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Abstract. A search is performed for WH production with a light Higgs boson
decaying to hidden-sector particles resulting in clusters of collimated electrons,
known as electron-jets. The search is performed with 2.04 fb−1 of data collected
in 2011 with the ATLAS detector at the Large Hadron Collider in proton–proton
collisions at

√
s = 7 TeV. One event satisfying the signal selection criteria is

observed, which is consistent with the expected background rate. Limits on the
product of the WH production cross section and the branching ratio of a Higgs
boson decaying to prompt electron-jets are calculated as a function of a Higgs
boson mass in the range from 100 to 140 GeV.
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1. Introduction

Recently, the production of a boson with a mass of about 125 GeV has been observed by the
ATLAS [1] and CMS [2] collaborations. The observation is compatible with the production and
decay of the Standard Model (SM) Higgs boson [3–5] at this mass. Strengthening or rejecting
the SM Higgs boson hypothesis is currently of utmost importance and thus a search for non-SM
Higgs boson decays is of high interest. In this paper, a search for a Higgs boson decaying
to a new hidden sector of particles is presented. The masses and couplings of the hidden-
sector particles are chosen such that the Higgs boson decay cascade results in jets consisting
exclusively of electrons (‘electron-jets’) and weakly interacting neutral particles [6, 7]. This
is the first search performed for this particular channel. Moreover, in addition to a recently
discovered state consistent with the SM Higgs boson, there may be other scalar fields that couple
to the W boson and decay to electron-jets. These scalars arise in the Higgs boson sector in many
extensions of the SM, and electron-jets could be the primary discovery channel for these new
states. The search is performed in the Higgs boson mass range between 100 and 140 GeV. The
analysis examines the associated Higgs boson production mechanism, pp → WH , assuming
SM couplings between the Higgs boson and the W boson.

Many models of physics beyond the SM contain a light hidden sector, which is composed
of as yet unobserved fields that are singlets under the SM group SU (3) × SU (2) × U (1) and
that can be probed at the Large Hadron Collider (LHC) [6–17]. Models of this hidden sector
vary from simple modifications of the SM [12, 13] to models motivated by string theory [14] to
so-called unparticle models [15].

In the present analysis two models, discussed in [7], are considered. These differ in the
way the Higgs boson decays, either via a three-step cascade (figure 1 left) or a two-step cascade
(figure 1 right) to hidden-sector particles. In both models the masses of particles in a hidden-
sector cascade are taken to be substantially lower than the Higgs boson mass, thus the Higgs
boson decay has a two-jet topology. The models feature a dark photon γd that kinetically mixes
with the SM photon [16, 17], a neutral weakly interacting stable scalar nd and two hidden
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Figure 1. Diagrams illustrating the Higgs boson decay to hidden-sector particles
in the (left) three-step and (right) two-step models. Each hd,2 particle can decay
to a pair of dark photons γd or stable scalars nd, with the corresponding branching
ratios given in table 1.

scalars hd,1 and hd,2. A value of the kinetic mixing parameter ε larger than 10−5 implies dark
photons with very short lifetimes; thus the chosen value of ε = 10−4, recommended in [7],
ensures that the decay products are prompt. The dark photon mass must be less than 2 GeV for
these models to provide a viable explanation of the results of cosmic-ray and dark matter direct-
detection experiments [18–21], which observe an unexpected excess of cosmic electrons and/or
positrons, while there is no observed proton excess. For a dark photon mass below 210 MeV,
the dark photons decay exclusively to e+e− pairs; dark photon masses of 100 and 200 MeV are
considered in this analysis.

The signal has a distinct two-jet topology with each electron-jet having a multiplicity of
>4 electrons per jet, where the electrons are highly collimated. The specific hidden-sector
parameters are given in table 1, and the chosen masses of the Higgs boson are 100, 125 and
140 GeV. The results of the analysis are expected to be robust with respect to the specific
choice of the hd,1, hd,2 and nd masses as long as these masses are significantly smaller than
the Higgs boson mass, i.e. mhd,1|2 6 10 GeV. In particular, as long as the hd,1 and hd,2 scalars
are much lighter than the Higgs boson, the hd,1 and hd,2 are boosted, and their decay products
are collimated, resulting in two distinct electron-jets. Also in the three-step model, the results are
expected to be robust against the explicit choice of the branching ratio of the hd,2 particle
into weakly interacting neutral particles, nd, as long as this branching ratio is relatively small,
i.e. BR(hd,2 → ndnd)6 0.2. For this range of branching ratios, both the hd,1 particles decay to
visible decay products with greater than 90% probability; for larger branching ratios, there will
be a considerable fraction of events where only one (or neither) hd,1 particle decays to visible
decay products.

In this analysis, the W boson produced in association with the Higgs boson is reconstructed
in the W → eν and W → µν decay modes in order to achieve a high efficiency for online event
selection and a high signal-to-background ratio. The signal topology is consequently an isolated
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Table 1. Parameters of the benchmark hidden-sector models: hidden-sector
particle masses, the γ − γd kinetic mixing, and decay branching ratios of hd,1

and hd,2 in the three-step and two-step models.

Parameter

mhd,1 10 GeV
mhd,2 4 GeV
mnd 90 MeV
mγd 100, 200 MeV
ε 10−4

Three-step model
BR(hd,1 → hd,2hd,2) 1
BR(hd,2 → γdγd) 0.8
BR(hd,2 → ndnd) 0.2

Two-step model
BR(hd,2 → γdγd) 1
BR(hd,2 → ndnd) 0

large transverse momentum lepton accompanied by missing transverse momentum and two or
more electron-jets.

The sensitivity of this analysis is approximately two orders of magnitude greater than that
of a previous search for similar signatures which was performed by the CDF collaboration [22].
The direct searches for prompt decays of dark photons into electron or muon pairs, as well as a
search for a Higgs boson decaying into displaced muon-jets, were reported in [23–26].

2. The ATLAS detector

The ATLAS detector [27] is a multi-purpose particle physics detector with forward–backward
symmetric cylindrical geometry1. The inner detector (ID) provides precise reconstruction of
tracks with |η| < 2.5. It consists of three layers of pixel detectors close to the beam pipe, four
layers of silicon microstrip detector modules in the barrel region with pairs of single-sided
sensors (SCT) providing 8 hits per track at intermediate radii, and a straw-tube transition radia-
tion tracker (TRT) at the outer radii, providing about 35 hits per track (in the range |η| < 2.0).
The TRT offers substantial discriminating power between electrons and charged hadrons over
a wide momentum range (between 0.5 and 100 GeV) via the detection of x-rays produced by
transition radiation.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal pp interaction point at the center
of the detector. The positive x-axis is defined by the direction from the interaction point to the center of the LHC
ring, with the positive y-axis pointing upwards, while the beam direction defines the z-axis. The azimuthal angle φ

is measured around the beam axis with the polar angle θ is the angle from the z-axis. The pseudorapidity is defined
as η = −ln tan(θ/2). The cone separation is defined as 1R =

√
(1φ)2 + (1η)2. The transverse momentum pT is

defined as the momentum perpendicular to the beam axis: pT =

√
p2

x + p2
y .
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The ID is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic
field. A high-granularity lead/liquid-argon (LAr) sampling calorimeter measures the energy and
the position of electromagnetic showers with |η| < 3.2. The total thickness of this calorimeter
is more than 24X0 in the barrel and above 26X0 in the endcaps. LAr sampling calorimeters,
with copper or tungsten as absorber, are used to measure hadronic showers in the endcap (1.5
< |η| < 4.9), while an iron/scintillator tile hadronic calorimeter measures hadronic showers
in the central region (|η| < 1.7). The muon spectrometer (MS) surrounds the calorimeters and
consists of three large superconducting air-core toroids, each with eight coils, a system of drift
tubes and cathode strip chambers for precision tracking (|η| < 2.7), and fast tracking chambers
for event selection in real time (|η| < 2.4).

A three-level trigger system [28] selects events to be recorded for offline analysis. The
level-1 trigger is implemented in hardware, operating synchronously with the collisions, and
uses a subset of detector information to reduce the event rate from 20 MHz to a maximum
level-1 output rate of 75 kHz. This is followed by two software-based trigger levels, level-2 and
the event filter, which together reduce the recorded event rate to approximately 300 Hz.

3. Signal and background simulation

Simulated data samples are used to estimate the signal acceptance and efficiency, to optimize
the signal selection criteria and to cross-check our understanding of the backgrounds. The final
background estimate is determined from the data as described in section 6.

The signal Monte Carlo (MC) samples are generated with MadGraph [29] to simulate
the Higgs boson production and decay to the hidden sector and BRIDGE [30] to simulate
the hidden-sector cascades resulting in electron-jets. The output of these two programs is then
interfaced to PYTHIA [31] for subsequent hadronization and modeling of the underlying event
(UE). All leptonic decays modes of the W boson (eνe, µνµ, τντ ) are included in the signal
samples.

The most important sources of background are SM W/Z + jets and t t̄ processes. A less
important source of background comes from pair production of bosons, WW/ZZ/WZ ,
hereafter referred to as diboson production. These processes result in a lepton + jets event
topology. In addition, multi-jet events in some instances can be misidentified as W -bosons.

Samples of simulated W (→ `ν)+jets and Z(→ ``)+jets events (` = e/µ/τ ) are generated
using ALPGEN [32] interfaced to HERWIG [34] for parton shower and fragmentation
processes and to JIMMY [35] for UE simulation. In ALPGEN the fixed-order tree-level matrix-
element calculations are combined with parton showers using the MLM matching scheme
[33]. Simulated samples for t t̄ processes are generated with MC@NLO [36] interfaced to
HERWIG for parton showering. To study the possible dependence on the specific choice of
MC generator, alternate W/Z+jets samples are also generated using SHERPA [37] with an
UE modeling according to [38], and alternate top-quark production samples are generated with
POWHEG [39] interfaced to PYTHIA for hadronization. The diboson processes are generated
with HERWIG. Taus are decayed with TAUOLA [40] in both signal and background samples.

The event yields for W → `ν, Z → `` (ell = e/µ) and t t̄ processes, which give the largest
contribution to background, are scaled using the measured production cross sections [41, 42].
The contributions from W (→ τν) and Z(→ ττ), which are minor sources of background,
are obtained using next-to-next-to-leading-order cross-section calculations [43]. The multi-
jet background is obtained using normalized data templates [41], since the rate with which
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multi-jet events mimic the combined signature of a prompt charged lepton accompanied by
missing transverse momentum is difficult to simulate accurately.

The GEANT4 toolkit [44] is used for a detailed simulation of the detector response [45].
The effect of multiple pp interactions per bunch crossing (pile-up) is modeled by overlaying
simulated inelastic proton–proton collisions over the original hard-scattering event. The
simulated events are then passed through the same reconstruction and analysis chain as the
data.

To calibrate the electron energy and to match the resolution of the electron energy and
muon momentum observed in data, corrections are applied to electrons in data and electrons
and muons in simulated MC samples according to the prescriptions of [46, 47].

4. Data samples and trigger selection

The data sample for this analysis was collected by the ATLAS detector in proton–proton
collisions at a center-of-mass energy of 7 TeV in early 2011. The data sample used was required
to be recorded during LHC stable-beam conditions when the ATLAS detector components
relevant to this analysis were operating within nominal parameters. The total integrated
luminosity of the selected data sample is 2.04 fb−1 with a 3.7% uncertainty [48, 49].

For the W → eν channel, at least one reconstructed electron trigger object with transverse
energy above 22 GeV in the region of |η|6 2.5 is required. For the W → µν channel, a muon
candidate trigger object in the region of |η|6 2.4 having transverse momentum above 18 GeV,
reconstructed in both the ID and MS, is required. The muon trigger object must be consistent
with having originated from the interaction region.

5. Event selection and electron-jet reconstruction

Signal events are required to have exactly one reconstructed W boson candidate in the eν or µν

decay channel and at least two jets identified as electron-jets.

5.1. W boson selection

A W -decay electron candidate is required to pass the tight electron selection criteria [41, 46]
with pT > 25 GeV and |η|6 2.47. Electrons in the transition region between the barrel and
endcap calorimeters (1.37 < |η| < 1.52) are rejected. A W -decay muon candidate is required to
be identified in both the ID and the MS subsystems and to have pT > 20 GeV and |η| < 2.4. To
increase the robustness against track mis-reconstruction, the difference between the ID and MS
pT measurements is required to be less than 15 GeV [41].

To reduce background from multi-jet events, electron and muon candidates are required to
satisfy an isolation criterion: the sum of the pT of all tracks in a cone of 1R = 0.4 around the
electron (muon) divided by the electron (muon) pT is required to be less than 0.3 (0.2).

W boson candidates are required to have missing transverse momentum Emiss
T > 25 GeV

and exactly one isolated electron or muon. Events with two or more isolated same-flavor leptons
are rejected, substantially reducing the background from Drell–Yan production.

The lepton candidate from the W boson decay is required to match the object that satisfies
the trigger selection criteria: the distance between the trigger object and the reconstructed
W → `ν (` = e/µ) lepton is required to be 1R < 0.1.
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To reduce the background from cosmic rays, heavy-flavor production and photon
conversions, the W candidate is required to originate from the primary vertex. In events with
multiple vertices along the beam axis, the vertex with the largest

∑
p2

T, where the sum is over all
tracks associated with the vertex, is taken to be the primary vertex of the event. The longitudinal
and transverse impact parameters of the charged-lepton track with respect to the primary vertex
must be less than 10 and 0.1 mm, respectively.

5.2. Electron-jet pair selection

In this search, the signature of the Higgs boson decay is two or more electron-jets. Electron-jet
candidates are formed from jets reconstructed in the calorimeters using an anti-kt jet clustering
algorithm [50] with a radius parameter R = 0.4.

The electrons in an electron-jet are too closely collimated to be identified efficiently
with the algorithm used to identify electrons from W boson decays. Instead, electron-jets are
identified with three discriminating observables, which are described in detail below: the jet
electromagnetic fraction ( fEM), the jet charged particle fraction ( fCH) and the fraction of high-
threshold hits originating from transition radiation in the TRT ( fHT).

In electron-jets, the electrons typically deposit all of their energy in the electromagnetic
calorimeter, so that the fraction of the jet energy deposited in the electromagnetic calorimeter
divided by the total jet energy deposited in both the electromagnetic and hadronic calorimeters,
fEM, is typically close to unity. The slight degradation of fEM toward lower values is due to
the occasional leakage of electromagnetic showers into the hadronic calorimeter, calorimeter
noise and electron-jets overlapping with ordinary jets. Hadronic jets reaching the calorimeters
mainly consist of π± and photons from π0 decays. Most π± deposit a sizable fraction of
their energy in the hadronic calorimeter, while photons deposit almost all their energy in the
electromagnetic calorimeter. The distribution of fEM is further broadened by fluctuations of
the electromagnetic and hadronic showers in the detector. The pedestal corrections for noise
in the hadronic calorimeter can sometimes lead to reconstructed energies in the hadronic
calorimeter that are less than zero, resulting in a value of fEM slightly higher than unity. The
simulation models this situation accurately. The distribution of fEM for hadronic jets peaks
around 0.85, with a few per cent of these jets having fEM > 0.99.

Since fEM only provides limited background rejection additional variables are exploited.
The quantity fCH is defined as the fraction of the jet energy deposited in calorimeter cells that
are associated with tracks within the jet:

fCH =

∑
‘track-cells’

E cell

E jet
. (1)

A track is associated with a jet if it is within a distance of 1R = 0.4 from the jet axis and
has pT > 400 MeV. The ‘track-cells’, i.e. calorimeter cells associated with tracks within the jet,
consist of the cells within a cone of 1R = 0.2 around each of the tracks associated with the jet,
giving the sum of energy deposits of charged particles within the jet in both the electromagnetic
and hadronic calorimeters.

Signal electron-jets consist exclusively of electrons and should have large fEM and fCH.
Hadronic jets with large fEM are expected to contain mostly neutral pions decaying to photons
and, therefore, fewer charged tracks and low fCH. Photons that convert to electron–positron pairs
in the material they traverse before entering the calorimeter increase the value of fCH.
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Additional rejection of hadronic jets is achieved by exploiting the identification of electrons
using transition radiation. The discriminating quantity is the fraction of TRT hits on a track,
fHT, that exceed the high discriminator threshold in the read-out electronics of the TRT straws.
Detailed studies of this quantity are reported in [46, 51]. This high-threshold setting corresponds
to the size of the large energy deposit from transition radiation in the straw-tube gas. The
distribution of fHT for tracks from electrons has a maximum at fHT ∼ 0.2, while it peaks at zero
and then decreases monotonically for charged hadron tracks. A requirement that fHT > 0.08 has
an efficiency of over 95% for electrons in the momentum range relevant to this analysis and
at the same time effectively rejects charged hadrons. Exploiting the selection criteria described
above, a jet is classified as an electron-jet if it satisfies the following requirements:

• jet pseudorapidity |η|6 2.0,

• jet transverse momentum pT > 30 GeV,

• jet electromagnetic fraction fEM > 0.99,

• jet charged particle fraction fCH > 0.66 and

• number of tracks associated with the jet Ntrack > 2, where the tracks must satisfy the
following criteria:

– track pseudorapidity |η|6 2.0,

– track transverse momentum pT > 5 GeV,

– number of hits in the pixel detector NPIX > 2,

– total number of pixel and SCT hits NPIX + NSCT > 7,

– fraction of high-threshold TRT hits fHT > 0.08.

Good agreement is observed between data and MC simulation in the fEM, fCH and track-
related distributions at the different stages of selection, as can be seen in figure 2. The number
of events observed in the data and the yields expected for the background and the signal as
the selection criteria are applied are shown in table 2. The background yield given here is
determined by MC.

6. Background estimation

The dominant background in this search is due to the associated production of a W boson with
hadronic jets which mimic the electron-jet signature. Detailed MC studies of the background
contamination from hadronic jets faking electron-jets have shown that the high electron
content in those jets originates either from final-state photon radiation or from π 0 decays
with subsequent photon conversions in the material of the detector. A background prediction
from MC simulation would depend on the modeling of final-state photon radiation and parton
showering and hadronization, which would introduce large uncertainties in the background rate.
Instead, the background contamination in the signal region is estimated from the data using a
simplified matrix method [52] which is completely data-driven. Two alternative background
estimates were tried and found to be consistent with the matrix method result. One of these
estimates—referred to as the ABCD method below—is based on data; the second estimate is
based on MC simulation.
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Figure 2. Distribution of the jet electromagnetic fraction, fEM, after the W → eν
selection (a), the jet charged particle fraction, fCH, after the fEM selection (b)
and the number of associated tracks, Ntrack, fulfilling the criteria of section 5.2
after the fEM and fCH selection (c). Data are shown by dots with error bars
and are compared to the expectation from SM processes, given by stacked
histograms of different colors. The signal distributions in the three-step model of
a hidden sector with dark photon mass mγd = 100 MeV are presented as dashed
histograms with arbitrary scale (a and b) and with the nominal scale (c), where
nominal scale implies the SM value for WH production cross section and 100%
branching ratio of a Higgs boson decaying to electron-jets. The hatched bands
represent the quadratic sum of statistical and systematic uncertainties of the SM
background prediction described in section 7.
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Table 2. The expected number of background and signal events in 2.04 fb−1 of
data, as well as the number of events observed in the data, after applying the
various signal selection criteria for the W → eν and W → µν channels. The ‘>
2 jets’ in the first column denotes the requirement of two or more jets per event,
satisfying the corresponding selection criteria. The signal predictions correspond
to the three-step model with mH = 125 GeV and mγd = 100 MeV. The signal
efficiencies are the fraction of signal events satisfying all the selection criteria
up to and including that particular criterion. They are given with respect to the
signal sample including all three decay modes of the W boson (eνe, µνµ, τντ ).
The background expectations include statistical and systematic uncertainties, and
are determined using the MC method (see section 6). The statistical uncertainty
shown for the signal is due to MC statistics; the systematic uncertainty is only
given for the final event selection and its detailed composition is given in table 4.

Expected Expected
Data background signal, mH = 125 GeV Eff.

W → eν channel

W → eν selection 4 351 732 4 330 000 ± 250 000 46.7 ± 1.8(stat) 13%
pT > 30 GeV,

|η|6 2.0 173 551 183 000 ± 16 000 25.6 ± 1.4(stat) 7.1%
> 2 jets fEM > 0.99 837 1070 ± 200 10.8 ± 0.9(stat) 3.0%

fCH > 0.66 39 35 ± 8 6.3 ± 0.7(stat) 1.7%
Ntrack > 2 0 0.10+0.11

−0.10 5.3 ± 0.6(stat)
± 0.4(syst) 1.5%

W → µν channel

W → µν selection 8 870 713 8 620 000 ± 350 000 60.3 ± 2.3(stat) 17%
pT > 30 GeV,

|η|6 2.0 326 956 353 000 ± 33 000 31.5 ± 1.7(stat) 8.8%
> 2 jets fEM > 0.99 1008 1240 ± 180 13.9 ± 1.2(stat) 3.9%

fCH > 0.66 45 41 ± 16 7.5 ± 0.9(stat) 2.1%
Ntrack > 2 1 0.11+0.13

−0.11 6.0 ± 0.8(stat)
± 0.4(syst) 1.7%

In the matrix method, one defines a ‘loose’ electron-jet selection criterion by relaxing the
minimum track pT requirement from 5 to 2 GeV. The fraction f is the ratio of the number of
jets passing the nominal signal selection NT to that passing the loose selection NL:

f =
NT

NL
. (2)

The number of fake electron-jet background events passing the nominal selection criteria for
two electron-jet candidates and entering the signal region is therefore

nbkgd = f 2nfake, (3)

where nfake is the number of background events passing the loose criterion for both electron-
jet candidates. On the other hand, the number of fake electron-jet events in which neither
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electron-jet candidate passes the nominal selection criterion is

nloose = (1 − f )2nfake. (4)

Combining equations (3) and (4) yields

nbkgd =
f 2

(1 − f )2
nloose = f̄ 2nloose, (5)

where f̄ is referred to below as the fake factor. In this way the number of background events
is derived directly from the data events failing to pass the nominal criteria for both electron-jet
candidates (nloose), where the signal contamination has been checked to be small.

The fake factor f̄ is measured from background-enriched data samples where the signal
contamination is checked to be completely negligible. The first sample is obtained by reversing
the W -candidate electron or muon selection criteria to select a sample of multi-jet background
with kinematic characteristics similar to those of the signal sample. A fake factor is obtained
from the jets in this sample. In the second sample, the fake factor is determined from a sample of
jets that originate from electrons in Z → e+e− decays. The tight selection criteria and the lepton
isolation criteria are applied to one leg of the Z boson candidate, and the invariant mass of this
electron and the candidate jet, me,jet, is required to fall in the range 80 GeV < me,jet < 100 GeV.
The two fake factors are found to be consistent within statistical uncertainties: 0.44 ± 0.02 (stat)
and 0.47 ± 0.03 (stat), respectively. The first value is used in the analysis and the difference
between these two estimates is taken as a systematic uncertainty in the fake factor. The resulting
value is f̄ = 0.44 ± 0.04, where the uncertainty is the sum of the statistical and systematic
uncertainties added in quadrature.

In the ABCD method used to cross-check the results, events are assigned to one of four
regions according to whether or not the jets meet the fEM and the track-quality conditions of the
electron-jet classification. These two conditions are chosen because they are less correlated than
other selection variables that could have been used. The background yield in the signal region
is thus given by

nbkgd = N predicted
A =

NB NC

ND
cMC , (6)

where cMC = 0.36 is the correction factor determined from MC simulation that corrects for the
effect of the correlations between the two selection criteria. Ni is the number of events observed
in region i .

The regions are defined as:

(A) Signal region. Two jets with fEM > 0.99 are required; for both jets Ntrack > 2, i.e. the
number of tracks associated with the candidate jets and fulfilling the requirements of the
electron-jet selection must be greater than two (see section 5.2).

(B) Anti-track quality region. At least one jet must fail the associated track requirements
of the electron-jet selection. Each of the two candidate jets must have two associated
tracks separated by 1R < 0.1, both tracks satisfying looser requirements pT > 2 GeV
and fHT > 0. At least one of these tracks must fail the requirement fHT > 0.08.

(C) Anti- fEM region. At least one jet must fail the condition fEM > 0.99.

(D) Anti-track quality and anti- fEM region. Both conditions (B) and (C) are fulfilled.
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Table 3. Estimated number of background events after the final selection,
including statistical and systematic uncertainties, from three different methods.
The matrix method is used for the background estimate while the ABCD and
MC methods provide a cross-check of the matrix method.

Method of background estimation Estimated background yield

Matrix (baseline) 0.41 ± 0.29 (stat) ± 0.12 (syst)
ABCD (cross-check) 0.46 ± 0.32 (stat) ± 0.10 (syst)

MC (cross-check) 0.21 ± 0.05 (stat) +
−

0.23
0.21 (syst)

Table 4. Systematic uncertainties for the signal. The numbers in parentheses refer
to the descriptions in the numbered list in the text. All uncertainties are applied to
the combination of W → eν and W → µν channels; the only exceptions are the
specific electron and muon uncertainties in items (iv) and (vii), and are applied
separately. The total uncertainty is conservatively rounded and is given for the
combination of channels.

Systematic source Systematic uncertainty (%)

(i) MC statistics 13
(ii) Luminosity 3.7
(iii) σ × BR +3.7

−4.3

(iv) Electron efficiency 5
(iv) Muon efficiency 3
(v) fEM modeling 3
(v) fCH modeling 0.1
(vi) fHT modeling 1
(vii) Electron energy scale 0.5
(vii) Electron energy resolution 0.2
(vii) Muon momentum resolution 0.5
(viii) Pile-up < 0.1

Total 15

In the second cross-check of the matrix method, the background prediction is obtained by
using data templates and simulated samples with the appropriate cross sections scaled by the
measured integrated luminosity, as described in section 3.

The resulting background yields, together with the evaluated statistical and systematic
uncertainties, are given in table 3. The estimates from the different background evaluation
methods agree well within the uncertainties.

7. Systematic uncertainties

The systematic uncertainties considered for the signal are given in table 4 and described in detail
below:

(i) MC statistics. The uncertainty due to the limited number of MC signal events is 13%.

(ii) Luminosity. The uncertainty in the integrated luminosity is determined to be 3.7%
[48, 49].
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(iii) Signal cross sections. The uncertainty of the SM WH production cross section at Higgs
mass mH = 125 GeV is +3.7%

−4.3% [53]. For 100 and 140 GeV Higgs mass the corresponding
uncertainties are ±4% [53].

(iv) Electron and muon efficiency. The combined uncertainty on the efficiency of the lepton
trigger, identification and isolation as well as transverse impact parameter requirements
is found to be 5% for electrons and 3% for muons. The uncertainties were derived using
data-driven methods [46, 47].

(v) Jet electromagnetic and charged particle fractions ( fEM and fCH). The uncertainty due
to possible mismodeling of these parameters, which impacts the signal acceptance, are
studied by comparing the measured fEM and fCH line shape for jets, which are matched
to electron from W -decay, to the one predicted by the simulation. They are found to be 3
and 0.1% for fEM and fCH, respectively.

(vi) Fraction of high-threshold hits in the TRT ( fHT). Mismodeling of the fHT distribution in
the simulation has been previously studied [46, 51]. The impact of this mismodeling on
the signal efficiency was checked using the data samples, enriched with highly collimated
pairs of electron tracks, and is found to be less than 1%.

(vii) Electron and muon energy/momentum scale and resolution. These uncertainties are
evaluated by varying the corresponding correction factors, described in section 5.1,
within their systematic uncertainties. This results in the corresponding uncertainties
of 0.2, 0.5 and 0.5% for electron/muon energy resolution and electron energy scale
respectively.

(viii) Pile-up impact. The effect of additional inelastic collisions overlapping with the primary
hard scatter (pile-up) on the signal efficiency has been evaluated using simulated signal
samples and found to be negligible.

The systematic uncertainties on the background determinations are estimated in the
following ways:

• Matrix method. The uncertainty is assessed by varying the fake factor within its uncertainty
and is summed in quadrature with the statistical uncertainty on the number of events
observed in the loose region. An uncertainty due to possible signal contamination is also
taken into account. These result in an 80% uncertainty in the background yield.

• ABCD method. The uncertainty is assessed by employing different region selections in the
ABCD method and the difference between yields is treated as a systematic uncertainty. The
uncertainty due to limited statistics in region B is also considered. The resulting uncertainty
in the background yield is 70% with this method.

• MC method. The largest contributions to the uncertainty on the background yield are the
systematic uncertainty on the MC-based prediction on the probability of two or more
jets to be incorrectly identified as electron-jets (100%), modeling of fHT (50%), fCH

(10%), fEM (10%), the choice of MC generator (10%) and uncertainties on the cross
section for multi-jet processes (10%). The assigned theoretical uncertainties on the cross
sections are 4% (W → `ν, Z → ``), 5% (W → τν, Z → ττ , W Z/Z Z ) and 7% ( t t̄ , W W ),
respectively [41, 42]. Limited MC sample sizes contributes a 5% uncertainty. The total
uncertainty of background estimation with MC method is 110%.
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Table 5. Numbers of expected and observed events after final selection. Expected
signal yields are provided for both the three-step and two-step models with dark
photon masses of 100 and 200 MeV. Statistical (first) and systematic (second)
uncertainties are presented separately. The results are given for the combination
of the W → eν and W → µν channels. One candidate event is observed in the
data in the W → µν channel.

Signal Three-step model Two-step model

mH ( GeV) mγd = 100 MeV mγd = 200 MeV mγd = 100 MeV mγd = 200 MeV

100 14.3 ± 1.7 ± 0.8 12.4 ± 1.6 ± 0.7 22.6 ± 2.1 ± 1.2 23.5 ± 2.1 ± 1.2
125 11.3 ± 1.0 ± 0.6 10.7 ± 1.1 ± 0.6 16.2 ± 1.2 ± 0.9 18.1 ± 1.4 ± 1.0
140 9.6 ± 0.8 ± 0.5 9.0 ± 0.8 ± 0.4 13.7 ± 0.9 ± 0.8 13.9 ± 0.9 ± 0.8

Background 0.41 ± 0.29 ± 0.12
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Figure 3. Observed and expected 95% CL upper limits on the signal strength,
σ(W H) × BR(H → e-jets)/σSM(W H), as a function of the Higgs boson mass
for the (left) three-step and (right) two-step models of a hidden sector with a dark
photon mass mγd = 100 MeV. The dark (light) shaded band contains 68% (95%)
of the outcomes of pseudo-experiments generated under the background-only
hypothesis.

8. Results and interpretation

The observed and predicted event yields after the final selection are shown in table 5. The event
yield in the signal region is consistent with the background-only hypothesis, with one data event
passing the final selection in the W → µν channel and no data events passing the final selection
in the W → eν channel.
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Table 6. The 95% confidence level (CL) upper limits on the signal strength,
σ(W H) × BR(H → e-jets)/σSM(W H), for a Higgs boson mass of 125 GeV for
different choices of the hidden-sector model parameters. Here, σ(W H) is the
WH production cross section times the sum of the branching ratios for the W
boson decaying to leptons (eνe, µνµ, τντ ), σSM(W H) is the corresponding SM
expectation and BR(H → e-jets) is the branching ratio for Higgs boson decays
to electron-jets.

Model mγd ( MeV) Observed Expected

Three-step 100 0.39 0.37
Three-step 200 0.45 0.44
Two-step 100 0.29 0.28
Two-step 200 0.24 0.24

Consequently one estimates a 95% confidence limit on the signal strength, σ(W H) ×

BR(H → e-jets)/σSM(W H), where σ(W H) denotes the WH production cross section times the
sum of the branching ratios for the W boson decaying to leptons (eνe, µνµ, τντ ) and σSM(W H)

is the corresponding SM expectation [53] for this quantity (σSM(W H) = 223+8
−10 fb for the Higgs

boson mass of 125 GeV). BR(H → e-jets) denotes the branching ratio for Higgs boson decays
to electron-jets. The results are presented in figure 3 and table 6 for both the three-step and
two-step models. Only one limit is presented in figure 3 for each of the two-step and three-step
models, because the results are compatible within the statistical uncertainty of the signal for both
dark photon masses mγd = 100 and 200 MeV. Limits are derived using the CLs technique [54].
The likelihoods are given by the Poisson distribution for the total number of events in the signal
region and are calculated using the number of expected and observed events, whereby the results
of the electron and muon channels are summed and enter the likelihood function together.
The corresponding signal and background systematic uncertainties are incorporated into the
likelihoods as nuisance parameters with Gamma probability density functions [55]. Assuming
that the WH cross section has the SM value, for the specific set of hidden-sector parameters
chosen here, the analysis excludes Higgs boson branching ratios to electron-jets between 24
and 45% for mH = 125 GeV at 95% CL.

9. Conclusions

A search is presented for a light Higgs boson decaying to a light hidden sector and subsequently
into highly collimated jets of electrons, which are expected to be seen in the detector as distinct
objects called ‘electron-jets’. The analysis has been performed using 2.04 fb−1 of proton–proton
collision data at

√
s = 7 TeV, collected with the ATLAS detector at the LHC in 2011.

The search is performed in the WH production mode with the choice of hidden-sector
parameter space resulting in Higgs boson decaying into prompt electron-jets. The electron-jet
identification method presented here provides good discrimination against background sources
and avoids sensitivity to the detailed topology of the electrons within the electron-jet.

The observed data are consistent with the SM background hypothesis. Consequently, 95%
CL limits are set on the WH production cross section times the branching ratio into electron-jets,
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assuming the two benchmark models of a hidden sector and the condition of a dark photon mass
below 210 MeV.
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M-A Dufour85, L Duguid76, M Dührssen30, M Dunford58a, H Duran Yildiz4a, M Düren52,
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R Kopeliansky152, S Koperny38, L Köpke81, A K Kopp48, K Korcyl39, K Kordas154, A Korn46,
A Korol107, I Korolkov12, E V Korolkova139, V A Korotkov128, O Kortner99, S Kortner99,
V V Kostyukhin21, S Kotov99, V M Kotov64, A Kotwal45, C Kourkoumelis9, V Kouskoura154,
A Koutsman159a, R Kowalewski169, T Z Kowalski38, W Kozanecki136, A S Kozhin128, V Kral126,
V A Kramarenko97, G Kramberger74, M W Krasny78, A Krasznahorkay108, J K Kraus21,
A Kravchenko25, S Kreiss108, F Krejci126, J Kretzschmar73, K Kreutzfeldt52, N Krieger54,
P Krieger158, K Kroeninger54, H Kroha99, J Kroll120, J Kroseberg21, J Krstic13a, U Kruchonak64,
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J Sjölin146a,146b, T B Sjursen14, L A Skinnari15, H P Skottowe57, K Skovpen107, P Skubic111,
M Slater18, T Slavicek126, K Sliwa161, V Smakhtin172, B H Smart46, L Smestad117,
S Yu Smirnov96, Y Smirnov96, L N Smirnova97,211, O Smirnova79, B C Smith57, K M Smith53,
M Smizanska71, K Smolek126, A A Snesarev94, G Snidero75, S W Snow82, J Snow111,
S Snyder25, R Sobie169,189, J Sodomka126, A Soffer153, D A Soh151,198, C A Solans30, M Solar126,
J Solc126, E Yu Soldatov96, U Soldevila167, E Solfaroli Camillocci132a,132b, A A Solodkov128,
O V Solovyanov128, V Solovyev121, N Soni1, A Sood15, V Sopko126, B Sopko126, M Sosebee8,
R Soualah164a,164c, P Soueid93, A Soukharev107, D South42, S Spagnolo72a,72b, F Spanò76,
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5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
7 Department of Physics, University of Arizona, Tucson, AZ, USA
8 Department of Physics, The University of Texas at Arlington, Arlington, TX, USA
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Fı́sica d’Altes Energies and Departament de Fı́sica de la Universitat Autònoma de
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21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, USA
23 Department of Physics, Brandeis University, Waltham, MA, USA
24a Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
24b Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
24c Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
24d Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, USA

New Journal of Physics 15 (2013) 043009 (http://www.njp.org/)

http://www.njp.org/


28

26a National Institute of Physics and Nuclear Engineering, Bucharest, Romania
26b University Politehnica Bucharest, Bucharest, Romania
26c West University in Timisoara, Timisoara, Romania
27 Departamento de Fı́sica, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, UK
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
32a Departamento de Fı́sica, Pontificia Universidad Católica de Chile, Santiago, Chile
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115 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, UK
119a INFN Sezione di Pavia, Pavia, Italy
119b Dipartimento di Fisica, Università di Pavia, Pavia, Italy
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