Lightweight, Efficient, Robust Epidemic Dissemination

Miguel Matos®, Valerio SchiavoniP,

Pascal Felber®, Rui Oliveira?, Etienne Riviere”

“HASLab - High-Assurance Software Lab, INESC TEC & U. Minho, Portugal.
b University of Neuchdtel, Switzerland.

Abstract

Today’s intensive demand for data such as live broadcast or news feeds re-
quires efficient and robust dissemination systems. Traditionally, designs focus
on extremes of the efficiency /robustness spectrum by either using structures,
such as trees for efficiency or by using loosely-coupled epidemic protocols for
robustness.

We present BRISA, a hybrid approach combining the robustness of epi-
demics with the efficiency of structured approaches.

BRiIsA implicitly emerges embedded dissemination structures from an un-
derlying epidemic substrate. The structures’ links are chosen with local
knowledge only, but still ensuring connectivity. Failures can be promptly
compensated and repaired thanks to the epidemic substrate, and their im-
pact on dissemination delays masked by the use of multiple independent
structures.

Besides presenting the protocol design, we conduct an extensive evalua-
tion in real environments, analyzing the effectiveness of the structure creation
mechanism and its robustness under dynamic conditions. Results confirm
BRISA as an efficient and robust approach to data dissemination in large
dynamic environments.

Keywords: Data dissemination, Epidemic protocols, Gossip-based
protocols, Peer-to-peer, Distributed systems

Email addresses: miguelmatos@di.uminho.pt (Miguel Matos),
valerio.schiavoni@unine.ch (Valerio Schiavoni)

Preprint submitted to Parallel and Distributed Computing September 14, 2012

1. Introduction

We live in a digital era whose foundations rely on the production, dissem-
ination, and consumption of data. The rate at which content is produced is
constantly increasing [15], putting pressure on dissemination systems able to
deliver the data to its intended consumers. Examples include the distribu-
tion of digital media (e.g., music, news feeds) on the Internet [13] or software
updates in a datacenter infrastructure [34].

On account of its importance, significant research has been dedicated
to conceiving efficient and robust data dissemination systems [5, 6, 25, 3,
10]. Unfortunately, both design vectors, efficiency and robustness, are often
addressed disjointly: either by a highly efficient structure based on trees or
by a highly robust unstructured epidemic or gossip-based approach.

Disseminating data using trees is attractive because, once formed, trees
enable an efficient data delivery to all participants by avoiding duplicate
message transmissions [39, 7]. However, under churn and faults, the rigid
structure that makes the tree efficient must be rebuilt constantly, hindering
robust dissemination and continuity of service, and significantly increasing
delays for all nodes that lie in the subtree rooted at a failed node. These
reconstruction delays moreover accumulate along the path to leaves, when
multiple faults occur during a dissemination.

On the other hand, epidemic-based dissemination systems rely on redun-
dancy instead of structure to offer guarantees on the delivery of data to all
participants [3, 10]. Gossip-based dissemination was initially proposed in the
context of database replica synchronization in the ClearingHouse project [9].
The transmission of several copies of the same message to random nodes
enables epidemic-based systems to be oblivious to faults and churn, as the
same message will be received through different paths. The cost is increased
bandwidth and processor usage due to the transmission and processing of
duplicates.

Epidemic principles have also been used elsewhere to build robust and
scalable distributed systems components such as membership [17, 14, 21] and
failure detection [31] services, or indexing mechanisms [29, 8]. As long as (1)
the graph induced by the (partial) views offered by the membership service
is connected and (2) all nodes have at least one incoming link, dissemination
can trivially be achieved by flooding.

Contributions. In this paper we present BRISA, an efficient, robust and scal-
able data dissemination system. BRISA leverages the robustness and scala-

3

bility of an epidemic substrate to build efficient dissemination structures that
are correct, i.e., cover all nodes, by construction. Such structures are built in
a distributed fashion with local knowledge only and with minimal overhead.
BRISA has been designed in a way that upon failures or churn, trees are easily
and rapidly repaired thanks to the underlying epidemic substrate that acts as
a safety net. As dissemination structures we consider trees, directed acyclic
graphs (DAGs) and forests of trees. We evaluated BRISA on PlanetLab [1]
and on a local cluster comparing it with state-of-the-art data dissemination
systems from the literature. An initial version of this work was presented
in [27].

Roadmap. The remaining of this paper is organized as follows. Section 2
describes the design of BRISA and Section 3 presents the experimental eval-
uation. In Section 4 we discuss related work and finally Section 5 concludes
the paper.

2. Brisa

In this section, we describe the design of BRISA. BRISA relies on an under-
lying peer sampling service (PSS), and thus we first discuss its requirements
and the guarantees it provides. Then, we introduce the key design principles
of the BRISA protocol and how the dissemination structures are constructed.
Finally, we show how BRISA deals with dynamism, generalize the construc-
tion of dissemination structures with desirable efficiency/robustness criteria
and discuss the creation of multiple dissemination structures.

2.1. Peer Sampling Service Layer

We assume an underlying PSS [17] that provides each node with a view,
i.e., a set of non-faulty nodes chosen at random from the entire network.
The PSS creates views at each node, that is, a set of neighbors to which the
node is connected. One of the major objectives of the PSS is to ensure that
the overlay composed by the views at all nodes is connected. This implies
that every node is able to transitively reach every other node in the network
even under high rates of churn and failures [21, 14]. Moreover, the PSS is
expected to rapidly replace failed nodes from the views and provide similarly
sized views and evenly distribute the number of incoming links at each node
for load balancing and robustness purposes.

The update of the views can be either continuous (proactive peer sam-
pling) or happen only when a node fails or a new one joins the system (reactive

4

©

TCP connection (w/ fault detection)
o e
HEn

active view exchange
HEENEEE c;|<0fpaSS|Ve>
views
passive view

Figure 1: HyParView [21]: views maintenance.

peer sampling). In the proactive case, nodes periodically share their views
with their neighbors regardless of the actual need to replace failed entries,
resulting in each view being a continuous stream of node samples from the
network. Examples of proactive PSSs include Cyclon [36] and Newscast [37].
In the reactive case, the view is kept unchanged unless some of its entries
need to be updated, i.e., for replacing a failed node or for accommodating a
node joining the system. Typical examples include Scamp [14], Araneola [28]
and HyParView [21].

In this paper we rely on a reactive PSS and more specifically on Hy-
ParView [21]. The motivation for this choice comes from the additional
stability of reactive approaches, which simplifies the process of creating effi-
cient and correct dissemination structures. In short, HyParView maintains
two views at each node: a larger passive view and a smaller active view (see
Figure 1). Only the active view containing the node’s neighbors is exposed to
the application and in particular to BRISA. The passive view is maintained
in a proactive manner by periodic exchanges and shuffling of passive views
with randomly selected neighbors, that are also selected from the passive
view itself. The entries in the active view are managed in a reactive manner:
a neighbor in this view only changes upon failures, or for accommodating
a newly joined node. An opened TCP connection is maintained with each
of the nodes in the active view for communication efficiency, in particular,
latency. Due to the limited size of the active view, efficient heartbeat-based
fault detection can be used for all of its members. Upon detection of a failed
neighbor, a replacement node is selected from the passive view and moved

view size =4 —+— view size = 8
view size =6 —x— view size = 10

1 T f f i f1
] S —
50 Pl g
40 /F /%/ 171/
.

20 r—\’Q—/‘E/E/

0 M L L
0 2 4 6 8 10
Number of duplicates

% (CDF)

Figure 2: Distribution of duplicates per message for each node for 500 messages in a 512
nodes HyParView network for various active view sizes.

to the active view. When the active view is full and a new node attempts
to join, a random node is removed from the active view to accommodate the
joiner. In order to avoid chain reactions due to the massive number of joins
when bootstrapping the system (node A’s view size is full so it removes node
B, B also removes A from its view and promotes a node C from its active
view, C must add B to its view and thus remove an existing one as its active
view is already full, removing D and so on and so forth), we allow the ac-
tive view size to grow past the configured value by a given expansion factor.
Nodes evictions do not result in replacements when the view size is between
the target view size and this size times the expansion factor. We used an
expansion factor of 2 throughout the evaluation. The impact on the actual
view sizes is limited as shown later in the analysis of the degree distribution
(Section 3.1, Figure 7).

An important aspect of HyParView is that links with neighbors are bidi-
rectional. If node A has node B in its active view, then B also has A as
its neighbor. In a connected overlay, using bidirectional links allows us to
ensure that messages disseminated by flooding will reach all the nodes in the
system without requiring anti-entropy mechanisms where nodes periodically
poll other nodes for the content they might have missed [9]. A node receiving
a message for the first time from a neighbor simply propagates it to all its
other neighbors.

Flooding is ensured to reach all nodes as long as no node in the system
has an active view with only failed nodes. The larger the active views the
smaller the chances for this to occur. However, the larger the view, the larger

the number of relayed messages and consequently the number of duplicate
receptions. As a concrete example, Figure 2 presents the cumulative distri-
bution function (CDF) of the number of duplicates during the dissemination
of 500 messages over a 512 nodes HyParView network for different view sizes.
We observe that as the size of the view grows, nodes quickly receive large
amounts of duplicate messages. For instance, half of the nodes receive more
than one duplicate with a view size of 4, while they receive more than 7
duplicates with a view size of 10.

BRrisa develops on top of HyParView. It takes advantage of the con-
nectivity guarantee that can tolerate up to 80% node failures [21] to emerge
efficient dissemination structures that eliminate (or considerably reduce) the
number of duplicates, while keeping the robustness offered by the underlying
PSS.

2.2. Rationale

The objective of BRISA is to support the efficient, robust and scalable
dissemination of a stream of messages from one or several sources to the
entire network. Efficiency relates primarily to the limitation of duplicate
message transmissions that waste bandwidth and processor resources. On
top of that, BRISA can consider additional efficiency criteria, namely: the
reduction of the end-to-end delay (dissemination time from the source to the
last receiver) and network efficiency (ratio between the delay for receiving a
message through BRISA as compared to a hypothetical direct communication
from the source). Robustness relates to fault tolerance: dissemination should
progress despite the inactivity of some nodes (failure or disconnection) and
the system should be able to rapidly detect and mask such faults. Finally,
BRIsA scales to very large networks, because the view size is kept small and
under strict control by the PSS thus preventing the load at any node to grow
linearly with the system size.

The main idea behind BRISA stems from the observation that it is the
possibility of receiving messages through multiple paths that makes epidemic-
based approaches robust, not necessarily the actual data transmission. Our
goal is to therefore to limit or even eliminate duplicate transmissions while
maintaining the possibility of receiving the messages through multiple paths.
Such possibility is given by the view provided by the PSS which contains a
set of potential senders. From this set, BRISA selects one or more to perform
the actual data transmission thus materializing the possibility into a concrete
delivery.

Based on this selection, BRISA automatically derivates dissemination
structures on top of the undirected HyParView overlay. Such structures
are oriented and can be either trees, by restricting the inbound neighbors of
every node to a single node (parent), or directed acyclic graphs (DAG) by
allowing multiple parents for each node. The creation of a structure is per-
formed by local and unilateral decisions made by the nodes about the set of
neighbors that should be active and actually relay inbound traffic and those
that should be inactive. In the case of a tree the reception of duplicates is
effectively eliminated; in a DAG, it is selectively reduced.

The resulting dissemination structure must ensure complete dissemina-
tions, i.e. that all nodes receive all messages. To that end, we must ensure
that it does not contain a non-connected sub-graph that would not receive
the message from the other components of the structure. This property is
ensured by enforcing the absence of cycles. In fact avoiding cycles is the
main concern when determining the set of active and inactive neighbors of
a node. In the following sections, we first describe how the emergence of a
single tree is achieved in BRISA, then generalize the approach to DAGs, and
finally delineate the use of forest of trees.

2.3. Emergence of a Dissemination Structure

The emergence of BRISA’s dissemination structures is part of the natural
operation of the system and is based on the reception of duplicates. Nodes
start with all the links active and thus the initial dissemination structure
exactly matches the HyParView overlay. These links form a graph that serves
as the basis for the construction of a BRISA dissemination structure. Initially,
a source node sends the first message of the stream to all its neighbors. Nodes
receiving the message for the first time simply forward it to all the nodes in
their view because all links are active, effectively flooding the network.

This flooding operation reaches all nodes, given the connected and bidi-
rectional nature of the overlay provided by HyParView. During the initial
flood, nodes receive the message from a number of different neighbors. Out
of these sources, each node autonomously selects one as its parent in the
dissemination structure and sends a deactivation message to all the others.
Future messages in the stream will then be received only from the selected
parent node. The selection is achieved by the use of a link deactivation mech-
anism and follows one of the selection strategies presented in Section 2.5. To

emerge a tree each node simply needs to prune out all but one of its inbound
links.

QOO Q@O

(palrent)
N

® ®
first reception, X is implicitly selected as a
parent for A

QQe QPO QOe

. \
! | deactivates OR (parent)
(parent) » (paregt) deactivates | !

® h
duplicate reception triggers the deactivation of the link that has the
highest cost according to the parent selection strategy

Figure 3: Reception of a duplicate and deactivation of one link, for a tree BRISA structure.
Depending on the parent selection strategy, the deactivated link can be the previous parent
or the node sending the duplicate.

Note that the bootstrap can also be done by injecting an empty message
(without payload) in the system if the initial flood of an application message
poses bandwidth concerns.

It is important to note that deactivating a link does not imply remov-
ing the corresponding entry from the HyParView active view. The overlay
constructed by the PSS remains available and is used both as a provision of
nodes for reparations upon failure, or as a fallback for dissemination when
reparation is temporarily not possible.

Figure 3 presents the principle of the link deactivation mechanism for
constructing a tree. Initially, links from nodes X, Y, and Z belonging to
node A’s view and are all active. The first reception of a message from node
X results in node A considering X as its parent. A subsequent reception of
a duplicate from node Y triggers the link deactivation mechanism. As only
one inbound link should be active, node A needs to deactivate either the link
from node X or the link from node Y.

There are three guiding principles for deciding which link to deactivate.
First, the dissemination structure must not contain cycles. Second, it must
seek to meet the target number of parents for each node (one for the tree
structures, more when generalizing to DAGs). Finally, when both condi-

connecting creates no cycle

source O connecting may create a cycle

Figure 4: Avoiding creating a cycle for a tree, by checking that the node N is not in the
dissemination path to the potential parent.

tions are met, the parent selection strategy chooses the new parent based on
different criteria for shaping the dissemination structure (Section 2.5).

2.4. Preventing Cycles

A mandatory condition for selecting a parent node is that it does not
yield a cycle in the dissemination structure. This means that the potential
parent of a node N does not receive the stream directly or indirectly from
N itself. For a tree this implies that the parent of N must not appear in the
sub-tree rooted at N.

To verify this condition each node piggybacks on the application messages
the node identifiers in the path from the source to itself. When selecting
its parent, a node N rejects those candidates whose message path to the
source includes N itself. This is illustrated in Figure 4, where grey nodes
are not eligible as parents of node N. It is important to note that the
overhead of path embedding is minimal and very attractive when compared
to probabilistic inclusion structure such as Bloom filters [4]. As a matter
of fact, the size of the embedded path is bounded by the tree height, which
is expected to be O(logy,(N)) where N is the system size and b the active
view size. For instance, in a system with 1 x 10° nodes with an active view
size of 8, the average tree height is logg(1 x 10%) ~ 7. This bounds the
maximum metadata size a message needs to carry which, assuming a 48 bit
(ip,port) pair as unique identifier, is only 336 (7 % 48) bits. A bloom filter,
to ensure a reasonable false positive probability to avoid detecting cycles
where there is none, would require about the same number, or more, bits.

10

Taking into account the metadata size required, the fact that path embedding
is exact (false positive probability is zero) and the computational overhead
associated with Bloom filters (which requires computing several hashes), path
embedding presents many advantages over Bloom filters.

The detection of cycles is not only done during the initial flooding phase:
a node that detects a cycle from a parent simply makes the link from that
parent inactive and selects a new parent using the regular selection mecha-
nism or the fallback to flooding as we describe later in Section 2.6.

2.5. Parent Selection Strategies

From N’s eligible parents (that is, those not having N in the path fol-
lowed by the messages from the source), BRISA selects one according to the
following strategies:

1. First-come first-picked. The node sending the first received mes-
sage is selected as parent, all subsequent duplicates received trigger the de-
activation of the incoming link.

2. Delay-aware. This strategy considers the round-trip time between
N and the candidate nodes. The one with the lowest delay is selected as
parent. We leverage the periodic keep-alive messages that are exchanged by
the nodes in the active views at the HyParView level to measure round-trip
times.

A simple optimization is available when building a dissemination tree
using the first-come first-picked strategy: the deactivation of links can be
symmetric. Supposing node A receives a message first from node B and then
from node C, A will pick the link from B and send a deactivate message to
C. But it can further mark its outgoing link to C as inactive as A knows it
will not be not eligible as parent for C, as C already received the message
first.

2.6. Dynamism

The insertion and removal of nodes in the system is handled by the un-
derlying PSS. A new node joins by contacting a node already in the system.
The new node is provided with an active view with the size of that of its
contact point, and is inserted in the active views of the associated nodes.
BRIsA automatically marks links to new nodes as active. As a result, the
joining node will have all its inbound links marked as active and will receive
its first message multiple times. All that remains is to select its parent(s)
according to the mechanism discussed previously.

11

The detection of node failures is performed at the level of the active view,
by exchanging periodic keep-alive messages over the established TCP con-
nections, or when a node fails to acknowledge the reception of a transmission
(as detected by the TCP flow control for that link). When a node notices
that one of its neighbors is removed from the active view (due to a failure),
it first checks if that neighbor was a parent. If that is not the case, the
removal can be ignored. Otherwise, the node needs to find a replacement
parent using one of two strategies. It first attempts a soft repair by trying
to select as parent one of the remaining neighbors. A simple approach is
to reactivate all its inbound links and proceed with the normal parent se-
lection process. This can however be optimized by leveraging the keep-alive
messages used for monitoring the active view at the PSS level and piggy-
back up-to-date information required by the parent selection procedure. If a
suitable parent is found then its inbound link is directly re-activated. Note
that this mechanism uses local knowledge only and requires a single message
exchange being thus very fast and efficient. Furthermore, as shown later in
the evaluation, almost all repairs can be done using the soft repair strategy
resulting in minimal disruptions and very fast recovery of the dissemination
structure (Section 3.3).

If no replacement parent exists in the active view, we resort to a hard
repair that uses the underlying flooding approach for rebuilding part of the
dissemination structure. The orphan node first re-activates all its incoming
links and considers itself a fresh node by forgetting its position in the cycle
detection mechanism. This allows the orphan node to take any of its neigh-
bors as a parent. To ensure the tree remains connected, it is necessary to
rebuild the incoming links for a part of the structure rooted at that orphan
node. The need to repair a portion of the tree is detected by the children of
the orphan node when they receive an activation request from their (former)
parent. Those nodes proceed then with the local repair attempting first a
soft repair and if not possible resorting to a hard repair. We note that the
effects of the hard repair are limited to a small portion of the tree and in
practice stop as soon as a node can find a suitable parent in its active view.
Besides, the former parent will receive subsequent messages from the chil-
dren (remember the parent activated that link) and may effectively exchange
roles.

The number of nodes affected by a hard repair is independent of the
position of the original orphan node in the tree: it only depends on nodes in
the sub-tree finding a suitable replacement parent, which is independent of

12

DAG: depths

O connecting creates no cycle

source O connecting may create a cycle

(false
negative)

Figure 5: Avoiding creating a cycle for a DAG, by checking that the level of the potential
parent it less than or equal to the level of the node.

the position of the original orphaned node.

Finally, nodes can compensate message loss during recovery by directly
asking its new found parent to send the missing ones. Since parent recovery
is quick (Section 3.3) the number of messages each parent needs to buffer is
small. Nonetheless more complex approaches such as [18] could still be used
to ensure nodes buffer messages for long enough to allow recovery.

2.7. Generalized Dissemination Structures

To enhance service continuity under failures and churn, BRISA can gen-
eralize the tree structure to directed acyclic graphics (DAGs) by having each
node being served by several parents instead of only one. In this way, a
node that sees one of its parents fail can seamlessly keep receiving the flow of
messages without the need to first undergo through the parent recovery pro-
cess. This is attained at the cost of handling a controlled level of duplicate
messages.

The establishment of a DAG basically involves making a number p > 1
of inbound links active in such a way that cycles are avoided. The technique
to prevent cycles we used for trees is however unfeasible in the case of DAGs
due to the amount of control information required to be exchanged. Indeed,
a node in the n'* level of the tree requires a set of n node identifiers to
define the path from the stream source to itself, while for a DAG with p
parents per node this set at level n could reach p™*! — 1 should all paths be
non-overlapping.

Conversely, for DAGs, we use an approximate quantitative approach that
does not include the nodes identifiers but just the depth each node is in the
DAG as illustrated by Figure 5.

13

The source node is at depth 0 and every message carries its sender’s depth
encoded by a single integer. Initially, the depth of a node N is undefined and,
upon reception of its first message from a node with depth i—1, N places itself
at depth 7. From then on, N can select parents, and thus receive messages,
from nodes at any depth not greater than 7. Should N receive a message
from a node at depth i (its current depth) then N moves to depth i 4+ 1 and
immediately updates its downstream children nodes accordingly.

Similar to the technique we used for trees, it is clear that any node M
served directly or transitively by node N will be at a depth strictly greater
than N. Therefore, M cannot become a parent of N and yield a cycle.

As mentioned, the technique is however approximate because it can yield
false negatives by discarding valid potential parents, as illustrated in Fig-
ure 5. Any two paths (rooted at S) are likely to be labeled similarly with
respect to depths. Since the tagging is purely quantitative, a node from one
path may be dismissed as a potential parent of a node in another path de-
spite the paths being causally unrelated. An alternative is to rely on Bloom
filters to maintain the set of nodes that need to be excluded for the parent
selection process. However, as for trees this a costly technique when com-
pared to the simplicity and efficiency of depth encoding. In our experiments,
nodes are able to obtain the desired number of parents, thus we consider this
approach an attractive alternative when compared to the cost of both an
exact predictor (path embedding) and of a probabilistic one (Bloom filters).

After determining the set of potential parents with the above strategy all
that remains is selecting the best ones by using the parent selection strategies
presented in Section 2.5.

2.8. Multiple Dissemination Structures

So far we discussed the creation of a single dissemination structure, be it
a tree or a DAG. In the remainder of this section we motivate and describe
the support for multiple dissemination structures. For clarity of explanation,
we focus on trees but the same principles apply to DAGs.

There are several cases where it is interesting to support more than one
tree, for instance if the source needs to split the content across several trees
as in SplitStream [5] or to apply network coding techniques, or simply if
there are several sources in the system. Moreover, the use of multiple trees
enables a better use of system resources as more nodes can contribute to the
dissemination effort. This is because when using a single tree, the leaf nodes,
which are a big portion of the system, do not upload data and thus their

14

capacity is not used. Supporting several sources can be done by building a
single tree rooted at a rendezvous node that acts on behalf of all sources as
in Scribe [6]. This design suffers however from a bottleneck in the rendezvous
node and fails to take advantage of the upload bandwidth available at leaf
nodes.

Therefore, we consider instead the creation of several independent trees.
In BRISA, a tree is simply given by the set of active and inactive links that
each node locally maintains. Consequently, all that is required to maintain
multiple trees is to locally maintain multiple such sets, one for each tree in
the system. Each tree is uniquely identified by a flowld generated by the
tree source at construction time. Note that as, by assumption, each node
has a unique id, it is straightforward to generate unique flowlds, for instance
by concatenating the node id with a local sequence number. The source
then tags all application messages with its flowld, enabling other nodes to
uniquely assign the messages to the appropriate tree. Upon reception of a
message from an unknown flowld, a node locally creates a new set of active
and inactive links dedicated to managing that tree and proceeds as detailed
in Section 2.3.

This approach is very lightweight as it requires the maintenance of a
small local state, yet due to the inherent randomness in tree creation enables
a much more efficient use of the overall upload bandwidth as few nodes are
leaf in all trees (as we show in Section 3.4, Figure 12).

Nonetheless, from a design point of view, we observe that the state each
node needs to maintain grows linearly with the number of trees in the system.
To mitigate this, we designed a tree reusing strategy that can be used when
the number of trees grows. The base idea is very simple: instead of creating
a new tree, a node simply reuses one it already knows to disseminate its
messages. To this end, the node analyses the trees it knows and if it is close
enough to the root of any tree according to reuseDepth, a protocol parameter,
it uses that tree’s flowld instead of creating a new one. Note that, due to
path embedding, a nodes always knows its position in all trees it belongs to,
so computing the distance to any root is inexpensive and requires only local
knowledge. By reusing an existing flowld, the messages created by that node
will simply be relayed through the existing tree with no further overhead.
However, as the source node is not located at the root of the tree anymore,
it is necessary to relay message upward in the tree, to ensure completeness.
This is easily achieved by adding an upward flag to the message, implying
that nodes need to relay those messages not only to their children but also

15

to their parents. Another option would be to directly send the message to
the root of the tree which would act as a rendezvous node. We note that
the latter shows less bottlenecks problems than Scribe as it considers several
rendezvous nodes, one for each existing tree, instead of just one. While
simple, this strategy is very effective at reducing the number of total trees
and the associated overhead. Obviously, reusing trees can have contradictory
goals with the creation of multiple disjoint trees, e.g., as in SplitStream [5]
or as shown in our evaluation Section 3. In these cases, the goal is to create
multiple disjoint trees from a single source, in order for leaves in a tree to act
as interior nodes in the other, and reversely, in order to balance the load of
the dissemination of a stream that is split among the trees. Tree reusing can
limit the benefit of this approach, leaves remaining leaves in multiple trees
and keeping the dissemination load unbalanced. Nonetheless, tree reusing
can still be beneficial, between trees that are used for different streams. Tree
reusing shall only be prevented for the trees of a given stream. In this case,
each such tree is marked with the identity of the other trees from the stream,
and reusing is disabled for those trees in the reusing decision process.

3. Evaluation

In this section we evaluate BRISA on two different testbeds: (1) a local
cluster of 15 computers equipped each with 2.2 GHz Core 2 Duo CPU and
2 GB of RAM and connected by a 1 Gbps switched network, supporting up to
512 BRISA nodes and (2) a slice of up to 200 nodes on the global-scale Plan-
etLab [1] testbed. The prototype leverages Splay [22], an integrated system
for the development, deployment and evaluation of distributed applications.

The evaluation is focused on the aspects that drove BRISA’s design: ef-
ficiency and robustness. For each experiment and unless otherwise stated,
we bootstrap the system with the specified number of nodes using the first-
come first-picked strategy with an expansion factor of two, randomly choose
a node to be the source across all the experiment and then have it inject 500
messages at a rate of 5 per second, taking measurements as appropriate. The
message payload is an opaque random bit string with the specified size.

We start with a preliminary study, in Section 3.1, on the structural prop-
erties of the dissemination structures created by BRISA as those properties
impose well-known bounds in resource usage and dissemination time. Then,
in Section 3.2 we inspect the network properties of BRISA, namely band-
width consumption and routing delays and analyze the results according to

16

100 ff?%/%;%—% K—K—k—k—k—k—
80
tree, view=4 —+—

60 / /
40
tree, view=8 —<—

20 DAG, 2 parents, view=4 —x—
DAG, 2 parents, view=8 —5—

0 2 4 6 8 10 12 14 16 18
Depth

% (CDF)

Figure 6: Depth distribution for 512 nodes (first-come first-picked strategy).

100 —kK b

80
| /@V/E/
60 F tree, view=4 ——+— |
tree, view=8 —x—
DAG, 2 parents, view=4 —x—
DAG, 2 parents, view=8 —&5—

40" ! ! !
0 2 4 6 8 10 12 14 16

Degree

% (CDF)

Figure 7: Degree distribution for 512 nodes (first-come first-picked strategy).

the structural properties. Next we evaluate the behavior of BRISA under
churn in Section 3.3, and with multiple trees in Section 3.4. Finally, in Sec-
tion 3.5, we compare BRISA with other approaches.

3.1. Structural properties

We first study the shape of the structures generated by BRISA, namely
trees and DAGs with 2 parents. The shape (depth and degree), imposes con-
straints on latency and on the distribution of the dissemination effort. Results
for each configuration are obtained after building the respective structure
and letting it stabilize completely. The reason for using this basic strategy
is twofold: 1) a naive strategy helps to better understand the basic behavior
of BRISA thus serving as a baseline for more elaborate strategies and ii) the
limited number of physical nodes hides significative differences on the ob-
servation of structural properties changes that are better observed at larger

17

oy
&S G)

G
Dy &D Gy G G & @D (D]
Gy o> G & <Dy) &R G D E& D E&D & @D) D
G @D ED ED ED ED &D (<) <) G @D & & G (&) & D &S @D ED @& ED

D D & E&D @D @D GrD &D G & & @D D & ED @& @D G ED D G D G G

D @D Gy @D EE @& ED & & D & ED D

G @& ED ED D &

@D D @D &

@&

Figure 8: Sample tree shape for 100 nodes with a HyParView active view size of 4 on the
top and 8 on the bottom. Expansion factor is 1.

scales. Depth places a lower bound on the dissemination time due to the
cost of traversing several intermediate nodes and thus should be kept as low
as possible. Figure 6 presents the depth distribution in a universe with 512
nodes. As expected, larger views allow nodes to have more children thus
reducing maximum depth. The larger depths in DAGs are because depth
measures the maximum distance, i.e. the longest path from the root to the
node, which increases with the extra number of links. The steep curves hint
that the structures built by BRISA are fairly balanced, i.e., do not degener-
ate into long chain even with a simplistic strategy thus preserving desirable
properties for dissemination. An analysis of the degree distribution confirms
this observation.

The degree of a node in BRISA is given by the number of outgoing links
and thus bounds the message copies a node sends. This is directly related to
the dissemination effort and as such degree distribution should be as narrow
as possible indicating an evenly distributed load. When analyzing the degree
distribution presented in Figure 7 three main observations arise. First DAGs
are more effective than trees in having a greater share of the nodes contribute
to the dissemination effort (nodes with degree zero are leaves). This is due to
the additional number of parents that reduces the chance of having all outgo-
ing links deactivated. Secondly, degree distribution is also highly affected by
the view size provided by the PSS: higher values lead to shallower trees thus
resulting in more leaves, while lower values lead to deeper trees due to the
limitation imposed by the view sizes. Such relation between degree and depth

18

can be observed in Figure 8, which depicts sample trees obtained by BRISA.
As a matter of fact, despite using a simple strategy, the resulting trees are
fairly balanced which is essential for efficient dissemination. Finally, despite
using an expansion factor of 2 the number of nodes with degree higher than
the configured value remains small as hinted in Section 2.1.

3.2. Network properties

In this section we focus on the network properties of the dissemination
structures obtained by BRISA.

First, we analyze the routing delay of dissemination. To this end, we
use the cumulative round trip times, taken at each hop, from the root to
a given node. When compared against the round trip time of direct com-
munication between the root and that node, it indicates the effectiveness of
BRiIsA in building dissemination structures with low end-to-end delays, an
essential property for a dissemination system. The ratio between the first
and second measurements gives the stretch factor. However, due to Planet-
Lab asymmetries that deter direct communication between some nodes, we
instead present the cumulative distribution of the raw results in Figure 9.
Not surprisingly, the flooding strategy yields the worst results due to the
heavy load imposed on the network. In this non-structural metric, the ef-
fects of a delay-aware strategy become clear when compared to the simplistic
first-come first-pick: for instance, 40% of the nodes reduce the routing delays
to half.

Next, we focus on the bandwidth usage. This measures the node’s dis-
semination effort and is directly influenced by depth and degree distribution.
Figure 10 and Figure 11 depict download and upload bandwidth usage, re-
spectively, for payloads of 1, 10, 50 and 100 KB. We used stacked bars with
decaying shades of grey for representing a distribution using a set of per-
centiles. For instance, the medium shade of grey gives the median value
(half of the node below that value, the other half above), while the lighter

shade gives the 90th percentile: 90% of the nodes are associated with a lower
bandwidth.

As expected, trees are more frugal with respect to download as nodes
receive exactly one copy of each message whereas in DAGs nodes receive two
copies (one for each parent). For each structure, the increase in bandwidth
usage for the different view sizes is due to the PSS. The small difference,
negligible when compared to application messages, hints at a low overhead
service. The differences in the percentiles for the DAG are related to the

19

W

SENES v
® 40 point-to-point —
‘ delays-aware —>—
20 first-pick —%—
O’W ‘ ‘ ‘ flood —5—
0 0.2 0.4 0.6 0.8 1

Routing delays (ms)

Figure 9: Routing delays distribution on PlanetLab for a 150 nodes network. Structure is
a tree with view size 4. Message size is 1KBx200 messages.

9ot perc.
751 perc.
50t perc.
25t perc.

5 perc.

w
o

IRNEL

—_
o

Download (KB/s)
N
o
DAG, 2 parents, view 4
DAG; 2 parents, view 8

tree, view 4
tree, view 8

1 10 50 100
Message Size (KB)

Figure 10: Bandwidth usage for a 512 nodes network, download

depth of nodes (Figure 6) as nodes at lower depths may not be able to find
additional parents and thus receive messages only from a single parent.

For upload, results are naturally similar. DAGs require more links and
consequently nodes will have to relay messages to more neighbors, increasing
upload bandwidth usage. The differences between percentiles for a given
configuration are explained by the degree distribution (Figure 7) as nodes
with higher degrees need to upload more.

3.3. Robustness

We now focus on the behavior of BRISA under continuous churn in order
to assess its robustness. Each experiment is associated with a synthetic churn
trace based on the churn support module of Splay. The synthetic description
is given in Listing 1 and proceeds as follows: first we bootstrap the system
and let it stabilize. After, we induce churn at rate X by having X percent
nodes fail at random and X percent new nodes join the system during each
minute.

20

= __
g 80 90:: perc. 1 |
X < 75" perc.
% § § 50" perc.
2 50 & 25" perc. W
g <080 5" perc. mE

© ©
2] 2200
o QL 2a
s 20 s
S 7 gggd
) =500 =

—_

10 50 100
Message Size (KB)

Figure 11: Bandwidth usage for a 512 nodes network, upload.

from 1s to N s join N

at 1000s set replacement ratio to 100%
from 1000s to 1600s const churn X% each 60s
at 1600s stop

Listing 1: Churn trace generation script

Table 1 depicts the results obtained for networks with 128 and 512 nodes.
For simplicity we ensure that the source node does not fail. However, we note
that the failure of source node would only produce a negligible impact in the
presented results. In fact only the direct children of the source (a small
number limited by the view size) would experience the effect of a parent
failure.

We defined the following metrics:

e Parents lost per minute: rate at which nodes loose any of their
parents;

e Orphans per minute: rate at which nodes loose all parents (implying
disconnections);

e Percentage of soft repairs: upon disconnections, how many nodes
successfully repair their incoming links using the soft repair mechanism;

e Percentage of hard repairs: upon disconnections, how many nodes
required using the hard repair mechanism.

As expected the rate at which parents are lost is higher for DAGs than
trees due to the larger number of parents of the former. Nonetheless DAGs

21

Churn conditions Parents Orphans/ %Soft %Hard

lost /min. min. repairs repairs
128 Nodes
Churn rate: Tree 2.3 2.3 87.0 13.0
X=3% DAG, 2 parents 4.0 0.2 92.5 7.5
Churn rate: Tree 3.4 3.4 79.4 20.6
X=5% DAG, 2 parents 7.0 0.3 90.0 10.0
512 Nodes
Churn rate: Tree 22.2 22.2 88.2 11.8
X=3% DAG, 2 parents 36.8 2.3 94 6
Churn rate: Tree 22.2 22.2 87.7 12.3
X=5% DAG, 2 parents 32.3 1.7 94.1 5.9

Table 1: Impact of churn for a 128 and 512 node networks with active view size 4.

are much more robust with nodes being seldom fully disconnected. For in-
stance, with a churn rate of 5% per minute, which implies half of the nodes
leaving the system within the ten minutes of the experiment, only 17 nodes
on an universe of 512 get disconnected (1.7 per minute * 10). Of those, all
but one were able to recover using the soft repair, which simply implies acti-
vating a link to a new parent. Moreover, the time required for hard repairs,
studied in the next section, is very low meaning that despite disconnections
nodes are able to promptly repair connectivity with minimal effort. Finally,
quick parent recovery also allows nodes to quickly recover lost messages thus
ensuring that all application messages are effectively delivered. Such re-
covery capabilities under high churn, combined with efficient dissemination
structures that are correct by design made BRISA a promising substrate for
efficient and robust dissemination in the large scale.

3.4. Support for multiple trees

In this section, we analyze BRISA’s support for multiple trees regarding
load balancing and performance. The network size is 512 and the active
view size is 8 as for the previous experiments. Unless otherwise stated, the
multiple tree experiments below do not use the tree reusing strategy; the
goal is instead to create multiple, independent and disjoint trees.

We first analyze BRISA’s multiple trees effectiveness in balancing the
dissemination effort among all nodes. Figure 12 depicts the number of trees
where nodes are leaves. For instance, with 2 trees, 40% of the nodes are leaves
in one tree. Results confirm our expectations that as the number of trees
increases, the chance of nodes being a leaf in all trees becomes dismayingly

22

100 / / /y%‘m Q/E/Er Al
80 /‘(/—
60 z/ /

40 ‘ 1tree —+—
T 2trees —x—
20 4 trees —k— |
) //Z/ 8trees —O—

OD Il Il Il Il Il Il
0 1 2 3 4 5 6 7 8
Number of trees each leaf belongs to

% (CDF)

Figure 12: Distribution of the number of trees where nodes are leaves for a 512 nodes
network with active view size of 8.

small, for instance for the 8 trees experiment only less than 5% of the nodes
are leaves in more than 6 trees. As leaf-only nodes do not contribute to the
dissemination effort, these results indicate that the use of multiple trees is
essential to promote load balancing among nodes.

This is confirmed in Figure 13 which presents the number of children
of each node across all trees. As is it possible to observe, the number of
nodes that do not contribute to the dissemination, i.e. have zero children,
diminishes dramatically with the number of trees in the system. In fact,
with a single tree, almost 80% of the nodes do not upload whereas for 8
trees this value is very close to zero. These results confirm our motivation
to use multiple trees as a mechanism to balance the dissemination effort
among all the nodes (Section 2.8). We note that this is achieved without
explicit coordination among nodes or by using more complex mechanism as
in SplitStream [5]. In fact, BRISA just relies on the inherent randomness of
the underlying PSS to build disjoint trees.

In the next experiment, we study the evolution of BRISA’s performance
with respect to the number of trees. This allows to access the impact de-
ploying multiple trees has on the reception delay of the individual trees. The
reception delay is defined as the time elapsed, at the source, since the mes-
sage was published until the reception at nodes, and gives the compounded
effect of: a) the routing delays inherent to the dissemination structure, and
b) eventual delays due to the dissemination overhead (reception, processing
and relaying of messages). Note that this measurement does not require
synchronization among nodes: upon reception of a message, a node notifies
the source which replies back with the time elapsed since the message was

23

100 W\A;H SR
80 ‘

40 1tree —+—

2 trees —<—
20 4 trees —k— |
8trees —5—

% (CDF)

0 1 1 1 1
0 5 10 15 20 25 30 35

Number of children

Figure 13: Distribution of the number of children across all trees for a 512 nodes network
with active view size of 8.

100

80

60

40

% (CDF)

1tree —+—
2trees —x—
4 trees —*—
8trees —5—

20

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Reception Delays (sec)

0

Figure 14: Reception delays per message when using multiple trees for a 512 nodes network
with active view size of 8. The number of messages is 500.

published. The resulting valued is then weighted with the time elapsed since
the node first sent the notification to minimize the network impact in the
measurement. Results are depicted in Figure 14 and show that the reception
delay is very similar regardless of the number of trees. This demonstrate
that not only BRISA’s multiple trees are effective in promoting load balanc-
ing among nodes but also the individual performance of multiple trees is
similar to that of a single tree. We account this behavior precisely to the
randomness in the tree creation process. As a matter of fact, as more trees
are added, previously unused resources (leaf-only nodes’ upload capacity),
start being used enabling the performance of the system to remain stable
despite the increased overall load.

Finally, we consider a scenario where multiple trees are used to split
content and improve not only resource usage but also dissemination time.

24

8 trees - 4 trees —%— 2 trees —<— 1tree —+—

100
80 f ; jf
ol | 1 /
S ol & f /
"l f ¢
0 Bﬁ * A ‘ z
"3’\?) & @fp‘;\& @ b,‘\%(?@‘l()’ &“;’ P ,\q:\%({J a7

Dissemination delay (seconds)

Figure 15: Dissemination delay when splitting the stream of messages across multiple trees
for a 512 nodes network with active view size of 8. The number of messages is 500.

We note that this scenario is close to the one proposed in SplitStream where
several disjoint trees are used to stream content.

In this experiment, we inject 500 messages on the system, evenly split
across the given number of trees, and measure the dissemination delay. The
dissemination delay is defined as the local time elapsed between the reception
of the first message and the reception of all messages. Note that, while the
reception delay measures the time elapsed since a message is published until
it arrives at nodes, the dissemination delay measures the time it takes for a
node to receive all messages. Results are shown in Figure 15. To improve
readability, we show only the portion of the plot where the measurements lie.
As expected, the dissemination delay is considerably reduced when increasing
the number of trees. This is because more messages can be sent in parallel
in each tree but also because the reception delay when using multiple trees
does not increase. The cost is a naturally increased bandwidth usage due
to parallelization. Such cost can however be observed in the distribution
of children of each node, which essentially gives the upload requirement,
enabling an application designer to choose the right amount of trees tolerated
by the underlying physical network.

3.5. Comparison with existing approaches

In this section we compare BRISA’s bandwidth usage, structure construc-
tion time, dissemination latency and parent recovery delays with several ap-
proaches. Those protocols were chosen as representatives of different points
in the efficiency /robustness design spectrum. The comparison is done against
a BRISA tree with a HyparView active view size of 4. In order to assess the

25

inherent overhead of each approach, and for fairness reasons, the other ap-
proaches were implemented and evaluated in the same environment as BRISA
and configured with equivalent settings. We considered the following:

SimpleGossip. This approach lies on the robustness end of the spectrum. We
use Cyclon [36] as the PSS. Due to its proactive nature we use a combination
of rumor mongering (push) to infect most of the nodes and anti-entropy
(pull) to ensure completeness [9]. Rumor mongering follows an infect and
die strategy with a fanout of in(NN), where N is the system size and anti-
entropy exchanges updates with a single random neighbor with a frequency
that is the double of the message creation ratio.

SimpleTree. Oppositely, this approach lies on the efficiency side of the design
spectrum. We consider a tree created randomly with the help of a centralized
node. The only criteria for a node joining the tree is to connect to a parent
that joined earlier in the past, which avoids creating a cycle in a similar
manner to the one used in TAG. This parent is provided by the centralized
node that randomly picks any of the previously joined nodes as a parent
for a newly joined node. Dissemination is done by pushing the messages
immediately through tree links thus minimizing latency.

TAG. For this approach which tries to achieve both robustness and efficiency
we use TAG [26]. As BRrisA, TAG maintains a tree and an epidemic-based
overlay to combine the efficiency of trees and robustness of epidemics. Nodes
are further organized in a linked list sorted by joining time, with nodes main-
taining information about their predecessors/successors up to two hops away.
New nodes traverse this list backwards until an application specific condition
is met. In the traversal, nodes pick k£ random peers to form the gossip overlay
and join the tree by choosing a suitable parent. Upon parent failures, nodes
update the linked list and traverse it to find a new parent and thus restore
the tree. Regarding dissemination, TAG uses a pull-based approach with
nodes pulling content both from the tree and from overlay neighbors. Be-
cause TAG relies on pull we expect increased dissemination latency due to the
additional roundtrips and pull period. We chose to compare BRISA against
TAG due to its proximity in terms of goals and general approach (combining
tree efficiency and gossip robustness) and the differences in its design choices
(e.g., tree construction mechanism and a pull-based approach). We believe
this choice allows a better assessment of the merits of each approach in the
following evaluation scenarios.

26

Bandwidth usage We first focus on the bandwidth usage of each proto-
col by considering two metrics: stabilization bandwidth and dissemination
bandwidth.

Stabilization bandwidth is the bandwidth used to bootstrap the protocol
including the construction of the overlay and tree structures and is mea-
sured until stabilization. After stabilization we consider the dissemination
bandwidth as the bandwidth associated with message disseminations and sub-
sequent management overhead. Once the structure stabilizes, we inject mes-
sages with payload sizes from 0 to 20 KB in a network of 512 nodes. This
differentiation allows us to clearly observe the overhead imposed in each
phase. As SimpleGossip does not uses any structure we represent all the
bandwidth consumed under dissemination bandwidth.

Figure 16 presents bandwidth consumption averaged over all nodes. As
expected, TAG and BRISA are comparable and the actual cost is dominated
by the sending of data among peers rather than the management cost of
bootstrapping the dissemination structures. The smaller management over-
head of SimpleTree is due to the fact that only a single communication step
with the centralized node is needed while the other protocols require inter-
node communications. The small extra bandwidth cost for TAG and BRISA
when compared to SimpleTree is from the maintenance of the PSS layer
and dissemination structures that are key to the performance in terms of
delays and robustness as we explore later. For the smaller message sizes,
SimpleGossip is comparable with both BRISA and TAG due to the absence
of structure management and because Cyclon does not uses explicit fault de-
tection mechanisms. However, this is quickly offset for larger message sizes
due to the excessive number of duplicates SimpleGossip relays resulting in
high bandwidth consumption.

Structure Construction Time In this experiment we measure the time
necessary to bootstrap the dissemination structures both on the cluster and
on PlanetLab. Due to the absence of structure of SimpleGossip and the
construction simplicity of SimpleTree, they are not considered in this exper-
iment. For BRISA we consider the time elapsed since a node sends the first
deactivation message until all its inbound links except one are deactivated.
In the case of TAG we use the time since a node joins the list until it settles
its position on that list. Results are presented in Figure 17. It is interesting
to observe that in absolute terms (note that the x scale is logarithmic) TAG
is marginally faster than BRISA on the cluster but much slower on Planet-

27

) 18 i Stabilization I Dissemination T
Q L i
- 8 - i
e 7 z 1
= 6 S o B
E > =
© 4 o < > °]
(= 3 BT .
© o L.Ex <.k i
‘&S‘ »w o O
o 1 T
0
0 1 10 20
Message Size (KB)
Figure 16: Bandwidth usage for a 512 nodes network.
Brisa, cluster —— Brisa, PlanetLab —x—
Tag, cluster —<— Tag, PlanetLab —&5—
100 f w%/‘r W
— 80
T o £ 72 5 7
S % L P
0 I \N_‘ Il
0.01 0.1 1
seconds

Figure 17: Construction time for 512 (on cluster) and 200 (PlanetLab) nodes.

Lab. This is because the construction mechanism happens at once in TAG
by traversing the list, whereas in BRISA it is triggered by the reception of
messages. As BRISA keeps the connection to its neighbors open, in the ad-
verse environment of PlanetLab, the traversal cost of TAG (i.e. creating a
connection to a node, exchanging messages, tearing it down and proceeding
to the next node) easily outweighs the time BRISA needs to wait for the
reception of the messages from all its neighbors.

Dissemination Latency We consider dissemination latency as the time
elapsed between the reception of the first and last message among the set of
all messages. When studied along with bandwidth usage, it highlights the
tradeoffs of each approach. The message payload is 1 KB and the the ideal
dissemination latency is 100 seconds (500 messages at 5 per second). Table 2
presents the results averaged over all nodes. As SimpleTree is very close to
the ideal value we use it as a baseline of comparison for the other approaches.

28

Protocol Latency (seconds) Overhead

SimpleTree 100,025 -

Brisa 106,587 +6%
SimpleGossip 128,23 +28%
TAG 200,476 +100%

Table 2: Dissemination latency for a 512 nodes network for 500 messages of 1KB.

Latency for TAG is significantly higher than the other approaches. This is
mainly because TAG uses a pull-based approach to get updates, while the
others rely on push. We note however that this is a characteristic that per-
tains to pull approaches in general and not TAG in particular. The delays
for BRISA are similar to the ones for SimpleTree, with a small variation that
we account for the extra context switching and physical machines sharing
on our cluster. Differences in practice are expected to be minimal with a
SimpleTree, and largely in favor of BRISA when using a delay-aware selec-
tion strategy as previously illustrated in Figure 9. Somehow surprisingly,
SimpleGossip performs worse than BRISA and SimpleTree. This is due to
the overhead of dealing with duplicates and eventual omissions that need to
be compensated by the slower anti-entropy mechanism.

Parent recovery delay Our last comparison considers the robustness of
BrisA and TAG. As SimpleTree does not consider dynamic scenarios, and
SimpleGossip does not maintain any structure both approaches are ignored
in this experiment. We apply for both protocols the same churn conditions
as described in Section 3.3, with a churn rate of 3% and focus on the parent
recovery delay for hard repairs in both cases. In BRISA this corresponds
to the case where no immediate replacement neighbor is available and the
underlying gossip layer is used. In TAG this corresponds to the case where
the linked list is broken (i.e., two consecutive simultaneous node failures)
and the node needs to be re-inserted into the structure. Figure 18 depicts
the results in a 128 nodes network. We note that BrIsA, while yielding a
similar bandwidth cost, and better dissemination delays, also outperforms
TAG regarding robustness in two ways: i) the number of hard repairs almost
doubles with TAG (not shown) in the same churn conditions and ii) the delay
for recovery is twice as fast for BRISA. This means that both the disruption
of dissemination happens less often with BRisA, and that the effect of such
disruptions is less than what is experienced with TAG.

29

100 ‘ ‘
80 7/

£
L e / A
S W / %
. 1 /
0 : : : : Rl
0 5 10 15 20 25 30 35

milliseconds

Figure 18: Parent recovery delays for a 128 nodes network with active view size 4, 3%
continuous churn conditions.

4. Related Work

Existing approaches to large-scale data dissemination cover two main de-
sign domains: overlay management and application-level multicast. In the
following we present existing work in this design space and compare it to our
approach.

Scribe [6] is an application-level multicast layer that builds dissemination
trees by aggregating reverse paths to a rendezvous node in the Pastry [32] dis-
tributed hash table (DHT). Unlike BRISA, where we assume that all nodes are
interested in all messages, Scribe supports group membership management
by having each node subscribe to group(s) it is interested in. Yet, the load of
dissemination is shared by non-members of the groups that must act as in-
terior (forwarding) nodes in the dissemination trees. Unlike epidemic-based
dissemination, where the failure of a node has little impact on the system,
Scribe’s rendezvous nodes are single points of failure and bottlenecks in the
system. BRISA also constructs a dissemination structure from an existing
overlay, but can leverage the epidemic dissemination layer as a fallback for
robustness. We note that group membership can be implemented in BRISA
by maintaining on each node separate views for its subscribed groups, as
done in the TERA publish/subscribe system [2]. These group specific views
can themselves be constructed by the means of an epidemic-based clustering
protocol [16].

SplitStream [5] is a high-bandwidth dissemination layer built on top of
Scribe [6] and Pastry [32]. In order to balance the load of dissemination, it
constructs multiple Scribe trees that are used for sending alternate pieces of
a stream; nodes that participate as a leaf in one tree participate as an interior

30

node in the other(s), thus balancing the in- and out-degrees of nodes. The
same is achieved probabilistic by BRISA due to the inherent randomness of
the PSS where the multiple BRISA trees are embedded.

Chunkyspread [35] also builds multiple dissemination trees, rooted at a
single source node. These trees are built on top of an unstructured overlay
and not on a DHT. They are used to parallelize the dissemination process
by pushing different parts of the data in each tree. Cycles in the trees are
avoided by using a technique derived from Bloom filters, whereas BRISA
relies on simpler mechanism based on the path or the number of hops from
the source. Chunkyspread trees can be constructed by taking into account
latency and load metrics that can also be considered with BRISA’s parent
selection strategies.

In Bullet [19], a stream of data is also pushed through a tree structure.
Different data blocks are intentionally disseminated to different branches of
the tree, taking into account the bandwidth limits of participating nodes.
Bullet complements this tree with an epidemic-like layer that allows the re-
covery of missed messages. This mechanism takes the form of a mesh that
is used to locate peers with missing items, in a way similar to a PSS. In this
sense, Bullet is based on a design choice that is opposite to ours: BRISA
complements a robust dissemination layer (the PSS) with an efficient but
failure-prone structure (tree/DAG), while Bullet complements a tree with
an epidemic-style dissemination to support failures. Rappel [30] is another
example of a dissemination service that combines a tree structure for dis-
semination with an epidemic-based service for optimization. In the case of
Rappel, the epidemic-based layer is used to locate suitable peers based on
interest-affinity and network distances, and not as a fallback mechanism for
dissemination.

MON [25] relies on a mechanism similar to BRISA to construct spanning
trees and DAGs on top of an unstructured overlay. The goal of MON is to
manage large-scale infrastructures such as PlanetLab, by using the resulting
trees/DAGs to disseminate management commands. Therefore, sessions in
MON are intended to be short-lived and the protocol does not provide any
support for dynamism in the population of peers. To disseminate data, MON
relies on a pull strategy, where nodes can download content simultaneously
from multiple parents, if available. This approach eliminates duplicates, as
it is the receiver that decides which pieces to receive. However it requires
nodes to maintain knowledge of the data blocks/messages present at each
parent.

31

The work presented in [38] stems from an observation similar to ours that
even though epidemic-based dissemination is attractive due to robustness,
achieving completeness requires large fanouts resulting in high overhead.
The authors thus propose a hybrid approach that uses an epidemic-based
dissemination with fanouts lower enough to infect most of the population,
and ensures completeness by relying on a ring structure that encompasses all
nodes. Epidemics are used for the bulk dissemination of data, still resulting
in many duplicates, as opposed to BRISA, where most of the dissemination
happens on the dissemination structure with a controlled number of dupli-
cates. Similarly, in [23, 24] a Chord-like ring overlay is combined with a
push mechanism to disseminate messages over a spanning tree optimized for
minimal latency. BRISA instead builds on top of an unstructured overlay,
and it offers a wider set of options for the tree construction.

In [11] the authors propose an alternative approach to tree repair based on
proactive principles. Each node computes alternative parents for its children
that can be used upon failures. This minimizes disruptions as nodes known
beforehand the new parent they need to connect to. Further it can cope
to some extent with multiple concurrent failures and strictly control node
degrees, a major goal of the authors. Due to this restriction, tree shape
tends to degenerate to a chain overtime penalizing end-to-end delay. BRISA
uses a notion similar to the alternative parents without however having the
tree degenerate into a chain. This is because [11] only considers potential
parents in the failed node subtree while BRISA can consider any node as long
as it passes the cycle detection mechanism.

GoCast [33] builds a dissemination tree embedded on an epidemic-based
overlay that takes into account network proximity to improve end-to-end la-
tency. The tree is built using a traditional Distance Vector Multicast Routing
Protocol (DVMRP) and used to push messages as in BRISA. Message iden-
tifiers are advertised through the overlay links as in PlumTree [20] and used
to recover missing messages due to tree disruptions that, contrary to BRISA,
imposes additional network overhead. Most strikingly this recovery informa-
tion is not used to repair the tree, which relies solely on DVMRP and thus
presents scalability problems due to the overhead of periodic floods to rebuild
the tree. Furthermore, BRISA is able to adjust to different performance cri-
teria but could nonetheless take advantage of the network-proximity offered
by Gocast’s overlay. TAG, the protocol we use in the direct comparison with
BRIsA also falls into this class due to the use of a tree and an epidemic-based
overlay. More details can be found in Section 3.5. PlumTree [20] also relies

32

on the detection of duplicates and subsequent deactivation of links to build
an embedded spanning tree on an underlying unstructured overlay. How-
ever, inactive links are still used in a “lazy push” approach, by announcing
the message identifier instead of the full payload. These announcements are
used to repair the tree: when an announcement for an unknown message is
received, the protocol starts a timer. If the timer expires before the recep-
tion of the payload the tree repair mechanism is triggered. This approach is
highly sensitive to variations in network latency, which lead to unnecessary
message recoveries as observed in [12]. BRISA does not separate the dissem-
ination of the header and payload, the dissemination is deterministic, and
faults are detected thanks to the underlying PSS layer, which avoids send-
ing periodic probe messages at the level of the dissemination layer. Further,
the generic construction mechanism can build trees and DAGS according
to different criteria, which is not possible in PlumTree. Due to the use of
message advertisements to manage faults both PlumTree and Gocast fall in
an undesirable tradeoff: either advertisements are sent sparingly to conserve
bandwidth with an impact on recovery time, or advertisements are eagerly
sent imposing a constant management overhead in the system.

Thicket [12] uses the same principles of PlumTree to build multiple dis-
semination trees on top of an unstructured overlay. The goal is to provide
similar functionality to SplitStream by balancing the number of trees where
a node is interior and also by splitting the content among trees to improve
fault-tolerance. The mechanism used to build trees imposes several con-
strains that do not ensure the resulting tree is connected by design. This
is addressed with a tree repair mechanism based on missing messages, as
in PlumTree, that requires periodic exchanges of received messages among
neighbors which is also used to handle joins and leaves. The support for
multiple trees in Thicket is based on the premise of load balancing and fault-
tolerance by leveraging on network coding techniques. The cost however is
a linear growth in the number of links with respect to the number of trees,
which poses scalability concerns. In contrast, BRISA builds connected trees
by design, despite controlled fanouts, and deals with joins and failures with
a simple and lightweight mechanism that is triggered only when failures hap-
pen. Multiple trees are a natural extension of the system and therefore do
not require additional maintenance mechanisms.

33

5. Conclusions

In this paper, we presented the design and evaluation of BRISA, a data dis-
semination system that combines the robustness of epidemic-based protocols
and the efficiency of structured overlays. BRISA automatically emerges effi-
cient dissemination structures from the flooding-based distribution of the first
message in a stream. The construction of efficient dissemination structures
exploits the path diversity that naturally exists in epidemic- and flooding-
based dissemination, while avoiding the high level of duplicate reception these
mechanisms typically yield. Robustness comes from the ability of the under-
lying epidemic layer to rapidly provide replacement nodes upon failures, and
by acting as a dissemination fallback. Therefore, BRISA bridges the gap
between robust but costly epidemic or gossip-based dissemination and ef-
ficient but failure prone structured approaches. We evaluated BRISA with
a prototype deployed on a cluster and on PlanetLab. The experiments and
comparisons to related work confirmed BRISA as a robust and efficient system
for data-intensive applications.

Acknowledgments

This work was supported in part by the Swiss National Foundation under
agreement number 200021-127271/1 and funded by ERDF - European Re-
gional Development Fund through the COMPETE Programme (Operational
Programme for Competitiveness) and by National Funds through the FCT
- Fundagao para a Ciéncia e a Tecnologia (Portuguese Foundation for Sci-
ence and Technology) within grant SFRH/BD/62380/2009 and PTDC/EIA-
CCO/115570/2009.

References
[1] Planetlab, http://www.planet-lab.org, Last accessed: September, 2012.

[2] R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, S. Tucci-Piergiovanni,
Tera: topic-based event routing for peer-to-peer architectures, in: Pro-
ceedings of the International Conference on Distributed Event-based
Systems, DEBS, ACM, New York, NY, USA, 2007, pp. 2—-13.

[3] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, Y. Minsky,
Bimodal Multicast, ACM Transactions on Computer Systems 17 (1999)
41-88.

34

[4]

[5]

B. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM 13 (1970) 422-426.

M. Castro, P. Druschel, A.M. Kermarrec, A. Nandi, A. Rowstron,
A. Singh, Splitstream: high-bandwidth multicast in cooperative envi-
ronments, in: Proceedings of the 19th ACM symposium on Operating
systems principles, SOSP, ACM, New York, NY, USA, 2003, pp. 298
313.

M. Castro, P. Druschel, A.M. Kermarrec, A. Rowstron, Scribe: A large-
scale and decentralized application-level multicast infrastructure, IEEE
Journal on Selected Areas in Communications 20 (2002) 1489-1499.

Y. Chu, S. Rao, S. Seshan, H. Zhang, A case for end system multicast,
IEEE Journal on Selected Areas in Communications 20 (2002) 1456
1471.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels, Dynamo: ama-

zon’s highly available key-value store, SIGOPS Operating Systems Re-
view 41 (2007) 205-220.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, D. Terry, Epidemic algorithms for replicated
database maintenance, in: Proceedings of the 6th ACM Symposium
on Principles of distributed computing, PODC, ACM, New York, NY,
USA, 1987, pp. 1-12.

P. Eugster, R. Guerraoui, S. Handurukande, P. Kouznetsov, A.M.
Kermarrec, Lightweight probabilistic broadcast, ACM Transactions on
Computer Systems 21 (2003) 341-374.

Z. Fei, M. Yang, A proactive tree recovery mechanism for resilient over-
lay multicast, IEEE/ACM Transactions on Networking 15 (2007) 173-
186.

M. Ferreira, J. Leitao, L. Rodrigues, Thicket: A Protocol for Building
and Maintaining Multiple Trees in a P2P Overlay, in: Proceedings of the
29th IEEE International Symposium on Reliable Distributed Systems,
SRDS, IEEE Computer, New Delhi, India, 2010, pp. 293-302.

35

[13]

[14]

[19]

[21]

D. Frey, R. Guerraoui, A.M. Kermarrec, M. Monod, V. Quema, Stretch-
ing gossip with live streaming, in: Proceedings of the 39th IEEE/IFIP

International Conference on Dependable Systems and Networks, DSN,
IEEE Computer Society, Budapest, Hungary, 2009, pp. 259-264.

A. Ganesh, A.M. Kermarrec, L. Massoulié, Scamp: Peer-to-Peer
Lightweight Membership Service for Large-Scale Group Communication,
in: Networked Group Communication, Lecture Notes in Computer Sci-
ence, Springer Berlin / Heidelberg, 2001, pp. 44-55.

J. Gantz, The Diverse and Exploding Digital Universe, Technical Re-
port, IDC White Paper - sponsored by EMC, 2008.

M. Jelasity, A. Montresor, O. Babaoglu, T-man: Gossip-based fast over-
lay topology construction, Computer Networks: The International Jour-
nal of Computer and Telecommunications Networking 53 (2009) 2321-
2339.

M. Jelasity, S. Voulgaris, R. Guerraoui, A.M. Kermarrec, M. van Steen,
Gossip-based peer sampling, ACM Transactions on Computer Systems
25 (2007).

B. Kaldehofe, Buffer management in probabilistic peer-to-peer commu-
nication protocols, in: Proceedings of the 22nd IEEE International Sym-
posium on Reliable Distributed Systems, SRDS, IEEE Computer, Flo-
rence, Italy, 2003, pp. 76-85.

D. Kostic, A. Rodriguez, J. Albrecht, A. Vahdat, Bullet: High band-
width data dissemination using an overlay mesh, in: Proceedings of the
nineteenth ACM symposium on Operating systems principles, SOSP,
ACM, New York, NY, USA, 2003, pp. 282-297.

J. Leitao, J. Pereira, L. Rodrigues, Epidemic Broadcast Trees, in: Pro-
ceedings of the 22nd IEEE International Symposium on Reliable Dis-
tributed Systems, SRDS, IEEE Computer, Beijing, China, 2007, pp.
301-310.

J. Leitao, J. Pereira, L. Rodrigues, HyParView: A membership protocol
for reliable gossip-based broadcast, in: Proceedings of the 37th IEEE/I-
FIP International Conference on Dependable Systems and Networks,
DSN, IEEE Computer Society, Edinburgh, Scotland, 2007, pp. 419-429.

36

[22]

[25]

[30]

L. Leonini, E. Riviere, P. Felber, SPLAY: Distributed systems evalua-
tion made simple (or how to turn ideas into live systems in a breeze), in:
Proceedings of the 6th USENIX symposium on Networked systems de-
sign and implementation, NSDI, Usenix Association, Berkely, CA, USA,
2009, pp. 185-198.

Z. Li, G. Xie, K. Hwang, Z. Li, Churn-resilient protocol for massive
data dissemination in p2p networks, IEEE Transactions on Parallel and
Distributed Systems 22 (2011) 1342-1349.

7. Li, G. Xie, Z. Li, Towards reliable and efficient data dissemination in
heterogeneous peer-to-peer systems, in: Proceedings of the 22th IEEE
International Parallel and Distributed Processing Symposium, IPDPS,
IEEE Computer Society, Miami, FL, USA, 2008, pp. 1-12.

J. Liang, S. Ko, I. Gupta, K. Nahrstedt, MON : On-demand Over-
lays for Distributed System Management, in: Proceedings of the 2nd
conference on Real, Large Distributed Systems, WORLDS, Usenix As-
sociation, Berkely, CA, USA, 2005, pp. 13-18.

J. Liu, M. Zhou, Tree-assisted gossiping for overlay video distribution,
Multimedia Tools and Applications 29 (2006) 211-232.

M. Matos, V. Schiavoni, P. Felber, R. Oliveira, E. Riviere, Brisa: Com-
bining efficiency and reliability in epidemic data dissemination, in: Pro-
ceedings of the 26th IEEE International Parallel and Distributed Pro-
cessing Symposium, IPDPS, IEEE Computer Society, Shangai, China,
2012, pp. 983-994.

R. Melamed, I. Keidar, Araneola: A scalable reliable multicast system
for dynamic environments, Journal of Parallel and Distributed Comput-
ing 68 (2008) 1539-1560.

A. Montresor, M. Jelasity, O. Babaoglu, Chord on demand, in: Proceed-
ings of the 5th IEEE International Conference on Peer-to-Peer Comput-
ing, P2P, IEEE Computer Society, Washington, DC, USA, 2005, pp.
87-94.

J.A. Patel, E. Riviere, I. Gupta, A.M. Kermarrec, Rappel: Exploiting
interest and network locality to improve fairness in publish-subscribe

37

[32]

[36]

[37]

systems, Computer Networks: The International Journal of Computer
and Telecommunications Networking 53 (2009) 2304-2320.

R.V. Renesse, Y. Minsky, M. Hayden, A gossip-style failure detection
service, in: Proceedings of the ACM/IFIP/USENIX International Con-
ference on Middleware, Middleware, Springer-Verlag, New York, Inc.
New York, NY, USA, 2007, pp. 389-409.

A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object loca-
tion and routing for large-scale peer-to-peer systems, in: Middleware,
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2001,
pp. 329-350.

C. Tang, R.N. Chang, C. Ward, Gocast: Gossip-enhanced overlay mul-
ticast for fast and dependable group communication, in: Proceedings of
the 35th IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN, IEEE Computer Society, Washington, DC, USA,
2005, pp. 140-149.

Twitter Engineering, Murder: Fast datacenter code deploys using Bit-
Torrent, http://t.co/uobrEN4, Last accessed: September, 2012.

V. Venkataraman, K. Yoshida, P. Francis, Chunkyspread: Heteroge-
neous Unstructured Tree-Based Peer-to-Peer Multicast, in: Proceedings
of the 14th IEEE International Conference on Network Protocols, ICNP,
IEEE Computer Society, 2006, pp. 2-11.

S. Voulgaris, D. Gavidia, M. van Steen, Cyclon: Inexpensive member-
ship management for unstructured p2p overlays, Journal of Network and
Systems Management 13 (2005) 197-217.

S. Voulgaris, M. Jelasity, M.V. Steen, A Robust and Scalable Peer-to-
Peer Gossiping Protocol, in: Agents and Peer-to-Peer Computing, vol-

ume 2872 of Lecture Notes in Computer Science, Springer-Verlag Berlin,
Heidelberg, 2005, pp. 47-58.

S. Voulgaris, M. van Steen, Hybrid dissemination: Adding determinism
to probabilistic multicasting in large-scale p2p systems, in: Proceedings
of the ACM/IFIP/USENIX International Conference on Middleware,
Middleware, Springer-Verlag, New York, Inc. New York, NY, USA, 2007,
pp. 389-409.

38

[39] S. Zhuang, B. Zhao, A. Joseph, R. Katz, J. Kubiatowicz, Bayeux: An
architecture for scalable and fault-tolerant wide-area data dissemina-
tion, in: Proceedings of the 11th international workshop on Network
and operating systems support for digital audio and video, NOSSDAV,
ACM, New York, NY, USA, 2001, pp. 11-20.

39

