfying the WB condition but not

the SB condition. Furthermore, we will show that in this example the local

optimum price strategy do not form a Nash price equilibrium. Consider the

Hotelling town network presented in figure 2.3.

The parameter values are εi = 0, ci = 0, lm = 4, lM = 7, ∆(l) = 3 and

kM = 3. Hence, Network 2.3 satisfies the WB condition. By Proposition

2.1.1, the local optimal equilibrium prices and the correspondent profits are

PL = t

(
16

3
,
14

3
,
31

6
,
37

6

)
; πL = t

(
128

3
,
98

9
,
961

72
,
1369

72

)
.

We will show that the local optimum price strategy is not a Nash equilibrium.

The profits of the firms are given by πL
i = pi S(i,PL), and the local market
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7

Figure 2.3: Star Network not satisfying the SB condition

sizes S(i,PL) are

S(i,PL) =
πL
i

pLi
=
ki p

L
i

2 t

Hence, the local market sizes are

S(1,PL) = 8; S(2,PL) =
14

6
; S(3,PL) =

31

12
; S(4,PL) =

37

12
.

Suppose that firm F2 decides to lower its price in order to capture the market

of firm F1. The firm F2 captures the market of F1, excluding F1 from the

game, if the firm F2 charges a price p2 such that p2 +4 t < pL1 or, equivalently

p2 < 4/3 t. Let us consider p2 = 4/3 t − δ, where δ is sufficiently small.

Hence, for this new price, firm F2 keeps the market M(2,PL) and, since

the price of F2 at location of F1 is less that pL1 , firm F2 gains at least the

market of firm F1. Thus, the new market M(2,P) of firm F2 is such that

S(2,P) > S(1,PL) + S(2,PL). Therefore, S(2,P) > 31/3 and so

π2 > p2 S(2,P) =

(
4

3
t− δ

)
31

3
=

124

9
t− 31

3
δ.

Thus π2 > 98 t/9 = πL
2 , and so firm F2 prefers to alter its price pL2 . Therefore,

PL is not a Nash equilibrium price.

The two networks presented in figure 2.1 satisfies the SB condition.
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Hence, the local optimum price strategy PL is also a Nash equilibrium price

strategy.

2.1.3 Strategic optimal location

The marginal rate of the price of a firm Fi located at yi with respect to the

deviation of the localization of the firm is given by

∂pLi /∂εi = t

(
Qi,i ∂Yi/∂εi +

∑
j∈Ni

Qi,j ∂Yj/∂εi

)

= t

(
Qi,i

2− ki
ki
−

2Qi,j(i)

kj(i)
+
∑
j∈Ni

Qi,j

kj

)
.

The marginal rate of the profit of a firm Fi located at yi with respect to the

deviation of the localization of the firm is given by

∂πL
i /∂εi =

ki (pLi − ci)
t

· ∂pLi /∂εi.

Definition 2.1.4. Let us explicit π(εi) the dependence of πi on the parameter

εi. We say that a firm Fi is node local stable if there is ε > 0 such that

πi(0) > πi(εi) for every 0 < εi < ε, with respect to the local optimum price

strategy. A Hotelling network is firm node local stable if every firm in the

network is node stable.

If node i has degree ki = 2, let us define

Ui =
Qi,v

kv
−
Qi,j(i)

kj(i)

where v is uniquely determined by {v} = Ni \ {j(i)} and j(i) is the node

with the property that yi is at the road Ri,j(i).

Theorem 2.1.3. The marginal rate of the profit of a firm Fi located at yi with
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respect to the deviation of the localization of the firm satisfies the following

inequalities:

(i) Case ki ≥ 1. Then ∂πL
i /∂εi > 0.

(ii) Case ki = 2.

(a) If Ui > 0 then ∂πL
i /∂εi > 0;

(b) if Ui < 0 then ∂πL
i /∂εi < 0;

(c) if Ui = 0 then ∂πL
i /∂εi = 0.

(iii) Case ki ≥ 3 and kv ≥ 3, for every v ∈ Ni. Then ∂πL
i /∂εi < 0.

(iv) Case ki ≥ 4 and kv ≥ 2, for every v ∈ Ni. Then ∂πL
i /∂εi < 0.

Hence, a Hotelling town network satisfying the WB condition and with

km ≥ 3 has a local optimal localization strategy, whereby every firm Fi is

located at the corresponding node i.

We observe that firms Fi with node degree ki = 1 are node local unstable.

Firms Fi with ki = 2 are node local unstable, except for networks satisfying

special symmetric properties. Firms Fi with ki = 3 whose neighboring firms

have nodes degree greater or equal to 3 are node local stable. Furthermore,

firms Fi with ki ≥ 4 whose neighboring firms have nodes degree greater or

equal to 2 are node local stable.

Proof of Theorem 2.1.3.

From Theorem 2.1.2, we have

pLi =
∑
v∈V

Qi,v(cv + t Lv + t Yv), (2.25)

and

πL
i = (2 t)−1 ki (pLi − ci)2.
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Hence,

∂πL
i /∂εi =

ki (pLi − ci)
t

· ∂pLi /∂εi.

Hence, to study the influence of εi in the profit πL
i , we only have to study

the signal of ∂pLi /∂εi. By (2.25), we have

∂pLi /∂εi =
∑
v∈V

∂pLi /∂Yv · ∂Yv/∂εi.

Since, for every v ∈ V , ∂pLi /∂Yv = tQi,v, we have

∂pLi /∂εi = t
∑
v∈V

Qi,v ∂Yv/∂εi.

Recall that

Yv =
1

kv

(∑
j∈Nv

sv,j(j)− εv (kv − 2)

)
Hence, for v = i, we have

∂Yi/∂εi =
2− ki
ki

;

for v ∈ Ni, we have

∂Yv/∂εi = ∂/∂εi

(
1

kv
sv,i(i)

)
= ± 1

kv
;

and for v /∈ Ni, we have ∂Yi/∂εi = 0. Therefore,

∂pLi /∂εi = t

(
Qi,i

2− ki
ki
−

2Qi,j(i)

kj(i)
+
∑
j∈Ni

Qi,j

kj

)

If ki = 1, then

∂pLi /∂εi = tQi,i > 0.
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If ki = 2, then

∂pLi /∂εi = t

(
Qi,j

kj
−
Qi,j(i)

kj(i)

)
= t Ui

where j ∈ Ni and j 6= j(i). If ki ≥ 3, then

∂pLi /∂εi ≤ t

(
Qi,i

2− ki
ki

+
∑
j∈Ni

Qi,j
1

kj

)

By construction, Qi,i > 1/2 and
∑

j∈Ni
Qi,j < 1/2. Hence, if kv ≥ 3, for

every v ∈ Ni, then

∂pLi /∂εi < t

(
−1

6
+

1

6

)
= 0.

Furthermore, if ki ≥ 4 and kv ≥ 2, for every v ∈ Ni, then

∂pLi /∂εi < t

(
−1

4
+

1

4

)
= 0.

2.1.4 Space bounded information

Given m + 1 vertices x0, . . . , xm with the property that there are roads

Rx0,x1 , . . . , Rxm−1,xm the (ordered) m path R is

R = (Rx0,x1 , . . . , Rxm−1,xm).

Let R(i, j;m) be the set of all m (ordered) paths R = (Rx0,x1 , . . . , Rxm−1,xm)

starting at i = x0 and ending at j = xm. Given a m order path R =

(Rx0,x1 , . . . , Rxm−1,xm), the corresponding weight is

k(R) =
m−1∏
q=0

kxq ,xq+1 .
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The matrix K0 is the identity matrix and, for n ≥ 1, the elements of the

matrix Km are

kmi,j =
∑

R∈R(i,j;m)

k(R).

Definition 2.1.5. A Hotelling town has n space bounded information (n-

I) if for every 1 ≤ m ≤ n, for every firm Fi and for every non-empty set

R(i, j;m): (i) firm Fi knows the cost cj and the average length road Lj and

the firm deviation Yj of firm Fj; (ii) for every m path R ∈ R(i, j;m), firm

Fi knows the corresponding weight k(R).

The n local optimal price vector is

P(n) =
n∑

m=0

2−(m+1) Km (C + t (L + Y)) .

We observe that in a n-I Hotelling town, the firms might not be able to

compute K, C, L or Y. However, every firm Fi is able to compute his n

local optimal price pi(n)

pi(n) =
n∑

m=0

2−(m+1)
∑
v∈V

kmi,v (cv + t (Lv + Yv)) .

By (2.5), the best response P′ to P(n) is given by

P′ =
1

2
(C + t (L + Y)) +

1

2
K P(n)

=
1

2
(C + t (L + Y)) +

n∑
m=0

2−(m+2)Km+1 (C + t (L + Y))

=
n+1∑
m=0

2−(m+1)Km (C + t (L + Y)) = P(n+ 1).

Hence, P(n+ 1) is the best response to P(n) for n sufficiently large.

Let G denote the number of nodes in the network and let e = ∆(c) +
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3 t (lM + 2 ε).

Theorem 2.1.4. A Hotelling town satisfying the WB condition has a local

optimum price strategy PL that is well approximated by the n local optimal

price P(n) with the following 2−n bound

0 ≤ pLi − pi(n) ≤ 2−(n+1)G (cM + t (lM + 2 ε)).

The profit πi(P
L) is well approximated by πi(P(n)) with the following bound

|πi(PL)− πi(P(n))| ≤ 2−(n+2)Gt−1 (cM + t (lM + 2 ε)) (ki e+ 4 t ε) .

Proof. By Proposition 2.1.1, if a Hotelling town satisfies the WB condition

then there is local optimum price strategy PL given by

PL =
∞∑

m=0

2−(m+1)Km (C + t (L + Y)) .

Considering Q =
∑∞

m=0 2−(m+1)Km, we can write the equilibrium prices as

pLi =
∑
v∈V

Qi,v (cv + t (Lv + Yv)), where Qi,v =
∞∑

m=0

2−(m+1)kmi,v.

For the space bounded information Hotelling town, the n local optimal price

P(n) is given by

P(n) =
n∑

m=0

2−(m+1)Km (C + t (L + Y))

and

pi(n) =
∑
v∈V

Qi,v(n) (cv + t (Lv + Yv)), where Qi,v(n) =
n∑

m=0

2−(m+1)kmi,v.
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The difference Ri(n) between pLi and pi(n) is positive and is given by

Ri(n) =
∑
v∈V

(Qi,v −Qi,v(n)) (cv + t (Lv + Yv)).

We note that

Qi,v −Qi,v(n) =
∞∑

m=n+1

2−(m+1)kmi,v.

Since 0 ≤ kmi,v ≤ 1, for all m ∈ N and all i, v ∈ V and

∞∑
m=n+1

2−(m+1) = 2−(n+1),

we have that

Qi,v −Qi,v(n) ≤ 2−(n+1).

Hence,

Ri(n) ≤
∑
v∈V

2−(n+1) (cv + t (Lv + Yv)).

Since Lv ≤ lM , Yv ≤ 2 ε and cv ≤ cM , we have that

Ri(n) ≤ 2−(n+1)G (cM + t (lM + 2 ε)). (2.26)

Therefore,

0 ≤ pLi − pi(n) ≤ 2−(n+1)G (cM + t (lM + 2 ε)).

The profit for firm Fi for the local optimal price is given by

πi(P
L) = (2t)−1 (pLi − ci)

(∑
j∈Ni

(pLj − pLi + t l̃i,j)− 2 t (ki − 2) εi

)
(2.27)

and the profit for firm Fi when all firms have n-space bounded information
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is

πi(P(n)) = (2t)−1 (pi(n)− ci)

(∑
j∈Ni

(pj(n)− pi(n) + t l̃i,j)− 2 t (ki − 2) εi

)

Let Rj,i(n) = Rj(n)−Ri(n) and

Zi =
∑
j∈Ni

(pj(n)− pi(n) + t l̃i,j +Rj,i(n))− 2 t (ki − 2) εi

=
∑
j∈Ni

(pLj − pLi + t l̃i,j)− 2 t (ki − 2) εi.

Since pLi = pi(n) +Ri(n), we can write the local equilibrium profit (2.27) for

firm i as

πi(P
L) = (2t)−1 (pi(n)− ci +Ri(n))Zi

Hence,

πi(P
L) = πi(P(n)) + (2t)−1

(
(pi(n)− ci)

∑
j∈Ni

Rj,i(n) +Ri(n)Zi

)

The difference between the equilibrium profit and the profit where all firms

have n-space bounded information is

πi(P
L)− πi(P(n)) = (2t)−1

(
(pi(n)− ci)

∑
j∈Ni

Rj,i(n) +Ri(n)Zi

)
.

Hence,

|πi(PL)− πi(P(n))| ≤ (2t)−1

(
(pi(n)− ci)

∑
j∈Ni

|Rj,i(n)|+Ri(n)Zi

)
.
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Since pLj − pLi + t l̃i,j ≤ 2 t l̃i,j ≤ 2 t (lM + 2 ε), we have

Zi ≤ 2 t ki (lM + 2 ε)− 2 t (ki − 2) ε < 2 t (ki (lM + 2 ε) + 2 εi).

Let Z = ∆(c) + t (lM + 2 ε). Since pi(n) − ci ≤ pLi − ci, from (2.8) we have

pi(n)− ci ≤ ∆(c) + t (lM + 2 ε) = Z. Hence,

|πi(PL)−πi(P(n))| < (2t)−1

(
Z
∑
j∈Ni

|Rj,i(n)|+ 2 t Ri(n) (ki (lM + 2 ε) + 2 ε)

)

Let ZM = cM + t (lM + 2 ε). By (2.26), Ri(n) ≤ 2−(n+1)GZM . Then, also,

|Rj,i(n)| ≤ 2−(n+1)GZM . Therefore,∑
j∈Ni

|Rj,i(n)| ≤ 2−(n+1) kiGZM .

Hence,

|πi(PL)− πi(P(n))| ≤ 2−(n+2)Gt−1 ZM (ki (∆(c) + 3 t (lM + 2 ε)) + 4 t ε) .

2.1.5 Static Analysis

For simplicity of notation, in this subsection, we assume that the firms are

located at the nodes of the network. Let s be the gross consumer surplus,

i.e., the maximum consumer willingness to pay for the commodity. Let us

assume that the market is covered, i.e., s is sufficiently large for all consumers

to be willing to buy. The utility for each consumer x is given by

Ux = s− p− t d(x)
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where p is the price to pay and d(x) is the distance between x and the

location of the firm where it buys. Since the consumers with the lowest

utility are the indifferent consumers, we may say that the market is covered

if the indifferent consumer buys. Hence, if P is a local price strategy then

the market is covered if for every road Ri,j

s− pi −
pj − pi + t li,j

2
≥ 0.

Thus, the market is covered if

s ≥ pi + pj + t li,j
2

. (2.28)

Let us define si,j = s− 1

2
(pi + pj + t li,j). We note that si,j ≥ 0.

Recall that the Hotelling town admissible market size L is the vector whose

coordinates are

Li = k−1i

∑
j∈Ni

li,j.

Let a ∈ V , j ∈ Ni and b ∈ V \ {i, Ni}. Hence, ∂Li/∂ca = 0, ∂Li/∂t = 0 and

∂Li/∂li,j = k−1i , ∂Lj/∂li,j = k−1j and ∂Lb/∂li,j = 0. (2.29)

Similarly, we have

∂li,j/∂Li = ki, ∂li,j/∂Lj = kj and ∂li,j/∂Lb = 0. (2.30)

By Proposition 2.1.1, if a Hotelling town satisfies the SB condition then the

unique Hotelling town Nash equilibrium price for firm Fi is given by

p∗i =
∑
v∈V

Qi,v (cv + t Lv), where Qi,v =
∞∑

m=0

2−(m+1)kmi,v.

Let us define Ai(r, s) = k−1r Qi,r + k−1s Qi,s.
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Corollary 2.1.3. If a Hotelling town satisfies the SB condition, equilibrium

prices are increasing in production costs, admissible local firm market sizes,

transportation cost and road lengths.

Proof. Let a ∈ V . Hence,

∂p∗i /∂ca = Qi,a =
∞∑

m=0

2−(m+1) kmi,a > 0, (2.31)

∂p∗i /∂La = tQi,a = t
∞∑

m=0

2−(m+1) kmi,a > 0 (2.32)

and

∂p∗i /∂t =
∑
v∈V

Qi,vLv > 0. (2.33)

Let Rr,s ∈ E. Since ∂Lv/∂lr,s = 0, for v 6= r and v 6= s, from (2.29) and

(2.32), we have

∂p∗i /∂lr,s =
∑
v∈V

∂p∗i /∂Lv · ∂Lv/∂lr,s

= ∂p∗i /∂Lr · ∂Lr/∂lr,s + ∂p∗i /∂Ls · ∂Ls/∂lr,s.

= t (k−1r Qi,r + k−1s Qi,s) = t Ai(r, s) > 0 (2.34)

From (2.31), (2.32), (2.33) and (2.34), prices are increasing in production

costs, admissible local firm market sizes, transportation cost and road lengths.

Corollary 2.1.4. If a Hotelling town satisfies the SB condition, equilibrium

profits are decreasing in his own production cost and increasing in production

costs of other firms, admissible local firm market sizes, transportation costs

and road lengths.

Proof. From Proposition 2.1.1, if Fi is a firm located at a node of degree ki,
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his profit in equilibrium is given by

π∗i = (2t)−1 ki (p∗i − ci)2.

Hence,

∂π∗i /∂p
∗
i = ki t

−1 (p∗i − ci). (2.35)

Let a ∈ V \ {i}. From (2.35) and (2.31), we get

∂π∗i /∂ca = ∂π∗i /∂p
∗
i · ∂p∗i /∂ca = ki t

−1 (p∗i − ci)Qi,a > 0.

Similarly,

∂π∗i /∂ci = ki t
−1 (p∗i − ci) (∂p∗i /∂ci − 1) = ki t

−1 (p∗i − ci) (Qi,i − 1) .

Since Qi,i < 1, ∂π∗i /∂ci < 0. Hence, profits are increasing in production costs

of other firms and are decreasing in own production cost.

Let b ∈ V . From (2.35) and (2.32), we get

∂π∗i /∂Lb = ∂π∗i /∂p
∗
i · ∂p∗i /∂Lb = ki (p∗i − ci)Qi,b > 0

and profits are increasing in admissible local firm market sizes.

From (2.35) and (2.33), we get

∂π∗i /∂t = ∂π∗i /∂p
∗
i · ∂p∗i /∂t−

ki
2
t−2 (p∗i − ci)2

= ki t
−1 (p∗i − ci)

∑
v∈V

Qi,vLv −
ki
2
t−2 (p∗i − ci)2

= ki t
−2 (p∗i − ci)

(
t
∑
v∈V

Qi,vLv −
1

2
(p∗i − ci)

)
.
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Then, ∂π∗i /∂t > 0 if and only if

ci > p∗i − 2 t
∑
v∈V

Qi,v Lv =
∑
v∈V

Qi,v (cv − t Lv).

Since Q is stochastic, ci =
∑

v∈V Qi,v ci, and ∂π∗i /∂t > 0 if and only if∑
v∈V

Qi,v (ci − cv + t Lv) > 0. (2.36)

Since Lv ≥ lm, then ci− cv + t Lv ≥ cm− cM + t lm = t lm−∆(c). By the WB

condition, ci − cv + t Lv > 0. Since Q is a non-negative matrix, condition

(2.36) holds and ∂π∗i /∂t > 0. Hence, profits are increasing in transportation

cost.

Let Rr,s ∈ E. From (2.35) and (2.34)

∂π∗i /∂lr,s = ∂π∗i /∂p
∗
i · ∂p∗i /∂lr,s = ki t

−1 (p∗i − ci) t Ai(r, s)

= ki (p∗i − ci)Ai(r, s) > 0.

Hence, profits are increasing in road lengths.

The road consumer surplus CSi,j(P) for the road Ri,j is the integral of

the difference s− E(x; P) between the valuation s of the consumers for the

commodity and the expenditure E(x; P) for all the consumers living in the

road Ri,j. Then,

CS∗i,j = CSi,j(P
∗) =

∫ x∗
i,j

0

s− p∗i − t x dx+

∫ li,j

x∗
i,j

s− p∗j − t (li,j − x) dx

= s li,j + t (x∗i,j)
2 − t

2
l2i,j − p∗j li,j

= s li,j + (4 t)−1(p∗j − p∗i + t li,j)
2 − t

2
l2i,j − p∗j li,j. (2.37)

Corollary 2.1.5. If a Hotelling town satisfies the SB condition, the road

consumer surplus on road Ri,j, CSi,j(P
∗), is decreasing in production costs,
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decreasing in other road lengths, increasing in own length, decreasing in trans-

portation costs, increasing in admissible local firm market sizes Li and Lj and

decreasing in other admissible local firm market sizes.

Proof. From (2.37), we have

∂CS∗i,j/∂p
∗
i = −(2t)−1(p∗j − p∗i + t li,j) = −x∗i,j (2.38)

and

∂CS∗i,j/∂p
∗
j = (2 t)−1(p∗j − p∗i + t li,j)− li,j = x∗i,j − li,j. (2.39)

Since 0 < x∗i,j < li,j, ∂CS
∗
i,j/∂p

∗
i < 0 and ∂CS∗i,j/∂p

∗
j < 0.

Let a ∈ V . Hence, from (2.38), (2.39) and (2.31) and

∂CS∗i,j/∂ca = ∂CS∗i,j/∂p
∗
i · ∂p∗i /∂ca + ∂CS∗i,j/∂p

∗
j · ∂p∗j/∂ca

= −x∗i,j Qi,a + (x∗i,j − li,j)Qj,a.

Since Q is a non-negative matrix, ∂CS∗i,j/∂ca < 0 and road consumer surplus

on road Ri,j is decreasing in production costs.

Let b ∈ V \ {i, j}. Hence, from (2.38), (2.39), (2.32), (2.30),

∂CS∗i,j/∂Lb = ∂CS∗i,j/∂p
∗
i · ∂p∗i /∂Lb + ∂CS∗i,j/∂p

∗
j · ∂p∗j/∂Lb

= −x∗i,j tQi,b + (x∗i,j − li,j) tQj,b.

Since Q is a non-negative matrix, ∂CS∗i,j/∂Lb < 0 and consumer surplus on

road Ri,j is decreasing in other admissible local firm market sizes.

Similarly, from (2.38), (2.39), (2.32), (2.30)

∂CS∗i,j/∂Li = ∂CS∗i,j/∂p
∗
i · ∂p∗i /∂Li + ∂CS∗i,j/∂p

∗
j · ∂p∗j/∂Li + si,j ki

= −x∗i,j tQi,i + (x∗i,j − li,j) tQj,i + si,j ki

= t x∗i,j (Qj,i −Qi,i)− t li,j Qj,i + si,j ki.
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If

si,j >
t

ki

(
li,j Qj,i + x∗i,j (Qi,i −Qj,i)

)
then ∂CS∗i,j/∂Li > 0. Otherwise, ∂CS∗i,j/∂Li < 0.

Similarly,

∂CS∗i,j/∂Lj = t x∗i,j (Qj,j −Qi,j)− t li,j Qj,j + si,j kj.

If

si,j >
t

kj

(
li,j Qj,j + x∗i,j (Qi,j −Qj,j)

)
then ∂CS∗i,j/∂Lj > 0. Otherwise, ∂CS∗i,j/∂Lj < 0.

Since we consider the valuation s sufficiently large, we have CS∗i,j/∂Li > 0

and CS∗i,j/∂Lj > 0. Hence, road consumer surplus on road Ri,j is increasing

in admissible local firm market sizes Li and Lj.

From (2.37), (2.38), (2.39) and (2.33)

∂CS∗i,j/∂t =

= ∂CS∗i,j/∂p
∗
i · ∂p∗i /∂t+ ∂CS∗i,j/∂p

∗
j · ∂p∗j/∂t+ x∗i,j

(
li,j − x∗i,j

)
−
l2i,j
2

= −x∗i,j
∑
v∈V

Qi,v Lv + (x∗i,j − li,j)
∑
v∈V

Qj,v Lv + x∗i,j
(
li,j − x∗i,j

)
−
l2i,j
2

= x∗i,j

(∑
v∈V

(Qj,v −Qi,v)Lv + li,j − x∗i,j

)
− li,j

(∑
v∈V

Qj,v Lv +
li,j
2

)
.

Since 0 < x∗i,j < li,j and
∑

v∈V Qj,v Lv +
li,j
2
> 0, if

∑
v∈V

(Qj,v −Qi,v)Lv + li,j − x∗i,j <
∑
v∈V

Qj,v Lv +
li,j
2

(2.40)
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then ∂CS∗i,j/∂t < 0. But condition (2.40) is equivalent to

∑
v∈V

Qi,vLv + x∗i,j −
1

2
li,j > 0. (2.41)

Since Lv ≥ lm, then
∑

v∈V Qi,v Lv ≥
∑

v∈V Qi,v lm = lm. Hence,

∑
v∈V

Qi,vLv + x∗i,j −
1

2
li,j ≥ lm + x∗i,j −

1

2
li,j > lm −

1

2
li,j.

From the WB condition we know that lm > lM/2. Hence, lm > li,j/2,

condition (2.41) holds, and ∂CS∗i,j/∂t < 0. Therefore, consumer surplus on

road Ri,j is decreasing in transportation cost.

Let Rr,s ∈ E \ {Ri,j}. Hence, from (2.38), (2.39) and (2.34)

∂CS∗i,j/∂lr,s = ∂CS∗i,j/∂p
∗
i · ∂p∗i /∂lr,s + ∂CS∗i,j/∂p

∗
j · ∂p∗j/∂lr,s

= −x∗i,j t Ai(r, s) + (x∗i,j − li,j) t Aj(r, s).

Hence, ∂CS∗i,j/∂lr,s < 0 and road consumer surplus on road Ri,j is decreasing

in other road lengths.

From (2.37), (2.38), (2.39) and (2.34)

∂CS∗i,j/∂li,j = ∂CS∗i,j/∂p
∗
i · ∂p∗i /∂li,j + ∂CS∗i,j/∂p

∗
j · ∂p∗j/∂li,j + si,j

= −x∗i,j t Ai(i, j) + (x∗i,j − li,j) t Aj(i, j) + si,j

= x∗i,j t (Aj(i, j)− Ai(i, j))− li,j t Aj(i, j) + si,j.

If si,j > li,j t Aj(i, j) + x∗i,j t (Ai(i, j)− Aj(i, j)) then CS∗i,j/∂li,j > 0. Other-

wise, CS∗i,j/∂li,j < 0. Since we consider the valuation s sufficiently large, we

have CS∗i,j/∂li,j > 0 and road consumer surplus on road Ri,j is increasing in

local road length.

147



The (total) consumer surplus CS(P) is

CS(P) =
∑

Ri,j∈E

CSi,j(P).

Hence, CS∗ = CS(P∗) is given by

CS∗ = (4 t)−1
∑

Ri,j∈E

(
4 t s li,j + (p∗j − p∗i )2 − 2 t li,j (p∗j + p∗i )− t2 l2i,j

)
. (2.42)

Corollary 2.1.6. If a Hotelling town satisfies the SB condition, the con-

sumer surplus is decreasing in production costs, increasing in road lengths,

decreasing in transportation costs and increasing in admissible local firm mar-

ket sizes.

Proof. Let D(u,w) = p∗u − p∗w − t lu,w. From (2.42), we obtain that, for any

road Ru,w

∂CS∗/∂p∗u = (2 t)−1 (p∗u − p∗w − t lu,w) =
D(u,w)

2 t
< 0 (2.43)

and

∂CS∗/∂p∗w = (2 t)−1 (p∗w − p∗u − t lu,w) =
D(w, u)

2 t
< 0. (2.44)

Let a ∈ V . From (2.42), (2.43), (2.44) and (2.31)

∂CS∗/∂ca = (2 t)−1
∑

Ri,j∈E

(
D(i, j) · ∂p∗i /∂ca +D(j, i) · ∂p∗j/∂ca

)
= (2 t)−1

∑
Ri,j∈E

D(i, j)Qi,a +D(j, i)Qj,a.

Since D(i, j) < 0, D(j, i) < 0 and Q is non-negative, ∂CS∗/∂ca < 0 and

consumer surplus is decreasing in production costs.
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From (2.42), (2.43), (2.44), (2.32) and (2.30)

∂CS∗/∂La = (2 t)−1
∑

Ri,j∈E

D(i, j) · ∂p∗i /∂La +D(j, i) · ∂p∗j/∂La +

+ (4 t)−1
∑

Ri,j∈E

(
4 t s− 2 t (p∗j + p∗i )− 2 t2 li,j

)
∂li,j/∂La

= (2 t)−1
∑

Ri,j∈E

D(i, j) tQi,a +D(j, i) tQj,a + ka
∑
b∈Na

sa,b

+
1

2

∑
b∈Na

(2 s− p∗b − p∗a − t la,b) ka

=
1

2

 ∑
Ri,j∈E

D(i, j)Qi,a +D(j, i)Qj,a + ka
∑
b∈Na

sa,b

 .

Since we consider s sufficiently high, ∂CS∗/∂La > 0 and consumer surplus

is increasing in admissible local firm market sizes.

From (2.42), (2.43), (2.44) and (2.33)

∂CS∗/∂t = (2 t)−1
∑

Ri,j∈E

(
D(i, j) · ∂p∗i /∂t+D(j, i) · ∂p∗j/∂t

)
−

− (2 t)−2
∑

Ri,j∈E

(p∗j − p∗i )2 + t2 l2i,j

= (2 t)−1
∑

Ri,j∈E

D(i, j)
∑
v∈V

Qi,v Lv +D(j, i)
∑
v∈V

Qj,v Lv −

− (2 t)−2
∑

Ri,j∈E

(p∗j − p∗i )2 + t2 l2i,j.

SinceD(i, j) < 0, D(j, i) < 0 and (p∗j−p∗i )2+t2 l2i,j > 0, we have ∂CS∗/∂t < 0.

Hence, consumer surplus is decreasing in transportation cost.
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Let Rr,s ∈ E. From (2.42), (2.43), (2.44) and (2.34)

∂CS∗/∂lr,s = (2 t)−1
∑

Ri,j∈E

D(i, j) · ∂p∗i /∂lr,s +D(j, i) · ∂p∗j/∂lr,s + sr,s

= (2 t)−1
∑

Ri,j∈E

D(i, j) t Ai(r, s) +D(i, j) t Aj(r, s) + sr,s

=
1

2

2 sr,s +
∑

Ri,j∈E

D(i, j)Ai(r, s) +D(j, i)Aj(r, s)

 .

Since we consider s sufficiently high, ∂CS∗/∂lr,s > 0 and consumer surplus

is increasing road lengths.

The (total) welfare W (P) is

W (P) =
∑
i∈V

πi(P) + CS(P).

Hence, W ∗ = W (P∗) is given by

W ∗ = (4 t)−1
∑

Ri,j∈E

2 t li,j (2 s−ci−cj)+2 (p∗j−p∗i ) (cj − ci)−(p∗j−p∗i )2−t2 l2i,j

(2.45)

Corollary 2.1.7. If a Hotelling town satisfies the SB condition, the welfare

is increasing in road lengths and in local firm market sizes. The marginal

rates on production and transportation costs are inconclusive.

Proof. Let G(u,w) = pw − cw − pu + cu. From (2.45), we obtain that for any

road Ru,w

∂W ∗/∂p∗u = (2 t)−1 (pw − cw − pu + cu) =
G(u,w)

2 t
; (2.46)

and

∂W ∗/∂p∗w = (2 t)−1 (pu − cu − pw + cw) = −G(u,w)

2 t
. (2.47)
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Let a ∈ V . From (2.46), (2.47) and (2.31)

∂W ∗/∂ca = (2 t)−1
∑

Ri,j∈E

G(i, j) · ∂p∗i /∂ca −G(i, j) · ∂p∗j/∂ca

= (2 t)−1
∑

Ri,j∈E

G(i, j) (Qi,a −Qj,a) .

Let H(i, j) = 2 s− ci− cj − li,j. From (2.45), (2.46), (2.47) (2.32) and (2.30)

∂W ∗/∂La = (2 t)−1
∑

Ri,j∈E

G(i, j) · ∂p∗i /∂La −G(i, j) · ∂p∗j/∂La +

+
1

2

∑
Ri,j∈E

(2 s− ci − cj − t li,j) · ∂li,j/∂La

= (2 t)−1
∑

Ri,j∈E

tQi,aG(i, j)− tQj,aG(i, j) +
1

2

∑
b∈Na

H(a, b) ka

=
1

2

 ∑
Ri,j∈E

G(i, j) (Qi,a −Qj,a) + ka
∑
b∈Na

H(a, b)

 .

Since we consider s sufficiently high, ∂W ∗/∂La > 0 and welfare is increasing

in admissible local firm market sizes.

151



From (2.45), (2.46), (2.47) and (2.33)

∂W ∗/∂t = (2 t)−1
∑

Ri,j∈E

G(i, j) · ∂p∗i /∂t−G(i, j) · ∂p∗j/∂t−

− (2 t)−2
∑

Ri,j∈E

2 (p∗j − p∗i ) (cj − ci)− (p∗j − p∗i )2 + t2 l2i,j

= (2 t)−1
∑

Ri,j∈E

G(i, j)
∑
v∈V

Lv (Qi,v −Qj,v) +

+ (2 t)−2
∑

Ri,j∈E

2 (p∗j − p∗i ) (ci − cj) + (p∗j − p∗i )2 − t2 l2i,j

= (2 t)−2

 ∑
Ri,j∈E

2G(i, j)
∑
v∈V

Lv (Qi,v −Qj,v)

+

+ (2 t)−2
(
2 (p∗j − p∗i ) (ci − cj) + (p∗j − p∗i )2 − t2 l2i,j

)
.

Let Rr,s ∈ E. From (2.45), (2.46), (2.47) and (2.34)

∂W ∗/∂lr,s = (2 t)−1
∑

Ri,j∈E

G(i, j) · ∂p∗i /∂lr,s −G(i, j) · ∂p∗j/∂lr,s +

+
1

2
(2 s− cr − cs − t lr,s)

= (2 t)−1
∑

Ri,j∈E

(
G(i, j) (t Ai(r, s)− t Aj(r, s)) +

1

2
H(r, s)

)

=
1

2

 ∑
Ri,j∈E

G(i, j) (Ai(r, s)− Aj(r, s)) +H(r, s)

 .

Since we consider s sufficiently high, ∂W ∗/∂lr,s > 0 and welfare is increasing

road lengths.
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2.2 Quadratic transportation costs

This section extends the Hotelling model with quadratic transportation costs

to networks.

A consumer located at a point x of the network who decides to buy at

firm Fi spends

E(x; i,P) = pi + t d2(x, yi)

the price pi charged by the firm Fi plus the transportation cost that is pro-

portional t to the square of the minimal distance measured in the network

between the position yi of the firm Fi and the position x of the consumer.

2.2.1 Local optimal equilibrium price strategy

For every v ∈ V , let εv = d(v, yv) and j(v) be the node with the property

that yv is at the road Rv,j(v). The shift location matrix S(v) associated to

node v is defined by

si,j(v) =



εv if i = v and j ∈ Nv \ {j(v)} ;

−εv if i = v and j = j(v) ;

εv if j = v and i ∈ Nv \ {j(v)} ;

−εv if j = v and i = j(v) ;

0 otherwise.

The distance l̃i,j = d(yi, yj) between the location of firms Fi and Fj is given

by

l̃i,j = li,j +
∑

v∈{i,j}

si,j(v). (2.48)

Let ε = maxv∈V εv. Hence, for every i, j ∈ V we have

li,j − 2 ε ≤ l̃i,j ≤ li,j + 2 ε.
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We observe that, for every road Ri,j there is an indifferent consumer located

at a distance

0 < xi,j =
pj − pi + t l̃2i,j

2 t l̃i,j
< l̃i,j (2.49)

of firm Fi if and only if |pi− pj| < t l̃2i,j. Thus, a price strategy P determines

a local market structure if and only if |pi − pj| < t l̃2i,j for every road Ri,j.

Hence, if

|pi − pj| < t (li,j − 2 ε)2 = t l2i,j − 4 t li,j ε+ 4 t ε2 (2.50)

then condition (2.49) is satisfied. Therefore, if condition (2.50) holds then

the price strategy P determines a local market structure.

Let ki denote is the cardinality of the set Ni that is equal to the degree of

the vertex i. If the price strategy determines a local market structure then

S(i,P) = (2− ki) εi +
∑
j∈Ni

xi,j

and

πi(P,C) = (pi − ci)S(i,P)

=
pi − ci

2 t

(
2 t (2− ki) εi +

∑
j∈Ni

pj − pi + t l̃2i,j

l̃i,j

)
. (2.51)

Given a pair of price strategies P and P∗ and a firm Fi, we define the

price vector P̃(i,P,P∗) whose coordinates are p̃i = p∗i and p̃j = pj, for every

j ∈ V \ {i}. Let P and P∗ be price strategies that determine local market

structures. The price strategy P∗ is a local best response to the price strategy

P, if for every i ∈ V the price strategy P̃(i,P,P∗) determines a local market

structure and

∂πi(P̃(i,P,P∗),C)

∂p̃i
= 0 and

∂2πi(P̃(i,P,P∗),C)

∂p̃2i
< 0.
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Let l̃i =
∑

j∈Ni

1

l̃i,j
. The Hotelling town admissible market size L is the

vector whose coordinates are the admissible local firm market sizes

Li =
1

l̃i

∑
j∈Ni

li,j,

The Hotelling town neighboring market structure K is the matrix whose

elements are (i) ki,j = l̃−1i l̃−1i,j , if there is a road Ri,j between the firms Fi and

Fj; and (ii) ki,j = 0, if there is not a road Ri,j between the firms Fi and Fj.

The Hotelling town firm deviation is the vector Y whose coordinates are

Yi = l̃−1i

(
(2− ki) εi +

∑
j∈Ni

si,j(j)

)
.

Let 1 denote the identity matrix.

Lemma 2.2.1. Let P and P∗ be price strategies that determine local market

structures. The price strategy P∗ is the local best response to price strategy

P if and only if

P∗ =
1

2
(C + t (L + Y)) +

1

2
KP (2.52)

and the price strategies P̃(i,P,P∗) determine local market structures for all

i ∈ V .

Proof.

By (2.51), the profit function πi(P,C) of firm Fi, in a local market structure,

is given by

πi(P,C) = (2 t)−1(pi − ci)

(
2 t (2− ki) εi +

∑
j∈Ni

pj − pi + t l̃2i,j

l̃i,j

)

Let P̃(i,P,P∗) be the price vector whose coordinates are p̃i = p∗i and p̃j =

pj, for every j ∈ V \ {i}. Since P and P∗ are local price strategies, the
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local best response of firm Fi to the price strategy P, is given by computing

∂πi(P̃(i,P,P∗),C)/∂p̃i = 0. Hence,

p∗i =
1

2

(
ci +

2 t (2− ki)
l̃i

εi +
1

l̃i

∑
j∈Ni

t l̃i,j +
pj

l̃i,j

)
. (2.53)

By (2.48), we obtain

p∗i =
1

2

ci +
2 t (2− ki)

l̃i
εi +

t

l̃i

∑
j∈Ni

∑
v∈{i,j}

si,j(v) +
1

l̃i

∑
j∈Ni

t li,j +
pj

l̃i,j

 .

We note that∑
j∈Ni

∑
v∈{i,j}

si,j(v) =
∑
j∈Ni

si,j(i) +
∑
j∈Ni

si,j(j) = (ki − 2) εi +
∑
j∈Ni

si,j(j).

Hence,

p∗i =
1

2

(
ci +

t

l̃i

(
(2− ki) εi +

∑
j∈Ni

si,j(j)

)
+

1

l̃i

∑
j∈Ni

t li,j +
pj

l̃i,j

)
.

Therefore, since ∂2πi(P̃(i,P,P∗),C)/∂p̃2i = −l̃i/t < 0, the local best re-

sponse strategy prices P∗ is given by

P∗ =
1

2
(C + t (Y + L) + K P) .

Definition 2.2.1. A Hotelling town satisfies the weak bounded length and

costs (WB) condition, if

∆(c) + t∆2(l) < t (lm − 2 ε)2 − 4 t ε (lM + lm).

Let P and P∗ be price strategies that determine local market structures.
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A price strategy P∗ is a local optimum price strategy if P∗ is the local best

response to P∗.

Proposition 2.2.1. If the Hotelling town satisfies the WB condition, then

there is unique local optimum price strategy given by

PL =
1

2

(
1− 1

2
K

)−1
(C + t (L + Y))

=
∞∑

m=0

2−(m+1)Km (C + t (L + Y)) . (2.54)

The local optimum price strategy PL determines a local market structure.

Furthermore, the local optimal equilibrium prices pLi are bounded by

t (lm − 2 ε)2 +
1

2
(ci + cm) ≤ pLi ≤ t (lM + 2 ε)2 +

1

2
(ci + cM). (2.55)

The local optimal profit πL
i = πL

i (P,C) of firm Fi is given by

πL
i (P,C) = (2t)−1 l̃i (pLi − ci)2

and it is bounded by

ki (2 t (lm − 2 ε)2 −∆(c))2

8 t (lM + 2 ε)
≤ πL

i (P,C) ≤ ki (2 t (lM + 2 ε)2 + ∆(c))2

8 t (lm − 2 ε)

Corollary 2.2.1. Consider a Hotelling town where all firms are located at

the nodes. If ∆(c) + t∆2(l) < t l2m, then there is unique local optimum price

strategy given by

PL =
∞∑

m=0

2−(m+1)Km (C + tL) .

The local optimum price strategy PL determines a local market structure.
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Furthermore, the local optimal equilibrium prices pLi are bounded by

t l2m +
1

2
(ci + cm) ≤ pLi ≤ t l2M +

1

2
(ci + cM).

The local optimal profit πL
i = πL

i (P,C) of firm Fi is given by

πL
i (P,C) = (2t)−1 (pLi − ci)2

∑
j∈Ni

1

li,j

and it is bounded by

ki (2 t l2m −∆(c))2

8 t lM
≤ πL

i (P,C) ≤ ki (2 t l2M + ∆(c))2

8 t lm

Proof of Proposition 2.2.1.

Let, first, prove that K is a stochastic matrix (i.e.,
∑

j∈V ki,j = 1, for every

i ∈ V ). Since ki,j = l̃−1i l̃−1i,j and l̃i =
∑

j∈Ni

1

l̃i,j
, we have

∑
j∈V

ki,j =
∑
j∈Ni

ki,j =
∑
j∈Ni

l̃−1i l̃−1i,j = l̃−1i

∑
j∈Ni

l̃−1i,j =
1∑

j∈Ni

1

l̃i,j

∑
j∈Ni

1

l̃i,j
= 1.

Then, K is a stochastic matrix, and we have ‖K‖ = 1. Hence, the matrix Q

is well-defined by

Q =
1

2

(
1− 1

2
K

)−1
=

∞∑
m=0

2−(m+1) Km

and Q is also a non-negative and stochastic matrix. By Lemma 2.2.1, a local
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optimum price strategy satisfy equality (2.52). Therefore,

PL =
1

2

(
1− 1

2
K

)−1
(C + t (L + Y))

=
∞∑

m=0

2−(m+1) Km (C + t (L + Y)) ,

and so PL satisfies (2.54). By construction,

pLi =
∑
v∈V

Qi,v(cv + t (Lv + Yv)). (2.56)

Let us prove that the price strategy PL is local, i.e., the indifferent consumer

xi,j satisfies 0 < xi,j < l̃i,j for every Ri,j ∈ E. We note that

lm − 2 ε

kv
=

1

kv
lm − 2 ε

≤ l̃−1v =
1∑

j∈Nv

1

l̃v,j

≤ 1

kv
lM + 2 ε

≤ lM + 2 ε

kv
. (2.57)

Hence,

lm − 2 ε

kv

∑
j∈Nv

lv,j ≤ Lv = l̃−1v

∑
j∈Nv

lv,j ≤
lM + 2 ε

kv

∑
j∈Nv

lv,j.

Therefore,

lm (lm − 2 ε) ≤ Lv ≤ lM (lM + 2 ε). (2.58)

We note that

−kv ε ≤
∑
j∈Nv

sv,j(j) ≤ kv ε

If kv = 1 then Yv = l̃−1v

(
εv +

∑
j∈Nv

sv,j(j)
)

, and from (2.57)

−ε(lm − 2 ε) ≤ (lm − 2 ε) (εv − ε) ≤ Yv ≤ (lM + 2 ε) (εv + ε) ≤ 2 ε(lM + 2 ε);

(2.59)
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if kv = 2 then Yv = l̃−1v

∑
j∈Nv

sv,j(j), and from (2.57)

−ε (lm − 2 ε) = − lm − 2 ε

2
2 ε ≤ Yv ≤

lM + 2 ε

2
2 ε = ε (lM + 2 ε); (2.60)

and if kv ≥ 3 then Yv = l̃−1v

(
(2− kv) εv +

∑
j∈Nv

sv,j(j)
)

, and from (2.57)

−((kv − 2) εv + kv ε)
lm − 2 ε

kv
≤ Yv ≤

lM + 2 ε

kv
((2− kv) εv + kv ε) .

Hence, if kv ≥ 3 then

−2 ε (lm − 2 ε) ≤ − lm − 2 ε

kv
(kv (ε+ εv)) ≤ Yv ≤ ε (lM + 2 ε). (2.61)

Therefore, from (2.59), (2.60) and (2.61), we have

−2 ε (lm−2 ε) ≤ Yv = l̃−1v

(∑
j∈Nv

sv,j(j)− εv(kv − 2)

)
≤ 2 ε (lM +2 ε). (2.62)

Since Q is a nonnegative and stochastic matrix, we obtain∑
v∈V

Qi,v(cm + t (lm − 2 ε)2) = cm + t (lm − 2 ε)2

and ∑
v∈V

Qi,v(cM + t (lM + 2 ε)2) = cM + t (lM + 2 ε)2.

Hence, putting (2.56), (2.58) and (2.62) together we obtain that

cm + t (l2m − 4 lm ε+ 4 ε2) ≤ pLi ≤ cM + t (l2M + 4 lM ε+ 4 ε2).

Therefore,

cm + t (lm − 2 ε)2 ≤ pLi ≤ cM + t (lM + 2 ε)2.
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Since the last relation is satisfied for every firm, we obtain

pLi − pLj ≥ − (cM − cm + t(∆2(l) + 4 ε(lM + lm)))

and

pLi − pLj ≤ cM − cm + t(∆2(l) + 4 ε(lM + lm)).

Therefore,

|pLi − pLj | ≤ ∆(c) + t(∆2(l) + 4 ε(lM + lm)).

Hence, by the WB condition, we conclude that

|pLi − pLj | < t (lm − 2 ε)2.

Thus, by equation (2.50), we obtain that the indifferent consumer is located

at 0 < xi,j < l̃i,j for every road Ri,j ∈ E. Hence, the price strategy PL is

local and is the unique local optimum price strategy.

From (2.56), (2.58) and (2.62), we obtain

pLi ≥
∑
v∈V

Qi,v t(lm − 2 ε)2 +
∑

v∈V \{i}

Qi,v cm +Qi,i ci.

By construction of matrix Q, we have Qi,i > 1/2. Furthermore, since Q is

stochastic, ∑
v∈V \{i}

Qi,v < 1/2,

∑
v∈V Qi,v t(lm − 2 ε)2 = t(lm − 2 ε)2. Hence,

pLi ≥ t (lm − 2 ε)2 +
1

2
(ci + cm).

Similarly, we obtain

pLi ≤ t (lM + 2 ε)2 +
1

2
(ci + cM),
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and so the local optimal equilibrium prices pLi are bounded and satisfy (2.55).

We can write the the profit function (2.51) of firm Fi for the price strategy

PL as

πL
i = πi(P

L,C) = (2t)−1(pLi − ci)

(
2 t (2− ki) εi − l̃i pLi +

∑
j∈Ni

pLj + t l̃2i,j

l̃i,j

)
(2.63)

Since PL satisfies the best response function (2.53), we have

2 pLi = ci +
2 t (2− ki)

l̃i
εi +

1

l̃i

∑
j∈Ni

pLj + t l̃2i,j

l̃i,j
.

Therefore,
∑

j∈Ni

pLj + t l̃2i,j

l̃i,j
= 2 l̃i p

L
i − l̃i ci− 2 t (2− ki) εi, and replacing this

sum in the profit function (2.63), we obtain

πL
i = (2t)−1(pLi − ci) l̃i (pLi − ci) = (2t)−1 l̃i (pLi − ci)2.

Hence, since
ki

lM + 2 ε
≤ l̃i ≤

ki
lm − 2 ε

,

using the price bounds (2.55), we conclude

ki (2 t (lm − 2 ε)2 −∆(c))2

8 t (lM + 2 ε)
≤ πL

i ≤
ki (2 t (lM + 2 ε)2 + ∆(c))2

8 t (lm − 2 ε)
.

Let a ∈ V , Rb,c ∈ E and d ∈ V \ {i}. The marginal rates of the local

optimal equilibrium prices pLi are positive with respect to the production

costs ca, admissible local firm market sizes La, transportation costs t and

road lengths lb,c. The marginal rates of the local optimal equilibrium profit

πL
i are negative with respect to the production costs ci and positive with

respect to the production costs cd, admissible local firm market sizes La,
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transportation costs t and road lengths lb,c.

2.2.2 Nash equilibrium price strategy

The price strategy P∗ is a best response to the price strategy P, if

(p̃i − ci)S(i, P̃(i,P,P∗)) ≥ (p′i − ci)S(i,P′i),

for all i ∈ V and for all price strategies P′i whose coordinates satisfy p′i ≥ ci

and p′j = pj for all j ∈ V \ {i}. A price strategy P∗ is a Hotelling town Nash

equilibrium if P∗ is the best response to P∗.

Lemma 2.2.2. In a Hotelling town satisfying the WB condition, if there is

a Nash price P∗ then P∗ is unique and P∗ = PL.

Hence, the local optimum price strategy PL is the only candidate to

be a Nash equilibrium price strategy. However, PL might not be a Nash

equilibrium price strategy because there can be a firm Fi that by decreasing

his price is able to absorb markets of other firms in such a way that increases

its own profit. Therefore, the best response price strategy PL,∗ to the local

optimum price strategy PL might be different from PL.

Proof of Lemma 2.2.2.

Suppose that P ∗ is a Nash price strategy and that P∗ 6= PL. Hence, P∗ does

not determine a local market structure, i.e., there exists i ∈ V such that

M(i,P∗) 6⊂ ∪j∈Ni
Ri,j.

Hence, there exists j ∈ Ni such that M(j,P∗) = 0 and, therefore, π∗j = 0.

Moreover, in this case, we have that

p∗j > p∗i + t l̃2i,j.
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Consider, now, that Fj changes his price to pj = cj + t∆2(l) + 4 t ε (lM + lm).

Since p∗i > ci and cj − ci ≤ ∆(c) we have that

pj − p∗i = cj + t∆2(l) + 4 t ε (lM + lm)− p∗i < ∆(c) + t∆2(l) + 4 t ε (lM + lm).

Since the Hotelling town satisfies the WB condition, we obtain

pj − p∗i < t (lm − 2 ε)2 ≤ t (li,j − 2 ε)2 ≤ t l̃2i,j.

Hence, M(j, P̃(j,P∗,P)) > 0 and

πj = (t∆2(l) + 4 t ε (lM + lm))S(j, P̃(j,P∗,P)) > 0.

Therefore, Fj will change its price and so P∗ is not a Nash equilibrium price

strategy. Hence, if there is a Nash price P∗ then P∗ = PL.

Let ∪j∈Ni
Ri,j be the 1-neighbourhood N (i, 1) of a firm i ∈ V . Let

∪j∈Ni
∪k∈Nj

Rj,k be the 2-neighbourhood N (i, 2) of a firm i ∈ V .

Lemma 2.2.3. In a Hotelling town satisfying the WB condition,

M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2)

for every i ∈ V .

Hence, a consumer x ∈ Rj,k might not buy in its local firms Fj and

Fk. However, the consumer x ∈ Rj,k still has to buy in a firm Fi that is a

neighboring firm of its local firms Fj and Fk, i.e. i ∈ Nj ∪Nk.

Proof of Lemma 2.2.3.

By contradiction, let us consider a consumer z ∈ M(i, P̃(i,PL,PL,∗)) and

z /∈ N (i, 2). The price that consumer z pays to buy in firm Fi is given by

e = pi + t
(
l̃i1,i2 + l̃i2,i3 + d (yi3 , z)

)2
≥ pi + t (li1,i2 + li2,i3 − 2 ε+ d (yi3 , z))

2
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where pi = pL,∗i is the coordinate of the vector P̃(i,PL,PL,∗) and for the

2-path (Ri1,i2 , Ri2,i3) with i1 = i. If the consumer z buys at firm Fi3 , then

the price that has to pay is

ẽ = pLi3 + t d2 (yi3 , z).

Since, by hypothesis, z ∈M(i, P̃(i,PL,PL,∗)), we have e < ẽ. Therefore

pi < pLi3 − t (li1,i2 + li2,i3 − 2 ε)2 − 2 t (li1,i2 + li2,i3 − 2 ε) d(yi3 , z).

Since li,j ≥ lm for all Ri,j ∈ E,

pi < pLi3 − 4 t (lm − ε)2 − 4 t (lm − ε) d(yi3 , z).

By (2.55), pLi ≤ t (lM + 2 ε)2 + cM for all i ∈ V . Hence,

pi < cM + t (lM + 2 ε)2 − 4 t (lm − ε)2 − 4 t (lm − ε) d(yi3 , z).

Furthermore,

pi − ci < ∆(c) + t (lM + 2 ε)2 − 4 t (lm − ε)2

= ∆(c) + t∆2(l)− 3 t l2m + 4 t ε (lM + lm) + 4 t lm ε+ 4 t ε2 − 4 t ε2

= ∆(c) + t∆2(l)− t (lm − 2 ε)2 + 4 t ε (lM + lm) + 2 t (2 ε2 − l2m).

Since lm > 2 ε, by the WB condition, pi− ci < 0. Hence, πL,∗
i < 0 which con-

tradicts the fact that pi is the best response to PL (since πL
i > 0). Therefore,

z ∈ N (i, 2) and M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2).

Definition 2.2.2. A Hotelling town satisfies the strong bounded length and

costs (SB) condition, if

∆(c) + t∆2(l) ≤
(2 t (lm − 2 ε)2 −∆(c))2

8 t kM (lM + 2 ε)2
− 4 t ε (lM + lm).
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The SB condition implies the WB condition, and so under the SB con-

dition the only candidate to be a Nash equilibrium price strategy is the local

optimum strategy price PL. On the other hand, the condition

∆(c) + t∆2(l) ≤
t l4M

8 kM (lM + 2 ε)2
− 4 t ε (lM + lm).

together with the WB condition implies the SB condition. Hence, we note

that the condition

∆(c) + t∆2(l) ≤
t (lm − 2 ε)4

8 kM (lM + 2 ε)2
− 4 t ε (lM + lm).

implies the WB and SB conditions.

Theorem 2.2.1. If a Hotelling town satisfies the SB condition then there is

a unique Hotelling town Nash equilibrium price strategy P∗ = PL.

Hence, the Nash equilibrium price strategy for the Hotelling town sat-

isfying the SB condition determines a local market structure, i.e. every

consumer located at x ∈ Ri,j spends less by shopping at his local firms Fi

or Fj than in any other firm in the town and so the consumer at x will buy

either at his local firm Fi or at his local firm Fj.

For ε small enough, a cost and length uniform Hotelling town, i.e. cm =

cM and lm = lM , has a unique pure network Nash price strategy.

Corollary 2.2.2. Consider a Hotelling town where all firms are located at

the nodes. If

∆(c) + t∆2(l) ≤
(2 t l2m −∆(c))2

8 t kM l2M

then there is a unique Hotelling town Nash equilibrium price strategy P∗ =

PL.

Proof of Theorem 2.2.1.

By Proposition 2.2.1 and Lemma 2.2.2, if there is a Nash equilibrium price

strategy P∗ then P∗ is unique and P∗ = PL.
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We note that if M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 1) for every i ∈ V then

P̃(i,PL,PL,∗) = pLi and so PL is a Nash equilibrium.

By Lemma 2.2.3, we have that M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2) for every i ∈ V .

Now, we will prove that the SB condition implies that firm Fi earns more

competing only in the 1-neighborhood than competing in a 2-neighborhood.

By Proposition 2.2.1,

πL
i ≥

ki (2 t (lm − 2 ε)2 −∆(c))2

8 t (lM + 2 ε)
(2.64)

By Lemma 2.2.3,

πi(P̃(i,PL,PL,∗),C) ≤ (pi − ci)
∑
j∈Ni

l̃i,j +
∑

k∈Nj\{i}

l̃j,k


≤ (pi − ci)

∑
j∈Ni

∑
k∈Nj

l̃j,k,

where pi = pL,∗i is the coordinate of the vector P̃(i,PL,PL,∗). Hence,

πi(P̃(i,PL,PL,∗),C) ≤ (pi − ci)
∑
j∈Ni

∑
k∈Nj

(lj,k + ε) ≤ (pi − ci)ki kM (lM + ε).

(2.65)

By contradiction, let us consider a consumer z ∈ M(i, P̃(i,PL,PL,∗)) and

z /∈ N (i, 1). Let i2 ∈ Ni be the vertex such that z ∈ N (i2, 1). The price that

consumer z pays to buy in firm Fi is given by

e = pi + t (l̃i,i2 + d (yi2 , z))
2 ≥ pi + t (li,i2 − 2 ε+ d (yi2 , z))

2.

If the consumer y buys at firm Fi2 , then the price that has to pay is

ẽ = pLi2 + t d2 (yi2 , z).
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Since, by hypothesis, z ∈M(i, P̃(i,PL,PL,∗)), we have e < ẽ. Therefore

pi < pLi2 − t (li,i2 − 2 ε)2 − 2 t (li,i2 − 2 ε) d (yi2 , z).

By (2.55), pLi2 ≤ t (lM +2 ε)2+
1

2
(cM +ci2) ≤ cM +t (lM +2 ε)2. Since li,i2 ≥ lm,

we have

pi < cM + t (lM + 2 ε)2 − t (lm − 2 ε)2 − 2 t (lm − 2 ε) d (yi2 , z).

Thus,

pi − ci < ∆(c) + t (lM + 2 ε)2 − t (lm − 2 ε)2.

Hence, from (2.65) we obtain

πi(P̃(i,PL,PL,∗),C) < ki kM (lM + ε)
(
∆(c) + t (lM + 2 ε)2 − t (lm − 2 ε)2

)
.

Hence,

πi(P̃(i,PL,PL,∗),C) < ki kM (lM + 2 ε)
(
∆(c) + t (lM + 2 ε)2 − t (lm − 2 ε)2

)
.

By the SB condition,

πi(P̃(i,PL,PL,∗),C) <
ki (2 t (lm + 2 ε)2 −∆(c))2

8 t (lM + 2 ε)
. (2.66)

By inequalities (2.64) and (2.66), πL
i > πi(P̃(i,PL,PL,∗),C), which contra-

dicts the fact that pi is the best response to PL. Therefore, z ∈ N (i, 1) and

M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 1). Hence, P̃(i,PL,PL,∗) = pLi and so PL is a

Nash equilibrium.

We are going to present an example satisfying the WB condition but not

the SB condition. Furthermore, we will show that in this example the local

optimal prices do not form a Nash price equilibrium. Consider the Hotelling

town network presented in figure 2.4. The parameter values are εi = 0, ci = 0,
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Figure 2.4: Star Network not satisfying the SB condition

lm = 5, lM = 7, ∆2(l) = 24 and kM = 3. Hence, Network 2.4 satisfies the

WB condition. By Proposition 2.2.1, the local optimal equilibrium prices

are

PL = t

(
3780

107
,
6455

214
,
3816

107
,
9023

214

)
and the correspondent profits are

πL = t

(
34020

107
,
8333405

91592
,
1213488

11449
,
11630647

91592

)
.

We will show that the local optimum price strategy is not a Nash equilibrium.

The profits of the firms are given by πL
i = pi S(i,PL), and the local market

sizes S(i,PL) are

S(i,PL) =
πL
i

pLi
=
li p

L
i

2 t

Hence, the local market sizes are

S(1,PL) = 9; S(2,PL) =
6455

2140
; S(3,PL) =

3816

1284
; S(4,PL) =

9023

2996
.

Suppose that firm F2 decides to lower its price in order to capture the market

of firm F1. The firm F2 captures the market of F1, excluding F1 from the

game, if the firm F2 charges a price p2 such that p2+25 t < pL1 or, equivalently

169



p2 < 1105 t/107. Let us consider p2 = 1105 t/107− δ, where δ is sufficiently

small. Hence, for this new price, firm F2 keeps the market M(2,PL) and,

since the price of F2 at location of F1 is less that pL1 , firm F2 gains at least

the market of firm F1. Thus, the new market M(2,P) of firm F2 is such that

S(2,P) > S(1,PL) + S(2,PL). Therefore, S(2,P) > 5143/428 and so

π2 > p2 S(2,P) =

(
1105

107
t− δ

)
5143

428
=

11366030

91592
t− 5143

428
δ.

Thus π2 >
8333405

91592
t = πL

2 , and so firm F2 prefers to alter its price pL2 .

Therefore, PL is not a Nash equilibrium price.

2.2.3 Space bounded information

The notation in this subsection has already been introduced in subsection

2.2.3. However, we duplicate the information in order to guarantee the inde-

pendence of the sections.

Given m + 1 vertices x0, . . . , xm with the property that there are roads

Rx0,x1 , . . . , Rxm−1,xm the (ordered) m path R is

R = (Rx0,x1 , . . . , Rxm−1,xm).

Let R(i, j;m) be the set of all m (ordered) paths R = (Rx0,x1 , . . . , Rxm−1,xm)

starting at i = x0 and ending at j = xm. Given a m order path R =

(Rx0,x1 , . . . , Rxm−1,xm), the corresponding weight is

k(R) =
m−1∏
q=0

kxq ,xq+1 .

The matrix K0 is the identity matrix and, for n ≥ 1, the elements of the
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matrix Km are

kmi,j =
∑

R∈R(i,j;m)

k(R).

Definition 2.2.3. A Hotelling town has n space bounded information (n-

I) if for every 1 ≤ m ≤ n, for every firm Fi and for every non-empty set

R(i, j;m): (i) firm Fi knows the cost cj and the average length road Lj and

the firm deviation Yj of firm Fj; (ii) for every m path R ∈ R(i, j;m), firm

Fi knows the corresponding weight k(R).

The n local optimal price vector is

P(n) =
n∑

m=0

2−(m+1) Km (C + t (L + Y)) .

We observe that in a n-I Hotelling town, the firms might not be able to

compute K, C, L or Y. However, every firm Fi is able to compute his n

local optimal price pi(n)

pi(n) =
n∑

m=0

2−(m+1)
∑
v∈V

kmi,v (cv + t (Lv + Yv)) .

By (2.52), the best response P′ to P(n) is given by

P′ =
1

2
(C + t (L + Y)) +

1

2
K P(n)

=
1

2
(C + t (L + Y)) +

n∑
m=0

2−(m+2)Km+1 (C + t (L + Y))

=
n+1∑
m=0

2−(m+1)Km (C + t (L + Y)) = P(n+ 1).

Hence, P(n+ 1) is the best response to P(n) for n sufficiently large.
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Let G denote the number of nodes in the network and let

e =
∆(c) + t (lM + 2 ε)2

lm − 2 ε
+ 2 t (lM + 2 ε).

Theorem 2.2.2. A Hotelling town satisfying the WB condition has a local

optimum price strategy PL that is well approximated by the n local optimal

price P(n) with the following 2−n bound

0 ≤ pLi − pi(n) ≤ 2−(n+1)G (cM + t (lM + 2 ε)2).

The profit πi(P
L) is well approximated by πi(P(n)) with the following bound

|πi(PL)− πi(P(n))| ≤ 2−(n+2)Gt−1 (cM + t (lM + 2 ε)2) (ki e+ 4 t ε) .

Proof. By Proposition 2.2.1, if a Hotelling town satisfies the WB condition

then there is local optimum price strategy PL given by

PL =
∞∑

m=0

2−(m+1)Km (C + t (L + Y)) .

Considering Q =
∑∞

m=0 2−(m+1)Km, we can write the equilibrium prices as

pLi =
∑
v∈V

Qi,v (cv + t (Lv + Yv)), where Qi,v =
∞∑

m=0

2−(m+1)kmi,v.

For the space bounded information Hotelling town, the n local optimal price

P(n) is given by

P(n) =
n∑

m=0

2−(m+1)Km (C + t (L + Y))
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and

pi(n) =
∑
v∈V

Qi,v(n) (cv + t (Lv + Yv)), where Qi,v(n) =
n∑

m=0

2−(m+1)kmi,v.

The difference Ri(n) between pLi and pi(n) is positive and is given by

Ri(n) =
∑
v∈V

(Qi,v −Qi,v(n)) (cv + t (Lv + Yv)).

We note that

Qi,v −Qi,v(n) =
∞∑

m=n+1

2−(m+1)kmi,v.

Since 0 ≤ kmi,v ≤ 1, for all m ∈ N and all i, v ∈ V and

∞∑
m=n+1

2−(m+1) = 2−(n+1),

we have that

Qi,v −Qi,v(n) ≤ 2−(n+1).

Hence,

Ri(n) ≤
∑
v∈V

2−(n+1) (cv + t (Lv + Yv)).

Since Lv ≤ lM (lM + 2 ε), Yv ≤ 2 ε (lM + 2 ε) and cv ≤ cM , we have that

Ri(n) ≤ 2−(n+1)G (cM + t (lM + 2 ε)2). (2.67)

Therefore,

0 ≤ pLi − pi(n) ≤ 2−(n+1)G (cM + t (lM + 2 ε)2).
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The profit for firm Fi for the local optimal price is given by

πi(P
L) = (2t)−1 (pLi − ci)

(
2 t (2− ki) εi +

∑
j∈Ni

pLj − pLi + t l̃2i,j

l̃i,j

)
(2.68)

and the profit for firm Fi when all firms have n-space bounded information

is

πi(P(n)) = (2t)−1 (pi(n)− ci)

(
2 t (2− ki) εi +

∑
j∈Ni

pj(n)− pi(n) + t l̃2i,j

l̃i,j

)

Let Rj,i(n) = Rj(n)−Ri(n) and

Zi = 2 t (2− ki) εi +
∑
j∈Ni

pj(n)− pi(n) +Rj,i(n) + t l̃2i,j

l̃i,j

= 2 t (2− ki) εi +
∑
j∈Ni

pLj − pLi + t l̃2i,j

l̃i,j
.

Since pLi = pi(n) +Ri(n), we can write the local equilibrium profit (2.68) for

firm i as

πi(P
L) = (2t)−1 (pi(n)− ci +Ri(n))Zi

Hence,

πi(P
L) = πi(P(n)) + (2t)−1

(
(pi(n)− ci)

∑
j∈Ni

Rj,i(n)

l̃i,j
+Ri(n)Zi

)

The difference between the equilibrium profit and the profit where all firms

have n-space bounded information is

πi(P
L)− πi(P(n)) = (2t)−1

(
(pi(n)− ci)

∑
j∈Ni

Rj,i(n)

l̃i,j
+Ri(n)Zi

)
.

174



Hence,

|πi(PL)− πi(P(n))| ≤ (2t)−1

(
(pi(n)− ci)

∑
j∈Ni

|Rj,i(n)|
l̃i,j

+Ri(n)Zi

)
.

Since
pLj − pLi + t l̃2i,j

l̃i,j
≤ 2 t l̃i,j ≤ 2 t (lM + 2 ε),

we have

Zi ≤ 2 t (2− ki) εi + 2 t ki (lM + 2 ε) < 2 t (ki (lM + 2 ε) + 2 εi).

Let Z = ∆(c) + t (lM + 2 ε)2. Since pi(n)− ci ≤ pLi − ci, from (2.55) we have

pi(n)− ci ≤ ∆(c) + t (lM + 2 ε)2 = Z. Hence,

|πi(PL)−πi(P(n))| < (2t)−1

(
Z
∑
j∈Ni

|Rj,i(n)|
l̃i,j

+ 2 t Ri(n) (ki (lM + 2 ε) + 2 ε)

)

Let ZM = cM + t (lM + 2 ε)2. By (2.67), Ri(n) ≤ 2−(n+1)GZM . Then, also,

|Rj,i(n)| ≤ 2−(n+1)GZM . Therefore,

∑
j∈Ni

|Rj,i(n)|
l̃i,j

≤ 2−(n+1) ki
lm − 2 ε

GZM .

We note that
Z

lm − 2 ε
+ 2 t (lM + 2 ε) = e.

Hence,

|πi(PL)− πi(P(n))| ≤ 2−(n+2)Gt−1 ZM (ki e+ 4 t ε) .
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2.3 Different transportation costs

This section extends the Hotelling model with different linear transportation

costs to networks. For simplicity of notation, we assume that the firms are

located at the nodes of the network.

A consumer located at a point x of the network who decides to buy at

firm Fi spends

E(x; i,P) = pi + ti d(x, i)

the price pi charged by the firm Fi plus the transportation cost that is pro-

portional ti to the minimal distance measured in the network between the

position i of the firm Fi and the position x of the consumer.

2.3.1 Local optimal equilibrium price strategy

We observe that, for every road Ri,j there is an indifferent consumer located

at a distance

0 < xi,j =
pj − pi + tj li,j

ti + tj
< li,j

of firm Fi if and only if −ti li,j < pi − pj < tj li,j. Thus, a price strategy P

determines a local market structure if and only if

−ti li,j < pi − pj < tj li,j (2.69)

for every road Ri,j.

If the price strategy determines a local market structure then

S(i,P) =
∑
j∈Ni

xi,j
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and

πi(P,C) = (pi − ci)S(i,P)

= (pi − ci)
∑
j∈Ni

pj − pi + tj li,j
ti + tj

. (2.70)

Given a pair of price strategies P and P∗ and a firm Fi, we define the

price vector P̃(i,P,P∗) whose coordinates are p̃i = p∗i and p̃j = pj, for every

j ∈ V \ {i}. Let P and P∗ be price strategies that determine local market

structures. The price strategy P∗ is a local best response to the price strategy

P, if for every i ∈ V the price strategy P̃(i,P,P∗) determines a local market

structure and

∂πi(P̃(i,P,P∗),C)

∂p̃i
= 0 and

∂2πi(P̃(i,P,P∗),C)

∂p̃2i
< 0.

Let Ti =
∑

j∈Ni

1

ti + tj
. The Hotelling town admissible market size L is

the vector whose coordinates are the admissible local firm market sizes

Li = T−1i

∑
j∈Ni

tj li,j
ti + tj

.

The Hotelling town neighboring market structure K is the matrix whose

elements are (i) ki,j =
1

Ti (ti + tj)
, if there is a road Ri,j between the firms Fi

and Fj; and (ii) ki,j = 0, if there is not a road Ri,j between the firms Fi and

Fj. Let 1 denote the identity matrix.

Lemma 2.3.1. Let P and P∗ be price strategies that determine local market

structures. The price strategy P∗ is the local best response to price strategy

P if and only if

P∗ =
1

2
(C + L) +

1

2
KP (2.71)

and the price strategies P̃(i,P,P∗) determine local market structures for all

177



i ∈ V .

Proof. By (2.70), the profit function πi(P,C) of firm Fi, in a local market

structure, is given by

πi(P,C) = (pi − ci)
∑
j∈Ni

pj − pi + tj li,j
ti + tj

.

Let P̃(i,P,P∗) be the price vector whose coordinates are p̃i = p∗i and p̃j =

pj, for every j ∈ V \ {i}. Since P and P∗ are local price strategies, the

local best response of firm Fi to the price strategy P, is given by computing

∂πi(P̃(i,P,P∗),C)/∂p̃i = 0. Hence,

p∗i =
1

2

(
ci +

1

Ti

∑
j∈Ni

pj + tj li,j
ti + tj

)
. (2.72)

Therefore, since ∂2πi(P̃(i,P,P∗),C)/∂p̃2i = −2Ti < 0, the local best re-

sponse strategy prices P∗ is given by

P∗ =
1

2
(C + L + K P) .

We denote by tM (resp. tm) the maximum (resp. minimum) transporta-

tion cost of the Hotelling town

tM = max{ti : i ∈ V } and tm = min{ti : i ∈ V }.

Let ∆(t) = tM − tm.

Definition 2.3.1. A Hotelling town satisfies the weak bounded length and

costs (WB) condition, if

∆(c) +
lM t3M − lm t3m

tm tM
< tm lm.
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Let P and P∗ be price strategies that determine local market structures.

A price strategy P∗ is a local optimum equilibrium if P∗ is the local best

response to P∗.

Proposition 2.3.1. If the Hotelling town satisfies the WB condition, then

there is unique local optimum price strategy given by

PL =
1

2

(
1− 1

2
K

)−1
(C + L) =

∞∑
m=0

2−(m+1)Km (C + L) . (2.73)

The local optimum price strategy PL determines a local market structure.

Furthermore, the local optimal equilibrium prices pLi are bounded by

lm t
2
m

tM
+

1

2
(ci + cm) ≤ pLi ≤

lM t2M
tm

+
1

2
(ci + cM) (2.74)

The local optimal profit πL
i = πL

i (P,C) of firm Fi is given by

πL
i (P,C) = Ti (pLi − ci)2

and it is bounded by

ki
ti + tM

(
lm t

2
m

tM
− ∆(c)

2

)2

≤ πL
i ≤

ki
ti + tm

(
lM t2M
tm

+
∆(c)

2

)2

.

Proof. Let, first prove that K is a stochastic matrix (i.e.,
∑

j∈V ki,j = 1, for

every i ∈ V ). Since

Ti =
∑
j∈Ni

1

ti + tj
and ki,j =

1

Ti (ti + tj)
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we have ∑
j∈V

ki,j =
∑
j∈Ni

ki,j =
∑
j∈Ni

T−1i

1

ti + tj
= T−1i

∑
j∈Ni

1

ti + tj

=
1∑

j∈Ni

1

ti + tj

∑
j∈Ni

1

ti + tj
= 1.

Then K is a stochastic matrix, and we have ‖K‖ = 1. Hence, the matrix Q

is well-defined by

Q =
1

2

(
1− 1

2
K

)−1
=

∞∑
m=0

2−(m+1) Km

and Q is also a non-negative and stochastic matrix. By Lemma 2.3.1, a local

optimum price strategy satisfy equality (2.71). Therefore,

PL =
1

2

(
1− 1

2
K

)−1
(C + L) =

∞∑
m=0

2−(m+1) Km (C + L) ,

and so PL satisfies (2.73). By construction,

pLi =
∑
v∈V

Qi,v(cv + Lv). (2.75)

Let us prove that the price strategy PL is local, i.e., the indifferent consumer

xi,j satisfies 0 < xi,j < li,j for every Ri,j ∈ E.

We note that
kv

tv + tM
≤ Tv =

∑
j∈Nv

1

tv + tj
≤ kv
tv + tm

(2.76)

Hence,
tv + tm
kv

≤ T−1v ≤ tv + tM
kv
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and, therefore,

tv + tm
kv

kv
tm lm
tv + tM

≤ Lv = T−1v

∑
j∈Nv

tj lv,j
tv + tj

≤ tv + tM
kv

kv
tM lM
tv + tm

Hence,

lm t
2
m

tM
≤ tm lm (tv + tm)

tv + tM
Lv ≤

tM lM (tv + tM)

tv + tm
≤ lM t2M

tm
. (2.77)

Since Q is a nonnegative and stochastic matrix, we obtain

∑
v∈V

Qi,v

(
cm +

lm t
2
m

tM

)
= cm +

lm t
2
m

tM

and ∑
v∈V

Qi,v

(
cM +

lM t2M
tm

)
= cM +

lM t2M
tm

.

Hence, putting (2.75) and (2.77) together we obtain that

cm +
lm t

2
m

tM
≤ pLi ≤ cM +

lM t2M
tm

.

Since the last relation is satisfied for every firm, we obtain

−
(
cM − cm +

lM t2M
tm

− lm t
2
m

tM

)
≤ pLi − pLj ≤ cM − cm +

lM t2M
tm

− lm t
2
m

tM
.

Therefore,

|pLi − pLj | ≤ ∆(c) +
lM t3M − lm t3m

tm tM
.

Hence, by the WB condition, we conclude that

|pLi − pLj | < tm lm.

Thus, by equation (2.69), we obtain that the indifferent consumer is located
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at 0 < xi,j < li,j for every road Ri,j ∈ E. Hence, the price strategy PL is

local and is the unique local optimum price strategy.

From (2.75) and (2.77), we obtain

pLi ≥
∑
v∈V

Qi,v
lm t

2
m

tM
+

∑
v∈V \{i}

Qi,v cm +Qi,i ci.

By construction of matrix Q, we have Qi,i > 1/2. Furthermore, since Q is

stochastic,

∑
v∈V \{i}

Qi,v < 1/2, and
∑
v∈V

Qi,v
lm t

2
m

tM
=
lm t

2
m

tM
.

Hence,

pLi ≥
lm t

2
m

tM
+

1

2
(ci + cm).

Similarly, we obtain

pLi ≤
lM t2M
tm

+
1

2
(ci + cM),

and so the local optimal equilibrium prices pLi are bounded and satisfy (2.74).

We can write the the profit function (2.70) of firm Fi for the price strategy

PL as

πL
i = πi(P

L,C) = (pLi − ci)

(
−pLi Ti +

∑
j∈Ni

pLj + tj li,j

ti + tj

)
. (2.78)

Since PL satisfies the best response function (2.72), we have

2 pLi = ci +
1

Ti

∑
j∈Ni

pLj + tj li,j

ti + tj
.

182



Therefore, ∑
j∈Ni

pLj + tj li,j

ti + tj
= 2 pLi Ti − ci Ti,

and replacing this sum in the profit function (2.78), we obtain

πL
i = (pLi − ci)

(
−pLi Ti + 2 pLi Ti − ci Ti

)
= Ti (pLi − ci)2.

Hence, from (2.76), and using the price bounds (2.74), we conclude

ki
ti + tM

(
lm t

2
m

tM
−∆(c)/2

)2

≤ πL
i ≤

ki
ti + tm

(
lM t2M
tm

+ ∆(c)/2

)2

.

Let a ∈ V , Rb,c ∈ E and d ∈ V \ {i}. The marginal rates of the local

optimal equilibrium prices pLi are positive with respect to the production

costs ca, admissible local firm market sizes La, transportation costs t and

road lengths lb,c. The marginal rates of the local optimal equilibrium profit

πL
i are negative with respect to the production costs ci and positive with

respect to the production costs cd, admissible local firm market sizes La,

transportation costs t and road lengths lb,c.

2.3.2 Nash equilibrium price strategy

The price strategy P∗ is a best response to the price strategy P, if

(p̃i − ci)S(i, P̃(i,P,P∗)) ≥ (p′i − ci)S(i,P′i),

for all i ∈ V and for all price strategies P′i whose coordinates satisfy p′i ≥ ci

and p′j = pj for all j ∈ V \ {i}. A price strategy P∗ is a Hotelling town Nash

equilibrium if P∗ is the best response to P∗.

Lemma 2.3.2. In a Hotelling town satisfying the WB condition, if there is

a Nash price P∗ then P∗ is unique and P∗ = PL.
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Hence, the local optimum price strategy PL is the only candidate to

be a Nash equilibrium price strategy. However, PL might not be a Nash

equilibrium price strategy because there can be a firm Fi that by decreasing

his price is able to absorb markets of other firms in such a way that increases

its own profit. Therefore, the best response price strategy PL,∗ to the local

optimum price strategy PL might be different from PL.

Proof of Lemma 2.3.2.

Suppose that P ∗ is a Nash price strategy and that P∗ 6= PL. Hence, P∗ does

not determine a local market structure, i.e., there exists i ∈ V such that

M(i,P∗) 6⊂ ∪j∈Ni
Ri,j.

Hence, there exists j ∈ Ni such that M(j,P∗) = 0 and, therefore, π∗j = 0.

Moreover, in this case, we have that

p∗j > p∗i + ti li,j.

Consider, now, that Fj changes his price to

pj = cj +
lM t3M − lm t3m

tm tM
.

Since p∗i > ci and cj − ci ≤ ∆(c) we have that

pj − p∗i < pj − ci = cj +
lM t3M − lm t3m

tm tM
− ci ≤ ∆(c) +

lM t3M − lm t3m
tm tM

.

Since the Hotelling town satisfies the WB condition, we obtain

pj − p∗i < tm lm ≤ ti li,j.
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Hence, M(j, P̃(j,P∗,P)) > 0 and

πj =

(
lM t3M − lm t3m

tm tM

)
S(j, P̃(j,P∗,P)) > 0.

Therefore, Fj will change its price and so P∗ is not a Nash equilibrium price

strategy. Hence, if there is a Nash price P∗ then P∗ = PL.

Definition 2.3.2. A Hotelling town satisfies the WB1 condition, if

∆(c) +
lM t2M
tm

− lm tm + ∆(t) lM ≤ lm tm.

Let ∪j∈Ni
Ri,j be the 1-neighbourhood N (i, 1) of a firm i ∈ V . Let

∪j∈Ni
∪k∈Nj

Rj,k be the 2-neighbourhood N (i, 2) of a firm i ∈ V .

Lemma 2.3.3. In a Hotelling town satisfying the WB1 condition,

M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2)

for every i ∈ V .

Hence, a consumer x ∈ Rj,k might not buy in its local firms Fj and

Fk. However, the consumer x ∈ Rj,k still has to buy in a firm Fi that is a

neighboring firm of its local firms Fj and Fk, i.e. i ∈ Nj ∪Nk.

Proof of Lemma 2.3.3.

By contradiction, let us consider a consumer z ∈ M(i, P̃(i,PL,PL,∗)) and

z /∈ N (i, n), with n ≥ 2. The price that consumer z pays to buy in firm Fi

is given by

e = pi + ti

(
n∑

j=1

lij ,ij+1
+ d (in+1, z)

)

where pi = pL,∗i is the coordinate of the vector P̃(i,PL,PL,∗) and for the

n-path (Ri1,i2 , Ri2,i3 , . . . , Rin,in+1) with i1 = i. If the consumer z buys at firm
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Fin+1 , then the price that has to pay is

ẽ = pLin+1
+ tin+1 d (in+1, z).

Since, by hypothesis, z ∈M(i, P̃(i,PL,PL,∗)), we have e < ẽ. Therefore

pi < pLin+1
− ti

(
n∑

j=1

lij ,ij+1

)
+ (tin+1 − ti) d (in+1, z).

By inequality (2.74),

pLi ≤
lM t2M
tm

+
1

2
(cM + ci)

for all i ∈ V . Since li,j ≥ lm for all Ri,j ∈ E,

pi <
lM t2M
tm

+
1

2
(cM + cin+1)− n ti lm + (tin+1 − ti) d (in+1, z).

Since n ≥ 2, d (in+1, z) < lM and tin+1 − ti ≤ ∆(t) we obtain that

pi <
lM t2M
tm

+
1

2
(cM + cin+1)− 2 ti lm + ∆(t) lM .

Since ti ≥ tm and cm ≤ ci ≤ cM for all i ∈ V we conclude that

pi − ci < ∆(c) +
lM t2M
tm

− 2 tm lm + ∆(t) lM .

By the WB1 condition, pi − ci < 0. Hence, πL,∗
i < 0 which contradicts the

fact that pi is the best response to PL (since πL
i > 0). Therefore, z ∈ N (i, 2)

and M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2).

Definition 2.3.3. A Hotelling town satisfies the strong bounded length and

costs (SB) condition, if

∆(c) +
lM t2M
tm

− lm tm + ∆(t) lM ≤
(2 lm t

2
m −∆(c) tM)

2

4 t2M lM kM (tm + tM)
.

186



The SB condition implies the WB condition, and so under the SB con-

dition the only candidate to be a Nash equilibrium price strategy is the local

optimum strategy price PL.

Theorem 2.3.1. If a Hotelling town satisfies the SB condition then there is

a unique Hotelling town Nash equilibrium price strategy P∗ = PL.

Hence, the Nash equilibrium price strategy for the Hotelling town sat-

isfying the SB condition determines a local market structure, i.e. every

consumer located at x ∈ Ri,j spends less by shopping at his local firms Fi

or Fj than in any other firm in the town and so the consumer at x will buy

either at his local firm Fi or at his local firm Fj.

Proof of Theorem 2.3.1.

By Proposition 2.3.1 and Lemma 2.3.2, if there is a Nash equilibrium price

strategy P∗ then P∗ is unique and P∗ = PL.

We note that if M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 1) for every i ∈ V then

P̃(i,PL,PL,∗) = pLi and so PL is a Nash equilibrium.

We note that the SB condition implies the WB1 condition. Hence, by

Lemma 2.3.3, we have that M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 2) for every i ∈ V .

Now, we will prove that the SB condition implies that firm Fi earns more

competing only in the 1-neighborhood than competing in a 2-neighborhood.

By Proposition 2.3.1

πL
i ≥

ki
ti + tM

(
lm t

2
m

tM
− ∆(c)

2

)2

(2.79)

By Lemma 2.3.3,

πi(P̃(i,PL,PL,∗),C) ≤ (pi − ci)
∑
j∈Ni

∑
k∈Nj

lj,k ≤ (pi − ci)ki kM lM (2.80)

where pi = pL,∗i is the coordinate of the vector P̃(i,PL,PL,∗).
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By contradiction, let us consider a consumer z ∈M(i, P̃(i,PL,PL,∗)) and

z /∈ N (i, 1). Let i2 ∈ Ni be the vertex such that z ∈ N (i2, 1). The price that

consumer z pays to buy in firm Fi is given by

e = pi + ti (li,i2 + d (i2, z)).

If the consumer z buys at firm Fi2 , then the price that has to pay is

ẽ = pLi2 + ti2 d (i2, z).

Since, by hypothesis, z ∈M(i, P̃(i,PL,PL,∗)), we have e < ẽ. Therefore

pi < pLi2 − ti li,i2 + (ti2 − ti) d (i2, z).

By inequality (2.74),

pLi ≤
lM t2M
tm

+
1

2
(cM + ci)

for all i ∈ V . Since li,j ≥ lm for all Ri,j ∈ E,

pi <
lM t2M
tm

+
1

2
(cM + ci2)− ti lm + (ti2 − ti) d (i2, z).

Since d (i2, z) < lM and ti2 − ti ≤ ∆(t) we obtain that

pi <
lM t2M
tm

+
1

2
(cM + ci2)− ti lm + ∆(t) lM .

Since ti ≥ tm and cm ≤ ci ≤ cM for all i ∈ V we conclude that

pi − ci < ∆(c) +
lM t2M
tm

− tm lm + ∆(t) lM .
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Hence, from (2.80) we obtain

πi(P̃(i,PL,PL,∗),C) < ki kM lM

(
∆(c) +

lM t2M
tm

− tm lm + ∆(t) lM

)
.

By the SB condition,

πi(P̃(i,PL,PL,∗),C) <
ki (2 lm t

2
m −∆(c) tM)

2

4 t2M (tm + tM)
. (2.81)

Hence, by inequalities (2.79) and (2.81), πL
i > πi(P̃(i,PL,PL,∗),C), which

contradicts the fact that pi is the best response to PL. Therefore, z ∈ N (i, 1)

and M(i, P̃(i,PL,PL,∗)) ⊂ N (i, 1). Hence, P̃(i,PL,PL,∗) = pLi and so PL is

a Nash equilibrium.

2.4 Uncertainty on the Hotelling Network

In this section, we introduce incomplete information, considering uncertainty

on the production costs of the firms, in the Hotelling network with linear

transportation costs, and we find the Bayesian Nash equilibrium in prices.

For simplicity of notation, we consider a Hotelling town model where the

firms are located at the nodes and where each firm has a specific space of

price strategies associated with their production costs.

For every v ∈ V , let the triples (Iv,Ωv, qv) represent (finite, countable or

uncountable) sets of types Iv with σ-algebras Ωv and probability measures

qv over Iv. Hence dqv(zv) denotes the probability of the common believes of

the other firms on the production costs of the firm Fv to be czvv .

The Hotelling town production cost C is the vector (c1, . . . , cNv) whose co-

ordinates cv : Iv → [cmv , c
M
v ] ⊆ [cm, cM ] ⊆ R+

0 are measurable functions. The

Hotelling town average production cost E(C) is the vector (E(c1), . . . , E(cNv))
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whose coordinates are the expected production costs

E(cv) =

∫
Iv

czvv dqv(zv) <∞.

A price strategy P is the vector (p1, . . . , pNv) whose coordinates pv : Iv → R+
0

are measurable functions. The average E(P) of the price strategy P is the

vector (E(p1), . . . , E(pNv)) whose coordinates are the expected prices

E(pv) =

∫
Iv

pzvv dqv(zv).

For each road Ri,j, the indifferent consumer xi,j : Ii × Ij → (0, li,j) is given

by

x
zi,zj
i,j =

p
zj
j − p

zi
i + t li,j

2 t
. (2.82)

Let the type of the neighbours of a firm Fi of degree ki be denoted by ZNi
=

(zi,1, zi,2, . . . , zi,ki) which is a vector of dimension ki. Consider that INi
=

Ii,1× Ii,2 . . .× Ii,ki . The ex-post market size of firm Fi, S
EP
i : Ii× INi

→ R+
0 ,

is given by

SEP
i (i,P) =

∑
j∈Ni

x
zi,zj
i,j . (2.83)

The ex-post profit of firm Fi, π
EP
i : Ii × INi

→ R+
0 , is given by

πEP
i (zi,ZNi

) = πEP
i (P,C, zi,ZNi

)

= (pzii − c
zi
i )SEP

i (i,P) = (pzii − c
zi
i )
∑
j∈Ni

x
zi,zj
i,j . (2.84)

We assume that dqNi
(ZNi

) denotes the probability of the belief of the firm Fi

on the production costs of its neighbours to be C
zNi
Ni

= (c
zi,1
i,1 , c

zi,2
i,2 , . . . , c

zi,ki
i,ki

).

We note that

dqNi
(ZNi

) = dqi,1(zi,1) dqi,2(zi,2) . . . dqi,ki(zi,ki).
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The ex-ante market size of firm Fi, S
EA
i : Ii → R+

0 , is given by

SEA
i (i,P) =

∫
INi

SEP
i (i,P) dqNi

(ZNi
) =

∑
j∈Ni

E(pj)− pzii + t li,j
2 t

. (2.85)

The ex-ante profit of firm Fi, π
EA
i : Ii → R+

0 , is given by

πEA
i (zi) = πEA

i (P,C, zi)

=

∫
INi

πEP
i (zi,ZNi

) dqNi
(ZNi

) = (pzii − c
zi
i )SEA

i (i,P)

= (pzii − c
zi
i )
∑
j∈Ni

E(pj)− pzii + t li,j
2 t

. (2.86)

The expected profit of firm Fi, E(πi), is given by

E(πi) =

∫
Ii

πEA
i (zi) dqi(zi) =

∫
Ii

∫
INi

πEP
A (zi,ZNi

) dqNi
(ZNi

) dqi(zi)

2.4.1 Local optimal equilibrium price strategy

Given a pair of price strategies P and P∗ and a firm Fi, we define the price

vector P̃(i,P,P∗) whose coordinates are p̃i = p∗i and p̃j = pj, for every

j ∈ V \ {i}. Let P and P∗ be price strategies that determine local market

structures. The price strategy P∗ is a local best response to the price strategy

P, if for every i ∈ V the price strategy P̃(i,P,P∗) determines a local market

structure and

∂πEA
i (P̃(i,P,P∗),C, zi)

∂p̃i
= 0 and

∂2πEA
i (P̃(i,P,P∗),C, zi)

∂p̃2i
< 0.

Consider that L and K represent, respectively, the admissible market size

vector and the neighboring market structure matrix defined in section 2.1.1.

Lemma 2.4.1. Let P and P∗ be price strategies that determine local market

structures. The price strategy P∗ is the local best response to price strategy
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P if and only if

P∗ =
1

2
(C + KE(P) + tL) . (2.87)

and the price strategies P̃(i,P,P∗) determine local market structures for all

i ∈ V . Furthermore,

E(P∗) =
1

2
(E(C) + tL) +

1

2
KE(P). (2.88)

Proof. From (2.86), the ex-ante profit for firm Fi in a local market structure

is given by

πEA
i (zi) =

pzii − c
zi
i

2 t

(∑
j∈Ni

E(pj)− pzii + t li,j

)
(2.89)

Let P̃(i,P,P∗) be the price vector whose coordinates are p̃i = p∗i and p̃j =

pj, for every j ∈ V \ {i}. Since P and P∗ are local price strategies, the

local best response of firm Fi to the price strategy P, is given by computing

∂πEA
i (P̃(i,P,P∗), E(C), zi)/∂p̃i = 0. Hence,

pzi,∗i =
1

2

(
czii +

1

ki

∑
j∈Ni

E(pj) + t li,j

)
. (2.90)

and equation (2.87) is satisfied.

Then,

E(p∗i ) =

∫
Ii

pzi,∗i dqi(zi) =
1

2

(
E(ci) +

1

ki

∑
j∈Ni

E(pj) + t li,j

)

Therefore, since ∂2πEA
i (P̃(i,P,P∗),C, zi)/∂p̃

2
i = −ki/t < 0, the local best
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response strategy prices P∗ satisfy

E(P∗) =
1

2
(E(C) + tL + KE(P)) .

Let P and P∗ be price strategies that determine local market structures.

A price strategy P∗ is a local optimum price strategy if P∗ is the local best

response to P∗.

Let

Qi,j =
∞∑

m=0

2−(m+1) kmi,j.

Proposition 2.4.1. If the Hotelling town satisfies the WB condition, then

there is unique Bayesian local optimal equilibrium price strategy given by

PE =
1

2

(
C + KE(PE) + tL

)
(2.91)

where

E(PE) =
1

2

(
1− 1

2
K

)−1
(E(C) + tL) .

Furthermore, the Bayesian local optimal equilibrium price PE determines a

local market structure and the local optimal equilibrium prices pEi are bounded

by

t lm +
1

2
czii +

E(ci) + cm
4

≤ pzi,Ei ≤ t lM +
1

2
czii +

E(ci) + cM
4

. (2.92)

Proof. The matrix K is a stochastic matrix (i.e.,
∑

j∈V ki,j = 1, for every

i ∈ V ). Thus, we have ‖K‖ = 1. Hence, the matrix Q is well-defined by

Q =
1

2

(
1− 1

2
K

)−1
=

∞∑
m=0

2−(m+1) Km
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and Q is also a non-negative and stochastic matrix. By Lemma 2.4.1, a local

optimum price strategy satisfy equality (2.88). Therefore,

E(PE) =
1

2

(
1− 1

2
K

)−1
(E(C) + tL) =

∞∑
m=0

2−(m+1) Km (E(C) + tL) .

(2.93)

By construction,

E(pEi ) =
∑
v∈V

Qi,v(E(cv) + t Lv). (2.94)

From equality (2.87), we obtain that the Bayesian local optimal equilibrium

price PE has coordinates

pzi,Ei =
1

2

(
ci +

1

ki

∑
j∈Ni

E(pEj ) + t li,j

)

=
1

2

(
ci +

1

ki

∑
j∈Ni

(∑
v∈V

Qj,v(E(cv) + t Lv) + t li,j

))
. (2.95)

Let us prove that the price strategy PE is local, i.e., the indifferent consumer

x
zi,zj
i,j satisfies 0 < x

zi,zj
i,j < li,j for every Ri,j ∈ E which, from (2.82), is

equivalent to ∣∣∣pzi,Ei − pzj ,Ej

∣∣∣ < t li,j. (2.96)

Since cm ≤ E(cv) ≤ cM for every v ∈ V , from (2.94) we obtain that for every

i ∈ V ∑
v∈V

Qi,v(cm + t Lv) ≤ E(pEi ) ≤
∑
v∈V

Qi,v(cM + t Lv). (2.97)

We note that

lm ≤ Lv = k−1v

∑
j∈Nv

lv,j ≤ lM . (2.98)
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Since Q is a nonnegative and stochastic matrix we obtain∑
v∈V

Qi,v(cm + t lm) = cm + t lm

and ∑
v∈V

Qi,v(cM + t lM) = cM + t lM .

Hence, putting (2.97) and (2.98) together, we obtain that

cm + t lm ≤ E(pEi ) ≤ cM + t lM .

Then,

pzi,Ei ≤ 1

2

(
czii +

1

ki

∑
j∈Ni

cM + t lM + t li,j

)
≤ 1

2
(czii + cM + 2 t lM)

and

pzi,Ei ≥ 1

2

(
czii +

1

ki

∑
j∈Ni

cm + t lm + t li,j

)
≥ 1

2
(czii + cm + 2 t lm) .

Therefore,

cm + t lm ≤ pzi,Ei ≤ cM + t lM .

Since the last relation is satisfied for every firm, we obtain

− (cM − cm + t(lM − lm)) ≤ pzi,Ei − pzj ,Ej ≤ cM − cm + t(lM − lm).

Therefore, ∣∣∣pzi,Ei − pzj ,Ej

∣∣∣ ≤ ∆(c) + t∆(l).
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Hence, by the WB condition, we conclude that∣∣∣pzi,Ei − pzi,Ej

∣∣∣ < t lm.

Thus, by equation (2.96), we obtain that the indifferent consumer is located

at 0 < x
zi,zj
i,j < li,j for every road Ri,j ∈ E. Hence, the price strategy PE is

local and is the unique local optimal equilibrium price strategy.

From (2.94) and (2.98), we obtain

E(pEi ) ≥
∑
v∈V

Qi,v t lm +
∑

v∈V \{i}

Qi,v cm +Qi,iE(ci).

By construction of matrix Q, we have Qi,i > 1/2. Furthermore, since Q is

stochastic, ∑
v∈V \{i}

Qi,v < 1/2,

and
∑

v∈V Qi,vt lm = t lm. Hence,

E(pEi ) ≥ t lm +
1

2
(E(ci) + cm).

Similarly, we obtain

E(pEi ) ≤ t lM +
1

2
(E(ci) + cM).

Hence

pzi,Ei ≥ 1

2

(
ci +

1

ki

∑
j∈Ni

t lm +
1

2
(E(ci) + cm) + t li,j

)

≥ t lm +
1

2
ci +

1

4
(E(ci) + cm).

Similarly,

pzi,Ei ≤ t lM +
1

2
ci +

1

4
(E(ci) + cM).
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and so the Bayesian local optimal equilibrium prices pEi are bounded and

satisfy (2.92).

Proposition 2.4.2. If the Hotelling town satisfies the WB condition, the

ex-ante local optimal profit πEA,E
i (zi) of firm Fi is given by

πEA,E
i (zi) = πEA

i (PE, E(C), zi) =
ki (pzi,Ei − czii )2

2 t

and is bounded by

ki (4 t lm + E(ci) + cm − 2 czii )2

32 t
≤ πEA,E

i (zi) ≤
ki (4 t lM + E(ci) + cM − 2 czii )2

32 t
.

Proof. We can write the ex-ante profit function (2.89) of firm Fi with respect

to the local optimum price strategy PE by

πEA,E
i (zi) = (2t)−1(pzi,Ei − czii )

(
−ki pzi,Ei +

∑
j∈Ni

(E(pEj ) + t li,j)

)
(2.99)

Since PE satisfies the best response function (2.87), we have

2 pzi,Ei = czii +
1

ki

∑
j∈Ni

(
E(pEj ) + t li,j

)
.

Therefore, ∑
j∈Ni

(
E(pEj ) + t li,j

)
= 2 ki p

zi,E
i − ki czii ,

and replacing this sum in the profit function (2.99), we obtain

πEA,E
i (zi) = (2t)−1 ki (pzi,Ei − czii )2.
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Using the price bounds (2.92), we conclude

ki (4 t lm + E(ci) + cm − 2 czii )2

32 t
≤ πEA,E

i (zi) ≤
ki (4 t lM + E(ci) + cM − 2 czii )2

32 t
.

2.4.2 Bayesian Nash equilibrium price strategy

The price strategy P∗ is a best response to the price strategy P, if

(p̃i − ci)SEA(i, P̃(i,P,P∗)) ≥ (p′i − ci)SEA(i,P′i),

for all i ∈ V and for all price strategies P′i whose coordinates satisfy p′i ≥ ci

and p′j = pj for all j ∈ V \ {i}. A price strategy P∗ is a Hotelling town Nash

equilibrium if P∗ is the best response to P∗.

Lemma 2.4.2. In a Hotelling town satisfying the WB condition, if there is

a Bayesian Nash price P∗ then P∗ is unique and P∗ = PE.

Hence, the Bayesian local optimum price strategy PE is the only can-

didate to be a Nash equilibrium price strategy. However, PE might not be

a Bayesian Nash equilibrium price strategy because there can be a firm Fi

that by decreasing his price is able to absorb markets of other firms in such a

way that increases its own profit. Therefore, the best response price strategy

PE,∗ to the optimal local price strategy PE might be different from PE.

Proof of Lemma 2.4.2.

Suppose that P ∗ is a Nash price strategy and that P∗ 6= PE. Hence, P∗ does

not determine a local market structure, i.e., there exists i ∈ V such that

M(i,P∗) 6⊂ ∪j∈Ni
Ri,j.

Hence, there exists j ∈ Ni such that M(j,P∗) = 0 and, therefore, πEA,∗
j = 0.
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Moreover, in this case, we have that

p
zj ,∗
j > E(p∗i ) + t li,j.

Consider, now, that Fj changes his price to pj = c
zj
j +t∆(l). Since E(p∗i ) > cm

and c
zj
j − cm ≤ ∆(c) we have that

pj − E(p∗i ) = c
zj
j + t∆(l)− E(p∗i ) < c

zj
j + t∆(l)− cm ≤ ∆(c) + t∆(l).

Since the Hotelling town satisfies the WB condition, ∆(c)+ t∆(l) < t lm, we

have

pj − E(p∗i ) < t lm ≤ t li,j.

Hence, M(j, P̃(j,P∗,P)) > 0 and πEA
j = (cj+t∆(l))SEA(j, P̃(j,P∗,P)) > 0.

Therefore, Fj will change its price and so P∗ is not a Nash equilibrium price

strategy. Hence, if there is a Nash price P∗ then P∗ = PE.

Lemma 2.4.3. In a Hotelling town satisfying the WB condition,

M(i, P̃(i,PE,PE,∗)) ⊂ N (i, 2)

for every i ∈ V .

Hence, a consumer x ∈ Rj,k might not buy in its local firms Fj and

Fk. However, the consumer x ∈ Rj,k still has to buy in a firm Fi that is a

neighboring firm of its local firms Fj and Fk, i.e. i ∈ Nj ∪Nk.

Proof of Lemma 2.4.3.

By contradiction, let us consider a consumer z ∈ M(i, P̃(i,PE,PE,∗)) and

z /∈ N (i, 2). For every type zi ∈ Ii, the price that consumer z pays to buy in

firm Fi is given by

e = pzii + t (li1,i2 + li2,i3 + d (yi3 , z))
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where pi = pE,∗
i is the coordinate of the vector P̃(i,PE,PE,∗) and for the

2-path (Ri1,i2 , Ri2,i3) with i1 = i. If the consumer z buys at firm Fi3 , then

the price that has to pay for every type zi3 ∈ Ii3 is

ẽ = p
zi3 ,E

i3
+ t d (yi3 , z).

Since, by hypothesis, z ∈M(i, P̃(i,PE,PE,∗)), we have e < ẽ. Therefore, for

every types zi ∈ Ii and zi3 ∈ Ii3 , we have

pzii < p
zi3 ,E

i3
− t (li1,i2 + li2,i3) .

By (2.92), pzi,Ei ≤ t lM +
1

2

(
czii +

E(ci) + cM
2

)
for all i ∈ V . Since li,j ≥ lm

for all Ri,j ∈ E,

pzii < t lM +
1

2

(
c
zi3
i3

+
E(ci3) + cM

2

)
− 2 t lm ≤ cM + t∆(l)− t lm.

Furthermore,

pzii − c
zi
i < ∆(c) + t∆(l)− t lm.

By the WB condition, pzii − c
zi
i < 0. Hence, πE,∗

i < 0 which contradicts the

fact that pi is the best response to PE (since πE
i > 0). Therefore, z ∈ N (i, 2)

and M(i, P̃(i,PE,PE,∗)) ⊂ N (i, 2).

Definition 2.4.1. A Hotelling town satisfies the strong bounded length and

costs (SB) condition, if

∆(c) + t∆(l) ≤ (2 t lm −∆(c))2

8 t kM lM
. (2.100)

Theorem 2.4.1. If a Hotelling town satisfies the SB condition then there is

a unique Hotelling town Bayesian Nash equilibrium price strategy P∗ = PE.

Hence, the Nash equilibrium price strategy for the Hotelling town sat-

isfying the SB condition determines a local market structure, i.e. every
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consumer located at x ∈ Ri,j spends less by shopping at his local firms Fi

or Fj than in any other firm in the town and so the consumer at x will buy

either at his local firm Fi or at his local firm Fj.

Proof of Theorem 2.4.1.

By Proposition 2.4.1 and Lemma 2.4.2, if there is a Bayesian Nash equilib-

rium price strategy P∗ then P∗ is unique and P∗ = PE.

We note that if M(i, P̃(i,PE,PE,∗)) ⊂ N (i, 1) for every i ∈ V then

P̃(i,PE,PE,∗) = pEi and so PE is a Nash equilibrium.

By Lemma 2.4.3, we have thatM(i, P̃(i,PE,PE,∗)) ⊂ N (i, 2) for every i ∈ V .

Now, we will prove that condition (2.100) implies that firm Fi earns more

competing only in the 1-neighborhood than competing in a 2-neighborhood.

By Lemma 2.4.3,

πEA
i (P̃(i,PE,PE,∗),C, zi) ≤ (pzii − c

zi
i )
∑
j∈Ni

li,j +
∑

k∈Nj\{i}

lj,k


≤ (pzii − c

zi
i )
∑
j∈Ni

∑
k∈Nj

lj,k,

where pi = pE,∗
i is the coordinate of the vector P̃(i,PE,PE,∗). Hence,

πEA
i (P̃(i,PE,PE,∗),C, zi) ≤ (pzii − c

zi
i )
∑
j∈Ni

∑
k∈Nj

lj,k ≤ (pzii − c
zi
i )ki kM lM .

(2.101)

By contradiction, let us consider a consumer z ∈ M(i, P̃(i,PE,PE,∗)) and

z /∈ N (i, 1). Let i2 ∈ Ni be the vertex such that z ∈ N (i2, i). The price that

consumer z pays to buy in firm Fi is given by

e = pi + t li,i2 + t d (yi2 , z).
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If the consumer y buys at firm Fi2 , then the price that has to pay is

ẽ = pEi2 + t d (yi2 , z).

Since, by hypothesis, z ∈M(i, P̃(i,PE,PE,∗)), we have e < ẽ. Therefore

pi < pEi2 − t li,i2 .

By (2.92), pEi ≤ t lM +
1

2

(
ci +

E(ci) + cM
2

)
. Since li,i2 ≥ lm, we have

pi < t lM +
1

2

(
ci2 +

E(ci2) + cM
2

)
− t lm ≤ cM + t∆(l).

Thus,

pi − ci < ∆(c) + t∆(l).

Hence, from (2.101) we obtain

πEA
i (P̃(i,PE,PE,∗),C, zi) < ki kM lM (∆(c) + t∆(l)) .

By the SB condition,

πEA
i (P̃(i,PL,PL,∗),C, zi) < (2 t)−1 ki (t lm −∆(c)/2)2. (2.102)

By Proposition 2.4.2 and (2.102),

πEA,E
i (zi) ≥ (2 t)−1 ki (t lm −∆(c)/2)2 > πEA

i (P̃(i,PE,PE,∗),C, zi),

which contradicts the fact that pi is the best response to PE. Therefore,

z ∈ N (i, 1) and M(i, P̃(i,PE,PE,∗)) ⊂ N (i, 1). Hence, P̃(i,PE,PE,∗) = pEi

and so PE is a Bayesian Nash equilibrium.
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2.5 Future Work: General model

This section presents the initial ideas of the general model for the Hotelling

model, allowing that firms can have entire markets and compete with other

that its neighbours.

Let Si,j ⊆ E denote the set of edges where Fi and Fj divide consumers

Si,j = {(k, l), (k′, l′), . . .}

Let lk,l denote the length of the roads Rk,l and let Li,k and Lj,l denote the

length between node i and node k and between node j and node l, respect-

ively.

For every edge shared by firm Fi and Fj, Rk,l there is an indifferent

consumer located at distance

xi(k, l) =
pj − pi

2 t
+
Lj,l − Li,k + lk,l

2

from firm Fi. Hence,

x̃i(k, l) =
pj − pi

2 t
+
Lj,l − 3Li,k + lk,l

2

is the distance of the indifferent consumer to the node k.

Let MCi denote the market of the network that belongs exclusively to

firm Fi, i.e., the set of edges where all the consumers buy at Fi. Hence, the

total market of firm Fi, Mi is given by

Mi = MCi +
∑
j∈N

∑
(k,l)∈Si,j

pj − pi
2 t

+
Lj,l − 3Li,k + lk,l

2

and the profit of Fi is given by

πi = (pi − ci)MCi + (pi − ci)
∑
j∈N

∑
(k,l)∈Si,j

pj − pi
2 t

+
Lj,l − 3Li,k + lk,l

2
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Hence

∂πi
∂pi

= MCi +
∑
j∈N

∑
(k,l)∈Si,j

pj − 2 pi + ci
2 t

+
Lj,l − 3Li,k + lk,l

2

From the FOC, we obtain

2
∑
j∈N

∑
(k,l)∈Si,j

pi = 2 tMCi+
∑
j∈N

∑
(k,l)∈Si,j

pj+
∑
j∈N

∑
(k,l)∈Si,j

ci+
∑
j∈N

∑
(k,l)∈Si,j

t (Lj,l−3Li,k+lk,l)

Let ki =
∑

j∈N
∑

(k,l)∈Si,j
denote the number of markets shared by firm Fi

and let Ni denote the set of firms that share a market with Fi. Hence

2 ki pi = 2 tMCi +
∑
j∈Ni

pj ](Si,j) + ki ci + t
∑
j∈Ni

∑
(k,l)∈Si,j

(Lj,l − 3Li,k + lk,l)

Let Bi =
∑

j∈Ni

∑
(k,l)∈Si,j

(Lj,l − 3Li,k + lk,l). Then

2 ki pi =
∑
j∈Ni

pj ](Si,j) + ki ci + t (2MCi +Bi)

and

pi =
1

2 ki

∑
j∈Ni

pj ](Si,j) +
ci
2

+
t

2 ki
(2MCi +Bi)

Let K be the matrix defined by

ki,j =
](Si,j)

ki

and M̃ and B̃ the vectors whose coordinates are

M̃i =
MCi

ki

and

B̃i =
Bi

ki
.
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Hence, (
1− 1

2
K

)
P =

1

2

(
C + t (2 M̃ + B̃)

)
.

Since K is a stochastic matrix,

(
1− 1

2
K

)−1
exists, and

P =
1

2

(
1− 1

2
K

)−1 (
C + t (2 M̃ + B̃)

)
.
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Conclusions

In the first part of this work, we studied the linear and quadratic Hotelling

model with uncertainty on the production costs. We introduced a new con-

dition on the exogenous variables that we called the BUC1 (BUCL1, in the

quadratic transportation cost case) condition. We proved that there is a

local optimum price strategy if and only if the BUC1 (BUCL1) condition is

satisfied. We gave the explicit formula for the local optimum price strategy

and we observed that the formula does not depend on the distributions of

the production costs of the firms, except on their first moments. Further-

more, the local optimum price strategy determines prices for both firms that

are affine with respect to the expected costs of both firms and to its own

costs. The corresponding expected profits are quadratic in the expected cost

of both firms, in its own cost and in the transportation cost. We did the

ex-ante versus ex-post analysis of the profits. We proved that, under the

A − BUC and B − BUC conditions, the ex-post profit of a firm is smaller

than its ex-ante profit if and only if the production cost of the competitor

firm is greater than its expected cost. Then, we proved that the A − BUC
and B − BUC conditions are implied by the BUC1 (BUCL1) condition,

if the distribution of the production costs of both firms coincide (symmet-

ric Hotelling). We introduced a new condition on the exogenous variables

that we called the BUC2 (BUCL2) condition and we proved that under the

BUC1 (BUCL1) and BUC2 (BUCL2) conditions, the local optimum price

strategy is a Bayesian-Nash price strategy.
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With quadratic transportation costs, assuming that the firms choose the

Bayesian-Nash price strategy, we showed in which conditions the maximal

differentiation is a local optimum for the localization strategy of both firms.

In the second part of this work, we presented a model of price competition

in a network, extending the linear city presented by Hotelling with linear

and quadratic transportation costs to a network where firms are located at

the neighbourhood of the nodes and consumers distributed along the edges.

Under a condition on lengths and costs (WB condition), we found the local

optimum price strategy PL for which the Hotelling town has a local market

structure, i.e. the consumers prefer to buy at the local firms. Under a

condition on lengths and costs and maximum node degree (SB condition),

we proved that under the SB condition, the Nash equilibrium price strategy

P∗ exists and that P∗ = PL. We gave an explicit series expansion formula

for the Nash price equilibrium that shows explicitly how the Nash price

equilibrium of a firm depends on the production costs, road market sizes

and firm locations. Furthermore, the influence of a firm in the Nash price

equilibrium of other firm decreases exponentially with the distance between

the firms. We introduced the notion of space bounded information in the

Hotelling town and we showed that firms that only have local knowledge

of network are still able to compute good approximations of local optimum

prices. All this results were obtained for linear and quadratic transportation

costs.

With linear transportation costs, we presented additional results: (a)

we proved that, if the firms are located at the neighbourhood of the nodes

of degree greater than 2, the local optimal localization of the firms is at

the vertices of the network; (b) we determined the Nash equilibrium price

strategy for a Hotelling network where each firm has associated a different

transportation cost; (c) we determined the Bayesian-Nash equilibrium price

strategy with uncertainty on the production costs in the hotelling model;

and (d) under a condition on lengths and costs, we showed that the local
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optimum profits of the firms increases with the degree of the nodes in which

they are located.

Further, research work can consist (i) on finding sufficient and necessary

conditions for the local optimum price strategy to be a Nash equilibrium; (ii)

to solve the localization problem by studying the cases where the firms are

not located at the ends of the segment line; (iii) extend the Hotelling town

model to general case, without a local market structure.
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