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Abstract

Genericity is a topic which is not sufficiently developed in state-based systems
modelling, mainly due to a myriad of approaches and behaviour models which lack
unification. This paper adopts coalgebra theory to propose a generic notion of a
state-based software component, and an associated calculus, by quantifying over
behavioural models specified as strong monads. This leads to the pointfree, calcu-
lational reasoning style which is typical of the so-called Bird-Meertens school.

1 Introduction

A Mealy machine [19] is an automata in which output symbols are associated
to transitions, rather than states, and so depend on both the current state
value and the supplied input. If such a dependence is relaxed from a strict
deterministic discipline, to capture more complex behaviours (as, e.g., partial-
ity or non determinism), a variety of computational structures can be framed
as instances of (generalised) Mealy machines. Such is the case, in particular,
of state-based software components arising in the so-called model oriented ap-
proach to formal systems design — a widespread paradigm of which Vdm [13]
and Z [25] are well-known representatives.

A typical example of a state-based component is the ubiquitous stack, a
computational structure whose specification is captured by a simple signature
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and ‘black box’ diagram:




pop : 1 −→ P

top : 1 −→ P

push : P −→ 1 •

��������

Stack

P + P + 1

1+ 1+ P

The pop, top and push operations are regarded as ‘buttons’ or ‘ports’, whose
signatures are grouped together in the diagram (P stands for a particular
parameter type, 1 for the nullary datatype and + for ‘datatype sum’).

Component Stack encapsulates a number of services through a public in-
terface providing limited access to its internal state space. Furthermore, it
persists and evolves in time, in a way which can only be traced through the
observation of what happens at the input/output interface level. One might
capture these intuitions by providing an explicit semantic definition in terms
of a function [[Stack]] : U × I −→ (U × O + 1) where U denotes the inter-
nal space state and I, O abbreviate 1 + 1 + P and P + P + 1, respectively.
This function — which should describe how Stack reacts to input stimuli,
produces output data (if any) and changes state — can also be written as
[[Stack]] : U −→ (U × O + 1)I that is, as a coalgebra [24,10] of signature
U −→ T U involving transition ‘shape’ (functor)

T = ((Id ×O) + 1)I (1)

State-based modelling favours observational semantics: after all, the essence
of the stack specification above lies in its collection of observers and any two
internal configurations should be identified wherever indistinguishable by ob-
servation. This is nicely captured by coalgebra theory [24].

Coalgebra theory is adopted in this paper to propose a generic notion of
state-based software components as well as some structuring and interfacing
mechanisms for compositional development. The qualification generic is the
key word: we proceed by quantifying over the behavioural dimension in the
sense that each specific behaviour model used in a component specification is
abstracted into a strong monad.

In a sense the research reported here is a particular application of the
so-called functorial approach to datatypes, originated in the work of the Adj
group in the early seventies [9,8], to the area of state-based systems modelling.
This approach provides a basis for explaining polymorphism [22], and polytyp-
ism [12] — two steps of the same ladder, that of generic programming [1].
This fast evolving discipline raises the level of abstraction of the programming
discourse in a way such that seemingly disparate programming techniques and
algorithms are unified into idealised, kernel programming schemata. Having
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recognised that genericity is not sufficiently developed on state-based mod-
elling, we would like to frame our contribution in such a broader research
initiative. This adds to author’s previous work on ‘reconstructing’ classical
process calculi on a coalgebraic basis, leading to the same pointfree, calcula-
tional style which is typical of the so-called Bird-Meertens approach [4,5].

The paper is organised as follows: the basic steps toward genericity are
presented in section 2. Sections 3 and 4 introduce the main contributions: a
bicategory of generic components and associated calculus. We conclude with
a brief illustration of the combinators presented in the paper (section 5) and
some prospect of future work (section 6).

2 Going Generic

2.1 Introducing Generic Components

Software components have been characterised above as dynamic systems with
a public interface and a private, encapsulated state. The relevance of state in-
formation precludes a ‘process-like’ (purely behavioural) view of components
as inhabitants of a final coalgebra. Components are themselves concrete coal-
gebras. For a given value of the state space — referred to as a seed in the sequel
— a corresponding ‘process’, or behaviour arises by computing its coinductive
extension (or anamorphic image, in the terminology of [7]).

We have remarked above that partiality is characteristic to the behaviour
of a stack. This is captured by the use of U ×O + 1 above, which can be
identified as an instance of the popular maybe monad. Other components will
exhibit different behaviour models. For example, one can easily think about
systems behaving within a certain degree of non determinism or following a
probability distribution. And we may even guess a refinement ordering among
such behaviour models. Actually, genericity is achieved by replacing a given
behaviour model (such as that captured by the maybe monad above) by an
arbitrary strong monad 3 B, leading to coalgebras for the following composite
functor (in Set):

TB = B(Id ×O)I (2)

3 A strong monad is a monad 〈B, η, µ〉 where B is a strong functor and both η and µ are
strong natural transformations [17]. B being strong means there exist natural transfor-
mations τT

r : T × − =⇒ T(Id × −) and τT
l : − × T =⇒ T(− × Id), called the right and

left strength, respectively, subject to certain conditions. Their effect is to distribute the
free variable values in the context “−” along functor B. Strength τr, followed by τl maps
BI × BJ to BB(I × J), which can, then, be flattened to B(I × J) via µ. In most cases,
however, the order of application is relevant for the outcome. The Kleisli composition of
the right with the left strength, gives rise to a natural transformation whose component on
objects I and J is given by δr = τrI,J

• τlBI,J
Dually, δl = τlI,J

• τrI,BJ
. Such transfor-

mations specify how the monad distributes over product and, therefore, represent a sort of
sequential composition of B-computations. Whenever δr and δl coincide, the monad is said
to be commutative.
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In this way, the computation of an action will not simply produce an output
and a continuation state, but a B-structure of such pairs. The monadic struc-
ture provides tools to handle such computations. Unit (η) and multiplication
(µ), provide, respectively, a value embedding and a ‘flatten’ operation to re-
duce nested behavioural annotations. Strength, either in its right (τr) or left
(τl) version, will cater for context information. Finally, monad commutativity
will turn up as a welcome (although not crucial) property.

As one would expect, reasoning about generic components entails a number
of laws relating common ‘housekeeping’ morphisms to cope with e.g. product
associativity, commutativity or exchange. Isomorphisms xl : A×(B×C) −→
B× (A×C), xr : A×B×C −→ A×C×B and m : (A×B)× (C×D) −→
(A×C)× (B×D) — whose interaction with monad unit, multiplication and
strength is thoroughly dealt with in [3] — will be used in the sequel. By
convention, binary morphisms always associate to the left.

2.2 Behaviour Models

Several possibilities can be considered for B. The simplest case is, obviously,
the identity monad, Id, whereby components behave in a totally determinis-
tic way. More interesting possibilities, capturing more complex behavioural
features, include:

• Partiality, i.e., the possibility of deadlock or failure, captured by the maybe
monad, B = Id + 1, as in the stack example above.

• Non determinism, introduced by the (finite) powerset monad, B = P.
• Ordered non determinism, based on the (finite) sequence monad, B = Id∗.
• Monoidal labelling, with B = Id ×M . Note that, for B to form a monad,
parameter M should support a monoidal structure.

• ‘Metric’ non determinism capturing situations in which, among the possible
future evolutions of the component, some are more likely (or cheaper, more
secure, etc) than others.

In [3] the latter is based on a general notion of a bag monad defined over a
structure 〈M,⊕,⊗〉, where both ⊕ and ⊗ are Abelian monoids and the latter
distributes over the former. This gives rise to, e.g.,

• Cost components: based on BagM forM = 〈N,+,×〉, which is just the usual
notion of a bag ormultiset. Components with such a behaviour model assign
a cost to each alternative, which may be interpreted as, e.g., a performance
measure. Such ‘costs’ are added when components get composed. This
corresponds to the non deterministic generalisation of monoidal labelling
above.

• Probabilistic components: based on M = 〈[0, 1],min,×〉 with the additional
requirement that, for each m ∈ BagM ,

∑
(Pπ2)m = 1. This assigns prob-

abilities to each possible evolution of a component, introducing a (elemen-

42



Barbosa and Oliveira

tary) form of probabilistic non determinism.

All of the above situations correspond to known strong monads in Set, which
can be composed with each other. The first two and the last one are com-
mutative; the third is not. Commutativity of ‘monoidal labelling’ depends, of
course, on commutativity of the underlying monoid.

3 A (bi)Category of Generic Components

Having defined generic components as (seeded) coalgebras, one may wonder
how do they get composed and what kind of calculus emerges from this frame-
work. Coalgebras are arrows and so arrows between coalgebras are arrows
between arrows. This motivates the use of bicategories [6] which will, follow-
ing [3], structure our reasoning universe from this point onwards. In brief, we
will build a bicategory Cp whose objects are the interface (or observation) uni-
verses, whose arrows are seeded TB-coalgebras and 2-cells, the arrows between
arrows, the corresponding comorphisms.

We assume a collection of sets I, O, ..., acting as component interfaces.
By a seeded TB-coalgebra we mean a pair 〈up ∈ Up, ap : Up −→ B(Up × O)I〉,
where up is the seed and the coalgebra dynamics is captured by currying a
state-transition function ap : Up × I −→ B (Up ×O). Then the construction of
bicategory Cp defines, for each pair 〈I, O〉 of objects, a hom-category Cp(I, O),
whose arrows h : 〈up, ap〉 −→ 〈uq, aq〉 satisfy the following comorphism and
seed preservation conditions:

aq · h = TB h · ap and h up = uq (3)

Composition is inherited from Set and the identity 1p : p −→ p, on component
p, is defined as the identity idUp on the carrier of p. Next, for each triple of
objects 〈I,K,O〉, a composition law is given by a functor

;I,K,O : Cp(I,K)× Cp(K,O) −→ Cp(I, O)

The action of this on objects p and q is given by

p ; q = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉

where ap;q : Up × Uq × I −→ B(Up × Uq ×O) is detailed as follows

ap;q = Up × Uq × I xr−−−→ Up × I × Uq
ap×id−−−→ B(Up ×K)× Uq

τr−−−→ B(Up ×K × Uq)
B(a·xr)−−−−→ B(Up × (Uq ×K))

B(id×aq)−−−−−→ B(Up × B(Uq ×O)) Bτl−−−→ BB(Up × (Uq ×O))
BBa◦−−−→ BB(Up × Uq ×O) µ−−−→ B(Up × Uq ×O)
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The action of ; on 2-cells reduces to h ; k = h × k. Finally, for each object
K, an identity law is given by a functor

copyK : 1 −→ Cp(K,K)

whose action on objects is the constant component 〈∗ ∈ 1, acopyK
〉, where

acopyK
= η1×K . Slightly abusing on notation, this will be also referred to as

copyK . Similarly, the action on morphisms is the constant comorphism id1.

All in all, the fact that, for each strong monad B, components form a
bicategory 4 amounts not only to a standard definition of the two basic com-
binators ; and copyK of the component calculus, but also to setting up its
basic laws. Recall (from e.g. [23]) that the graph of a comorphism is a bisim-
ulation. Therefore, the existence of a seed preserving comorphism between
two components makes them TB-bisimilar, leading to the following laws, for
appropriately typed components p, q and r:

copyI ; p ∼ p ∼ p ; copyO (4)

(p ; q) ; r ∼ p ; (q ; r) (5)

The dynamics of a component specification is essentially ‘one step’: it
describes immediate reactions to possible state/input configurations. Its tem-
poral extension becomes the component’s behaviour. Formally, the behaviour
[(p)] of a component p is computed by applying the induced anamorphism to
the seed-value of p. I.e., [(p)] = [(ap)]up

Behaviours organise themselves in a category BhB, or, simply, Bh, whose
objects are sets and each arrow b : I −→ O is an element of νI,O, the carrier
of the final coalgebra ωI,O for functor B(Id × O)I . To define composition in
Bh, first note that the definition of ap;q above actually introduces an operator
— ; — between coalgebras: ap;q could actually have been written as ap ; aq.
Thus, we may define composition in Bh by a family of combinators, for each
I, K and O, ;I,K,O

Bh : Bh(I,K)× Bh(K,O) −→ Bh(I, O), such that

;I,K,O
Bh = [(ωI,K ; ωK,O)]

On the other hand, identities are given by

copyK
Bh : 1 −→ Bh(K,K) and copyK

Bh = [(acopyK
)] ∗

i.e., the behaviour of component copyK , for each K.

It should be observed that the structure of Bh mirrors whatever struc-
ture Cp possesses. In fact, the former is isomorphic to a sub-(bi)category of
the latter whose arrows are components defined over the corresponding final
coalgebra. Alternatively, we may think of Bh as constructed by quotienting
Cp by the greatest TB-bisimulation. However, as final coalgebras are fully

4 The reader is referred to [3] for all omitted proofs.
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abstract with respect to bisimulation, the bicategorical structure collapses:
the hom-categories become simply hom-sets. Moreover, as discussed below,
some tensors in CpB become universal constructions in Bh, for some particular
instances of B. This also explains why properties holding in Cp up to bisimu-
lation, do hold ‘on the nose’ in the behaviour category. For example, we may
rephrase laws (4) and (5), for suitably typed behaviours b, c and d, in Bh, as

copyI ; b = b = b ; copyO and (b ; c) ; d = b ; (c ; d)

First, however, we have to check that Bh is indeed a category. Let b : I −→ O
be a behaviour. Then,

b ; copyO = [(ωI,O ; copyO)]〈b, ∗〉 = [(ωI,O)]b = b

A similar calculation will establish copyI ; b = b. On the other hand, for
suitably typed behaviours b, c and d,

(b;c);d = [((ωI,K;ωK,L);ωL,O)]〈〈b, c〉, d〉 = [(ωI,K;(ωK,L;ωL,O))]〈b, 〈c, d〉〉 = b;(c;d)

So Bh is a category. Note the genericity and simplicity of the required proofs.
For space economy, we omit the proof that construction [( )] is a 2-functor
[16] from Cp to Bh, which follows the same calculational style (see [3]).

4 A Glimpse at the Component Calculus

This section investigates the structure of CpB by introducing an algebra of
TB-components which is parametric on the behaviour model. This structure
lifts naturally to BhB defining a particular (typed) ‘process’ algebra.

4.1 Functions as Components

Let us start from the simple observation that functions can be regarded as a
particular case of components, whose interfaces are given by their domain and
codomain types. Formally, a function f : A −→ B is represented in Cp as

�f� = 〈∗ ∈ 1, a�f�〉

i.e., as a coalgebra over 1 whose action is given by the currying of

a�f� = 1× A id×f ��1×B η(1×B)�� B(1×B)

Note that, up to bisimulation, function lifting is functorial, that is, for g :
I −→ K and f : K −→ O functions, one has

�f · g� ∼ �g� ; �f� (6)

�idI� ∼ copyI (7)
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Moreover, isomorphisms, split monos and split epis lift to Cp as, respectively,
isomorphisms, split monos and split epis. Actually, lifting canonical Set
arrows to Cp is a simple way to explore the structure of Cp itself. For instance,
consider the lifting of ?I : ∅ −→ I. Clearly, ?I keeps its naturality as, for any
p : I −→ O, the following diagram commutes up to bisimulation,

I
p ��O

∅
�?I�

��

�?O�

����������

because both �?I� and �?O� are the inert components: the absence of input
makes reaction impossible. Formally:

�?I� ; p ∼ �?O� (8)

Equation (8) lifts to an equality in Bh, as does any other bisimulation equation
in Cp. Therefore, ∅ is the initial object in Bh.

A different situation emerges in lifting !I : I −→ 1 because naturality is
lost. In fact, the following diagram fails to commute for non trivial B

I
p ��

�!I�
��

O

�!O�����
��

��
�

1

To check this, take B as the finite powerset monad. Clearly, p ;�!O� will dead-
lock whenever p does. By ‘deadlocking’ we mean the empty set of responses
is produced. On the other hand, �!I� never deadlocks as this is prevented
by the definition of function lifting above. Therefore, the two components
are not bisimilar and so 1 does not become the final object in BhB, for non
trivial monads. It is, however, the final object in the behaviours category of
deterministic components (i.e., for B = Id).

4.2 Wrapping

The pre- and post-composition of a component with Cp-lifted functions can
be encapsulated into an unique combinator, called wrapping, which may be
thought of as an extension of the renaming connective found in process calculi
(e.g., [20]). Let p : I −→ O be a component and consider functions f : I ′ −→ I
and g : O −→ O′. By p[f, g] we will denote component p wrapped by f and
g. This has type I ′ −→ O′ and is defined by input pre-composition with f
and output post-composition with g. Formally, the wrapping combinator is a
functor

−[f, g] : Cp(I, O) −→ Cp(I ′, O′)

which is the identity on morphisms and maps a component 〈up, ap〉 into
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〈up, ap[f,g]〉, where

ap[f,g] = Up × I ′ id×f−−−→ Up × I ap−−−→ B(Up ×O) B(id×g)−−−−→ B(Up ×O′)

The following properties about wrapping hold:

p[f, g] ∼ �f� ; p ; �g� (9)

(p[f, g])[f ′, g′] ∼ p[f · f ′, g′ · g] (10)

Some simple components arise by lifting elementary functions to Cp. We have
already remarked that the lifting of the canonical arrow associated to the
initial Set object plays the role of an inert component, unable to react to the
outside world. Let us give this component a name:

inertA = �?A� (11)

In particular, we define the nil component nil = inert∅ = �?∅� = �id∅�
typed as nil : ∅ −→ ∅. Note that any component p : I −→ O can be made
inert by wrapping. For example, p[?I , !O] ∼ inert1. A somewhat dual role is
played by component idle = �id1�. Note that idle : 1 −→ 1 will propagate
an unstructured stimulus (e.g., the push of a button) leading to a (similarly)
unstructured reaction (e.g., exciting a led).

4.3 Tensors

Components can be aggregated in several different ways, besides the ‘pipeline’
composition discussed above. Next, we introduce three other generic combi-
nators and characterise them as lax functors in Cp.

The first composition pattern to be considered is external choice. Let
p : I −→ O and q : J −→ R be two components defined by 〈up, ap〉 and
〈uq, aq〉, respectively. When interacting with p � q, the environment will be
allowed to choose either to input a value of type I or one of type J , which
will trigger the corresponding component (p or q, respectively), producing the
relevant output.

The other two tensors in the calculus are parallel and concurrent compo-
sition, denoted by p � q and p ¸ q, respectively. The first one corresponds to
a synchronous product: both components are executed simultaneously when
triggered by a pair of legal input values. Note, however, that the behaviour
effect, captured by monad B, propagates. For example, if B can express com-
ponent failure and one of the arguments fails, the product will fail as well.
Finally, concurrent composition, denoted by ¸, combines choice and parallel,
in the sense that p and q can be executed independently or jointly, depending
on the input supplied.

These three tensors are presented in detail in [3]. In this paper we restrict
ourselves to the choice combinator, which, defined as a lax functor � : Cp ×
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Cp −→ Cp, consists of an action on objects given by I � J = I + J and a
family of functors

�I,O,J,R : Cp(I, O)× Cp(J,R) −→ Cp(I + J,O +R)

yielding
p� q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉

ap�q = Up × Uq × (I + J)
(xr+a)·dr ��Up × I × Uq + Up × (Uq × J)

ap×id+id×aq �� B (Up ×O)× Uq + Up × B (Uq ×R)
τr+τl �� B (Up ×O × Uq) + B (Up × (Uq ×R))

Bxr+Ba◦ �� B (Up × Uq ×O) + B (Up × Uq ×R)
[B (id×ι1),B (id×ι2)] �� B (Up × Uq × (O +R))

and mapping pairs of arrows 〈h1, h2〉 into h1 × h2.

The following laws arise from the fact that � is a lax functor in Cp, for
components p, q, p′ and q′, and functions f , g:

(p� p′) ; (q � q′) ∼ (p ; q) � (p′ ; q′) (12)

copyK�K′ ∼ copyK � copyK′ (13)

�f� � �g� ∼ �f + g� (14)

Moreover, up to isomorphic wiring, � is a symmetric tensor product in each
hom-category, with nil as unit, i.e.,

(p� q) � r ∼ (p� (q � r))[a+, a+
◦] (15)

nil � p ∼ p[r+, r+
◦] and p� nil ∼ p[l+, l+

◦] (16)

p� q ∼ (q � p)[s+, s+] (17)

Laws (15) to (17) can be alternatively stated as providing evidence that
the canonical Set isomorphisms a+, r+, l+ and s+, once lifted to Cp, keep their
naturality up to bisimulation.

4.4 An Either Construction

The definition of a choice combinator raises the question whether there is a
counterpart in Cp to the either construction in Set. The answer is partly
positive. Let p : I −→ O and q : J −→ O be two components sharing a
common output type O, and define

[p, q] = (p� q) ; ���

where � = [id, id]. It can be shown that that the following diagram commutes
up to bisimulation,
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I

p
����

��
��

��
�
�ι1� �� I � J

[p,q]

��

J

q
����

��
��

��
�

�ι2���

O

�ι1� ; [p, q] ∼ p

�ι2� ; [p, q] ∼ q

(18)

even though [p, q] is not the unique arrow making the diagram commute. This
means that the choice combinator, �, lifts to a weak coproduct in Bh. A proof
is given in appendix A as an illustration of the adopted calculation style.

Failing universality means there is not a fusion law for �, even in the
deterministic case. However, cancellation, reflection and absorption laws do
hold strictly in Bh and, up to bisimulation, in Cp. Cancellation has just been
dealt with. The other two — reflection

[�ι1�, �ι2�] ∼ copyI+J (19)

and absorption

(p� q) ; [p′, q′] ∼ [p ; p′, q ; q′] (20)

are easy to prove. For example,

(p � q) ; [p′, q′]

∼ { definition of either in Cp }
(p � q) ; ((p′ � q′) ; ���)

∼ { ; associative (5) }
((p � q) ; (p′ � q′)) ; ���

∼ { � functor (12) }
((p ; p′)� (q ; q′)) ; ���

∼ { definition of either in Cp }
[p ; p′, q ; q′]

As expected, the � combinator can be written in terms of an either con-
struction on components. In fact, for p : I −→ O and q : J −→ R, we obtain

p� q ∼ [p ; �ι1�, p ; �ι2�] (21)

That is to say, Set coproduct embeddings — once lifted to Cp, — keep their
naturality:

�ι1� ; (p� q) ∼ p ; �ι1� and �ι2� ; (p� q) ∼ q ; �ι2� (22)

A direct corollary of this fact is the following ‘idempotency’ result:

p ; �ι1� ∼ �ι1� ; (p� p) (23)
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The dual situation, involving parallel aggregation � and a split construc-
tion, is studied in [3], but the results are a bit different. It turns out that a
cancellation result — 〈p, q〉 ;�π1�∼ p— is only valid for a monad B which ex-
cludes the possibility of failure (e.g., the non-empty powerset). On the other
hand, diagonal � keeps its naturality when lifted to Cp, for B expressing deter-
ministic behaviour (e.g., the identity or the maybe monad), entailing a fusion
law: r ; 〈p, q〉 ∼ 〈r ; p, r ; q〉 Combining these two results, one concludes that �
is a product in Bh, but only for behaviour models excluding failure and non
determinism, which narrows the applicability scope of this fact to the category
of total deterministic components. However, reflection and absorption laws
hold for any B.

4.5 Interaction

So far component interaction was centred upon sequential composition, which
is the Cp counterpart to functional composition in Set. This can be generalised
to a new combinator, called hook, which connects some input to some output
wires and, consequently, forces part of the output of a component to be fed
back as input. Being defined in terms of functors among some families of
Cp hom-categories, hook is a ‘partial’ combinator, whose rich set of laws is
omitted here for lack of space. Formally, for each tuple of objects I, O and
Z, we define −�Z : Cp(I + Z,O + Z) −→ Cp(I + Z,O + Z). This combinator
is the identity on arrows and maps each component p : I + Z −→ O + Z to
p�Z : I + Z −→ O + Z given by

p�Z = 〈up ∈ Up, ap�Z
〉

where

ap�Z
= Up × (I + Z)

ap �� B(Up × (O + Z))
B((id×ι1+id×ι2)·dr)�� B(Up × (O + Z) + Up × (I + Z))

B(η+ap) �� B(B(Up × (O + Z)) + B(Up × (O + Z)))
µ·B� �� B(Up × (O + Z))

5 A (Generic) Folder from Two Stacks

The purpose of this section is to illustrate how new components can be built
from old ones, relying solely on the functionality available. The example is
the construction of a folder out of two stacks. Although these components are
parametric on the type of stacked objects, we will refer to these as ‘pages’,
by analogy with a folder in which new ‘pages’ are inserted on and retrieved
(‘read’) from the righthandside pile.

A static, Vdm-like specification of the component we have in mind can be
found in [21]. According to this specification, the Folder component should
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provide operations to read, insert a new page, turn a page right and turn a
page left. Reading returns the page which is immediately accessible once the
folder is open at some position. Insertion takes as argument the page to be
inserted. The other two operations are simply state updates. Let P be the
type of a page. The Folder signature may be represented as follows, where
input and output types are decorated with the corresponding action names:

•

��������

Folder

tr : 1+ rd : 1+ tl : 1+ in : P

rd : P + {tr, tl, in} : 1

Our exercise consists in building Folder assuming two stacks model the left
and right piles of pages, respectively. The intuition is that the push action of
the right stack will be used to model page insertion into the folder, i.e., action
in. On the other hand, it should also be connected to the pop of the left one
to model tr, the ‘turn page right’ action. A symmetric connection will be used
to model tl. The rd operation consumes the ‘front’ page — the one which can
be accessed by top on the right stack.

According to this plan, the assembly of Folder starts by defining RightS as a
Stack component suitably wrapped to meet the above mentioned constraints.
At the input level we need to replicate the input to push by wrapping p with
the codiagonal �P morphism. On the other hand, access to the top button on
the left stack is removed by ι2. At the output level, because of the additive
interface structure, we cannot get rid of the top result. It is possible, however,
to associate it to the push output and collapse both into 1, via !P+1. So we
define:

RightS = Stack[id + �, id] : 1+ 1+ (P + P ) −→ P + P + 1

LeftS = Stack[ι2 + id, (id+!P+1) · a+] : 1+ P −→ P + 1

Then, we form the � composition of both components:

LeftS � RightS : 1+ P + (1+ 1+ (P + P )) −→ P + 1+ (P + P + 1)

The next step builds the desirable connections using hook over this composite,
which requires a previous wrapping by a pair of suitable isomorphisms:

AlmostFolder = ((LeftS � RightS)[wi,wo])�P+P

where, denoting by ιij the composite ιi · ιj,

wi =

[[
[[ι11, ι112], ι212], ι222

]
, [ι21, ι122]

]
wo =

[
[ι12, ι111],

[
[ι211, ι22], ι21

]]
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In a diagram:

•

��������

P + P

(LeftS � RightS)[wi,wo]

(1+ 1+ 1+ P ) + (P + P )

(1+ P + 1) + (P + P )

Finally, to conform AlmostFolder to the Folder interface, we restrict the feed
back input — by pre-composing with fi = ι1 — and collapse both the trivial
output and the feed back one to 1, by post-composing with fo =

[
[[ι2, ι1], ι2], ι2·!P+P

]
.

Therefore, we complete the exercise by defining

Folder = AlmostFolder[fi, fo]

which respects the intended interface. Note this design retains the architecture
of the ‘folder’ component without any commitment to a particular behaviour
model.

6 Conclusions and Future Work

This paper introduces a semantic model for state-based software components,
regarded as concrete coalgebras for some Set endofunctors with specified initial
conditions and parametric on a model of behaviour. It also discusses the
development of associated component calculi to reason about (and transform)
component-based designs. Initial steps in this direction, although based in a
different model which leads to a less expressive calculus, are described in our
previous paper [2].

The bicategorical setting adopted is in debt to previous work by R. Walters
and his collaborators on models for deterministic input-driven systems [14,15].
However, whereas R. Walters’ work deals essentially with deterministic sys-
tems, our monadic parametrization allows to focus on the relevant structure of
components, factoring out details about the specific behavioural effects that
may be produced. The hook combinator and tensors are also new. Also close
to our modelling approach is [18] which proposes an axiomatization of what is
called a ‘notion of a process’ in a monoidal category. This work, however, does
not cover neither the definition of generic combinators nor the development
of an associated calculus.

Our initial motivation for studying state-based components arose in the
context of model-oriented specification methods. Later, it has evolved toward
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a more general approach which we believe may be useful in starting a coal-
gebraic study of software components in the broader sense of the emerging
component-oriented programming paradigm [26,27]. This retains from object-
orientation the basic principle of encapsulation of data and code, but shifts
the emphasis from (class) inheritance to (object) composition, paving the way
to a development methodology based on third-party assembly of components.
The paradigm is often illustrated by the visual metaphor of a palette of com-
putational units, treated as black boxes, and a canvas into which they can
be dropped. Connections are established by drawing wires, corresponding to
some sort of interfacing code.

Actually, our present work is framed in such a broader context. In particu-
lar, we have been working on a theory of component refinement and customis-
ing, the latter being concerned with tuning software components to particular
use cases. On the practical side, the prospect of building a Charity pre
processor similar to PolyP [11] for the behaviour monads considered in [3] is
currently being considered.
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A A Sample Proof

Reference [3] contains a comprehensive account of the calculus sketched here,
with all proofs carried out in the pointfree style. As an illustration consider
the proof that � lifts to a weak coproduct in Bh, required in section 4.4:

Proof. A weak coproduct is defined like a coproduct but for the uniqueness of the
mediating arrow (the either construction). Existence, i.e., the validity of (18), is
proved considering the equivalent formulation

[p, q][ι1, �] ∼ p and [p, q][ι2, �] ∼ q

replacing composition with lifted functions by wrapping. We show that both the
first and the second projection are comorphisms from the left to the right. Therefore,

B(π1 × �) · [B(id × ι1), B(id × ι2)] · (Bxr + Ba◦) · (τr + τl) · (ap × id+ id × aq)
·(xr + a) · dr · (id × ι1)

= { law: ι1 = dr · (id × ι1) (cf., [3]) }
B(π1 × �) · [B(id × ι1), B(id × ι2)] · (Bxr + Ba◦) · (τr + τl) · (ap × id+ id × aq)
·(xr + a) · ι1

= { + absorption and cancellation }
B(π1 × �) · B(id × ι1) · Bxr · τr · ap × id · xr

= { routine: � · ι1 = id }
B(π1 × id) · Bxr · τr · ap × id · xr

= { routine: (π1 × id) · xr = π1 }
Bπ1 · τr · ap × id · xr

= { law: Bπ1 · τr = π1 (cf., [3]) }
Bπ1 · ap × id · xr

= { × definition and cancellation }
ap · π1 · xr

= { routine: (π1 × id) · xr = π1 and xr = xr◦ }
ap · (π1 × id)

which establishes the first clause of (18). A similar calculation will prove the second
one. Note that in both cases seeds are trivially preserved.

Note the impossibility of turning either into an universal construction in Bh.
The basic observation is that the codiagonal � does not keep its naturality when
lifted to Cp. In fact, a counterexample can be found even in the simple setting of
deterministic components (i.e., with B = Id). Let p = 〈0 ∈ N, ap〉 : N −→ N be
such that, upon receiving an input i, i is added to the current state value and the
result sent to the output. Consider the following sequence of inputs (of type N+N):
s = 〈ι15, ι23, ι14, ...〉. The reaction to s of ��� ; (p � p) is 〈5, 3, 9, . . .〉 while p ; ���,
resorting only to one copy of p, produces 〈5, 8, 12, . . .〉.

✷
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