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Receptor tyrosine kinase (RTK) targeted therapy has been explored for glioblastoma treatment.
However, it is unclear which RTK inhibitors are the most effective and there are no predictive
biomarkers available. We recently identified the RTK AXL as a putative target for the pan-RTK
inhibitors cediranib and sunitinib, which are under clinical trials for glioblastoma patients. Here,
we provide evidence that AXL activity can modulate sunitinib response in glioblastoma cell lines.
We found that AXL knockdown conferred lower sensitivity to sunitinib by rescuing migratory
defects and inhibiting apoptosis in cells expressing high AXL basal levels. Accordingly, over-

activation of AXL by its ligand GAS6 rendered AXL positive glioblastoma cells more sensitive to
sunitinib. AXL knockdown induced a cellular rewiring of several growth signaling pathways
through activation of RTKs, such as EGFR, as well as intracellular pathways such as MAPK and
AKT. The combination of sunitinib with a specific AKT inhibitor reverted the resistance of AXL-
silenced cells to sunitinib. Together, our results suggest that sunitinib inhibits AXL and AXL
activation status modulates therapy response of glioblastoma cells to sunitinib. Moreover, it
indicates that combining sunitinib therapy with AKT pathway inhibitors could overcome
sunitinib resistance.

& 2015 Elsevier Inc. All rights reserved.
Introduction

Glioblastoma is the most common form of primary brain tumor and
one of the most lethal and challenging human malignancies [1–4].
Standard treatment consists in a combination of surgery, irradiation
and temozolomide, which postpones progression and extends over-
all survival in 5 years from 2% up to 10%, but these tumors univ-
ersally recur and unrelentingly result in patient death [4–8].
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An increasing understanding of the molecular mechanisms
underlying glioblastoma [9–11] has led to the identification of a
number of promising therapeutic targets, including several mem-
bers of the receptor tyrosine kinase (RTK) family [12–16]. Among
the most interesting RTK targets are EGFR, PDGFRA and KIT,
which have been intensively studied [17–20]. However, clinical
trials with single-targeted agents that inhibit these molecules
have shown only minimal therapeutic activity, with no significant
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prolongation of survival [21–28]. Therefore, it is currently beli-
eved that multi-kinase inhibitors simultaneously targeting several
RTKs may yield greater clinical efficacy in selected glioblastoma
patients [29–32].
AXL belongs to the TAM (Tyro3, AXL and Mer) receptor

subfamily of RTKs that also includes Tyro3 and Mer [33]. The
TAM receptors are characterized by a combination of two imm-
unoglobin-like domains and dual fibronectin type III repeats in
the extracellular region and a cytoplasmic kinase domain. The
ligands for TAM receptors are Gas6 (growth arrest-specific 6) and
protein S [34]. AXL was originally cloned from patients with chr-
onic myelogenous leukemia and, when overexpressed, it exhibits
transforming potential [33]. AXL overexpression has been repo-
rted in a variety of human cancers, being associated with tumor
invasiveness and metastasis [35–38].
Regarding brain tumors, AXL has been implicated in gliomagen-

esis and chemoresistance [39]. Previous investigations found that
AXL is constitutively phosphorylated in many glioma cell lines,
murine xenograft tumors and primary patient tumor samples [40].
Immunohistochemical analysis of AXL and Gas6 demonstrated that
co-expression of these proteins correlates with tumor recurrence
and progression [41,42]. Furthermore, inhibition of AXL using
in vitro and in vivo models resulted in a reduction of tumor growth,
migration and invasion, as well as prolonged overall animal sur-
vival in xenografts containing dominant negative AXL [42]. Alto-
gether the previous data has indicating that AXL targeted therapy
may also diminish glioblastoma aggressiveness [43].
In a recent pre-clinical study performed by our group, the eff-

ectiveness of two pan-RTK inhibitors (sunitinib and cediranib) in
glioblastoma cell lines was assessed and AXL was found as a com-
mon candidate target for both cediranib and sunitinib [31]. Other
studies have also suggested AXL as target for sunitinib in other
tumor types, such as in renal cell carcinoma [38,44]. Moreover, de
novo activation of AXL was found in imatinib-treated gastrointest-
inal stromal tumors (GIST) and in Her-2 positive breast cancer cells
treated with lapatinib and, in both cases, AXL was associated with
therapy resistance [45,46]. Nevertheless, the role of this protein as
a putative modulator of sunitinib therapy response is still in need
of in vitro and in vivo validation.
Due to the importance of AXL in glioblastoma and its recent

implication in RTK inhibitor responses, in the present study we
aimed to validate AXL as a cediranib and sunitinib target and to
determine whether it could act as a modulator of cediranib and
sunitinib response in glioblastoma cell lines.
Materials and methods

Cell lines and cell culture

Eight immortalized glioblastoma cell lines were used: SW1088,
SW1783, U-87 MG and A172 were obtained from ATCC (American
Type Culture Collection), SNB-19 and GAMG were obtained from
DSMZ (German Collection of Microorganisms and Cell Cultures)
and U251 and U373 were kindly provided by Professor Joseph
Costello. All cell lines were maintained in DMEM-10 at 37 1C and
5% CO2 as previously described [31]. Authentication of cell lines
was performed by IdentiCell Laboratories (Department of Mole-
cular Medicine (MOMA) at Aarhus University Hospital Skejby in
Århus, Denmark), as described [31].
Please cite this article as: O. Martinho, et al., AXL as a modulator of
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Generation of cell lines stably expressing short hairpin (sh)
AXL

For the generation of cell lines stably expressing a short hairpin for
AXL (shAXL), we used pRNA-U6.1/Neo vector containing a 19 bp
shRNA. For AXL overexpression a complete AXL cDNA cloned into
the pcDNA3 vector was used. Both vectors were kindly provided by
Shuang-En Chuang from the National Health Research Institutes,
Taiwan [47]. Electroporation with Neon Transfection System (Invi-
trogen, Life Technologies) was used to introduce the shAXL/AXL
and the empty vectors into the cells, following the manufacturer’s
instructions. Twenty-four hours after transfection, stable transfec-
tants were selected with 300–450 mg/ml of G418 (Sigma Aldrich) in
complete DMEM medium.

Immunofluorescence analysis for AXL

For immunofluorescence analysis, the cells were plated in glass
coverslips placed into 12-well plates at a density of 6�104 cells
per well and allowed to adhere overnight. Then, the cells were
fixed in cold methanol by 5 min at �20 1C. For block unspecific
ligations the cells were incubated with a solution of PBS contain-
ing 10% FBS for 30 min at room temperature followed by incuba-
tion with a primary antibody against AXL (dilution 1:50; inc-
ubation ON at RT; AXL C-20 clone; Santa Cruz Biotechnology). The
cells were then washed in a PBS solution with 0.5% FBS and inc-
ubated with a rabbit anti-goat antibody conjugated with TRITC
(dilution 1:500, Life Technology) for 1 h at room temperature in
the dark. Finally the cells were counterstained with 40,6-diami-
dino-2-phenylindole (DAPI) and images were obtained with the
use of fluorescence microscopy (BX16; Olympus).

Western blot and human RTK arrays

To assess the effect of the drugs on the intracellular signaling
pathways and RTKs, the cells were cultured in T25 culture flasks
or six-well plates, allowed to grow to 85% confluence, serum sta-
rved for 2 h and then incubated with the drugs. When necessary
the cells were stimulated with 400 ng/ml of Gas6 (human rec-
ombinant Gas6, R&D systems) for 15 min.

To assess apoptosis, the cells were incubated with increasing
concentrations of sunitinib for 24 h. At the indicated time points,
the cells were washed and scraped in cold PBS and lysed in buffer
containing 50 mM Tris pH 7.6–8, 150 mM NaCl, 5 mM EDTA, 1 mM
Na3VO4, 10 mM NaF, 10 mM NaPyrophosphate, 1% NP-40 and 1/7
of protease cocktail inhibitors (Roche). Western blotting was per-
formed using standard 10% SDS-PAGE, loading 20 mg of protein
per lane. All the antibodies were used as recommended by the
manufacturer and as previously described [31].

For detection of AXL activation we used a specific antibody to
detect AXL phosphorylation, phospho-AXL (Tyr702) (Cell Signaling
Technologies, D12B2). For calibration of the activation levels, an
antibody to detect the total protein levels (AXL (C-20), Santa Cruz
Biotechnology) was used. A specific antibody to detect EphA7 pho-
sphorylation (Tyr791) (MyBiosource) was also used. Anti-GAPDH
(Santa Cruz Biotechnology) was used as a loading control. All the
other antibodies were used as previously described [31].

For the human RTK arrays, 500 μg of fresh protein lysates were
incubated overnight at 4 1C with nitrocellulose membranes dotted
with duplicated spots for 42 anti-RTK and control antibodies. Bound
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phospho-RTKs were incubated with a pan anti-phosphotyrosine-
HRP antibody for 2 h at room temperature [31].

Antibodies were detected by chemiluminescence (Thermo
Scientific Pierce ECL Western Blotting) using the ChemiDoc™
XRSþ System (Bio-Rad).

Drugs

All the drugs (cediranib, sunitinib, imatinib, selumetinib and
MK2206) used in this work were obtained from Selleck Chemicals,
USA and prepared as 10 mM stock solutions in dimethyl sulfoxide
(DMSO) and stored at �20 1C. To obtain an equal quantity of DMSO
(1% final concentration) in each of the conditions studied, prior to
the final dilution of the drugs to an appropriate concentration in
DMEM medium, the drugs were first prepared as intermediate
dilutions in DMSO [31].

Cell viability assay

To determine the concentration at which 50% of the cell growth is
inhibited by drug treatment (IC50 concentration), cells were plated
Fig. 1 – AXL is a target of cediranib and sunitinib therapy in gliob
activation (phosphorylated AXL: p-AXL) in eight glioblastoma cell l
SNB-19 and U251 cell lines. (C) U251 and SNB-19 cells were treated
(SU) for 2 h, and stimulated with 400 ng/ml of Gas6. The activation
Western blot. GAPDH was used as a loading control.
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into 96-well plates at a density of 2�103 cells per well and allowed
to adhere overnight in DMEM medium containing 10% FBS. Sub-
sequently, the cells were treated with increasing concentrations of
the drugs or with DMSO alone, both diluted in 0.5% FBS culture
medium to a final concentration of 1% DMSO. When necessary the
cells were incubated simultaneously with 400 ng/ml of Gas6, or
with 2.5 mM of selumetinib or MK2206. After 72 h, cell viability
was quantified using the Cell Titer96 Aqueous cell proliferation
assay (Promega). The results were expressed as the mean percen-
tage7SD of viable cells relative to the DMSO alone (considered as
100% viability). The IC50 concentration was calculated by nonlinear
regression analysis using GraphPad Prism software.
To assess the effect of a fixed concentration of the drug in cell-

ular viability over time, the cells were plated onto 96-well plates
at a density of 1�103 cells per well and allowed to adhere
overnight in complete DMEM medium. Next, the viable cells were
quantified using the Cell Titer96 Aqueous cell proliferation assay
(Promega), and used for time point 0. Then, the cells were inc-
ubated with fixed concentrations of the drugs or with DMSO
alone, both diluted in 0.5% FBS culture medium to a final con-
centration of 1% DMSO, over 24, 48 and 72 h. At the end of each
lastoma cells. (A) Western blot analysis of AXL expression and
ines. (B) Immunofluoresnce analysis of AXL expression in A172,
with increasing concentrations of cediranib (CD) and sunitinib
levels of AXL, MAPK (ERK) and AKT pathways were assessed by
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time point, cell viability was again assessed using the Cell Titer96
Aqueous cell proliferation assay. The results were calibrated to the
starting viability (time 0 h, considered as 100% viability) and exp-
ressed as the mean7SD. Both assays were performed in triplicate
at least three times [31].
Wound healing migration assay

The cells were seeded on 6-well plates and cultured to at least
95% confluence. Monolayer cells were washed with PBS and scr-
aped with a plastic 200 ml pipette tip. The cells were incubated
with fixed concentrations of the drugs or with DMSO alone, both
diluted in 0.5% FBS culture medium to a final concentration of 1%
DMSO. When necessary the cells were incubated simultaneously
with 400 ng/ml of Gas6 or with 2.5 mM of selumetinib or MK2206.
The “wounded” areas were photographed by phase contrast
microscopy at 0 and 48 h time points. The relative migration dist-
ance was calculated using the following formula: percentage of
wound closure (%)¼100 (A�B)/A, where A is the width of cell
wounds before incubation and B is the width of cell wounds after
incubation. Results are expressed as the mean7SD. The assay was
performed in triplicate at least three times.
Statistical analysis

Single comparisons between the different conditions studied
were made using the Student’s t test and differences between
groups were tested using two-way analysis of variance (ANOVA).
Fig. 2 – Role of AXL in the modulation of sunitinib, cediranib and i
U251 cells were stably transfected with a shRNA for AXL (shAXL),
(pRNAU6 or pcDNA3) were used as negative controls. Cell lysates we
of transfected cells (shAXL, AXL and respective empty vectors: EV),
IM: imatinib) by MTS after 72 h of treatment.
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Statistical analysis was done using Graph Pad Prism version 5. The
level of significance in all the statistical analysis was set at
po0.05.
Results

Inhibition of AXL signaling by cediranib and sunitinib

In order to determine the expression and phosphorylation levels
of AXL in glioblastoma cell lines we performed western blot ana-
lysis with specific antibodies (Fig. 1A). Despite the weak expres-
sion of total AXL protein in all cell lines, we could confirm the
presence of AXL activation in seven of the cell lines, being
SW1088 the only one lacking AXL activity (Fig. 1A).

To further assess whether AXL is a cediranib and sunitinib target,
we chose a cell line with high AXL phosphorylation levels (SNB-19)
and a cell line with lower levels of AXL activation and expression
(U251) (Fig. 1A and B). We found that in the U251 cell line, neither
cediranib nor sunitinib were able to inhibit AXL activation upon
ligand (Gas6) stimulation. In contrast, in SNB-19 cells, AXL phos-
phorylation was inhibited by both drugs (Fig. 1C). Specifically, we
observed that only high doses of cediranib inhibited Gas6-induced
AXL activation, while sunitinib was effective at lower doses. Reg-
arding inhibition of intracellular signaling pathways, cediranib was
effective in blocking ERK activation in both cell lines (Fig. 1C). In
contrast, sunitinib was only able to inhibit AKT activation in SNB-19
cells at high doses when AXL inhibition was complete, suggesting
matinib therapy response in glioblastoma cells. (A) SNB-19 and
or full length AXL cDNA (AXL). The respective empty vectors
re analyzed by Western blot for AXL expression. (B) IC50 values
were assessed for the three drugs (CD: cediranib; SU: sunitinib;
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that AKT could be dependent on AXL signaling in this cell line
(Fig. 1C).

Role of AXL in cediranib and sunitinib therapy response

To determine whether AXL can modulate cediranib and sunitinib
response in glioblastoma, we knocked down AXL in the U251 and
SNB-19 cell lines, and overexpressed it in the U251 cell line
(Fig. 2A). Following transfection of a short hairpin targeting AXL
(shAXL), we observed a significant reduction of total and phos-
phorylated AXL protein levels when compared to the cells tra-
nsfected with the empty vector (pRNAU6) in both cell lines
(Fig. 2A). U251 cells successfully overexpressed AXL upon trans-
fection with AXL cDNA when compared with cells transfected
with the empty vector (pcDNA3) (Fig. 2A).

To analyze the effectiveness of cediranib and sunitinib in these
AXL modulated cell lines, we determined the IC50 concentrations
of each drug after cell transfection (Fig. 2B). Imatinib was used as
negative control, since we have previously shown that this drug
does not target AXL [20]. We found that in the U251 (low AXL
activity) cell line, neither AXL inhibition nor AXL overexpression
Fig. 3 – Role of AXL in glioma cells survival, migration and apopto
cells were treated with 5 lM of cediranib (CD), 5 lM of sunitinib (S
MTS. Data is represented as the mean7SD and differences in two-w
statistically significant (#). (B) For migration assessment the cells w
EV—empty vector using student’s t test). (C) SNB-19 transfected ce
(SU) for 24 h. Apoptosis was assessed by Western blot for PARP clea
that is specific for the cleaved form. GAPDH was used as a loading
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altered the sensitivity of the cells to any of the agents tested. In
contrast, in the SNB-19 (high AXL activity) cell line, while no diff-
erences were observed for imatinib, as expected, nor to cediranib,
a statistically significant (po0.05) increase in the IC50 value was
found for sunitinib on the shAXL cells (11.6 μM) when compared
with the cells transfected with the empty vector (7.1 μM) (Fig. 2B).
To exclude the possibility of metabolic adaptation of the cells

after transfection, we performed survival and migration assays at
fixed doses of sunitinib (Fig. 3). AXL-silenced SNB-19 cells exhi-
bited a survival advantage when treated over time with sunitinib
compared to the empty vector control cells (po0.05) (Fig. 3A). As
expected, the treatment of SNB-19 cells with cediranib had no
effect on viability (Fig. 3A). Also, no significant differences were
observed in the survival of U251 transfected cells (empty vector
versus AXL/shAXL cells) upon treatment with either drug over time.
Using a wound healing migration assay, we observed that both

cediranib and sunitinib significantly reduced migration of both cell
lines when compared to the DMSO control. In contrast, sunitinib no
longer reduced migration in the AXL silenced SNB-19 cells com-
pared to the DMSO control. Rather, we observed that shAXL tra-
nsfected cells have a significantly higher migratory capability than
sis after sunitinib treatment. (A) SNB-19 and U251 transfected
U) or DMSO as a control to assess cellular viability over time by
ay analysis of variance (ANOVA) with a po0.05 were considered
ere incubated for 48 h (*compared to DMSO and # compared to
lls were incubated with increasing concentrations of sunitinib
vage using two antibodies, one that detects total PARP and one
control.
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control cells after sunitinib treatment (Fig. 3B). Corroborating these
results, we analyzed apoptosis by PARP cleavage and found that
knockdown of AXL in SNB-19 cells inhibited apoptosis induced by
sunitinib treatment when compared to the empty vector trans-
fected cells (Fig. 3C).
These data indicate that AXL-inhibited cells are less sensitive to

sunitinib treatment. To validate this, we performed the reverse
experiment by analyzing whether AXL positive cells became more
sensitive to sunitinib after receptor overactivation with its ligand
(Fig. 4). For that, we selected the cell lines SNB-19 and A172 which
had the highest basal AXL activation levels (Fig. 1A). By performing
IC50 assays, we confirmed that the cells became more responsive to
sunitinib following AXL activation with its ligand (Fig. 4A). Also in
the wound healing migration assay, sunitinib had a greater impact
on migration inhibition after Gas6 stimulation (Fig. 4B). However,
the differences were not statistically significant in both assays
(p40.05), suggesting that there are additional molecular mechan-
isms modulating sunitinib response.

Alterations of RTK signaling pathways upon AXL silencing

To interrogate whether AXL-inhibited cells can trigger the activa-
tion of alternative RTK signaling pathways to become less respon-
sive to sunitinib, we determined the activation levels of other RTKs
in the SNB-19 cells using phospho-arrays (Fig. 5A). We observed
that upon sunitinib treatment, EphA7 phosphorylation was inhib-
ited in the AXL-silenced cells when compared to the control cells.
Furthermore, we confirmed that AXL is a target for sunitinib in the
empty vector transfected cells, and that EGFR and EphA7 seemed
to be overactivated after sunitinib treatment in these AXL positive
cells. These phospho-array results were validated by Western blots
of cell lysates (Fig. 5B), where we further found that EGFR is
upregulated in AXL-silenced cells (Fig. 5B).
Fig. 4 – Effect of Gas6 stimulation on the sensitization of cells to su
increasing concentrations of sunitinib (SU) simultaneously with st
values, cellular viability was analyzed by MTS. (B) For migration as
5 lM of sunitinib (SU) and with or without 400 ng/ml of Gas6.
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This switch in activated RTKs in response to AXL silencing could
also drive a change in downstream intracellular signaling path-
ways. Thus, we performed Western blot analysis of cell lysates to
assess activation of the AKT and MAPK pathways. We found that
AXL knockdown resulted in higher phosphorylation levels of both
AKT and ERK proteins, which was confirmed in two different
lysates (Fig. 5C).

Combination of sunitinib with AKT and MAPK inhibitors

Based on our previous findings, we hypothesized that the com-
bination of sunitinib with MAPK or AKT pathway inhibitors would
enhance therapeutic inhibition, particularly in AXL-silenced cells.
By combining sunitinib with selumetinib (MEK inhibitor), at a
dose that effectively inhibited the targeted pathway (Fig. 5C), we
found that selumetinib potentiated the effect of sunitinib. How-
ever, there was no synergistic effect in the shAXL cells, which
were still more resistant to sunitinib comparatively to the empty
vector cells (Fig. 5D). The AKT inhibitor MK2206 had a synergistic
effect with sunitinib, and the two transfected cell lines (shAXL
and the control) responded equally to the combination of suni-
tinib and MK2206 (both cell lines reached an IC50 of 2.9 mM).

Finally, using the wound healing assay, we observed that
MK2206 was also able to partially revert the sunitinib-induced
increase in migration in AXL-silenced cells (Fig. 5E).
Discussion

Targeted therapy with small-molecule compounds is changing the
clinical practice for several advanced cancers [48,49]. Sunitinib
malate (SU11248, Sutent by Pfizer) and cediranib (AZD2171, Recentin
by AstraZeneca) are multi-target kinase drugs that inhibit PDGFR-α/ß,
nitinib therapy. (A) SNB-19 and A172 cells were incubated with
imulation by 400 ng/ml of Gas6 for 72 h. To assess the IC50

sessment, SNB-19 and A172 cells were incubated for 48 h with

sunitinib response in glioblastoma cell lines, Exp Cell Res (2015),

dx.doi.org/10.1016/j.yexcr.2015.01.009
dx.doi.org/10.1016/j.yexcr.2015.01.009
dx.doi.org/10.1016/j.yexcr.2015.01.009


Fig. 5 – RTKs and intracellular pathway alterations in AXL negative cells. (A) Phospho-RTK arrays were performed for SNB-19
transfected cells before and after sunitinib treatment (2 h, 5 lM). Each RTK is represented in duplicate on the arrays (two spots
side-by-side), and four pairs of phospho-tyrosine positive controls are located in the corners of each array. (B) Western blot
validation of the arrays with specific antibodies to AXL, EGFR and EphA7 was performed on the same lysates. SNB-19 wild-type
(WT) cells were also included as a control. GAPDH was used as a loading control. (C) Two independent lysates of the SNB-19
transfected cell line were analyzed by Western blot for the levels of MAPK (ERK) and AKT pathway activation. On the right, SNB-19
wild-type cell line was treated for 2 h with 2.5 lM of selumetinib (SE) or MK2206 (MK) to confirm their capability for inhibiting
the MAPK and AKT pathways, respectively. (D) Combination studies were done in the SNB-19 transfected cell line with sunitinib
and fixed concentrations of MK or SE (2.5 lM) over 72 h. To assess the IC50 values, the cellular viability was determined by MTS. (E)
To migration quantification, the cells were incubated for 48 h with 5 lM of sunitinib (SU) and with or without 2.5 lM of Gas6.
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VEGFR1-3, KIT, RET, FLT3, CSF1R, and VEGFR1-3, KIT, PDGFRα,
respectively [50–52]. These therapeutic agents have shown interest-
ing results in pre-clinical mouse glioma models, but failed to
demonstrate benefit in progression free survival and overall survival
in clinical trials [26,53–65]. A recent phase III clinical trial with
cediranib showed that this drug failed to meet its primary end point
of progression free survival prolongation, either as monotherapy or
in combination with chemotherapy [26]. Hitherto, and in contrast to
other tumor types [66], no predictive biomarkers for molecular
targeted therapy response were yet identified in glioblastoma,
hampering the design of efficient tailored therapies for these patients
[30], and justifying to some extent the failure of the clinical trials
until now.

In a previous work of our group, we reported that cediranib
could also inhibit EGFR, EphA7, AXL, MET, EphB2, and sunitinib
could target EphB2, ROR1 and AXL [31], besides the abovemen-
tioned “classical” targets. Other authors have recently identified
AXL as target for sunitinib [67,68]. In the present work we aimed
to validate AXL as a cediranib and sunitinib target in glioblastoma
cells, using two glioblastoma cell lines with distinct AXL levels,
namely U251 (low basal AXL levels) and SNB-19 (high basal AXL
levels). Initially, we assessed AXL inhibition by western blot when
cells were stimulated with the ligand GAS6. We showed that
cediranib was able to inhibit AXL phosphorylation only at high
doses in the SNB-19 cell line. Sunitinib strongly inhibited AXL in a
Please cite this article as: O. Martinho, et al., AXL as a modulator of s
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dose-dependent manner and also inhibited the AKT pathway at
high doses in the SNB-19 cell line. In accordance, modulation of
AXL protein levels showed that the low levels of AXL activity
could be associated with the observed response of SNB-19 cells to
sunitinib therapy, but not to cediranib or imatinib. These results
were not observed in U251 cell line with or without AXL expr-
ession. Several issues could explain these distinct drug responses.
We have previously shown that the activation profile of RTKs in
these two particular cell lines is very similar, however U251 is
much more sensitive to sunitinib than SNB-19 [31]. This can in
part explain the similarity in the sunitinib response after AXL
modulation in U251 cells, since they already exhibit a highly
sensitive response. Additionally, these findings can also suggest
that sunitinib response is cell line-dependent and that AXL is not
the only factor modulating the cells’ responsiveness to this drug.
Hence, the main predictive factor for the response to this drug
remains to be discovered, as previously pointed out [56].
Moreover, our present work suggests that AXL could be a

modulator of sunitinib response, at least for cell lines that present
high endogenous levels of this RTK activation, since we observed
an increased responsiveness to sunitinib in cells activated with AXL
receptor ligand. A role for AXL in molecular targeted therapies
modulation is not new and has been related with resistance. For
example, de novo activation of AXL has been associated with
imatinib, lapatinib treatment and mainly with resistance to EGFR
unitinib response in glioblastoma cell lines, Exp Cell Res (2015),
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inhibitors in several tumor models [45,46,69–72]. Interestingly, we
found that AXL-silenced cells exhibited higher activation levels of
the MAPK and AKT pathways and that some RTKs, such as EGFR,
are overactivated upon AXL inhibition. Several preclinical and
clinical studies have illustrated that deregulation of one signaling
pathway can sometimes alleviate or bypass the “addiction” to ano-
ther pathway [73,74]. Thus, to overcome the activation of intracel-
lular signaling pathways that render resistance to RTK inhibitors,
several combinations of drugs are currently being tested to target
both ERK/MAPK and PI3K pathways, and their use in combination
with other targeted therapies holds great promise [75–77]. Our
in vitro studies showed that by combining sunitinib with AKT
inhibitors the lower sensitivity of AXL-knockdown cells to sunitinib
could be reverted. This suggests that this therapeutic strategy may
be effective in glioblastoma patients, mainly for those with low AXL
activity who are less likely to be responsive to sunitinib trea-
tment alone.
In conclusion, we report that the levels of AXL activation could

be one of the modulators of sunitinib response in glioblastoma
patients. In addition, we showed that in the absence of AXL acti-
vation, the combination of sunitinib with specific inhibitors of the
AKT pathway may overcome the eventual resistance phenotype of
glioblastoma cells to sunitinib.
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