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The Major challenges in the food industry are the development
of healthier, safer and environmental friendly products. To
achieve these objectives, it is essential to develop advanced
technologies to make the production processes economically
attractive. The use of immobilized cell systems has been widely
applied in the production of several products. However, in
winemaking, it has only been studied to prove its applicability.
The studies targeting the production of wine using these innova-
tive fermentation systems aim to overcome limitations related to
the product quality, the operational costs associated with the
material used as support and the immobilization process itself.

Introduction

Wine is a well-known ancient beverage spread all over the
world. It had an important role in the old civilizations and
reached our days with no less importance. The grapes were
used in the ancient times, as confirmed by the finding of an
installation for winemaking in the territory of Armenia
dating to around 4000 BC (Barnard, Dooley, Areshian,
Gasparyan, & Faull, 2011). Eastern Europe is considered
to be the birthplace of the vine, more specifically the area
between and below the Black Sea and the Caspian Sea.
In 2011, according to statistics of the International Organi-
zation of Vine and Wine (OIV, 2012), 7.6 x 10° ha of vines,
allowed the production of 267 x 10® L of wine around the
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world. This amount is changing every year, depending on
various circumstances like occasionally unfavorable
climate conditions.

The two main processes associated with wine production
are the alcoholic and malolactic fermentations. Tradition-
ally, the wine fermentation technology uses free yeast
biomass suspended into the must that ferments in an un-
stirred batch reactor during long periods of time, making
the fermentation a very time-consuming stage of the pro-
cess. In the last decades new methods have been under
study, in order to improve the fermentation performance
and productivity, namely the use of immobilized yeast cells
which speed up the fermentation process. By doing so, la-
bor requirements are diminished, thus simplifying time-
consuming procedures which can help to reduce costs.
Continuous winemaking technology with immobilized cells
is still under study to demonstrate its application in indus-
trial processes. However, its economic benefits are the basis
of a research area aimed at studying and implementing
continuous fermenters.

Traditional winemaking

Traditionally, the process of winemaking includes
several steps (Ribéreau-Gayon, Dubourdieu, Doneche, &
Lonvaud, 2006). The first stage of the wine production is
related with the preparation of the grape juice — must —
which includes: harvesting of grapes, crushing, maceration
(in the case of rosé and red wines), pressing and must clar-
ification (Fig. 1). Before alcoholic fermentation the must
usually needs some specific preparation, depending on its
initial characteristic and on the desired characteristics of
the resulting wine. Sometimes the total must acidity may
need adjustment of either increasing (acid addition, using
tartaric acid) or decreasing (acidity reduction, using for
example CaCOs). The addition of enzymes (pectinases) ac-
celerates particle sedimentation and help for the clarifica-
tion of the grape must; glycosidases may be used to
enhance varietal flavor of white wines (Rensburg &
Pretorius, 2000). Sulfur dioxide (SO,) is added to the grape
must to prevent oxidation and growth of wild yeasts and
bacteria. Selected dry yeasts are usually used as fermenta-
tion starters, as this ease the control of the fermentation and
can bring to the final product specific aroma compounds
(Grainger & Tattersall, 2005). The fermentation of red
wines is accompanied by the maceration, the process of
extraction of color (and other relevant compounds) from
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Fig. 1. Winemaking technology and the possibility of using immobi-
lized cells.

the grape pomace (mainly skins). The length and the inten-
sity of the macerations are very important and depend on
the grape variety and on the desired type of wine
(Grainger & Tattersall, 2005; Ribéreau-Gayon et al., 2000).

When the must is ready, the next phase begins whit the
conversion of sugar into ethanol, i.e. alcoholic fermentation
occurs, followed by malolactic fermentation (if desired),
maturation, stabilization and bottling.

Although both alcoholic and malolactic fermentations
are usually conducted with free suspend cells, the imple-
mentation of immobilized cell systems could be also
considered in production of wines.

In some cases, before the alcoholic fermentation, a
deacidification of the grape must by means of so called
malo-alcoholic fermentation may be carried out (Silva
et al., 2003; Yokotsuka, Otaki, Naitoh, & Tanaka, 1993).
Here, malic acid is transformed into ethanol, thus
decreasing the acidity of the grape must. However, malo-
alcoholic fermentation is used mostly in laboratory studies
and not in traditional winemaking. Immobilized cell sys-
tems are commonly used.

Alcoholic fermentation

Alcoholic fermentation (AF) is the primary fermentation
during winemaking. Throughout the AF the fermentescible
sugars of the must, mainly glucose and fructose, are trans-
formed to ethanol and carbon dioxide, according to the
Equation (1):

C(,leO(, g 2C2H50H + 2C02 (1)

The fermentation process is much more complex than
this simplified equation and several other compounds are
formed during different chemical and biochemical reac-
tions along the fermentation evolution. The main com-
pounds formed are ethanol and glycerol but other
compounds, in much lower concentrations, are also formed,

contributing for the global taste and aroma of the wine.
They belong to several chemical families: organic acids,
higher alcohols, aldehydes, volatile fatty acids, ethyl esters
and acetates, etc. (Oliveira, Oliveira, Baumes, & Maia,
2008). Although varietal volatile compounds may define
the typical characteristics, the volatile compounds formed
at this step represent quantitatively the biggest contribution
to the wine aroma (Oliveira er al., 2008; Vilanova &
Oliveira, 2012).

Traditionally, the fermentation of the must starts sponta-
neously by the action of the yeast that naturally covers the
surface of the grapes. Most of the strains of that yeast
biomass are not tolerant to ethanol and for this reason, dur-
ing a spontaneous fermentation there is a succession of or-
ganisms that prevails throughout the process.

Even though Saccharomyces cerevisiae is present on the
grapes and in the fresh must in low percentages, it is consid-
ered to be the principal “fermenting” yeast during AF
(Swiegers, Bartowsky, Henschke, & Pretorius, 2005). How-
ever, during winemaking, other genera of yeast are present
and can contribute, positively or negatively, to the final qual-
ity of the wine. Yeasts found in must or wine belongs mainly
to the genera: Candida, Dekkera, Hanseniaspora, Issatchen-
kia, Metschenikowia, Pichia, Saccharomyces, Saccharomyc-
odes, Schizosaccharomyces and Zygosaccharomyces
(Fugelsang & Edwards, 2007).

Malolactic fermentation

The malolactic fermentation (MLF) is a secondary
fermentation in which L-malic acid is transformed into L-
lactic acid and carbon dioxide. In summary, the process
can be explained with the simplified equation:

C4H605 g C3H6O3 + C02 (2)

The main consequences of the MLF are the decreasing
of the wine acidity and a subtle modification of the aroma
i.e. may bring favorable organoleptic properties to the
wines (Ribéreau-Gayon et al., 2006). In terms of acid con-
version, the fermentation of 1 g of malic acid per liter re-
duces the total acidity, expressed as tartaric acid, by
approximately 0.6 g L™! (Ribéreau-Gayon ez al., 2006).

Normally, MLF starts when AF has finished and in-
volves the growth of particular lactic acid bacteria such
as: Lactobacillus, Pediococcus, Leuconostoc and Oenococ-
cus (Hornsey, 2007). MLF is a time consuming and difficult
to control process. It is strongly influenced by environ-
mental conditions and the process is often extended in
time, or in the worst scenario, it can fail completely
(Hornsey, 2007). Oenococcus oeni is the main bacterial spe-
cies found in wine during MLF as it is the most adapted to
high concentrations of ethanol and low pH values
(Ribéreau-Gayon et al., 2006). The ability for spontaneous
MLF is dependent on the grape region, vineyard and year.
The start and completing of MLF depends on environ-
mental conditions such as pH, temperature, ethanol, nutri-
ents, sulfur dioxide and wine flora.
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Immobilized cell systems

Cells can be kept inside of bioreactors in suspension
(free cells) or immobilized in various supports. There are
four main immobilization techniques for yeast cells
(Fig. 2): attachment to a surface, entrapment within a
porous matrix, cell aggregation (flocculation) and contain-
ment behind barriers (Kourkoutas, Bekatorou, Banat,
Marchant, & Koutinas, 2004; Verbelen, De Schutter,
Delvaux, Verstrepen, & Delvaux, 2006).

The attachment to a surface (Fig. 2A) can be done by
natural adsorption, electrostatic forces or covalent binding,
with cross-linking agents (Margaritis & Kilonzo, 2005).
The attachment of cells to an organic or inorganic support
may be obtained also by creating chemical bonds (covalent)
between cells and the support using cross-linking agents.
However, this immobilization procedure is generally
incompatible with cell viability, since the cross-linking
agents are highly toxic for the microbial cells decreasing
their activity (Junter & Jouenne, 2004; Strehaiano,
Ramon-Portugal, & Taillandier, 2006). As consequence,
this method of immobilization is no longer used for micro-
bial cells but still remains suitable for the immobilization of
enzymes (Strehaiano ef al., 2006). The adsorption of cells
on different types of support is a natural process. The sur-
face of the immobilization support is important in the pro-
cess of adsorption of cells as rough surfaces allows the cell
retention into the support’s cavities (Branyik, Vicente,
Oliveira, & Teixeira, 2004; Genisheva, Mussatto,
Oliveira, & Teixeira, 2011). This immobilization technique
is often used as it is an easy and natural process that takes
place spontaneously. However, there is no barrier between
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the liquid and the immobilized cell and the cells can be
easily detached from the support. Normally, the equilibrium
between free and immobilized cells is established at some
point of the cell growth. The detachment of cells depends
on the age of the cell, cellular wall composition, pH and
ionic composition of the medium. However, desorption is
compensated with the growth of new cells on the support
(Strehaiano et al., 2006). The natural adsorption technique
is advantageous over other types of immobilization as the
oxygen transfer is good and no scale-up drawback exists
(Ory, Romero, & Cantero, 2004). In the last years, natural
adsorption is the most used technique for yeast cell immo-
bilization and further applied in winemaking (Kandylis,
Dimitrellou, & Koutinas, 2012; Kandylis, Drouza,
Bekatorou, & Koutinas, 2010, Kandylis, Goula, &
Koutinas, 2012; Torresi, Frangipane, & Anelli, 2011;
Tsakiris et al., 2006).

Entrapment within a porous matrix (Fig. 2B) can be per-
formed by two approaches: a) the cells are introduced in a
porous material and, after growing, their mobility is
restricted by the presence of other cells and by the matrix;
b) a solid matrix is synthesized in sifu around the cells. The
cells are incorporated in the matrix of a more or less rigid
polymer. The polymers are synthetic such as polyacryl-
amide, or can be made from proteins (gelatin, collagens)
and polysaccharides (cellulose, alginate, agar, and carra-
geenan). This technique can be expensive, time consuming
and short reactor life (Jackson, 2003), with serious draw-
backs such as diffusion limitations of nutrients, metabolites
and oxygen, instability of the gel beads and detachment of
cells, as well as limit cell division (Jackson, 2003; Kregiel,

Fig. 2. Immobilization techniques. A. attachment to a surface; B. entrapment within a porous matrix; C. containment behind barriers; D. cell aggre-
gation (flocculation).
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Berlowska, & Ambroziak, 2013). Calcium alginate gel is
the most commonly used material for cell entrapment in
the food industry (Strehaiano et al., 2006). The cells on
the surfaces of the alginate beads can be released from
the beads and because of this fact, it was proposed in the
80’s to make an external layer of sterile alginate and pro-
duce double layer alginate beads.

Containment behind a barrier (Fig. 2C) can be achieved
by two main methods: entrapment of the cells in microcap-
sules and by the use of microporous membrane filters (hol-
low fiber) or by cell immobilization onto an interaction
surface of two immiscible liquids (Kourkoutas er al.,
2004; Verbelen et al., 2006). The method based on the
entrapment of cells in microcapsule or encapsulations, con-
sists firstly in entrapping the cells in a spherical gel and
posterior coating with a polymer such as polyethylenei-
mine. Then, the gel is dissolved but the cells are left in sus-
pension, contained behind the polymer barrier. The
microporous membranes filters are normally made of poly-
mers, e.g. polyvinylchloride or polypropylene (Margaritis
& Kilonzo, 2005). The containment of the cells behind a
barrier allows very high cell concentrations. For this reason,
the membranes used should be freely permeable to nutri-
ents and products released during the fermentation
(Strehaiano et al., 20006), as well as mechanically resistant.
This method of immobilization is normally used when a
cell free product is needed. The main disadvantages are
related to mass transfer limitations and the possibility of
membrane fouling caused by the cell growth (Gryta, 2002).

Cell aggregation or flocculation (Fig. 2D) can occur
naturally or by using artificial flocculating agents. It is a
complex process connected with the expression of floccula-
tion genes such as FLO1, FLOS, FLO8 and FLOI11
(Verstrepen, Derdelinckx, Verachtert, & Delvaux, 2003).
Yeast flocculation is an attractive method because of its
simplicity and low costs (Verbelen et al., 2006). The floccu-
lation depends on various parameters such as pH, nutrients,
dissolved oxygen, medium composition and fermentation
conditions (temperature and agitation) as well as the age
of the cell (Jim & Speers, 1998; Verstrepen et al., 2003).
An important issue for the success of this system is the se-
lection of a proper yeast strain and fermentation system. In
food industry, the main applications of the flocculation are
the alcohol production, some kind of beers and sparkling
wines (secondary fermentation). The flocculation is very
important for the brewing industry as it is an effective, envi-
ronmentally friendly, easy and without costs method to
separate the yeast cells from the green beer at the end of
the fermentation (Verstrepen et al., 2003). The flocculation
of the yeast is a very important characteristic also in the
traditional making of sparkling wines (Torresi ef al., 2011).

Types of supports

It is of the highest importance the selection of the immo-
bilization support for further implementation in the food in-
dustry. The support must be easily accepted by the

consumer and its selection depends on the process in which
it will be applied as well as the process conditions. The sup-
port can be used in their natural form or submitted to some
treatment to modify the surface in contact with the biomass
(Genisheva et al., 2011).

Several works have been published with inorganic sup-
ports like kissiris (volcanic rock) and y-alumina. Inorganic
supports are thought to be more attractive than organic sup-
ports due to their low cost, abundance in nature, reusability
and are environmentally friendly. Studies with kissiris and
v-alumina demonstrated increased fermentation rates and
ethanol productivity at ambient and low temperatures
(Bakoyianis, Koutinas, Agelopoulos, & Kanellaki, 1997).
Even though the wines produced with an inorganic support
had improved aroma, these supports turn undesirable for
winemaking because of the mineral residues left in the final
product. A comparative study on kissiris, y-alumina and
calcium alginate as potential supports for cells immobiliza-
tion, demonstrated that calcium alginate had the best results
in winemaking, by representing a more stable environment
for the entrapped yeast cells. At the same time, it was the
most expensive and time consuming material. The cheapest
and the more abundant support mentioned above is the kis-
siris, followed by y-alumina (Bakoyianis et al., 1997).

Organic supports from natural sources have received
higher attention for wine production. Parts of fruits are
the most common support used for batch or continuous wine-
making. Wines were produced using apple cuts (Kourkoutas,
Koutinas, Kanellaki, Banat, & Marchant, 2002), quince
(Kourkoutas, Koutinas, et al., 2002), watermelon (Reddy,
Reddy, Reddy, & Reddy, 2008), dry raisin berries (Tsakiris
et al., 2006), pear (Mallios et al., 2004) and others. Even
though the aforementioned fruits, apple, quince and dry
raisin berries are appropriate for winemaking, their cultiva-
tion, availability and cost are limited for industrialization
(Reddy er al., 2008). Lately, whole grains of wheat, corn
and barley were used for cell immobilization (Kandylis,
Dimitrellou, et al., 2012; Kandylis et al., 2010; Kandylis,
Mantzari, et al., 2012). These natural products are interesting
in terms of compatibility with the final product and it is ex-
pected that they will not interfere or will bring positively
changes to it. Moreover, the natural origin of these supports
induces an easier acceptance by the consumer. The use of res-
idues from the wine industry like grape skins (Genisheva,
Mota, Mussatto, Oliveira, & Teixeira, 2014; Genisheva,
Vilanova, Mussatto, Teixeira, & Oliveira, 2014;
Mallouchos et al., 2002) and grape pomace (Genisheva,
Macedo, Mussatto, Teixeira, & Oliveira, 2012) is a very
good approach, as these residues are parts of the vine itself.
Another natural material widely used as support for immobi-
lization is the delignified cellulosic material. The cellulosic
material is alcohol resistant giving high operational stability
in alcoholic fermentation. Moreover, it is a solid with low
market value that does not release any contaminants
into the final product (Iconomou, Kanellaki, Voliotis,
Agelopoulos, & Koutinas, 1995).
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Polysaccharides are originated from renewable sources
such as algae, plants and selected microbial strains, and
are normally considered to be more economically profitable
over the synthetic polymers (Coviello, Matricardi,
Marianecci, & Alhaique, 2007). Polysaccharides are a class
of polymers with a complex structure bringing a large vari-
ety of composition and properties. One of the most widely
known and used polysaccharide is the alginate; it can be ex-
tracted from marine brown algae or produced by bacteria. It
is considered to be one of the best matrices to entrap whole
microbial cells, because gelification is carried out under
very mild conditions. Moreover, a large amount of cells
can be immobilized, the substrates and products can easily
cross the support and cell leakage is small (Spettoli,
Bottacin, Nuti, & Zamorani, 1982). To prevent the cell
leakage from the beads new approaches were used such
as the technique of coating alginate beads (Crapisi,
Pasini, Spettoli, Borin, & Versini, 1992) or using beads
with double-layers (Yokotsuka, Yajima, & Matsudo,
1997). Another well-known polysaccharide is carrageenan.
It is obtained by extraction of certain species of red sea-
weeds. There are different types of carrageenan depending
on the degree of sulfation (normally between 15% and
40%), identified traditionally by a Greek prefix (Coviello
et al., 2007). From the three commercially most important
carrageenans, t-(mono-sulfate), k-(di-sulfate), and A-carra-
geenan (three-sulfate), k-carrageenan is the one already
used as support material for wine production (Crapisi,
Nuti, Zamorani, & Spettoli, 1987).

When choosing a proper support for cell immobilization,
some aspects must be considered, like price of the material,
easiness of regeneration, cell load, type of immobilization,
stability, rigidity, sterilization, possibility to use in different
reactor designs and approval for food use (Virkajarvi &
Linko, 1999).

Initially, the selection of supports for cell immobiliza-
tion in wine fermentation was on the basis of its price
and availability or abundance in nature. In the resent years
the selection of the support is connected with its acceptance
from the consumer. The more naturally and close to the hu-
man diet support, the better.

Advantages and disadvantages

The use of immobilized cells for winemaking have ad-
vantages improved productivity with high volumetric reac-
tion rates and high specific product yields (Bakoyianis
et al., 1997; Genisheva et al., 2012). Immobilized cell sys-
tems (ICS) have the capability to regenerate their biocatalyst
activity after storage for 1 month (Genisheva, Mussatto,
Oliveira, & Teixeira, 2013; Genisheva, Vilanova, et al.,
2014) or 6 months (Sipsas et al., 2009). The possibility to
reutilize the ICS can bring down the cost of the wine produc-
tion (Genisheva, Vilanova, et al., 2014). Moreover, the high
volumetric reaction rates make possible the use of smaller
fermentation facilities, which can reduce the capital and
the running cost of the process. According to Genisheva,

Vilanova, et al. (2014), immobilized cells were able to carry
out the complete alcoholic fermentation in 4 d against the
7 d needed for the traditional free cells system. The use of
ICS simplifies the removing of the microbial cells from
the final product (Genisheva et al., 2012); moreover, it
may be adapted to a continuous process of winemaking
(Genisheva, Mota, et al., 2014; Sipsas et al., 2009). It was
also proved the greater tolerance of the immobilized cells
to the inhibitory substances in winemaking like SO, and
ethanol (Crapisi er al., 1987; Genisheva, Vilanova, et al.,
2014). Additionally, immobilized cells were able to conduct
wine fermentation in the presence of 54.4 mg L' of free
SO,, while the free cell fermentation did not started at this
condition (Genisheva et al., 2013). ICS have biological sta-
bility at prolonged operation times, like continuous wine-
making, and can keep the cell activity for long terms
(Genisheva et al., 2013; Genisheva, Vilanova, et al.,
2014). The ICS help for the better control and conduction
of the fermentation processes, especially for malolactic
fermentation of wine (Genisheva er al., 2012; Genisheva,
Mota, et al., 2014).

When using immobilized cell systems some disadvan-
tages must also be considered such as mechanical stability
of the matrix used to immobilize microbial cells or loss of
activity on prolonged operation.

Wine production with immobilized cells

Immobilization technology is used in various fermenta-
tion processes. Immobilized cells were used for bioethanol
production (Rakin, Mojovic, Nikolic, Vukasinovic, &
Nedovic, 2009), cider production (Scott & ()Reilly, 1996),
vinegar production (Ory et al., 2004) and brewing (Branyik
et al., 2004a) as well as for winemaking (Table 1). Not
many works were published for alcoholic fermentation of
grape must with immobilized systems and little are for malo-
lactic fermentation of wine.

In our days, the induction of alcoholic fermentation and
malolactic fermentation is done with starter cultures of
cells, i.e. pure culture of cells isolated and developed for
conducting wine fermentations. Most fermenters used in
the winemaking industry are of a batch type, i.e. separate
lots (batches) and are individually fermented till conclusion
of the process (Jackson, 2008). Some industries adopted
continuous methods, because of its advantages in control-
ling the yeast population and activity, keeping them in their
maximum (Verbelen et al., 2006). The environmental con-
ditions of continuous fermentations are favorable for the
yeast growth, thus the biomass concentration is approxi-
mately two times larger than traditional winemaking
(Genisheva, Vilanova, et al., 2014; Jackson, 2008). One
of the most important characteristic of the continuous pro-
cess is the high volumetric productivity (Verbelen et al.,
2006) but, despite of its potential advantages, it is only
profitable when working all year-round (Jackson, 2008;
Ribéreau-Gayon et al., 2006). Immobilized cell systems
emerged as a technique that provides also large amounts



Table 1. Immobilization type, supports, mode of operation, microorganisms and bioreactor operation conditions used in winemaking.

Fermentation Grape/Wine  Microorganism Support Immobilization = Operation Bioreactor/conditions Reference
type type type mode
Alcoholic White S. cerevisiae Ca-alginate, single Entrapment BATCH 10 °C—40 °C Yajima & Yokotsuka, 2001
double layer
Alcoholic White S. cerevisiae K-carrageenan Entrapment Continuous  tapered packed bed Uematsu et al., 1988
(Montrachet522) column, 13 °C
Alcoholic Synthetic S. cerevisiae (AXAZ-1) Delignified spent Thermal dried, Batch 15 °C Tsaousi, Koutinas, Bekatorou, &
medium grains Attachment Loukatos, 2010
Alcoholic Red S.cerevisiae Raisins Attachment Batch packed bed reactor Tsakiris et al., 2004
Uvaferme299 6 °C—30°C
Alcoholic - S. cerevisiae (AXAZ-1)  Freeze-dried gluten Entrapment Batch multi-stage fixed bed reactor, ~ Sipsas et al., 2009
pellets continuous  packed bed, 5 °C—30 °C
Alcoholic White S. cerevisiae kissiris, y-alumina, Attachment, Batch, two linked glass tower Bakoyianis et al., 1997
Ca-alginate entrapment continuous  reactors 7 °C to 20 °C
Alcoholic Red S. cerevisiae Watermelon Attachment Batch 15 °Cto 35 °C Reddy et al., 2008
CFTRI (101)
Alcoholic Red S. cerevisiae guava attachment batch 15 °Cto 35 °C Reddy, Reddy, & Reddy, 2006
CFTRI (101)
Alcoholic Synthetic S. cerevisiae Orange peel Attachment Batch 15°Cto 30 °C Plessas et al., 2007
medium
Alcoholic Synthetic S. cerevisiae (AXXAZ-1)  Brewer’s spent grains Attachment Batch 10 °C to 25 °C Mallouchos, Loukatos, Bekatorou,
medium Koutinas, & Komaitis, 2007
Alcoholic White S. cerevisiae (AXAZ-1) Delignified cellulosic attachment Batch 10 °C to 20 °C Mallouchos et al., 2003
material, gluten pellets
Alcoholic — S. cerevisiae (AXAZ-1) Grape skin Attachment batch 10 °C to 25 °C Mallouchos et al., 2002
Alcoholic White S. cerevisiae y-alumina Attachment Batch, multi-stage fixed bed reactor,  Loukatos et al., 2000
continuous  packed bed reactor,
7 °C=27°C
Alcoholic — S. cerevisiae (AXAZ-1) Quince Attachment Batch, packed bed reactor, Kourkoutas, Koutinas, et al., 2002
continuous 5 °C—30 °C
Alcoholic White S. cerevisiae (AXAZ-1) Pear Attachment Batch, packed bed reactor, Mallios et al., 2004
continuous 5 °C to 30 °C
Alcoholic - S. cerevisiae (AXAZ-1)  Apple cuts Attachment Batch, packed bed reactor, Kourkoutas et al., 2002
continuous 5 °C—30 °C
Alcoholic White S. cerevisiae (AXAZ-1)  Delignified cellulosic Attachment Batch packed bed reactor, Bardi & Koutinas, 1994
material 0°Cto30°C
Alcoholic White S. cerevisiae (AXAZ-1)  corn starch gel entrapment batch 2°C-30°C Kandylis, Goula, & Koutinas, 2008
Alcoholic White S. cerevisiae (AXAZ-1) Wheat grains Attachment Batch 5°Cto 30 °C Kandylis et al., 2010
Alcoholic White S. cerevisiae (AXAZ-1) Corn grains attachment batch 5°C=30°C Kandylis, Mantzari, et al., 2012
Alcoholic White S. cerevisiae (AXAZ-1) Barley grains Attachment Batch 5°C—30°C Kandylis, Dimitrellou, et al., 2012
Alcoholic White S. cerevisiae (AXAZ-1)  Gluten pellets Attachment Batch packed bed reactor, Iconomopoulou, Psarianos,
5°C-30 °C Kanellaki, & Koutinas, 2002
Alcoholic White S. cerevisiae (AXAZ-1) Delignified cellulosic Attachment Batch, packed bed reactor, Iconomou et al., 1995
material continuous 25 °C
Alcoholic, White, red Schiz. pombe Ca-alginate Entrapment Continuous ~ multi-stage packed-bed Ogbonna et al., 1989
malo-alcoholic S. cerevisiae reactor, 25 °C
Malo-alcoholic ~ White Schiz. pombe Ca-alginate, double Entrapment Batch 20°C Silva et al., 2003

layer
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packed bed reactor,
20 °C

continuous

attachment

grape skin

S. cerevisiae

White

Alcoholic,

malolactic
Bottle

Yokotsuka et al., 1997

15°Cor 25 °C

Batch

Ca-alginate, Entrapment

S. cerevisiae

White

double layer

Fumi et al., 1988

11 °Cto 14 °C

28 °C

Batch
Batch

Ca-alginate Entrapment

S. cerevisiae
O. oeni

White

Red

Bottle

Maicas et al., 2001

Attachment

Positively charge
fibrous sponge

Malolactic

Genisheva et al.,, 2013

25 °C

Batch

Attachment

White O.oeni Corn cobs, grape skins,
grape stems

Malolactic

Spettoli et al., 1982

Batch Stirred, 20 °C

Ca-alginate Entrapment

L. oenos®

Red
White
White

Malolactic

Crapisi et al., 1987

Column, 7 °C—40 °C

Continuous
Batch

Entrapment

K-carrageenan

Lactobacillus

Malolactic

Agouridis et al., 2008

Glass cylinder, 27 °C

Delignified cellulosic Attachment

material

O. oeni (ATCC 23279)

Malolactic

Agouridis et al., 2005

Glass cylinder, 20 °C

Batch

Attachment

Delignified cellulosic

material

L. casei (ATCC 393)

White

Malolactic

McCord & Ryu, 1985

25 °C

Batch

K-carrageenan Entrapment

L. oenos® PSU-1

Synthetic

Malolactic

medium
White

Kosseva et al., 1998

Shaking, 20 °C, 25 °C

Batch
and 36 °C

Entrapment,
attachment

Pectate gel, modified
chitosan beads

L. casei

Malolactic

Hong et al., 2010

Shaking, 30 °C

Batch

Entrapment

Mixture of oakcharcoal
and sodium alginate

Issatchenkia

Red

Malolactic

orientalis (KMBL 5774)

? Leuconostoc oenos was reclassified by Dicks et al. (1995) to Oenococcus oeni.

of cells but is more economic than the free cells continuous
winemaking (Jackson, 2008). Immobilized cell systems
(ICS) give the possibility to produce new styles of bever-
ages, with low alcohol content and very aromatic, and facil-
itate the conduction of fermentations where convenient
removal of yeast cells is desired like the champagne
method (Divies & Cachon, 2005).

For implementation of the immobilized systems in in-
dustrial wine production, it is important to identify a suit-
able support for cell immobilization that is of food-grade
purity. Moreover, the support should be abundant, of low
cost, without interfering negatively, in the sensory charac-
teristics of the final product (Kourkoutas et al., 2002).

During the process of winemaking, immobilized cell
systems can be used in the alcoholic, malo-alcoholic and
malolactic fermentations as well as for production of spar-
kling wines (Table 1).

Alcoholic fermentation

Alcoholic fermentation is the process where the immobi-
lized cell systems are mainly used in winemaking, and the
most used microorganism is S. cerevisiae. According to the
tendencies of local wines protection locally isolated strains
of S. cerevisiae are often used (Genisheva et al., 2012;
Kandylis, Dimitrellou, ez al., 2012; Kandylis et al., 2010;
Kandylis, Mantzari, et al., 2012).

Bakoyianis et al. (1997) used three different supports for
the immobilization of an alcohol-resistant strain of S. cere-
visiae. Yeast cells were immobilized on kissiris, v- alumina
and calcium alginate and further applied for wine production
at different temperatures. From the three solid supported
biocatalysts, calcium alginate presented the highest fermen-
tation rates and ethanol productivity (15.5 gL' d"") at low
temperatures (7 °C). Kissiris is considered to be a good op-
tion for immobilization as it is abundant in nature, environ-
mentally friendly and can be easily regenerated. The use of
y-alumina in winemaking implies an additional step in the
process, i.e. the removal of the aluminum from the produced
wine (Loukatos er al., 2000).

Natural supports of food-grade purity like delignified cellu-
losic material (Bardi & Koutinas, 1994) and gluten pellets
(Bardi, Bakoyianis, Koutinas, & Kanellaki, 1996) were used
successfully for winemaking at ambient and low temperatures
(from 0 °C to 30 °C). This ICS caused about a three-fold in-
crease of the fermentation rate when compared with free cells;
moreover, the ethanol productivity and daily wine production
were higher. For each temperature, ethanol and wine produc-
tivities for immobilized cells were higher than those for
free cells. For example at 15 °C ethanol and wine productiv-
ities for free cell fermentation were 68.5 ¢ L™ d~' and
7 gL~ "d ", respectively, while for fermentations with immo-
bilized cells were 400 g L' d ' and 352 gL' d !, respec-
tively. Sipsas ez al. (2009) also used yeast cells immobilized on
gluten pallets, which were subsequently freeze-dried. The sys-
tem showed high operational stability, even after storage for 6
months at 4 °C and produced wines with an improved quality.
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In order to find a suitable support for immobilization
that corresponds to the prerequisites of food-grade purity
together with consumer acceptance, researchers proposed
pieces of fruits or whole grains. Yeast cells immobilized
on orange peel showed to be a suitable biocatalyst for com-
mercial applications (Plessas ef al., 2007). This ICS was
used for alcoholic fermentation at different temperatures
(15 °C—=30 °C) resulting in high ethanol productivity
(173 g L7'd™', at 15°C and 128 g L™' d™', at 30 °C)
and low fermentation times (8.1 h, at 15 °C and 9.8 h at
30 °C). Reddy et al. (2008) used watermelon pieces as
immobilization support for winemaking at different temper-
atures (15 °C—30 °C). This ICS improved the fermentation
rates, the viability and vitality of the immobilized yeast
cells. Fermentation time with immobilized cells (63 h)
was twice faster than fermentation time with free cells
(120 h). Ethanol productivity in fermentations with immo-
bilized cells (39.1 g ™' d™') was almost three times higher
compared with free cells (15.1 g L™" d~").The produced
wines were found to be with good taste and with improved
quality. The main drawback of this system was the signifi-
cant loss of watermelon volume; however, after the seventh
or eighth batch the watermelon pieces volume stayed con-
stant. The study carried out by Kourkoutas, Komaitis,
Koutinas, and Kanellaki (2001) with apple cuts as support
materials, also observed an important decrease of the im-
mobilized support during the first batches. Nevertheless
the immobilized cells were able to produce wines at low
temperatures (0 °C, 5 °C and 10 °C) and kept their biocat-
alyst activity for 7 months. Tsakiris, Sipsas, Bekatorou,
Mallouchos, and Koutinas (2004) used yeast cells immobi-
lized on raisin for the production of red wine at different
temperatures. Kandylis er al. (2010); Kandylis,
Dimitrellou, et al. (2012) and Kandylis, P., Mantzari,
et al.,(2012) used whole grains of wheat, corn and barley
as support materials for yeast immobilization. The resulting
wines had improved aromatic profiles when compared to
fermentations with free cells. Genisheva er al. (2012),
Genisheva, Mota, et al. (2014) and Genisheva, Vilanova,
et al. (2014) used grape pomace and grape skins, agro-
industrial wastes, as supports for yeast cell immobilization.
The wines produced with free and immobilized cells on
grape pomace were not found different according to the
35 panelists that made the sensory evaluation of the wines.

Immobilization of cells promotes alcoholic fermenta-
tions especially at low temperatures. In wine fermentation
with immobilized cells is often that the total concentration
of higher alcohols decreased when the fermentation tem-
perature is lower (Kandylis, Dimitrellou, et al., 2012;
Kandylis et al., 2010; Kandylis, Mantzari, et al., 2012;
Loukatos et al., 2000; Plessas et al., 2007; Sipsas et al.,
2009). In contrast the total concentration of volatile com-
pounds may increase or decrease with the temperature
dropped, probably depending on the type of reactor used
for the fermentation. For example according to Loukatos
et al. (2000), the total volatile compounds decreased with

16% when the temperature of fermentation was lowered
from 30 °C to 16 °C, using multistage fixed batch tower
reactor. Nevertheless, Sipsas ef al. (2009) did not observe
decrease in total volatile compounds when the temperature
was decreased from 20 °C to 10 °C, using packed bed and
multiple fixed bed reactors.

Malo-alcoholic fermentation

The fission yeast Schizosaccharomyces pombe effi-
ciently degrades high concentrations of L-malic acid by
means of malo-alcoholic fermentation. However, the use
of Schiz. pombe in vinification may be unsuitable as this
yeast can produce undesirable off-flavors in the wines
(Yokotsuka et al., 1993). During the malo-alcoholic
fermentation malic acid is directly transformed into
ethanol. Malo-alcoholic fermentation with immobilized
Schiz. pombe cells, even though is not a perfect alternative
to the malolactic fermentation, can improve the acid har-
mony of wines with high acidity (Magyar & Panyik, 1989).

Schiz. pombe cells are normally immobilized in Ca-
alginate beads (Ciani, 1995; Magyar & Panyik, 1989) or fi-
bers (Yokotsuka et al., 1993). This ICS can be used for
deacidification of grape must before alcoholic fermentation
(Silva et al., 2003; Yokotsuka et al., 1993) or wines (Ciani,
1995; Magyar & Panyik, 1989), by degrading malic acid
into ethanol. In some cases the Schiz. pombe immobilized
cells were still active after 20 months of storage; moreover,
the alginate beads with entrapped cells could be recycled up
to five times without cell leakage (Silva ez al., 2003). Some-
times the resulting wines had small amounts of sediments
and little distinct off-flavor (Yokotsuka er al., 1993). How-
ever, most of the authors concluded that wines obtained by
this method had better organoleptic quality than the wines
without previous deacidification (Silva er al., 2003), and
no off-flavor or off-taste were detected (Ciani, 1995;
Magyar & Panyik, 1989).

The existing published works on the use of immobilized
cells in winemaking are mostly for the conducting of pri-
mary alcoholic fermentation. The use of immobilized cells
in secondary fermentations, namely, malolactic fermenta-
tion is more functional. The uses of immobilized cells in
malolactic fermentation helps for its fast commence and
proper conduction, as malolactic fermentation is difficult
to predict and carry out.

Malolactic fermentation

Normally the supports used for conducting malolactic
fermentation (MLF) in wines are from organic origin.
The bacterial cells used in immobilized cell systems for
MLEF are O. oeni or species of Lactobacillus.

Leuconostoc oenos (today known as O. oeni) cells were
immobilized on calcium alginate gels to be used for con-
ducting MLF in red wines (Spettoli ez al., 1982). Even though
this ICS showed high reaction yields and small number of
cells leaked from the gel (0.1%), the operational activity of
the system declined gradually with time (after 17 d).
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Crapisi et al. (1987) used Lactobacillus cells immobi-
lized on k-carrageenan gel for controlling and conducting
MLF. The conversion ratio of malic acid was 53.9%, and
the sensory properties of the wine stayed unchanged.

Calcium pectate gel and chemically modified chitosan
beads were used as supports for immobilization of Lactoba-
cillus casei (Kosseva, Beschkov, Kennedy, & Lloyd, 1998).
Repeated batch fermentations were carried out with
different wine samples and at different temperatures
(35 °C, 25 °C and 20 °C). The temperature was found to
be the main factor affecting the rates of the MLF. The
best fermentation rates were recorded for assays conducted
at 25 °C, where malic acid decreased 30% within 1 h. The
degradation rate of malic acid using immobilized cells was
twice as high as that obtained with free cells. These ICS
were found to be with potential for industrial application
as they showed long term operational stability; calcium
gel beads were stable for 6 months and chitosan beads
for 2 months. In another study, Kosseva and Kennedy
(2004) demonstrated that encapsulated L. casei, in a pectate
gel, carried out fermentation at high ethanol concentrations
(12% vol. to 13% vol.) increasing the fermentation rates.

However, the encapsulation method has mass transfer
limitations for nutrients that lead to inactivation, or even
death, of the cells in the center. Therefore, a new immobi-
lization support was proposed: a fibrous sponge which is
cellulose based (Maicas, Pardo, & Ferrer, 2001). The sur-
face of the sponge can be modified and ionized. Maicas
et al. (2001) showed that the positively charged sponge im-
mobilized the highest amounts of O. oeni cells and used
this ICS for MLF in red wines. Although the results were
better than assays performed with free cells, a decrease of
the activity of the immobilized cells was detected after 4
to 6 repeated batches. The main reason was considered to
be the diminished viability of cells after long exposure to
ethanol.

Agouridis, Bekatorou, Nigam, and Kanellaki (2005) also
used a cellulosic material for the immobilization of L. casei
and conducted MLF at 27 °C. Once again with the repeated
batch fermentation (more than 1 month) the malolactic ac-
tivity of the immobilized cells decreased. Nevertheless, the
authors concluded that the delignified cellulosic material
(DCM) is a promising support for MLF, but more research
is required for improving some parameters. In another
study, the DCM was used for the immobilization of O.
oeni, strain that is highly resistant to ethanol (Agouridis,
Kopsahelis, Plessas, Koutinas, & Kanellaki, 2008). In this
study the authors demonstrated a good operational stability
of the ICS during all 11 repeated batch fermentations. The
malic acid degradation could be maintained stable within
an average value of 54.0%. This result is comparable
with results obtained by Maicas et al. (2001), 50.0%, and
Crapisi et al. (1987), 53.9%.

Genisheva et al. (2013) used natural residues for support
of O. oeni cells for malolactic fermentation of white wine.
All three materials (corn cobs, grape skins and grape stems)

showed mechanical stability and long operational activities
(respectively 150 d, 192 d and 174 d). The malic acid con-
version in fermentation assays of 30 d was as follows:
100% for assays with cell immobilized on corn cobs,
75% in assays with cells immobilized on grape skins and
83% in assays with cells immobilized on grape stems.

Sparkling wines

In the traditional production of sparkling wines, lees
removal is a very laborious and time-consuming process
and the use of immobilized yeasts has been investigated
in order to diminish and simplify the riddling and disgorg-
ing procedures. Among the available immobilization tech-
niques, encapsulation in polysaccharide gels such as
alginate is the most widely used.

Immobilized S. cerevisiae cells on calcium alginate were
used for sparkling wine production (Fumi, Trioli, Colombi,
& Colagrande, 1988). Cells were released from the beads
but with little influence on the clarity of the wine, according
to the tasters. However, there were not found differences
between the wines obtained with immobilized cells and
wines obtained by the traditional method in terms of the
main components: ethanol, organic acids and higher
alcohols.

For preventing cellular leakage from the beads, Crapisi
et al. (1992) used coated alginate beads and were able to
obtain a biologically stable sparkling wine. Sparkling wines
produced with free and immobilized cells were not found
different in terms of aromatic compounds.

Yokotsuka et al. (1997) used S. cerevisiae cells immobi-
lized in double-layer gel beads or strands for the bottle-
fermentation. The beads were easily inserted in the bottle
and simply removed in ice plugs during disgorging. The
produced sparkling wine was clear and similar in taste
and bouquet to that made using free yeast cells. Moreover,
with the increase of the amount of beads the calcium con-
tent in the sparkling wine also increased.

Reactors used with immobilized cells

Reactors operating with immobilized cells have higher
productivity and operational stability, as well as easier
downstream processing. Another attractive advantage of
the immobilized cell bioreactors, compared to the existing
free cell fermenters, is the faster fermentation time.
Because of this and other benefits, the immobilized cell
bioreactors have been applied in many industrial processes,
including beverage production. Choosing the proper reactor
for use with immobilized cell systems depends on the type
of immobilization, the type of the used support, mass trans-
fer requirements and conditions of the process. For
example, it is of a big importance the resistance of the im-
mobilized cell system to the shear forces as well as the size
of the support. According to the type of immobilization
procedure and support used, an appropriated reactor must
be designed.
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Batch and fed-batch reactors

The biological reactors mostly used in the industries can
have different operation modes: batch or continuous. Batch
reactor is a “closed reactor”, i.e. once inoculated, no further
inputs of nutrients or outputs of products occur. In this type
of reactors the velocity of cell growth tends to zero. It is one
of the most used reactors in a big variety of industrial pro-
cesses. The batch reactor can be stirred or not stirred.

The fed-batch reactor is a variance intermediate between
batch and continuous reactors. It is an “open reactor” like
the continuous, but operates on an unsteady-state basis
like the batch reactor. The main characteristic of the fed-
batch system is to control the inflow of the growth limiting
nutrients, leading to high cell densities in the bioreactor.
The controlled addition of nutrients affects the growth
rate of the cells and helps to avoid formation of site
metabolites.

The use of immobilized cell systems are, however, more
attractive for using in continuous reactors.

Continuous reactors

The continuous reactor is an “open reactor” where there
is a constant inflow of nutrients and outflow of product
(Fig. 3). The main characteristic of the continuous reactor
is the possibility of reaching a dynamic equilibrium, i.e.
the system operates on steady-state basis. Continuous reac-
tors are used widely in the food, pharmaceutical and chem-
ical industries. For continuous production the most used
reactors are the multiphase reactors, including packed bed
reactor, fluidized bed reactor, bubble column and air-lift
reactor (Verbelen et al., 2006). The multiphase rectors
include three phases: solid (the support), liquid (the me-
dium) and gas (air, or other). In the case of wine production
an inert gas like N, or CO, may be used instead of air to
avoid must/wine oxidation.

Packed bed reactor

Packed bed (Fig. 3A) or also known as fixed bed reactor
is extensively used in the chemical, petrochemical and
biotechnology industries (Larachi, Cassanello, Laurent,
Midoux, & Wild, 1997). In this reactor type the immobi-
lized cells are packed inside the reactor and a co-current
of gas and fermentation media is passed upflow (flooded
bed reactor) or downflow (trickle-bed reactor). Despite its
simplicity, during the operation of a packed bed reactor
the following drawbacks can take place: channeling,
fouling, mass transfer limitations, difficulties in CO, evac-
uvation and compression of some support materials
(Verbelen et al., 2006).

Fluidized bed reactor

In fluidized bed reactor (Fig. 3B) the cells are attached
and grow onto an inert support and the fermentation liquid
is fed as at an upstream flow above the “minimum fluidiza-
tion velocity” that guarantees the fluidization of the support
particles. In this system there is a vigorous mixing of gas,
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Fig. 3. Immobilized cell reactors working in continuous mode. A.
Packed bed reactor; B. Fluidized bed reactor; C. Air-lift reactor; D.
Bubble column reactor.

liquids and solids by the upstream flow. When using this
reactor, it is important to take in consideration the specific
weight of the support used for cell immobilization, as too
light support will result in wash-out (Verbelen er al.,
2006). The main advantages of this reactor type are high
biomass concentration and surface area, good transfer of
nutrients, high substrate utilization rates, low pressure
drop across the bed and good process control (Nicolella,
Felice, & Rovatti, 1997).

Air-lift reactor

In air-lift reactor (Fig. 3C) the mixing of the liquid is
provided by the injection of gas. There are two types of
air-lift reactors —“internal” and ‘“‘external” loop. The air-
lift consists of two tubes linked together on the top and
on the bottom. In one of the tubes (riser), the air is injected
at the bottom, while normally in the other tube no air is in-
jected (downcomer). The loop liquid circulation is caused
by the density differences between the riser and the
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downcomer. The ideal cell support for air-lift reactor should
have a low enough terminal settling velocity to be sus-
pended by the upflowing gas and liquid streams. When
comparing air-lift reactor to bubble column reactor or
stirred tank reactor shear stress is mild and constant
throughout the reactor. These types of reactors are econom-
ical as the aeration requests low-energy input, can be easily
scaled up and used commercially (Couvert, Roustan, &
Chatellier, 1999).

Bubble column reactor

In a bubble column reactor (Fig. 3D), gas is injected in
the bottom of the reactor through a gas distributor. Kulkarni
(2008) compared the motion of the bubbles to that of a
swarm. Moreover, the gas phase moves homogeneously
or heterogeneously in a continuous liquid phase. The homo-
geneous gas regime occurs when the superficial gas veloc-
ity is lower than 5 cm/s. The size and the concentration of
the bubbles in this type of regime are uniform. The hetero-
geneous gas regime occurs at high superficial gas velocity.
The characteristic of this type of regime is the presence of
radial hold—up profiles, originating intense liquid circula-
tion (Joshi, 2001). Bubble column reactors are commonly
used in the chemical industry as they are simple in con-
struction and operation, have high mass and heat transfer
rates, without any moving parts, are compact and have
low operation and maintenance costs (Kantarci, Borak, &
Ulgen, 2005). Nevertheless, this type of reactor presents
some disadvantages such as local flow, turbulence and gas
hold up and complex hydrodynamics.

All these reactors were used at different production pro-
cesses. The most used reactors with immobilized cells, for
vinegar production, in laboratory conditions, are the packed
bed reactor, the batch reactor and the fluidized bed reactor
(Ory et al., 2004). The main reactor types used for contin-
uous beer production with immobilized cells are the packed
bed reactor, the air-lift reactor and the fluidized bed reactor
(Branyik, Vicente, Dostalek, & Teixeira, 2004; Verbelen
et al., 2006). There are limited reports for continuous pro-
duction of cider with immobilized supports. Herrero, Laca,
Garcia, and Diaz (2001) produced cider continuously in Er-
lenmeyer flasks with cells entrapped in alginate beads.
Nedovic et al. (2000) reported the successful used of
continuous packed bed reactor in cider production.

Immobilized cell reactors used in winemaking

Table 1 presents the applications of ICS and biological
reactors in winemaking in the last 25 years. As it can be
seen, a larger amount of works is made with winemaking
in batch mode than in continuous mode. Moreover, most
of the works are about alcoholic fermentation and less are
about malolactic fermentation. It can be seen that for
continuous production of wine the most used reactor type
is the packed bed reactor. In the subsequent paragraphs
some examples of batch and continuous winemaking are
described.

Sipsas et al. (2009) used a multi-stage fixed bed tower
reactor (MFBT) for winemaking in batch and in contin-
uous. The MFBT operated at low temperatures (5 °C) and
showed significant operational stability. Moreover the
MFBT resulted in higher ethanol productivity (24.2 g L
1 d™' at 20 °C) of wines compared with packed bed
reactor (PB) (19.8 g L'd'at20 °C). Nevertheless, the
analyzed volatile compounds of the produced wines in
MFBT and in PB reactors did not show significant differ-
ences. Sensory evaluation of the wines produced in contin-
uous mode in MFBT rector revealed a predominant acid
note when compared to wines produced in PB reactor.
Moreover, the MFBT reactor resulted in higher alcohol pro-
ductivity compared to fermentations carried out in PB
reactor.

Tsakiris ef al. (2004) used a 1.5 L tower glass reactor for
batch production of red wine with cells immobilized on
black and golden raisins berries. The fermentations were
carried out with 300 mL of grape must and 100 g of immo-
bilized support, at temperatures between 6 °C and 30 °C.
The fermentation times for the different temperatures
were as follows: 35 h—40 h at 30 °C; 4 d at 22 °C and;
8 d at 6 °C. The sensory evaluation of the produced wines
showed that the tasters preferred wines produced with im-
mobilized cells rather than wines produced with free cells.

Kourkoutas et al., (2002) and Kourkoutas, Koutinas,
et al., 2002 carried out continuous and batch fermentations
of wines in a glass tower reactor with a total volume of 2 L.
The volume of the grape must used in the experiments was
720 mL and the immobilized support added (apple or
quince cuts) was around 1.2 kg. The batch fermentations
with cells immobilized on apple cuts resulted in wines
with high ethanol concentrations. The operation stability
of the continuous system was for 71 d at least. Wine pro-
ductivities in continuous mode of operation were much
higher than in the repeated batch fermentations.

Uematsu, Fong, and Ryu (1988) found extremely diffi-
cult to operate and control the conventional cylindrical
type packed bed reactor. As a result they modified the sys-
tem and used a tapered (conical) packed bed reactor for
continuous wine production. ICS had improved fermenta-
tion performance compared to free cell fermentations.
The new design bioreactor gave satisfactory results as
well as operational stability for 2—3 months.

Bakoyianis ef al. (1997) used three different support ma-
terials (kissiris, y-alumina and calcium alginate) for batch
and continuous winemaking. For the batch fermentations
a 500 mL glass tower reactor was used, with 300 mL of
grape must and the weight of each immobilized support
was calculated so that the concentration of the immobilized
cells is the same for all assays. The pilot plant for the
continuous fermentations consisted of two glass reactors
(each of 1.5 L total volume and 1.0 L liquid volume) linked
together so that the outlet of the first reactor was the inlet of
the second reactor. Here, the ethanol production was found
to be 4—10 fold higher compared to batch fermentations.
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The three continuous systems were operated for 80 d
without loose of operational activity.

In general, there are less published studies about malo-
lactic fermentation of wines conducted with immobilized
cells. In 1998, Kosseva and co-workers (Kosseva et al.,
1998) published a work about conducting malolactic fermen-
tation in Chardonnay wines with immobilized cells on two
different materials (calcium pectate gel and chemically
modified chitosan beads). Repeated batch fermentations
were carried out at shake flask at different temperatures
(Table 1). The degradation of malic acid was 30% for 1 h,
twice higher compared with free cell assays.

Agouridis ef al. (2008) used a 1 L glass tower reactor for
repeated batch malolactic fermentations. The average value
of the malic acid degradation was 54% and stayed stable for
the 11 successive batch fermentations. Nevertheless, the
average concentrations of produced lactic (0.98 g L™
and acetic acids (0.39 g Ll) were low.

Continuous winemaking

Continuous fermentation process is a solution for reducing
production costs as well as improving the process efficiency
and ethanol yield (Ribéreau-Gayon et al. 2006). Continuous
processes are preferred in most fields of industry because of
the great economic advantages. The effort of implementing
a continuous process is not always successful (Virkajarvi &
Linko, 1999) as there are some major issues linked to a process
in continuous like keeping the system aseptic for long periods
of time (at least for several months). If a system is contami-
nated and there is a need of stopping the process and making
a new immobilization this increases the costs of the process
and slows down the production. According to Ribéreau-
Gayon et al. (2006), it is recommended the use of higher con-
centrations of SO, in the continuous fermenters, to avoid con-
taminations. In winemaking, the continuous fermentation
system must be able to respond to another important issue
that is the inhibitory effect of the formed products over the
growth of the microorganisms (Virkajarvi & Linko, 1999).
However, when immobilized cells are used this problem is
softened as immobilized cells are more tolerant to the inhibi-
tory effect of products like ethanol (Genisheva et al., 2012;
Genisheva, Vilanova, et al., 2014).

The main advantages of the continuous processes are
(Clement, Perez, Mouret, Sablayrolles, & Camarasa,
2011; Genisheva, Mota, et al. 2014; Ribéreau-Gayon
et al., 2000): higher conversion rates; faster fermentation
rates; improved product consistency; reduced product los-
ses; environmental advantages; easier process control and;
less fluctuation in product quality.

Wine productivity in continuous winemaking with im-
mobilized cells was found to be three to six folds higher
than those obtained by natural fermentation (Iconomou
et al., 1995). Nevertheless, continuous fermentations sys-
tems, common in other industries, are rarely used in the
wine industry (Sipsas et al., 2009). Continuous fermenta-
tions with immobilized cells are very beneficial as it links

high cell density with high flow rates that results in short
residential times (Ribéreau-Gayon et al., 2006; Verbelen
et al., 2006). The supports to be used for immobilization
and further implementation for continuous winemaking
should complete more prerequisites than low cost, abun-
dance and food-grade purity. Besides the ones referred, it
should also have the ability for long term storage, should
have high resistance and stability and should not damage
the quality of the final product (Genisheva et al., 2012;
Genisheva, Vilanova, et al., 2014; Sipsas et al., 2009).

Sipsas et al. (2009) produced wine in a continuous mode
in a multi-stage fixed bed tower (MFBT) reactor, at different
temperatures. The authors concluded that the continuous
mode of operation and the fermentation temperatures
affected the concentrations of ethyl acetate, amyl alcohols
and methanol. Wine produced with immobilized cells in
continuous mode of operation had higher amount of residual
sugars (11.6 g L™ ") and lower sugar conversion rates (94.3%)
compared with batch fermentation (5.5 g L™' and 97.3%,
respectively). Reddy er al. (2008) used immobilized yeast
cells on watermelon pieces in a continuous winemaking for
100 d at 20 °C, where the cells remained 90%—95% viable.

Apple cuts (Kourkoutas et al., 2002) and quince pieces
(Kourkoutas, Koutinas, et al., 2002) were found to be suit-
able for wine production in continuous mode. Both ICS
worked for 95 d and 46 d, respectively, without diminishing
of the ethanol productivity. These systems were appropriate
for working at low temperatures (5 °C) and the produced
wines demonstrated improved quality compared to other
commercial wines and distinctive flavor profiles, even
though an increase of the total acidity was observed, espe-
cially when apple cuts were used. Sensory test demon-
strated that the wine produced in continuous mode with
cells immobilized on quince had a pleasant and soft aroma,
as well as fruity taste. Moreover, the use of quince pieces as
immobilization support can be considered more appropriate
as the residual sugar (1.6 g L™') content in the produced
wine was much lower compared to the residual sugar con-
tent when apple cuts (11.7 g L™") were used.

Continuous MLF was also studied by Crapisi ef al.
(1987) using Lactobacillus cells immobilized on k-carra-
geenan gel. The ICS functioned for 46 d at temperatures be-
tween 7 °C and 40 °C. The lowest (1.8 g L") and the
highest (4.2 g L") values of produced lactic acid were ob-
tained at 7 °C and 30 °C, respectively.

Delignified cellulosic material was used as a support for
cell immobilization and further applied in continuous pro-
cess of winemaking (Iconomou et al., 1995). Wine produc-
tivity was six fold higher than in a traditional process. The
ICS had an operational stability for 2 months. The alcoholic
content of the produced wine was in the range of 9.4% and
11.2%; however, the residual sugar content was still high in
the range of 19.6 g L' and 52.3 g L.

Genisheva, Mota, ef al. (2014), for the first time demon-
strated an integrated continuous process of winemaking
including sequential alcoholic and malolactic fermentations.
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The cells were immobilized on grape skins and packed in a
packed bed reactor. The system worked for one month
without contaminations and without losing its biological ac-
tivity. The results showed that continuous winemaking with
immobilized cells was much more efficient compared to a
batch winemaking with immobilized cells (4 times more effi-
cient in the case of alcoholic fermentation and 17 times in the
case of malolactic fermentation). Genisheva, Mota, et al.
(2014) and Genisheva, Vilanova, et al. (2014) confirmed
that 1 L of wine was produced with immobilized cells in
batch mode of operation for 4 d, while in continuous mode
for 24 h.

Wine production with immobilized cells, accordingly to
the existing data, is mostly carried out in the batch mode of
operation. The main reason is associated to seasonality of
the raw-materials, the grapes, and therefore the winemaking
process. However, the secondary alcoholic fermentation
(e.g. for sparkling wines) and malolactic fermentation
may be conducted all year around. Moreover, primary alco-
holic fermentation could be produced, at any time, from
preserved musts (high SO, doses, low temperature).
Accordingly, complementary work should be carried out
for better understanding the operation with immobilized
cells in continuous mode of operation, and therefore to
evaluate the possibility of implementing such a process in
the winemaking industry.

Conclusions

Until now, the use of immobilized cells in winemaking
is mostly limited to investigation purposes. Nevertheless,
in the last decades is noticeable the increased number of
works about the use of immobilized cells for winemaking.
The focus is on the search of natural support for cell immo-
bilization, which will not interfere negatively to the quality
of the final product. Most of the published data is about
batch alcoholic fermentation. Few researches exist on
malolactic fermentation of wine with immobilized cells.
Moreover, most of the published work refers to a batch pro-
cesses of fermentation. The successful implementation of
continuous immobilized cells fermentation processes on
wine production demands more investigation to be done
on the final quality of the wine produced.
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