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Abstract 
 
Biofilms constitute a protected growth modality that allows the bacteria to survive in hostile environments. 

The most common practice to eliminate unwanted biofilms is the application of antimicrobial agents. However, 

current disinfection practices show often inefficacy in the control of biofilms. 

 The main goals of this work were the development of effective strategies, based on the application of 

chemical agents, in order to control biofilms formed by Pseudomonas fluorescens, and the evaluation of the impact 

of the hydrodynamic conditions under which biofilms were formed, in the phenotypic characteristics of the biofilms, 

as well as, in their susceptibility to antimicrobial agents. 

 The antimicrobial agents tested were two non-oxidizing aldehyde-based biocides (ortho-phthalaldehyde - 

OPA and glutaraldehyde - GTA), two oxidizing biocides (sodium hydroxide - NaOH and sodium hypochlorite - 

SHC) and two surfactants (cetyltrimethyl ammonium bromide - CTAB and sodium dodecyl sulfate - SDS). The 

antimicrobial agents were selected due to their emergent and practical application in several industrial areas. The 

bacterial biofilms were developed on stainless steel surfaces in a flow cell reactor and in a bioreactor with a rotating 

device, being implemented different hydrodynamic conditions (laminar and turbulent flow) for biofilm formation. 

The action of the antimicrobial agents was assessed, mainly, by the determination of the biofilm respiratory activity, 

as well as, by the quantification of the biofilm mass removed, being tested several concentrations, contact times and 

strategies of application. The bacteria grown in biofilms under different flow regimes were phenotypically 

characterized in terms of outer membrane proteins expression (OMP), metabolic activity, biochemical composition 

and structure, being their phenotypes compared with bacteria in planktonic state. The respirometric method based on 

the assessment of the bacterial respiratory activity, the basic tool in the evaluation of the efficiency of the 

antimicrobial agents and in the characterization of the metabolic state of the bacteria, was validated by comparison 

with two reference methods (assessment of viability by “Live/Dead” stains and culturability in a solid medium). 

 Within the scope of this thesis, and for further comparison, it was assessed the antimicrobial properties of 

the biocides OPA and GTA and of the surfactants CTAB and SDS in the control of planktonic cells. These 

experiments revealed that, in the range of concentrations tested, OPA was more efficient in the bacterial respiratory 

inactivation than GTA, causing total bacterial inactivation. Concerning the surfactants, both caused reduction of the 

bacterial activity, but only CTAB caused total bacterial inactivation. However, the chemical agents reacted 

differently with the bacteria, being CTAB the unique that promoted cellular disruption. The bacterial phenotype was 

affected with the application of the chemical agents, since the OMP expression and the cellular pellet colour 

changed after chemical treatment. The presence of bovine serum albumin (BSA) in the bacterial cultures (in order to 

simulate dirty conditions found in industrial systems) reduced significantly the antimicrobial action of the several 

chemical agents. 

 Concerning biofilm formation in the flow cells, it was found that the flow regime and the sessile mode of 

life itself caused significant modifications in the metabolism, morphology and constitutive biochemical composition 

of the P. fluorescens cells. 

 The application of biocides (OPA and GTA) and surfactants (CTAB and SDS) to the biofilms developed in 

the flow cells, under different hydrodynamic conditions, revealed that, independently of the concentration, exposure 

time and strategy of application, every chemical agent was more effective in the inactivation of laminar biofilms 
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than turbulent biofilms, being OPA the only chemical that caused total inactivation. The entire chemicals tested 

exhibited poor ability in the removal of biofilms from the surfaces, independently of the flow regime under which 

biofilms were formed. It was verified a post-antimicrobial agents application effect for both biofilms, since after 

chemical treatment, biofilms recovered with the time their metabolic activity and viability, an evidence of the 

capability of biofilms to regrow. The comparison of these results with the ones obtained with the planktonic cells 

emphasises the higher resistance of biofilm microorganisms to disinfection when compared with their freely 

suspended counterparts. The results also underscore the inadequacy of planktonic testing methods for evaluating 

antimicrobial agents to be used as a means to control biofilms. This fact contradicts the presuppositions of the 

European Standard – EN 1276 (1997), where the bactericidal activity of disinfectants to be used in food, industrial, 

domestic and institutional areas are tested using cells in planktonic state.  

 The biofilms grown in the bioreactor with the rotating device showed an accentuated inherent mechanical 

stability, i.e., a strong cohesion face to sudden changes in the surrounding hydrodynamic conditions. These biofilms 

were treated with OPA, GTA, NaOH, SHC, CTAB and SDS with the purpose to ascertain if after chemical treatment 

the mechanical stability of the biofilms (the biofilm behaviour face to external mechanical stress) was changed. It 

was found that biofilms previously treated with CTAB, NaOH, SHC, OPA and SDS (for concentrations near the 

critical micellar concentration) the biofilm mechanical stability decreased. Concerning GTA and SDS (for low 

concentrations), it was found an increase in the biofilm mechanical stability. These results highlight that even the 

synergistic chemical and mechanical treatments did not induce total biofilm eradication. 

 Finally, with the purpose to ascertain if a strain can represent a specie, the biofilm formation ability, as 

single or mixed populations, of two P. fluorescens native strains from a dairy industry was assessed using the flow 

cell reactor and the bioreactor rotating system. Similar characteristics were found comparing the biofilms formed by 

the different strains, as single or mixed biofilms. The phenotypic characteristics of the native strains were 

comparable with the ones obtained with the type strain, even when native strains were used to form mixed biofilms. 

 The results collected in this work allowed to conclude the role of the flow regime under which biofilms are 

formed in their susceptibility to antimicrobial agents, as well as, in the success/fallibility of procedures for biofilm 

control, fundamentally when extreme conditions are tested. The biofilms recovered their metabolic activity and 

viability, after chemical treatment, even when they presented merely residual activity. The submission of biofilms, 

previously exposed to antimicrobial agents, to hydrodynamic conditions different from the ones biofilms were 

developed did not cause total biofilm eradication from the surfaces contributing, therefore, for biofilm recalcitrance.  
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Resumo  
 
Os biofilmes constituem uma forma de crescimento que permite a sobrevivência de bactérias em condições 

ambientais adversas. Os procedimentos mais comuns de controlo de biofilmes indesejáveis englobam a aplicação de 

agentes antimicrobianos. Contudo, esses procedimentos de desinfecção demonstram, frequentemente, alguma 

ineficiência na inactivação e eliminação dos biofilmes. 

 Este trabalho teve como principais objectivos o desenvolvimento de estratégias eficientes de controlo de 

biofilmes formados por Pseudomonas fluorescens recorrendo a produtos químicos antimicrobianos, e a avaliação do 

impacto das condições hidrodinâmicas usadas durante a formação de biofilme, nas suas características fenotípicas, 

bem como na sua sensibilidade aos agentes antimicrobianos. 

 Os agentes antimicrobianos testados incluiram dois biocidas não-oxidantes da família dos aldeídos (OPA e 

GTA), dois biocidas oxidantes (NaOH e SHC) e dois tensioactivos (CTAB e SDS), todos representando aplicações 

práticas e emergentes em vários sectores industriais. Os biofilmes bacterianos foram desenvolvidos sobre superfícies 

de aço inoxidável em células de fluxo e num bioreactor com sistemas rotativos, utilizando-se diferentes condições 

hidrodinâmicas (fluxo turbulento e laminar). O desempenho dos agentes antimicrobianos foi avaliado pela 

determinação da actividade respiratória dos biofilmes, bem como pela quantificação da massa de biofilme removida, 

tendo-se testado várias concentrações, tempos de contacto e estratégias de aplicação. As bactérias desenvolvidas em 

biofilme sob diferentes regimes de fluxo foram caracterizadas fenotipicamente em termos da expressão de proteínas 

da parede celular (OMP), actividade metabólica, composição bioquímica, e estrutura, e foram comparadas com as 

bactérias em suspensão. O método respirométrico baseado na determinação da actividade respiratória das bactérias, 

ferramenta básica na determinação da eficiência dos agentes antimicrobianos e na caracterização do estado 

metabólico das bactérias, foi validado pela comparação com dois métodos de referência (determinação da 

viabilidade recorrendo a corantes “Live/Dead” e caracterização da cultivabilidade em meio sólido). 

 No âmbito da dissertação, e para comparação posterior, começou-se por avaliar a capacidade 

antimicrobiana dos biocidas GTA e OPA e dos tensioactivos CTAB e SDS no controlo de células em suspensão. 

Estes ensaios revelaram que, na gama de concentrações testadas, o OPA foi mais eficiente na inactivação 

respiratória das bactérias do que o GTA, provocando a inactivação total das células bacterianas. Em relação aos 

tensioactivos, apesar de ambos causarem redução da actividade respiratória, somente o CTAB provocou inactivação 

total das células. Contudo, os vários agentes químicos reagiram com as bactérias de forma diferente, tendo o CTAB 

sido o único que provocou ruptura celular. O fenótipo bacteriano foi afectado com a aplicação dos agentes químicos, 

pois a expressão das OMP e a cor do “pellet” celular sofreram alteração. A presença de BSA (proteína de soro 

bovino) nas culturas bacterianas em suspensão (como forma de simulação de condições sujas encontradas em 

ambientes industriais) causou reduções significativas na acção antimicrobiana de todos os agentes químicos testados. 

 Relativamente aos ensaios de formação de biofilmes nas células de fluxo, verificou-se que o regime de 

fluxo e o próprio modo de vida séssil causaram alterações importantes no metabolismo, morfologia e composição 

bioquímica constitutiva das bactérias P. fluorescens. 

 Os ensaios de aplicação dos biocidas (GTA e OPA) e dos tensioactivos (CTAB e SDS) aos biofilmes 

formados nas células de fluxo, em condições hidrodinâmicas diferentes, revelaram que, independentemente da 

concentração, tempo de exposição e estratégia de aplicação, todos os produtos foram mais eficientes na inactivação 
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de biofilmes formados em regime laminar do que em regime turbulento, sendo o OPA o único químico a causar 

inactivação total. Todos os agentes químicos testados revelaram ser pouco eficientes na remoção de biofilme das 

superfícies, independentemente do regime de fluxo em que foram desenvolvidos. Verificou-se um efeito pós-

aplicação do tratamento químico para ambos os tipos de biofilme, pois os biofilmes recuperaram com o tempo a sua 

actividade metabólica e a sua viabilidade, prova da capacidade de recrescimento dos biofilmes. A comparação destes 

resultados com os obtidos com as bactérias em suspensão reforça o fenómeno da maior resistência à desinfecção de 

microrganismos em biofilmes quando comparados com os mesmos em suspensão. Estes resultados, também, 

questionam o uso de testes em suspensão para avaliação de agentes antimicrobianos, principalmente, quando estes se 

destinam ao controlo de biofilmes. Este facto refuta os pressupostos existentes na Norma Europeia – EN 1276 

(1997), em que a actividade bactericida de potenciais desinfectantes, para uso nas áreas alimentar, industrial, 

doméstica e institucional, é investigada com células em estado planctónico. 

 Os biofilmes desenvolvidos no bioreactor de sistema rotativo apresentaram uma acentuada estabilidade 

mecânica intrínseca, isto é, uma forte coesão face a alterações súbitas das condições hidrodinâmicas do meio 

circundante. Estes biofilmes quando tratados com GTA, OPA, NaOH, SHC, CTAB e SDS com o objectivo de 

investigar se após o tratamento químico sofreram alterações da sua estabilidade mecânica (o seu comportamento 

face a condições externas adversas). Verificou-se que os biofilmes previamente tratados com CTAB, NAOH, SHC, 

OPA e SDS (para concentrações próximas da concentração miceliar crítica) registaram uma diminuição da sua 

estabilidade mecânica. Em relação ao GTA e SDS (para concentrações baixas), verificou-se que contribuíam para o 

aumento da estabilidade mecânica do biofilme. Porém, mesmo a sinergia entre tratamentos químico e mecânico não 

provocou a erradicação total do biofilme. 

 Com o objectivo de averiguar se o comportamento de uma estirpe poderá representar o da espécie, 

determinou-se a capacidade de formação de biofilme por duas estirpes de P. fluorescens nativas de uma indústria de 

lacticínios, usando o reactor de célula de fluxo e o bioreactor de sistema rotativo. Da comparação das características 

dos biofilmes formados pelas duas estirpes individual e em cultura mista, concluiu-se que estes eram semelhantes. 

As características fenotípicas das estirpes nativas foram comparáveis às obtidas com a estirpe tipo, 

independentemente do modo de formação de biofilme (simples e misto). 

 Os resultados coligidos neste trabalho permitiram concluir acerca da importância do regime de fluxo, sob o 

qual os biofilmes são formados, na susceptibilidade destes aos produtos antimicrobianos, bem como, no 

sucesso/falibilidade dos procedimentos de controlo de biofilmes usando esses agentes antimicrobianos, 

fundamentalmente quando condições extremas são testadas. As bactérias desenvolvidas em biofilme, após 

tratamento com os agentes químicos, demonstraram recuperar, num curto espaço de tempo, a sua actividade 

metabólica e viabilidade, mesmo quando os biofilmes apresentavam actividade respiratória residual. Esta 

constatação é indício irrefutável da capacidade de recrescimento dos biofilmes após o interregno da aplicação dos 

agentes antimicrobianos. A submissão de biofilmes previamente expostos aos agentes antimicrobianos, a condições 

hidrodinâmicas diferentes das quais foram desenvolvidos não conduziu à erradicação total dos biofilmes das 

superfícies. Todos os factos anteriores podem conduzir ao aparecimento de biofilmes recalcitrantes.  
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Chapter 1 

 

Work outline 
 

 

Abstract 
 
This chapter provides a general framing of this thesis, working as a guide line to the 

overall works presented in the further chapters.  
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1.1 Work outline 
 
Biofilm science is a relatively new technical discipline, which has emerged in 

response to the need of methodologies for biofilm control. Biofilms represent an 

interdisciplinary research area focused on the understanding and modulating of the 

combination of biological and chemical reactions, as well as in the transport and interfacial 

transfer processes, that potentially affect the microbial accumulation and activity on 

surfaces. Research on biofilms has progressed rapidly in the last decade. Due to the fact that 

biofilms have required the development of new analytical tools, many recent advances have 

resulted from collaborations between microbial ecologists, environmental engineers and 

mathematicians. The scientific community has come to understand many things about the 

particular biology of microbial biofilms through a variety of microscopic, physical, 

chemical, and molecular techniques of study. 

This work comes on the sequence of two PhD thesis (Vieira, 1995; Pereira, 2001) 

developed at the Department of Biological Engineering, University of Minho, where 

biofilms were characterized and attempts for biofilm control were developed. Probably, the 

final conjugation of the three PhD thesis can be seen as a Biofilm book constituted by three 

issues, where aspects from biofilm formation to biofilm control are fully broached. The 

main goal of the investigation behind this thesis was to characterize biofilms formed under 

experimental conditions (hydrodynamic conditions, reactor type, strain, etc) that mimic 

conditions found in actual environments, and to characterize the behaviour of those biofilms 

when challenged by different chemical agents (non-oxidizing biocides, surfactants, 

oxidizing biocides).  

The microorganism used throughout this work was the Gram-negative bacteria 

Pseudomonas fluorescens. A strain from the American type culture collection (ATCC) and 

two strains isolated from a process in dairy industry were selected for the overall studies. 

The use of this bacterium, as model microorganism, is related to the fact that it is ubiquitous 

in biofilms formed in industrial systems and has potential to cause serious problems in terms 

of process and final product safety in food industry (Vieira, 1995; Pereira, 2001; Pereira and 

Vieira, 2001; Dogan and Boor, 2003). The availability of information regarding the growth 

conditions and biofilm formation properties and behaviour (Oliveira et al., 1994; Vieira, 

1995; Pereira, 2001) was also a decisive factor behind that choice. 

This thesis is divided in eleven chapters: 
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Chapter 1 shows the main objectives, context and motivations for the development 

of this work.  

Chapter 2 encloses the literature review, where are described the phenomenon 

carried on from biofilm formation to biofilm control. Some technical aspects previously 

focused in the works made by Vieira (1995) and by Pereira (2001) are only mentioned in 

this chapter, being described in more detail the relatively new aspects involving biofilm 

formation and control. This literature review gives special attention to the occurrence of 

biofilms in the food industry, more precisely in the dairy industry. Concerning biofilm 

control, it is focused on the chemical control of biofilms, being the mechanisms of microbial 

resistance to antimicrobial agents described in detail, taking into account the literature 

existent and the relevance of this subject on the understanding of the work presented 

subsequently. 

In Chapter 3, are fully described the materials and methodologies used to perform all 

the experimental work. Therefore, this chapter is closely linked with every chapter related 

with experimental work since in these chapters the materials and methods used are briefly 

referred.  

Chapter 4 provides a three methods (short-term bacterial respiratory activity 

measurement based on the rate of oxygen uptake needed to oxidise glucose; determination 

of viable and nonviable cells using Live/Dead® BacLightTM kit; colony formation units) 

comparative study in order ascertain the reliability of respiratory activity as an indicator of 

the antimicrobial efficacy of ortho-phthalaldehyde (OPA) against P. fluorescens. 

Chapter 5 concerns the characterization of bacteria in planktonic and biofilm state. 

With this experimental work, it is possible to better understand the bacterial phenotypic 

changes due to biofilm formation in a flow reactor system, in order to full characterize the 

cells before being treated with the antimicrobial agents. The influence of the hydrodynamic 

conditions in biofilm characteristics are evaluated as well as their effects in the cellular 

phenotype. 

Several antimicrobial agents are tested against planktonic cells before being tested 

against cells within biofilms, being this data present in Chapter 6. The antimicrobial 

properties of several chemicals and an attempt to discover more about the mechanisms of 

action of two aldehyde-based biocides - OPA and glutaraldehyde (GTA) - and two 

surfactants - cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) 

are also shown in this chapter. The efficacy of the antimicrobial agents is assessed in 
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conditions that mimic disinfection in industrial systems under dirty conditions, according to 

the European Standard EN 1276 (1997). 

The effectiveness of OPA and GTA to control biofilms formed under turbulent and 

laminar flow is compared in Chapter 7. The strategy of biocide application (increase 

concentration or increase contact time) is determined. The biofilm recovery/regrowth after 

chemical treatment or a sustained post-biocide application effect is ascertained 3 h after 

treatment.  

In Chapter 8 is presented a study about the comparative action of CTAB and SDS in 

the control of biofilms formed under turbulent and laminar flow, as well as an attempt to 

understand the mode of action of both surfactants against the biofilms. In this chapter the 

emerge of biofilms able to recover their metabolic characteristics and viability after 

surfactant treatment or a sustained post-surfactant application effect is also assessed.    

In Chapter 9, a bioreactor with an immersed rotating device is used to form biofilms 

and to assess biofilm mechanical stability before and after chemical treatment. Therefore, 

the biofilms are characterized and the synergistic action of chemical and mechanical 

treatment is assessed as a mean to remove biofilms. Two aldehyde-based biocides (OPA and 

GTA), two surfactants (CTAB and SDS) and two oxidizing-biocides (sodium hydroxide and 

hypochlorite chloride) are tested.  

In Chapter 10 the ability of two P. fluorescens strains isolated from an industrial 

process to form biofilms in the flow cell reactor, under turbulent and laminar flow, and in 

the bioreactor with the immersed rotating device is characterized. The phenotypic 

characterization as a consequence of biofilm formation under different hydrodynamic 

conditions, reactor design and community interactions (single/mixed biofilms) is assessed. 

Chapter 11 gives an overview of the work presented and identifies future research to 

advance the optimization of methods to control unwanted biofilms. 
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Chapter 2 

 

Literature review - from biofilm formation to biofilm 

control 
 

 

Abstract  
 
This chapter reviews current knowledge on the features of biofilm formation and 

control, with a special focus on the control and resistance of biofilms face to chemical 

agents.  
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2.1 Biofilms – the discover of a new microbial arrangement  
 
It is a natural tendency of microorganisms to attach to surfaces, to multiply and to 

embed themselves in a slimy matrix, resulting in biofilms. These allow complex interactions 

among different species. It is supposed that biofilm is the first form of life recorded on the 

planet, being estimated that most microorganisms on the earth are organized in biofilms and 

they even occur in extreme environments such as hydrothermal vents, nuclear power plants 

and disinfection pipelines (Costerton et al., 1987). 

Concerning the discover of biofilms, it as been first documented in 1943 by Zobell, 

where were observed microbial cells attached in layers to bottle walls and that the addition  

of glass rods increased the biological activity of batch suspended cultures. Latter, Atkinson 

and co-workers (1964, 1967) coined the term microbial or biological film to represent the 

gelatinous layer of cells and their adherent by-products on bioreactor vessel walls. Topiwala 

and Hamer (1971) and Howell et al. (1972) referred to mucilaginous layers of bacterial cells 

and their extracellular polymeric substances as “wall growth”. Characklis (1973a, b) 

provided an extensive two-part literature review on the basic fundamentals and practical 

implications of “microbial slimes”. Atkinson (1964) and Atkinson and co-workers (1967) 

and Harremoës (1977) applied heterogeneous catalyst mathematics to describe simultaneous 

mass transport and biological reaction within “microbial films”. A consensus of the leaders 

in biofilm research in 1984 termed a biofilm as a collection of microorganisms, 

predominantly bacteria, enmeshed within a three-dimension gelatinous matrix of 

extracellular polymers secreted by the microorganisms (Marshall, 1984).  

 

2.2 Processes governing biofilm formation and performance 
 
Initially, the adhesion surface is conditioned and cells attach first reversibly, and 

then irreversibly. Next, attached cells grow, reproduce, and secrete insoluble extracellular 

substances. As the biofilm matures, biofilm detachment and growth processes come into 

balance, such that the total amount of biomass on the surface remains approximately 

constant in time. 
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 At the time, processes governing biofilm formation and persistence (Figure 2.1) 

included: 

 

1. Preconditioning of the adhesion surface either by macromolecules present in the bulk 

liquid or intentionally coated; 

2. Transport of planktonic cells from the bulk liquid to the surface; 

3. Adsorption of cells at the surface for a finite time; 

4. Desorption (release) of reversible adsorbed cells; 

5. Irreversible adsorption of bacterial cells at a surface; 

6. Transport of substrates to and within the biofilm; 

7. Substrate metabolism by the biofilm-bound cells and transport of products out of the 

biofilm. These processes are accompanied by cellular growth, replication, and extracellular 

polymeric substances production; 

8. Biofilm removal by detachment or sloughing. 

 

 
Figure 2.1 Processes governing biofilm formation (based on Bryers, 2000). 

 
Research in the last ten years has expanded the understanding of the molecular and 

genetic parameters that control many of these macroscopic processes. Biofilms (Figure 2.2) 

are no longer considered uniform biological structures in time and space, and processes that 

control this heterogeneity have been characterized and are being mathematically described 

(Bryers, 2000). 
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Figure 2.2 Scanning electron microscopy photomicrographs of a 6 d old Bacillus cereus 

biofilm formed on stainless steel slides. X 6330 magnification; bar = 5 µm. 

 

2.3 Parameters affecting biofilm formation 
 
There exist a number of mechanisms by which numbers of species of 

microorganisms are able to come into closer contact with a surface, attach firmly to it, 

promotes cell-cell interactions and grow as a complex structure (Bryers, 2000). 

The attachment of microorganisms to surfaces is a very complex process, with many 

variables affecting the process. In general, attachment will occur most readily on surfaces 

that are rougher, more hydrophobic, and coated by surface conditioning films (Pereira, 

2001; Donlan, 2002). An increase in flow velocity, water temperature, or nutrient 

concentration may also be equated to increase attachment, if these factors do not exceed 

critical levels (Vieira, 1995; Pereira, 2001). Properties of the cell surface, specially the 

presence of extracellular appendages, the interactions involved in cell-to-cell 

communication and the production by the microorganisms of extracellular polymeric 

substances are important factors that may possibly provide a competitive advantage for one 

microorganism where a mixed community is involved (Donlan, 2002).  

Table 2.1 summarizes the main variables involved in cell attachment and biofilm 

formation. 
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Table 2.1 Variables important in cell attachment, biofilm formation and development (based 

on Donlan, 2002) 
Properties of the adhesion 

surface 
Properties of the bulk fluid Properties of the cell 

Texture or roughness 

Hydrophobicity 

Conditioning film 

Flow velocity 

pH 

Temperature 

Ions 

Presence of antimicrobial agents 

Cell surface hydrophobicity 

Extracellular appendages 

Extracellular polymeric 

substances 

Signalling molecules 

 
 The aspects of biological attribute, i.e., the aspects dependent on the cell 

characteristics, will be ahead described in detail in the following sections. 

  

2.3.1 Specialized attachment structures/surface properties of the cell 
 
Cell surface hydrophobicity and the presence of extracellular filamentous 

appendages may influence the rate and the extent of attachment of microbial cells. The 

hydrophobicity of the cell surface is important in adhesion because hydrophobic interactions 

tend to increase with an increasing nonpolar nature of one or both surfaces involved, i.e., the 

microbial cell and the adhesion surface (Donlan, 2002). According to Drenkard and Ausubel 

(2002), the ability of bacteria to attach to each other and to surfaces depends in part on the 

interaction of hydrophobic domains. 

Many cells produce extracellular filamentous appendages. These may, therefore, 

play a role in the attachment process, seeing as their radius of interaction with the surface is 

far lower than that of the cell itself. A number of such structures are known to exist - 

flagella, pili or fimbrae, prothecae, stalks and holdfast (Harbron and Kent, 1988).  

Flagella, when existent, are responsible for the motility of bacteria. These are very 

fine threads of the protein flagellin with a helical structure extending out from the cytoplasm 

through the cell wall. Flagella may have a diameter between 0.01 to 0.02 µm, and a length 

of up to 10 µm. Many types of bacteria have flagella, including the genus Pseudomonas. It 

is possible that the flagellum itself may form an adhesive bond with the adhesion surface 

(Harbron and Kent, 1988). The primary function of flagella in biofilm formation is assumed 

to be in transport and in initial cell-to-surface interactions (Sauer and Camper, 2001). 
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Flagella-mediated motility is believed to overcome repulsive forces at the surface of the 

substratum and, as a consequence, a monolayer of cells forms on the adhesion surface 

(Daniels et al., 2004). 

Pili or fimbriae are found on many Gram-negative bacteria including Pseudomonas 

species. They are fine, filamentous appendages, also of protein, 4 to 35 nm wide and up to 

several micrometers long. These structures are usually straight, and are not involved in 

motility. Their only known general function is to make cell more adhesive, since bacteria 

with pili can adhere strongly to other bacterial cells, and inorganic particles (Rogers, 1979). 

Nevertheless, they are not always involved in the attachment process even if they are 

present (Characklis and Cooksey, 1983). According to Sauer and Camper (2001), Pili and 

pilus-associated structures have been shown to be important for the adherence to and 

colonization of surfaces, probably by overcoming the initial electrostatic repulsion barrier 

that exists between the cell and the substratum (Donlan, 2002). 

Prosthecae and stalks form a third group of attachment structures. These occur in 

several types of microorganisms including such Gram-negative bacteria as Caulobacter and 

Hyphomicrobium. They may occur at one or more sites on the surface of the cell, and are 

filiform or blunt extensions of the cell wall and membrane, commonly 0.2 µm (Harbron and 

Kent, 1988). At the end of a prosthecae or stalk is usually found an adhesive disk, or hold-

fast (Rogers, 1979). The stalk and hold-fast structure is one quite often used by diatoms to 

attach to a surface (Harbron and Kent, 1988). 

 

2.3.2 Extracellular polymeric substances 
 

2.3.2.1 Extracellular polymeric substances – definition, composition, secretion and function 
 
Extracellular polymeric substances (EPS) were defined by Geesey (1982) as 

extracellular polymeric substances of biological origin that participate in the formation of 

microbial aggregates (Figure 2.3). In biofilm systems, EPS are responsible for binding cells 

and other particulate materials together - cohesion and to the surface - adhesion (Characklis 

and Wilderer, 1989; Sutherland, 2001; Allison, 2003). The general composition of bacterial 

EPS comprises polysaccharides, proteins, nucleic acids, lipids, phospholipids, and humic 

substances, since the last ones are sometimes considered as part of the EPS matrix (Jahn and 
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Nielsen, 1998; Wingender et al., 1999; Sutherland, 2001). In contrast to microbial capsules, 

EPS are exudates which are not firmly bound to the cell surface. 

Biofilms form a gel phase where microorganisms live inside (Wingender et al., 

1999; Sutherland, 2001). The EPS matrix acts as a barrier in which diffusive transport 

prevails over convective transport (Sutherland, 2001). However, this matrix is not uniform 

and homogeneous – pores, channels and areas with EPS of low density can occur 

(Sutherland, 2001; Fux et al., 2005a). Thus, diffusion coefficients within a biofilm do not 

differ too profoundly from those in free water; only large molecules diffuse significantly 

slower in a biofilm (Flemming, 1996; Dignac et al., 1998; Wingender et al., 1999). The 

presence of charged groups such as pyruvate or uronic acids influences their physical 

properties (stability, viscosity) and provides ion exchange sites (Flemming, 1996; Higgins 

and Novak, 1997). EPS are hydrophilic (Wingender et al., 1999). If a hydrophobic surface is 

colonized, the EPS represent a hydrophilic interface thus masking the original surface 

properties.  

By definition, EPS are located at or outside the cell surface independent of their 

origin. The extracellular localization of EPS and their composition may be the result of 

different processes: active secretion, shedding of cell surface material, cell lysis, and 

adsorption from the environment (Wingender et al., 1999). Various specific pathways of 

biosynthesis and discrete export mechanisms involving the translocation of EPS across 

bacterial membranes to the cell surface or into the surrounding medium have been described 

for bacterial proteins and polysaccharides (Becker et al., 1998; Hueck et al., 1998). 

Extracellular deoxyribonucleic acids (DNA) can be produced by bacteria during growth, 

being proposed by Lorenz and Wackernagel (1994), that DNA can be actively secreted or 

passively released due to increase in cell envelope permeability. Another mechanism of 

release of extracellular polymers is the spontaneous liberation of integral cellular 

components from the outer membrane of Gram-negative bacteria, due to the formation of 

outer membrane derived vesicles which has been described by Beveridge et al. (1997) as a 

common secretion mechanism. The release of cellular material by this mechanism may be 

the result of metabolic turnover processes, since it occurs during normal growth (Beveridge 

et al., 1997). Death and lysis of cells contribute to the release of cellular high-molecular-

weight compounds into the medium and entrapment with the biofilm matrix, a process 

where the biofilm represents a recycling yard for intracellular components (Wingender et 

al., 1999). 
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Figure 2.3 Epifluorescence photomicrograph of a 6 d old P. fluorescens biofilm formed on 

stainless steel slides and stained with acridine orange at 0.003 % (w/v). X 100 

magnification; bar = 10 µm; green colour – extracellular polymeric matrix; black colour – 

background. 
 
The properties of the community of microbial cells within the EPS matrix are greater 

than that of the sum of the individual microorganisms (Sutherland, 2001). One of the most 

important functions of EPS is supposed to be their role as fundamental structural elements 

of the biofilm matrix determining the mechanical stability of biofilms, mediated by non-

covalent interactions either directly between the polysaccharide chains or indirectly via 

multivalent cation bridges (Flemming 1996; Allison, 2003). Higgins and Novak (1997) 

suggest that lectin-like proteins also contribute to the formation of the three-dimensional 

network of the biofilm matrix by cross-linking polysaccharides directly or indirectly through 

multivalent cation bridges. Among activated sludge extracellular polymers, proteins 

predominated and, on the basis of their relatively high content of negatively charged amino 

acids they were supposed to be more involved than sugars in electrostatic bonds with 

multivalent cations, underlining their key role in the floc structure (Dignac et al., 1998). In 

addition, proteins have also been suggested to be involved in hydrophobic bonds within the 

EPS matrix (Dignac et al., 1998). Nevertheless, the main function of extracellular proteins 

in biofilms is mostly seen in their role as enzymes performing the digestion of exogenous 

macromolecules and particulate material in the microenvironment of the immobilized cells. 

Thus, they provide low molecular weight nutrients which can readily be taken up and 

metabolized by the cells (Junter et al., 2002). Enzymes within the biofilm matrix may also 
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be involved in the degradation of polysaccharidic EPS causing the release of biofilm 

bacteria and the spreading of the microorganisms to new environments (Boyd and 

Chakrabarty, 1994; Wingender et al., 1999).  

A function frequently attributed to EPS is their general protective effect on biofilm 

organisms against adverse conditions. As an example, it has frequently been observed that 

biofilm cells can tolerate significantly higher concentrations of biocides (Foley and Gilbert, 

1996; Mah and O´Toole, 2001; Pereira and Vieira, 2001). This is supposed to be due mainly 

to physiological changes of biofilm bacteria enhancing their resistance to biocides, but also 

to a barrier of EPS (Morton et al., 1998; Pereira and Vieira, 2001). The EPS matrix delays 

or prevents biocides from reaching target microorganisms within the biofilm by diffusion 

limitation and/or chemical interaction with the EPS molecules (Heinzel, 1998; Mah and 

O´Toole, 2001; Pereira and Vieira, 2001; Gilbert et al., 2002).  

The role of EPS components other than polysaccharides and proteins remains to be 

established (Wingender et al., 1999). Nevertheless, it is expected that EPS such as lipids and 

nucleic acids significantly influence the rheological properties and thus the stability of 

biofilms (Neu, 1996). Concerning the extracellular DNA, Whitchurch et al. (2002) found 

that it is required for the initial establishment of biofilms by P. aeruginosa, and possibly for 

biofilms formed by other bacteria that specifically release DNA. Moreover, within the 

matrix formed by the EPS, the molecules required for cell-cell communication and 

community behaviour might accumulate at high enough concentrations to be effective 

(Sutherland, 2001). 
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Table 2.2 Effects associated to EPS formation in biofilms (based on Wingender et al., 

1999) 

Function Relevance 

Adhesion to surfaces 

Initial step in the colonization of inert and tissue 

surface, accumulation of bacteria on nutrient-rich 

surfaces in oligotrophic environments 

Aggregation of bacterial cells, formation of flocs 

and biofilms 

Bridging between cells and inorganic particles 

trapped from the environment, immobilization of 

mixed bacterial populations, basis for development 

of high cell densities, generation of a medium for 

communication processes, cause for biofouling 

and biocorrosion events 

Cell-cell recognition 
Symbiotic relationships with plants or animals, 

initiation of pathogenic processes 

Enzymatic activities 

Digestion of exogenous macromolecules for 

nutrient acquisition, release of biofilm cells by 

degradation of structural EPS of the biofilm 

Interaction of polysaccharides with enzymes 
Accumulation/retention and stabilization of 

secreted enzymes 

Protective barrier 
Resistance to non-specific and specific host 

defences, resistance to biocides 

Sorption of exogenous organic compounds 
Scavenging and accumulation of nutrients from the 

environment 

Sorption of inorganic ions 

Accumulation of toxic metal ions, promotion of 

polysaccharide gel formation and mineral 

formation 

Structural elements of biofilms 
Mediation of mechanical stability of biofilms, 

determination of the shape of EPS structure. 

 

2.3.3 Cell communication (quorum sensing) 
 
The concept of bacterial development, organization and evolution as communities 

comprises the existence of self-organization and cooperativity among cells as a driving 

force in community development, rather than the classical natural selection of individual 

microorganisms (Davies et al., 1998; Fuqua and Greenberg, 2002; Daniels et al., 2004; Fux 

et al., 2005a; Parsek and Greenberg, 2005). This concept becomes specially apparent when 
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examining bacterial biofilm communities (Decho, 1999; Parsek and Greenberg, 2005). Cell-

to-cell signalling has recently been demonstrated to play a role in cell attachment and 

detachment from biofilms (Donlan, 2002; Daniels et al., 2005). Bacteria are considered to 

be far from solitary microorganisms, rather being colonial by nature and exploiting 

elaborate systems of intercellular interactions and communications to facilitate their 

adaptation to changing environments (Bainton et al., 1992; Davies et al., 1998; Decho, 

1999; Sauer and Camper, 2001; Fuqua and Greenberg, 2002; Daniels et al., 2004). The 

successful adaptation of bacteria to changing natural conditions requires that the 

microorganism is able to sense and respond to its external environment and modulate gene 

expression accordingly (Decho, 1999; Daniels et al., 2004). Quorum sensing is based on the 

process of autoinduction (Fuqua et al., 1994; Daniels et al., 2004). The process of quorum 

sensing provides a mechanism for self-organization and self-regulation by microbial cells 

(Decho, 1999; Parsek and Greenberg, 2005). It involves an environmental sensing system 

that allows bacteria to monitor and respond to their own population densities. The bacteria 

produce a diffusible organic signal, originally called an autoinducer molecule, which 

accumulates in the surrounding environment during growth (Fuqua and Greenberg, 2002). 

High cell densities result in high concentrations of signal, and induce expression of certain 

genes and/or physiological changes in neighbouring cells (Fuqua et al., 1996; Parsek and 

Greenberg, 2005). Responses to chemical signals in the process of cell communication is a 

concentration dependent process, where a critical threshold concentration of the signal 

molecule must be reached before a physiological response will be elicited (Decho, 1999; 

Fuqua and Greenberg, 2002; Daniels et al., 2004).  

Molecules derived from homoserine lactones (HSL) act as signals in Gram-negative 

bacteria (Eberhard et al., 1981; Fuqua and Greenberg, 2002; Parsek and Greenberg, 2005). 

Acyl-HSL`s have been identified in many different Proteobacteria (Fuqua and Greenberg, 

2002). These signal molecules are composed of a fatty acyl chain bonded to a lactonized 

homoserine through an amide bond. There is considerable structural variety between acyl-

HSL`s from different bacteria and even between different acyl-HSL`s synthesized by the 

same bacteria (Fuqua and Greenberg, 2002; Parsek and Greenberg, 2005). Although many 

different N-acyl homoserine lactone autoindutors have been isolated from various Gram-

negative bacteria, all differences are in the N-acyl side chain length (C4 to C14) or degree of 

substitution - either 3-oxo, 3-hydroxy, saturated, or unsaturated (Pearson et al., 1999; Fuqua 

and Greenberg, 2002). 
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Quorum sensing systems are known to be involved in a range of important microbial 

activities. These include extracellular enzyme biosynthesis, biofilm development, antibiotic 

biosynthesis, biosurfactant production, extracellular polymeric substances synthesis and 

extracellular virulence factors in Gram-negative bacteria (Passador et al., 1993; Beck von 

Bodman and Farrand, 1995; Chatterjee et al., 1995; McGowan et al., 1995; Pearson et al., 

1995; Davies et al., 1998; Daniels et al., 2004; Fux et al., 2005a). 

 

2.4 The impact of biofilm formation 
 
Biofilms are as versatile as they are ubiquitous. Intentional and unintentional 

biofilms concern a broad range of areas, comprising special attention in the 

industrial/environmental and biomedical areas (Bryers, 2000).  

 

2.4.1 Beneficial biofilms 
 
Benefits afforded by biofilms in a continuous reactor situation arise chiefly because 

the cell population is immobilized and thus the residence time of cells in the reactor is 

independent of the fluid phase residence time. In continuous suspended culture bioreactors, 

the mean residence time of the system cannot be less than the generation time of the 

bacterial specie, otherwise cells do not have sufficient time to replicate within the reactor 

and are eventually diluted from the system (Pereira, 2001; Junter et al., 2002).  

One major application that relies on a microbial culture ability to form biofilms is 

waste-water treatment. Biofilm reactor configurations, applied in both pilot and full-scale 

waste-water treatment, include packed bed (trickling filters), high rate plastic media filters, 

rotating biological contactors, fluidized-bed biofilm reactors, and membrane immobilized 

cell reactors (Pereira, 2001; van Loosdrecht et al., 2002).  

Immobilized and biofilm-bound cells remain in a continuous reactor system 

independent of the fluid phase, thus the mass loading of limiting substrate or influent 

pollutant in the case of a wastewater treatment reactor can be increased well beyond the 

growth rate limit imposed on suspended cultures (Junter et al., 2002; van Loosdrecht et al., 

2002). Consequently, immobilized-cell or biofilm reactors can provide added volumetric 

reactivity, more stable operating performance and an inherent ease in biomass - fluid 

separation; the prospect of staging different bioconversion processes in sequential reactors 
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(Pereira, 2001). Due to these inherent advantages, the use of biofilm reactors is not confined 

only to bacterial cells, but also comprises plant and animal cell applications (Junter et al., 

2002). Bacterial biofilm reactors are employed either in commodities production or in 

waste-water treatment applications. Biofilm reactors have been reportedly used to produce 

organic compounds with human use (Park and Toda, 1992; Kwak and Rhee, 1992; 

Velizarov et al., 1992).  

From an ecological point of view, life in a biofilm may offer important advantages to 

the cells (Flemming and Schaule, 1996).  

Table 2.3 summarizes the probable benefits of biofilm growth for microorganisms. 
 

Table 2.3 Benefits of biofilm growth for microorganisms (according to Davey and O´Toole, 

2000) 

Create their own microniche; 

Excretion of carbon compounds under limitation of other growth factors; 

Increased absorption of nutrients by EPS; 

Increased availability of nutrients by uptake from liquid passing by; 

Interspecies support within nutritional chains, interspecies communication; 

Protection against desiccation. 

 

2.4.2 Detrimental biofilms 
 
Unintentionally formed biofilms can create such detriments as biofouling of heat 

exchange systems and marine structures; microbial induced corrosion of metal surfaces or 

the deterioration of dental surfaces; contamination of household products, food preparations 

and pharmaceuticals; and the infection of short and long term indwelling biomedical 

implants and devices. Such detriments can range in severity from being a mere nuisance to 

being life threatening (Marshall, 1984; Bryers, 1991; Gilbert et al., 2003; McBain et al., 

2003; Hall-Stoodley et al., 2004). 
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Table 2.4 Detrimental effects of biofilm processes (according to Srinivasan et al., 1995) 

System Effects 

Cooling water towers and heat exchangers 
Energy losses due to increased fluid frictional 

and heat transfer resistances 

Drinking water distribution 
Increased suspended solids; coliform 

contamination 

Secondary oil recovery Plugging of water injection wells corrosion 

Process equipment Material corrosion or biodeterioration 

Food processing Contamination 

Metalworking Degradation of metal working fluid 

Paper manufacture Degradation of product quality 

Dental plaque Caries; periodontal disease 

Medical implants, catheters Persistent infections 

Ship hulls Increased frictional drag 

Reverse osmosis membranes Reduced permeability; material degradation 

Clean surfaces (health care, consumer) Health risks; cosmetic degradation 

Swimming pools Health risks; cosmetic degradation 

 

2.5 Implications of biofilms in food industry 
 
The general aims for microbial control in the food industry, including biofilm 

removal, are to prevent spoilage of products and to ensure that the quality specifications of 

the product are met. The most important means for maintaining efficient microbial control 

include (Figure 2.4): minimizing the microbial load from outside sources to the process; 

efficient control of growth at microbiologically vulnerable sites; adequate cleaning and 

disinfection of the process lines (Wirtanen et al., 2000).  

The target of microbial control in a process line is two-fold: to reduce or limit the 

number of microbes and their activity and to prevent and control the formation of deposits 

on process equipment. Nowadays, the most efficient means for limiting the growth of 

microbes are: good production hygiene, a rational running of the process line, and as well 

designed use of biocides and disinfectants (Maukonen et al., 2003). Novel means to control 

biofilm formation are constantly sought through the control of environmental factors, on the 

process line and the use of surfactants, biosurfactants, enzymes, and new antimicrobial 
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agents. The cleaning and disinfection of surfaces, the training of personnel and good 

manufacturing and design practices are important in combating hygiene problems in food 

industry (Wirtanen et al., 2000; Maukonen et al., 2003). Disinfection after the removal of 

biofilms, using suitable cleaning procedures, is also required in food plants where wet 

surfaces provide favourable conditions for microbial growth (Carpentier and Cerf, 1993) 
 

 
Figure 2.4 Sources, problems, and control of microbial contaminants in industrial 

processes (according to Maukonen et al., 2003). 
 
The attachment of the bacteria to the food product or the product contact surfaces 

leads to serious hygienic problems and economic losses due to food spoilage (Carpentier 

and Cerf, 1993; Wirtanen et al., 2000; Maukonen et al., 2003). In addition to that, a number 

of reports have appeared on the persistence of several foodborne pathogens on food contact 

surfaces (Kumar and Anand, 1998). If pathogens are present, then consumption of the 

contaminated product may pose a health risk (Chmielewski and Frank, 2003). Commonly 

found microorganisms in the food industry and on food contact surfaces are enterobacteria, 

lactic acid bacteria, micrococci, streptococci, pseudomonads, and bacilli (Maukonen et al., 

2003). Pseudomonas spp. are important bacterial contributors to spoilage of conventionally 

pasteurized fluid milk products, acting by two different ways. First, they produce the 

majority of lipolytic and proteolytic enzymes secreted into raw milk during pre-processing 

storage. Many of these enzymes can survive pasteurization (72 ºC for 15 s) and even ultra-

high-temperature treatments (138 ºC for 2 s or 149 ºC for 10 s) and can thus reduce the 
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sensory quality and shelf life of the processed fluid milk products. Second, Pseudomonas 

spp. can act in the post-pasteurization process, causing spoilage of conventionally 

pasteurized milk during refrigerated storage (Wiedmann et al., 2000; Dogan and Boor, 

2003). 

In the dairy industry, improperly cleaned and disinfected equipment and air-borne 

microorganisms are usually considered to be the main sources of contamination of milk and 

milk products. Wong (1998) reported that undesirable microorganisms such as 

Lactobacillus curvatus and Lactobacillus fermentum persisted on milk residues in cheese 

processing plants even after repeated cleaning, subsequently contaminating products. 

Processing environments commonly contribute to post-pasteurization contamination of 

pasteurized milk products, specifically, filling machines are an important source of 

contamination of pasteurized milk (Dogan and Boor, 2003). Some microorganisms, in 

biofilms, catalyze chemical and biological reactions causing corrosion of metal in pipelines 

and tanks (Chmielewski and Frank, 2003). Reduction in the efficacy of heat transfer 

(Mittelman, 1998) can occur if biofilms become sufficiently thick at locations such as plate 

heat exchangers. 

The time available for biofilm formation will depend on the frequency of cleaning 

regimes. Product contact surfaces may typically be cleaned several times per day, while 

environmental surfaces such as walls may be cleaned once per day (Gibson et al., 1999). 

There is, therefore, more time for biofilm formation on environmental surfaces. Gibson et 

al. (1995) found that although attachment to a variety of surfaces in the food processing 

environment readily occurred, extensive surface colonization and biofilm formation only 

occurred on environmental surfaces. Product contact surfaces may contaminate the product 

directly as the product touching or passing over the surface will potentially pick up 

microbial contamination (Gibson et al., 1995). Environmental surfaces such as floor and 

walls may be indirect sources of microbial contamination that can be transferred to the 

product by vectors such as the air, personal and cleaning systems (Holah, 1992; Gibson et 

al., 1999). The hygiene of the surfaces, therefore, affects the quality and safety of the food 

product. 

The key to the effective cleaning and disinfection of food plants is the understanding 

of the type and nature of the soil (carbohydrates, fat, proteins, mineral salts) and the 

microorganisms to be removed from the surfaces (Troller, 1993). Furthermore, the selection 

of detergents and disinfectants in food industry depends on the efficacy, safety and 
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rinsability of the agent as well as if it is corrosive or affects the sensory values of the 

product manufactured (Wirtanen et al., 2000). 

In food industry, equipment design and choice of surface materials are important in 

fighting biofilm formation. The most practical material in processing equipment is steel, 

which can be treated with mechanical grinding, brushing, lapping, and electrolytic or 

mechanical polishing. Dead ends, corners, cracks, crevices, gaskets, valves and joints are 

vulnerable points for biofilm accumulation (Maukonen et al., 2003). Provided that the 

equipment and environment are hygienically designed (with no crevices, dead spaces, 

surface material, etc), an effective cleaning and disinfection programme is the main method 

of control of the surface route of contamination. An effective disinfection programme 

removes undesirable material from the surfaces, including microorganisms, soil, foreign 

bodies and cleaning chemicals. This involves a number of stages: wetting of the soil and 

surface by the cleaning chemical; reaction of the chemical agent to facilitate removal from 

the surface; prevention of re-deposition and disinfection of residual microorganisms (Holah, 

1992; Gibson et al., 1999). Cleaning-in-place (CIP) procedures are usually employed in 

milk processing lines. Nevertheless, the limitation of CIP procedures is the accumulation of 

microorganisms on the equipment surfaces, resulting in biofilm formation (Kumar and 

Anand, 1998; Sharma and Anand, 2002), as can be seen in Figure 2.5.  

Figure 2.5 b, shows a plate from an heat exchanger after the application of a CIP 

procedure, comparing with Figure 2.5 c, it is evident the considerable existence of an 

organic deposit. 

 

a
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Figure 2.5 Plate heat exchanger (a) where plates were removed for analysis of the 

biological contaminants. Plate before (b) and after (c) organic deposit removal. 
 
An independent quality control system to monitor the cleaning results for a food 

plant can be integrated in the Hazard Analysis Critical Control Points (HACCP) program. 

According to Sharma and Anand (2002), evaluation of biofilms status and development of 

an effective sanitation plan should be part of the HACCP plan development in order to make 

them more meaningful. Effective sanitation programmes should be devised based on in vitro 

studies that could be invariably repeated under in situ conditions in order to control the 

biofilms prevalent in dairy/food processing areas (Sharma and Anand, 2002). 

 

2.6 Approach for biofilm mitigation – biofilm prevention  
 
In many technical processes microorganisms are not a problem as long as they 

remain planktonic. In other fields it would facilitate disinfection if attachment of 

microorganisms could be prevented. One strategy to prevent the formation of biofilms is to 

disinfect regularly, before biofilm formation starts (Meyer, 2003). However, there are a 

number of efforts in order to study strategies to prevent biofilm formation. 

Several attempts have been made by Rogers et al. (1994) to identify materials that do 

not promote or even suppress biofilm formation in drinking water distribution systems. The 

investigators ranked different materials according to biofilm growth of microorganisms in 

general and Legionella pneumophila in particular, concluding that there is hardly that any 

material does not allow biofilm formation. Nevertheless, such rankings have to be evaluated 

with caution because they may vary with the microbial species and with the test conditions.  

b c
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 Inhibition of biofilm formation by limitation of the carbon source is a virtually 

impossible procedure, since ultra-pure water systems have been found to support the 

formation of biofilms (Griebe and Flemming, 1998). Another approach is to supply the 

microorganisms with growth factors, so surface attachment is no more a benefit for them 

(Meyer, 2003).  

Several attempts have been made to avoid biofilm formation by incorporation of 

antimicrobial agents into surface materials or coat surfaces with antimicrobial agents 

(Meyer, 2003; Thouvenin et al., 2003). This mode of biofilm prevention has more 

application in the biomedical field. Biofilm formation on implanted medical devices is a 

frequent cause of implant rejection. Several authors report inhibition of biofilm formation 

on such devices by coating with silver (Klueh et al., 2000; Hashimoto, 2001). Gottenbos et 

al. (2001) demonstrate a reduction in infection rate using silicone rubber implants with 

covalently coupled quaternary ammonium coatings. The process of coating materials has yet 

found its way to broad application. This may be due to the conflicting results regarding the 

clinical benefit, which are reported by different researchers (Logghe et al., 1997; Berry et 

al., 2000).  In other application fields, like the food industry, possible carry over of 

antimicrobial agents into food are an only temporary effect, when coatings release 

antimicrobial agents, restricted the use of these coatings (Meyers, 2003). 

Cloete and Jacobs (2001) reported that, surface active agents have been employed to 

prevent bacterial adhesion to surfaces. Unfortunately, little published information is 

available on the efficiency of surfactants against bacterial attachment. According to Paul 

and Jeffrey (1985), dilute surface active agents completely inhibited the attachment of 

estuarine and marine bacteria. 

 

2.7 New methodologies for biofilms control 
 
The biotechnology sector is just beginning to tackle the problem of biofilms by 

developing antimicrobial agents with novel mechanisms of action. Some studies seek to 

prevent biofilm formation, others aim to develop antimicrobial agents to treat existing 

biofilms, and still others are trying to disrupt the polymeric ties that bind the biofilms 

together (Schachter, 2003).  
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2.7.1 Biofilm control with enzymes 

 
 The use of enzyme-based detergents as biocleaners, also known as “green 

chemicals”, can serve as a viable option to overcome the biofilm problem in the food 

industry. However, the technology and production of these enzymes and the enzyme-based 

detergents is mostly patent-protected. Enzymes can be used to degrade biofilm, but due to 

the heterogeneity of the EPS in the biofilm, a mixture of enzyme activities may be necessary 

for a sufficient degradation of bacterial biofilms. Enzymes and detergents have also been 

used as synergists to improve disinfectant efficacy (Jaquelin et al., 1994; Johansen et al., 

1997; Meyer, 2003). The specific mode of action makes it a complex technique, increasing 

to the difficult that is to find enzymes that are effective against all different types of 

biofilms. So, formulations containing several different enzymes seem to be fundamental for 

a successful biofilm control strategy. Basically, proteases and polysaccharide hydrolysing 

enzymes may be useful (Johansen et al., 1997). Although, the use of enzymes in removal of 

bacterial biofilms is still limited, partly due to the low prices of the chemicals used today. 

Also, the low commercial accessibility of different enzyme activities limits their usage 

(Johansen et al., 1997). 

 

2.7.2 Biofilm control with phages 
 
When phages come in contact with biofilms, further interactions occur, dependent on 

the susceptibility of the biofilm bacteria to phage and to the availability of receptor sites. If 

the phage also possesses polysaccharide-degrading enzymes, or if considerable cell lysis is 

affected by the phage, the integrity of the biofilm may rapidly be destroyed. Hughes et al. 

(1998) working in the control of biofilms of Enterobacter agglomerans by the use of phages 

found that the cells were readily lysed and the biofilm degraded by the addition of 

bacteriophage if certain criteria were met. The bacteria had to be susceptible to the phage, 

and the phage polysaccharide depolymerise had to be able to degrade the biofilm EPS. The 

phage then lysed the biofilm cells, the polymerase enzyme degraded the EPS and caused the 

biofilm slough off. If only one of these criteria was met, there was still a substantial degree 

of biofilm degradation. Alternatively, coexistence between phage and host bacteria within 

the biofilm may be developed (Hughes et al., 1998).  

However, phage have been proposed as a means of destroying or controlling 

biofilms, the technology for this has not yet been successfully developed and relatively little 
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information is available on the action of bacteriophage on biofilms (Hughes et al., 1998; 

Sutherland et al., 2004).   

 

2.7.3 Biofilm control by means of interspecies interactions – bioregulation 
 

 The existence of multiple interactions or the simple production of a metabolite can 

interfere with the development of what seems to be structurally organized communities 

existent within a biofilm. Competition for substrate is considered to be one of the major 

evolutionary driving forces in the bacterial world, and numerous experimental data obtained 

in the laboratory under well-controlled conditions show how different microorganisms may 

effectively out compete with others because of better utilization of a given energy source 

(Christensen et al., 2002). Furthermore, many bacteria are capable of synthesizing and 

excreting surfactants. In a competitive environment this phenomenon could play a 

significant role. Al-Tahhan et al. (2000) pointed out that even very low levels of a 

rhamnolipid biosurfactant, synthesized by a Pseudomonas spp., could render the cell surface 

more hydrophobic. It has been suggested that biosurfactants might be involved in the 

transfer of exopolymer from one bacterial species to another, taking place more efficiently 

within the matrix of a biofilm where the cells are in close proximity to each other 

(Osterreicher-Ravid et al., 2000). Nevertheless, in a mixed species biofilm, this cell feature 

promoted by a bacterial specie could have antimicrobial properties to the others species. The 

production of biosurfactants can impair the formation of biofilms (Daniels et al., 2004). 

Several authors (Leriche and Carpentier, 2000; Zhao et al., 2004) found that the 

microorganisms comprising the biofilms on dairy plant surfaces could play a role by 

interfering with the biological activities of pathogenic bacteria and therefore, could be used 

to improve the hygiene of surfaces. Surfactin from Bacillus subtilis disperses biofilms 

without affecting cell growth and prevents biofilm formation by microorganisms such as 

Salmonella enterica, Escherichia coli, and Proteus mirabilis (Mireles et al., 2001). Also, 

lactic acid bacteria and their products have been well documented for their antimicrobial 

activity against the growth of Listeria monocytogenes (Zhao et al., 2004).  

The discovery that wide spectrums of bacteria use quorum sensing to perform 

biofilm formation and differentiation makes it an attractive target for biofilm control (Cui, 

2003; Daniels et al., 2004). 
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2.8 Biofilm control – cleaning and disinfection 
  

2.8.1 Biocidal products - definition 
 
According to the Directive 98/8/EC of the European Parliament and of the Council 

of 16 February 1998, concerning the placing of biocidal products on the market, biocides 

are active substances and preparations containing one or more active substances, put up in 

the form in which they are supplied to the user, intended to destroy, deter, render harmless, 

prevent the action of, or otherwise exert a controlling effect on any harmful organism by 

chemical or biological means. 

 The term biocide is commonly used as synonym of antimicrobial agent or 

disinfectant/sanitizers. Nevertheless, according to Gilbert and McBain (2003) the three 

terms are differentiated and defined as: 

Biocides are active substances that above certain concentrations and defined 

conditions will kill cells within specified times; 

Antimicrobial agents are active substances that have adverse effects on the growth or 

survival of microorganisms; 

Disinfectants/sanitizers are formulations containing active substances that are safe 

for the application to inanimate surfaces and which kill specified groups of disease-

producing microorganisms within specified times.  

 

2.8.2 Environmental parameters required for biocides use 
 
The above mentioned Directive proposes that a biocidal product showed obey to the 

following characteristics: 

• is sufficiently effective; 

• has no unacceptable effects on the target organisms, such as unacceptable resistance 

or cross-resistance; 

• has no unacceptable effects itself or as a result of its residues, on human or animal 

health, directly or indirectly (i.e., through drinking water, food or feed, indoor air or 

consequences in the place of work) or on surface water and groundwater; 

• has no unacceptable effect itself, or as a result of its residues, on the environment 

having particular regard to the following considerations: 
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 its fate and distribution in the environment; particularly 

contamination of surface waters (including estuarian and seawater), 

groundwater and drinking water; 

 its impact on non-target organisms; 

• its physical and chemical properties have been determined and deemed acceptable 

for purposes of the appropriate use, storage and transport of the product. 

 

2.8.3 Cleaning and disinfection 
 
 In food industry the operations of cleaning and disinfection are essential parts of 

food production and the efficiency with which these operations are performed greatly 

affects final product quality (Carpentier and Cerf, 1993). Cleaning and disinfection 

operations will be considered separately, even thought in practice they are sometimes hard 

to dissociate. 

 

2.8.3.1 Cleaning 
 
Cleaning is an important stage for minimizing microbial colonization of industrial 

food processing equipment (Carpentier and Cerf, 1993). It seems to be of fundamental 

importance to eliminate as many microorganisms as possible before applying a disinfectant. 

Cleaning procedures should effectively remove food debris and other soils that may contain 

microorganisms or promote microbial growth. Most cleaning regimes include removal of 

loose soil with cold or warm water followed by the application of chemical agents, rinsing, 

and disinfection. High temperatures can reduce the need for physical force (Carpentier and 

Cerf, 1993; Maukonen et al., 2003). Chemical agents, usually surface active agents or alkali 

compounds, used as detergents, suspend and dissolve food residues by decreasing surface 

tension, emulsifying fats, and denaturing proteins (Maukonen et al., 2003). These chemical 

agents are currently used in combination. Many situations, in the dairy industry, require the 

occasional use of acid cleaners to clean surfaces soiled with precipitated minerals or having 

high food residue/mineral content (such as milkstone). Mechanical action (water turbulence 

and scrubbing) are recognized as being highly effective in eliminating biofilm (Chmielewski 

and Frank, 2003; Maukonen et al., 2003). An effective cleaning procedure must break up or 
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dissolve the EPS matrix associated with the biofilm so that disinfection agents can gain 

access to the viable cells (Carpentier and Cerf, 1993; Gibson et al., 1999).  

The cleaning process can remove 90 % or more of microorganisms associated with 

the surface, but cannot be relied upon to kill them. Bacteria can redeposit at other locations 

and, given time, water and nutrients can form a biofilm. Therefore, disinfection must be 

implemented (Gibson et al., 1999). Other drawback of a cleaning process is that it is often 

impracticable and can be costly because it usually involves equipment downtime, being 

biocides and antibiotics the main weapons to control biofilms (Srinivasan et al., 1995). 

In dairy and food processing units, cleaning is very important and it is imperative 

that all food-contact surfaces of processing and handling equipment be clean and hygienic, 

to prevent microbial contamination and to produce quality food products. However, to 

achieve this goal, the cleaning system should include a specific sequence of cleaning agents 

and sanitizers applied by defined time–temperature combinations after the use of the 

equipment. In practice, much attention is given to the cleaning and sanitizing operations 

within the cleaning system. These are complementary processes which together help to 

achieve the desired results.  

 

2.8.3.2 Disinfection 
 
Disinfection is the use of products (disinfectants) to destroy microorganisms. 

Nevertheless, microorganisms have been found in disinfectant solutions, which is due to 

their ability to form resistant strains and build-up protective biofilms (Gilbert and Allison, 

1999; McBain et al., 2000). This means that microbial contamination can be spread on the 

surface to be disinfected instead of being disinfected.  

In food plant operations, disinfection is required, since wet surfaces provide 

favourable conditions for the growth of microorganisms (Maukonen et al., 2003). The aim 

of disinfection is to reduce the surface population of viable cells after cleaning and prevent 

microbial growth on surfaces before restart of production. Disinfectants do not penetrate the 

biofilm matrix left on a surface after an ineffective cleaning procedure, and thus do not 

destroy all the living cells in biofilms (Holah, 1992; Carpentier and Cerf, 1993). 

Disinfectants are more effective in the absence of organic material (fat, carbohydrates, and 

protein based materials). Interfering organic substances, pH, temperature, water hardness, 

chemical inhibitors, concentration and contact time generally control the efficacy of 
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disinfectants (Mosteller and Bishop, 1994; Cloete et al., 1998). The disinfectants must be 

effective, safe and easy to use, and easily rinsed off from surfaces, leaving no toxic residues 

that affect the sensory values of the product. The use of disinfectants in food plants depends 

on the material used and the adhering microorganisms. The disinfectants to be used should 

be chosen based on the following statements (Troller, 1993; Wirtanen, 1995; Wirtanen et 

al., 2000): 

- is the disinfectant effective in the pH range used? 

- is the disinfectant stable when diluted? 

- is the disinfectant toxic, safe or irritating? 

- what is the microbial spectrum of the disinfectant? 

- how does the temperature affect the activity of the disinfectant? 

- is the disinfectant corrosive at the surface? 

- is the disinfectant surface active? 

- is the disinfectant stable when reacting with organic material? 

 

Table 2.5 resumes the properties of disinfectants commonly used in industrial 

systems.  
 

Table 2.5 Properties and uses of chemical disinfectants (based on Troller, 1993; Banner, 

1995; Wirtanen, 1995)  

Disinfectant type Applications Limitations Comments 

Chlorine 

Neutral/alkaline conditions; 

Stainless steel; 

Food contact surfaces; 

Floors/walls/air; 

CIP, spray, soak, fog 

 

Acid conditions; 

High temperature; 

Soft metal; mild steel; 

Vapour phase corrosion 

Broad spectrum kill; 

Organic Cl less corrosive; 

Taste/odour carryover; 

Irritates eyes, skin, etc; 

Environmentally unfriendly; 

Cheap 

Chlorine dioxide 

Water treatment/slime/odour 

control; 

Rinse for fruit/vegetables; 

Acid form on food contact 

surfaces; 

Stainless steel; 

CIP, spray, soak 

Stabilized  form slower and 

less active under 

alkaline/neutral conditions; 

More active acid form 

requires activating acid, 

mixing step; 

More expensive than 

chlorine; 

Hazards of generating gas; 

Irritant to workers 

Acidified form is broad 

spectrum; 

Does not form chloramines 

or trihalomethanes; 

Uncertain corrosion 

properties 
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Iodine 

Acid conditions, < pH 3; 

Stainless steel, plastics; 

Food contact surfaces; 

Floors/walls; 

CIP, spray, soak, manual; 

Hand disinfectant; 

Carbon dioxide atmosphere; 

Helps dissolve mineral 

deposits 

Less effective than chlorine; 

Activity declines rapidly 

above pH 5; 

Corrosive to soft metals and 

mild steel; 

Stains certain plastics; 

Potential taste/odour 

carryover; 

Most foam upon circulation 

Broad spectrum kill; 

Organic soil reduces 

efficacy; 

More costly than chlorine 

but effective at lower 

concentration 

Anionic 

surfactants at 

acid conditions 

Acid conditions, < pH 3; 

Carbon dioxide atmosphere; 

Stainless steel, plastics; 

Foam on external surfaces; 

CIP, spray, soak, manual; 

Carbon dioxide atmosphere; 

Overnight disinfection; 

Milkstone/beerstone removal 

Effective only at low pH; 

Neutralized by detergent 

residues; 

Corrosive to soft metals, 

mild steel; 

Some products moderate to 

high form upon circulation 

Moderate to high foam 

production; 

Stable at high temperature; 

No odour/taste carryover; 

More costly than halogens 

Peracetic acid 

Acid conditions; 

Carbon dioxide atmosphere; 

Stainless and mild steel, soft 

metals, plastic, rubber; 

Food contact surfaces; 

CIP, spray, soak 

Corrosive in presence of 

chlorine ions; 

Concentrate causes burns, 

irritations; 

Pungent odour; 

Rapid decomposition at high 

temperatures, generates gas 

and heat; 

Rapid decomposition by 

metals, organic matter 

Broad spectrum kill; 

Safe decomposition 

products; 

Concentrate should not 

contact mild steel, soft 

metals; 

No phosphates; 

Moderate cost 

Quaternary 

ammonium 

compounds 

(cationic 

surfactants) 

Neutral/alkaline conditions; 

Applicable to all materials; 

Food contact surfaces; 

Environmental areas/residue 

can extend activity; 

Mildew and odour control; 

Water treatment; 

Spray, soak, manual, 

circulation 

 

Selective germicidal activity; 

Residual fil affects cheese 

starter cultures; 

Moderate to high foam upon 

circulation; 

Toxicity at high 

concentrations; 

Neutralized by certain 

surfactants 

Properties vary among 

different QAC´s; 

Effective for wetting and 

penetrating soils; 

Effective in presence of 

organic soils; 

Non-irritating; 

Newer QAC´s have high 

water hardness tolerance 

Amphoteric 

surfactants 

Neutral/alkaline conditions; 

Applicable to all materials; 

Food contact surfaces; 

Environmental areas; 

Spray, manual soak; 

Fog air; 

Reduced activity under acid 

conditions; 

Selective germicidal activity; 

Residual film affects cheese 

starter cultures; 

Used at high concentrations; 

No odour/taste carryover; 

Low toxicity; 

Non-irritating 
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Foam is suitable for external 

surface disinfection 

Moderate to high cost; 

Moderate to high foam 

Polymeric 

biguanides 

Acid/alkaline conditions; 

Applicable to all materials; 

Food contact surfaces; 

Environmental areas; 

Can/bottle warmers, water 

treatment; 

Spray, soak, manual, 

circulation; 

Fog air 

Limited activity; 

Incompatible with anionic 

surfactants; 

Moderate to high cost 

Activity reduced by organic 

soil 

Glutaraldehyde 

Neutral/alkaline conditions; 

Non-corrosive to all 

materials; 

Water treatment/slime 

control in can/bottle 

warmers, tunnel pasteurizers; 

Glycol and sweetwater 

systems in dairies; 

Conveyor lines 

Slower, less active under 

acid conditions; 

Absorbed by porous 

materials 

Broad spectrum kill; 

Less toxic and irritating and 

less offensive odour than 

formaldehyde; 

Toxicity at high 

concentrations 

Isothiazolinones 

Acid, alkaline, neutral 

conditions; 

Applicable to all materials; 

Cooling water/towers, 

can/bottle warmers; 

Long-term, continuous 

activity; 

Conveyor lubricants 

Slowly active; 

Use on non-food contact 

surfaces 

Broad spectrum kill; 

More active under acid 

conditions 

Phenolics 
Lubricants for conveyor 

lines; 

Water treatment 

Variable germicidal activity; 

Toxicity; 

Irritates body tissue; 

Readily absorbed by many 

materials; 

Unpleasant odours 

 

Hydrogen 

peroxide 

Applicable to all materials; 

Sporicide at high 

concentration at high 

temperature; 

Aseptic packing of 

beverages 

Weak germicidal properties; 

Efficacy at high 

temperatures/high 

concentration; 

Destabilized by metal 

contaminants (copper, iron) 

 

Safe decomposition 

products, water and oxygen 
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2.9 Mode of action of antimicrobial agents 
 
The processes involved in the antimicrobial action comprise transportation of the 

antimicrobial agent to the surface of the cell, adsorption, diffusion, penetration and 

interaction at the target site. These processes are not instantaneous, the time they take, and 

the correspondent killing time may differ within antimicrobial agents. The differences also 

depend on the mode of action, as well as on the chemical constitution and chemico-physical 

properties of the chemical (Paulus, 1993). 

An antimicrobial effect can be defined as an interaction between an active substance 

and specific targets of the microbial cell. Critical governing features of these interactions are 

the physicochemical characteristics of the chemical agent, cell morphology, and the 

physiology status of the microorganism (Paulus, 1993; Denyer and Setwart, 1998). In Figure 

2.6 are depicted the targets of action of several antimicrobial agents against 

microorganisms. 

 
Figure 2.6 Mechanisms of microorganism inactivation by antimicrobial agents (according to 

Cloete et al., 1998; Cloete, 2003). CRA´s = chlorine-releasing agents; QAC´s = quaternary 

ammonium compounds. 
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 Antimicrobial agents derive from a variety of chemical classes. The precise 

mechanisms of interaction often reflect this diversity, although the final damage outcomes 

may show considerable similarity. Taking into account Figure 2.6 and according to Denyer 

and Stewart (1998), antibacterial events include:  

• Disruption of the transmembrane proton motive force leading to an uncoupling of 

oxidative phosphorylation and inhibition of active transport across the membrane; 

• Inhibition of respiration or catabolic/anabolic reactions; 

• Disruption of replication; 

• Loss of membrane integrity resulting in leakage of essential intracellular constituents 

such as potassium cation, inorganic phosphate, pentoses, nucleotides and 

nucleosides, and proteins; 

• Lysis; 

• Coagulation of intracellular material. 

 

2.10 Factors influencing the efficacy of antimicrobial agents - 

environmental conditions 
 
The efficacy of the application of a disinfection procedure is the result of the correct 

application of an efficient antimicrobial agent. That means that lack of efficacy may have 

multicasual explanations and resistance is only one of them. There are some reasons to 

cause loss of efficacy in a disinfection process which may be misunderstood as resistance. 

They can be summarized as follows (Bessems, 1998; Heinzel, 1998; Russell, 2003): 

• Use of an inefficient product, i.e., an antimicrobial agent which has an incomplete 

spectrum of activity. By this way all microorganisms which are outside the range of 

product efficiency will survive; 

• Application of the product without regard to the correct conditions as recommended 

by the supplier. This concerns mainly concentration, pH, temperature, and time of 

application but also inactivation by organic matter or other products; 

• The prolonged application of antimicrobial agents at sublethal concentrations may 

provoke the adaptation of microorganisms to these antimicrobial agent and possibly 

to other antimicrobial agents; 

• Insufficient contact of the antimicrobial agent with the microorganisms; 



     Literature review 

 37 

• Insufficient availability of the antimicrobial agent. 

All these circumstances may diminish the expected action of the antimicrobial 

agents. 
 

 Nevertheless, the main reasons for the failure of a disinfection procedure are linked 

with the development of microbial resistance to antimicrobial agents. According to Gilbert 

and McBain (2003), resistance is a description of the relative insusceptibility of a 

microorganism to a particular treatment under a particular set of conditions. For 

antimicrobial agents, it is usually quantified as the concentration that caused sublethal 

effects on the population cells. Besides the environmental factors, resistance to 

antimicrobial agents can be a natural property of a microorganism (intrinsic) or acquired by 

mutation or acquisition of plasmids - self-replication, extrachromosomal DNA or 

transposons - chromosomal or plasmid integrating, transmissible DNA cassettes 

(McDonnell and Russell, 1999; White and McDermott, 2001; Gilbert et al., 2002; Cloete, 

2003; Gilbert and McBain, 2003).  

 

2.11 Mechanisms of cellular resistance to antimicrobial agents 
 

2.11.1 Reduced susceptibility to antimicrobial agents associated with genotypic changes 

(acquired mechanisms) 
 
Reduced susceptibility of microorganisms to antimicrobial agents may be acquired 

through mutation, or by the acquisition of a plasmid or transposon (Beumer et al., 2000; 

White and McDermott, 2001; Gilbert and McBain, 2003). Chromosomal gene mutations 

conferring resistance to antibiotics are relatively well studied (McDonnell and Russell, 

1999; Beumer et al., 2000; White and McDermott, 2001). By contrast, fewer studies have 

been performed to determine whether mutation confers resistance to biocides or to 

disinfectants (McDonnell and Russell, 1999). The mutation that alters the target site of an 

antimicrobial agent, which acts at specific sites within the bacterial cell, is likely to cause 

resistance. These mechanisms of resistance are observed through the existence of bypass in 

the bacterial ribosome or a metabolic enzyme, or overproduction of the target enzyme or of 

an efflux pump (Beumer et al., 2000).  

Acquired resistance arises via mutation or as result of the acquisition of genetic 

elements - plasmids, transposons (White and McDermott, 2001). Acquired, nonplasmid-
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encoded resistance may result when bacteria are trained to grow in gradually increasing 

concentrations of a biocide, although, resistance is not always stable. Temporary resistance 

by phenotypic adaptation is known, but is considered that, in general, a nongenetic 

adaptative type of resistance is unlikely to play an important role in determining the long-

term survival of bacteria to antimicrobial agents (Russell, 2001).  

 

2.11.2 Intrinsic properties of microorganisms conferring reduced susceptibility to 

antimicrobial agents 
 
Intrinsic insusceptibility is a natural property of a microorganism and is shown by 

bacterial spores, mycobacteria, and several Gram-negative bacteria. As summarized in 

Figure 2.7 Gram-negative bacteria are generally relatively less susceptible to antimicrobial 

agents than Gram-positive bacteria because their cell walls present a more significant barrier 

to entry (McDonnell and Russell, 1999). The outer membrane of Gram-negative bacteria 

acts as a permeable barrier because the narrow porin channels limit the penetration of 

hydrophobic molecules and the low fluidity of the lipopolysaccharides leaflet slows down 

the inward diffusion of lipophilic compounds (McDonnell and Russell, 1999; Cloete, 2003). 

Mycobateria, which possesses a waxy envelope that inhibits the uptake of some 

antimicrobial agents, are even more resistant (McDonnell and Russell, 1999). The coat and 

the cortex of bacterial spores present a barrier to the entry of antimicrobial agents, 

explaining their relatively extreme insusceptibility (McDonnell and Russell, 1999; Cloete, 

2003).  

When spores germinate, the biochemical and structural changes that follow often 

results in the germinating cells becoming more susceptible to the action of some chemical 

compounds (Beumer et al., 2000). So, the intrinsic microbial resistance is frequently 

associated with cellular impermeability imparted by the outer layers of a bacterial cell that 

limit the uptake of antimicrobial agents, although active efflux pumps appears to be an 

important process (Russell, 2001; Cloete, 2003; Gilbert and McBain, 2003). Efflux is 

increasingly implicated as a resistance mechanism. Efflux pumps contribute to the intrinsic 

resistance of Gram-negative bacteria by pumping out a variety of agents, including dyes, 

detergents and antibiotics (Beumer et al., 2000; Cloete, 2003). Efflux pumps are recognised 

as common membrane components in all cell types, from prokaryotes to superior eukaryotes 

(van Bambeke et al., 2003). It confers bacteria a common and basic mechanism of 
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resistance by extruding toxic molecules (Cui, 2004). In the context of antibiotic resistance, 

the term multidrug resistance (Mdr) is used to describe a situation where reduced 

susceptibility to an antibiotic is associated with reduced susceptibility to other chemically 

unrelated antibiotics through an efflux mechanism. There is evidence that P. aeruginosa can 

efflux triclosan and that this represents an important intrinsic susceptibility to bisphenol 

(Chuanchuen et al., 2001). The presence of the efflux systems coupled with the narrow 

porin channels in the outer membrane of the cell which restricts diffusion of antimicrobial 

agents into the cells is responsible for the very high intrinsic resistance of Gram-negative 

bacteria to antimicrobial agents (Beumer et al., 2000; Cloete, 2003). 

As well as impaired uptake or increased efflux, some microorganisms demonstrate 

intrinsic resistance through the inactivation of antimicrobial agents (Beumer et al., 2000). 

Some bacteria can degrade antimicrobial agents (Nishihara et al., 2000; Gilbert and 

McBain, 2003) and this phenomenon does not appear to be any plasmid involvement, 

representing another example of intrinsic insusceptibility.  

Physiological (phenotypic adaptation of microorganisms that reduces susceptibility 

to antimicrobial agents in response to environmental changes is also considered as intrinsic 

resistance (McDonnell and Russell, 1999). The cell phenotype expressed can vary 

significantly depending on the environmental conditions under which it is grown (White and 

McDermott, 2001; Russell, 2003). The resistance of these microorganisms to antimicrobial 

agents may derive partly from changes in outer cell layers that increase the barrier 

properties and prevent access to their site of action, but other changes are also involved 

(McDonnell and Russell, 1999; White and McDermott, 2001; Cloete, 2003; Russell, 2003). 

The association of microorganisms with solid surfaces leads to the formation of a biofilm, 

with bacteria in different zones of the biofilm experiencing different nutrient environments 

and displaying different physiological properties (Gilbert et al, 1990; Brown and Gilbert, 

1993; McDonnell and Russell, 1999). Reduced susceptibility of bacteria in biofilms to 

antimicrobials can sometimes be extreme and is probably caused by a variety of factors 

including nutrient depletion within the biofilm, reduced access of the antimicrobial agent to 

cells in the biofilm, chemical interaction between the chemical agent and the biofilm, and 

the production of degradative enzymes and neutralizing chemicals (Brown and Gilbert, 

1993). Biofilms have been reported as possessing susceptibilities towards biocides and 

antibiotics that are 100 – 1000 times less than equivalent populations of planktonic bacteria 

(Gilbert et al., 2002). 
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The phenomenon involved in the resistance of biofilms to antimicrobials agents will 

be consistently developed ahead on this chapter. 
 
 

High resistance 
 

Prions* (CJD, BSE) 
 

Coccidia (Crysptosporidium) 
 

Spores (Bacillus, C. difficile) 
 

Mycobacteria (M. tuberculosis, M. avium) 
 

Cysts (Giardia) 
 

Small non-envelope viruses (Polio virus) 
 

Trophozoites (Acanthamoeba) 
 

Gram-negative bacteria (Pseudomonas, Providencia spp.) 
 

Fungi (Candida, Aspergillus) 
 

Large non-enveloped viruses (Adenoviruses, Enteroviruses) 
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Figure 2.7 Descending order of resistance to disinfectants. The asterisk indicates that the 

conclusions are not yet universally agreed upon (based on McDonnell and Russell, 1999). 
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2.12 Mechanisms of biofilm resistance to antimicrobial agents 
 
There is no one answer to the question of why and how bacteria growing in a biofilm 

develop increased resistance to antimicrobial agents. In the following statements will be 

described some of the possible mechanisms that can account for the resistance of bacteria 

within biofilms to antimicrobial compounds. 

 

2.12.1 Resistance and the extracellular polymeric matrix 
 
It has been suggested and previously described in sub-chapter 2.3.2 that the 

extracellular polymeric matrix, among other functions, prevents the access of antimicrobial 

agents to the cells embedded in the biofilm community (Mah and O´Toole, 2001). The 

presence of a charged, hydrated exopolymer matrix around individual cells and 

microcolonies profoundly affects the access of antimicrobial agents. Restricted diffusion 

from the surrounding medium, by a combination of ionic interaction and molecular sieving 

events, may occur for appropriate classes of molecules (Costerton et al., 1987). The 

constituents of the biofilm matrix act as would an ion exchange resin and actively remove 

strongly charged molecules (Gilbert et al., 2002). Total penetration failure will only occur 

when the reaction sites are sufficient to deplete the bulk concentration of the antimicrobial 

agent or replenishment of the matrix proceeds at a faster rate than does adsorption/reaction 

and diffusion (Stewart et al., 1998; Gilbert et al., 2002). Diffusion limitation studies have 

generally focused on antibiotics rather than biocides and upon medically relevant biofilm 

populations rather than biofilms in industrial situations (Stewart, 1996).  

In addition to the potential of the biofilm matrix to react directly and chemically 

quench reactive moieties, retention of enzymes with the capability to inactivate 

antimicrobial agents within the biofilm matrix will amplify its barrier properties with 

respect to the diffusion of suitable substrates (Heinzel, 1998; Gilbert et al., 2002). 

 

2.12.2 Resistance associated with growth rate and nutrient availability 
 
When a bacterial cell culture becomes starved for a particular nutrient, it slows its 

growth. Transition from exponential to slow or no growth is generally accompanied by an 

increase in resistance to antimicrobial agents (Wentland et al., 1996; Lewis, 2001). Because 
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cells growing in biofilms are expected to experience some form of nutrient limitation, it has 

been suggested that this physiological change can account for the resistance of biofilms to 

antimicrobial agents (Mah and O`Toole, 2001). Desai et al. (1998) compared the resistance 

of planktonic and biofilm cells at different stages during exponential growth up to the entry 

into stationary phase. They found that resistance increased as the planktonic cultures and the 

biofilm cells approached stationary phase. The maximal resistance of both cultures occurred 

in stationary phase where the biofilm cells were about 15 times more resistant than the 

planktonic cells. These results suggested that some determinant other than growth rate is 

responsible for a certain level of resistance and slow growth adds additional protection (Fux 

et al., 2005a).  

Oxygen gradients within the biofilm may also directly influence the activity of some 

antibacterial agents (Gilbert et al., 2002). Another phenomenon associated with biofilm is 

the existence of physiological gradients across biofilms on growth and metabolism of cells 

at the periphery to consume nutrients before they permeate to the more deeply placed cells. 

The peripheral cells will have growth rates and nutrient profiles that are similar to those of 

planktonic cells, allowing for the existence of heterogeneity within biofilm. Advances in 

technology have resulted in the ability to visualize the heterogeneity within a biofilm (Fux 

et al., 2005a). A staining method utilizing acridine orange was employed to identify regions 

of biofilms that contained rapidly or slowly growing cells based on their relative RNA-DNA 

content (Wentland et al., 1996). The environmental heterogeneity that exists within a 

biofilm might promote the formation of a heterogeneous population of cells, such different 

levels of resistance can be expressed throughout the community (Wentland et al., 1996; Fux 

et al., 2005a). So, a major contributor towards the inefficacy of antimicrobial treatments 

when applied to biofilms must, therefore, be associated with physiological heterogeneity 

(Allison et al., 2000; Mah and O`Toole, 2001). 

 

2.12.3 Resistance associated with the adoption of resistance phenotypes 
 
Bacteria can sense the proximity of a surface, up-regulate production of EPS and 

rapidly alter their susceptibility to antimicrobial agents after binding. In some instances, 3 to 

5 fold decreases in susceptibility occurred immediately on attachment in the presence of 

antimicrobial agents that exceeded the minimum inhibitory concentration for planktonic 

cells (Gilbert et al., 2002; Fux et al., 2005a). The magnitude of the decreases in 
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susceptibility observed immediately after bacterial attachment, but before biofilm formation, 

is generally far less than that observed in mature biofilms and is insufficient to account for 

the reported levels of resistance in biofilm communities (Gilbert et al., 2002). 

The microorganisms generate physiological changes that act to protect the cell from 

various environmental stresses. Thus, the cells are protected from the detrimental effects of 

heat shock, cold shock, changes in pH and many chemical agents. Nevertheless, the 

physiological changes begin when cells attach to a surface, by expressing a biofilm 

phenotype that can confer resistance face to stress environmental conditions (Mah and 

O`Toole, 2001; Gilbert et al., 2002). This resistant phenotype might be induced by nutrient 

limitation, certain types of stress, high cell density, efflux of the treatment agent or a 

combination of these phenomena (Mah and O`Toole, 2001).  

The role of quorum sensing in antimicrobial resistance is not yet clear. It has been 

suggested that regulation of EPS, under the control of signal molecules such as N-acyl 

homoserine lactones is responsible for the early transcriptional events associated with 

biofilm formation (Davies et al., 1998). Such global regulators are responsive to increases in 

cell density, beyond critical threshold values, and may be general regulators of biofilm-

specific physiology (Davies et al., 1998). In biofilms, signal molecules would become 

concentrated within geometric centre of biofilm, thereby increasing EPS production. This 

would alter the distribution and density of cells throughout the matrix and confer some level 

of structural organization upon the community to provide customized microniches at various 

points within the biofilm (Gilbert et al., 2002). Brooun et al. (2000) showed that P. 

aeruginosa mutants defective in quorum sensing were unaffected in their resistance to 

detergents and antibiotics. Nevertheless, Mah and O`Toole (2001) suggest that additional 

experiments are required to elucidate the role of quorum sensing in antimicrobial resistance. 

Sublethal concentrations of antimicrobial agents might act as inducers/transcriptional 

activators of more tolerant phenotypes, such as those expressing the multidrug resistance 

operons and efflux pumps in E. coli (Ma et al., 1993; Maira-Litran et al., 2000).  

A novel hypothesis for the considerable recalcitrance of biofilm relates to the 

potential of damaged bacterial cells to undergo apoptosis or programmed cell death. Lewis 

(2000; 2001) suggested that death of cells following treatment with antimicrobial agents 

results not from direct action of the agent but from a programmed suicide mechanism and 

cellular lysis. Following the absence of an adverse condition, the damaged persistent cells 

would grow rapidly in the presence of nutrients released from their lysed community 
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partners and the community would become restored. These cells would survive treatment 

phases and proliferate in the post-treatment phase, thereby stimulating considerable 

recalcitrance upon the biofilm community. 
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Material and methods 
 

 

Abstract 
 
This chapter describes the general methodology used to perform the work presented 

in the several chapters of results that constitute this thesis. 
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3.1 Microorganism and culture conditions 
 

 Three different Pseudomonas fluorescens strains were used throughout this work: 

 The type strain purchased from the American Type Culture Collection, 

Pseudomonas fluorescens ATCC 13525T; 

 Pseudomonas fluorescens D3-348 and Pseudomonas fluorescens D3-350, two 

strains isolated from an overhead pipe filler in a dairy processing plant (Dogan and Boor, 

2003), gently provided by Kathryn J. Boor from the Department of Food Science, Cornell 

University, Ithaca, New York.  

 The isolated strains were selected due to their similar source (overhead pipe filler – 

drain samples) and significant differences in their ribotype and extracellular-enzyme 

production (Dogan and Boor, 2003). P. fluorescens D3-348 (ribotype – 536-S-8) was 

protease and lipase negative, and lecithinase positive, while P. fluorescens D3-350 (ribotype 

– 112-S-2) was positive for protease, lecithinase and lipase. 

 

3.1.1 Bacteria preservation 
 
All the bacteria were criopreserved in criovials (Nalgene) in a refrigerate chamber at 

-80 ± 2 ºC.  

Bacteria reactivation was made by striking 10 µl of the bacterial suspension existent 

in the criovial to solid media consisting of 0.5 % (w/v) glucose (Merck), 0.25 % (w/v) 

peptone (Merck), 0.125 % (w/v) yeast extract (Merck) and 1 % (w/v) agar (Merck) and 

incubated in a stove (Memmert, model B 40) at 27 ºC during 24 h. 

 

3.1.2 Culture medium 
 
P. fluorescens were allowed to grow in a sterile (autoclaved at 121 ºC for 20 min) 

synthetic aqueous nutrient medium consisting in 0.5 % (w/v) glucose, 0.25 % (w/v) peptone, 

0.125 % (w/v) yeast extract in phosphate buffer (0.2 M KH2PO4; 0.2 M Na2HPO4 - Merck) 

pH 7 ± 0.2. 
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3.2 Experimental conditions for biofilm formation 
 

3.2.1 Inoculum preparation 
 
A bacterial suspension was prepared by gently removing bacteria from the solid 

media using a sterile metal device, and immersing this device into a 500 ml flask containing 

200 ml of sterile nutrient medium. This bacterial suspension was incubated at 27 ºC with 

agitation (B. Braun Biotech International, model CERTOMAT® M and CERTOMAT® S) at 

120 min-1 during 12 h, in order to have bacteria in the exponential phase of growth. 

Afterwards, the inoculum was transferred to a reactor in a volume of 10 % of the useful 

volume of the reactor.  

 

3.2.2 Adhesion surface 
 
Stainless steel was used throughout this work since this material is representative of 

the major part of the surfaces found in equipments in industrial systems (Pereira, 2001). The 

tests with biofilms were performed with flat stainless steel plates (ASI 316) with 1.25 cm × 

1.75 cm and with round surfaces (cylinders of diameter = 2.2 cm and length = 5 cm). Before 

use, both types of surfaces were polished with alumina polishing suspension at 0.5 µm 

(Struers Cat. No. 40700037), being, thereafter, defatted using a commercial detergent, 

washed in order to remove the detergent and reserved in ethanol at 70 % (w/v) until use.  

 

3.2.3 Continuous reactor  
 
The bacterial cultures were maintained in a 2 l reactor (Pobel), operating 

continuously in order to provide P. fluorescens in the exponential phase of growth. This 

reactor was continuously aerated, agitated and maintained at 27 ºC. The aeration was 

provided with an aquarium air pump (Anivite, model Tagus 2000), being the air previously 

filtrated with a 0.2 µm cellulose acetate membrane (Merck). The agitation was carried out 

by putting the reactor, with a magnetic stirrer inside, on a plate with magnetic agitation and 

regulated velocity (Selecta, model Agimatic-S). Two drops of silicone antifoaming (Merck 

7743) were placed in the reactor.  
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3.2.4 Reactor sterilization and operation 

 
The reactor, containing the culture medium (sub-chapter 3.1.2) for bacteria growth, 

the magnetic stirrer, the system for air dispersion and the silicone tubes for nutrient and air 

supply, was sterilized in an autoclave at 121 ºC (AJC, model Uniclave 88) for 20 min. 

The conditions of growth (aeration, agitation and temperature) were fixed and the 

reactor containing the sterile medium was inoculated with bacteria obtained according to 

sub-chapter 3.2.1. 

Initially, the reactor operated in batch conditions during 12 h in order to have a high 

cellular concentration and the bacteria in the exponential phase of growth. Afterwards, the 

reactor operated continuously by feeding growth medium at a flow rate of 40 ml/h using a 

peristaltic pump (Ismatec, model Reglo Analog MS-2/6). The reactor was allowed to 

operate during one week, afterwards the system was sterilized at 121 ºC for 20 min. 

The continuous operation of this reactor permitted to have a constant source of P. 

fluorescens cells in the exponential phase of growth, to use in the several experimental tests 

with bacteria in suspension. 

  

3.3 Biofilm set-up – flow cell reactor 
 

3.3.1 Association of the continuous reactor with a dilution reactor  
 
A 0.5 l reactor operating continuously, and in the same conditions as the ones 

described above for the 2 l reactor (sub-chapter 3.2.3), was used for bacterial growth. In 

order to carry out the adequate dilution rate to promote biofilm formation, the bacterial 

suspension was diluted using a 3.5 l PerspexTM reactor. This 3.5 l reactor was continuously 

inoculated with bacteria coming from the 0.5 l reactor (10 ml/h) using a peristaltic pump 

and feed with a minimal nutrient medium (1.7 l/h), consisting of 0.005 % (w/v) glucose, 

0.0025 % (w/v) peptone, 0.00125 % (w/v) yeast extract in phosphate buffer (0.2 M 

KH2PO4; 0.2 M Na2HPO4) pH 7 ± 0.2. In these conditions, according to Pereira et al. 

(2002a), it was established an adequate bacterial concentration (6 × 107 cells/ml) and 

dilution rate suitable to promote biofilm formation. The bacterial suspension from this 

PerspexTM reactor was used to feed the biofilm reactors (Figures 3.2, 3.3 and 3.4). 
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3.3.2 Flow cell reactor and biofilm formation 

 
The diluted bacterial suspension, described above (sub-chapter 3.3.1), was pumped 

up, passing through the flow cell reactors and back to the PerspexTM reactor (Figure 3.2).  

A flow cell reactor, described by Pereira et al., (2002a), was used as the device for 

biofilm formation. It consists of a semicircular Perspex duct (45 cm length and 1.6 cm of 

hydraulic diameter) with 10 apertures on its flat wall, to suitably fit several removable 

rectangular pieces of PerspexTM. These pieces of PerspexTM have glued in one of its faces 

stainless steel (ASI 316) slides - 1.75 cm × 1.25 cm (Figure 3.1) for bacteria adhesion.  
 
 

 
Figure 3.1 Photograph of a piece of PerspexTM with a stainless steel (ASI 316) slide glued. 

 
Biofilms were formed on those metal slides whose upper faces were in contact with 

the bacterial suspension circulating in the flow cell reactor system (Figure 3.2). It was 

possible to remove separately each of the rectangular pieces without disturbing the biofilm 

formed on the others and without stopping the flow. This was managed because outlet ports 

were disposed on the round face of the flow cell between each two adjacent removable 

pieces of PerspexTM that allowed the deviation of the circulating flow from the point where 

the reactor was opened. The sampling was made from the top to the bottom and the 

rectangular piece removed was substituted with a new one that was previously cleaned and 

kept in ethanol.  
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Figure 3.2 Schematic representation of the experimental apparatus system used to 

perform biofilm formation on the flow cell reactors. 
 
Two parallel similar flow cell reactors (Figure 3.3) were used simultaneously in such 

a way that biofilms were formed under turbulent (Re=5200, u=0.532 m/s) and laminar 

(Re=2000, u=0.204 m/s) conditions, respectively, in each flow cell, that will be currently 

referred as turbulent and laminar biofilms. The bacterial suspension circulation was 

obtained using aquarium pumps (Eheim Typ 1060 and Typ 1048), being the pumps 

connected to the flow cells by means of silicone tubes (Figure 3.3). The biofilms were 

allowed to grow for 7 d to ensure that steady-state biofilms were used in every experiment 

(Pereira et al., 2002a). 
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Figure 3.3 Photograph of the flow cell reactor system. 

 

3.3.3 Flow cell and dilution reactor disinfection 
  

 Since PerspexTM do not support high temperatures, the disinfection of the flow cell 

reactor was made by recirculation, in closed system, of a solution of 15 % (v/v) of sodium 

hypochlorite (10 ml/h) during 24 h. After the exposure to sodium hypochlorite, the system 

was washed, in open system, with sterile distilled water in order to remove the residual 

sodium hypochlorite. After the disinfection procedure, the tubes coming from the flow cells 

were aseptically placed in the 3.5 l PerspexTM reactor, being the system available to perform 

biofilm formation. The system was always subjected to a disinfection procedure before 

every new experiment. 

 

3.4 Biofilm set-up – biofilm formation on a bioreactor rotating system 
 
Biofilms were grown on stainless steel (ASI 316) cylinders, with a surface area of 

34.6 cm2 (diameter = 2.2 cm; length = 5 cm), inserted in a 3.5 l reactor, and rotating at 300 

min-1 (Figure 3.4).  Three stainless steel cylinders (Figure 3.5) were used in every 
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experiment. This reactor operated under the same conditions as the 3.5 l reactor associated 

with the flow cell reactors, i.e., was continuously fed (1.7 l/h) with sterile diluted medium, 

using a peristaltic pump. It was also continuously inoculated with P. fluorescens, in the 

exponential phase of growth, supplied by the above referred 0.5 l reactor (sub-chapter 

3.3.1), at a flow rate of 10 ml/h. The biofilms were allowed to grow for 7 d in order to 

obtain steady-state biofilms (Pereira et al., 2001a). 
 

 
Figure 3.4 Schematic representation of the experimental system used to perform biofilm 

formation on the bioreactor rotating device. 

 

 
Figure 3.5 Photograph of a stainless steel (ASI 316) cylinder. 
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3.4.1 Mechanical stability of the biofilm 

 
The mechanical stability of the biofilms was assessed by means of determining the 

biomass loss due to the exposure of biofilms to increasing rotating speeds in the rotating 

device (Azeredo and Oliveira, 2000). Experiments were carried out with biofilms 

challenged by several chemical compounds, in independent assays. 

 

3.5 Antimicrobial agents tested  
 
In the present work were used two non-oxidizing biocides, two surface active agents 

and two oxidizing biocides. A brief description of these chemicals is presented bellow. 
 

 Non-oxidizing aldehyde-based biocides: 

Glutaraldehyde (GTA) that was purchased from Reidel-de-Haën (Cat. No. 62621). 

Ortho-phthalaldehyde (OPA) that was purchased from Sigma (Cat. No. P-1378). 
  

 Aldehydes belong to the group of electrophilic active agents which, due to the 

electron deficiency at the carbonyl carbon atom can react with nucleophilic cell entities and 

thus exert antimicrobial activity. Examples of nucleophilic reaction partners in the cell are 

amino and thiol groups, as well as the amide groups of amino acids or proteins. The latter in 

turn, are components of enzymes, which are inactivated by the reaction of their nucleophilic 

groups with aldehydes (Hugo and Russell, 1982). 

 GTA and OPA are dialdehyde compounds, which have two toxophoric groups that 

are responsible for the antimicrobial effect, since they can react with nucleophilic centres of 

the microorganism. Figures 3.6 and 3.7 present, respectively the molecular structure of GTA 

and OPA. 
 

 
Figure 3.6 Molecular structure of glutaraldehyde. 
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Figure 3.7 Molecular structure of ortho-phthalaldehyde. 

 
Aliphatic aldehydes with molecular weights higher than the adipic aldehyde display 

no noticeable antimicrobial effect (Paulus, 1993). Conversely, aromatic dialdehydes exhibit 

antimicrobial properties. These aldehydes have been gained, in practice, utility as 

disinfectants (Walsh et al., 1999a; 1999b; Simons et al., 2001). 
  

 Surface active agents: 

 Sodium dodecyl sulfate (SDS), an anionic surfactant, purchased from Riedel-de-

Haën - critical micellar concentration (CMC) - 8.30 mM; Cat. No. 62862.  

Cetyltrimethyl ammonium bromide (CTAB), a cationic surfactant, purchased from 

Merck - CMC - 1.00 mM; Cat. No. 102342.  
  

 Surfactant is an abbreviation for surface active agent, which literally means active at 

a surface and is characterized by its tendency to absorb at surfaces and interfaces (Jönsson et 

al., 1998). So, they are characterized by their ability to reduce the surface tension of 

aqueous fluids. Surfactants are constituted by two molecules with two different structural 

elements: a hydrophobic hydrocarbon (water repellent) group; and a hydrophilic polar 

(water attracting) group. Depending on the charge of the hydrophilic structural element, 

surfactants are classified as anionic, cationic, non-ionic and amphoteric or zwetterionic 

(Paulus, 1993; Rossmoore, 1995; Jönsson et al., 1998). 

Anionic surfactants, as SDS (Figure 3.8), exhibit some antimicrobial effect only in 

acid media (pH 2-3) that means in their undissociated state, but they have strong detergent 

properties (Hugo and Russell, 1982; Rossmoore, 1995). They present themselves as alkali or 

amine salts of long-chain fatty acids or alkane sulphonates (R-COO-Na+; R-SO3-Na+; 

R=C10-C12 alkyl). In aqueous solution they dissociate to a large anion, responsible for the 

strong detergent properties, and a small cation (Paulus, 1993). Their antimicrobial effect is 

restricted mainly to Gram-positive bacteria. Their point of attack is apparently the microbial 

cell membrane. Acid formulations of anionic surfactants are used as disinfectants in the 

dairy, beverage and food processing industries, in institutions and homes (Hugo and Russell, 

1982; Paulus, 1993). Figure 3.8 presents the molecular structure of SDS. 
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Figure 3.8 Chemical structure of sodium dodecyl sulfate. 

 
 Cationic surfactants, as CTAB (Figure 3.9), possess strong bactericidal, but weak 

detergent, properties. Cationic detergent usually signifies quaternary ammonium compounds 

– QAC´s (McDonnell and Russell, 1999). The antimicrobial properties of QAC´s depend on 

their structure and size, but specially on the length of the long-chain alkyl group. QAC´s 

bearing the C14 alkyl group exhibit maximum antimicrobial activity. The efficacy of QAC´s 

increases with temperature and pH (Paulus, 1993). They have a wide application ranging 

from the clinical to industrial purposes (Hugo and Russell, 1982; Paulus, 1993; Rossmoore, 

1995; McDonnell and Russell, 1999). Figure 3.9 presents the molecular structure of CTAB. 
 

 
Figure 3.9 Chemical structure of cetyltrimethyl ammonium bromide. 

 
 Oxidizing biocides: 

Sodium hydroxide (NaOH) purchased from Merck (Cat. No. 106467).  

Sodium hypochlorite (SHC) purchased from Merck (13 % active chlorine; Cat. No. 

105614).  
  

 Oxidizing agents have been widely used as disinfectants (Kim et al., 2002), being 

disinfection by chlorine compounds gained wide acceptance commercially, probably 

because of its simplicity to use and its moderate costs; despite the major problem of 

secondary harmful products generated by this compounds (Hassen et al., 2000; Kim et al., 

2002). The antimicrobial effects of oxidizing agents are attributed to their strong oxidation 

properties (Paulus, 1993). 
 
The concentrations of each product tested were obtained by preparation with sterile 

distilled water.  
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3.5.1 Neutralization of the antimicrobial agents 

 
After the contact of the chemical agent with the planktonic cells and with the cells 

within biofilm, they were subjected to a process of neutralization in order to quench their 

antimicrobial activity. The aldehyde-based biocides were neutralized by the dilution 

method, by which the chemical was diluted to a sub-inhibitory level, according to Johnston 

et al., (1999) or with sodium bisulphite (Sigma) at a final concentration of 0.5 % (w/v). The 

surfactants were chemically neutralized by the following solution: (w/v) 0.1 % peptone, 0.5 

% Tween 80 (Sigma) and 0.07 % lecithin (Sigma), dissolved in phosphate buffer pH 7. A 

concentrated neutralization solution was prepared and autoclaved prior to utilization. 

 

3.6 Biofilm manipulation and analytical methods 
 

3.6.1 Scrapping and disaggregation of the biofilms 
 
Before and after each chemical treatment and in the defined sampling times, the 

biofilms that covered the stainless steel slides were completely scraped from the metal 

slides, using a metal scrapper, resuspended into 10 ml phosphate buffer, pH 7, and 

homogenised in a vortex (Heidolph, model Reax top) for 30 s with 100 % power input and 

used for further analysis. The efficiency of the process of biofilm scrapping and 

disaggregation was ascertained by staining the stainless steel plate, after the process, with 

4`, 6-diamidino-2-phenylindole (DAPI). DAPI is believed to be very specific for DNA and 

is, thus, used to count total (including viable and non-viable) bacteria (Saby et al., 1997). In 

order to detect residual bacteria on the metal surface, 1 ml of a DAPI solution (0.5 µg/ml) 

was placed on the surface and left to stand on dark for 5 min. To observe bacteria on the 

surface, a Zeiss (AXIOSKOP) microscope fitted with fluorescence illumination was used 

with a 100 X oil immersion fluorescence objective. The optical filter combination for 

optimal viewing of stained preparations consisted of a 359 nm excitation filter in 

combination with a 461 nm emission filter. A minimum of 20 microscopic fields were 

observed for each stainless steel surface inspected.  

It was found that only about 1 – 2 % of the total number of bacteria adhered to the 

stainless steel surface was not efficiently removed with the procedure applied (Figure 3.10). 
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Figure 3.10 Representative microphotograph of a stainless steel surface after the process 

of scrapping and disaggregation of the biofilm. X 1320 magnification, bar =20 µm. 

 

3.6.2 Extraction of the extracellular polymeric substances 
 
The extraction of the extracellular components of the biofilm and the planktonic 

cells was carried out using Dowex resin (50X 8, NA+ form, 20-50 mesh, Aldrich-Fluka 

44445) according to the procedure described by Frølund et al. (1996). Briefly, it consists in 

resuspend of the biological samples (sessile and planktonic cells) in 20 ml of extraction 

buffer and to add 50 g of Dowex resin per g of volatile solids. The extraction took place at 

400 min-1 for 4 h at 4 ºC. The extracellular components were separated from the cells with a 

centrifugation step (B. Braun, model Sigma 4K10) at 3777 g for 5 min. Prior to the 

extraction, the Dowex resin was washed with extraction buffer (2 mM Na3PO4, 2 mM 

NaH2PO4, 9 mM NaCl and 1 mM KCl, pH 7).  

 

3.6.3 Biochemical analysis of the cells and biofilms 
 
The biochemical characterisation of the planktonic cells and biofilms was performed 

by the determination of the proteins and polysaccharides quantification. The proteins were 

determined using the Lowry modified method (Sigma-protein assay kit nº P5656), with 

bovine serum albumin as a protein standard and the optical density (OD) values recorded at 

740 nm. The polysaccharides were determined by the phenol-sulphuric acid method of 

Dubois et al, (1956), with glucose as standard and the OD values recorded at 490 nm. 
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3.6.4 Cell number quantification 

 
To quantify the number of cells adhered to a surface or retained in a membrane, P. 

fluorescens were stained with the suitable stain and observed under epifluorescence 

microscopy. To observe the stained bacteria, a Zeiss (AXIOSKOP) microscope fitted with 

fluorescence illumination was used with a 100 X oil immersion fluorescence objective. The 

optical filter combination for optimal viewing of stained preparations was selected 

according to the stain used. The micrographs were obtained using a microscope camera 

(AxioCam HRC, Carl Zeiss). A program path (AxioVision, Carl Zeiss Vision) involving 

image acquisition and image processing was used to obtain the images. 

A program path (Sigma Scan Pro 5, Sigma) involving object measurement and data 

output was used to obtain the number of cells. 

The number of cells was estimated from counts of a minimum of 20 microscopic 

fields, for each analysis. 

 

3.6.5 Biological mass quantification 
 
The dry mass of the biological samples was assessed by the determination of the 

total volatile solids (TVS) of the homogenised bacterial and biofilm suspensions, according 

to the APHA, AWWA, WPCF Standard Methods (1989), method number 2490 A-D. The 

results were expressed in g of biofilm per cm2 of surface area of the slide (g biofilm/cm2) in 

the case of biofilms or g of bacteria per unit of volume (g bacteria/l) in the case of suspended 

cultures. 

 In some biofilm experiments, the results related with loss of biofilm mass are 

presented as percentage of removal, where the percentage of the biofilm removal was 

determined through the following equation:   
 

Biofilm removal (%) = [(W0-W1)/W0] x 100     (3.1) 
 

Where W0 is the biofilm mass without chemical treatment (g biofilm/cm2) and W1 is the 

biofilm mass after chemical treatment (g biofilm/cm2). 
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3.6.6 Metabolic activity - respiratory activity  

 
The respiratory activity of the several biological (biofilm suspensions or suspended 

cultures) samples was evaluated by measuring oxygen uptake rates in a biological oxygen 

monitor (BOM) in short-term assays. The assays were performed in a Yellow Springs 

Instruments BOM (Model 53) and the procedure used was described elsewhere (Pereira et 

al., 2002a). Before each respirometry assay, the samples were carefully washed three times 

with phosphate-buffered saline solution (NaCl 0.85 %), resuspended in 10 ml of phosphate 

buffer pH 7 and placed in the temperature-controlled vessel of the BOM (T= 27 ºC ± 1ºC).  
 

 

 1 – Oxygen electrode 

 2 – Respirometry chamber 

 3 – Respirometry cell 

 4 – Magnetic stirrer 

 5 – Oxygen probe   

 6 – Data acquisition (computer) 
 

Figure 3.11 Schematic representation of a biological oxygen monitor.  
 
The temperature-controlled vessel of the BOM contained a dissolved oxygen (DO) 

probe connected to a DO meter. Once inside the vessel, the samples were aerated for ½ h to 

ensure the oxygen saturation and the consumption of any residual carbon source. The vessel 

was closed and the decrease of the oxygen concentration was monitored over time. The 

initial linear decrease observed (1) corresponds to the endogenous respiration rate. To 

determine the oxygen uptake due to substrate oxidation, a small volume (50 µl) of a glucose 

solution (100 mg/l) was injected within each vessel (point I). The slope of the initial linear 

decrease in the DO concentration, after glucose injection (2), corresponds to the total 

respiration rate. The difference between the two respiration rates gives the specific oxygen 

uptake rate due to the glucose oxidation, herewith referred as “respiratory activity”, and 

expressed in mg of O2 consumed per g of biofilm and per time (mg O2/g biofilm min), in the 

case of the biofilm solutions, and in mg of O2 consumed per g of bacteria and per time (mg 

O2/g bacteria min), in the case of the suspended bacterial cultures.  

 In same cases, the results related with respiratory activity are presented as percentage 

of inactivation, where the decrease in the biofilm/bacterial activity obtained due to the 
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application of the chemical agents to the cells was determined as the difference between the 

respiratory activities of the samples before (control) and immediately after the treatment 

with chemical agent, and expressed as the percentage of inactivation according to the 

following equation:   
 

Inactivation (%) = [(A0-A1)/A0] x 100      (3.2) 
 

where A0 is the respiratory activity of the control assay, i.e., without chemical treatment, 

and A1 is the respiratory activity immediately after the application of each chemical 

concentration.  

 
Figure 3.12 Typical profile of oxygen uptake in an assay of respiratory activity. 

 
1 - Oxygen consumption due to endogenous metabolism; 

I – Nutrient addition; 

2 – Oxygen consumption due total metabolism (endogenous and exogenous); 

dDO/dt - Slope of the initial linear decrease in the DO concentration after nutrient addition. 
 
The respiratory activity was evaluated by means of the determination of the oxygen 

uptake rate due to glucose oxidation which, according to Stewart et al. (1994) and McFeters 

et al. (1995), may be more accurate than the traditional method of colony formation on agar 

media. This latter method has received much criticism specially when used to evaluate the 

effect of the antimicrobial agents (MacDonald et al., 2000). In fact, the method may 

underestimate the actual viable population since the bacteria on the biofilm can continue 

viable after the chemical application but may not grow on solid media. Also, due to the 

structure of biofilms and the difficulty to disaggregate cells within biofilms the method of 

culturability seems to be not appraisable to characterize a bacterial population in terms of 

viability. 

      
dDO/dt 

1 

2 

I 
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3.6.7 Adenosine triphosphate measurement 

 
The adenosine triphosphate (ATP) released from the cells was measured with the 

firefly luciferin-luciferase System/Sigma FL-AAM. The assessment of the cellular ATP 

with firefly luciferase catalyzes the reaction of luciferin with ATP to form an intermediate 

luciferyl adenylate, whose subsequent oxidation results in light emission with a quantum 

yield of about 90%. The integrated light intensity is directly proportional to the amount of 

ATP (Venkateswaran et al., 2003). 

In order to measure the ATP released after the required contact time with the 

chemical agent, 100 µl of the cellular suspension was added to 100 µl of a 25 fold dilution 

mixture of luciferine and luciferase. The light transmission was measured in a 

bioluminometer (Lumac, Biocounter M 25000) and the output values were recorded in 

relative light units (RLU).  

Control experiments were made with phosphate buffer and with the different 

chemicals at the different concentrations tested.  

 

3.6.8 Characterization of the proteins of the outer membrane 
 

3.6.8.1 Outer membrane proteins isolation 
 
The outer membrane proteins (OMP) were isolated according to the method 

described by Winder et al. (2000). Briefly, cells were harvested by centrifugation (3777 g, 5 

min, 4 ºC). The resulting pellet was resuspended in 25 mmol/l Tris and 1 mmol/l MgCl2 

buffer (pH = 7.4). The solution was sonicated for 2 min (Vibracell, 60W) on ice to promote 

cell lysis. After sonication the solution was centrifuged (7000 g, 10 min, 4 ºC) in order to 

remove non-lysed cells. The supernatant was collected and N-lauroylsarcosine (Sigma) was 

added to give a final concentration of 2 % (w/v) in order to solubilize the inner membrane 

proteins and left on ice for ½ h. Afterwards the solution was centrifuged (17000 g, 1 h, 4 

ºC) to recover the OMP. The pellet containing the OMP was resuspended in deionised 

water (1 ml) and stored at -20 ± 2 ºC until required.  
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3.6.8.2 Outer membrane proteins quantification 

 
The protein content of the samples was determined using the Bicinchoninic Acid 

Protein Assay Kit (BCA) (BCA - PIERCE Cat. No. 23225) with BSA as standard. 

 

3.6.8.3 Sample preparation  
 
To a volume of 15 µl of OMP sample it was added 5 µl of sample buffer (25 mM 

Tris-HCl pH 6.8; 10 % (w/v) β-mercaptoetanol; 10 % (w/v) SDS; 0.1 % (w/v) bromophenol 

blue and 30 % (v/v) glycerol). This mixture was immersed in water, at 100 ºC, for 5 min, in 

order to promote protein denaturing, and immediately putt in ice. To each well of the gel it 

was added 15 µl of the sample resulting from the protein denaturing process. 

Electrophoresis was performed at a constant current of 10 mA.  

 

3.6.8.4 Outer membrane proteins analysis 
 
The OMP samples were subjected to sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE), as reported by Laemmli (1970), with 12 % (w/v) acrylamide.  

The polyacrylamide gel electrophoresis separates molecules in complex mixtures 

according to size and charge. During electrophoresis there is an intricate interaction of 

samples, gel, matrix buffer, and electric current resulting in separate bands on individual 

molecules. Hence, the variables that must be considered in electrophoresis are gel pore size, 

gel buffer systems, and the properties of the molecule of interest.  

The Laemmli buffer system is a discontinuous buffer system that incorporates 

sodium dodecyl sulfate in the buffer. In this system, proteins are denatured by heating them 

in buffer containing SDS and a thiol reducing agent (2-mercaptoethanol). The resultant 

polypeptides take on a rod-like shape and a uniform charged-mass ratio proportional to 

their molecular weights. Proteins are separated according to their molecular weight, making 

this system extremely useful for calculating molecular weights. 

In Table 3.1 are listed the volumes of the different constituents required to 

completely fill two 12 % polyacrylamide gel cassettes. 
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Table 3.1 Volumes required to prepared two polyacrylamide gels at 12 % 

Gel * 
Distilled deionised 

water (ml) 

30 % Degassed 

acrylamide/Bis (ml) 

Gel buffer 
(ml) 

10 % (w/v) 

SDS (ml) 

R 5.10 6.00 3.751 0.15 

S 3.40 4.00 2.502 0.10 

* R – Gel resolving; S- Gel stacking 
1 Resolving gel buffer – 1.5 M Tris-HCl, pH 8.8 
2 Stacking gel buffer – 0.5 M Tris-HCl, pH 6.8 
 
The monomer solution was prepared by mixing all the reagents and degas the 

mixture for 15 min. Immediately prior to pouring the gel in the electrophoresis system, was 

added for the resolving gel 90 µl of ammonium persulfate (APS) 10 % (w/v) and 9 µl of 

TEMED. For the stacking gel were added 60 µl of PSA and 6 µL of TEMED. The solutions 

were swirl gently to initiate polymerization. The electrophoresis gels were completely 

submersed with TGS buffer. 

 

3.6.8.5 Staining with coomassie blue and silver nitrate 
 
After electrophoresis the gels were removed from the gel cassette sandwich by 

gently separating the two plates of the gel cassette. After that, the gels were putt in a 

coomassie blue solution (50 % (v/v) methanol; 10 % (v/v) acetic acid; 0.05 % (w/v) 

coomassie brilliant blue; 40 % distilled water) for ½ h. After this time, the coomassie blue 

solution was replaced by a decolouring solution (30 % (v/v) methanol; 10 % (v/v) acetic 

acid; 60 % distilled water) during 5 min. The decolouring solution was replaced by a new 

solution. The gels were left in the solution for 16 h under agitation (80 min-1). Afterwards 

the gels were placed in distilled water for 10 min before being silver stained. 

 In order to perform silver staining the gels were putt in sodium tiosulphate (0.2 g/l) 

during 1 min. The sodium tiosulphate was withdrawn and the gels were washed twice with 

distilled water for a period of 20 s and, then, the gels were left to react with silver nitrate (2 

g/l) during ½ h. The silver nitrate was collected and the gels were washed with distilled 

water for 10 s. After this step the gels were allowed to contact with a solution of revelation 

(0.7 ml/l formaldehyde 37 % (v/v); 30 g/l potassium carbonate anhydride; 10 mg/l sodium 
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tiosulphate) for 5 min. At the end of the staining process the gels were putt in a solution of 

50 g/l Tris and 2.5 % (v/v) acetic acid for 1 min. 

The protein profiles obtained by SDS-PAGE sizes were determined by comparison 

with a molecular weight standard (161-0362 - Precision Protein Standards Unstained Range 

- BioRad). All the compounds used for the OMP analysis, sample preparation and staining 

of the gels were purchased from BioRad. 

 

3.6.9 Polymerase chain reaction experiments 
 

3.6.9.1 DNA extraction 
 
The DNA extraction procedure was followed according to Yokoigawa et al. (1999). 

The cells were added to 100 µl of lysis buffer consisting of 10 % (w/v) NaCl (Merck), 2 % 

(v/v) Tween-20 (Merck) and 2 mM EDTA (Merck). The suspensions were then treated at 

100 ºC on a heating block, for 10 min and centrifuged (3777 g, 5 min). Supernatant fluids 

were then used directly as polymerase chain reaction (PCR) templates. 

 

3.6.9.2 Polymerase chain reaction amplification 
 
PCR is a rapid procedure for in vitro enzymatic amplification of a specific segment 

of DNA. To perform a PCR, the DNA to be amplified is denatured by heating the samples. 

In the presence of DNA polymerase and excess of deoxyribonucleoside triphosphates 

(dNTP´s), oligonucleotides that hybridize specifically to the target sequence can prime new 

DNA synthesis. The first cycle is characterized by a product of indeterminate length; 

however, the second cycle produces the discrete short product which accumulates 

exponentially with each successive round of amplification. This can lead to many million-

fold amplification of the discrete fragment over the course of 20 to 30 cycles. 

There are three nucleic acid segments: the segment of double-stranded DNA to be 

amplified and two single-stranded oligonucleotide primers flanking it. Additionally, there is 

a protein component (DNA polymerase), appropriate deoxyribonucleoside triphosphates 

(dNTP´s). The primers are added in vast excess compared to the DNA to be amplified. 

They hybridize to opposite strands of the DNA and are oriented with their 3` ends facing 

each other so that synthesis by DNA polymerase (which catalyzes strands 5`- 3`) extends 

across the segment of DNA between them. One round of synthesis results in new strands of 
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indeterminate length which, like the parental strands, can hybridize to the primers upon 

denaturation and annealing. These products accumulate only arithmetically with each 

subsequent cycle of denaturation, annealing to primers, and synthesis. The second cycle of 

denaturation, annealing, and synthesis produces two single-stranded products that together 

compose a discrete double-stranded product which is exactly the length between the primer 

ends. Each strand of this discrete product is complementary to one of the two primers and 

can therefore participate as a template in subsequent cycles. The amount of this product 

doubles with every subsequent cycle of synthesis, denaturation, and annealing, 

accumulating exponentially so that 30 cycle should result in 228 fold (270 million-fold) 

amplification of the discrete product (Ausubel et al., 1999). 

The objective of this step was to identify possible changes in the DNA at the species 

level by DNA fingerprinting using the primer named T3B (5`- 

AGGTCGCGGGTTCGAATCC-3`), described by McClelland et al. (1992). 

 The extracted DNA samples were diluted 1:10 in nanopure water.  

 The reaction was performed in 0.2 ml tubes by using a Biometra (Uno II) thermal 

cycler (Model Uno II). In all cases, reactions were carried out using 0.2 µl of native Taq 

DNA polymerase-5U/µl (Fermentas), 0.5 µl of T3B primer at 25 pmol (MWG AG 

Biotech.), 18.8 µl of nanopure water, 1.5 µl of MgCl2 (25 mM), 0.5 µl of dNTP at 10 mM 

(Fermentas), 2.5 µl of amplification buffer (purchased with the Taq DNA polymerase) and 

1 µl of extracted sample. The thermal program was as follows: 95 º (10 min – denaturation 

step) followed by 32 thermal cycles of 95 ºC (30 s), 50 ºC (30 s) and 72 ºC (60 s), 

corresponding, respectively, to heat denaturation of double-stranded target DNA; cooling to 

allow hybridization of specific primers to target DNA; primer extension by the action of 

DNA polymerase. The final cycle incorporated an 8 min chain elongation step (72 ºC). A 

10 µl aliquot of each PCR product were visualized by 0.5 µg/ml ethidium bromide (Sigma) 

staining after electrophoresis (90 min at 70 V) through a 1.2 % agarose gel (BioRad) and 

their sizes were compared with a molecular weight standard (1 kb plus DNA ladder; 

GibcoBRL). The DNA fragments were visualized on a short-wave ultraviolet 

transilluminator Eagle-Eye II (Stratagene). 
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3.6.10 Scanning electron microscopy observations 

 
The scanning electron microscopy (SEM) inspections always comprised the 

observation of at least 15 fields of each biofilm-covered slide. Prior to SEM observations, 

the biofilm samples were gradually (15 min each in 10, 25, 40, 50, 70, 80, 90 and 100 % 

v/v) dehydrated in an absolute ethanol (Merck) series to 100 % (v/v), and dried in a 

desiccator for 3 d. The samples were sputter-coated with gold and examined with a Leica 

S360 scanning electron microscope at 10-15 kV. The slides were not fixed because fixation 

procedures involves the use of chemicals that tend to react with some of the components at 

the biological matrix, as documented by Azeredo et al. (1999), hence modifying the real 

biofilm structure. SEM observations were documented through the acquisition of 

representative microphotographs.  

 

3.6.11 Statistical analysis 
 
The process of data analysis took place in two phases: 

• exploration and description of the data; 

• confirmatory statistical analysis. 

For that purpose the statistics software package SPSS (version 11.5) was used to 

carry out the statistical tests (Kinnear, 1999).  

The aim of the statistical treatment was to establish that a result is robust to 

repetition (or replication) of the study. For every experiment, the average and standard 

deviation (SD) were calculated as measures of central tendency and dispersion of the values 

acquired with the experiment. However, the screening and rejection of atypical values 

(outliers) was always done. 

For confirmatory statistical analysis was used the paired samples Student t-test, in 

order to ascertain the significance of a difference between two means. The model 

underlying a t-test assumes that the data have been derived from normal distributions with 

equal variance, being considered a parametric test. The homogeneity of variance was 

assessed by the Levene´s test for equality of variance. 

 When there were serious violations of the assumptions of the Student t-test, non-

parametric tests were used – Wilcoxon matched pairs test. Non-parametric tests do not carry 

specific assumptions about population distributions and variance. 
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 The output of the statistical test is the P - value. When the P - value of a statistic was 

less than the significance level, the assumption of the statistic was said to be significant. If 

the P - value was larger than the significance level, the assumption was accepted.  

 The statistical calculations were based on a significance level equal or higher than 95 

%. 
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Chapter 4 

 

Validation of respirometry as a short-term method to 

assess the efficacy of biocides  
 

 

Abstract 
 
This chapter comprises the comparison of a short-term bacterial respiratory 

(metabolic) measurement based on the rate of oxygen uptake needed to oxidise glucose, the 

determination of viable and nonviable cells using Live/Dead® BacLightTM kit and colony 

formation units, as indicators of the biocidal efficacy of OPA against P. fluorescens. 

Moreover, this chapter validates the respirometric method as an indicator of the cellular 

metabolic state. 
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4.1 Introduction 
 

 The disinfection efficacy of antimicrobial agents and the subsequent assessment of 

the microbiological metabolic state of the microorganisms can be evaluated by a variety of 

methodological approaches. The assessment of the efficacy of an antimicrobial agent is very 

important since misleading results may give rise to inefficient disinfection protocols. 

Traditionally, for heterotrophic bacteria, biocide efficacy has been evaluated by colony 

count enumeration (Stewart et al., 1994). However, bacteria recovered on the solid media 

only represent culturable bacteria that are able to initiate cell division on that medium 

(Boulos et al., 1999) whilst viable bacteria without the ability to grow on solid media are 

not accounted for. In addition, the culture method cannot be used accurately to evaluate the 

effect of chemicals on biofilms. Consequently, several other methods have been proposed as 

alternatives to the plate count method such as bioluminescence, impedimetry and respiratory 

activity (Stewart et al., 1994). Respiratory activity can be determined by assessing the 

reduction of redox stains CTC (5-cyano-2, 3-ditolyl tetrazolium chloride), INT (2-(4-

iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride) (Smith and McFeters, 1997; 

Hatzinger et al., 2003) and XTT (benzenesulfonic acid hydrate) (Hatzinger et al., 2003), 

followed by observation of the cells using direct microscopy and evaluation of the glucose 

consumption rate (Pereira and Vieira, 2001). Other methods such as the application of a 

specific or a combination of fluorochromes, with the use of direct microscopy (Boulos et al., 

1999; Terzieva et al., 1996) and flow cytometry (Terzieva et al., 1996; Virta et al., 1998) 

have also been proposed to enumerate viable bacteria. More recently, molecular marker 

systems and detection methods have been applied to identify and quantify specific 

microorganisms as well as provide an indication of their viability (Yoshinori et al., 2002).  

Respiratory activity measured by oxygen uptake rate due to glucose oxidation has 

already been used to assess the potential of antimicrobial agents against planktonic bacteria 

and biofilms (Pereira and Vieira, 2001). However, no reports are available concerning the 

advantages and drawbacks of this technique. This study was designed to measure respiratory 

activity in order to assess the antimicrobial efficacy against P. fluorescens cells. The 

respiratory activity method using oxygen consumption rate due to glucose oxidation, the 

determination of viable and nonviable cells using Live/Dead® BacLightTM kit and colony 

formation units on Plate Count Agar, were carried out as indicators of the microbiocidal 
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efficacy of OPA. Aditionally, this study is a challenge to demonstrate the reliability of 

respiratory activity as an indicator of the cellular state of the microorganisms since this 

methodology is fully used in the further experimental chapters. 

 

4.2 Materials and methods 
 
4.2.1 Microorganism 
 
 The microorganism used was P. fluorescens ATCC 13525 T.  

 

4.2.2 Antimicrobial agent 
  

 OPA was used throughout this work. 

 

4.2.3 Antimicrobial agent application 
  

 Periodically, aliquots of P. fluorescens were sampled from the 2 l reactor (sub-

chapter 3.2.3), centrifuged (3777 g, 5 min) and washed three times with saline (NaCl 0.85 

%) phosphate buffer pH 7. The pellets were resuspended in phosphate buffer (0.01 M) pH 7 

in order to obtain a final bacterial suspension with an OD of 0.4 (λ = 640 nm).  This 

bacterial culture was divided between several sterilised glass flasks that were placed in an 

orbital shaker (120 min-1). The cell suspensions were exposed to several biocide 

concentrations (2, 7, 10, 15, 20, 25, 30, 35, 40, 45, 55, 65, 80 and 100 mg/l) for ½ h. After 

the required contact time, the biocide was neutralized as described below. From each 

bacterial suspension, several volumes were sampled in order to assess the metabolic state of 

the bacteria by respiratory activity, bacterial staining after microfiltration and agar plate 

cultivation.  

 

4.2.4 Antimicrobial agent neutralization 
 

 As previously stated in sub-chapter 3.5.1, sodium bisulphite at a final concentration 

of 0.5 % (w/v) was added for 10 min (Walsh et al., 1999a) to the bacterial cultures 

immediately after the ½ h biocide contact time. 
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4.2.5 Respiratory activity  

  
 The respiratory activity assays were performed in a Yellow Springs BOM (Model 

53) according to the procedure described in sub-chapter 3.6.6. 

 

4.2.6 Assessment of viability by a staining technique 
 

 The viability of P. fluorescens was assessed with L-7012 Live/Dead (L/D) 

BacLightTM Bacterial Viability kit developed by Molecular Probes Inc., using 

epifluorescence microscopy. This fast epifluorescence staining method was applied to 

estimate both viable and total counts of bacteria. BacLight is composed of two nucleic acid-

binding stains: SYTO 9TM and propidium iodide (PI). SYTO 9TM penetrates all bacterial 

membranes and stains the cells green, while propidium iodide only penetrates cells with 

damaged membranes, and the combination of the two stains produces red fluorescing cells. 

After biocide treatment and neutralization, the various bacterial suspensions were 

diluted 1:10 and 300 µl of each diluted suspension were filtrated through a Nucleopore® 

(Whatman) black polycarbonate membrane (pore size 0.22 µm) and stained with 250 µL 

diluted component A (SYTO 9) and 250 µl diluted component B (propidium iodide) for 15 

min in the dark at 27 ± 1 ºC. The membrane was mounted in BacLight mounting oil as 

described in the instructions provided by the manufacturer. 

Dye solutions were prepared by dissolving 3 µl of component A in 1 ml of sterile-

filtered (pore size 0.22 µm) distilled water and the same procedure was followed for 

component B. To observe the stained bacteria, a Zeiss (AXIOSKOP) microscope fitted with 

fluorescence illumination was used according to the procedure described in sub-chapter 

3.6.4. The optical filter combination for optimal viewing of stained preparations consisted of 

a 480 to 500 nm excitation filter in combination with a 485 nm emission filter. The range of 

total cells for each field was between 50-200 cells/field. 

 

4.2.7 Culturability method on Plate Count Agar 
 

 The selection of an adequate medium for the heterotrophic microbial grow is an 

important factor in the use of plate count method. In this work, tests were carried out in 

order to choose the appropriate medium. Plate Count Agar (PCA; Merck) was chosen since 
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it allowed small colonies to grow, preventing larger colonies from excessive growth through 

limiting diffusion of medium components. After biocide neutralization, the bacterial 

samples were diluted to the adequate cellular concentration in phosphate buffer. A volume 

of 30 µl of the bacterial diluted suspension were transferred onto PCA plates. Colony 

enumeration was carried out after 48 h at 27 ºC. 

 

4.2.8 Calculations and statistical analysis 
 

 The loss of activity, viability and culturability due to biocide treatment, obtained by 

the different methods were calculated using the follow equations: 
 

Loss of activity (%) (Respiratory activity) = 

 ( Exogenous respiratory activity control – Exogenous respiratory activity after biocide application) × 100 (4.1) 

   Exogenous respiratory activity control 
 

Loss of viability (%) (BacLight counts) = 

 (Total cells/ml control – Viable cells/ml after biocide application) × 100    (4.2) 

   Total cells/ml control 
 

Loss of culturability (%) (Plate count) =  

(CFU/ml control – CFU/ml after biocide application) × 100      (4.3) 

   CFU/ml control 
 

Log reduction = Log (number of cells or CFU/ml control) - Log (number of cells or CFU/ml after biocide 

application)           (4.4) 
 
The MBC (minimum bactericidal concentration) for each method was determined as 

the lowest concentration of biocide where no activity, viability or culturability was detected 

according to Johnson et al. (2002).  

Paired t-test analyses were performed to estimate whether or not there was a 

significant difference between the results obtained by the different methods. Statistical 

calculations were based on confidence level equal or higher than 95 %. 
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4.3 Results and discussion 
 

 The influence of OPA concentration on the activity, viability and culturability of P. 

fluorescens cells was evaluated through three different methods viz. respiratory activity, 

BacLight viability kit and colony formation on plate count agar (culturability).  Figures 4.1, 

4.4 and 4.5 present, respectively, the values of the respiratory activity (exogenous and 

endogenous) per gram of cells, the number of viable cells per ml of bacterial suspension and 

the number of colony formation units per ml of bacterial suspension, as a function of OPA 

concentration. 

 

4.3.1 Bacterial respiratory activity after antimicrobial agent application 
 
The activity of the biocide (OPA) on the bacterial respiratory activity of P. 

fluorescens, evaluated by the measurement of the oxygen uptake rate due to glucose 

oxidation, gives the fraction of the cells that are active, since they exhibit metabolic activity 

(Figure 4.1).  
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Figure 4.1 Exogenous and endogenous respiratory activity of P. fluorescens as function of 

OPA concentration. 
 
The use of the respiratory activity showed that when bacteria were exposed to OPA 

concentrations higher than 80 mg/l bacterial activity was not detected when measured as the 

exogenous respiration rate. For OPA concentrations between 20 and 80 mg/l, a high 

decrease of exogenous respiratory activity was observed. For low OPA concentrations (< 20 

mg/l), the decrease in activity was very sharp and dependent on OPA concentration. 
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Comparison of both rates showed that exogenous respiration rate is more dependent on 

biocide concentration than endogenous respiration rate. However, P. fluorescens retained 

considerable endogenous activity that remained more or less constant for a large range of 

OPA concentrations. Furthermore, the endogenous activity for OPA concentrations higher 

than 20 mg/l was even higher than the exogenous activity. These results suggest that even if 

the cells are not able to oxidise external substrates after contact with the biocide they may 

recover when the biocide is removed, since they maintain basal metabolism even in the 

presence of high biocide concentrations. The endogenous metabolism should be seen as a 

state where no net growth is observed. When bacteria are depleted of external substrates or 

faced with factors that cause stress, the cells often use intracellular materials as an energy 

source to maintain their survival (Russell and Cook, 1995). Several authors (Gilbert et al., 

1990; McDougald et al., 1998) reported a similar effect to that found in this work, where 

bacteria can become exogenously dormant in response to unfavourable environmental 

conditions whilst still maintaining residual metabolism.  

 

4.3.2 Bacterial viability after antimicrobial agent  application 
 
Figure 4.2 shows the number of P. fluorescens cells after OPA contact for ½ h 

exhibiting different colours due to BacLight viability staining.  
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Figure 4.2 Effect of different OPA concentrations on P. fluorescens cells, examined by 

BacLight stains. 
 
According to Figure 4.2, for 80 mg/l and for 100 mg/l of OPA only red and green red 

cells could be found. The MBC determined using this method was 100 mg/l and for a 
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concentration of 80 mg/l of OPA, the log reduction was 1.8. When testing the intermediate 

range of OPA concentrations (between 2 mg/l and 65 mg/l) some green cells appeared 

yellowish and some red cells appeared orange, depending on biocide concentration (Figure 

4.3). The colour differences between viable (green) and nonviable (red) bacteria were very 

easy to distinguish as can be seen in Figure 4.3.  

  
Figure 4.3 Epifluorescence photomicrograph of P. fluorescens planktonic cells after 

application of 55 (a) and 100 mg/l of OPA (b). X 1320 (a); X 1000 (b) magnification, bar = 

10 µm. 
 
Figure 4.4 displays the number of bacterial viable cells calculated according to 

different approaches: a) Boulos et al. (1999) consider cells fluorescing green and yellow as 

viable and cells fluorescing red and orange as nonviable; b) the manufacturer of the 

BacLight kit considers green cells as viable and red, yellow and orange cells as nonviable.  

 

 

a b
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Figure 4.4 Number of viable cells obtained by Live/Dead BacLightTM Bacterial Viability kit, 

as function of OPA concentration. a) according to Boulos et al. (1999); b) according to the 

BacLight kit manufacturer. 
 
As expected, for both approaches, viable counts decreased with the increase of 

biocide concentration. However, in the above mentioned intermediate range of 

concentrations (between 2 mg/l and 65 mg/l), significant differences between the results 

obtained by each approach are noticeable.  

The different range of colours found after biocide application and L/D BacLight 

visualization (Figure 4.2 and Figure 4.3) is attributed to different metabolic states of the 

bacteria. Maukonen et al. (2000) studying the food borne bacteria L. monocytogenes and P. 

fragi, also reported the appearance of yellow and orange cells after staining with the 

BacLight kit.  They considered those cells injured, meaning that they could probably 

recover and reproduce after a period of time. Based on this argument, in the present work, 

the appearance of injured cells (Figure 4.2) was dependent on the OPA concentration, since 

an increase in the concentration lower than the lethal concentration (100 mg/l) gave rise to 

the appearance of a greater number of yellow and orange cells, while for the higher OPA 

concentrations (higher than the lethal concentration) only red cells were found. 

 

4.3.3 Bacterial culturability after antimicrobial agent  application 
 
Figure 4.5 presents the total bacterial counts in terms of colony forming units (CFU) 

as function of OPA concentration.  
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Figure 4.5 Total bacterial counts (colony forming units-CFU), as a function of OPA 

concentration. 
 
The results obtained using the culture method showed that the MBC is 65 mg/l. For 

OPA concentration of 7 mg/l, the decrease of bacterial culturability corresponded to a log 

reduction of 1.4. However, a 5 log reduction on the number of CFU was registered for 

concentrations higher than 25 mg/l.  

The number of viable cells (Figure 4.4) and culturable cells (Figure 4.5) before 

biocide treatment were not comparable (difference of about 1 log), which is probably related 

to the limitations of the plate count method. It has long been recognized that the single use 

of culture-based enumeration techniques may significantly underestimate the numbers of 

viable cells. Several reasons may account for this difference: i) presence of starved or 

injured cells or potentially viable but not culturable (VBNC) cells (Banning et al., 2002) 

that are not able to initiate cell division at a sufficient rate to form colonies; ii) inadequate 

culture conditions; iii) aggregation of bacteria that can lead to the formation of one colony 

from more than one cell, thereby underestimating the total number of cells. Ericsson et al. 

(2000) also considered that the method of cultivation on a solid is often inadequate due to 

the failure of the bacterial cell to reproduce on standard nutrient agar plates. Nevertheless, 

this may not mean that the cells were nonviable. In fact, cells can be viable but lack the 

ability to divide. It can also be argued that the viability method based on BacLight can 

overestimate the number of viable cells as appeared to be suggested by the activity results. 

Ericsson et al. (2000) also showed that even cells that fluoresced green after staining with 

BacLight, had different reproductive responses: cells could divide more than once, divide 
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only once or not show the ability to divide in a counting chamber. Those cells probably lost 

their potential to form colonies, but they remain physically intact and metabolic active or 

with a diminished activity. These arguments are reinforced with the discrepancy 

encountered between activity and viability results. 

The inconsistency between the number of culturable and viable cells increases with 

the application of biocide. In fact, after biocide application, the comparison of Figures 4.2 

and 4.4 with Figure 4.5 show that, for the same OPA concentration, higher numbers of 

viable bacteria are detected by the BacLight kit than the culturable bacteria found on the 

PCA plates. This comparison indicates the probably existence of VBNC bacteria. The 

limitations of the plate count method can also be observed, for instance, for a biocide 

concentration of 55 mg/l, where BacLight viable counts exceed the number of CFU by at 

least 5 orders of magnitude. So, CFU underestimate the actual viable population, since the 

bacteria exhibit activity and are viable after biocide application but are not able to grow on 

solid media as also reported by McDougald et al. (1998).  

 

4.3.4 Comparison between bacterial respiratory activity, viability and culturability 
 
For comparative purposes, the loss of bacterial activity, viability and culturability 

were calculated and are presented in Figure 4.6.   
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Figure 4.6 Loss of bacterial activity, viability and culturability assessed by respirometric 

activity (oxygen uptake rate – exogenous activity), Live/Dead BacLightTM bacterial viability 

kit and colony forming ability. 
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Figure 4.6 clearly shows that bacteria lose culturability and yet still exhibit clear 

signs of metabolic activity and viability. In fact, OPA induced a sharp decrease in 

culturability (CFU counts) that is more pronounced than the loss of bacterial activity and 

viability. For small OPA concentrations, cells lose culturability abruptly while maintaining 

activity and viability. It can be seen that the BacLight viable counts, calculated using the 

above approaches, decreased much less than did the loss of activity monitored by 

respiratory activity. A loss of bacterial viability of about 90 % was obtained for a 

concentration of 40 mg/l of biocide (BacLight kit) while a 90 % loss of activity was 

assessed for 20 mg/l of OPA, i.e., the MBC to obtain a reduction of 90 % is 40 mg/l or 20 

mg/l using the viability and activity assessments respectively.  The overall results presented 

in Figure 4.6 show that a large number of bacteria, retained physiological and metabolic 

activity after biocide treatment, while most of them could not form colonies on conventional 

medium. 

Using the data depicted in Figure 4.6, some correlations were made in order to 

evaluate the possibility of obtaining linear relationships between the various tested methods. 

Those correlations showed that the loss of activity assessed by respiratory activity and the 

loss of viability by BacLight kit, counting yellow cells as viable, had a good correlation 

factor (R2=0.974). Nevertheless, the results of the latter methods were not statistical 

equivalent (P < 0.001), suggesting the existence of significant differences in the efficacy of 

the biocide through assessment of bacterial viability using BacLight viability kit and the 

respiratory activity method. Conversely, if the yellow cells were enumerated as nonviable, 

these methods were strong correlated with a R2=0.982, and were not statistically different (P 

> 0.10).  

The results obtained by BacLight counts, considering the yellow cells as viable, and 

by the plate count method had a poor correlation factor of 0.433 (P < 0.01). Counting 

yellow cells as nonviable, the correlation factor R2 increased to 0.637 but the methods were 

still statistical different P < 0.01. The linear adjustment of the loss of activity and the plate 

count results are correlated with a factor of 0.549 (P < 0.02).  

 As stated by Stewart et al. (1994), specific methods based on the physiological or 

metabolic activity supply more information on the action of the products used as biocides 

than the ability to grow and form colonies on a solid media. Later, McFeters et al. (1995) 

also showed that the determination of the oxygen uptake levels is more accurate than the 

traditional methods of bacterial enumeration by colony formation on agar media. These 
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plate count method may overestimate biocide efficacy since bacteria may remain viable 

after biocide application but may not grow on solid media. This loss of culturability led to 

the assumption that bacterial cells in this state were VBNC cells (McDougald et al., 1998; 

Kawai et al., 1999). Concerning the difference of the loss of viability assessed by BacLight 

stains and respiratory activity (Figure 4.6) may be due to the amount of injured cells. Some 

of the bacteria that had no respiratory activity but fluoresced green and yellow, are probably 

in a stressed state, justifying the different MBC given by each method. In fact, even though 

some authors (Defives et al., 1999; Ericsson et al., 2000) advocate that the BacLight 

viability kit avoids discrepancies in counts of total and viable bacteria, the methodology 

cannot discriminate the cellular status of the cells. The state of some of the total viable cells, 

detected by the BacLight stains, could be seen as a transitory stage in the degeneration of 

the bacterial cells. However, it is not possible to quantify whether the SYTO 9™ dye could 

give false viable cells (Lehtinen et al., 2004; Stocks, 2004) since the exogenous respiration 

results suggested that these cells may be dead. Braux et al. (1999) also reported a 

discrepancy effect in the results of oxidative stress caused by periacetic acid measured by 

respirometry using CTC, BacLight viable counts and plate counts, respectively. No 

significant effect was observed with BacLight viable counts, compared to the other 

methods. Their results suggested that respiratory activity and culturability are more rigorous 

criteria to assess the effect of chemical stress than membrane permeability assessed by PI 

uptake.  Furthermore, the use of fluorescent dyes may have some drawbacks: dyes may be 

toxic to the bacteria at concentrations used in the assays and some viable bacteria may not 

incorporate the dye or may accumulate insufficient dye to become detectable (Hatzinger et 

al., 2003);  moreover, after the application of fluorescent dyes the bacterial cells cannot be 

used in further studies. Conversely, with the respirometry based on oxygen uptake, 

subsequent analysis such as the reestablishment of respiration after biocide removal or 

inactivation (regrowth) can be carried out. 

The results obtained with cells in suspension suggest that Live/Dead kit gives the 

most conservative estimate of biocidal efficacy and may be the most useful method. 

However, besides being a method that gives a higher MBC, it is expensive and time 

consuming. Furthermore, application of the BacLight viability kit to determine the biocidal 

efficacy of OPA against biofilms proved to be inaccurate due cell aggregation promoted by 

EPS and to the reaction of the dyes with the EPS, as shown in Figure 4.7.  
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Figure 4.7 Epifluorescence photomicrograph of cells within biofilms formed by P. 

fluorescens before OPA treatment (a) and after application of 50 mg l-1 of OPA (b). X 1320 

magnification, bar=10 µm. 
 
The respiratory activity of P. fluorescens biofilms on stainless steel surfaces after 

treatment with biocides, has been reported previously (Pereira and Vieira, 2001). These 

assays were performed on biofilms immediately after exposure to the biocides and showed 

the high potential of the respiratory technique to assess efficacy against intact biofilms. 

 

4.4 Conclusions 
 

 The use of different methods to evaluate biocide efficacy can lead to different 

conclusions regarding the effects caused by the biocide. Different MBC values were 

obtained depending on the method used to assess the efficacy of the biocide: 80 mg/l by 

respiratory method, 100 mg/l by the viability and 65 mg/l by the culturability method. 

Short-term respirometry proved to be a rapid, reliable, economic and easy methodology that 

can be used to evaluate biocide efficacy against aerobic, heterotrophic, carbon-consuming 

bacteria.

a b
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Chapter 5 

 

Characterization of phenotypic changes in 

Pseudomonas fluorescens due to biofilm formation – 

effect of hydrodynamic conditions 
 

 

Abstract 
 
A comparison of the biochemical, metabolic and structural characteristics of P. 

fluorescens in planktonic state and developed in biofilms is presented in this study. The 

effects of the flow regime (turbulent and laminar) in those characteristics are also studied. 

The comparative study is performed by assessing the respiratory activity, the cell number, 

the amount of proteins and polysaccharides, the expression of outer membrane proteins and 

the analysis of the structural characteristics. The possibility of contamination in the process 

of biofilm development or the existence of cellular mutation is assessed by DNA analysis. 

For comparative purposes, biofilms formed under turbulent and laminar flow, are 

characterized in terms of mass formation ability, amount of total, extracellular and cellular 

proteins and polysaccharides and structural characteristics. 
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5.1 Introduction 
 
The better understanding of biofilm behaviour is crucial since medical infections and 

biofouling of industrial components is often associated with biofilm formation (Stoodley et 

al., 1999; Hall-Stoodley et al., 2004). The occurrence of biofilms in these environments can 

lead to profound negative impacts and, consequently, to higher economical costs and risks 

in human health, as referred in Chapter 2. One of the earliest observations related to the 

different characteristics observed in planktonic cells and sessile cells is the increased 

resistance of biofilm cells to antimicrobial agents and other adverse environmental 

conditions (Costerton et al., 1987; Brown and Gilbert, 1993). Phenotypic variation is a 

common phenomenon in Gram-negative bacteria that often involves environmentally 

regulated changes in surface components leading to alterations in observable phenotypes 

(Drenkard and Ausubel, 2002). In fact, a switch from planktonic state to growth in a biofilm 

form is believed to result in profound and complex phenotypic changes in bacteria (Davies 

et al., 1998; Tolker-Nielsen et al., 2000; Sauer and Camper, 2001; Svensäter et al., 2001; 

Sauer et al., 2002). Some reports on the properties of bacteria present in biofilms indicate 

that the growth on surfaces involve significant changes in gene transcription, including the 

establishment of new genetic traits (Davies et al., 1995a; Christensen et al., 1998; O´Toole 

and Kolter, 1998).  

The analysis with molecular techniques of biofilm development and behaviour 

clearly demonstrate the influence of several genetically regulated factors. However, physical 

forces acting on the biofilm can also influence biofilm structure (Hall-Stoodley and 

Stoodley, 2002). One of the most important factors affecting biofilm structure and 

behaviour is the velocity field of the fluid in contact with the microbial layer (Vieira et al., 

1993; Stoodley et al., 1999; Pereira et al., 2002; Purevdorj et al., 2002). The hydrodynamic 

conditions will determine the rate of transport of cells and nutrients to the surface, as well as 

the magnitude of shear forces acting on a developing biofilm. 

The purpose of this work is to provide a phenotypic comparative study between P. 

fluorescens cells in planktonic and sessile state. The influence of the flow regime in the 

biofilm characteristics is also studied. 
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5.2 Materials and methods 
 

5.2.1 Microorganism 
 
The microorganism used was the P. fluorescens ATCC 13525 T.  
 

5.2.2 Experiments with planktonic bacteria - microorganism growth 
 
Periodically, aliquots of P. fluorescens suspended cultures, obtained according to 

sub-chapter 3.2.4, were sampled from the 2 l reactor, centrifuged (3777 g, 5 min), washed 

three times with saline (NaCl 0.85 %) phosphate buffer pH 7 and resuspended in phosphate 

buffer pH 7. These bacterial suspensions were immediately used to assess the cellular 

respiratory activity, being thereafter submitted to the EPS extraction, in order to determine 

the amount of total, extracellular and cellular proteins and polysaccharides, the cellular 

number, the mass of bacteria and the OMP expression. 

 

5.2.3 Experiments with biofilms – biofilm set-up 
 
Biofilms were formed by P. fluorescens, under turbulent and laminar flow, in flow 

cell reactors, according to the procedure described in sub-chapter 3.2. 

 

5.2.4 Scrapping and disaggregation of the biofilms 
 
The biofilm that covered the metal slides was completely scrapped from the metal 

slides (sub-chapter 3.6.1). The homogenised suspensions of biofilms were used to assess the 

respiratory activity of the biofilms and the biofilm mass.  

 

5.2.5 Respiratory activity 
 
The respiratory activity of the several biological samples was evaluated by 

measuring oxygen uptake rates in a BOM in short-term assays, according to the procedure 

described in the section 3.6.6, and thereafter were submitted to a process of EPS extraction 

(sub-chapter 3.6.2). 
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5.2.6 Biofilm and planktonic cells mass quantification 

 
The dry planktonic cell mass and the biofilm cell mass were assessed both by the 

determination of the TVS following the procedure described in sub-chapter 3.6.5. 

 

5.2.7 Quantification of the number of cells 
  

 After being separated from the extracellular products, the bacterial cells were diluted 

to an adequate concentration. Thereafter, the bacterial suspensions were microfiltrated 

through a Nucleopore® (Whatman) black polycarbonate membrane (pore size 0.22 µm) and 

then stained with 400 µL of DAPI at 0.5 µg/ml and left on the dark for 5 min. The 

microscopic observation of the stained preparations with DAPI was performed as described 

in sub-chapter 3.6.1. 

 

5.2.8 Biochemical analysis of the planktonic cells and biofilms 
 
The biochemical characterisation of the planktonic cells, biofilm constituents and 

biofilms was performed by the determination of the total proteins and polysaccharides 

quantification according to the procedure described in sub-chapter 3.6.3. 

 

5.2.9 Outer membrane proteins analysis 
 
The OMP of the cells were subjected to a SDS-PAGE procedure (sub-chapter 

3.6.8). 

 

5.2.10 Polymerase chain reaction experiments  
 
A volume of 20 µl of both planktonic cells and sessile cells, collected after the EPS 

extraction procedure, were subjected to PCR experiments, according to the procedure 

described in sub-chapter 3.6.9. 
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5.2.11 Scanning electron microscopy observations 

 
During the experiments, several stainless steel slides covered with biofilms were 

observed by SEM following the method referred in sub-chapter 3.6.10. 

 

5.3 Results and discussion 
 
This work comprises two comparative studies: a comparison between planktonic 

cells and sessile cells obtained from biofilms formed under turbulent and laminar flow, and 

a comparison between biofilms formed under turbulent and laminar conditions. 

 

5.3.1 Characterization of cells developed in planktonic state and within biofilms 
 
The cellular characterization was assessed in terms of respiratory activity due to 

glucose oxidation, number of cells, protein and polysaccharide content, morphological 

characteristics and outer membrane protein expression. 

Table 5.1 presents the cellular respiratory activity, number of cells per g of 

biological mass and the amount of total proteins and total polysaccharides per cell 

(planktonic cells and sessile cells obtained from the turbulent and laminar biofilms).  
 

Table 5.1 Values of respiratory activity, number of cells, proteins and polysaccharides 

content of planktonic cells and sessile cells developed in turbulent and laminar biofilms. 

Mean ± SD 

 Biofilm cells 
 

Planktonic cells Turbulent Laminar 

Respiratory activity 
(mg O2/g cells.min) 

0.652 ± 0.19 0.400 ± 0.07 0.0788 ± 0.008 

Number of cells 
(cells/mg cells) 

1.19 × 1011  

± 2.0 × 1010 

2.55 × 1014 

 ± 1.2 × 1013 

1.12 × 1012 

 ± 1.0 × 1011 

Total proteins content 
(pg/cell) 

879 ± 285 1.25 ± 0.38 6.69 ± 2.4 

Total polysaccharides content 
(pg/cell) 

2700 ± 1050 0.105 ± 0.026 9.30 ± 3.3 
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 Phenotypic features as a consequence of the cellular state have significant impact on 

the design of biofilm control procedures, since current disinfection procedures are based on 

tests using cells in planktonic state (EN 1276, 1997; Wirtannen et al., 2001). Besides several 

authors (Costerton et al., 1995a; Tolker-Nielsen et al., 2000; Sauer and Camper, 2001; 

Svensäter et al., 2001; Sauer et al., 2002) propose that biofilm formation trigger series of 

phenotypic changes, there are few studies providing quantitative evidences between cells in 

different states. Studies regarding the influence of the flow regime under which the biofilms 

are formed in the bacterial phenotype are even lesser.  

 According to Table 5.1, planktonic cells have a higher respiratory activity than the 

cells of both turbulent (about 2 times) and laminar (8 times) biofilms. Furthermore, 

turbulent biofilms were more active (5 times) than the laminar ones. In biofilms, the 

metabolic activity may reach an extent where biofilm bacteria are still viable, even if they 

do not show signs of viability as the capability to grow in a solid medium (Fux et al., 

2005a). So, this prolonged starvation induces loss of culturability whereas the cells remain 

metabolically active and structurally intact, being this viable but non-culturable state the 

main reason for the low detection rate of biofilm infections by routine culture (Fux et al., 

2005a). Consequently, as previously demonstrated in Chapter 4, when biofilms are the 

issue, the assessment of the respiratory activity due to oxygen uptake rate may be more 

accurate than the traditional method of colony formation on agar media to assess the 

viability of bacteria within biofilms (Stewart et al., 1994; McFeters et al., 1995).  

Concerning the differences found for the metabolic activity of the cells within 

biofilms formed under different flow regimes, it is known that high shear stress can 

stimulate catabolic activity of biofilms (Liu and Tay, 2001). The catabolic activity is 

directly correlated with electron transport system activity. The respiratory activity of cells is 

coupled to the proton translocation activity and a clear linkage of O2 reduction to proton 

translocation (Babcock and Wikstrom, 1992). Thus, the magnitude of catabolic activity 

would be proportionally related to the activity of proton translocation across cell membrane 

(Liu and Tay, 2001). Teo et al. (2000) revealed that proton translocation would induce the 

dehydration of cell surface, which could facilitate and strengthen the cell-cell interaction, 

and further lead to the creation of a high density of a microbial community. So, the catabolic 

activity of cells would play an important role in the development of a stronger biofilm (Liu 

and Tay, 2001). Also, this difference could be due to the existence of a higher number of 

cells within turbulent biofilms when comparing with the laminar ones. 
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 The comparison of the number of cells per mg of biological mass reveals that, 

turbulent biofilms have a higher number of cells than the planktonic situation (about 2000 

times). The same trend happens for laminar biofilms. Nevertheless, the difference is not as 

sharp as for the planktonic situation (about 200 times more). The cellular biochemical 

composition showed that planktonic cells have a pronounced higher content of proteins 

(about 700 times more and 130 times than, respectively, turbulent and laminar biofilms) and 

polysaccharides than biofilm cells (about 26000 times and 300 times than, respectively, 

turbulent and laminar biofilms), being this difference much more pronounced in the case of 

turbulent biofilms. 

 In order to observe if morphological changes occurred, the cells developed in the 

planktonic situation and in the biofilms, after the EPS extraction procedure, were stained 

with DAPI and observed with epifluorescence microscopy, as shown in Figure 5.1. 
 

 

Figure 5.1 Epifluorescence photomicrograph of cells grown in planktonic state (a) and 

within biofilms formed under turbulent (b) and laminar (c) flow. X 1320 magnification, bar 

=10 µm. 
 

b c 

a
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 From Figure 5.1 it can be observed that cell development in planktonic state and 

within turbulent and laminar biofilms resulted in morphologically changes. Planktonic cells 

have an elongated shape (rod shape), characteristic of P. fluorescens and the cells are bigger 

than in the sessile state. Cells within biofilms differ from the planktonic state as they appear 

to have a spherical shape. Concerning cells within biofilms formed under different flow 

regimes, cells from laminar biofilms seem to be bigger and to have a shape not as spherical 

as the cells from the turbulent biofilms. Arguably, this cellular feature could be related with 

the natural ability of bacteria to actively adapt to stress conditions. Additionally, this result 

corroborates the one found for the biochemical composition (Table 5.1), where the 

differences found in the proteins and polysaccharides content is certainly related with the 

differences existent in the bacterial cellular size, since planktonic cells were the ones that 

presented the more elongated cellular size, being, accordingly, the ones that presented the 

higher concentration of proteins and polysaccharides.  

The OMP of planktonic cells and cells from turbulent and laminar biofilms were 

isolated and analysed by SDS-PAGE. The OMP profiles obtained are presented in Figure 

5.2. 

 
Figure 5.2 Outer membrane proteins profiles of P. fluorescens planktonic (lane 1) and cells 

within biofilms formed under turbulent (lane 2) and laminar (lane 3) flow regimes. Numbers 

on the left represent molecular weights in kDa. 
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According to Figure 5.2, the OMP profiles obtained with cells within biofilms (lane 

2 and 3) differ considerably from the ones obtained with their free cell counterparts (lane 1). 

Moreover, different flow regimes (laminar and turbulent) applied for biofilm formation 

resulted in comparable protein expression. Nevertheless, the outer membrane of cells 

present in biofilms formed under turbulent flow regime (lane 2) exhibit a higher number of 

protein bands as well as bands with a higher intensity than the OMP present in cells within 

biofilms formed under laminar flow regime. It can be also observed that protein expression 

of cells within biofilms resulted in an increase of proteins bands with lower molecular 

weights.  

The OMP has a significant role in a context of biofilm eradication by chemical 

treatment, since the bacterial outer membranes form an adaptative barrier to the external 

environment, protecting the bacterial cell contents from damaging substances (biocides and 

other antimicrobial agents) when disinfection procedures are applied - while allowing the 

selective uptake of nutrients (Nikaido, 1996). This study revealed that the OMP profiles 

obtained with cells within biofilms (Figure 5.2) differed greatly from the OMP profiles of 

planktonic cells. These results are in accordance with the approaches made by several 

authors (Costerton et al., 1995b; Coquet et al., 2002, Sauer et al., 2002; Wang et al., 2003), 

proposing that bacterial adhesion to a surface triggers the expression of a number of genes, 

making the biofilm cells clearly phenotypically different from their free cell counterparts. 

However, that are no previous reports concerning the influence of the flow regime in the 

biofilm phenotype. 

Since the phenotypic characteristics of cells in planktonic and in sessile state, even 

cells from biofilms formed under different flow regimes, differed significantly, a PCR 

procedure was followed in order to ascertain the genetic stability of cells in different states. 

Figure 5.3 presents the PCR results of DNA from planktonic cells and from cells 

within biofilms formed under different flow regimes.  
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Figure 5.3 DNA profiles of P. fluorescens planktonic cells (lane 1) and of cells within 

biofilms formed under turbulent (lane 2) and laminar flow regime (lane 3). 
 
As it can be confirmed in Figure 5.3, the DNA profiles are similar for the three 

conditions studied, meaning that no genotypic differences existed, thus it can be said that no 

contamination occurred during biofilm formation, or that sessile cells were genotipically 

similar to the planktonic ones. 

The phenotypic differences within cellular states have significant impact on the 

design of biofilm control procedures since current disinfection procedures are based on tests 

using cells in planktonic state (EN 1276, 1997; Wirtanen et al., 2001). One of the earliest 

observations of such altered behaviour is the increased resistance of biofilm cells to 

antimicrobial agents when comparing planktonic and biofilm states (Wirtanen et al., 2001). 

This study reveals basic phenotypic characteristics of P. fluorescens in different cellular 

arrangements, linking with their behaviour in a disinfection process. Besides the existence 

of a well known EPS matrix involving the cells within the biofilms, new factors can be 

behind the recalcitrance of biofilms as the reduced cellular size and high cellular number; 

low metabolic activity; distinct biochemical composition of cells within biofilms from the 

ones in planktonic state; changed OMP and expression of a larger number of proteins. These 

features will be of crucial importance in a context of biofilm control. Drenkard and Ausubel 

(2002), studying P. aeruginosa biofilms, also speculated that resistant phenotypic variants 

were responsible for the increased resistance to antimicrobial agents. According to the same 
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authors, P. aeruginosa is capable of undergoing transient phenotypic changes that allow the 

bacteria to increase their antibiotic resistance both in vitro and in vivo. Several authors 

(Costerton et al., 1995b; Davies and Geesey, 1995; Watnick and Kolter, 2000; Sauer and 

Camper, 2001; Sauer et al., 2002) also suggested that biofilms express others specific 

survival mechanisms – expression of specific resistance genes; decreased growth rate; 

restricted penetration; biofilm-specific substances such as polysaccharides; quorum sensing 

specific effects –that explain their remarkable resistance to antimicrobial agents. In previous 

studies related with the use of biocides to control P. fluorescens growth, it was found 

considerable resistance to the antimicrobials when the cells were entrapped in a biofilm 

(Pereira and Vieira, 2001). From the present work it can be ascertained that bacteria express 

a phenotype mutant when face changes in the environmental and hydrodynamic conditions 

that can account to these differences. 

 

5.3.2 Comparison of biofilms formed under different hydrodynamic conditions 
 
A better understanding of biofilm structure and behaviour is essential for the 

establishment of specific and reliable methods to control biofilms, since biofilms are 

increasingly recognized as highly organized and dynamic habitats (Reisner et al. 2003). In 

this work, biofilms were formed in a continuous flow cell reactor. This type of device offers 

a simple and effective possibility to study and characterize biofilms in a well-controlled and 

reproducible manner (Pereira et al., 2002a). Table 5.2 presents the biofilm mass and the 

amount of proteins and polysaccharides presented in turbulent and laminar biofilms. 
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Table 5.2 Characteristics of P. fluorescens turbulent and laminar biofilms in terms of biofilm 

mass, proteins and polysaccharides composition. Mean ± SD 

Biofilm  
Turbulent Laminar 

Biofilm mass 
(mg/cm2) 

1.71 ± 0.23 0.717 ± 0.19 

Total 255 ± 77 71.3 ± 25 

Matrix 37.4 ± 6.7 19.8 ± 7.0 
Proteins 

(mg/g biofilm) 
Cells 218 ± 83 51.5 ± 18 

Total 136 ± 33 239 ± 84 

Matrix 115 ± 28 167 ± 59 

Polysaccharides 
(mg/g biofilm) 

Cells 21.4 ± 5.2 71.5 ± 25 
 
The characterization of P. fluorescens biofilms showed that turbulent biofilms had 

about two times more mass per cm2 than the laminar ones. Concerning the amount of 

proteins, biofilms formed under turbulent flow resulted in a higher content of total proteins. 

The protein content differed in turbulent and laminar biofilms since there was a 

considerably higher amount of proteins in turbulent biofilms cells. The proteins present in 

the matrix were in an equal extent in the different flow regime biofilms studied. The 

polysaccharide content was in a higher amount in laminar biofilms for every condition 

analyzed, being this biofilm constituent in a higher extent in the biofilm matrix than in the 

cellular composition.  

Figure 5.4 presents photographs of stainless steel coupons with surfaces covered 

with biofilms developed under different flow regimes.  
 

  

Figure 5.4 Photograph of the coupons with biofilms formed on the stainless steel slides 

under turbulent (a) and laminar flow (b). 
 

a b 
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The results obtained showed that biofilm structure depends on the flow conditions 

since turbulent biofilms appeared homogeneous and slimy while laminar biofilms were 

scattered on the surface. 

Figure 5.5 displays microphotographs representative of the several fields observed in 

each biofilm-covered metal surface.  
 

Figure 5.5 Scanning electron microscopy photomicrographs of a 7 d old P. fluorescens 

biofilm formed on stainless steel slides under turbulent (a) and laminar (b) flow. X 2000 

magnification, bar=20 µm. 
 

 As observed in Figure 5.5, biofilms grown under turbulent flow look very different 

from the ones grown under laminar flow. Therefore, the hydrodynamic conditions play an 

important role in the biofilm architecture being responsible for the differences obtained. It is 

also possible to observe that biofilms formed in the stainless steel surfaces under laminar 

flow do not cover totally the surface, corroborating the result obtained in Figure 5.4. 

Furthermore, it is evident the existence of a greater amount of cells in the biofilms formed 

under turbulent flow as well as an almost inexistent biofilm matrix when compared with the 

biofilms formed under laminar flow. According to Fux et al. (2005a), mature biofilms 

demonstrate a complex 3-dimensional structure with numerous microenvironments differing 

with respect to osmolarity, nutritional supply and cell density, being the biofilm architecture 

a response to a stochastic process (Davey and O`Toole, 2000). The heterogeneity found 

within biofilms could be behind the reduced susceptibility of sessile microorganisms face to 

antimicrobial agents, which could lead to the existence of persistent microorganisms that are 

recalcitrant to further treatments (Stewart, 2003).  

a b 
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Biofilm formation occurs as a result of a sequence of events: microbial surface 

attachment, cell proliferation, EPS matrix production and detachment. This process is 

partially controlled by quorum sensing, an inter-bacterial communication mechanism that is 

dependent on population density and is associated with radical changes in protein 

expression (Sauer et al., 2001). However, in this work, it seems that quorum sensing 

phenomenon does not interfere with the biofilm characteristics. Since it is a flowing system 

in which the diluted medium is continually refreshed and is from the same provenience for 

both biofilms formed under turbulent and laminar flow, it is possible that the diffusible 

signal molecules to be washed out of the biofilm as proposed by Purevdorj et al. (2002), 

being the cell signalling mechanisms mollified when comparing both biofilms in the present 

study. Additionally, according to Purevdorj et al. (2002), quorum sensing alone is not 

necessarily required for biofilm formation and other factors of the growth environment, 

including hydrodynamic conditions can play a role of greater significance in determining 

the biofilm structure. Liu and Tay (2001) also stated that physical phenomenon rather than 

biological effect is responsible for the observed relation between hydrodynamic shear and 

biofilm structure. 

Previous studies made by Pereira et al. (2002b) revealed that turbulent biofilms are 

thicker than laminar biofilms. Since thickness can give rise to increased diffusional 

limitations, that biofilm property have, thus, obvious influence on the microbial metabolism 

of the entrapped cells. Nevertheless, cells within turbulent biofilms are more actives, being, 

probably, the glucose consumption due to the higher number of cell per g of biofilm, which 

determined differences in the biochemical characteristics. Also, the fact that under turbulent 

flow the velocity is higher than under laminar flow resulted in a much higher rate of 

substrate transport from the fluid to the biofilm surface, which, probably, also favoured the 

formation of a more active biofilm.  

This study shows that the idea that under submission to stronger hydrodynamic 

conditions the cells build their habitat by producing more EPS does not happen under the 

tested conditions (Table 5.2). In fact, it has been currently observed (Lazarova et al., 1994; 

Liu and Tay, 2001; Pereira et al., 2001) that high detachment forces can induce the biofilms 

to secrete more EPS, which in turn would result in a balanced biofilm structure under the 

given hydrodynamic conditions. With the experimental conditions followed in this study, 

the higher flow velocity contributed to the adhesion of higher number of cells rather than the 

production of an extensive EPS matrix.  
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5.4 Conclusions  
 
Profound modifications induced by the immobilized status of bacteria within 

biofilms have been highlighted in this chapter. This particular physiology of cells within 

biofilms may help to explain their extraordinary phenotypic properties when compared 

with suspended bacteria. Planktonic cells look and behave significantly different from 

sessile cells. Planktonic cells presented a more elongated shape, were more active, and had 

a higher content of proteins and polysaccharides per cell than the cells present in biofilms. 

Nevertheless, the number of cells per mg of biological mass was much higher in biofilms. 

The OMP profiles of cell within biofilms were considerably different from their free cell 

counterparts. Nevertheless, the effect of different flow regimes (laminar and turbulent) in 

biofilm formation resulted in similar OMP profiles. Concerning biofilm formation under 

different flow regimes, the turbulent biofilms revealed to be more active and had a higher 

number of cells than the laminar ones. The cellular proteins and polysaccharides were in a 

higher extent in cells within laminar biofilms.  Concerning the comparison of turbulent and 

laminar biofilms, the ones formed under turbulent flow had about two times more mass per 

cm2, had a higher content of total proteins due to the higher amount of cellular proteins. 

Laminar biofilms had a higher content of cellular and extracellular polysaccharides than 

turbulent biofilms, being this biofilm constituent in a higher extent in the extracellular 

composition. Furthermore, direct visualization and SEM photomicrographs show that 

biofilms formed under different flow regimes also look very differently. 

This ability of biofilms to adapt their morphology to different environmental 

conditions may help to explain their tenacious nature and recalcitrant to control and his 

more detailed understanding of the complex roles of environmental factors in the biofilm 

behaviour will lead to improve the strategies for biofilm control. 
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Chapter 6 

 

Inactivation of planktonic Pseudomonas fluorescens 

using aldehyde-based biocides and surfactants – 

studies of the mechanism of action of the antimicrobial 

agent 
 

 

Abstract  
 
This preliminary study is made in order to determine the antimicrobial efficacy of 

aldehyde-based biocides (GTA, OPA) and the surfactants (CTAB and SDS). It is also a goal 

to obtain experimental data that can help to deep understand the mode of action of these 

antimicrobial agents. This is made by assessing the bacterial respiratory activity, as a 

measurement of the bacteria viability, and the ATP released. Assays in the presence of BSA 

are also carried out in order to simulate a disinfection process under dirty conditions. 

Phenotypic changes (OMP and cellular colour changes) are carried out and compared with 

the bacterial phenotype before chemical treatment. 
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6.1 Introduction 
 

 Control of microbial growth is required in food plant operations where wet surfaces 

provide favourable conditions for proliferation of microorganisms. The aim of the 

disinfection process is to reduce the surface population of viable microorganisms after 

cleaning and to prevent microbial growth on surfaces before restart of production (Gibson et 

al., 1999; Wirtanen et al., 2001).  

 Determination of disinfectant efficiency is often performed in suspension tests with 

ready-to-use dilutions. The European Committee for Standardization (CEN) has launched 

many standards. The microorganisms used are standard test microorganisms as well as 

spoilage bacteria, pathogens and spores of concern in hygiene. All disinfectants passing the 

efficacy test should reduce the number of vegetative cells by ≥ 5 log units and the number of 

bacterial spores by ≥ 1 log unit (Wirtanen et al., 2001). One of the several existent tests in 

European Standards is the quantitative suspension test EN 1276:1997, where the 

bactericidal activity of a disinfectant for use in food, industrial, domestic and institutional 

areas is tested against both Gram-negative (Pseudomonas aeruginosa and Escherichia coli) 

and Gram-positive (Staphylococcus aureus and Enterococcus hirae) bacteria in hard water. 

Additionally, bacteria as Salmonella typhimurium, Lactobacillus brevis and Enterobacter 

cloacae can be used if needed. Bovine serum albumine can also be included in the test 

solutions as an organic soil at two concentrations 0.03 % (to mimic clean conditions) and 

0.3 % (for dirty conditions ). 

GTA and OPA are two aldehydes that are known to have good antimicrobial 

properties. OPA is a new product that is claimed to have excellent microbiocidal, 

mycobactericidal and sporicidal activity (McDonnell and Russell, 1999; Rutala and Weber, 

2001). OPA received clearance by FDA (Food and Drug Administration) in October 1999 

and is currently under study as an alternative to glutaraldehyde (GTA) for high level 

disinfection. OPA is an aromatic compound with two aldehyde groups. The aromatic 

component might allow OPA to penetrate the outer layers of cells, thus helping to explain 

the very high activity of this biocide against Gram-negative bacteria even thought the degree 

of cross-linking seems to be less than with GTA (McDonnell and Russell, 1999; Walsh et 

al, 1999b). OPA has several potential advantages compared to GTA: is odourless, stable and 

effective over a wide pH range of 3-9 (Rutala and Weber, 2001), non-irritating to the eyes 

and nasal passages and does not require activation before its use. 
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Surfactants are commonly used in mixtures of cleaning products because of their 

ability of lowering surface and interfacial tensions of liquids. So, surfactants have the ability 

to wet surfaces, penetrate soil and solubilize fatty materials (Christofi and Ivshina, 2002; 

Glover et al., 1999). QAC´s are often employed as disinfectants for manual processing lines 

and surfaces in the food industry, and in human medicine area (Mereghetti et al. 2000), 

because of their excellent hard-surface cleaning, deodorization and antimicrobial properties 

(McDonnell and Russell, 1999). QAC´s mode of action is attributed to their positive charge, 

which forms an electrostatic bond with negatively charged sites on microbial cell walls 

(McDonnell and Russell, 1999). Those electrostatic bonds create stress in the cell wall, 

leading to cell lysis and death. QAC´s also cause cell death by protein denaturation, 

disruption of cell-wall permeability and reduction of the normal intake of life-sustaining 

nutrients to the cell (Cloete et al. 1998). CTAB is a QAC that appears to rupture the cell 

membrane. The primary site of action of CTAB has been suggested to be the lipid 

components of the membrane causing cell lysis as secondary effect (Gilbert et al. 2002). 

Anionic surfactants possess strong detergent but weak antimicrobial properties, except at 

high concentrations, when they induce lyses of Gram-negative bacteria (Hugo and Russell, 

1982). The outer and cytoplasmic membranes and the membrane-bound enzyme 

environment and function are the main targets of anionic surfactants (Denyer and Stewart, 

1998). SDS is an anionic surfactant widely used in detergent formulations (Jèrábkova et al., 

1999). 

The aim of this work is to clarify the antimicrobial potential of four chemical agents 

against P. fluorescens in planktonic state.  To investigate the possible interference of 

proteins with the biocidal action of antimicrobial agent, further tests are performed with the 

presence of a model protein in order to mimic dirty conditions found in a real situation, 

according to the EN 1276 (1997). 
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6.2 Material and methods 
 

6.2.1 Microorganism 
 

 Pseudomonas fluorescens ATCC 13525T was used through this work.  

 

6.2.2 Disinfection procedure 
 

 A suitable volume of the bacterial culture was harvested from the 2 l reactor, 

described in the sub-chapter 3.2.3, and washed with saline phosphate buffer by three 

consecutive steps of centrifugation (3777 g, 5 min) and resuspended in phosphate buffer pH 

7 in order to obtain a suspension with an optical density (λ = 640 nm) of 0.4 (~ 1 × 109 

cells/ml). This bacterial culture was then divided by several sterilised glass flasks, put in an 

orbital shaker (120 min-1, 27 ºC), and exposed to different concentrations of the various 

antimicrobial agents for ½ h.  

 The effect of the chemicals was assessed by determining the bacterial respiratory 

activity through oxygen consumption, the assessment of the ATP release and the analysis of 

the OMP expression (sub-chapter 3.6). Before the assessment of the bacterial respiratory 

activity, the antimicrobial agents were neutralized according to the procedure described in 

sub-chapter 3.5.1.  

To investigate the influence of the proteins on the antimicrobial efficacy, the 

procedure described above was followed but with the previous addition of 3 g/l (European 

Standard –EN 1276) of BSA (Merck 12018) to the bacterial suspension, simulating, by this 

way, dirty conditions. 

 

6.2.3 Antimicrobial agents 
 
The follow chemical agents were used: 

GTA at 200, 400, 800, 1500, 2000, 3500, 5000, 7000, 10000 and 13000 mg/l; 

OPA at 2.5, 5, 15, 25, 35, 45, 55, 65, 100, 200 and 300 mg/l; 

CTAB at 0.125, 0.250, 0.500 and 0.900 mM; 

SDS at 0.5, 1, 3 and 7 mM. 
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6.2.4 Adenosine triphosphate measurement 

 
 In order to investigate possible interference of the proteins with the bioluminescent 

method, some control experiments were made with phosphate buffer in the presence and 

absence of BSA. This control was only made with the surfactant CTAB. The effect of the 

chemical agents on the bacterial integrity was also evaluated in terms of relative light units 

as an estimative of the intracellular ATP content released. The latter was calculated, 

according to Dalzell and Christofi (2002), using the equation below: 
 
Relative light units = (RLU1/RLU0)      (6.1) 
 

where RLU0 is the relative light units of the control assay (bacteria without chemical 

addition) and RLU1 is the relative light units of the test sample. 

 

6.2.5 Cell growth in the presence of sodium dodecyl sulfate 
 
To determine whether the presence of SDS had any effect on the ability of the 

bacteria to grow, several sterile flasks were prepared with 200 ml of sterile growth medium, 

inoculated with an overnight bacterial suspension in a volume enough to have an OD (640 nm) 

0.200 (~ 5 × 108 cells/ml). The several bacterial cultures were incubated in an orbital shaker 

(120 min-1, 27 ºC). To each one of the flasks a different SDS concentration (0.5, 1, 3 and 7 

mM) was added. A control test, without surfactant addition, was also performed. The 

bacterial growth was followed temporarily by taking aseptically a 2.5 ml sample from each 

flask and recorded its OD. 

In order to examine if the bacteria could use SDS as an additional carbon source, the 

procedure described above was followed, with the difference that the growth medium was 

prepared without glucose. 

At the end of the overall experiments (that were performed in triplicate for each 

situation studied), the cultures were streaked onto solid medium to ensure that the cultures 

remained uncontaminated. 
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6.2.6 Respiratory activity 

 
The bacterial respiratory activity assays were performed in a Yellow Springs BOM 

(Model 53) according to the procedure described in sub-chapter 3.6.6. 

 

6.2.7 Mass of bacteria 
 
The mass of bacteria present in each glass flask was estimated by the determination 

of the TVS of the bacterial cultures (sub-chapter 3.6.5). 

 

6.2.8 Outer membrane proteins analysis 
 
The OMP profiles of cells without treatment (control) and after treatment for ½ h 

with 200 mg/l of GTA, 100 mg/l OPA, 0.9 mM CTAB and 7 mM of SDS were analyzed 

according to the procedures referred in sub-chapter 3.6.8.  

The colour of each bacterial pellet, after chemical treatment, was recorded and 

compared with the starting colour of the microorganism without chemical treatment. 

 

6.2.9 Statistical analysis 
 
The Student’s t test was performed when the aim was to investigate whether the 

differences between the experimental values obtained under different conditions could be 

considered significant.  
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6.3 Results and discussion 
 

6.3.1 Action of ortho-phthalaldehyde against Pseudomonas fluorescens planktonic cells 
 
The effect of OPA on the respiratory activity of P. fluorescens in the presence and 

absence of BSA is presented in Figure 6.1. 
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Figure 6.1 Respiratory activity of the bacterial suspended cultures, after treatment with 

several concentrations of OPA, with and without (control) BSA addition. 
 
From Figure 6.1, it can be seen that an increase in the OPA concentration promoted a 

decrease in the bacterial activity. For concentrations equal and higher than 65 mg/l total 

bacterial inactivation was achieved. This bactericidal effect of OPA is attributed to its 

lipophilic aromatic nature that makes it easy to uptake through the outer layers of Gram-

negative bacteria (Simons et al., 2000). However, the antimicrobial action of OPA was 

severely affected in the presence of BSA. In fact, the antimicrobial activity of OPA was 

significantly reduced when the BSA was added to the bacterial suspended cultures, being 

this reduction particularly noticeable for OPA concentrations higher than 15 mg/l. In the 

presence of BSA, total inactivation of the bacterial suspension was not observed even when 

high OPA concentrations were used. This phenomenon is a consequence of the high 

reactivity of OPA with proteins (Walsh et al., 1999a; 1999b). Nevertheless, besides the 

possible reactivity of OPA with primary amine presented in the protein, it can be also 

neutralized by the glycine of the BSA. In fact, it is known that BSA contains lysine, 

hystidine and glycine and that glycine can be used to neutralize the OPA and make it safe 
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for disposal (Rutala and Weber, 2001). Statistical analysis of the results obtained in the 

presence and absence of BSA showed that they were significantly different (P < 0.01).  

A bioluminescence assay to determine ATP release was made as an attempt to 

ascertain if the antimicrobial action of OPA could have effect on the bacterial integrity 

(Figure 6.2).  
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Figure 6.2 Relative light units as a measure of the ATP released from the bacterial cells 

after treatment with several concentrations of OPA.  
 
Figure 6.2 shows that cellular products were not released when the cells were 

exposed to the biocide since the ATP content of the bacterial cultures, after OPA treatment, 

is almost insignificant and similar to the one observed in the control conditions. A six 

relative light units can not be considered significant and, thus indicative of the maintenance 

of the bacterial integrity. 

 

6.3.2 Action of glutaraldehyde against Pseudomonas fluorescens planktonic cells 
 
Figure 6.3 presents the bacterial respiratory activity after submitting the cells, in the 

presence and absence of BSA, to treatments with several concentrations of GTA. 
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Figure 6.3 Respiratory activity of the bacterial suspended cultures, after treatment with 

several concentrations of GTA, with and without (control) BSA addition.  
 
The results of bacterial respiratory activity after GTA application show that this 

biocide was not effective in the total inactivation of the cells. Even after the treatment with 

13000 mg/l of GTA the cells still to have respiratory activity. Nevertheless, an increase in 

the GTA concentration promoted a decrease in the bacterial respiratory activity. Concerning 

the interference of BSA with the antimicrobial action of GTA, a statistical analysis reveals 

that the results without and with BSA presence are completely different (P < 0.05). In fact, 

in the presence of BSA, the reduction in the bacterial respiratory activity caused by GTA 

was drastically diminished. This reduction might be explained through the reaction of the 

aldehyde group with amines since BSA is a protein that contains primary amine residues. 

Moreover, histidine also enters in the constitution of BSA, being this amino acid suggested 

as a neutraliser for aldehyde biocides in the European Standard Test (Walsh et al., 1999b). 

Consequently, BSA reduces the availability of the groups necessary for biocidal activity. 

Moreover, BSA also decreases the accessibility of the biocide to its target sites by forming a 

coating around the microbial cell (Fraud et al, 2001). 

Figure 6.4 shows the relative light units as an estimative of the ATP possible 

released by the cells due to the exposure to several concentrations of GTA. 
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Figure 6.4 Relative light units as a measure of the ATP released from the bacterial cells 

after treatment with several concentrations of GTA.  
 
The ATP bioluminescence assay showed that the RLU detected in the bacterial 

suspensions after GTA treatment are insignificant and similar to the RLU observed in the 

control assay (without GTA addition). So, it is possible to say that cellular disruption did not 

occur when the cells were exposed to this biocide, as already observed with OPA. GTA was 

already demonstrated to be a protective agent against cell lysis (Azeredo et al., 2003a). 

 

6.3.3 Comparison of the antimicrobial effects of ortho-phthalaldehyde and glutaraldehyde 
 
Comparing results of GTA and OPA, it is clear that OPA is more effective in the 

inactivation of suspended cells than GTA. In fact, the concentration of OPA needed to 

complete inactivate the suspended bacterial cultures was about 100 mg/l, whereas for GTA 

even with a concentration of 13000 mg/l there was no total inactivation. This latter evidence 

emphasizes OPA as a possible alternative to GTA for high level disinfection, as already 

suggested by Walsh et al. (1999a). The mechanism of antimicrobial action of GTA and 

OPA may be related with the characteristics of the chemicals, since GTA and OPA are 

known to stabilize the outer membrane and cell walls of vegetative bacteria (Walsh et al., 

1999b) acting, probably, by blocking the passage of essential products to the cell.  

The OPA and GTA efficacy was considerably reduced when BSA was introduced in 

the suspended bacterial cultures. The reasons for that reduction are probably related with the 

properties of BSA, since it can act as neutralizer of GTA and OPA (Walsh et al., 1999a; 

1999b; Rutala and Weber, 2001), lowering, thus, the amount of biocide available to react 
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with the cells. The possible formation of a BSA layer coating the cells and, thus, impairing 

the access of biocides to the bacteria, can also account for the reduction of the bactericidal 

efficacy of both biocides when the protein was presented in the cultures 

 

6.3.4 Action of cetyltrimethyl ammonium bromide against Pseudomonas fluorescens 

planktonic cells 
 

 The effect of CTAB on the bacterial cells is presented in Figures 6.5 and 6.6.  
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Figure 6.5 Respiratory activity of the bacterial suspended cultures, after treatment with 

several concentrations of CTAB, with and without (control) BSA addition.  
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Figure 6.6 Relative light units as a measure of the ATP released from the bacterial cells 

after treatment with several concentrations of CTAB, with and without (control) BSA 

addition.  
 
Figure 6.5 shows that the respiratory activity decreases with the CTAB application, 

being this decrease function of the CTAB concentration increase. The total bacterial 

inactivation was achieved for concentrations higher than 0.5 mM. However, once more, the 

presence of BSA reduced significantly (P < 0.05) the antibacterial efficacy of CTAB. The 

ATP released into the medium, after CTAB aggression, increased as the CTAB 

concentration increased (Figure 6.6), suggesting that this surfactant promotes cellular 

disruption in an extent dependent of the CTAB doses. This result was not surprising, since 

QAC´s are believed to damage the outer membrane of Gram-negative bacteria, thereby 

promoting the release of cellular constituents (McDonnell and Russell, 1999). Since CTAB 

promoted ATP release, an additional ATP bioluminescence experiment performed, 

evaluating, in this time, the ATP released by the cells when treated with CTAB, but in the 

presence of BSA. Figure 6.6 shows that the RLU observed in the experiments made in the 

presence of BSA are always inferior when compared without BSA presence, regardless the 

CTAB concentration applied. This observation is a clearly sign of the BSA ability to protect 

the bacterial cells. This fact helps to understand why, even with CTAB concentrations 

higher than 0.5 mM, total bacterial inactivation was not achieved. So, the presence of BSA 

has a protective effect against CTAB action, leading to the release of a lower ATP 

concentration (P < 0.05).  

Comparing the results obtained by respirometry and the bioluminescent methods, a 

strong relationship (R2 = 0.975) was found between bacterial inactivation and relative light 
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units, meaning that an increase in bacterial inactivation corresponds to a proportional 

increase in the ATP released by the cells (P > 0.1). Concerning the same data but in the 

presence of BSA, the correlation coefficient found, R2 = 0.602, was undoubtedly poor. This 

latter relationship may indicate that when BSA was present in suspension, bacterial 

inactivation was related to the ATP released and probably, the presence of BSA acted as a 

protective agent to the cells avoiding their disruption, as presented in Figure 6.6. According 

to Ishikawa et al. (2002), surfactants may disturb membrane structure through interaction 

with cellular components, in particular proteins and lipids, being, therefore, used to extract 

proteins from cell membranes (Chatterjee et al., 2002). This fact can explain the diminished 

antibacterial effect of CTAB in the presence of proteins under dirty conditions (Figure 6.5), 

since part of the surfactant reacted with the BSA, and thus the amount of CTAB available 

for reaction with the cells was smaller. 

 

6.3.5 Action of sodium dodecyl sulfate against Pseudomonas fluorescens planktonic cells 
 
The results of the antimicrobial activity of SDS against planktonic cells of P. 

fluorescens are presented in Figures 6.7 and 6.8. 
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Figure 6.7 Respiratory activity of the bacterial suspended cultures, after treatment with 

several concentrations of SDS, with and without (control) BSA addition.  
 
Figure 6.7 shows that SDS promotes significant reduction on the bacterial 

respiratory activity. Moreover, Figure 6.8 demonstrates that SDS did not promote the 

cellular disruption since the ATP released was similar to the value obtained in the control 

assay (without SDS addition). Therefore, it can be concluded that in the studied 
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experimental conditions, and in the range of concentrations tested, SDS is effective in the 

total inhibition of P. fluorescens.  

Figure 6.7 also shows that, in the presence of BSA the bacterial respiratory activity 

increased reaching values even higher than the observed in the control. This fact suggests 

that the antimicrobial effect of SDS was neutralised and the bacterial activity stimulated. It 

seems that there was an optimal SDS/BSA rate that promoted surfactant neutralization and 

cellular activity induction. For instance, with the application of 3 mM of SDS and in the 

presence of BSA, the bacterial respiratory activity is approximately two times higher than 

the one obtained without SDS application. The statistical analysis of the results, obtained in 

the presence and absence of BSA, shows that they are significantly different (P < 0.05). The 

presence of BSA leads to the chemical neutralization of SDS. It is known that hydrophobic 

interactions are behind the reaction of surfactants with BSA in a controlled chemical system 

(Nelson, 1971; Gelamo et al., 2002).  
 

0

1

2

3

0 1 2 3 4 5 6 7
SDS concentration (mM)

Re
la

tiv
e 

lig
ht

 u
ni

ts

 
Figure 6.8 Relative light units as a measure of the ATP released from the bacterial cells 

after treatment with several concentrations of SDS.  
 
The capability of a Pseudomonas spp. strain in metabolize SDS is a phenomenon 

previously described (Thomas and White, 1989; Singh et al., 1998). So, in order to ascertain 

this capability with the strain used in this study, the bacterial growth was evaluated along 

time using SDS in two distinct approaches – as an additional (possible) growth source 

(Figure 6.9) and as an alternative to glucose (Figure 6.10). 

Figure 6.9 shows growth P. fluorescens curves obtained in the absence (control) and 

presence of several concentrations of SDS. 
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Figure 6.9 Growth curves of P. fluorescens with glucose as carbon source, in the presence 

and absence of SDS. 

 

From the analysis of the cellular growth profiles, it can be seen that the OD of the 

bacterial cultures for the minor concentrations of SDS (0.5 and 1 mM), reached values 

higher than in the absence of SDS specially after 24 h of growth. Eventhough the growth 

curves in the presence of 0.5 and 1 mM of SDS had similar profiles with the one of the 

control curve, they are statistically different (P < 0.05). The presence of 3 mM of SDS 

caused a retarded cellular growth and reduced the final OD of the culture compared to 

growth curve with SDS absence (P < 0.01). The higher concentration of SDS (7 mM) 

promoted complete inhibition of growth. This inhibition of growth due to presence of the 

higher SDS concentration showed that this surfactant was not used as metabolized nutrient 

and that higher SDS concentrations were toxic to the cells. Additionally, diauxic growth was 

not found during the 48 h of experiment, for any situation tested.  

In order to verify the possibility of P. fluorescens to use SDS as an alternative to 

glucose as a carbon source, some experiments were made in the absence of glucose in the 

growth medium.  

Figure 6.10 shows the growth curves of P. fluorescens in the absence of glucose on 

its conventional medium and in the absence (control) and presence of several concentrations 

of SDS. 
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Figure 6.10 Growth curves of P. fluorescens without glucose, in the presence and absence 

of SDS. 
 
From Figure 6.10, it can be seen that P. fluorescens grows in the absence of glucose 

as carbon source. However, SDS is not used as an alternative carbon source. Possibly, the 

cells found carbon sources in peptone and yeast extract, presented in the conventional 

medium. The growth patterns are similar without surfactant presence and in the presence of 

0.5 and 1 mM (P > 0.1), proposing that P. fluorescens grows in conventional medium 

without glucose addition and that low concentrations of SDS are probably neutralized with 

the proteins presented in the growth medium. For the higher concentrations tested (3 and 7 

mM), there was a toxic effect expressed in a decrease in the initial phase of the experiment, 

but the cells kept a latent state. The results obtained in the presence of 3 and 7 mM of SDS 

showed no statistical similarity with the control experiment (P < 0.01). The comparison 

between Figures 6.9 and 6.10, for the control assay, reinforces the phenomenon that SDS is 

not used as a carbon source. However, the growth extent is quite different in the presence 

and absence of glucose (P < 0.01). In the latter situation the cells reached the decline phase 

of growth more quickly (25 h after). This effect is also found in the presence of 0.5 and 1 

mM of SDS, when comparing the experiments in the presence and absence of glucose the 

growth behaviour is different (P < 0.01). The test with 3 mM of SDS shows that in the 

absence of glucose the cells remain in a latent state of growth, whereas in the presence of 

glucose cellular growth was found (P < 0.01). In the presence of 7 mM of SDS, the cells had 

similar behaviour in the presence and absence of glucose (P > 0.1).  
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Thomas and White (1989) reported that Pseudomonas spp. could biodegrade SDS 

and incorporate the hydrophobic metabolites of the alkyl chain as cellular components, such 

as membrane lipids. Nevertheless, SDS seems not to be used as a substrate by the P. 

fluorescens used in this work.  

Some possible mechanisms could explain the effects verified in the experiments in 

the presence of SDS: the surfactant is neutralized by the components present in the medium; 

SDS may inhibit growth; the interactions between the cells and the substrate may be altered 

in the presence of the surfactant, which can be due to an effect on the membrane 

permeability (Glover et al., 1999) that was not enough to promote the membrane rupture, as 

suggested by the amount of ATP released. This subsequent surfactant-mediated uptake 

pathway, possibly, enhanced in some way the substrate uptake and, consequently, the 

respiratory activity, as found with the tests with BSA, where the presence of BSA and SDS 

stimulated the bacterial respiratory activity.  

 

6.3.6 Comparison of the antimicrobial effects of cetyltrimethyl ammonium bromide and 

sodium dodecyl sulfate 
 
Concerning the comparison of both surfactants, the chemical nature (anionic and 

cationic) has influence on the antimicrobial properties of the surfactants. CTAB promoted 

total bacterial inactivation with the application of 0.5 mM, a concentration half of the CMC 

(1 mM) and the reactivity with BSA promoted the decrease in the bacterial inactivation. The 

increase in bacterial inactivation occurred with the increase in the CTAB concentration. 

This surfactant also promoted the release of intracellular ATP being this release in a small 

extent with the presence of BSA due to its protective effects to the bacterial cells. Cationic 

surfactants have a general antimicrobial action. This lead to the disruption of the cell 

membranes, consequently to the depolarization of the cytoplasmic membrane and the 

leakage of the cytosol components. So, ultrastructural changes may be induced by the action 

of the cationic surfactants, producing dramatic effects on the bacterial envelopes and 

causing lysis or massive leakage of cell components (Rodríguez et al., 2003). 

Concerning the application of SDS, even with the application of 7 mM, a 

concentration near the CMC (8.3 mM), total inactivation was not achieved. The reactivity of 

SDS with BSA increased the bacterial respiratory activity for the smaller concentrations 

tested (0.5 and 1 mM), an effect verified in the growth curves, where SDS at the smaller 
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concentrations did not affected the cellular growth. Paulus (1993), already pointed out that 

the antimicrobial effect of anionic surfactants is restricted mainly to Gram-positive bacteria 

and that their point of attack is apparently the microbial cell membrane.  

 

6.3.7 Effect of the antimicrobial agents in the bacterial phenotype: outer membrane 

proteins expression and colour changes 
 
The OMP profile of P. fluorescens were assessed after treatment with 200 mg/l of 

GTA, 100 mg/l of OPA, 0.9 mM of CTAB and 7 mM of SDS in order to assess the effect of 

the several antimicrobial agents on the OMP expression and are presented in Figure 6.11. 

 
Figure 6.11 Outer membrane proteins profile of P. fluorescens cells without chemical 

treatment (lane 1) and after treatment with GTA (lane 2), OPA (lane 3), CTAB (lane 4) and 

SDS (lane 5). Numbers on the left represent molecular weights in kDa. 
 
Comparing the OMP profiles without chemical treatment with the ones obtained 

from cells treated with the aldehyde-based biocides, no significant differences in the protein 

profiles are evident. As Walsh et al. (1999a) stated, the pre-treatment of cells with GTA and 

OPA inhibited cell lysis when challenged with other lytic agents. The treatment with the 

aldehydes caused a strengthening of the outer envelope, thereby protecting the cell from 

lysis. However, CTAB seems to promote a dilution in the OMP content presented in the 

electrophoresis gel after staining. Glover et al. (1999) reported that the action of cationic 
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surfactants cause damage to the cell membrane which results in the loss of its functions. 

This result corroborates, in some way, the result of ATP measurement because the existence 

of ATP release requires the destabilization of the outer membrane. It can be also observed 

that cells after treatment with SDS resulted in the increase of proteins bands with higher 

molecular weights. Several authors (Cloete et al., 1998; Denyer and Stewart, 1999, Glover 

et al., 1999; Ishikawa et al., 2002) proposed that surfactants, due to their detergent 

properties, react strongly with cell outer membrane, particularly the membrane proteins.  

Figure 6.12 shows the colour change in P. fluorescens after exposure to the several 

chemical agents during ½ h. 
 

 
Figure 6.12 Colour of pellet of cells of P. fluorescens without chemical treatment (a) and 

after treatment with GTA (b), OPA (c), CTAB (d) and SDS (e).  
 

 From Figure 6.12, it is clear that the different chemical agents react with the 

bacterial cells promoting colour changes. Before exposure to the chemical agents, the pellet 

of cells look like pink, while after treatment with respectively 200 mg/l of GTA they look 

red/pink; 100 mg/l of OPA they look dark green; 0.9 mM of CTAB they look white/cream; 

7 mM of SDS they look white. 

 The results of bacterial colour changes achieved after treatment with GTA and OPA 

are in accordance with the ones obtained by Walsh et al. (1999b), proposing that this effect 

is a consequence of the reaction with amino acids, consequently with proteins. According to 

Simons et al. (2000), the red colour developed after treatment with GTA resulted from an 

interaction of the dialdehyde with non-peptidoglycan components in the outer layers of 

Gram-negative bacteria. However, this reactivity of GTA and OPA with proteins does not 

affect the proteins of the outer membrane or affect in a small extent that is not detected in an 

SDS-PAGE analysis.  

Concerning the bacterial colour changes after treatment with CTAB and SDS, there 

are no published reports concerning this effect. Nevertheless, it is not surprising that the 
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surfactants promoted the change in the bacterial colour, since, as stated above, the reactivity 

with the OMP and the detergent properties of surfactants promoted changes in the bacterial 

phenotype. 

  

6.4 Conclusions 
 
The results obtained with the bacteria in planktonic state will be used to foresee the 

effect of the chemical agents tested when applied to biofilms. 

 From this work several conclusions can be drawn: 

The two aldehyde-based biocides (GTA and OPA) promoted reduction of the 

bacterial respiratory activity, being this effect more pronounced with the increase in the 

biocide concentration. Nevertheless, OPA was more effective in the inactivation of the 

bacterial cells than GTA.  

Both CTAB and SDS promoted reduction in the bacterial activity. However, the 

surfactants reacted differently with bacterial cells, since CTAB promoted bacterial 

disruption and the consequent ATP release, while SDS did not have effect on the cell 

integrity.  

The antimicrobial action of every chemical tested was significantly reduced when 

BSA was introduced in the suspended bacterial cultures. This fact proposes that the 

processes of disinfection under dirty conditions need the application of improved methods 

in order to avoid the effect of substances that react with the antimicrobial agents, lowering, 

by this way, the amount available to react with the cells. The presence of BSA, besides 

promoting the decrease in the antimicrobial efficacy of every chemical agent tested, acts as 

a cell protective agent when CTAB was applied. Also, it stimulated the bacterial respiratory 

activity when lower concentrations of SDS were applied.  

The P. fluorescens strain used in this study had the capability to growth in SDS at 

low concentrations but concentrations of SDS near the CMC inhibited the bacterial growth.  

  The OMP of the bacterial cells is affected by the application of both surfactants. 

Even though aldehyde-based biocides have the ability to react with proteins, the OMP 

profile was not affected after treatment with GTA and OPA. 

 The several antimicrobial agents tested promoted bacterial colour changes, being this 

effect similar when comparing the effect found after the treatment with CTAB and SDS. 
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Chapter 7 

 

Action of aldehyde-based biocides on the inactivation 

and removal of biofilms formed by Pseudomonas  

fluorescens under different flow regimes  
 

 

Abstract 
 
The effectiveness of GTA and OPA in the control biofilms formed by P. fluorescens 

on stainless steel slides, under turbulent and laminar conditions, using a flow cell reactor, is 

compared on this chapter. The action of the biocides is evaluated immediately and 3 h after 

treatment in terms of the activity of the biofilm and the mass of the biofilm that remained on 

the surface after the treatment. The experiment 3 h after treatment is an attempt to ascertain 

a prolonged effect on post-biocide application. Besides the experiment with two different 

biocides, the strategy of application of the biocide is also tested in order to assess whether 

time or concentration promotes a more efficient effect in the control of biofilms. The 

experimental tests with biofilms are performed with the application of a large range of 

concentrations of OPA for ½ h, concerning GTA, experimental tests are performed using a 

constant concentration and a range of exposure times.  
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7.1 Introduction 
 
Antimicrobial agents have been the main weapons used to control unwanted 

biofilms, acting either by interfering with microbial metabolism or allowing the natural 

detachment from the surface (Chen and Stewart, 2000). GTA and OPA are two aldehydes 

that are known to have good antimicrobial properties. GTA is a dialdehyde that has a broad 

spectrum of activity against bacteria and their spores, fungi and viruses. The mechanism of 

action (Figure 7.1) involves a strong association with outer layers of bacterial cells, 

specifically with unprotonated amines on the cell surface (McDonnell and Russell, 1999). 

OPA is an aromatic compound with two aldehyde groups which action is believed to be due 

to the interactions with the primary amino groups of the outer envelope or cell wall. 

However, the level of cross-linking associated with the outer membrane does not appear to 

be as extensive as that of GTA (Walsh et al., 1999a).  
 

             Microorganisms                                       GTA                      Cross-linked microorganisms 

 
Figure 7.1 Mechanism of reaction between GTA and microorganisms (adapted from Eager 

and Leder, 1986). 
 
GTA was already used for instance by Pereira and Vieira (2001) with the intent to 

control biofilms formed on stainless steel suspended plates, in laboratorial conditions. 

Concerning studies with OPA, this chemical is a promising antimicrobial agent (Alfa and 

Sitter, 1994; Walsh et al., 1999a; 1999b; Rutala and Weber, 2001). Nevertheless, there is no 

information available concerning its application against biofilms. 

The aim of this chapter is to evaluate the effect of OPA and GTA against biofilms 

formed under different flow regimes and to evaluate the effect of the mode of application on 

the biocide efficacy. 
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7.2 Materials and methods 
 

7.2.1 Microorganism and culture conditions 
 

 The microorganism used was P. fluorescens ATCC 13525T. The culture conditions 

were followed according to the procedure described in sub-chapter 3.1.2. 

 

7.2.2 Biofilm system 
 

 The continuous flow cell system (sub-chapter 3.2) was used to perform biofilm 

formation under turbulent and laminar flow. 

 

7.2.3 Biocides 
 

 OPA and GTA were tested throughout this work. In order to assess the best 

association of time of exposure and concentration, the biocides were applied against 

biofilms following two different approaches:  

 OPA was applied at a fixed time of exposure (½ h) but testing a range of 

concentrations (20, 50, 100, 200 and 300 mg/l); 

GTA was used always at the same concentration (200 mg/l), but varying the time of 

contact (½ h, 1 h, 2 h, 2 times ½ h and 2 times 1 h). In the case of multiple applications they 

were spaced for 2 h. 

Biocide solutions were diluted to the required concentration with sterile water. 

 

7.2.4 Biofilm tests 
 
After 7 d of growth, the biofilms formed on the metal slides of each parallel flow cell 

reactor, during 7 d, were exposed to OPA and GTA, according to the approaches described 

above. During the treatment period, the biocide solution replaced the diluted bacterial 

suspension flowing in the flow cell reactors. Each biocide concentration was tested in an 

independent experiment and each experiment was performed on three separate occasions. 

After the biocide exposure time, the flow of the biocide solution was interrupted and the 

bacterial suspension was re-introduced in the system in order to restore the conditions prior 

to biocide application and to mimic real situations encountered in industrial processes 
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(Pereira, 2001). In each experiment, after biofilm formation and prior to the initiation of the 

biocide treatment, three biofilm covered metal slides of each flow cell were sampled and 

used as control. The remaining biofilm-covered slides were sampled immediately after the 

exposure period to the biocide. The biofilms that covered the stainless steel slides were 

completely scraped and resuspended in phosphate buffer pH 7 and the residual biocide was 

neutralized by dilution (sub-chapter 3.5.1). Afterwards, the respiratory activity of the 

biofilms was assessed according to the procedure described in sub-chapter 3.6.6. After the 

assessment of the biofilm respiratory, the content of TVS of each biofilm suspension was 

quantified in order to determine the biofilm mass. To assess whether time plays a significant 

role on the action of the biocides, namely if it prevents a subsequent growth of the biofilm, 

the remaining slides were left in the flow cells and were sampled 3 h after biocide 

application.  

 

7.2.5 Analytical methods 

 
7.2.5.1 Biofilm mass  

 
The dry mass of the biofilm accumulated on the slides was assessed according to the 

procedure described in sub-chapter 3.6.5. 

 

7.2.5.2 Respiratory activity  
 
The respiratory activity of the several samples was evaluated by measuring the 

oxygen uptake rate (3.6.6).  

 

7.2.6 Statistical analysis 

 
The Student’s t test was performed when the aim was to investigate whether the 

differences between the experimental values obtained under different conditions could be 

considered significant.  
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7.3 Results and discussion 
 

7.3.1 Biofilm inactivation and removal after ortho-phthalaldehyde application 
 
Figure 7.2 presents the percentage of biofilm inactivation measured immediately 

OPA application for both turbulent and laminar biofilms as a function of OPA 

concentration. 
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Figure 7.2 Biofilm inactivation as a function of OPA concentration.  

(*) – The asterisks indicate that the biofilm was completely inactivated. 
 
The increase in the OPA concentration applied to the biofilms enhanced its biocidal 

activity, both in turbulent and laminar biofilms, being this trend more consistent for OPA 

concentrations higher than 50 mg/l. The effect of the biocide seems to be dependent on the 

flow regime under which the biofilms were formed, since laminar biofilms were more easily 

inactivated (P < 0.05), specially in the cases when higher concentrations of OPA were used. 

Furthermore, only for laminar biofilms and higher biocide concentrations the total 

inactivation of the biofilm was achieved. 

Figure 7.3 presents the respiratory activity of turbulent (Figure 7.3a) and laminar 

(Figure 7.3b) biofilms, immediately after OPA treatment and 3 h later. 
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Figure 7.3 Biofilm activity immediately (0 h) after OPA treatment and 3 h later, for 

turbulent (a) and laminar (b) flow. Control means without OPA treatment. 

(*) – The asterisks indicate that the specific biofilm respiratory activity was non-detectable. 
 
Immediately after OPA application, an increase in OPA concentration decreased 

gradually the biofilm activity, both in turbulent and laminar flow (as above mentioned, the 

data is more consistent for OPA concentrations higher than 50 mg/l). Also, Figure 7.3a and 

7.3b denote that 3 h after OPA application, for the biofilms that contact with higher OPA 

concentrations, and for both flow regimes, it seems that there is an increase in the biofilm 

activity compared to time zero, suggesting that bacterial biofilms recovered, in some extent, 

the respiratory activity. 

Figure 7.4 presents the percentage of biofilm that remained adhered after chemical 

treatment measured immediately OPA application for both turbulent and laminar biofilms as 

a function of OPA concentration.  
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Figure 7.4 Biofilm remaining as a function of OPA concentration.  

 
From this result (Figure 7.4), it can be concluded that OPA does not promote the 

detachment of the biofilms from the surface (P > 0.1). 

  

In order to assess if the biocide had a more prolonged effect on post-biocide 

application, Figure 7.5 presents the biofilm mass of turbulent (Figure 7.5a) and laminar 

(Figure 7.5b) biofilms, after treatment with different OPA concentrations and 3 h later. 
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Figure 7.5 Biofilm mass after OPA treatment and 3 h later, for turbulent (a) and laminar 

(b) flow, after application of different concentrations of OPA. Control means without OPA 

treatment. 
 
The biocide seems to have no effect on the variation of biofilm mass for the range of 

conditions studied, in view of the fact that the mass of the different turbulent and laminar 

biofilms did not experience any representative variation due to OPA treatment, for both 

sampling times (P > 0.1). 

 

7.3.2 Biofilm inactivation and removal after glutaraldehyde application 
 
The action of GTA, immediately after application, in the metabolic activity of 

turbulent and laminar biofilms can be seen in Figure 7.6. 
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Figure 7.6 Biofilm inactivation as a function of exposure time to GTA.  
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GTA proved to be more effective in the inactivation of biofilms for longer exposure 

times (Figure 7.6). For the same total exposure time, the multiple application of biocide 

proved to be less efficient than the application in a single period of time. The flow regime 

under which the biofilm is formed seems to have a strong impact on the biocide action, 

since biofilms formed under laminar flow are more easily inactivated than the ones formed 

under turbulent flow (P < 0.05). However, total inactivation of biofilms was not achieved 

for both turbulent and laminar biofilms.  

Figure 7.7 shows the respiratory activity, for turbulent (Figure 7.7a) and laminar 

(Figure 7.7b) biofilms, immediately after GTA treatment and 3 h later.  
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Figure 7.7 Biofilm activity after GTA treatment and 3 h later, for turbulent (a) and 

laminar (b) flow. Control means without GTA treatment.  

  
 Three hours after GTA application, biofilm activity seemed not to be significantly 

changed for every exposure time studied and for both biofilms (P > 0.05). 
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Figure 7.8 presents the percentage of biofilm remaining after chemical treatment, 

due to the application of 200 mg/l of GTA during different exposure periods, for turbulent 

and laminar flow.  
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Figure 7.8 Biofilm remaining as a function of exposure time to GTA.  

 
Figure 7.8 shows that biofilms were not removed after the GTA treatment, in all 

situations studied (P > 0.1). 
 
Figure 7.9 shows the biofilm mass, of turbulent (Figure 7.9a) and laminar (Figure 

7.9b) biofilms, immediately after GTA treatment and 3 h later. 
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Figure 7.9 Biofilm mass after GTA treatment and 3 h later for turbulent (a) and laminar (b) 

flow. Control means without GTA treatment. 
 
Three hours after GTA application, the mass of the biofilm did not changed for every 

exposure time studied (P > 0.1). 

 

7.3.3 Comparison between ortho-phthalaldehyde and glutaraldehyde against biofilms – 

influence of the flow regime and cellular state 
 
Since the hydrodynamic conditions under which the biofilms are formed play a 

significant role in the composition and structure of the biofilms (Chapter 5), it is not 

surprising to find differences on the efficacy of biocides when applied to turbulent and 

laminar biofilms. In all the situations studied, the laminar biofilms were more susceptible to 

the biocide action than the turbulent biofilms. Several reasons may account for this 

behaviour as already reported by several authors: apart from diffusion limitations that may 

occur, the penetration of antimicrobial agents into microbial biofilms is also controlled by 

the reaction of the antimicrobial agent with biofilm components (Stewart et al., 2001), since 

the biocide can react with the community components, such as organic matter, inorganic 

particles and cell debris (McFeters et al., 1995); the exopolymeric matrix is charged, being 

responsible for binding antimicrobial agents before they reach the target cell (Costerton, 

1985); phenotypic characteristics cells within biofilms are different from that in planktonic 

state as previously demonstrated in Chapter 5. Therefore, when a biocide is used to control 

biofilms, the microbial response to the chemical agent will depend not only on the type of 

microorganisms and the type of chemical agent, but also on the complex interactions 

between the biocide and the cellular arrangement. The higher content of proteins and 
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biofilm mass present in biofilms formed under turbulent flow may have reacted with the 

biocides, lowering their concentrations and thus reducing their antimicrobial effect. In 

previous work, Pereira and Vieira (2001) already suggested that GTA, when applied against 

biofilms, reacted with proteins of the polymeric matrix besides the reaction with the 

bacterial cells. As a consequence, the concentration of the biocide available for reaction 

with the bacteria within the biofilm is reduced. The results obtained in suspended tests in the 

presence of BSA (Chapter 6) reinforce this last statement.  

Comparing the action of OPA and GTA, when applied at the same concentration and 

exposure time (Table 7.1) to cells within biofilms and planktonic cells (results from Chapter 

6), both biocides proved to be more efficient in P. fluorescens suspended cultures than 

against the bacterial biofilms, emphasizing that bacteria entrapped in a biofilm are more 

resistant to antimicrobial agents than freely suspended cells (Table 7.1).  
 

Table 7.1 Bacterial inactivation in the presence and absence of BSA and inactivation of 

biofilms formed under turbulent and laminar flow due to the application of several 

concentrations of OPA and 200 mg/l of GTA during ½ h. Mean ± SD 

Planktonic cells Biofilm  

Without BSA With BSA Turbulent Laminar 

OPA 

200 mg/l 

 

100 ± 0 

 

90.2 ± 5.5 

 

88.6 ± 11 

 

100 ± 0 

GTA 

200 mg/l 

 

48.8 ± 2.9 

 

5.82 ± 0.30 

 

10.3 ± 2.8 

 

10.8 ± 3.5 
 
Comparing the action of OPA and GTA in the inactivation of P. fluorescens under 

different cellular states, OPA revealed to be more efficient than GTA.  

Concerning the analysis of the results obtained for the biofilms 3 h (post-surfactant 

application) after OPA treatment, shows that the respiratory activity is always higher than 

the one achieved immediately after biocide treatment, regardless of the flow regime, while 

for GTA the activity of the biofilm seems to continue invariable. This fact can be due to the 

higher level of cross-linking promoted by GTA (Eager and Leder, 1986; Walsh et al., 

1999a; 1999b; Simons et al., 2001) that can have a prolonged effect on post-biocide 

application and therefore in the biofilm development. 
 
Table 7.2 shows the differences obtained in biofilm removal after a similar process 

of treatment, with OPA and GTA.  
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Table 7.2 Removal of biofilms formed under turbulent and laminar flow due to the 

application of 200 mg/l of OPA and GTA during ½ h. Mean ± SD 

Biofilm removal (%)  

Turbulent Laminar 

OPA 2.90 ± 1.2 3.6 ± 1.1 

GTA 11.9 ± 0.35 18.1 ± 7.1 
 
The effect of both biocides on the biofilm mass was similar, i.e., the application of 

OPA and GTA did not promote a significant biofilm removal. Hence, the biofilms can be 

inactive but stay attached to the surface, which is not convenient in industrial systems where 

biofilm accumulation is a problem and, as seen above, the remaining biofilm can restore its 

functions along time.  

 

7.4 Conclusions 
 
The results presented in this chapter showed that OPA and GTA were more effective 

in the inactivation of laminar biofilms than turbulent biofilms, suggesting that the flow 

regime under which the biofilm are formed play an important role in the biocide action, 

specially when extremes conditions are tested (higher biocide concentrations or exposure 

times). Contrary to OPA, the application of GTA did not promote total inactivation of 

biofilms.  

When analysing the mode of application of biocides, the increase in the biocide 

concentration seems to be more efficient than the increase in the time of contact of the 

biocide with the biofilm.  

Both biocides exhibited a poor ability for the removal of laminar or turbulent 

biofilms from the surfaces.  

It can be concluded that biofilms are very stable structures that can be inactivated but 

stay attached to the surfaces. Both biocides proved to be more efficient in P. fluorescens 

suspended cultures than against the bacterial biofilms, emphasizing that bacteria entrapped 

in a biofilm are more resistant to antimicrobial agents than suspended cells, showing the 

inadequacy of planktonic testing methods for evaluating antimicrobial agents to be used 

against biofilms, and the need to use biofilm testing methods.  
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The chemical structure of the biocide seemed to have influence in the potential of the 

biofilms to recover their metabolic activity since, 3 h after the treatment with OPA, the 

biofilms appear to recover their metabolic activity, while the same effect did not occurred 

after GTA treatment. 
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Chapter 8 

 

Action of surfactants on the inactivation and removal of 

biofilms formed by Pseudomonas fluorescens under 

different flow regimes  
 

 

Abstract  
 
The action of the CTAB and SDS are investigated in the control of biofilms formed 

on stainless steel slides, under turbulent and laminar flow, by P. fluorescens. The contact of 

the surfactants with the biofilms is performed during ½ h. The action of different 

concentrations of the surfactants on biofilms is assessed by means of cellular respiratory 

activity and variation of biofilm mass, immediately, 3, 7 and 12 h after the application of 

the surfactants. The latter times are tested in order to ascertain a possible prolonged effect 

on post-surfactant application. Before and after the chemical treatment, scanning electron 

microscopy analyses are carried out in order to assess the influence of the surfactants on 

the biofilm structure.  
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8.1 Introduction 
 
Surfactants are commonly used in mixtures of cleaning products because of their 

ability to wet surfaces, penetrate soil and solubilize fatty materials (Glover et al., 1999; 

Christofi and Ivshina, 2002). Surfactants are classified on the basis of the charge or absence 

of ionization of the hydrophilic group (McDonnell and Russell, 1999). Cationic surfactants 

or QAC´s are employed both as disinfectants for manual processing lines and surfaces in the 

food industry, and in human medicine area (Mereghetti et al., 2000), because of their 

excellent hard-surface cleaning, deodorization and antimicrobial properties (McDonnell and 

Russell, 1999). QAC´s mode of action is attributed to their positive charge, which forms an 

electrostatic bond with negatively charged sites on microorganisms cell walls (McDonnell 

and Russell, 1999). Those electrostatic bonds create stresses in the wall, leading to cell lysis 

and death. The QAC´s also cause cell death by protein denaturation, distortion of cell-wall 

permeability and reduction of the normal intake of life-sustaining nutrients to the cell 

(Cloete et al. 1998). CTAB is a QAC that appears to rupture the cell membrane. The 

primary site of action of CTAB has been suggested to be the lipid components of the 

membrane being cell lyses a second effect (Gilbert et al. 2002).  

Anionic surfactants possess strong detergent but weak antimicrobial properties, 

except at high concentrations, when they induce lyses of Gram-negative bacteria (Glover et 

al., 1999). The outer and cytoplasmic membranes and the membrane-bound enzyme 

environment and function are the main targets of anionic surfactants (Cloete et al., 1998).  

The purpose of the work presented on this chapter is to assess the efficacy of CTAB 

and SDS to control biofilms of P. fluorescens formed under turbulent and laminar flow, and 

to evaluate the capability of the biofilms to recover after chemical treatment. 

 

8.2 Material and methods 
 

8.2.1 Microorganism and culture conditions 
 
The microorganism used was P. fluorescens ATCC 13525T. The culture conditions 

were followed according to the procedure described in sub-chapter 3.1.2. 
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8.2.2 Biofilm system 

  
The continuous flow cell system (sub-chapter 3.3) was used to perform biofilm formation 

under turbulent and laminar flow. 

 

8.2.3 Surfactants  
 
CTAB was used at 0.125, 0.250, 0.500 and 0.900 mM. 

SDS was used at 0.500, 1.00, 3.00 and 7.00 mM. 

Surfactant solutions were diluted to the required concentration with sterile water. 

 

8.2.4 Biofilm tests 
 
The biofilms formed on the metal slides of each parallel flow cell reactor were 

exposed to different concentrations of surfactant for ½ h. Each surfactant concentration was 

tested in an independent experiment and each experiment was performed on three separate 

occasions. During the treatment period, the surfactant solution replaced the diluted bacterial 

suspension flowing in the flow cell reactors, as already pointed out in sub-chapter 7.2.4. 

After the exposure time to the surfactant, the flow of the surfactant solution through the 

flow cells was stopped and the bacterial suspension was re-introduced in the system, as 

described in sub-chapter 7.2.4. In each experiment, and prior to the beginning of the 

surfactant treatment, two metal slides of each flow cell operating in parallel were sampled 

and used as a control. Immediately after the surfactant treatment, two metal slides of each 

flow cell were also sampled (time zero). The biofilms that covered the stainless steel slides 

were completely scraped, the residual surfactant was neutralized (sub-chapter 3.5.1) and the 

biofilm was used for further analysis according to the experiment describe in sub-chapter 

7.2.4. In order to assess whether time plays a significant role on the action of surfactant, 

namely if it prevents a subsequent growth of the biofilm, the remaining slides were left in 

the flow cells, without neutralization of the surfactant, and were sampled 3, 7 and 12 h after 

surfactant application. For every condition tested and for all times of exposure, two stainless 

steel slides were sampled.  
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8.2.5 Analytical methods  

 
8.2.5.1 Biofilm mass  

 
The dry mass of the biofilm accumulated on the slides was assessed according to the 

procedure described in sub-chapter 3.6.5. 

 

8.2.5.2 Respiratory activity  
 
The respiratory activity of the several samples was evaluated by measuring the 

oxygen uptake rate (sub-chapter 3.6.6).  

 

8.2.5.3 Scanning electron microscopy observations 
 

 During the experiments, several stainless steel slides covered with biofilms were 

observed by SEM (sub-chapter 3.6.10).  

 

8.2.5.4 Epifluorescence microscopy 
 

A volume of 50 µL of the biofilm suspension was stained with L-7012 Live/Dead 

BacLightTM Bacterial Viability kit developed by Molecular Probes Inc., using 

epifluorescence microscopy according to the procedure described in sub-chapter 4.2.6. The 

biofilm suspension was visualized before, after chemical treatment and 12 hours later. 

 

8.2.6 Statistical analysis 
 
Statistical comparisons of biofilm inactivation, biofilm removal and recovery were 

analysed by Student’s t test.  

 

 

 

 

 
 



Chapter 8 

144 

 

8.3 Results and discussion 
 

8.3.1 Biofilm inactivation and removal after cetyltrimethyl ammonium bromide 

application 
 
The effects of the application of CTAB during ½ h against biofilms formed on 

stainless steel slides under turbulent and laminar flow was assessed either by determining 

the respiratory activity due to glucose oxidation and the variation of the mass of biofilm. 

Those results are presented in terms of percentage of biofilm inactivation and removal 

(Figures 8.1 and 8.2), immediately after CTAB application.  
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Figure 8.1 Biofilm inactivation as a function of CTAB concentration.  

 
The application of several concentrations of CTAB to biofilms formed in the flow 

cell reactors resulted in an inactivation of the bacteria within the biofilm, which increased 

with the increase of the surfactant concentration (Figure 8.1). Concerning the studies carried 

out with biofilms formed under different flow regimes, the inactivation effect of CTAB was 

more pronounced in laminar biofilms than turbulent biofilms (P < 0.05). Nevertheless, total 

biofilm inactivation was not achieved for every condition studied. From these results, it can 

be said that the development of successful strategies to control biofilm formation must be 

studied under conditions that mimic real situations, since biofilm properties change in 

response to environmental conditions (Pereira et al. 2002b; Vieira et al. 1993). Biofilms 

formed under laminar flow are easily inactivated than those formed under turbulent flow. 

 The understanding of the effect of operational parameters that affect biofilm 

formation and subsequent disinfection plays a basic role on the establishment of a biofilm 
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control program. The low efficacy of CTAB to control biofilms may be related with its 

chemical reaction with proteins of the exopolymeric matrix. This argument is reinforced by 

the tests carried out with planktonic cells (Chapter 6), which showed that the inactivation 

effect of CTAB was significantly reduced in the presence of BSA. The higher inactivation 

effect on laminar biofilms is probably related with the characteristics of laminar biofilms 

when compared with the turbulent ones (Chapter 5). However, in both hydrodynamic 

situations, problems associated with mass transfer limitations within the biofilms can, 

always, decrease the action of CTAB. 
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Figure 8.2 Biofilm removal as a function of CTAB concentration.  

 
Concerning biofilm removal (Figure 8.2), CTAB had not a significant effect since 

the biofilm removal was always less or similar than 25 %, independently of the CTAB 

concentration. For laminar biofilms, the higher detachment was induced by a concentration 

of 0.250 mM, while for turbulent biofilms it was achieved only for a concentration of 0.5 

mM. Comparing statistically the percentage of biofilm removal for turbulent and laminar 

biofilms the results are similar (P > 0.1). 

The results show that the ability of CTAB to inactivate the biofilm is higher than to 

remove biofilms from surfaces, leaving biofilm on the surface not fully inactivated. Azeredo 

et al. (2003b) already showed that CTAB (0.5 mM) had the ability to cement bacteria to 

glass in spite of removing them. Despite the low effect on the biofilm removal, SEM 

observations reveal that the biofilm structure is changed after CTAB application (Figure 

8.3). 
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Figure 8.3 Scanning electron microscopy microphotographs of a 7 d old P. fluorescens 

biofilms formed on stainless steel slides under turbulent (a) and laminar flow (b) without 

surfactant application (I) and after treatment with 0.125 (II), 0.500 (III), 1.00 (IV) and 0.900 

mM (V) of  CTAB during ½ h. X 8000 magnification, bar = 5 µm.  
 
SEM observations show that biofilms formed under different flow regimes present 

significant morphological differences and that CTAB caused damage in the structure of the 

bacterial biofilms, being this phenomenon more pronounced with the application of 0.125, 

0.250 and 0.500 mM.  

 

8.3.2 Biofilm inactivation and removal after sodium dodecyl sulfate application 
 
Results of biofilm inactivation and biofilm removal after treatment with SDS at 

several concentrations are plotted in Figures 8.4 and 8.5.  

SDS promoted biofilm inactivation, being this effect dependent of the concentration. 

However, in the range of concentrations tested, total inactivation was not achieved. 

aIV bIV 

aV bV 
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 Comparing the results obtained for the turbulent and laminar biofilms, the statistical 

analysis showed that both biofilms had similar susceptibility to SDS action (P > 0.1).  
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Figure 8.4 Biofilm inactivation as a function of SDS concentration.  
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Figure 8.5 Biofilm removal as a function of SDS concentration.  

 
 Concerning biofilm removal, SDS had a poor effect on the biofilm removal, for both 

biofilms, since in almost all the experiments (except for 3 mM and for biofilm formed under 

laminar flow) the biofilm removal was less than 20 %. The removal was not dependent on 

the surfactant concentration, since the increase in the SDS concentration did not increased 

the biofilm removal. Furthermore, the statistical analysis revealed no equivalence on the 

removal of biofilms formed under different flow regimes (P < 0.05). 

Previous studies made by Azeredo et al. (2003b) demonstrated that SDS was 

efficient in the removal of layers of cells attached to glass. However, in this work, it was 
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found a lack of biofilm susceptibility to SDS, in terms of biofilm removal. Concerning the 

difference found within biofilms, it reflects the impact of the flow regime under which the 

biofilm are formed in the posterior biofilm removal. Purevdorj et al. (2002) found for P. 

aeruginosa, that high shear flow leads to a formation of strongly adhered biofilms.  

The evidence of bacterial biofilm in the metal slides before the treatment and the 

possible damage resulting from SDS treatment was inspected by SEM, as displayed in 

Figure 8.6.  
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Figure 8.6 Scanning electron microscopy microphotographs of a 7 d old P. fluorescens 

biofilms formed on stainless steel slides under turbulent (a) and laminar flow (b) without 

surfactant application (I) and after treatment with 0.5 (II), 1 (III), 3 (IV) and 7 mM (V) of  

SDS during ½ h.  X 8000 magnification, bar = 5 µm.  
 
SEM observations show that biofilms formed under different flow regimes present 

significant morphological differences, as already stated in Chapter 5, and that SDS seemed 

to cause damage in the structure and integrity of the bacterial biofilms. The probable 

phenomenon behind this fact is related with reaction of SDS with the biofilm cells and the 

removal of layers of biofilm. For the treatment with 3 mM and for laminar biofilms it is 

clear the reduced amount of biofilm, which is in accordance with the result found for the 

biofilm removal, where this value is higher for this condition.  

 

 

 

 

aIV bIV 
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8.3.3 Comparison between cetyltrimethyl ammonium bromide and sodium dodecyl sulfate 

against biofilms – influence of the flow regime and cellular state 
 
Table 8.1 shows results of suspended (already presented in Chapter 6) and biofilm 

bacteria inactivation in order to emphasize the role of the environmental conditions under 

study and the cellular state on the antimicrobial action of CTAB and SDS. 
 

Table 8.1 – Bacterial inactivation in the presence and absence of BSA and inactivation of 

biofilms formed under turbulent and laminar flow due to the application of several 

concentrations of CTAB and SDS during ½ h. Mean ± SD. 

Planktonic cells Biofilm  

Without BSA With BSA Turbulent Laminar 

CTAB 

0.125 mM 

0.250 mM 

0.500  mm 

0.900 mM 

 

59.0 ± 1.5 

72.2 ± 3.1 

100 ± 0 

100 ± 0 

 

16.2 ± 2.3 

24.3 ± 0.33 

28.0 ± 1.8 

86.8 ± 6.3 

 

23.3 ± 12 

21.8 ± 7.3 

33.6 ± 2.9 

45.0 ± 1.0 

 

36.5 ± 5.7 

32.3 ± 2.7 

60.9 ± 1.4 

65.2 ± 2.3 

SDS 

0.500 mM 

1.00 mM 

3.00 mm 

7.00 mM 

 

0 ± 0 

5.47 ± 3.9 

72.1 ± 6.1 

87.7 ± 3.8 

 

0 ± 0 

0 ± 0 

0 ± 0 

8.15 ± 3.2 

 

8.80 ± 6.9 

15.7 ± 2.9 

32.6 ± 0.95 

58.8 ± 10 

 

8.00 ± 2.4 

17.3 ± 6.4 

55.7 ± 10 

69.1 ± 7.4 
 
Comparing the action CTAB and SDS in the control of the P. fluorescens biofilms, 

both surfactants did not promote total biofilm inactivation, being CTAB more effective than 

SDS for the lower (0.125 and 0.250 mM) concentrations tested. Comparing inactivation of 

cells in suspension and cells within biofilms, it can be seen that cells within biofilms are 

often less susceptible to both surfactants than cells grown in suspension, which shows a 

significant difference between biofilms when compared with their freely counterparts. 

Nevertheless, the antimicrobial effect of both surfactants against planktonic cells in the 

presence of BSA was significantly reduced, for values smaller than the biofilm situations, 

for SDS, showing the high reactivity of surfactants with proteins. The experiments with 

planktonic cells and with BSA (Chapter 6) suggest that the proteins existent in the biofilm 

matrix are not in an immediate and reactive form in such way that halts the surfactant 

action. Ionic charge interactions between the biofilm matrix and the surfactant, in the case 
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of SDS, may occur in addition to the existence of diffusion limitations (Costerton et al., 

1987). However, as previously reported (Chapter 5) the cellular arrangement and the 

environmental conditions under which biofilms are formed lead to particular phenotypic 

characteristics. This cellular feature, arguably, had impact in a context of biofilm/bacteria 

disinfection. 

Table 8.2 shows the differences obtained in biofilm removal after a similar process 

of treatment, with CTAB and SDS.  
 

Table 8.2 Removal of biofilms formed under turbulent and laminar flow due to the 

application of 0.500 mM of CTAB and SDS during ½ h. Mean ± SD. 

Biofilm removal 
 (%) 

 

Turbulent Laminar 

CTAB 19.9 ± 6.0 2.92 ± 2.5 

SDS 8.00 ± 0.38 2.13 ± 0.24 
 
The biofilm removal with SDS application seems to be negligible for both turbulent 

and laminar biofilms as already pointed out in sub-chapter 8.3.2. CTAB, for this 

concentration, promotes a small reduction in the mass of biofilm formed under laminar 

flow. Hence, as verified for GTA and OPA (Chapter 7), the biofilms can be inactive but stay 

attached to the surface, which is not convenient in industrial systems where biofilm 

accumulation is a problem and the remaining biofilm can restore its functions.  

 

8.3.4 Biofilm recovery after treatment with cetyltrimethyl ammonium bromide and sodium 

dodecyl sulfate 
 
Figure 8.7 presents the post-surfactant effect, in terms of respiratory activity, of 

turbulent (a) and laminar (b) biofilms, after CTAB treatment. That effect was evaluated after 

3, 7 and 12 h later and compared with the results obtained immediately after the chemical 

treatment (0 h).  
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Figure 8.7 Biofilm respiratory activity after chemical treatment (0 h) with CTAB and 3, 7 

and 12 h later for biofilms formed under turbulent (a) and laminar (b) flow. Control means 

without surfactant treatment. 
 
The biofilms which were not immediately sampled after surfactant application were 

not subjected to the neutralization step being expected a sustained antimicrobial effect that 

promoted the failure of the cohesive forces of the biofilm, encouraging the consequent 

removal, since the surfactant retained within the biofilm matrix had more chance to act on 

the bacteria. Forsyth and Hayes (1998) stated that surfaces treated with cationic surfactants 

could retain a bacteriostatic film, due to the adsorption of the chemical on the surface, and 

prevent the subsequent growth of residual bacteria. 

From the results obtained after treatment with CTAB, the respiratory activity 

increased with the time between CTAB application and biofilm sampling, reaching values 

higher than the ones observed in the control experiment, i.e., without surfactant application. 

Both turbulent and laminar biofilms have similar recovery profiles when comparing 

statistically (P > 0.05). The control experiments show that the biofilm activity was almost 
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independently of the time (P > 0.05) since the 7 d old biofilms exhibit the same respiratory 

activity during the time of experiment (12 h). 

Figure 8.8 presents the post-surfactant effect, in terms of respiratory activity, of 

turbulent (a) and laminar (b) biofilms, after SDS treatment. 
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Figure 8.8 Biofilm respiratory activity after chemical treatment (0 h) with SDS and 3, 7 and 

12 h later for biofilms formed under turbulent (a) and laminar (b) flow. Control means 

without surfactant treatment. 
 
Concerning the behaviour of biofilms after SDS application (Figure 8.8), the 

activity of biofilms increased with time, particularly when 3 mM and 7 mM of SDS were 

applied to the biofilms. However, for turbulent biofilms the recovery is more pronounced 

than for the laminar biofilms (P < 0.05). Also, for turbulent biofilms, after SDS 

application, the recovery is more pronounced with the increase of the SDS concentration 

applied to the biofilms. 

Comparing the results of biofilm recovery after CTAB and SDS application, the 

recovery is more evident for both biofilms treated with CTAB, being less clear for laminar 
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biofilms when treated with SDS (Figure 8.8). The ionic nature of the surfactant seems to be 

responsible for the alteration effects of the biofilm respiratory activity, playing a more 

significant action when the surfactant concentrations applied were near the CMC. 

Consequently, the biofilm recovery must be associated with the stress conferred by the 

surfactant application. Probably, the surfactant may have increased the availability of 

nutrients to the cells embedded in the biofilms (promoting bacterial recovery) since the 

surfactant may have changed the structure of the biofilm matrix (as can be seen by the 

SEM results), namely the porosity of the biofilm, and thus favouring nutrient diffusion 

inside the matrix. This effect occurred, probably, without killing the microorganisms. 

Another feature that could contribute to biofilm recovery was the establishment of the 

conditions prior to the contact with the surfactants and the supply of nutrients, being in 

accordance with the statement made by Chandy and Angles (2001) where they found that 

one of the key factors that determine bacterial recovery in drinking water distribution 

systems was the availability of nutrients. Also, the bacteria found within biofilms have 

suffered changes in the metabolic state. In same cases this metabolic state seems to be a 

state of higher metabolic activity than the one found for the control experiment. This 

preservative recovery, according to Stewart (2003) could lead to populations of resistant 

bacteria, which may be recalcitrant to a subsequent disinfection process. The control 

experiments (without surfactant application) did not show any expressive variation on 

respiratory activity along the time for both biofilms tested since, biofilms were in a 

metabolic steady-state (Pereira et al., 2001). 

The overall results suggested that if the biofilms were left in the flow cell reactors 

longer, probably, the recovery of biofilm will be more evident and consistent. 

Figure 8.9 shows representative microphotographs of biofilm formed under 

turbulent flow stained with Live/Dead BacLight kit before, immediately after and 12 h 

after treatment with 0.5 mM of CTAB and 3 mM of SDS. These surfactant concentrations 

were opted, since the percentage of inactivation was similar for both experiments. 
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Figure 8.9 Epifluorescence photomicrographs of cells grown within biofilms formed under 

turbulent flow before treatment with 0.5 mM of CTAB (aI) and 3 mM of SDS (bI); 
immediatly after treatment (aII; bII); 12 h later (aIII; bIII). X 1320 magnification, bar=10 um. 

 

The biofilm left on the flow cell after surfactant treatment recovered their viability 

during the 12 h of the experiment, corroborating the respiratory activity results (Figures 8.7 

and 8.8).  

bI aI 

aII bII 

aIII bIII 
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 The dry biofilm mass before and after surfactant application can be observed in 

Figures 8.10 and 8.11, respectively for CTAB and SDS. 

0

0,5

1

1,5

2

2,5

Control 0,125 mM 0,25 mM 0,5 mM 0,9 mM

Bi
of

ilm
 m

as
s 

(m
g/

cm
2 )

0 h 3 h 7 h 12 h

(a) 

0

0,3

0,6

0,9

1,2

Control 0,125 mM 0,25 mM 0,5 mM 0,9 mM

Bi
of

ilm
 m

as
s 

(m
g/

cm
2 )

0 h 3 h 7 h 12 h

(b) 

Figure 8.10 Biofilm mass after chemical treatment (0 h) with CTAB and 3, 7 and 12 h later 

for biofilms formed under turbulent (a) and laminar (b) flow. Control means without 

surfactant treatment. 
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Figure 8.11 Biofilm mass after chemical treatment (0 h) with SDS and 3, 7 and 12 h later 

for biofilms formed under turbulent (a) and laminar (b) flow. Control means without 

surfactant treatment. 
 
It can be seen that in terms of total biofilm mass, only small variations were 

achieved with the surfactant treatment, being those variations more noticeable for laminar 

biofilms treated with SDS. The application of CTAB to both turbulent and laminar biofilms 

did not give rise to the biomass decrease. On the contrary, it seems that the application of 

CTAB increased the amount of biofilm adhered to the stainless steel slides. Therefore, it is 

clear that the application of SDS or CTAB and the time did not promoted any significant 

additional biofilm removal or growth, for any conditions tested and for any sampling time 

(P > 0.05 – for both surfactants and for every condition tested). 

Data presented in this study proved that the surfactant did not induced suppression 

of biofilm recovery in terms of biofilms activity and did not promoted the gradual biofilm 

erosion for both biofilms.  
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8.4 CONCLUSIONS 

 

A better understanding of biofilm response face to an external stress condition is 

essential for the emerge of new strategies for controlling biofilms. Biofilms formed under 

laminar flow were more susceptibly to the inactivation effect than turbulent biofilms, but 

none of them were removed by the surfactants tested. A post-surfactant effect was noticed 

for both biofilms since they recovered their metabolic activity along time, after surfactant 

treatment. The application of CTAB and SDS induced biofilm recovery in terms of biofilm 

respiratory activity. Concerning biofilm mass, the surfactants did not promote a slow 

biofilm detachment or the increase in the biofilm mass, probably due to the limited time of 

experiment. The permanence of this remaining pellicle that is still active, or in another 

metabolic state, may be a source of problems, such as biofilm recovery, development of 

resistant biofilms or a nutrient for other microorganisms. 

Both surfactants reacted with the biofilm constituents, changing their structure. 

This study reinforces the inadequacy of planktonic tests as a mean to assess the 

efficacy of chemical agents to be used against biofilms. 

This improvement in the understanding of the relationship between surfactant 

molecular properties, antibacterial properties and mechanisms of action could facilitate the 

design of chemical mixtures that more effectively control biofilm activity and removal.  
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Chapter 9 

 

The role of chemical treatment and mechanical 

cleaning in the control of biofilms 
 

 

Abstract 
 
In this chapter, a new experimental methodology is tested in order to ascertain the 

mechanical stability of biofilms, by using a bioreactor combined with a stainless steel 

rotating device, immersed in a bioreactor, where biofilms formed by P. fluorescens are 

allowed to grow at a defined Reynolds number of agitation. These biofilms are 

characterized in terms of biochemical composition, amount of mass metabolic activity, 

structural characteristics and mechanical stability. Afterwards, the biofilms are submitted to 

chemical aggression, followed by mechanical treatments by submission to increase 

Reynolds number of agitation promoted by the increase of the rotation speed of the stainless 

steel cylinders where biofilms are formed. The effect of the exposure for ½ h to: GTA, 

OPA, CTAB, SDS, NaOH and SHC is assessed in order to ascertain the effect of chemical 

agents on the biofilm mechanical stability. These synergistic chemical and mechanical 

treatments are also evaluated as a means to control biofilms. 
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9.1 Introduction 
 
Bacterial biofilms associated with surfaces are complex three-dimensional structures 

in which bacteria are embedded in a matrix chiefly made of EPS (Campanac et al. 2002). A 

better understanding of biofilm behaviour is particularly important due to the many serious 

problems associated with their presence (Pereira and Vieira, 2001). The EPS matrix 

provides the biofilm mechanical stability by filling and forming the space between the 

bacterial cells, keeping them together (Körstgens et al. 2001). Once developed, biofilms are 

harder to be removed completely (Pereira and Vieira, 2001). Chemical agents and 

mechanical forces are parameters often involved simultaneously in the control of biofilms, 

since the application of sole chemical agents tends to leave the biofilm intact when no 

mechanical treatment is implemented in the control process (Flemming, 1996). Mechanical 

stability is an important factor in determining the structure and function of biofilm systems 

and this parameter plays a key role in the removal and/or control of biofilms in engineered 

systems (Poppele and Hozalski, 2003). So far, very limited studies have been done 

regarding the mechanical stability of biofilms (Ohashi and Harada, 1994; 1996; Ohashi et 

al. 1999; Stoodley et al. 1999; Körstgens et al. 2001; Poppele and Hozalski, 2003). 

Moreover, studies concerning the effect of chemical agents on the biofilm mechanical 

stability are even fewer. 

In this chapter, a bioreactor system that allows the formation and subsequent 

exposure of biofilms to different chemical and mechanical stresses is used to assess the 

synergistic action of chemical and mechanical treatment on biofilm removal and to 

characterize the intrinsic biofilm mechanical stability. 

 

9.2 Materials and methods 
 

9.2.1 Microorganism and culture conditions 
 
The microorganism used was P. fluorescens ATCC 13525T. The culture conditions 

were followed according to the procedure described in sub-chapter 3.1.2. 
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9.2.2 Biofilm formation 

 
Biofilms were grown on stainless steel (ASI 316) cylinders, according to the 

procedure described in sub-chapter 3.4. 

 

9.2.3 Mechanical stability of the biofilm 
 
After 7 d of biofilm formation, the cylinders plus biofilm were carefully removed 

from the 3.5 l reactor. One of the cylinders was then immersed in a reactor with phosphate 

buffer, (control experiment), while the others were immersed in reactors containing different 

chemical solutions (volume of each reactor was 170 ml). This chemical treatment was 

carried out with the cylinders rotating at 300 min-1 during ½ h. Afterwards, the cylinders 

were removed from the reactors containing the chemical solutions, accurately weighed, 

introduced in other reactors with phosphate buffer and consecutively subjected to serial 

velocities of rotation, i.e., 500, 1000, 1500, and 2000 min-1, for a period of 30 s each. The 

wet weight of the cylinders plus biofilm attached was determined before and after each 

rotation. The experiments were repeated in three different occasions for every chemical 

treatment tested. 

For each experiment, the stainless steel cylinders were identified and weighed before 

being introduced in the reactor. The same procedure was followed with the control assay, 

i.e., with the cylinder plus biofilm immersed in the buffer solution.  

The wet mass of the biofilm that was removed from the surface area of each 

cylinder, after each rotation speed, was expressed in percentage of biofilm removal, and the 

amount of biofilm that remained adhered after submission to the completely series of 

rotation speed was expressed as percentage of biofilm remaining, according to the following 

equations: 
 

Biofilm remaining (%) = [(X2000 – Xc)/(Xafter treat - Xc)] × 100   (9.1) 

Biofilm removal 500 min-1 (%) = [(Xafter treat – X500)/(Xafter treat - Xc)] × 100  (9.2) 

Biofilm removal 1000 min-1 (%) = [(X500 – X1000)/(Xafter treat - Xc)] × 100  (9.3) 

Biofilm removal 1500 min-1 (%) = [(X1000 - X1500)/(Xafter treat - Xc)] × 100  (9.4) 

Biofilm removal 2000 min-1 (%) = [(X1500 - X2000)/(Xafter treat - Xc)] × 100  (9.5) 
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Xafter treat – Wet biofilm plus cylinder after the treatment during ½ h. 

Xc – wet mass of the cylinder. 

X500, X1000, X1500, X2000 – wet mass of the biofilm plus cylinder after submission to 

respectively 500, 1000, 1500 and 2000 min-1. 
 
Assuming the system with a behaviour of an agitated vessel, the Reynolds number 

for each rotation speed can be calculated according to the following equation (Geankoplis, 

1993): 
 

N`ReA = Da2 × N × ρ         (9.6) 

µ  
 

Where, Da (m) is the diameter of the cylinder; N (rotation/s) is the rotation speed; ρ (Kg/m3) 

is the fluid density; µ (Kg/m.s) is the fluid viscosity. 
 

Table 9.1 Reynolds number of agitation for each rotation speed used in this study 

min-1 N`ReA 

300 2400 

500 4000 

1000 8100 

1500 12100 

2000 16100 

 

9.2.4 Chemicals used to treat the biofilms 
 
In the present work, the follow chemical agents were used: 

 
Two non-oxidizing aldehyde-based biocides:  

OPA at 50, 100, 200 and 300 mg/l, and GTA at 100, 200, 500 and 1000 mg/l. 

 

Two surfactants: 

CTAB at 0.125, 0.250, 0.500 and 0.900 mM, and SDS at 0.5, 1, 3 and 7 mM. 

 

Two oxidizing biocides: 

NaOH at 50, 200, 300 and 500 mM, and SHC at 50, 200, 300 and 500 mg/l. 
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9.2.5 Biofilm characterization 

 
The biofilm that covered the stainless steel cylinder was completely scraped off the 

metal and resuspended into 10 ml of phosphate buffer pH 7. This biofilm suspension was 

used to assess the cellular respiratory activity of the biofilm through oxygen uptake rates 

and afterwards biofilm mass. Biofilm from an other cylinder was resuspended in extraction 

buffer for further quantification of its extracellular and cellular proteins and polysaccharides 

content. 

The experiments were repeated in three different occasions by performing three 

independent biofilm formation experiments and biofilm characterization was only carried 

out with biofilms that were not treated with chemical agents. 

 

9.2.6 Respiratory activity 
 
The respiratory activity of the biofilm was evaluated by measuring oxygen uptake 

rates due to glucose consumption in a biological oxygen monitor (BOM) in short-term 

assays, according to the procedure described in sub-chapter 3.6.6. 

 

9.2.7 Extracellular polymeric substances extraction procedure 
 
Extraction of the EPS of the biofilm was carried out according to the procedure 

described in sub-chapter 3.6.2. 

 

9.2.8 Biochemical analysis 
 
The biochemical analyses were carried out with the homogenised biofilm 

suspensions. The amount of total, extracellular and cellular proteins and polysaccharides 

were determined according to the procedure described in sub-chapter 3.6.3. 

 

9.2.9 Biofilm mass  
 
The wet biofilm mass was assessed by the difference between the cylinder plus 

biofilm before the treatment and the clean cylinder. 
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The dry biofilm mass was assessed by the determination of the TVS of the 

homogenised biofilm suspensions, according to the procedure described in sub-chapter 

3.6.5. 

 

9.2.10 Statistical analysis 
 
Wilcoxon procedure was used to compare the equivalence between the different 

N`ReA for the same chemical concentration and for the same N`ReA for the different 

chemical concentrations.  

 

9.3 Results and Discussion 
 

9.3.1 Characterization of the biofilms formed on the rotating device 
 

Figure 9.1 shows a stainless steel cylinder covered with biofilm after 7 d of growth. 
 

 
Figure 9.1 Stainless steel cylinder covered with biofilm after 7 d of growth. 

 
This Figure clearly shows that the surface of the stainless steel cylinder was 

completely covered with a thick and slimy biofilm that seems to be strongly adhered to the 

surface. Some characteristics of the biofilms formed on the cylinders of the rotating device, 

namely the biofilm activity, mass, proteins and polysaccharides content, are presented in 

Table 9.2. This characterization was performed with biofilms before the submission to the 

chemical and mechanical treatments. 
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Table 9.2 Characteristics of the biofilms formed on the surface of the stainless steel 

cylinders after 7 d of growth 

Biofilm activity 
(mg O2/gbiofilm.min) 

0.150 ± 0.02 

Dry 0.907 ± 0.01 Biofilm mass 
(mg/cm2) Wet 21.5 ± 6.1 

Total 210 ± 19 

Matrix 59.9 ± 15 

Proteins 
(mg/gbiofilm) 

 Cells 150 ± 17 

Total 200 ± 4.6 

Matrix 121 ± 56 

Polysaccharides 
(mg/gbiofilm) 

 Cells 79 ± 18 
 
From Table 9.2 it can be verified that the biofilms were metabolically active, since it 

showed the ability to oxidize glucose (Chapter 3), and contained about 96 % of water, which 

is in accordance with other authors (Vieira et al., 1993; Azeredo and Oliveira, 2000; Pereira 

et al., 2001a). The amount of extracellular proteins was about 29 % of the total biofilm 

proteins and the amount of extracellular polysaccharides was nearly 62 % of the total 

biofilm polysaccharides. The total protein content was similar to the total polysaccharide 

content, besides the analytical methods used were different; consequently, comparison 

between total proteins and polysaccharides can not be feasible. 

 The characteristics of the biofilms formed on the stainless steel cylinders (Table 9.2), 

namely the respiratory activity, biofilm mass and total content of proteins and 

polysaccharides, are similar to the ones observed in biofilms formed in the flow cell system 

under turbulent flow (Chapter 5), specifically the significant content of extracellular 

proteins and polysaccharides found in the composition of the biofilm matrix. The evidence 

of the slimy matrix of the biofilm depicted in Figure 9.1 acquired great importance in 

biofilm architecture, and thus in biofilm mechanical stability, since, according to Körstgens 

et al. (2001), EPS are responsible for keeping biofilm together and binding the biofilm to 

the support, forming a temporary network of fluctuating junction points. 
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9.3.2 Biofilm removal due to mechanical stress 

 
Figure 9.2 shows the biofilm removal obtained due to the increase in the N`ReA for 

the control experiment. 
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Figure 9.2 Biofilm removal for the control assay due to change in the N`ReA. 

 
The existence of shear stress forces higher than the one under which the biofilm was 

formed (N`ReA = 2400) caused biofilm removal. The high percentage of removal occurred 

with the implementation of a rotation of velocity that corresponds to a Reynolds number of 

8100 (Figure 9.2), being biofilm removal similar for the others Reynolds number tested. So, 

it can be said that the biofilm removal is dependent on the hydrodynamic conditions (P < 

0.05). Figure 9.2 also shows that the total series of Reynolds number did not give rise to 

total biofilm removal, since only about 76 % of biofilm mass was detached from the 

cylinders. 

The mechanical stability of biofilms, i.e., the behaviour of biofilms face to external 

stress mechanical conditions, is of great impact for both wanted and unwanted biofilms 

(Poppele and Hozalski, 2003). In this study, the mechanical stability of the biofilm was 

assessed by submitting biofilms to different shear stress, correspondent to increasing N`ReA, 

which may weak the biofilm structure and promote detachment. The biofilm formed on the 

cylinders of the rotating device prior to chemical stress was characterized in order to 

determine the inherent biofilm mechanical stability, since detachment processes may be 

dependent on it. According to Stoodley et al. (1999a), biofilm matrix develops an inherent 

internal tension, which is in equilibrium with the shear stress under which the biofilm is 
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formed. The EPS strength the cohesive forces within the biofilm, thereby contributing to an 

enhanced inherent biofilm mechanical stability (Azeredo and Oliveira, 2000). The EPS can 

mediate both cohesion and adhesion of cells, and play a crucial role in maintaining 

structural integrity of the biofilm matrix (Liu and Tay, 2001). The removal of a well 

established biofilm requires the overcome of the forces which maintain the integrity of the 

biofilm (Körstgens et al. 2001). This control experiment (Figure 9.2) showed that biofilms 

subjected to sole mechanical treatment were hardly removed with low shear stress (N`ReA ≤ 

4000) since only about 14 % of biofilm removal was achieved. However, when the N`ReA 

were raised from 4000 to 8100 a noticeable biofilm detachment was observed, but a layer 

remained on the surface even when the highest N`ReA was applied. According to Azeredo 

and Oliveira (2000), the biofilm detachment is processed in layers, where the increase in the 

shear stress may progressively thin the biofilm, being mechanical failure and total 

detachment the ultimate effect expected. This removal of biofilms from surfaces using 

increasing shear stress promoted by the increasing in the N`ReA is a mechanical 

phenomenon. However, the most common practice to eliminate unwanted biofilms involves 

the application of toxic chemicals (Chen and Stewart, 2000).  

 

9.3.3 Biofilm removal due to mechanical stress after exposure to non-oxidizing biocides 
 
Figures 9.3 and 9.4 show the biofilm removal caused by the implementation of the 

different Reynolds number after biofilm be treated with OPA and GTA, at different 

concentrations. 
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Figure 9.3 Biofilm removal observed after the alteration of the N`ReA for the biofilm control 

and for the OPA treated biofilms. Control means without OPA treatment. 
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Figure 9.4 Biofilm removal observed after the alteration of the N`ReA for the biofilm control 

and for the GTA treated biofilms. Control means without GTA treatment. 
 
The results obtained with OPA show that its application to biofilms to favour the 

detachment caused by the change in the N`ReA. The increase in this biocide concentration 

does not have significant effect in the biofilm removal, since, for the same N`ReA (Figure 

9.3) the biofilm removal was similar for every concentration tested (P > 0.5). It also can be 

noticed that the percentage of biofilm removal with the lower N`ReA applied increased 

when biofilms were previously treated with OPA. The comparison between the different 

N`ReA for the same OPA concentration shows that, only for 50 mg/l of OPA the biofilm 

removal exhibited significant differences (P < 0.05).  

Figure 9.4 shows that the total biofilm removal achieved with the total series of 

Reynolds number decreased with the increase of the GTA concentration used to previously 

treat biofilms. Moreover, for the lower N`ReA applied biofilm removal decreased with the 

increase in the GTA concentration. These facts suggest that the biofilm previously treated 

with GTA becomes less susceptible to the alteration of the shear forces. For each GTA 

concentration tested, the statistical analysis of the biofilm removal values achieved after 

each N`ReA showed that they were not equivalent (P < 0.05). The comparison between the 

different GTA concentrations tested, for the same N`ReA, shows that biofilm removal are 

significantly different (P < 0.05). This result shows that GTA application and mechanical 

treatment had a significant effect on the variation of biofilm removal. 

GTA was not efficient at removing the biofilm from the stainless steel cylinders in 

spite of the fact that this biocide is frequently used to chemically control the accumulation 

of biofilms (Pereira and Vieira, 2001). On the contrary, GTA contributed to the formation of 

a harder deposit, since the percentage of biofilm remaining on the surface was higher than 
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for the control experiment. The bi-functional nature of GTA allows it to react and cross-link 

with ammonia and primary amine groups and more slowly with secondary amines (Walsh et 

al. 1999b; McDonnell and Russell, 1999). Following the hypothesis of GTA as a cross-

linking agent would lead to predict that biofilm treatment with GTA should actually 

stabilize the biofilm, as found with this work. Conversely, the results obtained with OPA are 

consistent with its less effect of cross-linking when compared with GTA. Probably this fact 

is related with the aromatic ring presented in the molecular structure of OPA which confers 

a diminished flexibility of the molecule, conversely to the aliphatic chain of GTA (Walsh et 

al. 1999a; 1999b; Simons et al. 2001). Consequently, the biofilm remaining on the surface 

decreased slightly after OPA application in relation to the control. 

 

9.3.4 Biofilm removal due to mechanical stress after exposure to surfactants 
 
Figures 9.5 and 9.6 shows, biofilm removal caused by the exposure of the biofilm to 

the different Reynolds number after treatment with respectively CTAB and SDS, at different 

concentrations. 
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Figure 9.5 Biofilm removal observed after the alteration of the N`ReA for the biofilm control 

and for the CTAB treated biofilms. Control means without CTAB treatment. 
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Figure 9.6 Biofilm removal observed after the alteration of the N`ReA for the biofilm control 

and for the SDS treated biofilms. Control means without SDS treatment. 
 
CTAB enhances biofilm removal in respect to the control, and increases with CTAB 

concentration. The results also show that, the biofilm removal happens in a higher extent for 

the smaller (4000 and 8100) N`ReA (Figure 9.5). This trend becomes more important with 

the increase of CTAB concentration (Figure 9.5). For the same CTAB concentration the 

biofilm removal values observed for the different N`ReA are statistically different (P < 

0.01), showing that CTAB application increases the biofilm susceptibility to detachment 

through the mechanical action. However, when comparing the biofilm removal within 

concentrations and for the same N`ReA, only for 4000 the biofilm removal was significantly 

different (P < 0.05).  

Concerning SDS, apart from 7 mM, its application to the biofilm resulted in the 

decrease of biofilm removal achieved with the hydrodynamic change. Conversely, with the 

application of 7 mM of SDS biofilm removal happened in a higher extent for N`ReA of 4000 

and 8100, but, similar with the others N`ReA tested (P > 0.05). For 0.500 mM the biofilm 

removal is similar for every N`ReA tested (P > 0.1). The application of 1 and 3 mM of SDS 

promoted significant differences in the posterior biofilm removal (P < 0.05), when 

comparing the different N`ReA, being the high amount of biofilm removal promoted with 

the exposure to a N`ReA of 12100. However, when comparing the biofilm removal for the 

same N`ReA within the different concentrations, only for a N`ReA of 4000 was found a 

significant difference (P < 0.05) due to the high amount of biofilm removal found after 

treatments with 0.5 and 7 mM. Accordingly, the treatment with surfactants caused different 

biofilm responses that may be related with their chemical nature. Concerning cationic 

surfactants, their action is attributed to their positive charge that forms an electrostatic bond 
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with negatively charged sites (Cloete et al. 1998). The increase in the CTAB concentration 

promoted the subsequent higher biofilm removal due to the destabilization of the biofilm 

cohesive forces, being biofilm removal detected at a higher extent to the smaller shear 

stresses (Figure 9.5). The effect of SDS on the mechanical stability of the biofilm may be 

due to the disruption of the hydrophobic interactions involved in cross-linking the biofilm 

matrix (Chen and Stewart, 2000). However, in this work, this SDS effect was only felt for 

the higher concentration (7 mM) tested, proposing that low concentrations of SDS can even 

promote the strength of the biofilm structure. The different biofilm behaviour may be 

related with the chemical reaction of the surfactants with the biofilm components used, that 

can give rise to the strengthening or to the weakening of the biofilm structure. The 

electrostatic bonds created stress or cross-linking depending on the chemical structure of the 

molecule. 

 

9.3.5 Biofilm removal due to mechanical stress after exposure to oxidizing biocides 
 
Figures 9.7 and 9.8 show biofilm removal caused by the exposure of the biofilm to 

the different N`ReA after treatment with NaOH and SHC at different concentrations. 
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Figure 9.7 Biofilm removal observed after the alteration of the N`ReA for the biofilm control 

and for the NaOH treated biofilms. Control means without NaOH treatment. 
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Figure 9.8 Biofilm removal observed after the alteration of the N`ReA for the biofilm control 

and for the SHC treated biofilms. Control means without SHC treatment. 
 
Similar impacts on biofilm removal were found for NaOH and SHC (Figures 9.7 and 

9.8). Both chemicals affected similarly biofilm removal for every condition tested. 

Concerning NaOH, with the exception for 50 mM, the highest amount of biofilm removal is 

found for a N`ReA of 4000 and with the trend to increase with the increase in the 

concentration applied. For 50 mM the high amount of biofilm removal was found with the 

exposure to an exposure to a N`ReA of 8100. However, the biofilm removal is statistically 

equivalent when comparing with the others N`ReA (P < 0.05). Concerning the comparison 

of the different N`ReA for the same NaOH concentration, the results are significantly 

different (P < 0.05), with the exception for the treatment with 200 mM (P > 0.10) where the 

biofilm removal happened in a similar extent with the submission to a N`ReA of 4000 and 

8100.  

The application of 50 mg/l of SHC resulted in a posterior biofilm removal that 

reached the highest amount with the exposure to a N`ReA of 8100. For the others 

concentrations tested, the biofilm removal was high for a N`ReA of 4000. The biofilm 

removal was similar for every concentration tested when comparing for the same N`ReA (P 

< 0.05). The results were significantly different (P < 0.05) as a consequence of the higher 

biofilm removal with the increase of N`ReA.  

According to Kim et al. (2002), oxidizing agents are widely used as disinfectants 

since they cause deleterious effects on bacteria, affecting the bacterial respiratory and 

transport activities, and nucleic acids. In this study, the oxidizing biocides, probably, reacted 

strongly with the EPS matrix, destroying the structure which became more vulnerable to 
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hydrodynamic stress. So, it is not surprising to obtain more removal for the same N`ReA as 

the concentration increase.   

 

9.3.6 Total biofilm remaining on the surface 

 
The total percentage of biofilm that was not removed in the control experiment and 

for the experiments with the application of the different chemicals prior to the submission to 

the total series of N`ReA, considered as the biofilm remaining, is presented in Table 9.3.  
 

Table 9.3 Total percentage of biofilm remaining on the surface for the several chemical 

treatments and for the control experiment after the submission to the total series of N`ReA 

 Treatment Total biofilm remaining (%) 
 
 
 
 
 
 

Non-oxidizing biocide 
 
 
 
 

Non-oxidizing biocide 
 
 
 
 
 

Cationic surfactant 
 
 
 
 
 

Anionic surfactant 
 
 
 
 

Oxidizing biocide 
 
 
 
 

Oxidizing biocide 
 

Control (without 
chemical treatment) 

OPA 
50 mg/l 

100 mg/l 
200 mg/l 
300 mg/l 

GTA 
100 mg/l 
200 mg/l 
500 mg/l 

1000 mg/l 
CTAB 

0.125 mM 
0.250 mM 
0.500 mM 
0.900 mM 

SDS 
0.500 mM 
1.00 mM 
3.00 mM 
7.00 mM 
NaOH 
50 mM 

200 mM 
300 mM 
500 mM 

SHC 
50 mM 

200 mM 
300 mM 
500 mM 

 
24.2 ± 0.59 

 
 

15.6 ± 4.3 
14.3 ± 3.3 
14.8 ± 5.6 
15.0 ± 3.1 

 
33.8 ± 3.3 
35.4 ± 9.9 
40.6 ± 2.1 
61.5 ± 1.8 

 
14.8 ± 1.3 
13.2 ± 2.8 

5.31 ± 0.72 
4.16 ± 0.35 

 
30.6 ± 4.5 
40.7 ± 4.2 
41.6 ± 6.2 
19.7 ± 3.9 

 
15.7 ± 4.8 
10.1 ± 3.9 
8.63 ± 1.7 
2.89 ± 2.1 

 
14.1 ± 5.4 
10.8 ± 4.9 
8.95 ± 5.6 
8.48 ± 1.9 
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From this Table, it is possible to emphasize that for the control assay, the biofilm 

remaining, after submission to the total series of N`ReA was about 24%. The addition of 

several chemicals to biofilms lead to different percentages of biofilm remaining that ranged 

from 3 % to 62 %. Treatments that promoted a similar or higher percentage of biofilm 

remaining than for the control assay were GTA for every condition tested and SDS at 0.5, 1 

and 3 mM. Same range of values of biofilm percentage remaining on the surface as the 

control assay were the experiments with 0.125 mM of BC and 7 mM of SDS. 

After the chemical treatment of the biofilm, their EPS matrix often remained more or 

less unaffected and thus biofilm was left in place (the amount of biofilm removed due to the 

exposure to the chemical agents during ½ h was about 5 ± 2 % for every condition tested). 

This biofilm can act as an additional source of nutrients and/or as a suitable surface to 

further growth of cells. So, in this work, together with shear forces variation (through the 

increase in the N`ReA) the coupled action of a set of chemicals in biofilm mechanical 

stability was applied in order to obtain a clean surface, since besides the chemical agents 

could interact with the cohesive forces of the biofilm, causing the destabilization of the 

structure, the synergistic action of chemical and mechanical treatment seems to be the main 

strategy for biofilm control.  

 

9.4 Conclusions 
 
The system presented in this work provided an approach to investigate the influence 

of several parameters on the mechanical stability of biofilms, leading to a better 

understanding of biofilms in different environments and the development of biofilm control 

strategies.  

From the overall results, it can be concluded that the effect of the chemical 

compounds on the biofilm removal and consequent biofilm mechanical stability varied with 

the chemical nature and that chemical treatment is far from being a factor that induces 

massive detachment. Even with the synergistic chemical and mechanical treatment total 

biofilm eradication was not achieved in this work for every condition studied. 

The characterization of the biofilm showed that the system tested allowed to the 

formation of a great amount of biofilm that covered the surface of the stainless steel 

cylinder, being this biofilm metabolic active, vastly constituted of extracellular substances 

and having an inherent mechanical stability. 
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The application of OPA to the biofilms favoured the detachment caused by the 

increase in the mechanical stress, being the biofilm removal not dependent with the increase 

of the OPA concentration. Also, OPA showed to be an alternative to GTA as a means to 

control unwanted biofilms. The biofilms treated with GTA showed posterior recalcitrance 

properties when exposed to mechanical stress conditions, being this effect more pronounced 

with the increase in the GTA concentration. 

The treatment of biofilms with CTAB caused the posterior biofilm removal that was 

more pronounced with the increase of the concentration applied and with the increase on the 

mechanical stress conditions. The application of SDS, only for the highest concentration 

tested, it was detected biofilm removal due to the exposure to increasing shear forces, when 

comparing with the control experiment. Moreover, for the smallest concentrations were 

observed an effect similar to the one found with GTA. 

The previous application of oxidizing agents (NaOH and SHC) improved biofilm 

removal by mechanical action, being the effect more pronounced with the increase in their 

concentration. 

The chemical diversity of agents tested emphasizes that are multiple interactive 

forces that contribute to biofilm mechanical stability. Therefore, care must be taken and the 

experiments must be made concerning the choice of the correct protocol for biofilm control, 

since several chemical compounds promoted the increase in the biofilm mechanical stability 

or did not have a significant effect on the weakening of the biofilm structure and the desired 

biofilm control. 
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Chapter 10 

 

Comparison of biofilm formation by two Pseudomonas 

fluorescens strains isolated from an industrial process – 

an introduction to mixed biofilms 
 

 

Abstract 
 
Two P. fluorescens strains, isolated from a dairy processing plant with significant 

differences in their ribotype and enzymatic characteristics were characterized in terms of 

biofilm formation ability as single and mixed communities. Biofilms were allowed to 

growth for 7 d using the flow cell reactor, operating under turbulent and laminar flow, and 

the bioreactor rotating system. 

Experiments with cells in planktonic state were also carried out to assess the growth 

patterns in order to deduce their connected behaviour in a mixed system. The OMP 

expression was assessed for later comparison with the ones obtained from biofilm cells. 

 The biofilms formed under turbulent and laminar conditions in the flow cell system 

were compared in terms of mass formation ability, biochemical composition, metabolic 

activity and structural characteristics. 

 The biofilms formed using the rotating system were characterized in terms of mass 

formation ability, biochemical composition, metabolic activity, structural characteristics and 

their behaviour when exposed to external mechanical stress conditions.    
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10.1 Introduction 
 
Contrasting with the main laboratory researches developed nowadays (using often 

single microorganisms with well known characteristics), in nature, most bacteria do not 

exist as pure cultures. The importance of using simple laboratory tests is supported by the 

fact that strains isolated from real industrial processes present, generally, differential 

characteristics from the other strains of the same specie (Sidhu et al., 2001; Langsrud et al., 

2003). In fact, significant proportions of all microorganisms can be associated in complex 

multi-species biofilms, performing community level processes (Møller et al., 1998). 

According to Fux et al. (2005b), growth within mixed communities in complex 

environments of the real world, contrasts from the growth obtained with the standardized 

and idealized laboratory conditions. Lindsay et al. (2002) found that co-cultured bacteria in 

biofilms influence each other with respect to attachment capabilities and the posterior 

disinfection resistance/susceptibility. Additionally, interactions in a mixed community 

enhanced each other’s survival of disinfection treatments compared with the corresponding 

single species biofilms (Lindsay et al., 2002). So, these features play a significant role in a 

disinfection context (Langsrud et al., 2003). 

Since it appears that no bacterial strain can truly represent its specie (Fux et al., 

2005b), in the present chapter a comparison between two P. fluorescens strains isolated 

from an industrial process was carried out as single biofilms and when associated as mixed 

populations.  

 

10.2 Materials and methods 
 

10.2.1 Microorganism and culture conditions 
 
The microorganisms used were P. fluorescens D3-348 and P. fluorescens D3-350. 

The culture conditions were followed according to the procedure described in sub-chapter 

3.1.2. 
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10.2.2 Growth curves 

  
 Several flasks containing 200 ml of sterile growth medium were inoculated with an 

overnight bacterial suspension of each microorganism, enough to have an optical density 

recorded at 640 nm - OD (640 nm) of 0.200 (~ 5 × 108 cells/ml), putt in an orbital shaker (120 

min-1, 27 ºC) and left to grow. The bacterial growth was followed by taking aseptically a 2.5 

ml sample from each flask along time and recorded the OD (640 nm).  

At the end of the experiment, the cultures were streaked onto solid medium to ensure 

that they remained uncontaminated. 

 

10.2.3 Biofilm system – flow cell reactor 
 
Biofilm formation, under turbulent and laminar conditions, was achieved in the flow 

cell system according to the procedure described in sub-chapter 3.3. To obtain the mixed-

strains biofilms, two independent 0.5 l reactors were used (one with P. fluorescens D3-348 

and the other with P. fluorescens D3-350). The 3.5 l dilution reactor was simultaneously 

inoculated with the two strains and fed with the minimal nutrient medium at a flow rate two 

times higher (3.4 l/h) than the one used for biofilm formation by a single specie, in order to 

obtain the adequate dilution rate. 

 

10.2.4 Biofilm system – bioreactor rotating system 
 
To assess the biofilm mechanical stability, biofilm formation was promoted in the 

bioreactor rotating system, already described in sub-chapter 3.4 and in more detail in sub-

chapter 9.2.3. In the case of mixed-strains biofilms the changes referred above, for the flow 

cell system, were also performed in this system. 

 

10.2.5 Scrapping and disaggregation of the biofilms 
 
The several biofilms that covered the metal slides were completely scrapped from 

the metal slides according to the procedure described in sub-chapter 3.6.1. 
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10.2.6 Respiratory activity  

 
The respiratory activity of the several biofilm samples was evaluated by measuring 

oxygen uptake rates in a biological oxygen monitor (BOM) in short-term assays (sub-

chapter 3.6.6). 

 

10.2.7 Biofilm mass  
 

 The dry biofilm mass was assessed by the determination of the TVS of the 

homogenised biofilm suspensions, according to the procedure described in sub-chapter 

3.6.5. 

 The wet biofilm mass was assessed by the difference between the weight of the 

cylinder plus biofilm and the weight of the clean cylinder. 

 

10.2.8 Quantification of the number of cells 
 
Prior to the characterization of the phenotype of the cells embedded in the biofilms, 

these latter were subjected to an EPS extraction procedure (sub-chapter 3.6.2). After that, 

the cells separated from the extracellular products were diluted to an adequate 

concentration, being, thereafter, stained with DAPI, according to the procedure described in 

sub-chapter 5.2.7. 

 

10.2.9 Biochemical analysis 
 

 The homogenised biofilm suspensions were biochemically analyzed, being the 

proteins and polysaccharides determined according to the procedure described in sub-

chapter 3.6.3. 

 

10.2.10 Outer membrane proteins analysis 
 
The analyses of the OMP were performed according to the procedure referred in 

sub-chapter 3.6.9. 
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10.2.11 Scanning electron microscopy observations 

 
During the experiments, several stainless steel slides covered with biofilms were 

observed by SEM, according to the procedure described in sub-chapter 3.6.10.  

 

10.2.12 Statistical analysis 
 
The Student’s t test was performed in order to validate the comparisons between the 

growth curves. The Wilcoxon procedure was used to compare the characteristics of both 

single and mixed biofilms. 

 

10.3 Results and discussion 
 

10.3.1 Growth profile 
 
Figure 10.1 presents the growth curves of both P. fluorescens strains (D3-348, D3-

350) used throughout this study. 
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Figure 10.1 Growth curves of P. fluorescens D3-348 and P. fluorescens D3-350. 

 
 From Figure 10.1 it is possible to ascertain that both strains have a similar growth 

profile (P > 0.1), with a lag phase of about 1 h, and an exponential phase of about 6 h. 

Thereafter, both bacteria entered in a stationary phase. Camper et al. (1996), when studied 

the persistence of coliforms in mixed population biofilms, stated that the initial growth rate 

appeared to have a long-term impact on the bacterial ability to effectively compete in a 

mixed population biofilm. In the present study, both P. fluorescens strains have similar 
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growth profiles. So, it is expected that none of them will prevail, being coexistence the most 

expected behaviour when both strains are organized as mixed biofilm. However, the 

interactions between the populations may give rise to a biofilm with an altered behaviour. 

 

10.3.2 Comparison of biofilms formed under different hydrodynamic conditions 
 
The two isolated P. fluorescens strains were grown as single biofilms and mixed 

biofilms, in the flow cell reactor, operating under turbulent and laminar conditions. Figure 

10.2 depicts photographs of stainless steel slides covered with biofilms formed by both 

strains, under turbulent and laminar flow. 
 

  

  

  

Figure 10.2  Photographs of biofilms formed on the stainless steel slides under turbulent 

(a) and laminar flow (b), by P. fluorescens D3-348 (I), P. fluorescens D3-350 (II) and as 

mixed population (III). 

aI bI 

aII bII 
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As already pointed out in Chapter 5 for biofilms formed by the type strain under the 

same conditions, the biofilm structure emphasized by Figure 10.2, depends on the flow 

conditions for both single and mixed biofilms. The turbulent biofilms appeared 

homogeneous and more slimy while the laminar were more heterogeneous, because biofilms 

were scattered on the surface, except for biofilms formed by P. fluorescens D3-350 where 

their mass covered more homogeneously the surface. 

Table 10.1 presents some biofilm characteristics, namely the respiratory activity per 

mg of biofilm, the biofilm mass, the number of cells per mg of biofilm and per adhesion 

area, and the amount of proteins and polysaccharides present in the biofilm matrix, as well 

as, in the cells from the biofilms formed under different flow conditions by both P. 

fluorescens strains, as single and mixed communities. 
 

Table 10.1 Phenotypic characteristics of biofilms grown under turbulent and laminar flow by 

P. fluorescens D3- 348 and P. fluorescens D3-350 as single and mixed communities. Mean 

± SD 

  Biofilm 

 
Turbulent 

(D3-348) 

Turbulent 

(D3-350) 

Turbulent

(Mixed 

biofilm) 

Laminar 

(D3-348) 

Laminar 

(D3-350) 

Laminar 

(Mixed 

biofilm) 

Respiratory activity 

(mg O2/g biofilm.min) 

0.219 

 ± 0.043 

0.273 

 ± 0.049 

0.236 

 ± 0.028 

0.122  

± 0.008 

0.124 

 ± 0.013 

0.0944 

 ± 0.021 

Biofilm mass 

(mg/cm2) 
1.72 ± 0.33 1.16 ± 0.74 1.76 ± 0.32 1.11 ± 0.02 

0.860 ± 

0.16 
0.940 ± 0.15 

Cellular number 

(cells/mg biofilm) 

6.39×1010 

 ± 2.8×1010 

4.33×109  

± 1.7×109 

1.33 ×1010 

± 6.3 ×109 

3.50×1010  

± 1.7 × 1010 

2.97×109  

± 9.1 × 108 

9.88 ×109  

± 3.2 ×108 

Cellular number 

(Cells/cm2) 

1.10 ×1011 

 ± 2.9×1010 

5.02 ×109  

± 2.3×108 

2.34 ×1010 

± 8.7 ×108 

3.89 ×1010 

± 1.9×109 

2.55 ×109 

± 1.8×108 

9.29 ×109  

± 3.2 × 108 

Total 85.6 ± 8.3 97.2 ± 7.8 101 ± 16 42.3 ± 4.5 62.8 ± 3.4 75.7 ± 11 

Matrix 21.9 ± 0.45 18.2 ± 0.30 23.2 ± 6.3 16.7 ± 0.35 16.1 ± 2.8 30.3 ± 8.3 
Proteins 

(mg/g biofilm) 
Cells 63.7 ± 7.2 79.0 ± 16 77.8 ± 11 25.6 ± 1.1 46.7 ± 15 45.4 ± 3.5 

Total 67.1 ± 3.2 63.5 ± 9.8 76.1 ± 13 73.5 ± 5.4 31.8 ± 1.4 61.6 ± 8.3 

Matrix 33.9 ± 0.45 33.4 ± 1.5 34.4 ± 7.7 58.2 ± 2.0 21.1 ± 7.0 41.4 ± 4.4 
Polysaccharides 

(mg/g biofilm) 
Cells 33.2 ± 4.1 30.1 ± 3.3 41.7 ± 9.6 15.3 ± 1.2 10.7 ± 3.6 20.2 ± 5.2 
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From this phenotypic characterization, it can be said that, for both single and mixed 

biofilms, the turbulent biofilms were more active and had more mass per cm2 than the 

laminar ones. Concerning the biochemical composition, turbulent biofilms had a higher 

content of total proteins probably due to the presence of more cells within the biofilm per 

area of adhesion, and the amount of proteins in the biofilm matrix was almost similar for 

both turbulent and laminar biofilms. The amount of polysaccharides was similar for both 

types of biofilms, except for P. fluorescens D3-350, where their laminar biofilms had about 

two times less polysaccharides per gram of biofilm than the ones formed under turbulent 

flow. Regarding the distribution of the polysaccharides in the turbulent biofilms, its 

concentration was similar in the matrix and in the cell composition. For laminar biofilms, 

the amount of polysaccharides was higher in the biofilm matrix than in the cells. Similar 

results were found for the P. fluorescens type strain studied in Chapter 5.  

 Comparing the characteristics of the three biofilms grown under turbulent flow, and 

taking into account the standard deviation values, the values of respiratory activity were 

very related. Concerning biofilm mass, the biofilms formed by P. fluorescens D3-348 and 

by the mixture of both strains presented similar values. The biofilm formed by P. 

fluorescens D3-350 is the one that presents the smallest amount of biofilm mass, being this 

phenomenon, probably, related, once more, with the lower number of cells found in the 

biofilm mass and per area of adhesion. This data may be related with the fact that P. 

fluorescens D3-348 was the microorganism that formed biofilms with the highest number of 

cells. The biochemical composition of the biofilms formed by the two strains as single and 

mixed communities, showed that all the three types of biofilms were constituted by similar 

amounts of proteins and polysaccharides, specially taking into account the standard 

deviation values. The proteins of the biofilm matrix represented about 20 % of the total 

proteins in the biofilm, while the polysaccharides of the matrix are about 50 % of the total 

amount of polysaccharides.  

 The characteristics related to the respiratory activity and mass were similar for the 

three types of biofilms grown under laminar flow, besides a slighty preponderance was 

detected for the biofilms formed by P. fluorescens D3-348. Concerning the cellular number, 

the same trend found for turbulent biofilms happened for the laminar ones. The analysis of 

the biochemical composition shows variation between the single biofilms and the mixed 

biofilm. Mixed biofilms had the highest amount of total proteins as well as the proteins of 

the matrix. However, their relative proportions of the proteins of the matrix and the proteins 
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of the cells, respectively, 40 % and 60 %, are similar to the ones found for the biofilms 

formed by P. fluorescens D3-348. Nevertheless, this latter biofilm presented the smallest 

amount of total proteins. Concerning polysaccharides content, the biofilms formed by P. 

fluorescens D3-348 presented the higher total polysaccharides content, in which 80 % were 

in the matrix. The relative percentage of the polysaccharides of each biofilm fraction 

(matrix and cells) of the biofilms formed by P. fluorescens D3-350 was very close to the 

mixed biofilms, but different from the ones determined for the biofilms formed by P. 

fluorescens D3-348. 

 The biochemical differences observed within the biofilms (single and mixed) could 

be a phenomenon related with the number of cells and with the cellular state, as pointed out 

for the type strain in Chapter 5. Concerning the mixed biofilms, it was not found any clear 

characteristic as a consequence of the interactions promoted by the two strains during 

biofilm formation that evidenced significant differentiation in this biofilm. The biofilm 

presents characteristics that seem to be an intermediate of the values presented by each 

single biofilm.  

Figure 10.3 displays SEM microphotographs representative of the several fields 

observed in each biofilm-covered metal surface. 
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Figure 10.3 Scanning electron microscopy photomicrographs of a 7 d old biofilms formed 

on stainless steel slides under turbulent (a) and laminar (b) flow by P. fluorescens D3-348 

(I), P. fluorescens D3-350 (II) and by both strains (III). X 2000 magnification, bar = 20 µm. 
 
As previously verified in Chapter 5 for the type strain, the SEM analysis revealed 

that the biofilm structure depends on the flow conditions. Additionally, some differences are 

encountered when comparing the different strains and biofilm type (single or mixed) for the 

same hydrodynamic condition. These differences can be, in part, associated with the 

aI bI 

aIII bIII 

aII bII 
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different biofilm characteristics emphasized by Table 10.1. For instance, the structure of the 

biofilms formed under turbulent flow by P. fluorescens D3-350 (Figures 10.3 aII), reveals 

the existence of water channels that may have favoured the diffusion of nutrients. This 

biofilm characteristic could account for the more active metabolic state of the cells within 

the biofilm. In fact, biofilms formed by P. fluorescens D3-350 under turbulent flow were the 

ones that present the highest respiratory activity (Table 10.1) even though cells were in a 

smaller extent.  

 

10.3.3 Outer membrane proteins  
 
The OMP of the two P. fluorescens strains, as planktonic cells and sessile cells (the 

latter developed within turbulent and laminar biofilms) were isolated and analysed by SDS-

PAGE. These OMP profiles obtained are presented in Figure 10.4. 

 
Figure 10.4 Outer membrane proteins profile of planktonic cells and cells within biofilms 

formed under turbulent and laminar flow regimes: OMP from P. fluorescens D3-348 cells in 

planktonic state (lane 1) and within biofilms formed and turbulent (lane 2) and laminar (lane 

3) flow; OMP from P. fluorescens D3-350 cells in planktonic state (lane 4) and within 

biofilms formed and turbulent (lane 5) and laminar (lane 6) flow. Numbers on the left 

represent molecular weights in kDa. 
 



     Comparison of biofilms formed by strains isolated from an industrial process – an introduction to mixed biofilms 

 191

The OMP profiles obtained with cells developed within biofilms differ considerably 

from the ones obtained with their free cell counterparts for both strains studied. The OMP 

profiles of both strains in the planktonic state are; however, similar. Cells within biofilms 

expressed a lesser number of OMP than the ones in planktonic state, specially, those 

proteins with approximately 18 and 23 kDa. The different flow regimes implemented for 

biofilm formation seems no to cause OMP change since, for both strains tested, the protein 

expression is comparable. This result is in accordance with the one obtained with the type 

strain (Chapter 5). The comparison of the OMP profiles of the biofilm cells, for the two 

strains, reveals that the OMP expression is relatively similar. 

The changes in the OMP expression and in the general phenotype of cells within 

biofilms when compared with their freely counterparts is a phenomenon already observed in 

Chapter 5, and documented by other authors (Coquet et al., 2002; Sauer et al., 2002). The 

flow regime under which the biofilms were formed seems not to be accountable for the 

OMP changes, since cells within the different biofilms present similar OMP profiles.  

 

10.3.4 Biofilm formation on the bioreactor rotating system 
 
A phenotypic study of the cells from the single biofilms and from the mixed biofilms 

formed after 7 d of growth in the rotating device at a N`ReA of 2420 was carried out.  

Figure 10.5 shows stainless steel cylinders covered with biofilms formed by the two 

strains as single and mixed biofilms. 
 

   
Figure 10.5 Stainless steel cylinder covered with biofilm after 7 d of growth formed by P. 

fluorescens D3-348 (a), P. fluorescens D3-350 (b) and by simultaneously both strains (c). 

a b c
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Figure 10.5 clearly shows that the surface area of the stainless steels cylinders were 

completely covered with biofilm, regardless the strain or biofilm type. As well as for the 

type strain (Chapter 9), it is noticeable the existence of a thick and slimy biofilm that seems 

to be strongly adhered to the surface. Comparing the three biofilms presented in this Figure, 

it seems that they present some differences in their macroscopic surface. It is clear that the 

surface of the mixed biofilm is different from the single biofilms.  

As already carried out for the type strain, some characteristics of the biofilms formed 

on the cylinders of the rotating device, namely the biofilm activity, mass, proteins and 

polysaccharides content, are presented in Table 10.2.  
 

Table 10.2 Phenotypic characteristics of the biofilms formed on the surface of the stainless 

steel cylinders as single and mixed biofilms 

 Biofilms 

 D3-348 D3-350 Mixed biofilm 

Biofilm activity 
(mg O2/g biofilm.min) 

0.330 ± 0.04 0.165 ± 0.06 0.253 ± 0.09 

Dry 0.485 ± 0.10 0.516 ± 0.14 0.501 ± 0.04 Biofilm mass 
(mg/cm2) Wet 21.0 ± 1.1 19.3 ± 3.3 21.5 ± 2.9 

Total 288 ± 15 188 ± 4.3 215 ± 33 

Matrix 61.3 ± 7.8 49.8 ± 84 75.2 ± 4.4 

Proteins 
(mg/g biofilm) 

 Cells 227 ± 19 138 ± 11 140 ± 14 

Total 219 ± 11 201 ± 22 231 ± 15 

Matrix 130 ± 24 108 ± 31 153 ± 20 

Polysaccharides 
(mg/g biofilm) 

 Cells 89.3 ± 9.4 93.4 ± 12 78.0 ± 5.7 
 
From Table 10.2 it can be noticed that the three biofilms were metabolically active 

and contained about 98% of water. The biofilms formed by P. fluorescens D3-348 were the 

ones that, even though presented higher values of respiratory activity, had less mass and 

total amount of proteins. Conversely, a different trend was found for the biofilms formed by 

P. fluorescens D3-350. For the mixed biofilm, the values of respiratory activity, mass and 

total amount of proteins seem to be an intermediate of the characteristics of the two single 

biofilms, as already pointed out for the biofilms formed in the flow cell reactors. 

Concerning the amount of polysaccharides, it is quite similar for the three biofilms. Besides 

the differences found for the total amount of proteins and polysaccharides, the proportion of 
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proteins and polysaccharides in the matrix is almost similar for single biofilms, respectively 

about 25 % for proteins and about 55 % for the polysaccharides, but different for the mixed 

biofilms (about 35 % of the total protein and 66 % of the total polysaccharides).   

Comparing the characteristics of the biofilms presented in this chapter with the ones 

formed by the type strain (Chapter 5), several differences are encountered. In terms of 

respiratory activity, only the biofilms formed by P. fluorescens D3-350 presented similar 

activity to the ones formed by the type strain, while the other biofilms were about two times 

more active. The biofilm mass is quite similar for the three biofilms studied in this chapter, 

being their biofilm mass half of the one assessed for the type strain. Concerning the 

biochemical composition, the type strain had similar amount of total, extracellular and 

cellular proteins and polysaccharides when compared with the biofilms formed by P. 

fluorescens D3-350 and the mixed biofilm. P. fluorescens D3-348 formed biofilms with a 

higher content of the proteins, being 80 % proteins of cells, which can be related, probably, 

with the existence of a higher number of cells, as previously found for the biofilms formed 

in the flow cell reactor by this strain. However, a significant content of extracellular proteins 

and polysaccharides was found in the composition of the biofilm matrix. This feature of the 

biofilm has a strong importance in the establishment of the biofilm mechanical stability 

(Azeredo and Oliveira, 2000; Körstgens et al., 2001).  

 

10.3.5 Comparison of the behaviour of the biofilms when exposed to external mechanical 

stress conditions 
 
The mechanical stability of biofilms, previously defined in Chapter 9 as the 

behaviour of biofilms face to external stress mechanical conditions, was characterized.  

Figure 10.6 shows the biofilm removal obtained due to the increase in the rotation 

speed of the cylinder (expressed as N`ReA) for each biofilm studied. 
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Figure 10.6 Biofilm removal of the different biofilms studied due to the exposure to 

increasing N`ReA. 
 
As previously observed for the type strain (Chapter 9), the exposure of the biofilms 

to N`ReA higher than the one under which the biofilm was formed (i.e. 2420) caused biofilm 

removal. The biofilm matrix develops an inherent internal tension, which is in equilibrium 

with the shear stress under which the biofilm was formed (Stoodley et al. 1999), and the 

removal of a well established biofilm requires the overcome of the forces that keep the 

biofilm matrix together as well as the forces that bound the biofilm to the adhesion surface 

(Körstgens et al. 2001). These statements are in accordance with this study since, for the 

different biofilms, the higher percentage of removal happened with the exposure of biofilms 

to N`ReA of 8100, 12100 and 4000 respectively for biofilms formed by P. fluorescens D3-

348, P. fluorescens D3-350 and for the mixed biofilms. The statistical treatment shows that 

only for the mixed population the biofilm removal was dependent on the N`ReA (P < 0.05). 

Comparing with the results obtained for the type strain, the three biofilms had similar 

removal behaviour (P > 0.1) in terms of biofilm removal. The submission to the increasing 

N`ReA did not give rise to total biofilm removal, since only about 76 % (P. fluorescens D3-

348), 88 % (P. fluorescens D3-350) and 90 % (mixed) of biofilm mass were detached from 

the cylinders, indicating that the mechanical treatment was not enough to eradicate the 

biofilms (Table 10.3), as assessed for the type strain (Chapter 5).  
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Table 10.3 Biofilm remaining for the single and mixed biofilms posterior to the exposure to 

the total series of N`ReA 

Biofilm remaining (%) 

D3-348 

24.1 ± 1.7 

D3-350 

11.5 ± 3.2 

Mixed biofilm 

10.1 ± 3.4 

 
Table 10.3 emphasize that it is not possible to remove all the biofilm by sole 

mechanical treatment, being this a proof of the inherent mechanical stability of the biofilms, 

corroborating the results presented for the type strain. Nevertheless, it was found 

heterogeneity in the values of biofilm remaining within the biofilms. The biofilms formed 

by P. fluorescens D3-348 presented a higher mechanical stability than the ones formed by 

P. fluorescens D3-350 and the mixed biofilm, being the percentage of biofilm remaining 

equal to the one left on the surface by the biofilms formed by the type strain (24 %). 

Concerning the comparison of the values of biofilm remaining for the biofilms formed by P. 

fluorescens D3-350 and the mixed biofilms the similarity could be due to the prevalence of 

this strain in the inner layers of the mixed biofilm, since biofilm detachment is processed in 

layers (Azeredo and Oliveira, 2000). However, interactions between both strains could give 

rise to biofilms with a diminished mechanical strength, because about 90 % of the mixed 

biofilms were removed by using the smaller N`ReA (4000). However, the remaining 10 % of 

the initial biofilm could promote the regrowth of a biofilm with more recalcitrant properties 

than the one that was initially exposed to the mechanical treatment. 

 

10.4 Conclusions 
 

 The choice of the correct bacterial strain that represents the actual industrial 

environment, where the biofilms are a problem, should be a concern when the laboratorial 

experiments are designed.  

 The hydrodynamic conditions under which biofilms were formed and the sessile 

mode of growth had a significant impact in the biofilm metabolic activity, mass formation 

ability, biochemical composition and OMP expression (when compared with the planktonic 

situation). 

 The results presented in this chapter allow to conclude that the characteristics of a 

strain from a bacterial specie and the presence of different strains in a biofilm may account 
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for differences in biofilm structure and behaviour. However, such differences are attenuated 

when comparing biofilms formed by different strains and communities (single/mixed). 

 The studies made with the P. fluorescens type strain are applicable to strains 

encountered in industrial systems. In fact, similar characteristics were found in biofilms 

from the different strains, regardless the biofilm community (single/mixed). Another feature 

that reinforces this idea is that the mechanical stability of the biofilms formed by the type 

strain presented the higher recalcitrance to removal face to the mechanical stress.  
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Concluding remarks and perspectives for further 

research 
 

 

Abstract 
 
This chapter presents the general conclusions of this thesis and identifies future 

research to advance the optimization of methods to control unwanted biofilms. 
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11.1 General conclusions 

 
From the work presented in this thesis some major conclusions can be withdrawn: 
 

 The use of different methods to evaluate the efficacy of antimicrobial agents can lead 

to different conclusions regarding the effects caused by the chemicals. However, it was 

concluded that respiratory activity using oxygen consumption rate represents an expeditious, 

non-destructive and accurate method to determine the antimicrobial action of biocides 

against aerobic heterotrophic bacteria. 
 

 P. fluorescens respond to changes in their immediate environment (planktonic/ 

biofilm state and hydrodynamic conditions) by a remarkable phenotypic plasticity involving 

changes in their physiology, their cell composition and structure and their resistance to 

antimicrobial agents. This level of structural organization and metabolic specialization help 

to explain the remarkable metabolic efficiency of cells within biofilms and their resistance 

to antimicrobial agents. The flow conditions under which the biofilms were formed had a 

significant impact in the biofilms characteristics and behaviour and thus in the consequent 

response to the action of antimicrobial agents. Biofilms formed under laminar flow were 

more easily inactivated than the ones formed under turbulent conditions. OPA was the only 

antimicrobial tested that promoted total inactivation of biofilms (laminar biofilms). With the 

experimental systems used, detachment was found to be a significant slower process than 

biofilm inactivation.  
 

 A failure to effectively disinfect, with the aldehyde-based biocides and with the 

surfactants, leaded to biofilm population experienced at responding to toxic stress, which 

facilitated the development of resistant population with capability to recover their metabolic 

state. 
 

 Studies with planktonic cells provide an incomplete picture of antimicrobial action 

when used as model to be applied against a biofilm. The behaviour of bacterial cells face to 

a toxic environment was significantly different when the cells were in suspension or when 

they were embedded in a biofilm. This study corroborates the nearly universally observed 

resistance of biofilm microorganisms to disinfection when compared with their freely 

suspended counterparts. Conversely to the European Standard (EN 1276) that proposes to 
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assay cleaning and disinfection agents using cells in suspension, this thesis clarifies that 

bacteria within a biofilm are much more resistant to antimicrobial agents than planktonic 

cells. On the other hand the antimicrobial potential of the chemicals was drastically 

quenched by the existence of dirty conditions. 
 

 The effect of the chemical compounds on the biofilm removal and mechanical 

stability varied with the chemical nature of the antimicrobial agent, being chemical 

treatment far from a factor that induced massive detachment. Even the synergistic chemical 

and mechanical treatment did not induced total biofilm eradication, proposing that care must 

be taken and experiments must be made concerning the choice of the correct protocol for 

biofilm control. GTA and SDS at the lower concentrations induced the increase in the 

biofilm mechanical stability. OPA did not have a significant effect on the biofilm removal 

and consequent mechanical stability. CTAB, NaOH, SHC and SDS at concentrations near 

the CMC induced higher removal due to mechanical stress and thus decreased the biofilm 

mechanical stability. 
 

 The choice of a correct strain, for laboratory experiments, representative of a 

phenomenon existent in a particular process or representative of specie, is a fundamental 

step in the development of reliable procedures for biofilm control. The type strain of P. 

fluorescens demonstrated to be a broad spectrum microorganism of the specie when 

compared with two strains isolated from a dairy process. Thus it can be a good starting point 

when it concerns studies of P. fluorescens biofilm formation and control. 
 

 The experimental systems used (flow cell and rotating bioreactor) were suitable for 

the evaluation of biofilm growth, and represented very useful tools to perform biofilm 

studies. 
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11.2 Perspectives for further research 

 
 Much more needs to be learned about the impact of antimicrobial agents on bacteria 

and their response to the damage.  
 
The significance of biofilms is not a well understood phenomenon because of a lack 

of direct observation of biofilms in their environment and a lack of research using model 

systems that closely simulate the environmental system. Most investigations involving 

biofilms have been performed using in vitro laboratory models. However, all these in vitro 

models of biofilms meet serious difficulties to sort out the contribution of important 

individual parameters. One of the keys to study complex biological systems seems to be the 

development of accurate and realistic models of natural communities in the laboratory. With 

this purpose the identification of bacteria forming natural biofilms seems to have utmost 

magnitude. Subsequently, the assessment of the potential of the bacteria for biofilm 

formation as single and mixed species biofilms and the evaluation of the interspecies 

interactions, probably, can provide new data in order to understand the phenomenon behind 

biofilm recalcitrance and will provide new mechanisms for biofilm self-regulation. So, the 

intense dissection of these interactions provides one of the future challenges in biofilm 

research/control. 
 
The environment changes appeared to influence the biofilm structure and activity, 

where this complex biofilm architecture obviously provides an opportunity for metabolic 

cooperation and niches are formed within this spatial well-organized system. Consequently, 

an understanding of the structure-function relationships in microbial biofilms seems to be 

fundamental to interpret and predict biofilm impacts on the habitat where they are 

developed. 
 
Since the altered phenotype is believed to be responsible for the distinct properties of 

bacteria growing in biofilms and it has been also suggested that it is related with the 

enhanced resistance of biofilm cells to antimicrobial agents, so it will be decisive to find 

about the adaptative mechanisms involved in the bacterial resistance to antimicrobial 

compounds as well as other forms of stress. So, it will be required to identify the essential 

proteins involved in the enhanced resistance of cells within biofilms to antimicrobial agents, 

and to research suitable modes of their repression. The analysis of the microbial resistance 
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to antimicrobial agents will be assessed using proteomic techniques, by the identification of 

target proteins that are necessary to the biofilm state, i.e., proteins that are common to the 

biofilm state among different adherent species and whose synthesis inhibition will prevent 

biofilm formation or accelerate biofilm eradication.  
 
The use of certain antimicrobial agents can impose a selective pressure and can 

contribute to the emerge of resistant microorganisms. Therefore, these microorganisms can 

become resistant to other types of antimicrobial agents, causing serious problems to the 

process under study. So, investigation about the cross-resistance between antimicrobial 

agents may become a challenge. 
 
Nowadays, the modern view of biofilm formation has lead to the realization that 

effective control of biofilms will require the development of agents that are community 

signalling-based and/or that target the biofilm phenotype (ex. target biosynthesis of the EPS 

matrix and/or signal molecules associated with the sensing of surfaces proximity or high 

localized cell densities). However, it will be required that such agents follow the 

specifications needed to be used in a process (ex. dairy industry). 
 
The realization of this future work perspective is enclosed in a project (CHEMBIO II 

– Chemical and Biological Control of Biofilms II) and in my Pos-Doc program, both 

already approved by the Portuguese Foundation for Science and Technology.  
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