KINETICS OF LACTOSE FERMENTATION USING RECOMBINANT Saccharomyces cerevisiae

M. Juraščík^a, P. Guimarães^b, J. Klein^b, L. Domingues^b, J. Teixeira^b, J. Markoš^a*

 ^a Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
^b Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal

KEY WORDS

ethanol fermentation, kinetic model, recombinant S. cerevisiae

This work presents a multi-route, nonstructural kinetic model for determination of ethanol fermentation on lactose using a recombinant *S. cerevisiae* flocculent strain expressing both the *LAC4* (coding for β -galactosidase) and *LAC12* (coding for lactose permease) genes of *Kluyveromyces lactis*. In this kind of modelling, the values of different metabolic pathways are calculated applying a modified Monod equation rate in which the growth rate is proportional to the concentration of a key enzyme controlling the single metabolic pathway. As a result, this type of model has a large number of parameters. In this study, three main metabolic routes for *S. cerevisiae* are considered: fermentation (producing ethanol), oxidation of lactose and oxidation of ethanol.

The main bioprocess variables determined experimentally were lactose, ethanol and biomass concentrations, dissolved oxygen and the composition of outgoing gas.

Acknowledgement: This work was supported by: Slovak Scientific Grand Agency, grant number VEGA 1/0066/03 and the agency FCT, Portugal – grants awarded to P. Guimarães (SFRH/BD/13463/2003) and to J. Klein (SFRH/BPD/5607/2001).

*Corresponding author:

Tel: +421-2-5932 5259; fax: +421-7-5249 6743 e-mail address: jozef.markos@stuba.sk