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Background
Candida species are normal commensal microorganisms of the human biota, found in the oral, 
gastrointestinal, urinary and vaginal mucosa [1], and are opportunistic pathogens, with the ability to 
cause superficial and serious systemic infections. Indeed, the Candida genus is the most frequently 
recovered from fungal hospital infections, named candidosis [2]. The Candida genus is composed 
of an extremely heterogeneous group of over 150 species [2], but it is well established that only a 
minority are implicated in human candidosis. Moreover, a major virulence factor of Candida is its 
ability to adapt to a variety of different habitats, with the consequent formation of surface-attached 
microbial communities known as biofilms [3–5]. Candida yeasts, which can live in a biofilm, can 
have significantly different properties from free-floating microorganisms, due to the existence of 
an extracellular matrix. This extracellular matrix allows different microorganisms to cooperate and 
interact among themselves in various ways and confers a certain degree of protection against drugs. 
Biofilms can be found on different surfaces, such as biotic (mucosal surfaces) and abiotic (invasive 
medical devices) [6,7]. These communities present a high resistance to typical antifungal drugs, such 
as amphotericin B and fluconazol [8,9]. The biomedical significance of biofilms is considerable, as 
most infections result from preformed biofilms [10,11].

In clinical practice, most cases of candidosis have been attributed to Candida albicans. However, 
more recently, non-C. albicans Candida (NCAC) species have been identified as common patho-
gens [12], and the prevalence of these species in human infections has been changing in recent 
years. In European countries, an analysis showed that the incidence rates for NCAC candidosis 
were 14% each for Candida glabrata and Candida parapsilosis, 7% for Candida tropicalis and 2% 
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for Candida krusei [13]. This increased incidence 
can be attributed to improvements in diagnostic 
methods and the emergence of molecular tech-
niques. However, it can also be a reflection of the 
high level of resistance often exhibited by NCAC 
species to antifungal therapies, such as the azole 
drugs and their derivatives, which continue to 
dominate as the choice against Candida-related 
infections [14–17]. Candidosis can be treated, not 
only by the azole class, but also by echinocandins 
and polyenes antifungal classes. The selection 
of the antifungal agent depends on the local 
epidemiology, percentage of strains resistant to 
fluconazole and even origin of infection [18]. In 
addition, at least 70% of the antifungal drugs 
are prescribed empirically [19] and, consequently, 
a decrease in susceptibility to fluconazole, along 
with cross-resistance to other azoles, have been 
noted, as, for example, in the case of C. glabrata 
[20]. Thus, in order to overcome this clinical 
problem, an enlarged interest in finding new 
effective natural drugs, such as plant extract 
compounds (specifically some phenolic com-
pounds) and essential oils, has been observed 
[21–23]. In this context, the main objective of 
the present work was to evaluate the potential 
antifungal effect of gallic acid, catechin, luteolin 
and quercetin, phenolic compounds identified in 
flowers of the North Eastern Portugal, against 
Candida planktonic and biofilm cells (C. albi-
cans American Type Culture Collection [ATCC] 
90028, C. tropicalis ATCC 750, C. parapsilosis 
ATCC 22019 and C. glabrata ATCC 2001).

Materials & methods
●● Phenolic compounds

The extraction, identification and quantification 
of phenolic compounds from flowers of Castanea 
sativa, Filipendula ulmaria, Rosa micrantha [24] 
and Cytisus multiflorus [25], and fresh leaves of 
Cistus ladanifer [26] were previously described 
by the authors using a high-performance liquid 
chromatography-diode array detector/electro-
spray source mass spectrometer. This work was 
focused on four different phenolic compounds 
that seemed more promising against Candida 
species: one phenolic acid (gallic acid) and three 
flavonoids (catechin, luteolin and quercetin).

●● Strains & growth conditions
Four Candida reference strains from the ATCC, 
namely C. albicans (ATCC 90028), C. glabrata 
(ATCC 2001), C. parapsilosis (ATCC 22019) 
and C. tropicalis (ATCC 750), were used in this 

study. Cells were grown on Sabouraud dextrose 
agar (SDA; Merck, Munich, Germany) for 24 h 
at 37°C, then inoculated in Sabouraud dextrose 
broth (Merck) and incubated for 18 h at 37°C 
under agitation at 120 rpm/min. After incuba-
tion, the cells were harvested by centrifugation 
at 3000 × g for 10 min at 4°C and washed twice 
in 15 ml of phosphate-buffered saline (PBS; pH 
7; 0.1 M). Pellets formed were suspended in 10 
ml Roswell Park Memorial Institute (RPMI) 
1640 medium (Sigma, MO, USA) buffered to 
pH 7 and the cellular density was adjusted to 
2 × 107 cells/ml using a Neubauer chamber.

●● Phenolic compound activity against 
planktonic Candida cells (MIC)
The MICs of all the species under study were 
determined according to the guidelines of the 
National Committee for Clinical Laboratory 
Standards M27-A2 document [27], with some 
modifications. Previously to these experiences, 
twofold final concentration serial dilutions of 
each compound stock were prepared in RPMI 
1640 medium ranging from 0.156 to 1.5 mg/ml 
and maintained in a freezer. Aliquots of each 
phenolic compound (100 µl), at a twofold 
final concentration, and Candida species sus-
pensions (100 µl at 2 × 107 cells/ml, fmaor a 
final concentration of 1 × 107 cells/ml) were 
mixed in the 96-well plates (Orange Scientific, 
Braine-l’ Alleud, Belgium). The 96-well plates 
were incubated at 37°C for 48 h and then the 
MIC value was determined, firstly by direct 
observation and secondly by determination of 
the number of CFUs. The number of CFUs was 
determined after appropriate serial dilutions in 
PBS and by plating 10 µl of each cell dilution 
onto SDA. After 24h of incubation at 37°C, 
the number of colonies was enumerated. These 
experiments were performed three-times and, at 
least, in triplicate. Yeast cultures without phe-
nolic compounds and negative controls (only 
RPMI) were also included.

●● Phenolic compounds activity against 
Candida biofilms
Phenolic compounds were tested against 
Candida species biofilms. For that, standard-
ized Candida cell suspensions (200 µl contain-
ing 1 × 107 cells/ml in RPMI 1640 medium) 
were placed into wells of 96-well polystyrene 
microtiter plates (Orange Scientific) and incu-
bated at 37°C on a shaker at 120 rpm/min for 
24 h. The 96-well plates used in this study are 
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often applied to form biofilms, since they pos-
sess properties completely different from the 
plates used for MIC determination assays. In 
addition, according to our previous results, 
it was possible to confirm that after 24 h of 
growth on those plates, there was matrix pro-
duction, therefore confirming the presence of 
a biofilm [Fonseca E et al. Eeffects of fluconazole in 

Candida glabrata biofilms and its relation with ABC 

transporters genes expression (2014), Manuscript in 

Preparation]. Negative controls (200 µl of RPMI 
1640 medium) were also included.

At 24 h, biofilm medium was aspirated and 
nonadherent cells removed by washing the bio-
films once in 200 µl of PBS. Then, 200 µl of each 
phenolic compound (prepared in RPMI 1640 
medium), ranging from 0.625 to 5 mg/ml, were 
added. The biofilms were incubated for a further 
24 h at 37°C on a shaker at 120 rpm/min. The 
effect of phenolic compounds on Candida bio-
films was assessed through quantification of the 
number of CFUs. It is important to emphasize 
that cells initially used to produce a biofilm are 
free floating and only some of them form the 
biofilm. Therefore, the numbers of the initial 
inoculum and cells within a biofilm cannot 
be directly correlated. For that, the volume of 
total medium was removed and the biofilms 
were washed once with 200 µl of PBS. Then, 
the biofilms were scraped from the respective 
wells and the suspensions vigorously vortexed for 
approximately 2 min to disaggregate cells from 
the matrix. Serial dilutions were made in PBS, 
plated onto SDA and incubated for 24 h at 37°C. 
These experiments were performed in triplicate 
and, at least, in three independent assays. The 
results were presented in terms of Log of CFUs.

●● Statistical analysis
Results were compared using two-way analysis 
of variance by applying the Bonferroni post-test 
for means comparisons, using GraphPad Prism 6 
(GraphPad Software, CA, USA).

Results & discussion
In nature, phenolic compounds are involved in 
plant growth and reproduction, and, curiously, 
provide resistance to plant pathogens and even 
predators, protecting crops and seed from dis-
eases [28,29]. With over 9000 natural antimi-
crobials identified, the flavonoid family is the 
largest group of phenolic compounds [30]. It is 
important to emphasize that the phenolic com-
pounds used in this study, gallic acid (phenolic 
acid), catechin (flavan-3-ols), luteolin (flavone) 
and quercetin (flavonol), were previously identi-
fied in different medicinal flower species [24–26]. 
The MIC values were determined and ranged 
from 0.156 to 1.250 mg/ml, as can be observed 
in Table 1. In addition, the MIC values were also 
confirmed measuring Candida planktonic cells 
(CFU determination) viability (Figure 1).

The results presented in Table 1 clearly dem-
onstrate that gallic acid was the most effective 
(<0.156 mg/ml) against the planktonic Candida 
cells for all the studied species. In addition, 
catechin demonstrated a similar effect against 
C. albicans ATCC 90028 cells. It is important 
to highlight that the catechin, for example, 
demonstrates a higher effect than the one pre-
sented by Haghighi et al. in 2011, which found 
a MIC value of 9.47 mg/ml against C. albicans 
[31], even though the actual mechanism of action 
of gallic acid on yeast cells has not been widely 
studied. In 2011, Hong et al. proved that gallic 
acid present in a hydrolysable tannin extracted 
from the bark of Rhizophora apiculata possessed 
anti-C. albicans activity [32]. Although luteolin 
has been previously reported to exhibit anti-
microbial activity against Bacillus cereus and 
Salmonella enteritidi [33], and quercetin against 
Staphylococcus aureus, Escherichia coli and 
Pseudomonas fluorescens [34], in this work, these 
phenolic compounds demonstrated a lower effect 
against all Candida species cells (≥0.625 mg/ml). 
The highest resistance of C. tropicalis ATCC 750 
cells to all the flavonoids in this study (MIC: 

Antifungal activity of phenolic compounds against Candida species  Preliminary Communication

future science group www.futuremedicine.com

Table 1. MIC values obtained with gallic acid, catechin and luteolin against Candida species.

Phenolic compounds MIC (mg/ml)

Candida albicans 
ATCC 90028

Candida glabrata 
ATCC 2001

Candida parapsilosis 
ATCC 22019

Candida tropicalis 
ATCC 750

Gallic acid <0.156 <0.156 <0.156 <0.156
Catechin <0.156 0.625 0.625 1.250
Luteolin 0.625 0.625 0.625 1.250
Quercetin 0.625 1.250 1.250 1.250
ATCC: American Type Culture Collection.



Future Microbiol. (2014) 9(2)142

1.250 mg/ml), with the exception of gallic acid 
(MIC: <0.156), should be pointed out . In fact, 
the MIC values were higher than expected. 
However, in accordance with MIC values that 
we have obtained for traditional antifungal 
agents (C. glabrata: 0.625–1.250 mg/ml of flu-
conazole [Fonseca E et al. Effects of fluconazole in 

Candida glabrata biofilms and its relation with ABC 

transporters genes expression (2014), Manuscript in 

Preparation]), we consider the MIC values accept-
able to explore as potential future candidates in 
the treatment of candidosis. Furthermore, many 
studies have been focused on natural compounds 
and plant-derived active principles as possible 
alternative treatments of Candida infections 
[35–37]. Measuring Candida planktonic cell (CFU 
determination) viability is of greatest importance 
for distinguishing between fungicidal and fungi-
static effects. The viability results confirmed that 

gallic acid demonstrated the highest antifungal 
activity (p < 0.01 at all concentrations) against 
Candida planktonic cells (Figure 1A–D). It should 
be noticed that gallic acid is in fact a causative 
agent of at least 2 Log of reduction for all species, 
at the lowest concentration tested (0.156 mg/ml). 
Interestingly, this phenolic acid also possessed 
the capability to totally eradicate C. parapsilosis 
ATCC 22019 (Figure 1C) and C. tropicalis ATCC 
750 (Figure 1D) planktonic cells at concentrations 
higher than 0.625 (p < 0.001) and 1.25 mg/ml 
(p < 0.001), respectively. Despite the fact that 
the mechanism of action of gallic acid on yeast 
cells has not been widely understood, it can be 
proposed that it acts by disrupting the structure 
of the cell membrane and inhibiting the nor-
mal budding process [38–40]. Candida glabrata 
ATCC 2001 was the species that, in general, 
presented the highest initial reduction for all 
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Figure 1. Logarithm of number of cells of Candida species grown in the presence of increased 
concentrations of gallic acid, catechin, luteolin and quercetin, after 48 h. (A) Candida albicans 
American Type Culture Collection (ATCC) 90028; (B) Candida glabrata ATCC 2001; (C) Candida parapsilosis 
ATCC 22019; and (D) Candida tropicalis ATCC 750. Error bars represent standard deviation. Statistical p 
value (represented by *, ** or ***) indicate concentrations that are significantly different from control. 
*p < 0.05; **p < 0.01; ***p < 0.001.
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phenolic compounds tested, with more than 
2 Log of reduction, at 0.156 mg/ml ( p < 0.001) 
(Figure 1B). However, in opposition to C. tropicalis 
ATCC 750 and C. parapsiloisis, gallic acid was 
unable to eradicate, at any concentrations tested, 
C.  glabrata ATCC 2001 cells. Furthermore, 
this fungistatic effect was also observed against 
C. albicans ATCC 90028 (Figure 1A). Catechin 
and luteolin presented a similar effect against 
C. parapsilosis ATCC 22019, causing more than 
3 Log of reduction at 1.25 mg/ml (p < 0.001) 
(Figure 1C). In this study, C. tropicalis ATCC 750 
was the species that showed the lowest inhibi-
tion for all flavonoids, with less than 1 Log of 
reduction, even for the highest concentration 
tested (Figure 1D). So, despite the highest genetic 
similarity between C. tropicalis ATCC 750 and 
C. albicans ATCC 90028 [41], no similarities were 
found in terms of the phenolic compound effect.

In most natural environments, microorgan-
isms exist predominantly as biofilms, rather than 

planktonic or free-floating cells [42]. Therefore, 
the second aim of this work was to test the phe-
nolic compounds against Candida species pre-
formed biofilms. For that, the relative numbers 
of viable cells within the biofilm were evaluated 
by CFU counts (Figure 2). Biofilm drug resistance 
is a phenomenon consistently expressed across 
model microbial systems [3,43] and likely to be of 
great clinical relevance [44]. Hawser and Douglas, 
in 1995, firstly demonstrated a similar resistance 
effect of Candida biofilms to traditional antifun-
gal agents [45]. As such, any evidence of activ-
ity against biofilm-associated organisms would 
represent an important new finding.

The effects of the phenolic compounds on 
Candida biofilms (Figure 2) reveled a decreased 
susceptibility to these microorganisms compar-
atively with planktonic counterparts (Figure 1). 
Gallic acid, the phenolic compound that dem-
onstrated the highest effect for planktonic cells, 
luteolin and quercetin, was only able to reduce 
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Figure 2. Logarithm of number of Candida biofilms treated with increased concentrations of gallic 
acid, catechin, luteolin and quercetin, after 24 h, formed in Roswell Park Memorial Institute 1640. 
(A) Candida albicans American Type Culture Collection (ATCC) 90028; (B) Candida glabrata ATCC 2001; 
(C) Candida parapsilosis ATCC 22019; and (D) Candida tropicalis ATCC 750 cells. Error bars represent 
standard deviation. Asterisks indicate concentrations that are significantly different from control. 
*p < 0.05.
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C. glabrata ATCC 2001 (Figure 2B), C. parapsi-
losis ATCC 22019 (Figure 2C) and C. tropicalis 
ATCC 750 (Figure 2D) biofilm cells in 2 Log for 
the highest concentration tested (p < 0.05). In 
terms of species, C. albicans ATCC 90028 bio-
films were the most resistant to all compounds, 
where the best results were obtained with gal-
lic acid and quercetin (p < 0.05) (Figure 2A). In 
2009, Wang et al. also showed a great antifungal 
effect of gallic acid against C. albicans biofilms 
[46]. Moreover, catechin was the phenolic com-
pound under study, which had demonstrated 
the lowest effect, with the exception of 1 Log 
of reduction at the highest concentration, tested 
in the case of C. parapsilosis ATCC 22019 (p < 
0.05) (Figure 2C). As it is known, biofilms are 
organized, structured communities embedded 
within a matrix of extracellular material [42]. 
Moreover, Candida biofilm matrix structure 
and composition is strongly species depend-
ent [42,46]. For example, C.  albicans ATCC 
90028 biofilm structure involves, generally, 
two distinct layers: a thin, basal yeast layer 
and a thicker, less compact hyphal layer, while 
C. parapsilosis ATCC 22019 biofilms are thinner 
and less structured, and consist exclusively of 
aggregated blastospores [47], which could jus-
tify the difference of results obtained for each 
Candida species.

Conclusion
Overall, this work demonstrates that the 
phenolic compounds, especially gallic acid, 
affected the growth of different planktonic 
Candida species. Catechin showed a simi-
lar effect against C.  albicans ATCC 90028 
and C.  glabrata ATCC 2001 cells at higher 

concentrations. In addition, gallic acid and 
quercetin demonstrated only a slight effect 
against Candida species biofilms.

Future perspective
Candidosis treatment is difficult, especially due 
to the eukaryotic nature of fungal cells. Thus, 
there are few effective antifungal agents avail-
able for clinical use (azoles, polyenes or echi-
nocandins). Moreover, abrupt changes in the 
way drugs are prescribed and the use of newer 
antifungal drugs induced Candida species to 
develop resistance. In order to overcome this 
problem, there will be an increasing interest 
in natural compounds, specifically in phenolic 
compounds. So, in the future, we will continue 
to seek new potential anti-Candida compounds 
from the North Eastern Portugal flowers.
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EXECUTIVE SUMMARY
Objectives of the study

●● The main aim of this study was to evaluate the antifungal effect of gallic acid, catechin, luteolin and quercetin, a set of 
phenolic compounds identified from flowers of North Eastern Portugal, against planktonic and biofilm cells of four of 
the most pathogenic Candida species.

Methods
●● Four reference strains from the American Type Culture Collection (ATCC), namely Candida albicans (ATCC 90028), 

Candida glabrata (ATCC 2001), Candida parapsilosis (ATCC 22019) and Candida tropicalis (ATCC 750), were used. 
The MIC of each phenolic compound was determined for planktonic cells and its effect against Candida biofilm 
quantified by CFUs.

Conclusion
●● Overall, in this work, gallic acid showed antifungal activity against the growth of all planktonic Candida species. Similar 

antifungal effect was obtained with catechin against C. albicans ATCC 90028 and C. glabrata ATCC 2001 cells.
●● Gallic acid and quercetin also demonstrated a slender effect against Candida species biofilms.
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