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a b s t r a c t

Most conventional hydrodynamic journal bearing performance tools cannot suitably assess the effect of
lubricant feeding conditions on bearing performance, even though these conditions are known to affect
important performance parameters such as eccentricity and power loss.

A thermohydrodynamic analysis suitable to deal with realistic feeding conditions has been proposed.
Special attention was given to the treatment of phenomena taking place within grooves and their
vicinity, as well as to the ruptured film region.

The effect of lubricant feeding pressure and temperature, groove length ratio, width ratio and number
(single/twin) on bearing performance has been analyzed for a broad range of conditions. It was found
that a careful tuning of the feeding conditions may indeed improve bearing performance.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The accurate prediction of hydrodynamic journal bearing
behavior is far more complex than what their simple geometry
might initially suggest. In fact, the simultaneous pressure, flow and
heat transfer calculations need to include the treatment of
phenomena such as film rupture, dual phase flow, film reforma-
tion, forced and free heat convection and conduction, viscous
dissipation, inner groove lubricant flow mixing and thermo-elastic
distortion. The integrated modeling of these phenomena in a
single algorithm displaying acceptable computation times does
not seem to be a straightforward task.

The complexity of the problem has frequently led to the use of
oversimplified models. Particularly, the incorporation of lubricant
feeding conditions was normally made in an oversimplified way
in most theoretical approaches or inclusively altogether disregarded.
In fact, neglecting the effect of lubricant feeding pressure, feeding
temperature or the actual geometry of grooves might explain some
of the notable discrepancies found between many theoretical pre-
dictions and experimental measurements. These discrepancies seem
to be especially acute in the case of twin groove journal bearings.

The lack of comprehensive experimental data focusing on these
issues might have also contributed for the lack of awareness on the
important role which lubricant feeding conditions play on bearing
performance.

The inclusion of realistic lubricant feeding conditions in journal
bearing analyses might raise some theoretical difficulties, depend-
ing on the model used. That is why some models neglect the
influence of feeding conditions altogether, while others have used
simplified approaches such as the consideration of:

– Full film reformation at the maximum film thickness position
or the groove position [1].

– Grooves of infinitesimal width (no circumferential extension)
[2,3].

– Grooves of finite width but extending them to the full length of
the bush body [4–6].

– Finite size grooves but imposing flow rate or no feeding
pressure (ambient) [5].

– Negligible or oversimplified thermal phenomena occurring at
the groove region, such as the effect of recirculated hot oil,
feeding temperature, reverse flow (oil that re-enters the groove
from downstream) or back flow (fresh oil that flows upstream
from the groove).

An analysis of the influence of feeding pressure in the perfor-
mance of twin groove journal bearings through Finite Element
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Methods was performed by Knight et al. [7]. A 1D energy equation
was used and the axial pressure profile described through second
order polynomials. It was shown that the feeding pressure affects
the maximum temperature decreasing it, especially at low Som-
merfeld numbers. The increase in feeding pressure was found to
increase significantly the flow rate and slightly the power loss.

A series of theoretical and experimental studies on high speed
twin groove journal bearings were carried out by Gethin and
El-Deihi [8,9] in order to assess the influence of the position of the
two diametrically opposed axial grooves relatively to the load
direction. In this last work a more rigorous THD approach
was used, in comparison to the former works. Viscosity and
temperature were allowed to vary along the thickness and heat
conduction through the solid bodies was considered. The shaft

temperature was imposed as being equal to the mean film
temperature, while at the leading edge of the groove the inlet
temperature was calculated through a heat balance. The use of
such a groove mixing model proved to be determinant for the
improvement of the results. With this new model a much better
agreement with experiment was found for the temperature
profile. However, huge differences between theory and experi-
ment continued to be detected in flow rate.

Attention to film reformation and the use of mass conserving
algorithms for treating feeding conditions was highlighted by Dowson
et al. [10]. A thorough theoretical and experimental assessment of
the influence of lubricant feeding conditions on the performance
of circular journal bearings with several groove configurations was
made by Claro and Miranda [11], including twin axial groove journal

Nomenclature

A groove length (axial direction) (m)
b bush length (axial direction) (m)
cr radial clearance (m)
cmix mixing coefficient used to obtain the leading edge

temperature, T þ
le (dimensionless)

cp specific heat at constant pressure (W/kg K)
d nominal bearing diameter (m)
es thickness of the layer of lubricant adhered to the shaft

(Modified Effective Length model) (m)
es0 fraction of the film height filled with the layer of

lubricant adhered to the shaft (Modified Effective
Length model) (dimensionless)

EL effective length ratio (fraction of the bearing length
filled with liquid streamers for a given circumferential
coordinate) (dimensionless)

ELm modified effective length ratio (same as EL but cor-
rected for the modified effective length model)
(dimensionless)

h local film thickness (m)
hmin minimum film thickness (m)
K thermal conductivity (W/m K)
N shaft rotational speed (rpm)
P hydrodynamic pressure within the film (relative to

ambient pressure) (Pa)
Pf lubricant feeding pressure (relative to ambient

pressure) (Pa)
q heat transfer rate (W)
Qf lubricant feeding flow rate (l/min)
r radial coordinate (bush body domain)/nominal bear-

ing radius (m)
Tamb ambient temperature – the average temperature of

the bearing system environment (1C)
Tb bush body temperature field variable (1C)
Tf lubricant feeding temperature (1C)
Tmax maximum bush temperature (1C)
u fluid velocity field variable (m/s)
U tangential velocity of the shaft surface (m/s)
W applied load/load carrying capacity (N)
Ws specific load (the load divided by the projected area of

the bush (b∙d)) (Pa)
w groove width (circumferential direction) (m)
x circumferential coordinate of the unwrapped

geometry (m)
y radial coordinate (fluid domain) (m)
z axial coordinate (m)

Greek symbols

α circumferential coordinate – angle measured from the
centre of the þ901 groove (deg)

ε eccentricity ratio (dimensionless)
ϕ attitude angle (deg)
θ‘ liquid fraction (volumetric) (dimensionless)
μ dynamic viscosity (Pa s)
ρ density (kg/m3)

Subscripts

axial corresponding to the lateral edges of the groove or to
the lubricant crossing them

bkf corresponding to back flow (oil leaving the groove
through the trailing edge, in the upstream direction)

eq corresponding to the equivalent property of the flow-
ing mixture (gaseousþ liquid)

g corresponding to the gaseous portion of the flowing
mixture

f corresponding to feeding conditions
gr corresponding to a groove
is corresponding to the inlet section of a bearing land

(the whole bush section at the coordinate of the
leading edge of the groove)

H corresponding to convective heat transfer inside the
groove regions

l corresponding to the liquid portion (lubricant) of the
flowing mixture

le corresponding to the leading edge of a groove
(downstream edge)

out corresponding to outlet flow rate leaking from the
bearing through its edges

rvf corresponding to reverse flow (oil entering the leading
edge of the groove coming from downstream)

te corresponding to the trailing edge of a groove
(upstream edge)

Abbreviations

CFD Computational Fluid Dynamics
EL Effective Length model
ELm Modified Effective Length model
GRE Generalized Reynolds Equation
RPM Revolutions Per Minute
TEHD Thermoelastohydrodynamic
THD Thermohydrodynamic
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bearings. Although this analysis was based on an isoviscous approach,
a mass conservative algorithm proposed by [12] was used considering
the actual dimensions of the grooves. Later [13], this approach was
extended to take into account thermal effects, and validated with
experimental evidence [14] on the influence of lubricant feeding
conditions on the performance of single groove journal bearings. It
was shown that often neglected parameters such as the real value of
the feeding pressure and the actual groove geometry and location can
significantly influence bearing performance.

Ma and Taylor [15–17] used a theoretical approach based on the
separation model and also carried out some experimental work in
order to study the influence of feeding temperature and feeding
pressure on the performance of twin groove elliptical bearings. It
was found that the increase of feeding temperature yielded
significantly higher values of the maximum temperature and flow
rate and significantly lower values of power loss. On the other
hand, increasing feeding pressure caused an important increase in
flow rate, and moderate decreases in maximum bush temperature
and power loss.

Vijayaraghavan [18] analyzed the effect of lubricant feeding
starvation on the THD performance of a journal bearing with a
single axial groove. A previously developed model [19] was used,
leading to the conclusion that a judicious selection of the groove
location could reduce substantially the flow rate and the power
loss without a deleterious effect in load carrying capacity.

An analysis of the influence of oil inlet conditions on the THD
performance of the fully circumferentially grooved journal bear-
ings was performed by Keogh and Khonsari [20]. A simplified axial
averaging technique was used, that enabled the groove pressure
and the entry temperature to the lubricant film to be explicitly
incorporated into the lubricant energy equation and highlighted
that the mixing effect must be always taken into account.

As a final remark, it may be concluded the experimental works
focusing on twin groove journal bearings were found to be scarce
or incomplete, namely in what concerns to the influence of feeding
conditions and how these conditions may be tuned in order to
optimize bearing performance and reduce power loss.

Effectively, Tonnesen and Hansen [21], as well as Lund and
Tonnesen [22] carried out a good experimental work on these
bearings, but with fixed feeding conditions. The same can be said
of the work by Fitzgerald and Neal [23], which also lacks some other
important data such as shaft eccentricity conditions. Gethin and El-
Deihi [8,9] presented very interesting experimental results of the
behavior of a twin groove journal bearing under several load angles.
Unfortunately the speeds tested were normally too high to consider a
laminar regime. Finally, Ma and Taylor [16] presented experimental
results for this bearing type but omitted the main lubricant proper-
ties. Furthermore, the test bearing possessed unusually large grooves,
spanning 551 each. It seemed that an experimental work testing a
wide range of lubricant feeding conditions still needed to be done.

Recently the authors have published some works to address
this lack of information. They assessed the influence of feeding
temperature and feeding pressure on the performance of a
100 mm twin axial groove bearing [24] and it was found that
increasing feeding pressure leads to a significant rise in oil flow
rate but has little effect on the maximum temperature and power-
loss, except for the case of the lightly loaded bearing. Shaft
temperature was found to be close to the bearing maximum
temperature for low applied loads, being significantly smaller than
this value for high loads. The mean shaft temperature was found to
be significantly higher than the outlet.

Also the role of each groove on the behavior of a twin axial
groove 50 mm journal bearing was assessed [25]. As a novelty,
they carried out the measurement of the flow rate in each groove
and discovered that indeed groove flow rate information is vital to
fully understand bearing behavior. It was found that the cooling

effect of the downstream groove is small for low eccentricities,
becoming more relevant as eccentricity increases. The opposite
phenomenon occurs at the upstream groove. Under high load/low
feeding pressure negative flow rate at the upstream groove was
detected dramatically affecting the bearing performance. Increas-
ing feeding pressure yielded to a decrease in shaft eccentricity
along with a temperature decrease, especially for high loads.

Another work was done with the same rig but focusing on the
role of feeding temperature [26]. It was found that the increase of
Tf has an effect in bearing performance which is analogous in
many ways to the effect of the increase in eccentricity: increase in
lubricant flow rate (especially in the low eccentricity range), in
outlet temperature and in maximum bush temperature (Tmax).
Nevertheless, the latter increase was lower than the corresponding
increase in Tf.

The authors carried out an original comparison on the perfor-
mance of a journal bearing with a single (þ901 to the load line)
and a twin (7901) axial groove configuration [27]. It was found
that under heavy loaded operation the twin groove configuration
might sometimes deteriorate the bearing performance when
compared with the single groove arrangement, namely due to
uneven lubricant feed through each groove. It was concluded that
the knowledge of the feed flow rates through each groove can be
used to improve bearing performance under specific regimes by
implementing groove deactivation or flow balancing strategies.

Recently, they assessed the influence of load direction on the
behavior of a twin axial groove bearing [28]. The general trend
found was that increasing groove angle tends to decrease the flow
rate at the upstream groove and to increase the flow rate at the
downstream groove. Hot oil reflux (negative flow rate) may occurs
on both grooves (although, naturally, never simultaneously) under
some conditions. The flow rate trends were mainly explained by
the proximity to the pressure build-up zones and their locations
relative to each groove.

Realistic feeding conditions such as the actual groove geometry
and location, lubricant feeding pressure and lubricant feeding
temperature, have been often neglected or oversimplified in most
theoretical models. This has limited the analysis of important
related phenomena such as the occurrence of reverse-flow at the
inlet region, lubricant back-flow to the region which is located
upstream of grooves, the mixing at the grooves, the inlet tem-
perature profile, the occurrence of film rupture and reformation
and the feeding flow rate.

The present work tries to address some of these concerns by
presenting a model for the analysis of hydrodynamic Journal
bearings which is suitable for assessing the aforementioned
phenomena. It seems that an effort should be put on the devel-
opment of an extensively validated model which may enable a
better understanding of some of the mechanisms which can
significantly affect the performance of common hydrodynamic
journal bearings, and are still not thoroughly studied or satisfac-
torily dominated.

The decision of focusing the present study on twin groove
journal bearings was based not only on the fact that this bearing
geometry has received much less attention than single groove
cases, but also because more acute theoretical performance pre-
diction discrepancies have been observed for this bearing geome-
try. In fact, most theoretical models do not conveniently represent
the temperature field in the ruptured film region and in the
vicinity of grooves, and largely overestimate flow rate. Moreover,
there are specific issues related to twin groove configuration, such
as flow rate partition between the grooves and the occurrence of
negative flow rate at one of the grooves, which are still not
sufficiently studied and deserve further attention.

A Thermohydrodynamic (THD) approach was implemented. It
was based on the simultaneous solution of the Generalized
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Reynolds Equation and the Energy Equation within the fluid
domain and the Laplace equation within the bush body domain.
Care was taken in order to realistically incorporate lubricant
feeding conditions into the analysis: the real dimensions of the
grooves were considered in pressure and flow calculations, mass
and energy conserving algorithms were deployed. Models for the
ruptured film region and the lubricant mixing at the grooves were
derived. A simplified thermo-elastic model was implemented.
Suitable boundary conditions were pursued. After describing the
model a careful validation of the theoretical model with compar-
isons between its results and experimental data is presented.
Finally, an extensive parametric study to assess the influence of
lubricant feeding conditions such as feeding pressure and tem-
perature, groove length and groove width ratio and number of
grooves (single/twin) on bearing performance is carried out and
discussed.

2. Theoretical model

The theoretical model for the analysis of the steady state
performance of journal bearings and especially adapted for the
assessment of lubricant feed conditions is presented in continua-
tion. It is an evolution of previous isoviscous [11] and thermo-
hydrodynamic (THD) [13] models proposed by the group. Details
concerning more specific issues such as the variable transforma-
tions or the expressions used for the calculation of velocity
profiles, flow rates and heat transfer rates have been detailed in
[29], and so a more condensed description is made here. The
model incorporates the full Thermohydrodynamic (THD) analysis
and treats realistically the lubricant feeding conditions, namely
taking into consideration the lubricant feeding pressure, the
feeding temperature and the actual groove dimensions.

Based on input data such as the physical properties of the
lubricant and bearing components, the operating conditions, the
geometric configuration of the bearing and the lubricant feeding
conditions, the model is expected to provide the main perfor-
mance parameters relevant to bearing design and performance
analysis, such as the hydrodynamic pressure and temperature
profiles, oil flow rate, minimum film thickness, eccentricity,
attitude angle, shaft torque, and power loss.

An outline of the bearing geometry, with all the major geo-
metric characteristics identified, is presented in Fig. 1.

The unwrapped bearing gap geometry, with the corresponding
axis system can be observed in dimensional and non-dimensional

normalized form in Fig. 2, respectively, under the reasonable
assumption that bearing curvature and inertial effects may be
neglected.

2.1. Pressure and velocity fields

Widely accepted assumptions have been made regarding the
pressure and flow field calculation. They include the thin film
approximation, where pressure does not vary across the film
thickness (not valid within groove regions); flow is in the laminar
regime, with fluid inertia and gravity effects being negligible when
compared with viscous effects; steady state regime; the fluid is
incompressible and Newtonian, with lubricant viscosity depend-
ing solely on temperature; the effect of the bearing curvature is
negligible (clearance is much smaller than the bearing radius);
there is no contact between surfaces and the effect of surface
roughness is negligible (hydraulically smooth surface in the fully
hydrodynamic regime); thermal expansion suffered by the com-
ponents is uniform and based on their average temperature (only
their diameter is affected – i.e. a differential thermal expansion
approach).
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The hydrodynamic pressure field, P(x,z) is governed by the
Generalized Reynolds Equation (GRE), which is derived from a
flow balance [30]:

∂
∂x

ρlF2
∂P
∂x

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Due to circumferential
Poiseulle flow

ðpressure drivenÞ

þ ∂
∂z

ρlF2
∂P
∂z

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Due to axial
Poiseulle flow
ðpressure drivenÞ

¼ U
∂
∂x
½ρlhF3�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Due to circumferential
Couette flow
ðdrag drivenÞ

ð1Þ

with the viscosity integrals, which account for cross-film viscosity
variation, being defined as follows:

F0 ¼
Z h

0

1
μl
dy ; F1 ¼

Z h

0

y
μl
dy ;

F2 ¼
Z h

0

y
μl

y�F1
F0

� �
dy ; F3 ¼ 1� F1

hF0
ð2Þ

The viscosity–temperature relationship is ruled by the McCoull
and Whalther expression [30] with the coefficients of the expres-
sion being deduced based on two viscosity values at two different
temperatures (see Table 2). The standard solution of Eq. (1) is only
suitable within the full film region, where pressure is greater than
ambient (P40). The lubricant is not able to withstand low
pressures (e.g. sub-ambient), separating in a series of streamlets
separated by gaseous cavities and remaining at uniform pressure
(in this work considered as ambient). So, a suitable algorithmmust
be used in order to locate the ruptured film region borders and
then provide a special treatment to this region. The rupture
boundary may be obtained with the so-called Reynolds condition,
where pressure and pressure gradients in the direction of bearing
rotation are considered to be zero. This condition ensures flow
continuity and it is widely accepted in bearing modeling.

Concerning the film reformation boundary condition, some
authors make the simplifying assumption of considering it to occur
at the position of maximum film thickness or at the circumferential
coordinate of grooves, which are considered to have negligible
thickness and to span the whole bearing length. However, this
condition is rather an imposition of the location of film reformation
rather than a method for estimating it. This is highly unsuitable
when considering realistic feeding conditions as is the aim of the
present work.

In reality, film reformation will occur once locally the bearing
gap is filled with lubricant (at the circumferential location where

the remaining, recirculated, flow volume is enough to fill the gap),
and this can be computed based on knowledge over the flow
patterns and flow continuity. In fact, the GRE is basically an
equation which computes flow continuity accounting for the
various flow components existing within the bearing gap. Consider-
ing the aforementioned simplifying assumptions, these flows will
be reduced to pressure-driven flow (Poiseuille) and the drag-driven
flow (Couette). Within the ruptured film region the pressure is
normally considered to be ambient and thus the flow will be purely
drag-driven. In this way, mass flow continuity may be easily
computed and film reformation boundary located. It is therefore
possible to change the character of the GRE in the ruptured film
region adapting it to a mass conserving equation which is valid
throughout the whole bearing domain. Such was accomplished
with the algorithm proposed by Elrod [12]. It is based on the mass
balance performed to the Couette and Poiseuille flows crossing a
finite control volume surrounding each computational node. The
computation of Poiseuille and Couette flows will be performed at
the full film region while Couette flow and liquid fraction will be
accounted for at the ruptured film region. A substitution variable
including a switch function which is either 0 or 1 whether the film
is ruptured (P¼0) or full width (P40) is used for this. The result is a
mass conservative, finite difference version of the Reynolds equa-
tion, valid throughout the whole domain and solved iteratively
through the Gauss–Seidel method, and with the switch function
being updated at each iteration.

The present work uses this algorithm, as adapted to THD by
Costa et al. [13]. An advantage of this method is that it auto-
matically provides the mass flow rates of lubricant crossing all
faces of each computation cell and the corresponding local liquid
fraction at the ruptured film region. This is very suitable for
computing flow rates in places such as groove edges (something
vital for analyzing feed conditions) and for use in ruptured film
region thermal models based on effective length concepts such as
those described in [4].

The velocity field must also be computed, as it affects
the convective and the dissipative terms of the energy equation.
The expressions for the circumferential and axial components of
the velocity are the sum of the Poiseuille and Couette components
for variable viscosity [30]:

ux ¼ ∂p
∂x F4� F1F5

F0

� �
þUF5

F0

uz ¼ ∂p
∂z F4� F1F5

F0

� �
8><
>: with

F4 ¼
R y
0

λ
μl
dλ

F5 ¼
R y
0

1
μl
dλ

8<
: ð3Þ

being λ a dummy variable of y. The radial velocity uy is obtained
from the solution of the flow continuity equation computed solely
for the liquid portion of the flow, which must be affected by the
local liquid fraction, θ0:

∂ðθ0uxÞ
∂x

þ∂ðθ0uzuyÞ
∂y

þ∂ðθ0uzÞ
∂z

¼ 0 ð4Þ

Table 1
Geometric characteristics, operating and feeding conditions used in the analysis.

Geometric characteristics Units Default value/range

Inner bush diameter (nominal) (d) mm 100
Outer bush diameter (D) mm 200
Bush width/diameter ratio (b/d) 0.8
Groove number 1; 2
Groove angle with load line þ901 ; 7901
Groove length/bush length ratio (a/b) 0.30; 0.6; 0.875
Groove width/diam. ratio (w/d) 0.18; 0.16
Bearing radial clearance (at 20 ºC) (Cr) mm 75

Operating and feeding conditions
Rotational speed (N) krpm 1; 3 ; 5
Specific load range (approx.) (Ws) MPa 0.1–10
Oil feeding pressure (Pf) kPa 0; 50; 100; 200; 300
Oil feeding temperature (Tf) 1C 30; 40; 50; 60

Table 2
Lubricant properties used in the analysis.

Lubricant properties Value

T1 1C 40
T2 1C 70
Dynamic viscosity @ T1 (μT1) Pa s 0.0293
Dynamic viscosity @ T2 (μT2) Pa s 0.0111
Specific heat (Cp) J/kg K 2000
Density (ρ) kg/m3 870
Thermal conductivity (k) W/m K 0.13
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2.2. Thermal model

The thermal problem is coupled with the flow problem in the
sense that viscous dissipation depends on velocity gradients, while
the pressure and velocity fields will depend on viscosity, which is
temperature dependent.

There are basically three calculation domains, as depicted in
Fig. 3: the Fluid Domain, where the Energy equation is solved; the
Bush Body domain, where the Laplace equation, which governs
conductive heat transfer, is solved. Finally there are the groove
regions, where the Reynolds equation is not applicable (thin film
condition is not valid). In this latter domain only mass and energy
balances are performed. The various domain interfaces are dealt
with specific boundary conditions, as depicted in Fig. 3.

Some of the simplifying assumptions include: neglecting the
axial temperature gradients (calculations are performed in the
mid-plane only), with this assumption being backed by both
experimental [23,31,32] and theoretical evidence [3,33] for usual
operating conditions and lengthy grooves (nevertheless, specific
modeling is proposed in the present work to compensate for axial
gradients, especially for the case of small grooves); the circumfer-
ential and axial diffusive terms may be neglected when compared
with the corresponding convective terms (high Peclet number)
[30], which leads to purely radial conductive heat transfer; only
dissipative terms based on transverse gradients are relevant [30];
the bearing is perfectly aligned, i.e. axial symmetry is assumed.

2.2.1. Fluid domain
The aforementioned assumptions lead to the following

simplified form of the energy equation at the mid-plane of the
bearing [30]:

ðρcpÞeq ux
∂T
∂x

þuy
∂T
∂y

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

convective term ðconvectionÞ

¼ Keq
∂2T
∂y2|fflfflfflffl{zfflfflfflffl}

diffusive term ðconductionÞ

þ μeq
∂ux

∂y

� �2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
dissipative term

ðheat generationÞ ð5Þ
(ρcp)eq and Keq are the properties (density, specific heat and
thermal conductivity) of the lubricant or the equivalent properties
or the lubricant streamers plus gaseous cavities at the ruptured
film region. These will depend on the specific modeling of the
ruptured film region. It is common to use the “Effective Length”
concept to model the ruptured film region [4]. In fact, if both the
lubricant streamers and the gaseous cavities are attached to the
bush and shaft surfaces and considering heat transfer to occur
radially and in parallel through liquid and gaseous streamers, it
may be proved that the equivalent physical properties of the liquid
plus gas mixture will be an average of the liquid and gas properties

weighted by their corresponding fraction in the mixture, with a
particularity found by the authors in which the density and
specific heat should be treated as a group, as seen in (1). The
effective fraction of the bearing length which is filled with liquid
lubricant is therefore called the effective length of lubricant, EL,
easily computed by integrating the fluid fraction along the relevant
section. The equivalent properties will therefore be the following:

ðρ CpÞeq ¼ ELρlcplþð1�ELÞρgCpg

Keq ¼ ELKlþð1�ELÞKg

μeq ¼ ELμlþð1�ELÞμg

8>><
>>: ð6Þ

It is important to acknowledge that these equivalent properties
(namely the equivalent viscosity) will only be valid for the thermal
calculations (they have been derived based on the energy equa-
tion). The properties used for the pressure and flow calculations
will be solely based on those of the liquid portion of the flow.

There is experimental evidence that in the ruptured film region
not all the lubricant flows along streamers that are attached to
both the shaft and bush surfaces. In reality, a portion of it is
attached solely to the shaft surface forming an adhered layer to
this surface [34,35]. This will affect heat transfer since no velocity
gradients (and therefore no heat dissipation) will be present for
that portion of the lubricant. Some authors have taken this
phenomenon into account [4], although within the scope of a
simplified model.

The following expressions for the equivalent properties for
thermal calculations, which will vary according to the radial
position in the film (whether in the layer region or the streamer-
only region) have been derived (see outline of this modeling in
Fig. 4):

Streamer� only region ð0rηo1�esðαÞÞ
ðρ CpÞeq ¼ ELmρlcplþð1�ELmÞρgCpg

Keq ¼ ELmKlþð1�ELmÞKg

μeq ¼ ELmμlþð1�ELmÞμg

8>><
>>:

Layer region 1�esðαÞrηr1
	 


ðρCpÞeq ¼ ρlcpl
Keq ¼ Kl

μeq ¼ ELmμl

8>><
>>:

ð7Þ
With ELm being the corrected Effective Length of lubricant,

which corrects EL in order to reflect the portion of lubricant which
has been taken out of streamer flow (Couette flow) and allocated
to the shaft adhered layer (uniform flow). esðaÞ Is the fraction of
the bearing gap occupied by the lubricant layer at a given
circumferential position α, calculated by continuity from its initial
value at the rupture front, es0, and the variation of the local film
height, esðaÞ:

ELm ¼ EL�2esðαÞ
1�2esðαÞ

; esðαÞ ¼ es0
hðαruptÞ
hðαÞ

ð8Þ
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Fig. 3. Outline of the calculation domains and boundary conditions used in the thermal model.
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It may be easily deduced that if all the lubricant will flow
adhered to the shaft with no streamers present ELm, the fraction of
the bearing gap occupied by the lubricant layer will be at the best
0.5 (the linear profile of the Couette flow of the streamers will be
converted into a uniform velocity profile possessing the speed of
the shaft) and no heat dissipation will occur. Again, the existence
of this shaft-adhered layer has been considered only for the
thermal model. The computation of cell flow rates which is the
basis for the pressure field calculation relies on the assumption
that in the ruptured film region the lubricant flows solely along
streamers attached both to the bush and the shaft surfaces.

The energy equation is solved through a method proposed by
Boncompain et al. [3], which consists in solving the energy equation
as an initial value problem in the circumferential direction. This may
be done as long as the circumferential velocity component is positive.
However, if a region with negative speed exists, then this solution
scheme may still be applied using the domain separation iterative
approach, where calculations are performed successively in the two
separate speed domains (positive and negative) as an initial value
problem and in the direction of the flow. The results of one domain
will be used as a boundary/initial conditions for the other one.

2.2.2. Bush body domain
The conductive heat transfer across the bush body is solved

through the Laplace Equation for cylindrical coordinates [30]:

∂2Tb

∂r2
þ1
r
∂Tb

∂r
þ 1
r2
∂2Tb

∂α2 ¼ 0 ð9Þ

This equation is elliptical and may be solved iteratively through
the successive over-relaxation method. Once again, no axial flux is
considered to occur, so the terms in the z direction have vanished.

2.2.3. Groove regions
A suitable thermal modeling of the phenomena taking place within

groove regions and their surroundings is vital when analyzing the role
of feeding conditions. However, within groove regions (recall Fig. 3)
the thin film assumption (cr⪡r) which is the basis for the Reynolds
equation, is no longer valid. A CFD approach could be used, but since
this calculation would have to be repeated in each iteration at the
expense of massive computation time, a detailed mass and energy
balance becomes more appropriate in the scope of the present work.

The aim of this balance is to estimate the temperature of the
inlet section of the bearing land located downstream of this
groove (also called the leading edge of the groove). This tempera-
ture will be the initial condition to be supplied for the resolution of
the energy equation at the fluid domain located downstream of
that grove. In the present work this balance takes into account: all
major inbound and outbound heat fluxes due to lubricant flow
across the boundaries of the groove region; the heat fluxes due to
forced convection between the bush body and the inner groove
lubricant; the influence of the actual groove dimensions, namely
the groove length ratio, a/b; the occurrence of fresh oil backflow
(upstream of the groove) and reverse flow (downstream of the
groove); the influence of the occurrence of negative feeding flow
rate (hot oil reflux) in one of the grooves; the existence of a non-
uniform temperature profile at the inlet section (leading edge of
the groove). An outline of the heat fluxes crossing the boundaries
of the groove region is presented in Fig. 5(a).

But the thermal balance is not sufficient, by itself, to determine
the several average temperatures corresponding to the various
outward lubricant flows and the inner groove temperature,
Tgr . Regardless of the mixing efficiency, it seemed reasonable to
assume that the backflow temperature, Tbkf and the axial flow
temperature Taxial will be similar to Tgr . However, the average
leading edge temperature will depend on the degree of mixing

Fig. 4. Outline comparison between the Effective Length and the modified Effective Length thermal models of the ruptured film region proposed in the present work.

Fig. 5. (a) Heat fluxes across the boundaries of the groove region in the presence of back flow upstream and reverse flow downstream of the groove and (b) Outline of the
thermal mixing model within the groove region.
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between the hot oil coming from upstream and reaching the
trailing edge of the groove at an average temperature Tte and the
inner groove oil at temperature Tgr . An outline of the mixing
process is sketched in Fig. 5 (b).

A mixing coefficient, cmix was introduced:

Tgr ¼ cmixTleþð1�cmixÞTf ð10Þ

where cmix may vary between two theoretical limits:

– Perfect mix (cmix¼1), with the oil reaching the groove from
upstream perfectly mixing with the inner groove oil, in which
case all four outward temperatures will be virtually identical,
that is, Tgr ¼ Tf .

– No mixing at all (cmix¼0), where all recirculated hot oil is re-fed
to the next bearing land without the occurrence of any heat
exchange with the groove oil, that is, the groove oil will be solely
affected by the lubricant feeding temperature and thus,Tgr ¼ Tf .

The mixing efficiency within a groove is likely to depend on
several factors and is out of the scope of this work. A fixed value of
0.1 has been selected after a brief parametric study. This small
mixing coefficient is in agreement with the CFD study of Kosasih
and Tieu [36], which concluded that although the flows occurring
within the groove interior are highly recirculating, they have
almost negligible effects on thermal mixing.

It is now possible to derive the leading edge temperature, Tle,
from the thermal balance expressed in Fig. 5:

Tle ¼
qþ
te þqHþQf Tf þjqrvf j �ðjQaxial j þ jQbkf j Þð1�cmixÞTf

cmix jQaxial j þcmix jQbkf j þQ
þ
le

ð11Þ

The present thermal approach is 2D, made in the mid-plane of
the bearing, and, as already mentioned when describing the
assumptions made, several studies have confirmed that in most
cases the axial temperature gradients along the bearing length are
indeed negligible and what happens at the mid-plane is repre-
sentative of the whole bearing length. However, if the grooves
have a small length, the mid-plane thermal analysis made above
should be corrected in order to reflect, on average, the whole
bearing length, and not just the grooved length.

With the knowledge of the 3D velocity field it is possible to
estimate the average inlet section temperature, Tis, which reflects
more accurately the effective temperature of the whole bearing
length. This temperature will be calculated from a balance that
includes not just the flow rate and the temperature of the
lubricant leaving the groove, Tle, but also the flow rate and
temperature of the oil flowing at the portion of the bearing length
which is not covered by the groove, Tle_side, as depicted in Fig. 6.

Thus, the energy and mass balances performed to the groove
and the dotted control volume depicted in Fig. 6 yields the
following expressions:

Tis ¼
Q

þ
le T

þ
le þQle_sideTle_side

Q
þ
le þQle_side

with Tle_side ¼
Qte_sideTteþQaxialTaxial

Qte_sideþQaxial

ð12Þ

2.2.4. Conditions at the interfaces
The conditions set at the various interfaces, as already outlined

in Fig. 3, are presented in continuation.
At the shaft-film interface a condition of no net heat flux was

imposed. This may be considered as a midterm between situations
where the shaft acts a heat sink or a heart source. Also, the shaft
surface temperature is considered to be constant, following
experimental evidence [31]. These two assumptions are widely
accepted and used in the literature [16,37,38].

At the bush-film interface, the temperature and heat flux
continuity are applied, while natural and forced convection con-
ditions are used at the bush-ambient interface and at the inner
groove walls, respectively. It is worth noting that the accounting
for convective heat transfer at the groove walls must be done both
in the bush body conduction calculation and in the groove thermal
balance. Otherwise, a virtual heat source/sink will exist due to this.
A higher than usual value of 750 W/m2 K was chosen for Hgr. Such
value appears to be in better agreement with the highly recircu-
lating flow found within groove regions [36,39] and indeed this
allowed to replicate the strong temperature fade found experi-
mentally in the vicinity of grooves [24].

2.3. Numerical procedure

The theoretical model was implemented using the FORTRAN
90/95 programming language. The global solution algorithm is
outlined in Fig. 7.

The selection of the mesh parameters and convergence criteria
was based on a comprehensive parametric study in order to obtain a
good compromise between accuracy and processing time. The
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Fig. 6. Outline of the thermal balance carried out to determine the average inlet section
temperature, Tis , which incorporates the influence of the groove length ratio, a/b.
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approach relied on the use of refined meshes in order to detect more
subtle phenomena such as reverse flow. 221 Nodes were used in the
circumferential direction, 30 in the axial direction (half bearing
length) and 35/50 in the radial direction (in the fluid/solid domain,
respectively). The two cells in the vicinity of the groove edges were
refined by a factor of six after the first few iterations. Taking into
account the small randomness found in the results (even at very high
eccentricities), along with the small differences found between the
results obtained with the final mesh and the finest meshes tested,
the present algorithm seems to be particularly robust. The mesh
parameter optimization was detailed in [29].

2.4. Model validation

There is a lack of models presenting a thorough validation with
experimental data, something which compromises the reliability
of the results obtained. Such was tried with the present model.
A comparison against the results of Ferron et al. [32], which are
extensively used in model validation, can be seen in Fig. 8.

A very good theoretical–experimental correlation is obtained
for maximum temperature (Tmax – Fig. 8a) with differences of

around 1 1C, within the error of temperature measurements. The
temperature trend is fairly well predicted for both cases except in
the region immediately downstream of the groove, as seen in
Fig. 8a. This may have happened due to the fact that, while the
experimental values were measured at the mid-plane of the
bearing, the theoretical approach performs averaged thermal
calculations over the whole section. The hydrodynamic pressure
profiles displayed in Fig. 8b are within the experimental error
margin, the same happening with the estimation of eccentricity
ratio. Flow rate (Fig. 8c) has been slightly overestimated.

Fig. 9 presents the predicted temperature profiles against
experimental results obtained by the authors [40]. Again, it should
be highlighted that the temperature correlation in the region
immediately downstream of grooves is not satisfactory since the
predicted values are representative of the whole section and not
just of the mid-plane, as measured experimentally.

The suitability of the predictions may be better acknowledged
by observing the peak temperatures occurring in each one of the
bearing lands and also on the shaft surface (see Fig. 10). In fact,
seldom has the temperature trend in the ruptured film region of
twin groove journal bearings been accurately predicted. The
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present model seems to accomplish this rather satisfactorily for
the generality of the tests, as seen in Fig. 10.

Fig. 11 depicts the comparison of the predictions of the present
analysis against experimental results from another paper by the
group [24] in which the same test rig was used for similar
operating conditions, but where the feeding pressure varied
threefold from 70 to 210 kPa. The same good correlation may be
observed (something positive for the present analysis, in the scope
of the assessment of feeding conditions), except for the flow rate,
which was substantially underestimated.

Unfortunately, the crude underestimation of the flow rate in
twin groove journal bearings analyses is a commonly known issue,
still unresolved and found in numerous reference works [8,9,11,16]
and even popular bearing design tools [41]. This might be linked
with the intrinsic limitations in the modeling of flow in grooves
located in the midst of the ruptured film region [42] and requires
further investigation. Nonetheless, this general underestimation
does not seem to decisively affect the maximum temperature of
the bush, which has been fairly well predicted in most cases. In
fact, it can be seen in the experimental data of Fig. 11 that when
the flow rate was doubled (by increasing Pf from 70 to 210 kPa,
Fig. 11e) it had an impact of only 1 1C in maximum bush
temperature for the high load case (Fig. 11b). In the low load case
the measured decrease of Tmax was somewhat higher (4 1C). So, it
seems that for high loads the increase of flow rate only marginally
affects Tmax. Maybe that is why the substantial under-prediction of
flow rate still allowed for a good prediction of Tmax. In the low load
case the flow rate differences seemed to affect portions of the
temperature profile (namely at the loaded land of the bearing, as
already seen in Fig. 9a) but not so much Tmax.

Therefore, the current model seems apt to be used in the
analysis of the performance of single and twin groove hydrody-
namic journal bearings with realistic feeding conditions.

3. Analysis of lubricant feeding conditions

In continuation, the lubricant feed conditions such as the
lubricant feeding pressure and temperature, the groove length
ratio (a/b), the groove width ratio (w/d) and the number of grooves
(single/twin) are analyzed for a bearing geometry which is roughly
the one used in the test rig of Refs. [24,40]. This analysis aims to
assess how these parameters may affect bearing performance and
how they can be optimized to achieve a reduction in friction
without sacrificing the integrity of the system. The input para-
meters used in the analysis are presented in Tables 1 and 2, with
the default conditions being represented in bold.

3.1. Feeding pressure (Pf)

Feeding pressure (Pf) is one of the feeding parameters which is
frequently neglected in modeling as its analysis requires a realistic
treatment of groove geometry and a mass conserving algorithm
with film rupture and regeneration front estimation. Nonetheless,
it affects deeply the thermal behavior of the bearing due to its
cooling effect. Also, if the bearing is too starved, contact might
occur, while if there is lubricant excess there will be increased
power loss.

Fig. 12 shows the effect of Pf on the total flow rate and on the
flow rate through each groove, for a broad range of specific loads.

While total flow rate follows a well-known trend with load, the
flow rates through each groove show rather dissimilar or even
opposite trends. This phenomenon has already been observed
experimentally and explained in several of the authors0 publica-
tions [25–28,43], including the curious phenomenon of negative
flow rate occurring at high loads in the þ901 groove, the groove
which serves the loaded land of the bearing (also called the
upstream groove). This means that this groove starts acting as a
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lubricant sink instead of a lubricant source for the bearing. This
behavior is caused by the excessive closeness between the groove
and the strong hydrodynamic pressures, which eventually exceed
feeding pressure, reversing pressure gradients and thus the direc-
tion of the lubricant flow. This phenomenon occurs under heavily
loaded conditions and thus raises the seizure risk. In fact, the
lubricant is being retrieved just upstream of the active bearing
region, where it would be most needed. And this lubricant
starvation might happen inadvertently since the total flow rate
(the parameter which is measured in industrial applications, at
best) will indicate a seemingly normal feeding flow rate value.
Here it can be seen that the increase of Pf plays an important role
in preventing this phenomenon as seen in Fig. 12b.

The effect which Pf has on power loss, minimum film thickness
(hmin) and maximum bush temperature (Tmax) may be observed in
Fig. 13a, b and c, respectively. Indeed, when increasing Pfhmin

increases, something which is generally positive. However, this is
obtained at the expense of an increase in power loss from 9% to 30%
for a threefold increase in Pf. This is due to the fact that a higher
flow rate of oil will reduce the average oil temperature and thus
increase viscosity and viscous drag. Also the full film region will be
somewhat broader, and so the viscous drag will further increase.

By looking at Fig. 13c it can be seen that Tmax is not minimized in
the presence of the lowest loads but rather slightly higher values of
this parameter. This is due to the fact that lightly loaded bearings
typically display a low rate of lubricant leakage/renewal, as observed
experimentally [24]. However, it can be observed that an increase in
Pf might indeed reduce Tmax significantly for light load conditions.

Fig. 14 displays the effect which Pf has on the inner bush surface
temperature profile for a light, a medium and a heavy load. It can
be seen that Tmax is higher for Ws¼0.1 than for Ws¼1 MPa under
low Pf (100 kPa). Not so when increasing Pf to 300 kPa.

The effect which Pf has on eliminating negative flow rate can be
observed in Fig. 14c in the unloaded land of the bearing. Indeed,
when Pf¼100 kPa it can be seen that the þ901 (upstream) groove
provides no cooling to the system, that is, no fresh oil is fed to the
bearing gap since flow rate through this groove is negative (recall
flow rate plot in Fig. 12b). Once increasing Pf from 100 kPa to 200 kPa
the groove temperature drops abruptly from 64 1C to 42 1C, a value
close to the feeding temperature (40 1C). This indicates that the flow
rate has started to be positive.

3.2. Feeding temperature (Tf)

Lubricant viscosity, which strongly depends on temperature, is
the parameter responsible for hydrodynamic pressure generation

within the fluid. Therefore, the variation of Tf is likely to exert a
strong influence not only on the temperature field, the power loss
and the flow patterns, but also on minimum film thickness and
ultimately on the load carrying capacity of the bearing.

On one hand, if Tf is too low, the viscosity of the lubricant will
be high and an excessive power loss will exist. On the other hand,
if Tf is too high there will be no sufficient load carrying capacity,
with risk of contact. Besides, the thermal crowning of surfaces due
to thermal distortion will further raise the risk of seizure.

Fig. 15 displays the same flow rate data but now as a function of
two different variables, specific load and eccentricity ratio. Within
the lower range of specific loads (below 2 MPa) the flow rate at
the þ901 groove increases when Tf rises, indicating the fall on
viscosity suffered by the hotter lubricant. However, the opposite
occurs for higher specific load values. The reason for this lies in the
rise in eccentricity ratio which is much more pronounced for
higher loads. In fact, when analyzing this same data, but seen as a
function of eccentricity ratio (see Fig. 15d, e and f) it is apparent
that this latter parameter plays a decisive role in flow rates. For
instance, negative flow rate seems to start occurring for an
eccentricity ratio around 0.9 irrespective of the value of Tf. This
corresponds to between 8 and 10 MPa specific loads, depending
on Tf.

The increase of eccentricity (or the decrease in minimum film
thickness) with increasing Tf may be observed in Fig. 16a, while the
effect of Tf on the maximum temperature and shaft surface
temperature as well as power loss is displayed in Fig. 16b and c,
respectively. As expected, the viscosity reduction caused by the
increase in Tf with temperature yielded a decrease of the viscous
dissipation and, therefore, of the power loss. For instance, a 30%
reduction in power loss may be obtained when increasing Tf from
30 1C to 60 1C, for a specific load around 1 MPa.

A comparison between the temperature profiles for Tf of 30 1C
and 60 1C is presented in Fig. 17 for a wide range of specific loads.

In accordance with the experimental observations [24,26], the
increase in Tmax is always much less than the corresponding
increase in Tf: in this case, a 30 1C increase in Tf yielded increases
of 7 1C for the lowest load case (Ws¼0.1 MPa) and 15 1C for the
highest (Ws¼10 MPa). Another interesting fact is that the increase
of Tf triggered the appearance of the hot oil reflux phenomenon in
the test with Ws¼8 MPa, as seen in Fig. 17b.

3.3. Groove length ratio (a/b)

Despite the present thermal model being 2D (performed in the
bearing mid-plane only), the pressure and flow calculations are
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performed in the whole 3D fluid domain and the thermal balances
of the groove regions (the places where axial temperature differ-
ences might be significant) have incorporated the influence of a/b,
as noted when describing the model.

The hydrodynamic pressure fields obtained for two bearings
with dissimilar a/b ratios (0.3 and 0.875), along with the delimita-
tion of the regions of full and ruptured film are presented in Fig. 18a
and b, respectively. The two different groove geometries can be
distinguished by observing their constant pressure plateaus (P¼Pf)
in groove regions. In the vicinity of the þ901 groove and in the
region downstream of it, it can be seen that there are some
differences between the pressure fields obtained for the two cases:
in the case of the large grooved bearing, there is hydrodynamic
pressure generation immediately downstream of this groove
extending to the whole axial length of the bearing. On the contrary,
in the case of the small grooved bearing, the pressure build-up zone
only extends to the whole bearing length further downstream.

The lower extension of the full film region caused by decreas-
ing groove length is translated into a lower carrying capacity, that
is, a higher eccentricity for a given applied load, as confirmed by
inspecting the eccentricity ratio plot in Fig. 19a. The effect of a/b
upon the flow rates can be observed in Fig. 19b. As expected, the

total flow rate increases with the increase of a/b since the edges of
the groove are farther from the exterior and so there is increased
resistance to oil leakage. In this case, total flow rate more than
doubled when increasing a/b from 0.3 to 0.875. If lower a/b values
tend to decrease flow rate, then it is natural that Tmax and Tshaft
should increase due to the lower cooling power provided by the
lubricant flux, as confirmed in Fig. 19c.

Fig. 19d shows a positive effect of decreasing groove length,
which is the substantial cut in the power loss obtained (around
35% in the whole load range) when decreasing a/b from the
highest to the lowest value tested. It should be noted, however,
that localized lubricant feed might originate dry regions in the
bearing gap (namely close to edges) and promote uneven thermal
distortion. If these phenomena are combined with some misalign-
ment, localized contact might occur. So, reducing groove length in
order to obtain reduced power loss is a solution which should be
carefully assessed.

3.4. Groove width ratio (w/d)

The increase of the circumferential extension of groove, also
called the groove width,w, will affect bearing performance in various
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ways as it reduces the extension of the bush lands and therefore,
there will be a loss of load supporting area and load capacity,
especially if the grooves are close to the pressure build-up region.

The total and partial flow rates in each groove are presented in
Fig. 20a for the two w/d values tested. Curiously, the total flow rate
was not significantly affected by the changes in w/d. However,
when increasing w/d, the flow rate at the þ901 groove suffered a
strong decrease, especially for specific loads higher than 0.3 MPa,
while the opposite happened in the �901 groove. As a conse-
quence, the critical Ws for the occurrence of hot oil reflux was
lowered from around 8 MPa to about 4 MPa when increasing w/d.

Fig. 20b–d shows the influence of w in the inner bush surface
temperature profiles of lightly to heavily loaded bearings. On one
hand, the general lowering of the temperature level is apparent in
these plots and also in Fig. 21a, which depicts Tmax and Tshaft.
Curiously, and unlike what happens with other feeding conditions,

this temperature decrease happens simultaneously with a reduc-
tion in power loss despite the increase of the average lubricant
viscosity due to temperature lowering. This means that the
reduction in power loss should be mainly associated to the
reduction of the circumferential extension of the bush lands.
Under those conditions, viscous drag will occur in a smaller
angular extension, thus reducing the overall drag.

The reduction of the global temperature level should also be
due to a stronger cooling effect of the groove oil by convective heat
transfer over a broader groove surface (recall that convective heat
transfer inside the groove has been included in the modeling).

Of course, there should be limits to the beneficial effect of
increasing w, namely because the area for load support will be
reduced when w is increased. Also, the oil reflux phenomenon will
be amplified with the pressure build-up zone getting closer to
grooves.
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3.5. Number of grooves

The comparison of the performance of single (at þ901 to the
load line) and twin groove (7901) hydrodynamic journal bearings
for the same operating conditions has seldom been made either
theoretically or experimentally. The common sense perception
that a twin groove bearing will operate at a lower temperature and

with a more efficient lubrication than the single groove one still
needs to be confirmed. Recently the authors published an experi-
mental work focusing on this issue [27].

Fig. 22a displays the flow rates corresponding to both cases. It
is interesting to acknowledge that the total flow rate is nearly the
same for the two bearings along the whole load range, something
which was already observed in the experimental work. This means
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that a redistribution of the same flow rate towards two grooves
happens instead of an increase of total flow rate.

The effect of groove number on shaft locus may be seen in
Fig. 22b, with the attitude angle of the single groove case being
higher than that of the twin groove one, especially for low
eccentricities. This is a well known characteristic of single groove
bearings: the resulting force caused by the hydrostatic pressure in
the groove region (the feeding pressure), is not being canceled by a
symmetrical force on the opposite side of the bearing, as it would
happen with the twin groove case. Therefore, in the presence of a
single groove bearing, the shaft centreline tends to move away
from the þ901 groove towards the opposite side, thus increasing
the attitude angle. Differences in eccentricity for a given load are
more easily apprehended in a separate chart as a function of
specific load, as seen in Fig. 22c. According to this plot it seems
that twin groove bearings operate at a lower eccentricity, thus
farther from contact than single groove ones. The reason for this
seems to be that the temperature level of twin groove bearings is
lower than that of single groove bearings, thus operating with
higher oil viscosities, as seen further ahead.

Fig. 23 displays the temperature field in the mid-plane of the
bearing for both groove configurations and a specific load of
3.9 MPa. Fig. 23a shows the inner bush surface temperature only,
while Fig. 23b pertains the whole fluid (lubricant) and solid (bush)
domains. The differences (namely, 12 1C in Tmax) are quite sig-
nificant. This can be better understood by taking into account the
following chain of effects: the less efficient cooling of the single
groove configuration causes a higher fluid temperature, which in
turn causes a loss in lubricant viscosity, which originates higher
eccentricity, thus aggravating the temperature excess.

This dramatic difference of the temperature levels of the two
groove configurations with increasing load can be further observed
in Fig. 24a, which displays the evolution of Tmax and Tshaft with Ws.
Here it can be seen that the number of grooves also affects
significantly Tshaft, with differences in Tmax and Tshaft being as high
as 25 1C and 30 1C, respectively.

These factors also deserve to be analyzed as a function of
eccentricity ratio (b). This can help isolating the temperature effects
of the two factors which were pointed out as being responsible for
the temperature rising (ineffective cooling and eccentricity increase).
In fact, if eccentricity is kept constant, the differences in Tmax and
Tshaft are exclusively linked with the cooling efficiency. It can be seen
that even canceling the effect of eccentricity variation on tempera-
ture there are still significant differences between the two cases (as
much as 15 and 20 1C for Tmax and Tshaft, respectively).

The number of grooves also seems to significantly affect the
power loss, as seen in Fig. 24c. The reduction in this parameter, as
high as 25% when eliminating the �901 groove, seems to be
associated to the loss of viscosity (and therefore, of heat genera-
tion by viscous dissipation) suffered by the hotter oil.

As a concluding remark, it is worth noting that the results just
presented seem to indicate that the addition of the �901 groove
causes the decrease of temperature level and eccentricity espe-
cially for high loads, at the expense of a higher power loss.
However, some caution should be taken with the generalization
of these results. In fact, it has been observed before that the
present model tends to over-predict the þ901 groove flow rate in
the high eccentricity range for the case of the twin groove bearing.
This over-estimation might be affecting significantly the predic-
tions in some cases: if in reality the þ901 groove flow rate is much
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smaller than predicted, starvation problems might start appearing
and become dominant.

The overestimation of the þ901 groove flow rate is also the
reasonwhy the model also tends to over-predict the critical load at
which hot oil reflux problems start occurring. In the case studied,
this phenomenon was predicted to occur for specific loads above

8 MPa (Fig. 22a). This problem, which is deleterious for bearing
performance, namely for eccentricity, appears only in multi groove
bearings and has been barely detected in the analysis for these
conditions.

Therefore, it is possible that in some situations the oil starva-
tion caused by the splitting of the flow by two grooves instead of
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one might become a critical effect, making the twin groove
bearing a poorer choice than the single groove bearing. In fact,
this seems to be the case with the experimental results presented
by the authors in [25,26]. The incorporation of a 3D thermal
analysis, along with a more realistic estimation of the thermal and
mechanical deformations of the bodies might enable a better
prediction of bearing performance in such cases.

4. Conclusions

A Thermohydrodynamic (THD) model for the analysis of
hydrodynamic journal bearings with realistic lubricant feed con-
ditions has been proposed and used to assess the role of lubricant
feeding conditions on the performance improvement and friction
reduction of hydrodynamic journal bearings.

The model is based on the simultaneous solution of the
Generalized Reynolds Equation through a mass conserving algo-
rithm and the Energy Equation within the fluid domain, as well as
the Laplace equation within the bush body domain.

Care was taken in order to realistically incorporate lubricant
feeding conditions into the analysis: the real dimensions of the
grooves were considered in pressure and flow calculations. Models
for the ruptured film region and the lubricant mixing at the
grooves were derived, while a simplified thermo-elastic model
was deployed. A thorough validation of the theoretical model was
successfully performed and the robustness of the model for a wide
range of input conditions was confirmed.

The main factors which can affect the lubricant feeding –

feeding pressure and temperature, groove length ratio, groove
width ratio and number of grooves (single/twin) were analyzed for
a broad range of specific loads, extended well beyond the range of
practical applications. In general, the same trends and tendencies
which are experimentally observed were predicted by the model.
Despite the limitations pointed out in the validation, the results
obtained appear to be globally coherent, physically plausible, and
with small randomness.

For the conditions tested, the following conclusions may be
drawn:

– The feeding pressure proved to be a critical factor in reducing
the temperature level of the bearing and in preventing the
occurrence of hot oil reflux (negative flow rate in a groove),
even if it was at the expense of a higher power loss.

– The increase of the lubricant feeding temperature proved to
be beneficial under low loads (it decreased power loss) but
especially dangerous under high loads as it strongly increases
the eccentricity, Tmax, Pmax, and the thermal and mechanical
distortions, while lowering the critical load for which hot oil
reflux starts occurring.

– The use of smaller length grooves (lower a/b) yielded decreases
in power loss around 35%, but at the expense of a less efficient
bearing cooling, a smaller extension of complete lubricant
film and thus a lower load carrying capacity. If excessive,
the narrower range of the lubricant film, combined with the
stronger thermal crowning of surfaces due to cooling asymme-
tries might inclusively cause local contact.

– The increase of w/d induced a decrease in power loss and
maximum bush temperature without a significant decrease in
load carrying capacity. However, the critical load for which hot
oil reflux starts occurring was lowered.

– When comparing single groove (þ901 to the load line) and
twin groove (7901 to the load line) bearings it was found that
the addition of the �901 groove caused a decrease in the
temperature level and in eccentricity, especially in the higher
load range. The negative effects of adding an extra groove were

the increase in power loss and the appearance of hot oil reflux
for high eccentricities.

It is true that the present study was performed for a specific (but
fairly wide) range of geometries and operating conditions and so a
generalization of the aforementioned conclusions should not be
lightly taken. Nevertheless, they provide valuable general trends for
the role of lubricant feeding conditions in journal bearing perfor-
mance. It may be stated with confidence that the lubricant feeding
conditions may often play a vital role in the performance of
hydrodynamic journal bearings and therefore should not be
neglected in bearing analyses. A careful tuning of the feeding
configuration (geometrical shape, number of grooves, pressure and
temperature of supply oil) can result in substantial energy savings
and improved operating safety, namely by decreasing working
eccentricity and maximum bush temperature and optimized lubri-
cant flow rate. Truly, in some cases the feeding conditions might even
dictate the occurrence or the avoidance of bearing damage in ways
that conventional bearing design tools are not able to anticipate due
to their oversimplified treatment of feeding parameters.
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