Analytica Chimica Acta 865 (2015) 8-15

journal homepage: www.elsevier.com/locate/aca

Contents lists available at ScienceDirect

Analytica Chimica Acta

Polyhydroxyalkanoate granules quantification in mixed microbial
cultures using image analysis: Sudan Black B versus Nile Blue A staining

7
| CrossMark

Daniela P. Mesquita?, A. Luis Amaral °, Cristiano Leal ®, Adrian Oehmen ¢,
Maria A.M. Reis ¢, Eugénio C. Ferreira **

2 CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
b Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal
< CQFB/REQUIMTE, Departamento de Quimica, Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

GRAPHICAL ABSTRACT

Nile Blue A staining versus  Sudan Black B staining

&

Quantitative
Image Analysis.

ARTICLE INFO

Article history:
Available online 14 January 2015

Keywords:

Image analysis

Enhanced biological phosphorus removal
(EBPR) systems

Mixed microbial cultures (MMC)
Polyhydroxyalkanoates (PHA)

Sudan Black B (SBB)

Nile Blue A (NBA)

ABSTRACT

Polyhydroxyalkanoates (PHA) can be produced and intracellularly accumulated as inclusions by mixed
microbial cultures (MMC) for bioplastic production and in enhanced biological phosphorus removal
(EBPR) systems. Classical methods for PHA quantification use a digestion step prior to chromatography
analysis, rendering them labor intensive and time-consuming. The present work investigates the use of
two quantitative image analysis (QIA) procedures specifically developed for PHA inclusions identification
and quantification. MMC obtained from an EBPR system were visualized by bright-field and fluorescence
microscopy for PHA inclusions detection, upon Sudan Black B (SBB) and Nile Blue A (NBA) staining,
respectively. The captured color images were processed by QIA techniques and the image analysis data
were further treated using multivariate statistical analysis. Partial least squares (PLS) regression
coefficients of 0.90 and 0.86 were obtained between QIA parameters and PHA concentrations using SBB
and NBA, respectively. It was found that both staining procedures might be seen as alternative
methodologies to classical PHA determination.
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1. Introduction

Polyhydroxyalkanoates (PHAs) are intracellular storage com-
pounds found in a wide variety of microorganisms under limited
nutrient conditions when carbon source is available in surplus [1].
Beyond the important role of PHAs in cell physiology, they are
regarded as potential substitutes of traditional petrochemical
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plastics with the additional advantage of being completely
biodegradable. PHAs, usually from lipid nature, are used as carbon
and energy sources for numerous metabolic synthesis pathways
and microbial growth [2]. Nowadays, mixed microbial cultures
(MMC) are regarded as alternatives to pure cultures, being able to
produce PHAs from renewable resources and without the need for
sterile conditions [3-7].

Enhanced biological phosphorus removal (EBPR) systems are
commonly used to remove phosphorus from wastewaters. EBPR
biomass consists in MMC able to store the substrates intracellu-
larly, in granules or inclusions, and further using them when
needed, obtaining a balanced growth with a strong competitive
advantage over non storing organisms [8]. In EBPR systems, under
anaerobic conditions, MMC take up carbon sources such as volatile
fatty acids and store them intracellularly as PHAs and aerobically,
their stored PHAs are used as energy source for biomass growth [9].

PHA determination is routinely performed by gas chromatog-
raphy analysis, with prior digestion, which is a labor intensive and
time-consuming methodology, hindering timely results. The
search for a faster technique could result in an alternative
monitoring procedure to improve EBPR performance.

Quantitative image analysis (QIA) procedures can give valuable
information about biological processes. Many applications have
been employed specifically in activated sludge (AS) systems for
aggregated and filamentous bacteria contents and morphology
determination using bright-field and/or phase-contrast [10-13].
The use of fluorescence microscopy has also been reported in the
literature in several AS biomass physiological studies (Gram-
positive/Gram-negative and viable/damaged bacteria ratios) [14].

It is well-known that a number of staining procedures provide
quite relevant information for microorganisms’ identification. For
instance, Gram and Neisser staining are routinely used in MMC for
filamentous bacteria characterization and identification [15].
Furthermore, additional procedures include more specialized
staining techniques to detect intracellular storage compounds in
MMCG, such as PHA, poly-P and glycogen, as previously reviewed by
Serafim et al. [16] and Mesquita et al. [17]. Nile Red, Nile Blue A
(NBA), and Sudan Black B (SBB) are among the most used dyes for
selective staining of PHA inclusions [18-22]. However, these
staining procedures have been rarely applied in routine analysis,
and QIA application has never been considered before as an
alternative method to quantify intracellular storage compounds
such as PHA.

To overcome the limitations of the standard analytical
techniques in intracellular PHA quantification, the present work
investigated an advanced monitoring approach based on QIA using
SBB and NBA to quantify PHA production from MMC in an EBPR
system. Partial least square (PLS) regression models were further
applied by integrating image analysis parameters, regarding the
biomass structure, alongside classically determined PHA concen-
tration. A comparison between the PHA prediction ability of both
staining procedures was also performed.

2. Materials and methods
2.1. Experimental setup and synthetic medium

A 4L sequential batch reactor (SBR) was operated at room
temperature (around 20°C), under a 6-h cycle consisting of
anaerobic (120 min), aerobic (180 min), settling (55 min), and
withdrawing periods (5 min). The synthetic medium (described
below)was added in the first 5 min of the anaerobic stage. Nitrogen
and compressed air were used to ensure anaerobic and aerobic
conditions, respectively, using two on/off control valves. The
hydraulic retention time (HRT) was 12 h and the sludge retention
time (SRT) was kept at approximately 8 days by wasting mixed

liquor at the end of the aerobic stage. Two liters of synthetic
medium containing volatile fatty acids (VFA) (solution 1) and
phosphate (solution 2) were fed to the system. Solution 1
contained per liter: 2.55g C;H50,Na-3H,0, 0.34g C3HsNaO,,
0.59g NH4Cl, 0.95g MgS04-7H,0, 0.44g CaCl,-2H,0, 0.0116¢g
allyl-N thiourea (to inhibit nitrification), 0.03 g EDTA, and 3.16 mL
of a trace metals solution. The trace metals solution [23] is listed
below (gL~ 1): 1.5 FeCl3-6H,0, 0.15H3B05, 0.03CuS04-5H,0, 0.18 KI,
0.12 MnCl,-4H,0, 0.06 Na,MoO4-2H,0, 0.12 ZnSO4-7H,0,
0.15CoCl,-6H,0. Solution 2 contained per liter: 124.1 mgK,HPO,4
and 96.8 mg KH,PO4 [24].

2.2. Analytical procedures

The SBR was monitored during 87 days and mixed liquor
samples were taken at the end of both anaerobic (AN) and aerobic
(AE) stages and centrifuged. The supernatant was discharged and
the pellet was lyophilized during at least 48 h. Polyhydroxybu-
tyrate (PHB) and polyhydroxyvalerate (PHV) content was
measured by gas chromatography (GC) using the adapted method
developed by Smolders et al. [23]. Pre-weighed samples of
lyophilized sludge were transferred to glass vials. The polymers
were esterified in glass vials with HCl:1-Propanol and extracted
with dichloromethane including benzoic acid as the internal
standard. The mixture was vortex-mixed, to promote good
contact between the two phases, and was digested at 100°C
for 3.5 h. After digestion, the content of the vial was transferred
with 2 mL of ultra-pure water to a different vial, covered with a
rubber seal, and contact between the two phases was further
promoted. The vials were kept in an inverted position for 30 min,
after which 1 mL of the organic phase was collected. Quantifica-
tion was made in a GC system (Varian 3800 instrument, Varian
Inc. USA) equipped with a flame ionization detector. PHB and PHV
were separated using a TRWAX capillary column (Teknokroma,
Spain), with helium as the carrier gas. The temperatures of the
split injection and detector were 220°C and 250 °C, respectively.
The initial oven temperature was 50°C for 2min, with a
10°Cmin~! ramp to 225 °C and then maintained for 10 min. Data
was analyzed using the acquisition and integration software Star
Chromatography Workstation v. 6.30 (Varian Inc. USA) and
calibration curves were obtained for PHB and PHV with an
internal standard. In the current work, PHA was determined as
the sum of PHB and PHV. Total consumption of acetate and
propionate was confirmed at the end of each stage and measured
by high performance liquid chromatography (HPLC) using an
internal standard. Chromatographic separation was performed
using a Varian Metacarb 67H column (300 x 7.8 mm, Varian, USA)
under the following conditions: mobile phase 0.005M H,SO,,
flow rate 0.6mLmin~!, and column temperature 60°C. The
system was comprised of a Jasco chromatograph 880-PU
intelligent pump (Jasco, Tokyo, Japan) equipped with a Jasco
210-UV detector (Jasco, Tokyo, Japan) and a Jasco AS-2057 Plus
intelligent auto sampler (Jasco, Tokyo, Japan). Data was analyzed
using the acquisition and integration software Star Chromatog-
raphy Workstation v. 6.30 (Varian Inc. USA).

2.3. Staining procedure and bright-field image acquisition

During the monitoring period, biomass samples were
also collected at the end of the AN and AE stages. These
samples were further homogenized using a tissue grinder,
promoting the visualization and image acquisition, and later
quantification of PHA intracellular storage polymers by bright-field
microscopy. For each sample, a smear of biomass suspension
(100 L) was carefully and uniformly deposited on a glass slide and
thoroughly air dried. Slides were stained with SBB (0.3% w/v in 60%
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Table 1
Image analysis variables from the SBB method used for the PLS analysis of PHA.

Parameter Description

Predictor (X) PHA inclusions total area per image
fLn (PHA inclusions total area per image)
PHA inclusions total area per image without border objects
fLn (PHA inclusions total area per image without border objects)
Number of PHA inclusions per image
fExp (number of PHA inclusions per image)
PHA inclusions roundness
PHA inclusions diameter
PHA inclusions perimeter
PHA inclusions length
PHA inclusions width
PHA inclusions form factor
PHA inclusions color intensity per image
fPow (PHA inclusions color intensity per image)

Response
(Y)

Polyhydroxyalkanoates concentration

fLn represents a logarithmic function, fExp represents an exponential function, and
fPow represents a power function.

v/v ethanol) for 10 min and counterstained with safranin O (0.5%
w/v in deionised water) for 10s [15].

Two slides per sample were used and images were acquired in
the upper, middle and bottom of each slide, resulting in a total of
150 images (2 x 75 images per slide). Samples were examined by
means of an Olympus BX51 (Olympus, Tokyo, Japan) microscope at
1000x total magnification under oil immersion, and bacteria
presenting blue-black color are reported as intracellular PHA
accumulating organisms. Images were acquired at 2040 x 1536
pixels, and 24-bit RGB format (8 bit red, 8 bit green, and 8 bit blue
channels) through the commercial software Cell*B (Olympus,
Tokyo, Japan).

2.4. Image analysis procedure for bright-field images

The image processing and analysis procedure was based on the
identification and quantification of PHA inclusions using a
specifically developed program in Matlab 7.8.0 (The Mathworks,
Natick, MA). A more detailed description of the image processing
methodology is presented below.

The first step of the developed program splits the RGB image
into the three composing channels (red, green, and blue). To
improve image contrast and increase the definition of the PHA
inclusions contours, a logarithmic transformation (natural loga-
rithm followed by normalization) and a contrast enhancement
filter (3-by-3 pixels unsharp filter) was performed on the red
channel, followed by a 50 pixels kernel size (sigma=20) Gaussian
filter. This procedure created a blob of uniform color in the image
containing all the inclusions and easily segmented by a simple
threshold. After this first rough segmentation, an adaptive
thresholding algorithm separating the obtained color blob from
the background was used. In mixed cultures, the biomass structure
can be considerably different from sample to sample, regarding the
extensive fraction of flocs, as well as PHA inclusion contents,
generally combined as clusters. Thus, to surpass the complexity of
image segmentation, color segmentation was performed, remov-
ing all the pixels related to the red and green colors, given the fact
that SBB stains PHA inclusions in blue-black color. The color
segmentation was further based on determining the blue/red and
green/blue ratios. It was considered that the pixels related to the
red color presented a blue/red ratio below 0.9, whereas the pixels
related to the green color presented a green/blue ratio above 1.1.
Afterwards, a 2-by-2 pixels erosion, guided by the brightness, was
applied for the individual separation of each PHA inclusion.
However, even considering this processing step, some clusters may

still be present, mostly due to insufficient color gradient. Therefore,
a distance transform based separation was implemented, follow-
ing a solidity (below 0.8) and area (above 100 pixels) criteria for
separation. Identified inclusions were post-treated in terms of
debris elimination by a 3-by-3 pixels erosion, dilation and filling. In
the last processing step, brightness guided erosion (3% of the
brightest pixels) was performed to eliminate inclusions halos.

The segmented PHA inclusions from the collected images were
then characterized into the most relevant morphological param-
eters presented in Table 1. Also presented in Table 1 are a few
mathematical transformations of the collected QIA parameters
later introduced in the multivariate statistical study.

A schematic representation of the image processing and
analysis procedure is shown in Fig. 1 presenting also the original
and final binary images.

2.5. Staining procedure and fluorescence image acquisition

As it was described in Section 2.3, biomass samples were also
collected at the end of the AN and AE stages. The staining
procedure for fluorescent image acquisition was quite different
from the SBB staining procedure where a smear of the sample was
placed on a slide similar to a simple Gram or Neisser staining. In
this case a suspension of cells was used, thus, samples were fixed in
4% formaldehyde, then washed with phosphate buffer saline
solution (PBS), and stored in a 50% PBS - 50% ethanol solution at
—20°C prior to further analysis to preserve the cells as close to its
natural state [25].
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Fig.1. Schematic representation of the image processing and analysis procedure for
SBB staining.
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Table 2
Image analysis variables from NBA method used for the PLS analysis of PHA.

Parameter

Description

Predictor (X)

Total intensity of the original image

fExp (total intensity of the original image)

Total intensity of the background corrected image

fEXp (total intensity of the background corrected image)

PHA inclusions total area per image

fExp (PHA inclusions total area per image)

PHA inclusions equivalent diameter

fExp (PHA inclusions equivalent diameter)

PHA inclusions total intensity calculated from the original image

PHA inclusions average intensity calculated from the original image

fQuad (PHA inclusions average intensity calculated from the original image)

PHA inclusions total intensity calculated from the background corrected image
PHA inclusions average intensity calculated from the background corrected image
fQuad (PHA inclusions average intensity calculated from the background corrected image)

Response (Y)

Polyhydroxyalkanoates concentration

fExp represents an exponential function, and fQuad represents a quadratic function.

For fluorescence image acquisition, and for each sample, 1 mL of
fixed cell suspension was incubated at 55 °C for 10 min with 1 drop
of NBA according to the methodology described in Ostle and Holt
[26], and further centrifuged at 4500 rpm for 5 min as described in
Mesquita et al. [21]. Pellet cells were washed with 0.9% NaCl and
centrifuged using the same conditions. The excess of stain solution
was removed using 8% acetic acid for 1 min and centrifuged again.
Pellet cells were then re-suspended in 0.9% NaCl. In order to
guarantee good quality images for the implementation of QIA, a
tissue grinder was used to homogenize the aggregates formed
during the staining procedure.

Three slides per sample were used, and for each slide a volume
of 10 uL of the stained sludge samples was covered with a
20 mm x 20 mm cover slip, for visualization and image acquisition.
Images were acquired in the upper, middle, and bottom of the slide
resulting in a total of 150 images (3 x 50 images per slide). The
slides were examined by means of an Olympus BX51 (Olympus,
Tokyo, Japan) fluorescence microscope at 400x total magnifica-
tion, with constant exposure times for intensity measurements
[21]. A long pass filter was used with an excitation wavelength of
530-550 nm and emission cut off at 591 nm, with the stained PHA
inclusions presenting an emission spectra around 625-675 nm, for
the employed excitation wavelength. Images were acquired at
1360 x 1024 pixels, and 24-bit RGB format (8 bit red, 8 bit green,
and 8 bit blue channels) through the commercial software Cell*B
(Olympus, Tokyo, Japan).

2.6. Image analysis procedure for fluorescence images

The image processing and analysis methodology regarding PHA
inclusions was based on the identification and quantification of
PHA inclusions regions using a specifically developed program in
Matlab 7.8.0 (The Mathworks, Natick, MA). A more detailed
description of the image processing methodology is presented
below.

The first step of the developed program splits the RGB image
into the three composing channels (red, green, and blue). Only the
red channel was subsequently used for the remaining treatment,
given the fact that NBA stained PHA emitted at a red spectral
wavelength. A background correction step, by means of tophat
filtering (100 pixels size) was next applied, followed by Wiener
filter smoothing. The identification of the PHA regions was
performed in a two fold manner: for well and poorly defined
inclusion regions. For the identification of well-defined inclusion
regions a top hat filter (30 pixels size) was applied followed by edge
determination and filling, whereas for the poorly defined inclusion
regions a threshold based segmentation was applied. Both

identified inclusion regions were then combined in a single image
further post-treated for debris elimination by morphological
erosion and reconstruction. The final binary image was then used
for the determination of the total PHA region area and
subsequently used as a mask image in both the original red
channel image and the background corrected red channel image.

The recognized PHA inclusions from the resulting images were
then characterized into the most relevant morphological param-
eters described in Table 2. Also presented in Table 2 are a few
mathematical transformations of the collected IA parameters later
introduced in the multivariate statistical study.

A schematic representation of the image processing and
analysis procedure is shown in Fig. 2 presenting also the original
and final binary images.

2.7. Multivariate statistical analysis

In partial least squares (PLS) regression, the decomposition of
X and Y is carried out iteratively. By exchanging information
between the two blocks in each step, the latent variables (LVs) of
the X-space are rotated so that the predictive power of the X-space
with regard to the Y-space is enhanced [27]. Matrix (X) was always
preprocessed using the standard normal variate method to remove
undesirable variations. Matrix Y values were used both for model
development and to test its performance. In PLS it is critical to
determine the optimal number of LVs and cross-validation (CV)is a
reliable way to test the predictive significance of each PLS
regression. For that purpose, part of the training dataset is kept out
of the model, predicted and finally compared with the actual
values (using CV). A more detailed explanation of the PLS
algorithm could be found elsewhere [28-31]. However, it was
found that the number of LVs depicted by this methodology did
not allow an acceptable training model. Thus, for selecting the
optimal number of LVs, a random 2/3 training dataset to
1/3 validation dataset was repeated 20,000 times to obtain a
total number of 20,000 randomly selected different datasets.
The cumulative fraction of the Y explained by the components
(R2Y(sum)), the root mean squared error of prediction (RMSEP)
and the correlation coefficient (R?) between measured and model-
generated Y values was then determined for the training set. For
each of the 20,000 different datasets, these parameters were
determined for a number of LVs ranging from one to half the
number of X variables in the model. Furthermore, the correlation
coefficient (R?) between measured and model-generated Y values
was also determined for the overall (comprehending both training
and validation) dataset, and used as the selection criteria to choose
the best model.
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Fig. 2. Schematic representation of the image processing and analysis procedure
for NBA staining.

The software Matlab™ 7.8.0 (The Mathworks, Natick, MA)
was used for predicting PHA by PLS with a total of 134 samples
from SBB and NBA data. A total of 64 samples (32 AN and
32 AE) belonged to the SBB dataset whereas the remaining
70 samples (35 AN and 35 AE) belonged to the NBA
dataset. Four studies were performed using different datasets
regarding the obtained QIA results for the SBB, and another four
for the NBA datasets. For both, a first PLS model was conducted
using the global QIA results, consisting of the ensemble of AN
and AE stage datasets (further designated as global). The second
PLS model was comprised of only the AN data, whereas the
third PLS model was comprised of only the AE stage.

Furthermore, in the fourth study (further designated as
combined or AN+AE), the independent PLS results of the
AN and AE data were combined together after independent
PLS analyses. Data were randomly divided into a training
set (67% of the observations) to train the model, and
a validation set (33% of the observations) to validate the model.

Similar PLS analyses were conducted with a prior cross-
correlation (CC) analysis of the image analysis collected data to
reduce the dataset (matrix X), leading to the exclusion of one
variable per pair presenting a correlation factor above 0.9. In the
case of the SBB dataset, PHA inclusions total area per image, PHA
inclusions diameter, PHA inclusions perimeter, PHA inclusions
width and fLn (PHA inclusions total area per image) parameters
were excluded. In the case of the NBA dataset, total intensity of the
original image, PHA inclusions total intensity calculated from the
original image, PHA inclusions total intensity calculated from the
background corrected image, PHA inclusions average intensity
calculated from the background corrected image and fQuad (PHA
inclusions average intensity calculated from the original image)
parameters were excluded from the original matrix X. The number
of X variables prior and after CC analysis was 14 and 9 variables for
both the SBB and NBA datasets.

3. Results and discussion

In this work, the ability of using QIA data from SBB and NBA
staining to predict intracellular storage PHA through PLS analysis
was pursued. For this purpose, two datasets from the lab-scale
EBPR system experiments were used. The first dataset used QIA
information provided by bright-field microscopy and SBB staining
(Table 1), whereas the second dataset used QIA information
provided by fluorescent microscopy and NBA staining (Table 2). A
standard analytical methodology was also employed to determine
intracellular PHA concentrations as previously reported in
Section 2.2. For both methodologies, samples were obtained at
the end of the anaerobic and aerobic stages.

The first results of PLS models, using the global aerobic and
anaerobic QIA data, were performed with the ensemble AN
(anaerobic) and AE (aerobic) datasets. The PLS analysis results
(latent variables (LVs), cumulative fraction of the Y explained by
the components (R2Y(sum)), root mean squared error of prediction
(RMSEP), regression coefficients (R?) and linear regression
equations) for PHA prediction (with and without CC analysis),
for the training, validation and overall (training+validation)
datasets are depicted in Table 3. Each regression coefficient and
equation corresponds to the linear correlation found by the least
squares method. The predicted results of the intracellular PHA
concentrations, for both SBB and NBA staining without CC analysis,
were somewhat distant from 1 (correlation coefficient R?> of
0.78 and 0.73, respectively). However, concerning the prediction

Table 3
PLS prediction results for PHA using the global anaerobic (AN) and aerobic (AE) image analysis data with and without cross-correlation (CC).
SBB NBA
Without CC With CC Without CC With CC
(14 variables) (9 variables) (14 variables) (9 variables)
LVs 7 4 7 4
R2Y (cum) 0.83 0.82 0.80 0.70
RMSEP 6.41 6.05 5.52 7.92
R? training set 0.80 0.79 0.77 0.61
Linear regression (training set) y=0.93x y=0.93x y=0.93x y=0.90x
R? validation set 0.77 0.63 0.71 0.66
Linear regression (validation set) y=1.08x y=1.06x y=111x y=131x
R? overall (training + validation) set 0.78 0.73 0.73 0.55
Linear regression (training + validation set) y=0.97x y=0.96x y=0.97x y=0.98x
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Table 4
PLS prediction results for PHA using independent anaerobic (AN) and aerobic (AE) image analysis data with and without cross-correlation (CC).
SBB NBA
Without CC With CC Without CC With CC
(14 variables) (9 variables) (14 variables) (9 variables)
AN AE AN AE AN AE AN AE
LVs 7 7 4 4 7 7 4 4
R2Y (cum) 0.92 0.93 0.86 0.92 0.95 0.88 0.70 0.90
RMSEP 5.8 6.1 6.1 52 6.0 6.4 9.0 8.7
R? training set 0.91 0.92 0.84 0.91 0.95 0.87 0.60 0.90
Linear regression (training set) y=0.98x y=0.97x y=0.96x y=0.97x y=0.98x y=0.95x y=0.90x y=0.96x
R? validation set 0.87 0.91 0.68 0.91 0.68 0.79 0.79 0.66
Linear regression (validation set) y=0.97x y=111x y=0.95x y=112x y=1.01x y=115x y=114x y=1.00x
R? overall (training + validation) set 0.89 0.91 0.78 0.90 0.88 0.83 0.63 0.85
Linear regression (training + validation set) y=0.97x y=1.00x y=0.96x y=1.00x y=0.99x y=1.00x y=0.96x y=0.97x
(AN +AE) R? (training + validation set) 0.90 0.84 0.86 0.75
Linear regression (AN +AE) y=0.99x y=0.98x y=1.00x y=0.96x

ability of NBA staining, it is important to notice a marked
improvement with respect to previously obtained results [21],
from a correlation coefficient R? of 0.40 to R? of 0.73, indicating that
the QIA methodology was further enhanced.

With respect to the use of the CC analysis for dataset reduction,
for both SBB and NBA staining, quite lower prediction abilities
were obtained (R? of 0.73 and R? of 0.55, respectively). Given these
results, data reduction was found to be unadvisable.

To improve the prediction ability for intracellular PHA concen-
trations, for both SBB and NBA, a different set of studies was
performed, in which each of the two sampling periods (AN and AE)
was modeled independently by PLS analysis. The results of the two
independent analyses were then merged to obtain the combined
(AN +AE) PHA concentration predictions. The PLS analysis results
(latent variables (LVs), cumulative fraction of the Y explained by the
components (R2Y(sum)), root mean squared error of prediction
(RMSEP), regression coefficients (R?) and linear regression equa-
tions) for PHA prediction of this study are depicted in Table 4. The
training, validation, and overall (training +validation) for the AN
and AE stages, and combined (AN + AE) results are presented. Again,

the regression coefficients and regression equations correspond to
the linear correlations found by the least squares method.
Comparing the PHA prediction ability from the AN and AE
stages calculated independently, without CC analysis, the PLS
results demonstrated good homogeneity between the SBB and NBA
results. In fact, the overall (training+validation) regression
coefficient (R?) varied solely from 0.83 to 0.91 and the linear
slope was very close to 1.00. Thus, and despite the slightly better
results for the SBB staining, both methodologies were found to be
appropriate for PHA quantification. Furthermore, this was further
emphasized with the results obtained by combining the two
independent analyses (AN+AE) with regression coefficients of
0.90 and 0.86 and slopes of 0.99 and 1.00, for SBB and NBA
respectively. The comparison between the independent PLS results
(AN+AE) (R? 0of 0.90) and the overall dataset results (Table 3) of the
first study (R? of 0.78), showed a marked improvement for the SBB
dataset. Fig. 3 shows the correlation between the measured and
predicted values for intracellular PHA concentrations, for (AN + AE)
independent PLS results for NBA and SBB, resulting in a similar
correlation for both staining procedures. For the NBB dataset an
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even greater improvement on the prediction ability was obtained
for the independent PLS results (AN+AE) (R?* of 0.86) when
compared to the overall dataset results from Table 3 (R? of 0.73).
These results highlight the importance of performing independent
analyses on the data collected from the aerobic and anaerobic
stages.

It has been already stated that EBPR systems work using a
strategy that combines fully AN feast and AE famine cycle using
MMC. Within this strategy, PHA enrichment is performed in the AN
stage, when an external carbon source is available. In this stage,
and according to previous research by Oehmen et al. [32,33], a
prompt storage of PHA is generally achieved. It is also known that
the PHA accumulated in the AN stage can be used as a carbon/
energy reserve in substrate starvation in the following AE stage
[32,33]. In this case, a sharp increase in PHA consumption is
frequently observed within this specific stage of the biological
process. Thus, the use of a larger range of PHA data, combining both
AE and AN results, would be expected to increase the PLS
prediction ability. However, this was not the case in the current
work, perhaps since the range of PHA concentrations in the AN and
AE stages are similar, given the fact that the PHA levels are low at
the beginning of the AN stage and increase to their maximum value
at the end of the stage, while in the AE stage PHA decreases from
this high level achieved at the end of the AN stage until very low
levels. Further research investigation is warranted to determine
the underlying cause for the difference in PLS prediction ability
using the global and independent data sets.

It should be stressed also that, the PLS model results regarding
NBA staining were markedly improved when compared to prior
results [21], from a correlation coefficient R? of 0.65 to R? of 0.86,
indicating that the QIA methodology has been significantly
enhanced. Again, it was found that a prior CC analysis considerably
hindered the PHA prediction ability in all cases. In fact, significantly
lower prediction abilities (R? of 0.84 and R? of 0.75 for SBB and NBA
datasets, respectively) were obtained with CC analysis, further
indicating that data reduction was found to be unadvisable for this
study.

In conclusion, both SBB and NBA staining procedures can be
seen as valuable methodologies to predict intracellular PHA
storage inclusions, provided that independent aerobic and
anaerobic PLS analyses are performed.

4. Conclusions

In the current work, bright-field and fluorescent staining, on
one hand, and QIA methodologies on the other, were studied and
validated to predict intracellular PHA intracellular storage
inclusions. It was found that SBB and NBA staining were able to
predict well the PHA concentrations using independent anaerobic
and aerobic data treatment, which was found to be fundamental
with the studied EBPR samples. Furthermore, this study empha-
sized the usefulness of SBB and NBA staining, coupled to QIA
methodologies, in the future research of PHA production from
mixed microbial cultures involved in wastewater treatment.
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