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Abstract–This paper describes a new approach to perform 
segmentation of moving objects in real-time from images acquired 
by a fixed color video camera and is the first tool of a major 
project that aspires to recognize abnormal human behavior in 
public areas. The moving objects detection is based on 
background subtraction and it is unaffected by changes in 
illumination, i.e., cast shadows and highlights. Furthermore it 
does not require a special attention during the initialization 
process, due to its ability to detect and rectify ghosts. The results 
show that with image resolutions of 380x280 at 24 bits per pixel, 
the time spent in the segmentation process is around 80ms, in a 32 
bits 3GHz processor based computer. 
 

I.  INTRODUCTION 

The new generation of surveillance systems aims the 
automatic monitoring, recognition and prediction of human 
activity. To successfully accomplish this task, a surveillance 
system has to perform an accurate segmentation of moving 
objects in the scene, free from cast shadows and reflections. 
However, despite the importance of the segmentation 
algorithms quality, these systems have also severe time 
restrictions to accomplish. Therefore, the computational cost of 
each technique used in the system should be considered. The 
key of the success is to achieve an optimal balance between 
efficiency and computational cost of each algorithm. 

In this paper, we propose a novel algorithm to segment 
moving objects in real-time from images acquired by a fixed 
color video camera. The moving objects detection is based on 
background subtraction and it is unaffected by changes in 
illumination due to cast shadows and highlights. 

Our approach does not require special attention during the 
initialization process, i.e., the system can be initialized with 
moving objects in the scene. This can be done, due to its ability 
in detection and rectification of ghosts. 

The paper is organized as follows. In Section II we briefly 
review some related work. Then, in Section III the shadows 
and highlights detection techniques are described. In Section 
IV we present an algorithm to extract the moving edges of 
objects in the scene. Next, Section V describes the 
segmentation process completely, based on background 
subtraction, which includes the ghost detection algorithm. 
Experimental results are presented in Section VI and, in 
Section VII, we draw some conclusions. 
 
This work was supported by the FCT under the grant SFRH/BD/17259/2004. 

II.  RELATED WORK 

The segmentation of moving objects is an important research 
area having impact in a vast range of applications, such as 
content-based video retrieval, traffic and human surveillance. 
The most popular approaches for segmenting moving objects 
include temporal differencing [1], optical flow [2] and 
background subtraction [3]. 

Temporal differencing based methods produce poor results 
because of the existence of large regions of false positives and 
false negatives. The false positives are generated in regions 
opposed to the directions of the object motion. False negatives 
are produced when the object inside colour is uniform and the 
distance covered by the object is less than the uniform colour 
area. 

Optical flow based methods allows good detection of 
moving objects, free of ghosts, in the presence of camera 
motion. Yet this technique is computationally complex and 
therefore is not suitable for use in real-time surveillance 
systems. 

The background subtraction consists in the subtraction of the 
current image from a reference one, and is commonly used 
mainly due to it simplicity and low computational cost. 

Despite the amount of work developed in the field of 
moving objects segmentation based on background subtraction 
techniques, there is a question that remains without a 
consensual answer from the research community: What should 
contain a background image? 

Some [4] state that “a robust detection system should 
continue to ‘see’ objects that have stopped, and disambiguate 
between overlapping objects in the image.” It seems a good 
definition for a detection system, although it should not be 
applied directly to the background actualization. With this 
approach the background will not be updated in regions of 
pixels belonging to objects that stop their motion in the scene. 
This constraint will prevent the actualization in the background 
image of ghosts generated by the motion of objects that are in 
the scene in the system initialization phase. 

Others researchers [3] [5] model the background by pure 
statistical measures of the images captured over the time. 
Examples of these approaches are median filters, infinite 
impulse response filters [5] and statistical probability 
distributions like Gaussians and Mixture of Gaussians [3]. The 
drawback of this solution is that it will fail if there is a large 
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amount of motion in the scene for a wide period of time. When 
this occurs, the background will include the colours of the 
objects that more frequently appear in the scene, originating 
errors in the segmentation process. 

From our point of view, the background image should 
contain all the objects observed in the scene that are not in 
motion at the present time. This should be done in such a way 
that once a moving object stops, it should be instantaneously 
included as part of the background. In the same mode, when a 
still object starts moving it should be immediately excluded 
from the background image. 

To achieve this goal, we developed a new segmentation 
algorithm that is described in this paper. 
 

III.  SHADOW AND HIGHLIGHT DETECTION 

The presence of cast shadows (projected by objects in the 
direction of the light source) and highlights in an image can 
modify the perceived object shape, causing its incorrect 
segmentation. 

Here we present the process used for the segmentation of 
image areas affected by cast shadows and highlights, based in 
the previous work from [6]. 

For this purpose, a background image Bn and a current 
image In, both in the HSV color space, are used. From those 
images we generate a shadow mask SMn and a highlight mask 
LMn, which will define the image areas where shadows and 
highlights are detected. 

In these masks each pixel will have value “1” if it is marked 
as shadow or highlights, and value “0” otherwise. These masks 
will be used later in conjunction with the motion segmentation 
algorithm, in order to avoid false positives. The following 
equations define the process of computing the shadow and 
highlight masks: 
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The ),( yxI H

n , ),( yxI S
n  and ),( yxIV

n  represent respectively 
the hue, saturation and value components at coordinate (x,y) of 
the input image I at time n. The same notation is applied to the 
background image B. 

 
Fig. 1. (a) Background image Bn; (b) current image In; (c) shadow mask SMn; 

(d) highlight mask LMn. 

The α parameter depends on the light source and the 
reflectance and irradiance properties of the objects in the 
scene. High intensive light sources and high reflective or 
irradiant objects imply lower α values. Usually α ranges from 
0.65 to 0.80 (this reference values were obtained by lab 
experiences taking as base the values proposed by [6]). On the 
other hand, the β parameter is used to prevent the incorrect 
classification of shadows as part of a moving object, points 
where the background was slightly changed by noise. The β 
typically ranges from 0.90 to 0.95. 

Parameters τS and τH are the maximal variation allowed for 
the saturation and hue components, respectively. We define τS 
as 15% of the digitizer’s saturation range. The variation of hue 
should not pass the 60 degrees. This value is obtained through 
the division of the hue range (360º) by the six colors (red, 
yellow, green, cyan, blue and magenta). Fig. 1 shows the 
output of shadow and highlight masks generation algorithm in 
a scene with a person pointing a light to the door. 

The use of separated masks for shadow and highlight 
detection allows a better result concerning noise removal, than 
was obtained with a common mask. The noise is removed from 
each mask by a morphologic open operator followed by a close 
operator, using a 3x3 structuring element. 
 

IV.  EXTRACTION OF MOVING EDGES 

In this section a method to extract the moving object edges 
in a scene is described. The basic idea is to get those edges by 
the interception of the edges extracted from the result of the 
absolute difference between the current image In and the 
previous one In-1, with the edges computed with the absolute 
difference between the background image Bn and the actual 
image. 

The choice of the technique to be used in the edge detection 
is critical. It must both present good results and low response 
times. For this purpose the Canny, Sobel and Prewitt 
algorithms were tested. Despite the result quality, the 
computational requirements for those algorithms exceed 
significantly the time requirements for our application. To 
overcome this drawback, a faster and simple yet efficient edge 
detection algorithm is used. 
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Fig. 2. (a) Background image Bn; (b) previous image In-1; (c) current image In; 

(d) edges of |In-Bn|; (e) edges of |In-In-1|; (f) moving edges MEn. 

It compares each pixel value (V component of the HSV 
color space) with is 4 connected neighbor pixels. If the 
difference between the pixel and one of its neighbors is higher 
than a given threshold, the pixel is marked as an edge. Based in 
this description, the following operator will then produce a 
binary image with all edges detected. 
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As stated before, the Φ operator is applied to both the 
difference between the current image and the background 
image, and the difference between the current image and the 
last image. The intersection of the two binary images obtained 
will contain the moving object edges. The following 
expression describes the overall process: 
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V.  THE SEGMENTATION PROCESS 

For each new image a binary representation of pixel motion 
(called PMMn - primary motion mask) is calculated based on 
the absolute difference, for each pixel, between the V 
components of the HSV color space, of the current image In 
and the background image Bn. This is given by: 
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where T is a constant threshold. 
Next, the detection of cast shadows and highlights are 

accomplished as defined in the Section III, creating the binary 
masks SMn and LMn, which represent the shadow and highlight 
regions respectively. 

Those masks are then removed from the PMMn with a 
simple intersection operation. The final result is stored in the 
motion mask (MM), and is defined by the following 
expression: 
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Fig. 3. (a) Background image Bn; (b) current image In; (c) primary motion mask 

PMMn; (d) shadow mask SMn; (e) highlight mask LMn; (f) resulting motion 
mask MMn after shadows, highlight and noise removal. 

The MMn is now free from false positives produced by 
shadows and highlights, but it is still possibly affected by 
ghosts, i.e., false positives generated by the motion of 
background objects. 

In the next phase, the extraction of moving edges is 
performed as described in Section IV, producing a MEn mask. 

Afterward, it is necessary to count and label the blobs 
defined in the motion mask MMn, and compute their main 
characteristics, such as the center of mass, area, perimeter and 
bounding box (these are the minimum attribute set required for 
analysis purpose). Blobs with area less than a predetermined 
value are considered as noise and are removed from the motion 
mask. 

After this we compute the blob edges mask (BEM). The 
BEMn is a binary mask that contains edges of the blobs 
detected so far, which, as remarked before, also includes 
undesirable ghosts. To eliminate them, the perimeter of a blob 
is compared with the perimeter obtained by the intersection of 
the MEn and BEMn masks. If the difference between those 
values is above 90%, the blob is marked as a potential ghost. 

Next, the clustering of the blobs is done, in order to define 
objects. The clustering process is based on two rules: blobs 
with distances between theirs centers of mass less than a 
predefined value (depending on object types) are connected; 
blobs remain connected if there is a uniform color path 
between them. 

An object, i.e., group of connected blobs, is classified as a 
ghost if all of its blobs are marked as potential ghosts. In that 
case it is excluded from the segmentation, in the MMn mask. 

Finally, the background image is updated in the HSV color 
space. Pixels belonging to shadows, highlights and objects 
identified as moving ones remain unchanged. Background 
pixels of segmented regions classifieds as ghosts are set with 
the actual image value. The remaining pixels are updated by an 
infinite impulse response filter in order to adapt the reference 
image to slight luminosity changes. The background updating 
can therefore be expressed by: 
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where α controls how fast are the changes introduced. 
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VI.  EXPERIMENTAL RESULTS 

The described process was implemented in a standard 
computer, based in a 32 bits 3GHz processor, running a 
GNU/linux operating system. The video capture board is a 
BT878 based one, allowing a maximal resolution of 720x576. 

Several experiments were made using image resolutions of 
380x280 at 24 bits per pixel, with both indoor and outdoor 
scenarios. Fig. 4 shows the results obtained with an outdoor 
scene. In this figure, the first row presents the frames 0, 8, 216 
and 959 from the acquired test sequence; the second row 
displays the correspondent’s background images; and the third 
row shows the segmentation results. 

In order to show how fast the background ghost correction 
performs, a momentarily stopped person is shown in the first 
acquired frame (top left image) and, despite the short time 
interval (8 frames), he/she was removed from the background. 
The results demonstrate that after the person leaved the area 
occupied by the ghost, it is immediately removed from the 
background, as illustrated by the images in the second column 
of fig. 4. 

The fourth column shows again a person included in the 
background, since he/she has stopped moving. As expected, 
the algorithm includes instantaneously in the background non-
moving objects. 

Tests were made in scenes with a number of persons ranging 
from 1 to 10. Under the referred conditions, the overall 
segmentation process takes about 80ms. This response time is 
low enough for typical surveillance systems where a frame rate 
of 12.5 is acceptable. Nevertheless, taking in account other 
high-level functions required by our projected system, some 
optimization of both the algorithms and the architecture should 
be necessary. 
 

 
Fig. 4. Example of moving objects segmentation. 

VII.  CONCLUSIONS 

The proposed method for moving objects segmentation has 
shown to be accurate, robust, while accomplishing the real-
time constraint. The system behavior is in conformity with our 
definition of background. In particularly, ghosts are removed 
from the segmentation results immediately after an object leave 
the ghost area, and stopping objects are instantly included as 
part of the background. While our method performs well in 
detection of human motion in a typical surveillance scenario, 
when dealing with large background objects that start to move, 
the time that it takes to rectify the reference image can be a 
drawback. 

The use of techniques to exclude cast shadows and 
highlights from the segmentation allow a precise detection of 
moving objects. 

In future work we will try to improve the performance of the 
shadow and highlight detector by applying automatic tuning to 
the α and β parameters, in order to adapt to the changes in 
illumination that take place during the period of the day. 
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