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ABSTRACT. We compute the non-universal constants in the KPZ equation in one
dimension, in terms of the thermodynamical quantities associated to the under-
lying microscopic dynamics. In particular, we derive the second-order Einstein
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i
terms of the conserved quantity p, the diffusion coefficient D, the strength of the
asymmetry a and the static compressibility of the system x.

relation A = § 4 x(p)D(p) for the transport coefficient A of the KPZ equation, in

1. INTRODUCTION

One of the most challenging problems in statistical mechanics is the study of the
evolution of nonequilibrium systems, and in particular the derivation of effective
equations in terms of the relevant thermodynamical quantities of those systems.
One particular problem which has received a lot of attention recently, is the evolu-
tion of random growing interfaces governed by local stochastic rules. In the semi-
nal work [9], Kardar, Parisi and Zhang proposed an effective equation, nowadays
wide known as the KPZ equation, for the evolution of the fluctuations around
the mean of a flat growing interface. They argued that the evolution of a fluc-
tuating interface is governed by three competing factors: roughening, represented
by the presence of a space-time white noise, smoothing, represented by a diffusive
term appearing in the form of a Laplacian operator, and a slope-dependent growth,
represented by a nonlinear transport term. Taking these three ingredients into ac-
count, [9] proposed the equation

dth = DAL + A(Vh)? + /2DxW, (1.1)

where W is a normalized space-time white noise, that is, a Gaussian noise with
correlations given by (W (x, t)YW(x',t')) = é(x,x")é(t, ') and D, A, x are constants.

The main result we want to report here is the computation of the constant A
in terms of the constants D and ). We will be more specific later on, here we just
mention that D is the diffusivity of the system and j is the static compressibility of the
system. The quadratic dependence on the slope V1 is the simplest nonlinear one
that can be coupled with the Ornstein-Uhlenbeck equation, which corresponds to
consider A = 0in (1.1).

In [9], starting from the KPZ equation the authors argued that a growing in-
terface has a, statistically, self-similar structure with universal scaling exponents
for its width and for its spatial correlations. In particular, they predicted, starting
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from the KPZ equation above, that a one-dimensional interface has fluctuations
of order t1/3, in contrast with the Edwards-Wilkinson (EW) exponent t1/4 of the
fluctuations of interfaces in equilibrium. In the EW class the fluctuations evolve
according to the Ornstein-Uhlenbeck equation. In principle, the aforementioned
feature should be shared by any discrete or continuous, one-dimensional growth
models with local stochastic dynamics. Starting from [21], this question has been
investigated through Monte Carlo simulations for various simplified models, like
the Eden model, the random deposition model and the polynuclear growth model.
Universal exponents were confirmed by those simulations, giving support to the
KPZ conjecture. We say that a model belongs to the KPZ universality class if its
corresponding fluctuations follow the exponents predicted by [9]. For an early re-
view and further references, we refer to [10].

A first ground-breaking contribution, and also the first mathematically rigor-
ous result in this direction, was obtained by [4]. In that article, the authors derived
the so-called Cole-Hopf solution of the KPZ equation as the scaling limit of the
fluctuations of an interface associated to a particular interacting particle system:
the weakly asymmetric simple exclusion process. The simple exclusion process is a
system of interacting particles evolving on Z with the following stochastic dynam-
ics. Let p,q > 0 be such that p + g = 1. Independently, the position of a particle
is updated with rate 1. The update rules are the following: the particle tries to
jump to the right neighboring site with probability p and to the left neighboring
site with probability q. The jump is successful if there is no particle at the target
position. The weakly asymmetric scaling corresponds to the choice p = % +av/e,
where ¢ > 0 is a scaling parameter which goes to 0 and a can be understood as the
strength of the asymmetry.

The work of [4] does not say anything about the scaling exponents of the fluc-
tuations of the system, but it clarifies the role of the KPZ equation as an effective
model for the evolution of fluctuations in one-dimensional growth models. In
particular, the behavior of asymmetric growth models like the TASEP (which cor-
responds to the choice p = 1 above), the polynuclear growth model, etc, should
be related with the long-time behavior of the KPZ equation.

A second ground-breaking contribution is contained in the paper [15], where it
is computed the probability distribution of the height function on a discrete model,
known as the corner growth model, with a particular initial configuration, namely,
the wedge profile (see also [2, 17]). There it is shown that the fluctuations of the
height function of that model are given by the Tracy-Widom (TW) distribution
[20], and that the corresponding scaling exponent is effectively % We point out
that the TW distribution is observed in a strongly asymmetric regime, which in
the case of exclusion processes corresponds to the choice p # 3 independently
of the scaling. In [1, 18], the authors showed that the KPZ equation serves as a
crossover equation connecting the KPZ universality class (p # 3 in the case of the
exclusion process) and the EW universality class (p = % in the case of the exclu-
sion process). More precisely, they showed that, as t — oo, t~1/3/1(t,0) converges
to a TW distribution, and as t — 0, t~1/ 4ﬁ(t, 0) converges to a normal distribution.
Here h(t,0) is the centered solution of the KPZ equation with wedge initial profile.
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In this sense, the KPZ equation is the universal object that serves as separation be-
tween the EW (+1/ 4—scaling) and KPZ (t!/ 3—scaling) universality classes.

More recently, there has been a new way to solve the KPZ equation. The anal-
ysis is performed model-by-model and the idea is to obtain some determinantal
formulas related to some functionals of the model in question. These formulas can
be solved by using the machinery of random matrix theory, which provides very
detailed information on the limiting distribution of those functionals, for more de-
tails see [5], [7] and references therein.

The main drawback of all the approaches described above is the lack of gener-
ality. All of them are based on intricate combinatoric properties of the model; in
[19] the term stochastic integrability is coined to point out this fact. In particular,
the non-universal constants in the KPZ equation do not depend on the thermody-
namical properties of the models. This is not true in general, as we will see below.
From the point of view of the thermodynamical properties of microscopic growth
models, it is more convenient to adopt a different approach. For that purpose, de-
fine Yy = —Vh;. Since h; solves the KPZ equation (1.1), then the field V; solves the
stochastic Burgers equation (SBE) given by

3tV = DAYs + AVY? + \/2xDVW. (SBE)

If we start with a discrete growth model {;(x);x € Z} with local interactions,
the discrete gradients defined as #;(x) = (¢(x) — {¢(x + 1) can be interpreted as a
conservative interacting particle system, and vice-versa, for a given conservative in-
teracting particle system, the cumulative currents of the system can be interpreted
as an interface growth model. Therefore, from now on we stick to the interacting
particle systems interpretation.

An important feature which is not captured by the results of [4]!, is the de-
pendence of A in the thermodynamical properties of the system. At principle
there is no obvious relation between A and the underlying particle system, but in
fact, there is a relation between them and the purpose of this paper is to describe
precisely that relation. Notice that, the steady states of the exclusion process are
parametrized by its density p. Taking the jump rates p = % + ay/e, we get to the
SBE equation above with A = a4, which does not depend on p. This is very par-
ticular of the chosen jump rates and in general is not true. We will show here a
second-order Einstein relation, namely the relation

a d?
A= EdT)ZX(p)D(p)'

The outline of this paper is as follows. In Section 2 we present the model that
we have chosen, namely, the gradient Kawasaki dynamics in order to present our
main result. In Section 3 we describe its equilibrium fluctuations in the setting of
the KPZ scaling. In Section 4 we present some conclusions and future directions.

Iwe point out that in [9], the authors use generic constants in front of the three terms of this equa-
tion, and they do not discuss their meanings in terms of thermodynamical quantities of the underlying
systems.
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2. THE GRADIENT KAWASAKI DYNAMICS

Consider the space Q = {0,1}Z of binary sequences. We call 7 = {5(x) : x €
Z} the elements of () and we interpret 7(x) = 1 as having a particle at the site x
and 77(x) = 0 as having a hole at the site x. Given a Gibbs measure y in (), the
Kawasaki dynamics is a local, particle-conservative, interacting particle system
for which the measure y is invariant and reversible. Given a Hamiltonian #, in
[16] it is explained how to choose a Kawasaki dynamics satisfying an additional
property, the so-called gradient condition. Let | = {J4 : A C Z} be a finite-range,
translation-invariant potential, that is, there exists a constant R such that J4 = 0
whenever diam(A) > Rand J4 = Ja4y forany x € Z. For A C Z, define the

Hamiltonian H A as
Halp) = Y. Jan(A),
ANA#£D

where 7(A) = [Tcea 17(x). Consider an inverse temperature f such that the Gibbs
measure 1
— 1 —BHA
HE = N Za gt
is well-defined. Above, Z Apisa normalizing constant. For x € Zand y € (), letus

denote by 7***! the configuration obtained from 7 by exchanging the occupation

variables at the sites x and x + 1, namely,
n y) = n(x + Dly=x + 17(X)Ly=xs1 + 7(%)Lytr r1-
Let 6 be the standard spatial shift in Z, thatis, forx € Zand 7 € O,
0x(n)(y) =n(x+y).

In [16], it is shown the existence of a function ¢ : Q) — R such that:

Lx+1(

i) Local dynamics.
The value of ¢(17) depends only on {#(x) : |x| < r} for some r > 0.

i) Ergodicity and exclusion rule.

c(n) > 0if (0) # 5(1) and c(y) = 0if (0) = (1)

iii) Detailed balance.

It 5(0) # (1),

iv) Gradient condition.
There exists a local function w : Q) — R such that

c()((0) = 4(1)) = w(y) — w ().

Since c is local, it is bounded. Therefore, without loss of generality, we can assume
that ¢ is bounded by 1. Now we define the Kawasaki dynamics associated to c.

Independently, for each x € Z, we exchange the occupation variables #;(x) and
7¢(x 4+ 1) at rate 1. The exchange is accepted with probability ¢(6_,7;) and oth-
erwise rejected. We call the stochastic process {r; : t > 0} defined in this way
the gradient Kawasaki dynamics associated to c. The gradient Kawasaki dynamics
is particle-conservative in the sense that particles are nor destroyed neither cre-
ated by the dynamics. This conservation law implies that a family of invariant
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measures can be obtained introducing a fugacity, denoted by ¢, which controls the
average number of particles in the system. For that purpose, define the Hamilton-
ian Hp g by
Hapo(n) = BHAD +¢ 30 n().
xeA
Then, the measure

e_HA/ﬂ/lP

= lim
Mo Zn

is invariant under the Kawasaki dynamics described above. Here Z, g 4 is a nor-
malizing constant.
We can introduce an asymmetry in this dynamics by redefining

¢y (1) = c(n)(1 = (1) (1 = 7(0)))

for v € (0,1]. It turns out that the measures jig 4 are also invariant with respect
to the perturbed dynamics, that is, the dynamics associated to c,. In fact, in [16]
it is shown that this property is equivalent to the gradient condition stated in iv)
above.

Let us define the density of particles as

p(9) = / 7(0)dpip -

Since particles are conserved by the dynamics, it is natural to consider the fugacity
as a function of the density of particles, that is, ¢ = ¢(p) and to reparametrize the
invariant measures by the density of particles: we write vg, = g ¢(p). In order
to keep notation simple, from now on we use the notation v, to denote vg,. The
two basic thermodynamical quantities associated to the symmetric dynamics are
the diffusivity, defined as

d
D(p) = ip / wdv,,
and the static compressibility, defined as
1 & 2
= li — — dv,.
x(p) = lim (ﬁx;(ﬂ(x) p)) dvy

In the asymmetric case, another meaningful quantity is given by the flux func-
tion defined as

Hip) = [ jdvy,

where j(17) = ¢(7)17(0)(1 —#(1)). One of the versions of the fluctuation-dissipation
relation states that

[ (1) = (0))%dv, = 2x(0) D(p).
Due to the gradient condition, we have the relation
c()n(1)(1 =5(0)) = 5e()(7(1) = 17(0))* + 3 (w(B17) — w (),

and in particular,

H(p) = x(p)D(p)- (2.1)
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3. THE KPZ SCALING

Lete € (0,1) be a scaling parameter which will go to 0. As pointed out in [4], the
SBE appears as the scaling limit for the density of particles on a weakly asymmetric,
particle-conservative system, under a diffusive scaling of time. This corresponds, in
our case, to the choice

v = av/e.

Fix p € (0,1). Let {5, 2 : t > 0} be the gradient Kawasaki dynamics with
initial distribution v,, associated to ¢, for ¥ = ay/e. Notice that the system is
being speeded up in the diffusive time scaling. Since the solutions of the SBE are
distribution-valued, it is convenient to define the density fluctuation field {); :
t > 0} through its action over test functions F : R — R belonging to the Schwartz
space S(R) as:
(Vi F) = Ve ) (ne2(x) — p)F(ex).
XEZ

Forx € Z,n € Qand f : QO — R let us introduce the notation fx(17) = f(6_x7).
Using the Markovian character of the evolution of #,,-2, the total time derivative
of (Y§, F) is equal to the sum of three terms:

a diffusive term
VE ¥ wsle2)AF(ex),
XEZ
a transport term
a ) ju(se-2) VE (ex)
XEZ
and a noise term of instantaneous variance given by

€ Z Cx (771‘8—2) (771‘8—2 (x + 1) — Nte—2 (x) )2 (VF(&X) )2'
x€Z

Above, AF(ex) and VF(ex) denote the second and the first space derivatives of F
evaluated at ex, respectively. In order to identify the stochastic partial differential
equation ruling the space-time evolution of the limit of YV}, we need to “close” the
terms above as functions of ). For that purpose, we need to use what is called in
the literature as the Boltzmann-Gibbs principle, which was first introduced by [6]
and was proved in this context by [8]. This principle allows to replace the diffusive
term above by

D(p)V'e %(mg—z (x) = p)AF(ex) = (Vi, D(p)AF).

The ergodic theorem shows that the instantaneous variance of the noise term is
well approximated by

2x(p)D(p) [ (VE)dx.

The main novelty comes from the analysis of the transport term. First notice that
there is no /¢ factor in front of the sum. Therefore, at a first glance it is not rea-
sonable to think that this term is bounded. It turns out that the Boltzmann-Gibbs
principle shows that this term is well approximated by

aH'(p) Y (12 (x) — p)VF(ex) = ae™2H' (0) (Y, VE).

xeZ
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Therefore, we need to impose H'(p) = 0 if we want to see a non-trivial limit of
Yi. As already noticed by [9], this is a natural assumption, since the fluctuations
should be observed around the characteristic lines of the system. Moreover, it is not
a real restriction, because after a Galilean transformation of the field, the thermo-
dynamical constants x(p), D(p) remain unchanged, while the new flux satisfies

H'(p) = H'(0) —
where v is the velocity of the Galilean transformation.

Notice that, since we are assuming H’(p) = 0, the usual Boltzmann-Gibbs prin-
ciple does not give any useful information about the behavior of the transport
term. In order to study the limit of the transport term, in [11, 12, 13, 14] we in-
troduced, what we call, the second-order Boltzmann-Gibbs principle, see for example
Theorem 7 in [13]. For that purpose, let : : R — IR be a positive test function with
Jg t(x)dx = 1, and define the approximation of the identity 5(x) = L(x),6>0.
Let f : Q — R be a local function and let

7o) = [ fau,

Assume that f’(p) = 0. Then, the second-order Boltzmann-Gibbs principle asserts
that for any T > 0 and for any test function F € S(R), the time integral

[ T felne)E () di

xeZ

is very well approximated by

/ 1f// Z F ex ( ts,[zx>2 KXé(P)) dt,

xeZ

see the statement of Theorem 7 of [13] or Theorem 3.2 of [14]. Above, we denote
by /£ the approximation of the identity centered at ex and k = [, ¢(x)?dx. The ap-
prox1mat10n holds when ¢ — 0 and then 6 — 0. Notice the Wick renormahzat1on

represented by the diverging term KX(P) The justification of this approximation

comes from the equivalence of ensembles which now we explain. Fix a local func-
tion f : O — R and let tpfi( o) be the expectation of f with respect to the canonical

ensemble in Ay = {1,..., ¢} with density of particles = 1 "X, 57(x) =

e[ty Y () =],

where Eﬁ denotes the expectation with respect to the canonical ensemble on A,.
Then, morally, this condition expectation satisfies a “Taylor” expansion, in the
sense that

pr(0) = Flo) + ' (p) (e —p) + 3/ () (@ — p)?

plus an error term of order (o — p)3.
Applying the second-order Boltzmann-Gibbs principle for f = j, we see that
the transport term is well approximated by

5H"(p)e ) VF(sx)<<yf,[gX> _ KX(P))

xe”Z o
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Notice that the Wick renormalisation is not needed in this case, since )", VF(ex) =
0. In conclusion, we have just shown that the total time-derivative of <yf, F) satis-
fies

& (Vi E) = D(p)(Vi, AF) + §H" (p){(Vf % 1), VE) +1/2x(0)D(0) (W, VE)

plus an error term which vanishes as ¢ — 0 and then § — 0. We see that when
e — 0, the process )i converges to the process )}, solution of the (SBE) with
A = SH"(p). Recall (2.1) and that a represents the strength of the asymmetry
introduced in the system. In particular, we identify the constant A of the KPZ/SBE
equations with
a a d?
A= EH”(P) = EdT)ZX(p)D(p)’

which proves the second-order Einstein relation for the KPZ/SBE equations. From
all these conclusion, the constants in the KPZ/SBE equation are given in terms of
the thermodynamical quantities of the system and the SBE equation for }; now
reads as

3V = D(0)AY; + AVY? + 1/2x(0)D(0) V. (3.1)

4. CONCLUSIONS AND COMMENTS

We have shown that the non-universal coefficients of the KPZ/SBE equations
in d = 1 can be obtained as functions of the thermodynamical quantities associ-
ated to the underlying interacting particle system. More precisely, denote by p
the average value of the conserved quantity in a one-dimensional, conservative,
weakly asymmetry stochastic dynamics and by v, the stationary state associated
to p. Let x = x(p) be the static compressibility of the dynamics, which is simply
the self-correlation of the conserved quantity with respect to v,. Let D = D(p) be
the diffusion coefficient associated to the symmetrized dynamics, computed using
the Green-Kubo formula or any other convenient formula. Let a2 be a parameter
regulating the strength of the asymmetry. Then, the space-time fluctuations of
the conserved quantity, with respect to the stationary state v,, are given by the
KPZ/SBE equation

0V = DAY: + AVYE 4+ 1/2x(0)D(p) VIV,

where W is a space-time white noise of covariance matrix é(x — x")d(t — t') and
A = A(a, p) satisfies

a d?
A= EdT)zX(P)D(P)-

This relation can be understood as an Einstein relation for the KPPZ/SBE, since the
transport term turns out to be proportional to the strength of the asymmetry, and
the constant of proportionality is given in terms of the thermodynamical quantities
associated to the model.

Notice that A is linear in a. This is due to the weak asymmetry of the model,
which can be interpreted as a vanishing perturbation of the symmetric dynamics.
Therefore, our result can be in interpreted in terms of linear response theory.
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Another remark is that our derivation can be carried out only for gradient sys-
tems. General Kawasaki dynamics are non-gradient, as well as, many other mod-
els. The main obstruction in our derivation is that for non-gradient models, the
invariant measures of the perturbed dynamics are not known and even their exis-
tence has not been established yet. However, at the level of large deviations, it has
been recently shown that weakly asymmetric non-gradient systems behave like
gradient systems, in the sense that the relation between the rate function and the
thermodynamical variables is the same as in the gradient scenario. Therefore, we
expect the same to be true in our case, see [3] for a more detailed discussion.
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