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a b s t r a c t

Nanocomposites-forming solutions (NFS) based on cassava starch and laponite were prepared and next
characterized by means of dynamic oscillatory and steady shear rheological tests to evaluate their ability
to be processed by knife coating. The effects of speed (rpm) and homogenization time on the laponite dis-
persion characteristics were first analyzed. Laponite dispersions were affected by both process parame-
ters. High speed (rpm), i.e. 20,000 or 23,000 rpm for 30 min or prolonged homogenization time
(10,000 rpm 6 speed agitation 6 23,000 rpm, for 60 min) led to high f-potential values, with laponite
particles size <80 nm. With addition of laponite nanoparticles to cassava starch dispersion, an evident
transition in NFS from liquid-like viscous to solid-like elastic behavior was observed. Rheological results
indicated that laponite nanoparticles induced new interactions with starch chains allowing to obtain a
network structure typical of a semi-rigid gel which shows some spread ability.

� 2015 Published by Elsevier Ltd.
1. Introduction

Nanomaterials are characterized by having at least one dimen-
sion of its particles in nanometric dimension, i.e. between 1 and
100 nm (Aouada et al., 2011). When the particle size is equivalent
to the dimension of a molecule, the atomic and molecular interac-
tions can have a significant influence on the macroscopic proper-
ties of that material (Aouada et al., 2011; Jorge et al., 2014).
Thus, this behavior is associated with the specifics size of nanoma-
terials such as their high surface to volume ratio (Hassanabadi and
Rodrigue, 2012).

Among nanomaterials, there are some thin and flexible materi-
als based on biopolymers charged with nanoparticles. This is a con-
sequence of an approach to improve the mechanical and barrier
properties of conventional polymer and biopolymers based films,
then producing composites in nanoscale or nanocomposites
(Tang and Alavi, 2012; Jorge et al., 2014). Nanocomposites should
exhibit a notable enhancement in rigidity and resistance, reduced
water vapor and gas permeability, and lower flammability (Tang
and Alavi, 2012).
In the biopolymer films technology for food applications, the
montmorillonite is the nanoparticle most used in studies on devel-
opment of films nanocomposites. It has been used to load films
based on gelatin (Flaker et al., 2015), zein (Park et al., 2012), starch
(Cyras et al., 2008), chitosan (Kasirga et al., 2012), among others. A
nanoparticle not so much studied in biopolymer based film is the
laponite. Laponite or hydrous sodium lithium magnesium silicate
(Na+

0.7[(Si8 Mg5.5Li0.3)O20(OH)4]�0.7) is a synthetic hectorite clay with
particle disk-shape with a thickness of 1 nm, and a diameter of
approximately of 25 nm (Nicolai and Cocard, 2000; Cummins,
2007). Laponite disk have an octahedral configuration with Mg2+

ions in the octahedral sites and also Li+ ions in minor amount and
Na+ ions in the interlayer domain (Perotti et al., 2011). In water,
laponite disk hydrates and swells to form clear colloidal dispersions
with high stability due to its negative surface charge density of
0.014 e-/Å2 (Nicolai and Cocard, 2000; Herrera et al., 2004).

Laponite has been broadly used in agriculture, construction,
personal care, surface coatings and polymer industry (Kumar
et al., 2008). Shibayama et al. (2004) reported that the laponite
addition in hydrogels based of N-isopropylacrylamide led a notable
high strength and elongation at break in excess of 1000%. Similar
results were reported by Haraguchi et al. (2005) and Haraguchi
and Li (2006) for hydrogels reinforced with laponite. Most recently,
Chung et al. (2010), Aouada et al. (2011), Tang and Alavi (2012) and
Perotti et al. (2014) demonstrated that laponite can improve the
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resistance, rigidity, water resistance and water vapor permeability
in films based on corn starch, then laponite could be a compatibi-
lizer and cross-linking agent between starch chains.

Besides, the laponite has attracted attention of researcher
because its rheological behavior in high concentrated solution in
water, which behaves as dilatant fluids (Abou et al., 2003; Joshi
et al., 2008). Nevertheless, rheological studies on more diluted
solutions of laponite have been not studied, neither on
film-forming solutions containing that nanoparticle.

Rheological analyzes of nanocomposite-forming solutions can
help to understand the structure–property relations between poly-
mer and nanocomposites (Hassanabadi and Rodrigue, 2012), as
well as to optimize the nanostructured film production, specially
the casting and spreading techniques (Jorge et al., 2014) since rhe-
ology studies interplay between flow and material properties. No
information about the effect of laponite on the rheological proper-
ties in starch filmogenic solution was reported to date. Hence, this
work aimed to study the effect of laponite concentration on the
viscoelastic and rheological behavior of nanocomposite-forming
solutions (NFS) based on cassava starch by means of dynamic oscil-
latory and steady shear tests.
2. Materials and methods

2.1. Materials

Cassava starch (humidity = 10.70 ± 0.10% wet basis) was pur-
chased from local market in Pirassununga city (São Paulo, Brazil)
and was used as biopolymer for nanocomposite-forming solutions
(NFS). Glycerol was supplied by Synth company (São Paulo, Brazil)
and used as plasticizer. Laponite RD (Southerm Clay Products Inc.
Reference number 23224) was used as nanoparticle. Distilled
water was used to disperse laponite and as a solvent in NFS based
on cassava starch. Deionized water and potassium hydroxide
(KOH) 1 M were used in the sample preparation for particle size
distribution and f-potential analysis respectively.

2.2. Characterization of laponite powder

Laponite morphology was analyzed using low vacuum scanning
electron microscopy (LV-SEM, TM-3000, HITACHI, Japan) at an
accelerated voltage of 15 kV. Before analysis, laponite powder
was conditioned under vacuum by 12 h and then fixed on alu-
minum stubs by means of conductive carbon tape. No additional
preparation was necessary for analysis using this LV-SEM (Flaker
et al., 2015). Energy dispersive spectroscopy (EDS) of laponite
was analyzed in the same equipment.

2.3. Production of laponite dispersions

To disperse laponite in distilled water, 1 g of laponite was added
to 99 g of distilled water and then dispersed under vigorous stir-
ring using a high speed homogenizer (ultraturrax, Ika, model
T25) at room temperature. To study the effect of control process
variables in ultraturrax, comparative experiments were carried
out to examine the effect of different speed (10,000; 15,000;
20,000 and 23,000 rpm) and dispersion time (30 and 60 min) on
the quality of laponite dispersion in distilled water.

2.4. Characterization of laponite dispersions

The pH of laponite dispersions was analyzed by means of a dig-
ital pH meter (PG1400 Gehaka). Dynamic light scattering (DLS)
measurements were performed using a Zetaplus equipment
(Brookhaven Instrument Company, EUA) to determine the particle
size distribution and surface charge (f-potential). These determina-
tions were obtained at room temperature. Laponite dispersions
were stored at 4 �C until use.

Atomic force microscopy (AFM) images were obtained using a
SolverNext (NT-MDT, Russia). Laponite dispersions were diluted
to a designed concentration, and then 10 lL were pipetted onto a
piece of freshly cleaved mica sheet. The dispersion was then
allowed to evaporate in an enclosed Petri dish under ambient con-
ditions (40% relative humidity) for 24 h (Balnois et al., 2003). The
nanostructures were characterized using the semi-contact mode
in AFM with a resonance frequency of 240 kHz, force contact of
11.8 N/m and scan speed 0.3 Hz.

The rheological properties of laponite dispersions were
obtained at 25 �C with a rheometer (AR2000 Advanced
Rheometer, TA Instruments, New Castle DE, EUA), using a double
concentric cylinder geometry (internal radius = 16.0 mm, external
radius = 17.5 mm, height = 53 mm and gap = 2000 lm). For each
test, 12 mL of laponite dispersions was used. The dispersions were
analyzed by applying steady shear rates ranging from 0.1 to
100 s�1, being submitted to two shear rate sweeps, increasing then
decreasing, with duration of 2 min each (Moraes et al., 2009; Jorge
et al., 2014). All resulting flow curves were measured at least three
times for each laponite dispersion.

2.5. Production of NFS based on cassava starch and laponite

The NFS were produced using (Ccs) 2 and 4 g of cassava
starch/100 g of NFS, and 30 g glycerol/100 g of cassava starch.
Laponite dispersed in distilled water at 20,000 rpm for 30 min
(see preliminary dispersion tests reported in Section 3.2) was
added in different concentrations (CLap): 0, 5, 10, 15 and 20 g lapo-
nite/100 g cassava starch. Distilled water was added to complete
100 g of NFS. The NFS were heated at 95 ± 1 �C for 30 min to pro-
mote starch gelatinization (Chen et al., 2009), and later cooled
down to 25 �C within 30 min, covered with a preservative film to
minimize the loss of moisture during heating and cooling (Che
et al., 2008).

2.6. Rheological characterization of NFS

All rheological tests were carried out with the same rheometer
as in Section 2.4.

2.6.1. Dynamic oscillatory characterization
For all tests, nearly 4 mL NFS were loaded in the cone and plate

geometry (cone angle 4�, 60 mm diameter) of the rheometer. Right
after loading, a pre-shear at a shear rate of 1 s�1 was applied during
1 min to erase any flow history and rejuvenate the NFS, thus ensur-
ing test reproducibility. Temperature was controlled using a Peltier
system and the water evaporation in NFS was avoided using min-
eral oil and a solvent trap accessory (Jorge et al., 2014). All results
were analyzed using the software Rheology Advantage Data
Analysis V.5.3.1 (TA Instrument).

Firstly, the linear viscoelastic region was determined at 25 �C by
performing small amplitude oscillatory strain (SAOS) sweep tests
on all NFS, and using strain values between 0.01% and 100% and
1 Hz of frequency (Moraes et al., 2009). From the results of these
tests, a strain amplitude of 1%, within the linear viscoelastic
domain in NFS, was chosen to perform all remaining SAOS tests.
A time sweep test at 1 Hz on new NFS loaded samples was first
performed to check for sample equilibrium after loading and
pre-shear. Then, a stress sweep test was performed at 1 Hz and
for stress values between 0.1 and 180 Pa, or a frequency sweep test
for frequency values between 0.01 to 10 Hz was performed. All
characterizations were realized at least three times for each NFS.
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2.6.2. Steady shear properties
Flow curves of NFS were performed using two different geome-

tries. The NFS produced with 2 g of cassava starch/100 g of NFS
were analyzed using a concentric cylinder geometry (internal
radius = 14 mm, external radius = 15 mm, height = 42 mm and
gap = 1000 lm). For each test, 13 mL of NFS was used. The NFS pro-
duced with 4 g of cassava starch were analyzed using parallel plate
geometry (60 mm diameter, gap = 1000 lm). The NFS were studied
in a shear rate range between 0.1 and 200 s�1, using the following
experimental protocol: firstly an increasing shear rate sweep was
applied to erase any flow history and rejuvenate the NFS, thus
ensuring test reproducibility. Later a decreasing and an increasing
shear rate sweeps were applied to study the rheological behavior
of NFS. Each shear rate sweep had a duration of 2 min (Moraes
et al., 2009; Jorge et al., 2014). All characterizations were realized
at least three times for each NFS.

2.7. Statistical analyses

An analysis of variance (ANOVA) and Tukey test of multiple
comparisons were accomplished with a significance level of 5%
(SAS software). All fitting of the models to data were done using
Origin Software.

3. Results and discussions

3.1. Characterization of laponite powder

Scanning electron micrographs displayed in Fig. 1 show that
laponite is made of micrometer large agglomerates with irregular
size and shape. The magnified SEM picture (see Fig. 1b) reveals that
agglomerates consist of stacked plate-like objects. A similar obser-
vation was reported by Bippus et al. (2009) who attributed the
aggregate structure to the stacking of elementary laponite disks.
The chemical analysis performed with EDS gives the following
mean chemical composition: SiO2, 68.6%; MgO, 28.9%; and Na2O,
2.5%, in agreement with the chemical composition reported by
Levitz et al. (2000), for the same raw material.

3.2. Characterization of laponite dispersions

Ultraturrax proved to be an efficient method to disrupt the
aggregates. The particle size distribution obtained by laser diffrac-
tion indicates two distinct populations (bi-modal distribution) for
all speed and homogenization time tested in ultraturrax (Fig. 2).
Low speed and homogenization time, i.e. 10,000 and 15,000 rpm
for 30 min give two particle populations between 15–26 and
114–172 nm (Fig. 2a). A notable decrease in particle size of both
populations was observed when prolonged treatment time
(60 min) or larger ultraturrax speed (P20,000 rpm) was employed
Fig. 1. Scanning electron micrographs of raw lapo
(Fig. 2b–d). The best speed and homogenization time combination
was 20,000 rpm/30 min which gives nanometric particles of
roughly 4 nm and 40 nm, as longer treatment time is not accompa-
nied by any further particle size reduction. The bi-modal distribu-
tion reported in Fig. 2 together with the size ranges are in
agreement with earlier reports on laponite (Daniel et al., 2007;
Bippus et al., 2009) which assigned the particles to aggregates of
elementary laponite disks.

Additional information on particle size and shape is provided by
the AFM images presented in Fig. 3. Plate like objects with sizes
very similar to those measured with LDS were pictured. Height
profile from AFM image (Fig. 3b) confirmed the internal structure
of the aggregates and elementary particle disk-shape with thick-
ness of approximately 1 nm and a diameter of 24 nm as reported
in the literature (Nicolai and Cocard, 2000; Cummins, 2007) were
observed. Despite the high dilution (1:100), a large amount of lapo-
nite particles shows up in the AFM images.

The stability of laponite dispersions can be evaluated by means
of f-potential and pH determination. The f-potential values in
laponite dispersions were sensible to the speed and homogeniza-
tion time (Table 1). High speed (rpm), i.e. 20,000 or 23,000 rpm
for 30 min or prolonged homogenization time
(10,000 rpm 6 speed agitation 623,000 rpm, for 60 min) led to
high f-potential values. This is in harmony with results reported
by Jorge et al. (2014) who noted that the superficial charge is
related with surface area, hence more negative f-potential values
are correlated with smaller particles. No effects of speed or homog-
enization time on pH can be inferred from the data collected in
Table 1. The f-potential (<-34 mV) and pH (approximately 10) val-
ues (Table 1) suggest that laponite dispersion have high stability,
as reported by Cummins (2007).

According to results of rheological essays, the laponite disper-
sions showed a Newtonian behavior. This Newtonian character of
the laponite dispersions measured by ramping up or down the
shear rates suggests that flow does not induce any laponite aggre-
gation for the tested concentration and shear rate range. The agita-
tion speed and time do not impact on g values (Table 1).

3.3. Rheological characterization of NFS

3.3.1. Dynamic oscillatory characterization
Strain sweep tests revealed that at 25 �C all NFS showed a 0.2–

10% strain range where G0 and G0 0 moduli remain constant, thus
indicating a linear viscoelastic domain (Fig. 4).

The time dependence of storage modulus (G0) measured after
loading the sample into the shearing geometry and applying a
pre-shear rate of 1 s�1 during 1 min is shown in Fig. 5 for all NFS.
The results reveal a strong effect of clay particles on the elasticity
of the NFS as G0 values increased with CLap. More importantly, these
results indicate that all samples achieved equilibrium conditions
nite: 1000� (a) and 5000� (b) magnification.



Fig. 3. Typical atomic force microscopy image (a) and height profile (b) taken on the white line in (a) for the laponite dispersed at 20,000 rpm for 30 min. Sample was diluted
at 1:100 in filtered and distilled water.

Fig. 2. Particle size distribution obtained for different ultraturrax speeds (indicated in the legends to the charts) applied during 30 min (a and b) and 60 min (c and d).
Intensity (%) is based on number particles.

Table 1
f-potential, pH and viscosity values* of laponite dispersions in water.

Speed (�10�3) (rpm) f-potential (mV) pH Viscosity (Pa s � 104)

30 min 60 min 30 min 60 min 30 min 60 min

10 �34.87 ± 1.95B,b �44.20 ± 1.36A,a 10.60 ± 0.04A,a 10.60 ± 0.06A,a 10.70 ± 0.28 11.01 ± 0.06
15 �35.49 ± 0.03B,b �43.53 ± 1.41A,a 10.20 ± 0.06B,a 10.20 ± 0.04B,a 10.69 ± 0.30 11.03 ± 0.01
20 �39.90 ± 4.50AB,a �43.78 ± 1.24A,a 10.00 ± 0.03C,a 10.00 ± 0.01C,a 11.05 ± 0.07 11.03 ± 0.02
23 �45.71 ± 5.32A,a �48.02 ± 2.51A,a 10.10 ± 0.06BC,a 10.05 ± 0.05C,a 11.02 ± 0.01 11.26 ± 0.25

Means within the same column having different superscripts (capital letter) are significantly different at p < 0.05.
Means within the same row having different superscripts (lowercase letter) are significantly different at p < 0.05.

* All values were expressed as mean ± standard error (n = 3).
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Fig. 4. Typical G0 , G0 0 vs. strain curves obtained for NFS using 2 g (a) and 4 g (b) of cassava starch, both with 0% in laponite concentration.

Fig. 5. Typical G0 vs. time curves obtained for NFS using 2 g (a) and 4 g (b) of cassava starch to different laponite concentrations.
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after 2 min, and that more concentrated NFS show a decrease in G0

at earlier times. Thus, for all remaining rheological testing of NFS,
an equilibrium time of 2 min after the pre-shear was applied
before further rheological characterization.

The mechanical spectra of all NFS are presented in Fig. 6. For
NFS with 2 g of cassava starch, the measured frequency range is
from 0.63 to 6.3 rad/s, whereas it is from 0.63 to 31.5 rad/s for
NFS with 4 g of cassava starch. The range of frequencies depends
on limitations in torque sensitivity (lower frequencies) and
Fig. 6. Typical G0 , G0 0 vs. x obtained for NFS using 2 g (a) and of 4 g (b) of cassava starch/
20% (e). Solid and empty symbols denote G0 and G0 0 , respectively.
rheometer inertia (larger frequencies). Examining the frequency
response displayed in Fig. 6, it can be seen that the CLap has a strong
effect on the structure of NFS. A typical liquid-like response with
G0 0 > G0 for the whole frequency range tested is observed in NFS
with 2 g cassava starch and low CLap (up to 5%). For all remaining
systems, mechanical spectra typical of viscoelastic solids or gels
(G0 > G0 0) are measured. These results are consistent with those of
Jorge et al. (2014) who also find a sol–gel transition for montmoril-
lonite/gelatin systems with increasing clay content.
100 g NFS to different laponite concentrations: 0% (h), 5% (s), 10% (r), 15% (D) and



G.A. Valencia et al. / Journal of Food Engineering 166 (2015) 174–181 179
Power law model (Eqs. (1) and (2)) described adequately the
frequency dependence of the G0 and G0 0 moduli in NFS:

G0ðxÞ ¼ K 0xn0 ð1Þ
G00ðxÞ ¼ K 00xn00 ð2Þ

where x is the angular frequency (rad/s). The, K 0;K 00;n0 and n00

parameters were fitted to the data and computed values are shown
in Table 2.

For NFS with the same cassava starch concentration, the
increase in CLap leads in K 0 values much larger than those of K 00 val-
ues, suggesting a more solid-like elastic behavior (Song et al.,
2006). In addition, n0 and n00 values decreased with the increase
in CLap, indicating that the frequency dependence in NFS becomes
weaker with the increase in CLap. Thus laponite promotes the
solid-like elastic behavior (Song et al., 2006). Note here that the
addition of laponite does not simply correspond to a reinforcing
effect, since the latter would give an increase in both moduli, with
no change in the frequency dependence. Instead, the change in the
frequency dependence mirrored in the change in both n0 and n00

with CLap suggests a structural modification of the nanocomposites
with the laponite load. A quantitative analysis of the effect of the
addition of laponite on NFS elasticity was proposed in Fig. 7 where
the storage modulus measured at 1 rad/s from curves displayed in
Fig. 6 was plotted as a function of the total solid content in NFS
(Fig. 7a) or of the relative content in laponite (Fig. 7b). Data for
NFS formulated with 2 g cassava starch and 5% or 10% laponite
are not presented in Fig. 7a since these two systems show liquid
like behavior, whereas Fig. 7 compares solid like NFS. The increase
of gel elasticity with total solid content is much smaller for NFS
formulated with 2 g cassava starch when compared with NFS pre-
pared with 4 g cassava starch. This result suggests that laponite has
a different reinforcing effect for the two systems. Indeed, the rein-
forcing effect of laponite is more efficient with 4 g cassava starch as
the increase in gel elasticity is steeper. For these gels, we can com-
pare the reinforcing effect of laponite on the cassava gel matrix
with the Maron and Pierce equation (Eq. (3)) originally devised
for Newtonian fluids but successfully applied to viscoelastic matri-
ces (Barnes, 2003; Ghanbari et al., 2013):ffiffiffiffiffiffi

G00
G0

s
¼ 1� CLap

Cm
ð3Þ

where G00 is the storage modulus of the cassava starch matrix
extracted at 1 rad/s from the mechanical spectra displayed in
Fig. 6, CLap is the laponite content and Cm is the content of laponite
at which close packing of fillers occurs. Fig. 7b shows the good
agreement between Eq. (4) and the data, and the fitting of
Table 2
Parameters* of the Power Law model calculated by fitting data on G0 , G0 0 vs. x in NFS.

CCS (%w/w) CLap (%w/w) G0

K 0 n0

2 0 0.33 ± 0.03C 0.44 ± 0.03A

5 0.21 ± 0.04C 0.44 ± 0.04A

10 0.73 ± 0.01B 0.40 ± 0.00AB

15 0.94 ± 0.04A 0.30 ± 0.01BC

20 0.97 ± 0.00A 0.28 ± 0.00C

4 0 2.76 ± 0.12D 0.41 ± 0.0A

5 4.90 ± 0.02CD 0.31 ± 0.00AB

10 6.90 ± 1.08BC 0.24 ± 0.02BC

15 7.65 ± 0.19B 0.20 ± 0.00BC

20 14.04 ± 0.07A 0.13 ± 0.00C

CCS = cassava starch concentration; CLap = laponite concentration.
Means within the same column having different superscripts (capital letter) are signific

* All values were expressed as mean ± standard error (n = 3).
experimental data to Eq. (3) returns a Cm = 25 wt% ± 2 wt%. The fol-
lowing statement can be extracted from this analysis: laponite par-
ticles are reinforcing the cassava starch matrix without forming a
laponite network since the latter should build up at weight fractions
of the order of 25 wt%. This also implies that laponite were well dis-
persed in the cassava starch matrix, as mirrored in the value of Cm

which is reminiscent from fillers with large aspect ratio (Barnes,
2003).

Curves obtained from the oscillatory stress sweep tests are pre-
sented in Fig. 8 for selected CLap. NFS with 2 g cassava starch shows
a shear thinning behavior which is more pronounced for the elastic
modulus G0. However, the behavior switches to a weak thickening
at the largest oscillatory stresses tested. The thickening is more
apparent upon addition of 20 wt% laponite and occurs at smaller
stresses. Similarly, the onset of non-linear dynamic behavior
occurs at smaller stresses. The picture is somehow different for
the NFS prepared with 4 g cassava starch (Fig. 8b). Adding laponite
to the cassava starch gel extends the regime of linear viscoelastic
behavior by nearly one decade as the NFS with 20 wt% laponite
sustains stresses as large as 4 Pa, whereas the cassava starch gel
starts thinning at 0.2 Pa. Moreover, and in contrast to NFS with
2 g which keeps essentially a shear thinning behavior of both G0

and G0 0 for all laponite contents tested, the addition of laponite to
the NFS matrix prepared with 4 g cassava starch is accompanied
by a change from thinning to thickening which is particularly evi-
dent in G0 0.
3.3.2. Steady shear properties
NFS were studied with steady shear tests in the aim of evaluat-

ing the spread ability of the solutions and assess their suitability to
knife coating application.

Decreasing and increasing flow curves showed similar flow
behavior for shear rate between 0.1 and 200 s�1. In others words,
no hysteresis behavior was observed in NFS. This result suggests
that within 2 min testing, no thixotropy could be observed. Flow
curves of NFS with 2 g cassava starch showed a pseudoplastic or
shear-thinning behavior (Fig. 9a), that was well fitted to
Herschel–Bulkley model (R2 P 0.98) (Eq. (4)).

s ¼ so þ k _cn ð4Þ

where so is the yield stress (Pa), k is the consistency coefficient
(Pa sn) and n the flow behavior index (dimensionless). All parame-
ters computed from the fitting of Eq. (4) to the data in Fig. 9 are
shown in Table 3.

The addition of laponite up to 5 wt% has little effect on the shear
thinning behavior of NFS prepared with 2 g cassava starch. For lar-
ger laponite loading, a gel is formed and thus a significant yield
G0 0

R2 K 00 n00 R2

0.99 0.48 ± 0.01B 0.60 ± 0.01A 0.99
0.96–097 0.41 ± 0.03B 0.64 ± 0.02A 0.99
0.99 0.72 ± 0.01A 0.50 ± 0.01B 0.99
0.99 0.78 ± 0.02A 0.49 ± 0.01B 0.99
0.99 0.75 ± 0.00A 0.48 ± 0.00B 0.99

0.99 2.33 ± 0.03D 0.46 ± 0.00A 0.99
0.99 3.07 ± 0.03C 0.40 ± 0.00B 0.99
0.99 3.41 ± 0.22C 0.34 ± 0.00C 0.99
0.99 3.13 ± 0.00B 0.32 ± 0.00C 0.99
0.99 3.85 ± 0.11A 0.22 ± 0.00D 0.94–0.98

antly different at p < 0.05.



Fig. 7. Storage modulus G0 measured at 1 rad/s as a function of the total solid content in NFS (a). Scaled storage modulus as a function of the laponite content in NSF with 4 g
starch (b). Line is a fit of Eq. (1) to the data.

Fig. 8. Typical G0 vs. oscillatory stress obtained for NFS using 2 g (a) and of 4 g (b) of cassava starch and two laponite concentrations.

Fig. 9. Flow curves for NFS using 2 g (a) and 4 g (b) of cassava starch/100 g NFS to different laponite concentrations.
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stress is obtained. Parameters reported in Table 3 however suggest
that the laponite amount does not really affect the spread ability of
NFS. The increase from 2 g to 4 g cassava starch in NFS free of lapo-
nite is related to an increase of intermolecular forces that restrict
molecular motion in amylose and amylopectin chains (Che et al.,
2008). Thus, a gel is formed as shown above, and a 10 times larger
yield stress is measured. An increase in the yield stress with the
laponite concentration is also evident, which indicates that lapo-
nite will not favor the spread ability of the NFS. According to
Gardini et al. (2010), systems with shear-thinning behavior can
be successfully spread. When the systems have a low enough vis-
cosity, the shear rate to use to spread is similar to used in casting
process. In contrast, low-shear stresses are used for systems with
higher viscosity.

It is well accepted that laponite can have a cross-linking action
on polymers and biopolymers, developing network structures
where the polymer chains are attached to the surface of clay sheets
(Haraguchi and Li, 2006; Tang and Alavi, 2012). Hence



Table 3
Parameters* of the Herscel–Bulkley model calculated by fitting data on shear rate vs.
shear stress curves in NFS.

CCS

(%w/w)
CLap

(%w/w)
so

(Pa � 102)
k
(Pa sn � 102)

n
(�102)

R2

2 0 2.01 ± 0.12B 8.74 ± 0.05C 73.4 ± 0.10A 0.99
5 2.09 ± 0.21B 9.08 ± 0.05C 73.2 ± 0.05A 0.99

10 2.63 ± 0.09A 11.46 ± 0.10AB 70.02 ± 2.33C 0.99
15 2.71 ± 0.05A 11.33 ± 0.88AB 70.20 ± 0.30C 0.99
20 2.60 ± 0.06A 12.63 ± 0.10A 70.73 ± 0.07B 0.99

4 0 9.10 ± 0.59C 43.00 ± 0.33C 71.00 ± 1.15A 0.99
5 10.00 ± 0.51C 39.20 ± 2.65C 69.30 ± 1.95AB 0.99

10 15.10 ± 0.06C 88.97 ± 0.80C 69.00 ± 0.60B 0.99
15 99.03 ± 1.08B 275.02 ± 42.20B 67.50 ± 0.50BC 0.98
20 235.25 ± 14.74A 450.67 ± 10.73A 63.18 ± 3.08C 0.99

CCS = cassava starch concentration; CLap = laponite concentration.
All fit parameters (so, k and) n in NFS with 4 g of cassava starch and laponite content
>5% were fitted for a shear rate range between 0.1 s�1 and 1 s�1.
Means within the same column having different superscripts (capital letter) are
significantly different at p < 0.05.

* All values were expressed as mean ± standard error (n = 3).
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cross-linking interactions between amylose-laponite and
amylopectin-laponite may be the main reason for the increasing
in pseudoplasticity in NFS when laponite was added. For laponite
in excess of 5 wt%, the flow curves in Fig. 9b departs from the
monotonic shear thinning predicted with Eq. (4). Instead, the stress
tends to plateauing at intermediate shear rates (this is more evi-
dent with 15 wt% laponite). As a result, parameters in Table 3
where computed form the fitting of Eq. (4) to data ranging only
from 0.1 s�1 to 1 s�1.
4. Conclusions

In this research, nanocomposites-forming solutions had been
successfully developed using cassava starch and laponite.

Laponite was dispersed in distilled water by means of ultratur-
rax, different speeds (rpm) and homogenization time led to differ-
ent particle size distributions. A notable decrease in particle size
was observed for speed rotations at 10,000 and 15,000 rpm for
60 min. However no difference in particle size was observed for
speed rotations at 20,000 and 23,000 rpm with the increase in
time. These speeds and time combinations led to obtain laponite
particles with size <80 nm. The presence of elementary particle
disk-shape was confirmed by AFM images.

Laponite nanoparticles had a strong effect on the G0 and G0 0 val-
ues in NFS. With the increase in laponite concentration (CLap), NFS
shifts from a viscoelastic liquid like to a solid-like elastic behavior,
or the cassava starch network that forms a gel is reinforced by the
addition of laponite. Analysis of the increase in gel elasticity with
CLap with a model suggests that laponite remained well dispersed
in the NFS. The knowledge of the rheological properties of these
systems is important to control the NFS application on support.
Flow curves confirmed the effect of laponite on the network struc-
tures in NFS. Flow curves also indicate that for the NFS with a lar-
ger content of cassava starch, the addition of laponite does not
favor the spread ability of NFS.
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