Using Structural Characteristics for Autonomous Operation

Carlos Baquero, Francisco Moura

Distributed Systems Group
Universidade do Minho, Portugal
http://gsd.di.uminho.pt/

Keywords: Mobile Computing, Replication, Conflict Resolution

1 Introduction

The majority of current mobile computing systems
operate either in conjunction with a central network
by some form of weak connectivity or tend to operate
in total isolation and perform sporadic synchroniza-
tion with a backup or a central network. These con-
figurations miss an additional and very useful pattern
of operation — mobile to mobile interaction. Recent
mobile devices have the capacity for direct commu-
nication among them, but this option is essentially
neglected by the application software.

In order to address this pattern of operation we be-
lieve that there is a need to support re-usable peer-to-
peer synchronization mechanisms that both respects
data ownership and enables some level of state rec-
onciliation.

Naming this operation pattern as autonomous op-
eration, we can observe that this pattern is already
found on many legacy applications deployed in dis-
tributed systems. For example, personal information
managers, Mail/News readers and Web browsers, of-
ten store persistent state in local files, but tacitly
assume a single copy. Noticing that these separate
copies are in fact replicas of a distributed entity, leads
to the creation of semantically knowledgeable file syn-
chronizers that strive to restore an unified state from
these replicas.

Evolution from static distributed systems to mobile
platforms raises a demand for applications that, not
only are adapted to user mobility but, take advantage
of it. It is clear that despite continuous improvements
on connectivity support for mobile environments, the
cost and coverage limits still imply a major share of
disconnected operation. When connectivity does ex-

ist it usually interposes wide area networks between
communication peers, when one party is on the road,
leading to lower channel quality. On the other hand,
user mobility is likely to conduce to, normally unfore-
seen, physical proximity of the user’s mobile comput-
er with other mobile or fixed systems. This occur-
rence is likely to increase as the installed population
of mobile devices increases.

In this work we show that without imposing re-
strictions on availability, which is a crucial factor for
personal applications, it is possible to enable some
data sharing among autonomous mobile application-
s. This sharing would take advantage of any pairwise
encounters of replica holders.

To determine the level of sharing that is compatible
with permanent availability, we model general pur-
pose data types that provide the necessary reconcil-
iation guarantees. These guarantees are obtained by
placing restrictions on the allowed behavior in order
to avoid the occurrence of conflicting concurrent op-
erations that would prevent reconciliations. Among
other uses, these data types should help to identify
sharable segments of data on classes of applications
that traditionally support no sharing at all, and iden-
tify which parts of the state can be effectively shared.

In the next section we present some examples of
sharable data that motivates the modeling of a more
generic and higher level description. This descrip-
tion is presented in the third section together with
a framework of convergent components. Section four
builds on this framework and gives a general presen-
tation of a Java implementation for a component hi-
erarchy. Before presenting the conclusions we show
how these tools where used to build a merger for pairs
of bookmark files, giving some insight on how to com-

bine the components to create a concrete application.

2 Cases of structurally conver-
gent data

The identification of structurally convergent data, for
future use in autonomous mobile applications, can
be pursued in classical distributed settings where in-
stances of the same application are used to make in-
dependent updates on the same logical data item. A
common example is found when working with mail
readers on more than a single machine: A given user
who receives is mail on a fixed workstation, might also
want to keep the mail in is portable machine, and for
that, regularly fetches mail by way of an appropriate
protocol. Once this user starts sending mail on both
machines two replicas of the same logical entity, the
sent mail folder, are created. A reconciliation for this
replicated data can be obtained by looking at these
folders as sets of messages, and observing that each
set is in fact a grow-only set. In this case, convergence
is directly obtainable by set union, which is the ap-
propriate reconciliation operation for grow-only sets.
A further, and more complete, interpretation would
pay attention to the order of set elements (messages),
and might specify a partially ordered grow-only struc-
ture that would track the known dependencies among
sent messages.

Other examples drawn from mail management can
be found on the tracking of deleted (or read) mes-
sages, when mail is handled on multiple locations.
Groups of messages that have been read or deleted
can also be interpreted under the abstraction of grow-
only sets. In the case of deleted messages this would
require storing additional information on deletions.

Through these examples we find, legacy data struc-
tures that can support reconciliation under appropri-
ate tools, and also cases where adding extra informa-
tion to these legacy structures would support a richer
reconciliation policy.

Research on distributed file systems with opti-
mistic replication [5, 10, 7, 11] raised several exam-
ples of semantically knowledgeable file mergers, that
strive to restore consistency after concurrent changes.
Files such as .newsrc (see Figure 1) already hold
the necessary information for ensuring convergence
of segments of read articles for each inspected news
group. In this case, we can abstract it as sets of seg-

alt.elvis.sighting:33,45,60-200,356
alt.emulators.ibmpc.apple2:
comp.object: 1-2628

Figure 1: A small .newsrc file

ments (possibly including singular segments). This
representation induces straightforward convergence
once a suitable merge is defined for overlapping or
contiguous segments.

Another of these examples shows how the intrin-
sic order of some data elements together with the
selection of a sized subset can be used to apply a
convergence procedure. This example deals with the
reconciliation of two files with top scores in an ar-
cade game. From the perceived semantics of this top
scores file it follows that convergence can be achieved
by computing an ordered merge of the two sequences
and selecting the largest k elements. The very same
procedure can be applied to other cases, that deal
with sharable personal information, such as: Keeping
information on the 5 credit institutions that provide
the best loan taxes; or where can be found the best
deals for buying flashram cards.

WWW is also a good source of examples for struc-
turally convergent data formats. For instance, many
users cannot avoid adding bookmarks on browsers
running on different machines with unshared file sys-
tems. If these bookmarks files only allow folders at
the root level, they can be treated as growing sets of
folders and URLs, in which the folders hold growing
sets of URLs'. In the case of Netscape bookmark files
(for which a merger will be presented in section 4.3),
folders can be created at any level, leading to gen-
eralized composition with arbitrary levels. A similar
model is also found in the structuring of the Usenet
News group structure.

3 Convergent components

In this work the identification of structurally conver-
gent data is done together with a formal description

1We omit, at this moment, the existence of delete operations
that remove URLs. This change of behavior will be properly
analyzed on section 4.3.

of elementary data types and composition rules. We
will not stress in this article the formal presentation
of the model, which is available in another document
[1], but we present a description of the environment,
enumerate some of the data types, and exemplify the
formal description with a sample component.

3.1 Generic components

We now give an informal description of some impor-
tant components that have been identified thus far.

Constant information is a trivially convergent data
type which, nevertheless, plays an important role as
it is a common component on composite structures.
Its use on the examples on section 4 shows its role on
the description of composites.

Segments of immutable information can be treated
as single components or combined on special compo-
nents that rule the creation of correct aggregations of
components.

Sets with add-only information are also very com-
mon, with the corresponding merge being modeled by
set union. Additional properties, like elements with
embedded order or other cases, such as elements that
denote ranges, imply different merge operations that
involve an adequate adaptation of the set union op-
eration.

Dual to grow-only sets, is the notion of sets with
deletion-only. The corresponding merge operation is
done by keeping common elements. Interestingly, this
component can also be modeled by a constant elemen-
t with the initial set contents and a grow-only set of
deletions.

A richer behavior is found on sets that can grow
and shrink, such as mailboxes that receive mail and
have mail deleted. Those can be modeled by a pair
of grow-only sets that describe inserted and deleted
messages, and by a proper merge procedure that han-
dles these two sets. This later case, that combines t-
wo components, calls for one of the composition rules
that are presented in the next paragraph.

There are two special components that combine
other components, acting as the building entities for
composite structures. The first, composes compo-
nents in an ordered fixed sequence of components,
and defines the merge by executing in sequence the
pairwise merge of its elements. The second can be
briefly described as a labeled version of the previ-
ous. Here components are tagged and merge is an

enhanced set union that stores all components that
hold distinct labels and computes the merge of com-
ponent pairs with equal labels. This composition rule
enables the description of mergeable tree structures
as will be seen in the example in section 4.

The identification of an appropriate component
should be driven from its relevance to a particular
case and by its potential genericity. Once proper-
ties are established the design of the component must
apply the restrictions that underly the environment
model, in order to ascertain a correct and predictable
behavior in all envisioned reconciliation patterns.

3.2 Environment model

The target environment for these components is driv-
en by the capability to combine permanent availabili-
ty with convergence guarantees. In fact, the model is
orthogonal to the pessimistic/optimistic replica man-
agement dichotomy, since both these models build on
the notion of possibly incompatible operations. Here
the aim is to disallow semantically incompatible op-
erations, which, in the process, might imply some ad-
justments to the overall behavior of the application
or component. At lest on what concerns the portion
of the state that is to be shared under autonomous
operation.

Apart from permanent availability for performing
all operations defined on the component data type (a-
gain, no pessimistic locks) each replica should, at any
time, be able to derive new copies and each two repli-
cas should be capable of converging into a new repli-
ca. These conditions establish the necessary grounds
to enable autonomous replication and pairwise merge
of replicas that happen to be at hand?.

Components should also respect some properties
that ensure a sound modeling of the underlying envi-
ronment, and remove indeterminism:

Idempotency The reconciliation of a replica with
herself should produce an unchanged replica.

Commutativity The order in which two replicas
are supplied to the reconciliation procedure
should not be relevant.

2 As a side note, the interested reader is directed to an anal-
ysis of the implications of this operation pattern on current
causality models [2].

Type: INCSET extends BASIC
Write : Storage

Insert : Elem

Find : Elem — Bool

Init, Fork, Join, Leq

¥ =2 | I=Y
Init()
o:={} | =1
Insert(e)
c:=o0Ue |
Find(e) - b
b {true ifeeo

false ifedo

Join(al',a1'") = o1

oc:=c' Ud"

Leq(ot,00") = b
__Jtrue ifo' Co"
" | false ifo’ & o

[e:i=d V=

Figure 2: Specification of an INCSET.

Associativity Pairwise reconciliation of three or
more replicas should derive the same final re-
sult independently of the actual order that was
applied in the reconciliation.

Together, these conditions ensure that the compo-
nents merge policy has a sound behavior under all
foreseen traces of the replica pool evolution.

3.3 Description of a component

Once identified, components should be classified and
placed in a component hierarchy. Inserted compo-
nents refer the name of the component who they ex-
tend and inherit the operations that they have de-
fined. Here we briefly show the specification (in Fig-
ure 2) of a component that models a set with insert
operations. This component is coined as INCSET and
extends a BASIC component that provides default op-
erations for forking and initializing the state (state is
represented as o).

A deeper explanation of the underlying formalism
and notation [1] is outside the scope of this article,
but the main reasons for its adoption can be briefly
presented.

A formal construction of the hierarchy and descrip-
tion of each component helps the classification of the
components and guides their implementation, in par-
ticular on a object oriented language. The formal de-
scription of the component operations, the Fork/Join
procedures and the documentation of the expected
evolution order in the Leg function, provides a sound
basis for the verification of the component behavior to
check if it fits the environment model. In particular,
by applying an appropriate formal verification proce-
dure, it is possible to verify if the component is able
to compute a merge from any two replica instances,
and if this merge is compatible with the state evo-
lution that is conveyed in the component operations
that change the state.

4 Toolkit

4.1 Synopsis

This model served as a guide to the implementation
of a toolkit that supports the construction of replica
mergers while easing the identification of new gener-
ic structures. The core of the toolkit is a hierarchy
of Java classes (shown in Figure 3) that implemen-
t several basic components and the two structuring
components. These classes are ready to be integrated
on applications that can fit sharable data under this
model.

Once data is structured in this way, operations
such as autonomous pairwise merge and forking of
the structure are promptly available. Being this suit-
able for new Java applications, it fails to give enough
support for the construction of the legacy data merg-
ers that where sketched on section 2. This observa-
tion, leads to the definition of a simple intermedi-
ate language and mechanisms for writing the state
of a given component structure in this language, as
well as for reading a description and reconstructing
the structure in memory. For this purpose, the top
component in the hierarchy, the JOINABLE abstract
class, holds a parser that can instantiate a component
structure from a text input written in the intermedi-
ate language.

The intermediate language was targeted at simplic-
ity and holds a syntax similar to Lisp’s S-Expressions
(see Figure 4). This language enables the description
of instances of data structures that build around the
set of toolkit components.

.

Basic Identified Coded

I

| Decsdt | Incset IncDecSet IncMap Congt IncNat
L . 1 .
ConstSeq Larger Smaller Either

Figure 3: Main component hierarchy

A description in the IL can map tree structures
with a variable number of branches ? in each node.

In this language the CONST element is used to store
generic data in the leafs, and is one of the elements
that can be used to end recursion. This leaf element
stores non structural data in a simple ASCII encoding
that uses a pair of characters to represent one byte
and keeps the language readable in 7 bit ASCII.

This sequence of bytes is treated as an opaque en-
tity and can store any kind of encoded data. These
sequences can be Java objects serializations or other
language dependent encodings. Since this CONST data
is non structural it does not influence the merge pol-
icy and permits interoperability between languages.

The Java framework comes with a small executable
joinilfiles that given two files with structurally
compatible IL representations computes their merge
and writes it into a third file. With this executable
acting as a back-end, it is possible to use the frame-
work without Java programming. It suffices to pro-
duce the IL representation of the replicas that are
to be merged and to interpret the generated replica,
using any convenient language or tool.

3Due to the properties of the two aggregation components,
CONSTSEQ and INCMAP.

FRASE ::= ‘(’ NAME <ENTITY> (FRASE)* ¢)?

FRASE ::= OPAQUE

NAME ::= ‘SET’ | ‘INCSET’ | ‘INCDECSET’ | ‘INCMAP’
| “CONST’ | °‘CONSTSEQ’ | ‘EITHER’ | °‘DECSET’
| ‘SMALLER’ | °‘LARGER’ | ‘INCNAT’

ENTITY ::= ‘"’ Cx ‘">

c = KOI - fg) | ‘a) - (z) | lA) - fZ] | <) < _>

OPAQUE ::= (AA)x*

A ::= ‘a’ - ‘p’

Figure 4: EBNF grammar of the intermediate lan-
guage.

4.2 Representation of mail folders

One of the examples sketched in section 2, referred
that the set of sentmail can be modeled by a grow-
only set (INCSET). In the pine mail handling tool
it is possible to have separate folders for each month
sentmail. Suppose now that using pine on two ma-
chines, A and B, we have in machine A the fold-
ers sent, sent-apr-98 and sent-aug-98, and on
machine B the folders sent and sent-aug-98. S-
ince sent-apr-98 is only present on A, a convenient
merge for these data files would merge the two grow-
only sets sent and sent-aug-98, and keep the two
resulting folders together with the unchanged unique
folder sent-apr-98. In fact, this is the merge be-
havior that is abstracted in the component INCMAP.
INCMAP captures the behavior of a grow-only par-
tial function, which in this case maps labels (repre-
sented by CONST that identify the folder name) in-
to an INCSET of emails (emails are represented by
other CONST). When two instances of INCMAP are
merged, those labels that are unique in each INCM AP
are kept unchanged, and those who are common to
both have their co-domains merged.

To provide a shorter and much more readable de-
scription of the IL representation, we omit the actual
data encoding of the CONST components and differ-
entiate them by a ’label’. This label will take the
place of the actual encoded data. The two structures
that represent the sent mail in machine A could be
expressed as:

(INCMAP

(CONST ’sent’) (INCSET (CONST ’m346°)(CONST ’m739°’))
(CONST ’sent-apr-98°’) (INCSET (CONST ’m873’))
(CONST ’sent-aug-98’) (INCSET (CONST ’m973’)))

And from machine B as:

(INCMAP
(CONST ’sent’) (INCSET (CONST ’m576°) (CONST ’m039°))
(CONST ’sent-aug-98) (INCSET (CONST ’mi163°)))

When re-conciliated with the tool joinilfiles the
generated replica will hold:

(INCMAP
(CONST ’sent-aug-98) (INCSET
(CONST ’mi163’) (CONST ’m973’))
(CONST ’sent’) (INCSET (CONST ’m576’) (CONST ’m739°’)
(CONST ’m346’) (CONST ’m039’))
(CONST ’sent-apr-98) (INCSET (CONST ’m873°)))

Notice in this example that the order of elements is
not relevant within a INCMAP, or a INCSET, as both
represent sets. Sets, in contrast to sequences, do not
convey order to its contents.

The absence of ordered components drives from the
impossibility of assigning a total order to events that
occurred concurrently and autonomously [12]. On the
other hand there are many contents that can order
themselves by the inherent properties of their own
data, such as the interest taxes in section 2.

4.3 Merge of bookmark lists

Some web browsers are currently available on a multi-
tude of platforms, and for some users it is common to
use the nearest browser when web access is needed. A
natural consequence of this behavior is the spurious
creation of concurrent replicas of bookmarks files.

When evaluating the details of an automatic merg-
er for these files, some semantic changes need to
be considered. For instance, most browsers, and
Netscape in particular, enable the deletion of book-
marks entries. Concurrent insertions and deletions
causes unsolvable problems to an automatic merger
when there is no information that enables to decide
their relative ordering. However in some cases, such
as this, the benefits of making a small change to the
existing semantics can overcome its side effects. Con-
cretely, for bookmark files, it is reasonable to assume
a grow-only semantics, which means that insertions
have priority over deletions (which are not even regis-
tered). With the minor problem of having a previous-
ly deleted URL or folder reappearing when merging
with another file that contains it, the user gains the
ability to share and merge its partitioned bookmark
index.

The Netscape bookmark file exhibits a reasonably
complex data structure. It allows nested folding with

URL sets at each node, and each entry is tagged with
extra information like ’creation time’ and ’last vis-
it’. At a coarse level, the file can be seen as having
a fixed header, a variable body and a fixed ending.
This structuring is captured by a constant sequence
(CONSTSEQ) with three elements, CONST, INCMAP
and CONST. A closer look at the first CONST, the
header shown in Figure 5, reveals that it contains a
mutable portion, where the name of the folder owner
is stored. By using the EITHER component to map
this portion the new behavior is to select one of the
conflicting owner names, if such conflict arises, which
is a reasonable semantics for this case.

<!DOCTYPE NETSCAPE-Bookmark-file-1>

<!-- This is an automatically generated file.
It will be read and overwritten.

Do Not Edit !-->

<TITLE>Bookmarks for Remi Bara</TITLE>
<H1>Bookmarks for Remi Bara</H1>

Figure 5: Header of Netscape bookmarks file

The inner component in the sequence, the IN-
CcMAP, gathers most of the complexity. The labels of
the mappings are chosen to be the CONST instances
generated by the folder names or by the URLs. The
first, are mapped into a constant sequence that, a-
mong other elements, contains a similar INCMAP,
thus starting recursion. The latter map into a dif-
ferent constant sequence that stores attributes such
as the URL title (which was less appropriate than the
URLs to use as index in the label) and the ’last visit’
and ’creation time’.

These temporal attributes are not treated as CON-
ST components* but as LARGER and SMALLER com-
ponents respectively. For them the appropriate se-
mantic is to keep the latest ’last visit’ time and the
earliest ’creation time’ ®.

The structured interpretation of the bookmark was
materialized in a parser that interprets the HTML
subset used on the files. This parser was responsi-
ble for the creation of the intermediate representa-
tion and acted as part of the front-end, of the generic
merger, for the Netscape bookmark file format.

4They would possibly never match.

5These two components can only be used with elements
that can be compared by their intrinsic data such as these.
Unfortunately doing this comparisons with time stamps that
where recorded on machines with unknown clock differences is
only reasonable when timer or order reliability is not an issue.

5 Conclusions

Most approaches, to the design of merge policies
for the re-integration of data that is independently
changed by two or more parties, adopt an asymmet-
ric vision of the replica holders by assigning a special
primary role to one holder [3, 8]. Under this vision,
reconciliation is often seen as re-integration of discon-
nected updates into a common central replica [4] or
as the commitment of tentative updates [9]. In con-
trast, in our replication topology, we explored a sym-
metric vision in which replicas are equipotent. This
positioning as benefits when the number of replicas is
not known or when the replicated data is clearly sym-
metric, such as when supporting cooperation among
groups of mobile systems.

The presented framework targets two distinct ap-
plication areas that nevertheless fit the same replica-
tion model; the creation of semantically knowledge-
able mergers for data files that are independently up-
dated, and the support for data models that allow
sharing among ad-hoc instances of personal informa-
tion management (PIM) applications on mobile de-
vices.

Having tested the toolkit with file mergers, we ex-
pect that it’s use for cooperation among PIM applica-
tions will raise new perspectives in an area where ap-
plications have very conservative data sharing polices.
In fact, most of the PIM applications for hand held
devices ignore the possibility of user to user coopera-
tion and only address synchronizations and backups
with a desktop host. This, neglects vast possibilities
of data sharing among users that can connect their
devices but have no application support for synchro-
nizing their data.

Recent industry efforts point to the incorporation
of Java virtual machines on small portable comput-
ing devices and in specialized systems such as mobile
phones. Other efforts, such as Bluetooth[6], lead in-
to the creation of new forms of proximity network-
ing that will complement current infrared solutions.
Both these trends will certainly foster new research
efforts on mobile to mobile cooperation with a Java
emphasis.

Further information on this project as well as
access to the package is provided in the Web at
http://gsd.di.uminho.pt/People/cbm/public/cdtac.html.

6 Acknowledgments

To Remi Bara for his contributions to this project.

References

[1] Carlos Baquero and Francisco Moura. Specification of
convergent abstract data types for autonomous mobile
computing. Distributed Systems Group, Minho Universi-
ty, May 1997.

[2] Carlos Baquero and Francisco Moura. Causality in au-
tonomous mobile systems. In Third FEuropean Research
Seminar on Advances in Distributed Systems. Broadcast,
EPFL-LSE, April 1999.

[3] Alan Demers, Karin Petersen, Mike Spreitzer, Douglas
Terry, Marvin Theimer, and Brent Welch. The bay-
ou architecture: Support for data sharing among mo-
bile users. In Workshop on Mobile Computing Systems
and Applications, Santa Cruz, CA, US, December 1994.
http://www.parc.xerox.com/csl/projects/bayou/.

[4] Marc E. Fiuczynski and David Grove. A programming
methodology for disconnected operation. Technical re-
port, University of Washington, March 1994.

[5] Richard D. Guy, John Heidemann, Wai Mak, Thomas W.
Page, Gerald J. Popek, and Dieter Rothmeiner. Imple-
mentation of the ficus replicated file system. Technical
report, University of California, Los Angeles, 1990.

[6] Jaap Haartsen, Mahmoud Naghshineh, Jon Inouye, Olaf
Joeressen, and Warren Allen. Bluetooth: Vision, goals,
and architecture. ACM Mobile Computing and Commu-
nications Review, 2(4):38-45, October 1998.

[7] P. Kumar. Flexible and safe resolution of file conflict-
s. In USENIX Winter 1995 Technical Conference, New
Orleans, LA, January 1995.

[8] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Mar-
vin M. Theimer, and Alan J. Demers. Flexible update
propagation for weakly consistent replication. In Sizteen
ACM Symposium on Operating Systems Principles, Saint
Malo, France, October 1997.

[9] Evaggelia Pitoura and Bharat Bhargava. Building in-
formation systems for mobile environnements. In Third
International Conference on Information and Knowl-
edge Management, pages 371-378, November 1994.
http://www.cs.uoi.gr/ pitoura/.

[10] Peter Reiher, John Heidemann, David Ratner, Gregory S-
ki nner, and Gerald Popek. Resolving file conflicts in the
ficus file system. In Proceedings of the Summer Useniz

Conference, 1994.

M. Satyanarayanan, J. J. Kistler, L. B. Mummert, M. R.
Ebling, P. Kumar, and Q. Lu. Experiences with discon-
nected operation in a mobile environment. In USENIX
Symposium on Mobile and Location Independant Com-
puting, pages 11-28, Cambridge, Massachusetts, US, Au-
gust 1993.

R. Schwarz and F. Mattern. Detecting causal relation-

ships in distributed computations: In search of the holy
grail. Distributed Computing, 3(7):149-174, 1994.

(11]

[12]

