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Confinement and alloy disorder effects on the lattice dynamics and Raman scattering 

in Si1-xGex nanocrystals (NCs) are investigated numerically employing two different 

empirical inter-atomic potentials. Relaxed NCs of different composition (x) were built 

using the Molecular Dynamics method and applying rigid boundary conditions 

mimicking the effect of surrounding matrix. The resulting variation of bond lengths 

with x was checked against Vegard's law and the NC phonon modes were calculated 

using the same inter-atomic potential. The localization of the principal Raman-active 

(Si-Si, Si-Ge and Ge-Ge) modes is investigated by analysing representative 

eigenvectors and their inverse participation ratio. The dependence of the position and 

intensity of these modes upon x and NC size is presented and compared to previous 

calculated results and available experimental data. In particular, it is argued that the 

composition dependence of the intensity of the Si-Ge and Ge-Ge modes does not 

follow the fraction of the corresponding nearest-neighbour bonds as it was suggested 

by some authors. Possible effects of alloy segregation are considered by comparing 

the calculated properties of random and clustered SixGe1-x NCs. It is found that the Si-

Si mode and Ge-Ge modes are enhanced and blue-shifted (by several cm
-1

for the Si-Si 

mode), while the intensity of the Si-Ge Raman mode is strongly suppressed by 

clustering. 
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1. Introduction 

 

Crystalline silicon (Si), the most important semiconductor material in 

microelectronics and energy conversion technologies, would be suitable also for 

optoelectronics if it were possible to bypass the shortcoming related to its indirect 

band gap. The possibility of obtaining the desired band structure with a controlled gap 

in Si nanocrystals (NCs) is still considered as a plausible solution [1]. Adding 

germanium (Ge) provides an additional means of adjusting the properties of the NCs, 

in terms of e.g. optical gap or static dielectric constant, while this random alloy 

retains, on average, the diamond structure throughout the entire composition range.  A 

variety of nearly zero dimensional Si-Ge alloy nanostructures have been obtained and 

studied, including self-assembled quantum dots (QDs) [2-5], NCs embedded in SiO2 

matrix [6-8] and even free-standing NCs [9]. It is expected that Si-Ge nanoparticles 

with well controlled size and composition will soon be synthesized by colloidal 

chemistry techniques in a manner similar to their II-VI counterparts [10]. The 

possibility of fabrication of Si-Ge alloy nanoparticles by pyrolysis of silane and 

germane has also been demonstrated recently [11]. These methods can be elaborated 

further to make a step towards fabrication of group IV NC optoelectronic, 

thermoelectronic and photovoltaic devices.       

Raman spectroscopy, non-destructive and sensitive, is a method of choice to 

investigate nanomaterials [12]. It was used in most of the above mentioned works on 

Si-Ge NCs and QDs [2-9], as well as it has been applied to SixGe1-x alloys in bulk [13] 

and epitaxial layer [14] forms. Independently of crystal dimension, the alloy spectra 

are characterized by three major peaks centred near 300, 400 and 500 cm
-1

, associated 

with optical vibrations involving Ge-Ge, Si-Ge, and Si-Si stretching motions, 

respectively [13]. Smaller details of the spectra, such as precise positions of the main 

scattering bands, their broadening, and weaker peaks that have been observed in some 

of the studies depend on the preparation method, NC size, etc. Their assignment has 

attracted considerable attention over decades [15], however, it seems that additional 

theoretical and computational work is required for their correct interpretation in 

nanostructures. As for any confined system with alloy disorder, there are several 

effects that can be involved simultaneously, affecting its electronic and vibrational 

properties, such as non-local elastic strain [5], interplay between phonon confinement 

and (competing with it) localization owing to alloy disorder [16], formation of 

percolating clusters [15] or non-random distribution of two types of atoms in the alloy 

[17]. These effects should influence the dependence of the electronic energy levels 

and phonon modes upon the NC size and composition. 

Several works have been performed, devoted to the calculation of phonon properties 

and Raman spectra of Si1-xGex alloys [13-15,17-23], some of which considered 

nanostructures [15,17-22]. Because of the absence of translational symmetry, the use 

of more accurate ab initio models is limited to small NCs [15,17,18,20,21] or have to 

be combined with an approximation scheme [22], while empirical potential models 

used in [13,14,18,19,23] can be applied to larger systems and produce results that are 

insightful for the understanding of the alloying and confinement effects in mixed 

NCs. We have reported some preliminary results on bond lengths and Raman spectra 

of Si-Ge alloy NCs [24], obtained by using the Tersoff semi-empirical potentials (TP) 

[25], that seem to be in quite a good agreement with experimental data.  

In this work, we present the vibration properties of SixGe1-x crystallites of different 

composition and size calculated using two different empirical inter-atomic potentials, 

TP and those proposed by Stillinger and Weber [26]. Both potentials take into account 
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three-particle interactions, that is, depend on the bond angles whose variation is 

known to contribute to the strain relaxation in the alloy where the end members have 

different lattice constants [27]. They are often used for calculations of lattice 

properties of Si-Ge alloy crystals, e.g. phonon-related thermal conductivity [28].  The 

advantage of the Stillinger-Weber (SWP) and Tersoff potentials, in comparison with 

the widely used valence force field (VFF) model (employed in [18,19,23]), is that 

they can be used for building a crystallite by relaxing it to thermodynamic equilibrium 

(for a given composition), before considering the lattice vibrations, while the VFF 

model approach is limited to the harmonic approximation (eventually with 

anharmonic corrections [23]). Therefore, we are able to take into account the realistic 

three-modal distribution of bond lengths in these alloy NCs [24]. We shall present the 

density of phonon states (DS) and the inverse participation ratio (IPR) [29] for some 

characteristic vibration modes, as well as non-resonant Raman scattering spectra. Our 

goal is to investigate the interplay between phonon confinement inside NC and short-

range localization due to alloy disorder. Also, the effect of possible non-random 

distributions of Si and Ge atoms in the NC will be considered. In the next section we 

explain how relaxed SixGe1-x alloy NCs are built and analyse the bond length 

distributions. In Sec. 3 we present and discuss DS, IPR and Raman spectra of the 

nanocrystals, calculated with TP and SWP for different NC size and composition. The 

last section is devoted to conclusions.  

 

 

2. Si-Ge NC’s structure 

 

2.1. Building relaxed Si-Ge crystallites 

Si1-xGex crystallites of “approximately spherical” shape, containing up to N=1647 

lattice sites were built by randomly distributing some xN  Ge and Nx)1(   Si atoms 

over the sites of a diamond lattice, starting from a central atom and filling its 1-st, 2-

nd, … coordination shells. Initially, the lattice constant was chosen according to 

Vegard’s law,  

     

                 xaxaa GeSi  )1( ,                (1) 

 

where 543.0Sia nm and 563.0Gea nm are the lattice constants of crystalline Si 

and Ge, respectively. These crystallites retained the dT  symmetry with perfect 

tetrahedric bonding.   

Interactions between the atoms were defined according to one of the empirical 

potentials (SWP or TP). Relaxation to the minimum of the total energy of the 

crystallite was achieved by allowing the atoms to move in response to the forces 

produced by their neighbours. Using the molecular dynamics (MD) method 

employing the Verlet algorithm [30] with integration of the equations of motion at 

each temporal step (not exceeding 10
-15

 s) we obtained equilibrium crystallites that no 

longer possessed the dT  symmetry (except for x  = 0 or 1).  

Bearing in mind NCs embedded in a matrix, rigid boundary conditions were 

considered already at the relaxation stage, which means that the positions of the atoms 

in two outer shells were fixed, though they were considered interacting with the 

movable atoms of the interior shells. So, the movable atoms had all of their first and 

second nearest neighbors, which is necessary for the correct application of the SW 
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and T potentials. The largest crystallites contained 981 movable atoms (corresponding 

to the NC diameter D 3.9 nm). 

 

2.2. Bond length distribution 

The variation of the average bond lengths, for Si-Si, Si-Ge and Ge-Ge bonds, with 

alloy composition is shown in Fig. 1. There is some quantitative difference between 

the TP and SWP results, particularly for the mixed bonds, but qualitatively the bond 

length’s dependence on x is similar for the three types of bonds and for both 

potentials. It is much weaker than that predicted by Eq. (1), in agreement with the idea 

that the relaxation of the microscopic strain related to the difference between the bond 

lengths in pure Si and Ge, occurs mostly via distortion of the bond angles and to a 

lesser extent by changing the bond lengths [31]. To quantify the contribution of these 

two mechanisms of strain relaxation, one can introduce so called topological rigidity 

parameter [27]:         
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SiGe
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a



 ,     (2) 

 

where Ge Si,, ji , 0

SiR  and 0

GeR  are the bond lengths in pure Si and Ge crystals, and 

ij  is the slope of the dependence of the average bond length of type ij  upon x.  

When 1** a , the lattice is flexible, so every bond adjusts to its natural length (so 

called Pauling limit), while 0** a  corresponds to a perfectly rigid lattice, so that all 

bonds adjust their lengths to a common value (Vegard limit) [31].   

 

 

Table 1. Topological rigidity parameters, calculated in this work (SW and T 

potentials) and Refs. [27, 31, 32] or measured experimentally [33]  

 

 

 

 

 

  

 

 

 

 

 

 

 

The values of **

ija calculated by us using two different potentials (T and SW) and the 

theoretical and experimental results of several previous works are compiled in Table 

1. Our results obtained with two different potentials do not differ considerably (except 

for Ge-Ge bond) and are most close to those obtained in the ab initio study [27] where 

the bulk alloy was modeled applying periodical boundary conditions. Comparing to 

the results of Ref. [31] where the Tersoff potential and periodic boundary conditions 

were used, we note a considerable difference for Si-Ge and Ge-Ge bonds. The data 

 

Bonds 
                                                 **a  

ТP SWP [27] [31] [32] [33] 

Si-Si 

 

0.73 0.73 0.73 0.74 0.75 0.94 

Si-Ge 

 

0.64 0.63 0.69 0.73 0.75 0.84 

Ge-Ge 

 

0.50 0.62 0.65 0.71 0.78 0.70 
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obtained by X-ray-absorption fine structure measurements [33] indicate even smaller 

variations of bond lengths with composition in relaxed epitaxially grown alloys, 

especially for the case of Si-Si bond (nearly Pauling limit). Despite the discrepancies 

in the values presented in Table 1, we can conclude that in Si1-xGex NCs, likewise in 

the bulk alloy, bond lengths depend on composition much weaker than prescribed by 

Eq. (1) and that these variations are specific for each bond type. The type of boundary 

conditions (periodic or rigid) applied at the crystallite surface also produces some 

effect on Si-Ge and Ge-Ge bonds.      

 

          

3. Calculated results and discussion 

 

3.1. Phonon DS and localization 

The vibration modes of the generated NCs were calculated by diagonalizing the 

dynamical matrix composed of the second derivatives of either SW or T potential (the 

same as was used for the NC relaxation) with respect to atomic coordinates, at 

equilibrium and we kept the same rigid boundary conditions described in Sec. 2.1. 

The density of states versus frequency was calculated as a sum of Lorentzian 

functions (with a homogeneous broadening of 10 cm
-1

) centred at each 

eigenfrequency. Fig. 2 presents the total DS averaged over a number of samples for 

each composition. These results correspond to the largest crystallites studied (12 

atomic shells).  

In general, the shape of the phonon DS obtained in our calculations is similar to the 

previously calculated data for SixGe1-x alloy NCs [18,19]. In the optical phonon range 

( 5.0/ max  , max  is the maximum frequency in the calculated spectrum) we 

clearly see three bands corresponding to the experimentally observed Raman 

scattering peaks ( max/ 0.6, 0.8 and 1), well known for the bulk alloy. In the 

range of acoustical phonons we observe more substantial differences between the DS 

curves obtained with the SW and T potentials. Interestingly, the acoustic phonon DS 

calculated with the T potential looks quite similar to the experimental [34] and 

calculated [35] data for hydrogenated amorphous Si, which is another silicon-based 

disordered system. The feature at max/ 0.15 (seen only in the spectra obtained 

with the T potential) corresponds to the Brillouin zone edge TA phonons of 

germanium (≈ 80 cm
-1

). Some of the smaller features in the middle of the spectrum 

seem to be associated with surface vibrations but we have not been able to clearly 

identify their range of localization by inspecting the eigenvectors.           

In order to investigate the localization of some characteristic modes, we calculated the 

inverse participation ratio [29]: 
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where j

lu  is the displacement vector of l-th atom for j-th vibration mode. Large IPR 

values are characteristic of strongly localized modes with only few atoms vibrating. 

Some typical IPR spectra are presented in Fig. 3. As expected, the optical phonon 

modes are stronger localized than the low-frequency acoustical vibrations. By 

analyzing the corresponding eigenvectors, we established that the DS peak designated 

as Si-Ge mode ( max/ 0.8) is associated with vibrations of Si atoms surrounded 
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by three almost motionless Ge atoms. By virtue of this observation, we think that it 

should not be designated as a stretching mode of Si-Ge bonds. Further support for this 

statement is provided by Raman spectra discussed in the next section.         

 

3.2. Raman spectra 

Non-resonant Raman spectra were calculated within the bond polarizability model 

[36] where three second-rank tensors are defined for each phonon mode (j): 
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In (4) lir̂  is a unit vector directed from atom l to its neighbour i. and 

 
i lili rrI 4ˆˆ3


. The tensor 1


 represents the polarizability modulation due to 

bond stretching and is responsible e.g. for the Raman peak of pure crystalline Si at ≈ 

520 cm
-1

. The 2


 и 3


 contributions vanish in the case of perfect tetrahedric 

bonding.  

The (polarization-averaged) Raman scattering intensity, normalized by the NC 

volume was calculated as   
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where  BEn  is the Bose-Einstein function. Again, for the computational purposes 

the δ-function in (5) was replaced by a Lorentzian. Some of the calculated spectra are 

shown in Fig. 4 (T potential), which are in qualitative agreement with both previously 

calculated [18,19] and experimental [6-8,16] results for Si-Ge NCs. The shape of the 

spectra is determined by both small size (confinement) and alloy disorder effects.  

The size effect is clearly seen in Fig. 5. For x=0, the phonon confinement 

considerably shifts the Raman peak downwards and the shift with respect to the bulk 

peak position scales approximately as 2D  with the NC size ( D ), in agreement with 

the macroscopic model predictions [37] and experimental data [6]. Although the TP 

and SWP results show a considerable discrepancy, the D -dependence is quite similar. 

As it has been pointed out earlier [38], the lattice dynamics of the smallest NCs are 

similar to large crystallites, in the sense that the phonon modes still are dispersive, 

therefore spatial confinement introduces a finite minimal phonon wavevector, 
1 Dk , so the optical phonon frequency is shifted downwards. For Si0.5Ge0.5 alloy 

NCs, the downward shift for smaller sizes is also seen, although it is much weaker 

than for pure Si (see Fig. 5a). We found a similar trend for the Ge-Ge mode. The 

existence of the phonon confinement effect in alloy NCs means that the fundamental 

(Si-Si and Ge-Ge) modes are sufficiently delocalized, at least in a certain range of x. 

Some twenty years ago there was a discussion in the literature concerning phonon 

localization in AlxGa1-xAs alloys and it has been concluded that, at least, some phonon 

modes in this two-modal alloy are propagating and can be described by a wavevector 

(as an appropriate quantum number) [39]. The quantum size effect observed in our 
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calculated data, increasing with the growth of Si fraction for the Si-Si mode, is in 

accordance with this interpretation. It is worth mentioning that continuum model 

(starting from bulk-like phonon dispersion curves) has been shown to provide a good 

qualitative description of the CdS-like and CdSe-like Raman peaks in CdSxSe1-x NCs 

[16], another confined and disordered system.   

The Raman scattering intensity, which is supposed to be simply proportional to the 

scattering volume (NC volume, in our case) within a macroscopic approach [40], 

grows faster with the NC size (see Fig. 5b, note that the Raman intensity is 

normalised by the number of atoms in the NC). This effect appears also in 

microscopic continuous models [37].    

We also studied the dependence of the positions and heights of the main Raman peaks 

upon the alloy composition (see Fig. 6). As expected, the Ge-Ge mode grows in 

intensity and becomes narrower with the increase of Ge contents. For the Si-Si mode, 

the tendency is the opposite. The asymmetry in the behaviour of the Si-Si and Ge-Ge 

modes, seen in Fig. 6, is explained by the difference of the atomic masses. The Si-Ge 

mode can clearly be identified only for x > 0.2. Its intensity reaches a maximum at x ≈ 

0.75 and then decreases and vanishes. We found that the amplitudes of the peaks do 

not fluctuate too much between different realisations of alloy NC with the same x and 

D. The x dependences of the peak heights, H  (right column of Fig. 6) can be 

approximated by polynomial functions. It has been suggested intuitively that H  

should scale with the corresponding bond fraction, i.e. according to 2)1( x , 

)1(2 xx   and 2x  for the Si-Si, Si-Ge and Ge-Ge bonds, respectively [41], A slightly 

more elaborate formula based on the same idea was proposed in [7]. We found that a 

reasonable fit can be achieved with cubic polynomials (in arbitrary units):  
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    (6) 

 

which are considerably different from the above quadratic functions. However, we do 

not think that the fitting functions (6) have any real physical meaning. The idea that 

the peak intensity is proportional to the fraction of corresponding nearest neighbour 

bonds merely fails in the case of Si-Ge band (the maximum appears at x ≈ 0.75 

instead of 0.5). It confirms our statement in the end of Sec. 3.1 concerning the origin 

of this mode, which is related not to a single Si-Ge bond but rather to a chain of such 

bonds. According to the percolation idea [15], the onset of the Si-Ge mode should 

take place at the threshold composition x ≈ 0.25. We found that a good fit to the 

 xH GeSi  dependence [better than the polynomial fit (6)] can be achieved with the 

function: 

 

,)1()15.0(726.9 609.0558.1 xxH GeSi      (7) 

 

implying a critical behavior near the Ge fraction of 0.15. This threshold may 

correspond to the formation of Si-Ge-Si-Ge… chains in the diamond lattice, 

corresponding to percolating clusters of Si and Ge atoms on one of the two fcc 

sublattices [15]. In fact, the value of 0.15 is close to the known percolation thresholds 

in the fcc lattice [42]. The percolation idea has clearly been insightful for two-modal 

pseudo-binary alloys such Zn1−xBexSe, where it concerns the two fundamental optical 
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phonon modes [43]. We notice that the intensity of the Ge-Ge mode becomes 

noticeable only above 2.0x  and grows as )2.0(  xH GeGe  ( 5.2 ), also 

implying a percolation-type behavior, although the value of 0.2 is not close to the 

known percolation thresholds for the diamond lattice [42].     

Concerning the dependence of the peak positions on x presented in the left column of  

Fig. 6, generally speaking, it is in qualitative agreement with the experimental data for 

Si1-xGex bulk samples and relaxed films [13-15]. For the largest NC size considered 

here, the phonon confinement effect is quite small. In fact, the position of the (less 

localised) Si-Si mode for different x practically coincides with the data of Refs. [13-

15] and can be approximated by a linear function, ][cm0.65520 1

  xSiSi . For the 

Ge-Ge mode (as mentioned above, detectable only for x > 0.2), our results also yield 

an approximately linear dependence of the peak position on x, 

][cm6.6298 1

  xGeGe , which is slightly weaker than obtained in Ref. [14]. It 

should be pointed out that the precise determination of the position of this mode is 

rather hard because of its low intensity (for low and intermediate Ge contents), which 

probably also applies to experiments. This is also true for the Si-Ge mode, for which 

we obtain frequencies that are somewhat lower than in Ref. [14]. It converges to the 

Si local vibrational mode (385 cm
-1

 [15]) in the limit 1x . In practical terms, the 

peak positions can be used for the determination of the NC composition and it is 

better to use the Si-Si mode for this purpose. For small NCs where phonon 

confinement effects can be present, the recipe can be to use the difference between 

mode positions, GeGeSiSix   )( , as it has been suggested for other alloy NCs 

[16].   

Smaller features that are clearly seen in the spectra of NCs with intermediate values of 

x (for both TP and SWP) have also been observed in previous studies, both 

experimental and computational, of bulk crystals and relaxed epilayers of SixGe1-x 

alloys, and their assignment has attracted considerable attention (see [15] and 

references therein). The three minor peaks marked by arrows in Fig, 4 were observed 

by Alonso and Winer [13], together with the three major peaks, giving rise to a “six-

oscillator model” [1×(Ge-Ge), 1×(Si-Ge), 4×(Si-Si)] of the SixGe1-x Raman pattern. In 

the recent work [15], it was suggested to consider 7 oscillators, [1 × (Ge-Ge), 4 × (Si-

Ge), 2 × (Si-Si)]. This terminology refers to the early Random Element 

Isodisplacement and Cluster Isodisplacement models [44] where each characteristic 

vibration mode was associated with a particular type of atomic cluster (or crystal unit) 

retaining the lattice symmetry (e.g. a tetrahedron with 4 atoms in the vertices and one 

in the center). In our calculated results, we have not been able to uniquely associate 

the minor Raman peaks to some particular alloy configurations of this type. 

Moreover, the positions of these peaks slightly change for different atomic alloy 

configurations with the same x and D. This is because each Raman peak usually 

originates from several interconnected crystal units, not a single one [45], and such an 

assignment may not always be possible. As far as experiments performed on SixGe1-x 

NCs are concerned, only one minor mode (at ≈ 430 cm
-1

) has been observed so far 

[8], while e.g. the spectra presented in [3] are clearly free from any extra features.  

 

3.4. Non-random alloy NCs 

Non-random (i.e. correlated) distribution of atoms in Si1-xGex alloys was suggested to 

occur in a number of previous works, even though it seems to be well established that 

it is thermodynamically stable at (and above) room temperature and undergoes phase 

separation only below the critical temperature of 170-200 K [31]. Alloy ordering or 
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clustering of like atoms are known to produce significant changes in the vibration 

spectra [29]. In the 80-s, it was suggested that strained epilayers can develop a long-

range ordering at x=0.5 [46]. Although this idea did not receive further support 

[13,15], some recent lattice dynamics calculations explored it for NCs predicting a 

significant red shift of the Si-Ge mode because of the ordering [21]. Our calculations 

do not confirm this result. For both T and SW potentials we found that the position of 

the Si-Ge mode is the same in completely ordered and random Si0.5Ge0.5 NCs.    

However, experimentally it was observed that separation of Si and Ge atoms can take 

place upon annealing of NCs grown by magnetron sputtering [7,8], eventually leading 

to the formation of a core-shell structure with a Si-rich SiGe core surrounded by a Ge-

rich SiGe shell [7].  

We investigated the effect of short-range clustering of like atoms by performing the 

following numerical experiment: 

(i) A reference NC sample (#1) with x=0.5 and random distribution of Si and Ge 

atoms was built and relaxed as before; 

(ii) Prior to the relaxation, some Monte Carlo type exchanges of Si atoms completely 

surrounded by Ge neighbors (i.e., forming SiGe4 clusters) with Ge atoms incorporated 

in Si4Ge clusters were performed, yielding NC samples with different degrees of 

short-range clustering of like atoms (samples #2 and 3). The short range clustering 

parameter was evaluated by counting the fraction of Si-Si or Ge-Ge pairs as nearest 

neighbors, 

 
22 ;)1( xPxP GeGeGeSiSiSi    . 

        

The calculated Raman spectra of samples #1-3 are shown in Fig. 7. As expected, the 

intensity of the Si-Ge mode decreases with the increasing degree of clustering. 

Another clear effect is the blue shift of the Si-Si fundamental modes with clustering, 

also known for bulk alloys [29]. Apparently, clustering reveals a double-peak 

structure of the Si-Ge band, however, this effect, as well as the changes in the minor 

peaks seen in Fig. 7 require further investigation. The acoustic phonon region reveals 

some low frequency modes that have been observed in nearly spherical NCs of some 

materials and are explained by the acoustic phonon confinement (so called Lamb’s 

modes, see e.g. [47]). These modes seem to be little affected by the clustering.    

 

 

4. Conclusion 

 

We have shown the potential of our approach using three-particle empirical potentials 

for modelling the vibrational properties of Si1-xGex NCs. It has some advantages in 

comparison with both the ab initio density functional theory approach (the possibility 

of considering larger crystallites) and the popular empirical VFF model (the 

incorporation of relaxation to equilibrium structure). Both Stillinger-Weber and 

Tersoff potentials are suitable, although the latter is more convenient, less time-

consuming and yields results that, for this particular system, are in a better agreement 

with available experimental data on the variation of bond lengths and phonon-related 

Raman peaks with NC composition. Our results confirm the trimodal character of the 

bond length distribution and the importance of the bond bending in Si1-xGex NCs, 

similar to the bulk alloys, although some effect of confined geometry is found for Ge-

Ge bond. 
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We modelled the vibration properties of Si1-xGex NCs embedded in a matrix (e.g. 

SiO2) by applying rigid boundary conditions. Extension to free-standing boundary 

conditions, relevant to e.g. colloidal NCs, is also possible, which can be implemented 

by saturating dangling bonds of the outmost shell with hydrogen atoms. From 

macroscopic models one can expect that the eigenfrequencies will change, compared 

to the rigid boundary conditions’ case [48]. Consequently, the shape of the Raman 

spectrum will be affected but the confinement effect still will be present. An 

intermediate situation relevant to e.g. Si NCs embedded in a-Si:H matrix, a system of 

considerable technological interest [49, 50], seems to be more complex. Here a weak 

phonon confinement can be expected, which makes the problem much more 

sophisticated computationally because it would be necessary to include explicitly a 

considerable volume of the matrix material or find a reasonable approximation for it. 

We plan to address this problem in the future. So far, we have shown that the 

confinement effect is present for the fundamental (Si-Si in Si-reach NCs and Ge-Ge in 

Ge-rich NCs) modes in the Raman spectra, consisting in the downward shift of the 

mode frequencies in NCs with very small size. It implies that these phonon modes are 

dispersive. This effect is clearly seen also Si0.5Ge0.5 NCs, however, it is much weaker 

than in monoatomic quantum dots. The intermediate (Si-Ge) mode is shown to be 

related to the vibrations of solitary Si atoms surrounded by three almost motionless 

Ge atoms. It looks plausible that the intensity of these vibrations increases strongly 

when the Si atoms connect into Si-Ge-Si-Ge… chains (still surrounded by the 

majority of Ge atoms), showing a percolation type behavior. The Si-Ge mode is little 

affected by the confinement effect. 

We obtained fitting expressions for the amplitudes of these modes versus composition 

(6), however, these polynomial fits are essentially cubic and the idea that these 

amplitudes should be proportional to the fraction of the corresponding bonds, does not 

seem to work. Instead, we suggest that a fitting function of type (7), characteristic of a 

critical behaviour, can be more insightful for the Si-Ge and Ge-Ge modes. We also 

found fitting expressions for the fundamental Raman peak positions that may be used 

for the determination of alloy composition in NCs. However, it is necessary to bear in 

mind that both can be affected by (i) phonon confinement and (ii) short-range 

clustering effects. Short-range clustering enhances the Si-Si and Ge-Ge modes and 

pushes them upwards in frequency, while it strongly decreases the intensity of the Si-

Ge Raman mode.   
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Figure captions 

 

Fig. 1 Variations of bond lengths with Ge fraction in relaxed SixGe1-x NCs calculated 

using Tersoff (a) and Stillinger-Weber (b) potentials. Squares denote Si-Si, circles Si-

Ge, and triangles Ge-Ge bond length. Straight lines correspond to Vegard’s law. 

 

Fig. 2 Phonon DS calculated for NCs of three different compositions using either 

Tersoff or Stillinger-Weber potentials as indicated on the plots. 

 

Fig. 3 Inverse Participation Ratio of vibrational modes plotted against their 

frequencies for three different compositions of Si1-xGex NCs. 

 

Fig. 4 Raman spectra of Si1-xGex NCs of five different compositions calculated using 

Tersoff or Stillinger-Weber potentials. NC size is 3.9 nm. The arrows indicate second 

order features discussed in the text. 

 

Fig. 5 Position (upper panel) and height (lower panel) of the Si-Si Raman peak versus 

size for pure silicon (x=0) and Si0.5Ge0.5 NCs calculated with either TP or SWP as 

indicated. 

 

Fig. 6 Positions (left column) and heights (right xolumn) of the main Raman peaks 

versus Ge contents for Si1-xGex NCs calculated using Tersoff potential. NC size is 3.9 

nm. 

 

Fig. 7 Raman spectra of Si0.5Ge0.5 NCs with different degree of short-range clustering: 

0 GeSi   (random), 05.0 GeSi   (fraction of Si-Si, Si-Ge and Ge-Ge bonds 

0.3/0.4/0.3), and 12.0 GeSi   (0.37/0.26/0.37). The inset shows the acoustic 

phonon region for the same three NCs. Calculations performed with the Tersoff 

potentials, NC size is 3.9 nm. 
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