
Experimenting with Predicate Abstraction

Victor Cacciari Miraldo

HASLab/INESC TEC & Universidade do Minho, Portugal

Abstract. Predicate abstraction is a technique employed in software
model checking to produce abstract models that can be conservatively
checked for property violations in reasonable time. The precision degree
of different abstractions of the same program may differ based on (i)
the set of predicates used; or (ii) the algorithmic technique employed to
generate the model. In this report we explain how we have extended the
implementation of one such technique, that produces the most precise ex-
istential abstraction of a program, and we establish a common framework
for both this direct technique and a second one, based on cartesian ab-
straction by weakest precondition calculations. This report a product of
the research grant BI22012 PTDC/EIA-CCO/117590/2010 UMINHO,
in the scope of the AVIACC project, supervised by Professors Jorge
Sousa Pinto and Maria João Frade

1 Introduction

Model Checking [8] has been successful in validating hardware system designs,
to a point where its use has become not only common, but essential. It has long
been hoped that this success will carry over to the realm of software, but this
has proved exceptionally difficult, due to an aggravated state-space explosion
problem. This is of course a typical problem of model checking, but the partic-
ular characteristics of software systems (like the presence of datatypes) make it
particularly hard to handle.

Two main families of techniques have been employed in the last 10 to 15 years
to make software model checking useful in practice. The first is bounded model
checking [6], which in fact is not a specific technique for software applications.
In a nutshell, it is employed as an alternative to BDD-based symbolic model
checking that limits the exploration of executions of a system to a given bound
on their length: paths longer than this bound are simply not explored. When
applied to software, this amounts to limiting the number of loop iterations and
recursive calls considered. Bounded model-checking problems can be encoded as
logical satisfiability problems, solved with the help of a satisfiability solver. The
drawback of this technique is that in general when a safety property is valid
in the bounded model (e.g. a given error state is unreachable), it cannot be
guaranteed to be valid in the original program.

The alternative is to consider an abstract model of the program, which may
dramatically reduce the state-space. The goal of abstraction is to compute an
abstract model M̄ from the concrete model M of a program, such that the size

of the state-space is reduced, but in a way that it is still sound to check for safety
properties. Abstraction [11] is of course the fundamental technique that makes
static program analyses feasible; the kind of abstraction used for software model
checking safety properties is known as existential abstraction [9]. Informally,
existential abstraction produces an abstract model M̄ from a contrete model
M of a program so that any reachability problem that is solvable in M is also
solvable in M̄ , which means that if the abstract model satisfies a given safety
property, then so does the original program (i.e. concretization preserves safety).

This report is about the discussion and implementation of the first step of
a software model checker, namelly, it’s about a specific existential abstraction
technique known as Predicate Abstraction [14], which has the advantage over
other abstraction methods that it can be computed algorithmically. Predicate
abstraction keeps track of a given set E of predicates over the data, and regis-
ters how the truth value of these predicates changes with the concrete program
steps. Computing a predicate abstraction of a program inherently takes expo-
nential time on its length; but predicate abstractions are not unique, and there
exist different approaches to computing them, with the usual trade-off between
precision and efficiency.

In any working software model checker predicate abstraction is implemented
as part of a refinement loop. In Counter Example-Guided Abstract Refinement
(CEGAR), the refinement that is performed at each iteration consists of adding
more predicates to E. The loop successively calculates predicate abstractions,
starting from a rougher model, and refines them by generating new predicates,
based on the false positive counter-examples returned by the model checker at
each stage, until no counter-example is returned (in which case the program is
safe) or a true counter-example is found (the program is unsafe, there exists a real
property violation). Abstract refinement is not covered in the report: we focus
on predicate abstraction using a fixed set of predicates, which is the fundamental
(and costly!) building block of any software model checker.

Although the literature on software model checking accumulated over these
last 15 years is vast, we found that no clear and uniform presentation of the
different approaches to predicate abstraction can be found. In this report we
take two such approaches, each of which has been proposed as part of a major
software model checker. We remark that the precision degree of two predicate
abstractions of the same program may differ based on (i) the set E of predicates
provided (using more predicates results in a more precise model); or (ii) the al-
gorithmic technique used to generate the model from E. Given a set E, the two
methods considered here differ in the degree of precision of the generated ab-
stract models. The first method is the one found in the MAGIC software model
checker developed at CMU [7]; it is a straightforward technique that focuses
on directly computing minimal existential abstractions by solving SAT prob-
lems. The second method (more efficient but less precise) is based on cartesian
abstraction; it can be found at the core of the Microsoft SLAM tool [5].

The two methods are unfortunately described in the literature in terms that
make them hard to compare or to implement based on the same backbone:

whereas the direct method works at the level of transition systems, the second
method produces a Boolean program (so different model checking tools have to be
used on the abstract models produced). In addition, cartesian abstraction is im-
plemented using weakest precondition computations, whereas the direct method
is based on satisfiability checks. The two methods are surprinsingly similar, the
goal of this report is to provide the aforementioned common backbone, for the
double purpose of reasoning and implementation. We start by providing a brief
backgroung on the technical context of the project, the SPARK language and
Boolean Programs are introduced in Sections 2 and 3. A high level presentation
of the prototype produced follows in Section 4. Section 5 introduces the basic
concepts of predicate abstraction; Sections 6 and 7 then present the specific de-
tails of each of the two methods we consider. Section 8 shows how to calculate the
cartesian abstraction by SAT and points out how to create the direct abstraction
inside the cartesian framework. Section 9 explains how we have implemented and
optimized the direct satisfiability method to produce Boolean programs.

2 The SPARK Language

This research was mainly focused on software model cheking, but for developing
our prototype, we had to choose a source language. We chose SPARK for two
reasons: (A) SPARK has a somewhat simple syntax/semantic compared to other
commercial languages and; (B) SABS [18] is a joint effort with SPARK-BMC
[17] to create both a software model checker and a bounded model checker for
SPARK, therefore the development efforts could be divided.

For the rest of this document, no previous knowledge of SPARK is required.
In fact, we only handle basic control-flow and operations, therefore we’ll only
briefly, and informally, present the SPARK toolset.

Ada programming language can help avoid errors that are common in other
languages but, as said before, in the development of highly critical systems this is
often insufficient. SPARK [3] appeared in 1988 to target precisely these systems.
Although SPARK is based on a heavily restricted subset of Ada together with
a set of annotations, it should be considered in its own right as a full language
for the development of annotated high-assurance software. The great advantage
of using a subset of a widely used language is that this makes possible to share
compilers, instead of developing a new one. A consequence of this is that anno-
tations in SPARK code must be written as Ada comments, ignored by compilers
but not by the SPARK verification tools.

SPARK is not just a language, but also a set of tools that not only check if a
program respects all the restrictions imposed on valid SPARK programs, but are
also probably the most widely used tools for program verification. The Examiner
is the tool responsible for performing syntactic and static semantic analyses for
checking the validity of SPARK programs, as well as generating verification
conditions. Yet, there are no model-checking tools targeting SPARK.

3 Boolean Programs

Independently of the domain we’re performing model checking on, we need to
choose a representation for our models. In the case of software model checking,
the most common practice is to use boolean programs as this representation.

Boolean programs (BP) are a subset of the programs defined by the source
language, namely those where the only type available is the boolean type. That
is, every variable and parameter will have boolean type.

There are various reasons for choosing BPs as the model for which we’ll
abstract to. Boolean programs are sequential programs, therefore they share the
same structure; The problem of model checking BPs is decidable, since they’re
equivalent to pushdown automaton, which accept context-free languages; And
there already exists industrial strength tools for doing so, such as BEBOP[2],
BOOM[4] or GETAFIX [16].

The syntax for boolean programs was derived from C, and can be found on
[2]. The snyntax for expressions permits the cannonical Boolean operators with
two extensions: (A) non-deterministic choice, denoted by ∗, and (B) next-state
variables, denoted by p′.

A simple example of a boolean program is given in figure 1.

void main() begin

decl p1, p2;

p1, p2 := T, T;

while * do

assume(!p2);

p1, p2 := (p1 | p2) ? F : *, !p2;

od;

assert(p1 & p2);

end

Fig. 1. A sample boolean program.

The semantics are farily simple and standard, appart from the assume key-
word. Whenever we’re running along an execution path and find a assume ψ,
the condition ψ is evaluated. Case ψ evaluates to true, we continue on the same
execution path, whereas, case ψ evaluates to false, we cancel the execution of
the current path and backtrack to a point where a different execution path can
arise. Note that assume works as a filter over execution paths on the boolean
programs.

4 SABS Description

The process of producing a boolean program, by abstraction, from a SPARK
program is, for practical purposes, a pipeline of program transformations. In
this section we’ll briefly describe the pipeline implemented, with more detail on
the Static Single Assignment step.

The actual abstraction is performed only after a series of simplification steps.
Even SPARK is a complex enough language to justify the implementation effort,
the intermediate steps or transformations applied to the target program are:

(i) Parsing
(ii) Loop and Conditional simplification

(iii) Static Single Assignment (SSA) form
(iv) Existencial Abstraction

The target, annotated, program is parsed to a AST based on the SPARK
grammar [3,20]. Our AST is modified to support special annotations, flaged by
the token --% and used both to configure the following steps and to specify the
predicates we wish to prove for the program (with an --% assert p;). We then
transform every loop to it’s while equivalent and simplify the elsif statements.

We then follow to simplify the resulting, simplified program, to it’s SSA
form. This transformation is very important, and we depend heavily on the fact
that the Weakest Precondition of an SSA program wp(p, φ,) can be shown to be
equivalent to φ→ Lp, where Lp is the logic encoding of p. More on the subject
on [13].

The last step, the existencial abstraction of a SSA, SPARK-based program
is described in the rest of this document. For more details on the tool itself, we
direct the reader to the SABS tutorial [18].

5 Predicate Abstraction

We start by defining formally the notions of model and existential abstraction.
A model M is defined by a triple (S, S0, T), where S is the set of states, S0 ⊆ S
is the set of initial states, and T ⊆ S × S is the transition relation. In what
follows we will require abstraction functions mapping states of a model into
states of another model, which we will extend to sets of states as expected. A
concretization function γ : S̄ → S mapping abstract states into some concrete
states is associated to each abstraction function.

Definition 1. A model M̄ = (S̄, S̄0, T̄) is an existential abstraction of another
model M = (S, S0, T) w.r.t. an abstraction function α : S → S̄ if

1. ∃s ∈ S0. α(s) = s̄ → s̄ ∈ S̄0

2. ∃(s, s′) ∈ T. α(s) = s̄ ∧ α(s′) = s̄′ → (s̄, s̄′) ∈ T̄

The minimal existential abstraction also satisfies the converse implications.

We will use one form of existential abstraction called predicate abstraction,
where we abstract data by keeping track of predicates on it; every operation
on the concrete model M will be translated to a Boolean operation on the
abstract model M̄ . Predicate abstraction can be applied in the model checking
of transition systems in general; when applied to software model checking, it
produces a Boolean program, i.e. a program whose only data consists of a set of
Boolean variables, with the same control-flow structure as the original program.

The idea is simple: given a predicate pi on the variables of the original pro-
gram, there will be a corresponding Boolean variable bi in the abstract Boolean
program; instructions in the original program will be abstracted into instruc-
tions on the Boolean variables, that reflect the effects of the original instructions
on the truth values of the predicate. In particular, sequences of assignment in-
structions are mapped into parallel assignments. As a very simple example, the
instruction x := -x would be abstracted with the predicates p1

.
= x ≤ 0, and

p2
.
= x > 0 as the following parallel assignment: b1,b2 := b2,b1.

Throughout the paper we will write E for the set of predicates used to con-
struct the abstraction, and V for the set of Boolean variables in the Boolean
program, with #V = #E . We will denote by E(b) the predicate that is repre-
sented by the variable b ∈ V , and extend this notion to Boolean expressions in
the natural way, for instance E(b1 ∧ b2) = E(b1) ∧ E(b2).

To see how this matches our general discussion of abstraction, let us denote
the set of Boolean values by B = {T, F}. A concrete state consists of the program
location l ∈ L and an assignment to its variables (for the sake of simplicity we
consider that concrete programs manipulate only integer variables). Given a
concrete state s, we will denote by bi(s) the logical value of the predicate E(bi)
in s. The corresponding abstract state s̄ consists of the program location l ∈ L
and a valuation of the propositional variables in V , ie, S̄ = L × Bn, where
n = #E. The abstraction function α will map a concrete state into an abstract
one, and is defined by: α(s) = (loc(s), b1(s), · · · , bn(s)).

Suppose that the original program contains a command assert A, and one
wants to model check the (safety) property that whenever the command is
reached the Boolean expression A is true. If A = pi ∈ E for some i, then
the command will be translated into assert bi in the Boolean program, which
can now be model-checked (if not, then a suitable expression constructed from
the bi must be used instead). The advantage of doing this is that the reacha-
bility problem for Boolean programs is decidable [2]. Dedicated model checkers
for Boolean programs include BEPOP [2] and BOOM [4]. Note that predicate
abstraction and Boolean model checking do not absolutely require working with
Boolean programs as we do here. We could calculate the abstraction at the level
of transition systems, and then model-check the abstract transition system using
a general-purpose model checker. This will be further explained in Section 6.

As stated before, how to choose and refine a suitable set of predicates for
a given program is outside the scope of this paper: we assume a fixed set E
is provided, and consider two methods to construct an abstraction based on
E. The methods differ only in the way that basic blocks of code (sequences

of assignment instructions) are treated: control-flow is basically preserved from
the concrete to the Boolean program. Also, the treatment of data structures
like arrays, structures, and pointers, is orthogonal to the choice of abstraction
method. As such, in what follows we will essentially consider basic blocks as
concrete programs, consisting of sequences of integer assignment instructions.

6 The Direct Method

The most straightforward way to compute a predicate abstraction is to interpret
Definition 1 at the level of programs and apply it directly with the help of
a satisfiability solver. The method is described at length in [10]; it is used in
practice in the MAGIC tool [7].

As an abstract state is given by the values of the propositional variables in V
induced by the logical values of the predicates in E (in a given concrete state),
one needs to test which combinations of logical values of the predicates before
and after execution of the block are feasible. For this we need first of all to have
a logical encoding of the block, which can be obtained by converting it to static
single assignment (SSA) form [12]. Take for instance the basic block:

P ≡ x := x + 10; y := y + 1

It is converted to the following: P ≡ x1 := x0 + 10; y1 := y0 + 1. The
logical encoding LP of P can now be written simply as a conjunction of equations,
LP ≡ x1 = x0 + 10∧ y1 = y0 + 1. This encoding can be applied to a much richer
language, including arrays, structures, and pointers [10].

Note that each variable in the concrete program is now represented by a fam-
ily (both of size 2, in the above example) of variables in its logical representation.
Of these we are only interested in the initial and final versions of each variable;
when considering the execution of a basic block we will in general denote by s
and s′ the program state expressed in terms respectively of the initial and final
versions of the variables, therefore bi(s) and bi(s

′) will denote the initial and final
values of the predicate E(bi). Consider again our example program and take for
instance V = {b1, b2} with E(b1) = x ≥ 0 and E(b2) = even(y). Then b1(s) is
x0 ≥ 0, b2(s) is even(y0), b1(s′) is x1 ≥ 0, and b2(s′) is even(y1).

Let us now introduce some basic definitions and notation. A literal is a
Boolean variable or its negation. Let V = {b1, . . . , bn} be a set of Boolean vari-
ables. A cube over V is a conjuntion of literals in which each of the variables of
V appears exactly once. A cover is a disjuntion of cubes. We let l, li, . . . range
over literals, and c, ci, c

′, . . . range over cubes. We will denote by CV the set
{c1, · · · , c2n} of all possible cubes over V . Note that each such cube uniquely
corresponds to a valuation of the propositional variables in V , and thus to an
abstract state. For instance the cube b1 ∧ ¬b2 corresponds to the abstract state
in which b1 is true and b2 is false.

Following existential abstraction, to decide whether to include in the abstract
model a transition from the state characterized by the cube ci to the state

characterized by the cube cj , it suffices to check the satisfiability of the formula

E(ci)(s) ∧ LP ∧ E(cj)(s
′)

Say, for the program and predicates given above, we wish to check the existence
of a transition from the state in which both predicates are false to the state in
which both are true. We check the satisfiability of

¬(x0 ≥ 0) ∧ ¬(even(y0)) ∧ x1 = x0 + 10 ∧ y1 = y0 + 1 ∧ x1 ≥ 0 ∧ even(y1)

Indeed the formula is satisfiable, for instance with x0 = −2 and y0 = 0, and the
transition will thus be included in the abstract model. The abstract transition
system can be constructed by exhaustively testing 22n formulas:

E(c1)(s) ∧ LP ∧ E(c1)(s′)
...

E(c2n)(s) ∧ LP ∧ E(c2n)(s′)

The formulas can be checked by an SMT solver using a theory of (unbounded)
integers, or, if one wishes to employ a fixed-size bitvector encoding of numbers
(that stands closer to the machine representation), by a SAT solver after bit-
blasting. Every satisfiable formula (corresponding to an abstract transition in the
model) from the above family is recorded, allowing us to calculate an assignment
table. In our example the solver would return the following table:

b1 b2 b′1 b′2
F F F T
F F T T
F T F F
F T T F
T F T T
T T T F

Definition 2 (Assignment Table). Let P be a basic-block and V a set of
boolean variables associated with a set of predicates, E. Then, the assignment
table (transition relation) of such variables according to P is given by:

ATV (P) = {(c, c′) ∈ CV | ∃s, s′ . E(c)(s) ∧ LP ∧ E(c′)(s′)}

As described in [10], the method is used to produce an abstract transition
system, which the authors then export to a general-purpose symbolic model
checker to find property violations. But our interest is not in exporting the ab-
stract model in the form of a transition relation; instead, we would like to produce
a Boolean program. The reasons for this are twofold: first, specific model checkers
for Boolean programs are of course fine-tuned for this problem, and thus handle
it more efficiently. Second, other methods for generating predicate abstractions
produce Boolean programs natively, and so do most existing software model
checking tools; for the sake of uniformity (and to facilitate comparison) we also
choose to follow the latter approach.

Informally, to produce boolean programs from the assignment table, we need
to determine which pre-state cubes turn each variable true or false. More details
on how to ”divide” the assignment table will be given in section 9, formally, we
want a projection of a binary relation.

Definition 3 (Projection). Let V be a set of boolean variables, R ⊆ C2
V and

b a cube over V . We’ll define the projection of R in respec to V as:

πb(R) = {c ∈ CV | ∃c′ ∈ CV . c R c′ ∧ b ⊆ c′}

7 Cartesian Abstraction by WP Computations

SLAM [5], the tool that might be called the most successful software model
checker (it has become a comercial product, currently shipped by Microsoft
as part of the Windows Driver Development Kit), uses a different method for
constructing predicate abstractions. It constructs less precise abstractions, and
naturally does so more efficiently than the direct method.

Let again P be a basic block and LP its logical encoding, E be the set of
predicates used to construct the predicate abstraction, and V the set of Boolean
variables. An alternative to using satisfiability tests is to employ weakest precon-
dition (WP) calculations. Recall that the weakest precondition of a basic block
with respect to a given assertion ψ is given by the following two rules:

wp(x := e, ψ)
.
= ψ[e/x] wp(C1;C2, ψ)

.
= wp(C1, (wp(C2, ψ)))

Recall the example program and predicates of the previous section. Then

wp(P,E(b1)) ≡ x ≥ 0[y + 1/y][x+ 10/x] ≡ x+ 10 ≥ 0

One way to construct an abstraction is to determine individually, for each
Boolean variable b ∈ V , the sets of states in which the weakest preconditions
wp(P,E(b)) and wp(P,E(¬b)), respectively, are satisfied. In the first set of states
execution of the block will make E(b) hold in the final state, thus the assignment
b := T should be executed by the Boolean program. In the second set of states
b := F should be executed, and in states in which neither wp(P,E(b)) nor
wp(P,E(¬b)) are satisfied, the assignment b := ∗, signaling a non-deterministic
assignment, should be executed. It is useful to employ the following function:

choose(pos,neg) = pos ? T : (neg ? F : ∗)

The general idea is that the basic block can be abstracted by a parallel as-
signment of the form . . . , b, . . . := . . . , choose(wp(P ,E (b)),wp(P ,E (¬b))),
But this is of course not a valid Boolean program, since wp(P,E(b)) cannot be
expressed in terms of the Boolean variables. What we can do in the Boolean pro-
gram is to determine the combinations of values of the Boolean variables that
force each of the above WPs to hold. This can be formalized as follows. Given
an assertion ψ, let SψV denote the following disjunction of cubes over V :

SψV =
∨
{c ∈ CV | |= E(c)→ ψ}

(V will be dropped when clear from context) Note that constructing this set
requires 2n validity tests, where n = #V . Then P is abstracted by the following
Boolean program, where φi denotes the assertion wp(P,E(bi)):

b1 , · · · , bn := choose
(
Sφi ,S¬φi

)
, · · · , choose

(
Sφn ,S¬φn

)
Observe that computing the abstraction in this way requires testing the validity
of 2n× 2n formulas. This is still exponential, but also exponentially better than
the direct method. This method introduces more false positives than the direct
method because the different predicates are considered independently of each
other, thus contradictory states are present in the models. This is in fact what
is known as cartesian abstraction.

To understand this, consider that E consists of the two predicates E(b1) ≡
x ≥ 0 and E(b2) ≡ x ≤ 100. This produces an unsatisfiable cube: E(¬b1∧¬b2) ≡
x < 0 ∧ x > 100, which is a contradiction, and would be included in SψV for
any condition ψ: there exists a transition from the state corresponding to the
unsatisfiable cube to any other state. Moreover, transitions into this state could
also be present, since the WPs are computed independently for E(b1) and E(b2).
Compare this to what would happen with the direct method: any satisfiability
formula involving a contradictory state, of the form

E(¬b1 ∧ ¬b2)(s) ∧ LP ∧ E(cj)(s
′) or E(ci)(s) ∧ LP ∧ E(¬b1 ∧ ¬b2)(s′)

is UNSAT, and rejected from the assignment table. Thus the corresponding
transitions will not be inserted in the construction of the abstract model.

8 Cartesian Abstraction by SAT

Cartesian abstraction may look different, in terms of description, from direct
abstraction yet they share more similarities than what one would think. In fact,
the actual difference is that cartesian abstraction consider the boolean variables
one by one while the direct method uses all the possible combinations (cubes).

A first observation to make is that in the SSA setting weakest preconditions
can be computed without substitution, based on the same logical encoding of a
program used in the direct method [13]. With this in mind, we can arrive at a
equivalente, SAT-based, definition of Swp(P,E(bi)).

S
wp(P,E(bi)) =

∨
{c ∈ CV | |= E(c)(s)→ wp(P,E(bi))}

=
∨
{c ∈ CV | ∀s . E(c)(s)→ wp(P,E(bi))}

=
∨{

c ∈ CV | ∀s, s′ . E(c)(s)→ LP → E(bi)(s
′
)
}

=
∨{

c ∈ CV | ∀s, s′ . ¬E(c)(s) ∨ ¬LP ∨ E(bi)(s
′
)
}

=
∨{

c ∈ CV | ∃s, s′ . E(c)(s) ∧ LP ∧ ¬E(bi)(s
′
)
}

=
∨{

c ∈ CV | ∃s, s′ . E(c)(s) ∧ LP ∧ E(¬bi)(s′)
}

which provides a basis for the relation we are seeking to establish. Note that
to produce boolean programs, it’s irrelevant if we’re using the WP or the SAT-
based encoding of S .

Indeed, the above satisfiability problems are very close to the formulas E(ci)(s)∧
LP ∧ E(cj)(s

′) checked for satisfiability in the direct method. We can, in fact,
prove some interesting results:

Lemma 1. Let P be a basic block, V a set of variables (associated with a set or
predicates E) and bi a literal over V . Then

π¬bi(ATV (P)) ⊆ Swp(P,E(bi))
V

Proof. We know that E distributes over the proposicional connectives, and since
a∧b→ a, the proof idea is to remove every literal that is not needed in the post-
state cubes used by the direct abstraction, thus arriving at the SAT encoding of

S
wp(P,E(bi))
V . We then have that:

∃k ∈ CV .∃s, s′ . E(c)(s) ∧ LP ∧ E(k)(s′) ∧ ¬bi ∈ k
⇒ ∃s, s′ . E(c)(s) ∧ LP ∧ E(¬bi)(s′)

Note that the first line is precisely the condition for a cube c to be an element
of π¬bi(ATV (P)). Therefore the inclusion is proved. ut

This proof is valid in a theorectical point-of-view, yet due to simplification
and optimization mechanisms we are not computing the actual covers π¬bi(ATV (P))

or S
wp(P,E(bi))
V , but the set of all essential prime implicants of such covers, thus

returning covers that could, wrongly, be seen as counter-examples of the above
lemma.

From lemma 1 we can see that the difference between the two abstraction
methods is, mainly, the number of variables considered simultaneously. Hence,

we could extend the cartesian abstraction to compute S
wp(P,f)
V , for arbitrary

formulas f . In case those formulas are a complete disjunction of literals over V ,
we can see that the projection of the assignment table for such formula and the
calculation of the cartesian abstraction of the same formula coincide:

Theorem 1. Let P be a basic block, V = {b1, · · · , bn} a set of variables (asso-
ciated with a set or predicates E) and k a complete disjunction of literals over
V , then:

π¬k(ATV (P)) = S
wp(P,E(k))
V

Proof. The proof is straight forward from the SAT encoding of S
wp(P,E(k))
V , not-

ing that ¬k is a complete cube over V :

S
wp(P,E(k))
V =

∨
{c ∈ CV | ∃s, s′ . E(c)(s) ∧ LP ∧ E(¬k)(s′)}

=
∨
{c ∈ CV | ∃j ∈ CV .∃s, s′ . E(c)(s) ∧ LP ∧ E(j)(s′) ∧ ¬k = j}

= π¬k(ATV (P))

ut

From theorem 1 we can see that it’s possible to implement direct abstraction
by WP calculations:

ATV (P) = {(c, c′) ∈ CV | c ∈ Swp(P,E(¬c′))
V }

This common framework provides a way of combining optimizations, but some
care must be taken. Due to simplification and optimization mechanisms, we

should check that c→ S
wp(P,E(¬c′))
V rather than c ∈ Swp(P,E(¬c′))

V .

9 Implementation of The Direct Abstraction

The description of the direct method in Section 6 is just the first half of the
story: we have indeed identified the valid transitions in the abstract model, but
our goal is to produce a Boolean program. In this section we explain how we
have implemented the direct algorithm so that it outputs a Boolean program.

Our goal is to abstract a basic block as a parallel assignment of Boolean
variables of the form b1, . . . , bn := e1, . . . , en. The task is then to find the right-
hand side expressions e1, . . . , en, given an assignment table. To this end the table
is first divided into n tables, one for each variable in the final state. Each resulting
table is then divided into its ON-set and OFF-set (that is, the assignments that
turn each output variable to T and F, respectively). In our example this yields
the two tables shown on the left below.

b1 b2 b′1
F F T
F T T
T F T
T T T

F F F
F T F

b1 b2 b′2
F F T
F F T
T F T

F T F
F T F
T T F

b1 b2 b′1
T F T
T T T

F F *
F T *

b1 b2 b′2
F F T
T F T

F T F
T T F

Note that the first table contains non-determinism: the same combination of
values of b1 and b2 may result in different values for b′1. The second table on the
other hand contains redundancy (repeated entries than can be removed). We
rewrite and simplify the tables as shown on the right. Note that the first table
now has what one might call an UNDET-set rather than an OFF-set. The ON,
OFF and UNDET-sets constitute a partition of the set of assigments according
to the possible results of the output variable. Each of these sets is captured
by a Boolean formula which is the disjunction of the cubes that characterize
each assigment in the set. We call these formulas respectively ON, OFF and
UNDET-covers.

Definition 4. Let P be a basic-block and V a set of boolean variables, for each
bi in V we define three formulas:

UNDETi = πbi(ATV (P)) ∩ π¬bi(ATV (P))

ONi = πbi(ATV (P))− UNDETi

OFFi = π¬bi(ATV (P))− UNDETi

A parallel assignment can be directly extracted from these tables by using
these covers: b1, b2 := ((b1∧¬b2)∨(b1∧b2)? T : ∗), ((¬b1∧¬b2)∨(b1∧¬b2)? T : F),
which can in turn be simplified to b1, b2 := (b1? T : ∗), (¬b2? T : F). If the
UNDET-set is not empty a nested conditional expression will have to be used.
In fact, although this has to our knowledge never been made explicit, the parallel
assignment can be written as follows using the choose function of Section 7:

b1, · · · , bn := choose(ON1,OFF1), · · · , choose(ONn,OFFn)

It is clear from this small example that it would be infeasible to export a
Boolean program without first attempting to simplify the assigned expressions;
let us now describe how we have implemented this simplification.

Boolean simplification. The minimization of a Boolean function is a well-known
problem in the area of logic circuit design: a circuit with a large number of
logic gates (equivalent to a complex Boolean function) takes up a lot of physical
space in its implementation. This problem is believed to be intractable [15], but
there exist effective heuristics for it, such as Karnaugh Maps and the Quine-
McCluskey algorithm. Our testbed is implemented using a functional program-
ming language; for this reason we have opted for a recursive algorithm based on
the prime consensus theorem, described in R. Rudell’s thesis [19] (Sect. 2.5.1).

First, let us introduce some definitions and notation. In what follows a cube
is simply a conjuntion of literals. Associativity, commutativity and idempotence
of conjuntions and disjuntion allow us to treat each cube as a set of literals and
each cover as a set of sets of literals.

Given two cubes, c, c′, we say they differ in a variable x if x ∈ c and ¬x ∈ c′
(or vice-versa). The distance between c and c′, written dist(c, c′) is the number
of variables where they differ. When dist(c, c′) = 0 we say that c and c′ intersect
and the intersecting cube is c ∪ c′.

The consensus of two non-intersecting cubes, c and c′, consensus(c, c′), is
defined as follows: if dist(c, c′) ≥ 2, their consensus is empty; if dist(c, c′) = 1,
their consensus is (c ∪ c′) − {x,¬x}, assuming c, c′ differ in x. The notion of
consensus is lifted to sets of cubes, as the pairwise consensus of the two sets.

Given two cubes, c, c′, we say that c′ is single-cube contained in c if c ⊆ c′.
Given a set of cubes C, the single-cube containment of C is the set SCC(C) =
{c | ∃c, c′ ∈ C. c 6= c′ ∧ c ⊆ c′}. Let f be a Boolean function. A cube c is an
implicant of f whenever c→ f . Moreover, we say that c is a prime implicant of
f if c is minimal, i.e., there is no other implicant of c except itself. The set of
prime implicants of f is denoted by primes(f).

We can now state the fundamental theorem that stands at the heart of the
simplification algorithm we have implemented.

Theorem 2 (Prime consensus theorem). Let f be a Boolean function and
let x be any input variable. The set of prime implicants of f can be partitioned
into three sets: Px = {c ∈ primes(f) | x ∈ c}, P¬x = {c ∈ primes(f) | ¬x ∈ c}
and P∗ = {c ∈ primes(f) | x 6∈ c ∧ ¬x 6∈ c}. Then,

∀c ∈ P∗.∃c ∈ Px.∃c′ ∈ P¬x. c = consensus(c, c′)

This theorem states that P∗ ⊆ consensus(Px, P¬x), because the consensus of
Px, P¬x may contain non-prime implicants. We can get rid of such non-primes
by constructing the single-cube containment of that set. We have

P∗ = SCC(consensus(Px, P¬x))

Now that we know how to generate P∗ from Px and P¬x, let us focus on the
construction of Px and P¬x given a cover F of a Boolean function, and an input
variable x.

A cofactor of F with respect to a literal l, written Fl, is defined as follows
Fl = {c − {l} | c ∈ F ∧ l ∈ c}. In fact, Pl ⊆ {l} ∪ primes(Fl). So, as before, we
have to get rid of the non-primes.

The following theorem summarizes how the prime implicants of a Boolean
function f can be generated recursively, and is effectively an algorithm outline.

Theorem 3 (Recursive prime generation theorem). Let f be a Boolean
function with (ON+UNDET)-cover F and let x be any input variable. Then, the
prime implicants of f can be generated as follows:

primes(f) = SCC(Ax ∪A¬x ∪ consensus(Ax, A¬x)) , where Al = {l} ∪ primes(Fl)

Note that in this divide and conquer approach, the choice of division point (the
splitting variable x) will have major impact on the algorithm’s efficiency. Clever
rules for termination have been proposed that can speed up the process [19].

Handling variable initialization and optimizations. The predicate abstraction
constructed by this method naturally eliminates transitions from and to states
corresponding to unsatisfiable cubes, as shown at the end of Section 7.

We have introduced two modifications in the original algorithm, which we
now describe. The first has to do with the fact that this method does not deal
well with variable initialization in the presence of unsatisfiable cubes. To see
this, let P be the basic block x := 10, with the two previous predicates. Clearly
the block should be abstracted to the Boolean program b1, b2 := T, T. For this,
the expected assignment table would be:

b1 b2 b′1 b′2
T T T T
T F T T
F T T T
F F T T

Observe that the last row will not be in the table, since the following is not
satisfiable (x0 cannot be smaller than 0 and greater than 100 at the same time):

(x1 = 10) ∧ ¬(x0 ≥ 0) ∧ ¬(x0 ≤ 100) ∧ (x1 ≥ 0) ∧ (x1 ≤ 100)

Our guess is that tools based on the direct method calculate predicate abstrac-
tions after running a constant propagation transformation. We propose a modi-
fication of the algorithm that does not require this transformation.

Algorithm 1 Abstraction of Basic Blocks
for posc ∈ cubesOf (E) do

posf ← Lp ∧ instantiate(poststate, posc)
if solve(posf) = SAT then

preds← {p ∈ E : varsOf (p) ∩ dependentVariables(Lp) 6= ∅}
if preds = ∅ then addAllCombinationsFor(posc)
else

for prec ∈ cubesOf (preds) do
fullf ← posf ∧ instantiate(prestate, prec)
if solve(fullf) = SAT then

addLines(posc, interpolate(independentVariables(Lp), prec))
end if

end for
end if

end if
end for

The second modification is an optimization: we initially run a battery of
satisfiability checks of formulas combining the program and the post-state cubes.
Admittedly this takes time 2n, but observe that for each unsatisfiable cube
found we save 2n checks, one for each pre-state cube. Moreover, this initial
round of checks also eliminates 2n checks for every post-state corresponding to
a cube that, although satisfiable, can never be attained by the program (such as
b1 ∧ ¬b2 ≡ x > 100 in the example). This is trivially correct, since we are only
eliminating from the assignment table (by factoring) unsatisfiable rows.

Abstraction algorithm. We have introduced simple modifications on the algo-
rithm described in [10], which are able to prevent the erroneous abstractions
produced by inconsistent states as described previously. Moreover, the resulting
algorithm seems to dramatically reduce the number of solver calls.

Definition 5 (Dependent variable). Let P be a basic block, we say that a
given variable x ∈ V ars(P) is dependent if the initial value of x in the pre-state
is used in P (i.e. x is read before it is written). If P is a basic block in SSA
form, x is dependent if x0 occurs in P .

Let P be a basic block, E a set of predicates, CV the set of all possible cubes of
E and LP the logic encoding of P . Our algorithm computes the assignment table
of P , by calculating for each possible satisfiable and attainable post-state, which
pre-states can lead to it (note that for the pre-state we instantiate only the pred-
icates where dependent variables occur). The pseudo-code is presented as Algo-
rithm 1, where some auxiliary functions are used. addAllCombinationsFor(pos)
appends every possible cube with pos and appends the result to the assignment
table. interpolate(vars, cube) completes the cube by combining it with every pos-
sible combination of vars, in the correct positions. addLines simply adds rows
to the assignment table. An example run is presented in the appendix.

10 Implementation of The Cartesian Abstraction

Implementing the cartesian method is more straight forward than the direct
method since, by definition, cartesian abstraction produces boolean programs.

The method for calculating the cartesian abstraction is described in [1], together
with optimizations that not only speed up the calculation, but solves to problem
of boolean simplification too. In this chapter we’ll describe those optimizations,
translate them to our SAT encoding of cartesian abstraction and briefly explain
how we implemented it.

Optimizing SψV . Let’s drift away from predicate abstraction for a moment and

recall the definition of SψV :

SψV =
∨
{c ∈ CV | |= E(c)→ ψ}

A naive implementation would check, for every cube c ∈ CV , if it’s valid that
E(c) → ψ. As already discussed, this would require 2n, where n = #V , solver
calls. We can pottentially decrease this number if we consider the cubes in in-
creasing order by size, taking into account that for a cube c ∈ CV :

i) If |= c→ ψ, any cube c′ such that c ⊆ c′ will imply ψ too. Therefore we add
c to S and stop generating for cubes larger than c. This will actually produce

a disjunction of the prime implicants of SψS . We’ll denote this optimization
by priming.

ii) If |= c→ ¬ψ, any cube c′ such that c ⊆ c′ will imply ¬ψ too. Therefore we
don’t add c to S and imediately prune every cube c′ that contains c. We’ll
denote this optimization by pruning.

It’s trivial to check that priming and pruning are applicable to the SAT
encoding of S too. We’ll provide a proof for priming, the other proof is analogous.

Lemma 2. Let c ∈ Swp(P,E(bi))
V for a basicblock P , set of variables V and bi ∈ V ,

then, for all c′ ∈ CV such that c ⊆ c′, it holds that c′ ∈ Swp(P,E(bi))
V .

Proof. Without loss of generality, let’s take c′ = c∧k for some k ∈ CV such that
k ∩ c = ∅. From hypothesis we have that:

E(c) ∧ LP ∧ E(¬bi)
⇔ E(c)→ wp(P,E(bi))

⇒ E(c) ∧ E(k)→ wp(P,E(bi))

⇔ E(c′)→ wp(P,E(bi))

⇔ E(c′) ∧ LP ∧ E(¬bi)

Therefore, c′ ∈ Swp(P,E(bi))
V . ut

With those optimizations in mind, we just need to generate the cubes and
check them individually.

11 Handling Control-Flow

So far we have presented the concepts of predicate abstraction, discussed and
unified two techniques to calculate the abstraction of a basic block, but a piece
of the puzzle is still missing for us to be able to put it all together. In this
chapter we’re going to discuss different methods for handling control flow, their
implications and implementations.

A trivial technique is to simply add the controw flow conditions to the set
of predicates. This will produce a boolean program with single-variable controw
flow. The downside of this technique is in the number of predicates that are going
to be added, remembering that the abstraction techniques have a exponential
number of solver calls on the number of predicates beeing abstracted.

Let’s consider the abstraction of a conditional expression ψ → P1, P0, where
P1, P0 are basic blocks for a set of predicates E. In a similar paradigm of that
of cartesian abstraction, we can think of rulling out every execution path that
validates ¬ψ and passes through P1, this condition can be represent by S¬ψ, that
is, it holds whenever an abstract state implies ¬φ. Determining the states where
ψ holds is done, now we have to rule out those execution paths, in fact, boolean
programs have an assume f ; keyword, that discards from further verification any
path that satisfies f . Thus, assume ¬S¬ψ; will be evaluated to assume false;
whenever we’re in a path that satisfies S¬ψ. Let’s define Tψ by ¬S¬ψ (it’s called
G(ψ) in [1]),

That’s how SLAM abstracts controw flow statements, as described in [1].
Therefore, the abstraction of c → P1, P0 is presented in (boolean-program) al-
gorithm 2.

Algorithm 2 Abstraction of Conditionals
if ∗ then

assume Tψ

P̄1

else
assume T¬ψ

P̄0

end if

Clarke uses a very similar strategy in [10]. Given a condition ψ, he generates
two sets:

posψ = {α(s) ∈ CV | ψ(s)}

negψ = {α(s) ∈ CV | ¬ψ(s)}

and whenever the model checker reaches a contidional, it checks wether we’re in
a state that is an element of posψ or negψ to decide where should the program

counter point to next. Let’s take a closer look, without loss of generality, at posψ:

posψ = {α(s) ∈ CV | ψ(s)}
= {c ∈ CV | ∃s . ψ(s) ∧ α(s) = c}
= {c ∈ CV | ∃s . ¬(¬α(s) = c ∨ ¬ψ(s))}
= {c ∈ CV | ∃s . ¬(α(s) = c→ ¬ψ(s))}
= {c ∈ CV | ∀s . α(s) = c→ ¬ψ(s)}

And that is very close to the formulas S¬ψV , used in cartesian abstraction’s
paradigm for handling controw-flow, but it mention concrete states instead of
going with the predicates that represent such state. We could use boolean-
program’s assume keyword or check if the disjunction of posψ (resp. negψ) holds
before entering the conditional’s then (resp. else) branch to replicate the model
checker’s behavior in the boolean program setting. Abstracting a while ψ block
is analogous: we just place a assume Tψ before the abstracted while’s block.

Note that even in how control-flow is handled by both pioneers of both carte-
sian and direct abstraction the methods are very similar, like we expected after
finding out the similarities in section 8.

SABS supports both heuristics for handling control-flow, for more informa-
tion on how to change such options we refer the reader to [18].

12 Conclusion

In this report we have discussed the calculation of predicate abstractions for basic
blocks of code, and how, based on the prime consensus theorem, we have adapted
the direct abstraction technique to produce Boolean programs, introducing mod-
ifications for correctly handling variable initialization, as well as optimizations
that substantially reduce the number of necessary calls to the solver. Note that
we are not claiming to have produced an algorithm that performs better than
working tools based on the direct method, because these tools also incorporate
many other optimizations (not fully documented).

We have also shown that the only real difference from the cartesian to the
direct method is the number of post-state variables considered at once in the
abstraction formula. This observation raises some questions, that are left as
future work.

Apart from providing a clear explanation of the abstraction techniques and a
in-depth structural comparisson we have also produced a software model checker
laboratory. Our implementation turned out to be very inefficient compared to
the comercial tools available.

13 What’s next?

There’s still work to do both on the theoretical side and optimization of the
prototype. It would be interesting to see how, if at all, the framework provided

opens up room for optimizations. Given that the difference between the cartesian
and direct method are the size of the cubes considered, could the precision be
(dynamically) adjusted by considering different cube-sizes?

On the prototype side, it’s left to implement the complete CEGAR cycle, in-
terface with different boolean program model checkers, considering OOP aspects
of SPARK into the abstraction and abstracting multi-procedural code.

References

1. Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Auto-
matic predicate abstraction of c programs. SIGPLAN Not., 36(5):203–213, May
2001.

2. Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for
boolean programs. pages 113–130. Springer, 2000.

3. J. Barnes. High Integrity Software: The Spark Approach to Safety and Security.
Addison-Wesley, 2003.

4. Gérard Basler, Matthew Hague, Daniel Kroening, C.-H. Luke Ong, Thomas Wahl,
and Haoxian Zhao. Boom: Taking boolean program model checking one step fur-
ther. In TACAS, pages 145–149, 2010.

5. Gérard Berry, Hubert Comon, and Alain Finkel, editors. Computer Aided Verifica-
tion, 13th International Conference, CAV 2001, Paris, France, July 18-22, 2001,
Proceedings, volume 2102 of Lecture Notes in Computer Science. Springer, 2001.

6. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-
shan Zhu. Bounded model checking. Advances in Computers, 58:117–148, 2003.

7. Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith.
Modular verification of software components in c. In ICSE, pages 385–395, 2003.

8. Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: algo-
rithmic verification and debugging. Commun. ACM, 52(11):74–84, 2009.

9. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

10. Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Predi-
cate abstraction of ANSI-C programs using sat. Formal Methods in System Design,
25(2-3):105–127, 2004.

11. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In POPL, pages 238–252, 1977.

12. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

13. Daniela Carneiro da Cruz, Maria João Frade, and Jorge Sousa Pinto. Verification
conditions for single-assignment programs. In SAC, pages 1264–1270, 2012.

14. Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with pvs.
In CAV, pages 72–83, 1997.

15. Valentine Kabanets and Jin yi Cai. Circuit minimization problem. In STOC, pages
73–79, 2000.

16. Salvatore La Torre, Madhusudan Parthasarathy, and Gennaro Parlato. Analyzing
recursive programs using a fixed-point calculus. SIGPLAN Not., 44(6):211–222,
June 2009.

17. Cláudio Lourenço. A Bounded Model Checker for SPARK Programs. PhD thesis,
Informatics Department, Minho University, Portugal, 2013.

18. Victor Miraldo. SABS: Spark ABStraction, a tutorial, 2013.
19. Richard L. Rudell. Logic Synthesis for VLSI Design. PhD thesis, EECS Depart-

ment, University of California, Berkeley, 1989.
20. Adacore SPARK Team. SPARK the SPADE ada kernel. 2011.

