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Abstract This paper presents a filter-based artificial fish swarm algorithm for solving non-
convex constrained global optimization problems. Convergence to an ε-global minimizer is
guaranteed. At each iteration k, the algorithm requires a (ρ(k),ε(k))-global minimizer of a
bound constrained bi-objective subproblem, where as k→ ∞, ρ(k)→ 0 gives the constraint
violation tolerance and ε(k)→ ε is the error bound defining the accuracy required for the so-
lution. The subproblems are solved by a population-based heuristic known as artificial fish
swarm algorithm. Each subproblem relies on the approximate solution of the previous one,
randomly generated new points to explore the search space for a global solution, and the
filter methodology to accept non-dominated trial points. Convergence to a (ρ(k),ε(k))-global
minimizer with probability one is guaranteed by probability theory. Preliminary numerical
experiments show that the algorithm is very competitive when compared with known deter-
ministic and stochastic methods.
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1 Introduction

This paper aims to contribute to the research area of constrained global optimization (CGO)
by proposing the integration of a filter methodology, as outlined in [21], into a population-
based stochastic method to globally solve nonlinear constrained optimization problems. Our
main goal is to guarantee that a global optimal solution of a nonconvex constrained optimiza-
tion problem is obtained, up to a required accuracy ε > 0. The mathematical formulation of
the problem is:

min
x∈Ω

f (x)

subject to h(x) = 0
g(x)≤ 0

(1)

where f : Rn → R, h : Rn → Rq and g : Rn → Rp are nonlinear continuous functions and
Ω = {x ∈ Rn : −∞ < li ≤ xi ≤ ui < ∞, i = 1, . . . ,n}. The feasible region defined by the
constraints is denoted by Λ ⊆Ω .

We do not assume that the objective function f and the constraints are convex and thus
many local minima may exist in the feasible region. For this class of global optimization
problems, methods based on penalty functions are common in the literature [5,7,14,19,28,
31,39,46,55]. In this type of methods, the constraint violation is combined with the ob-
jective function to define a penalty function. This function aims at penalizing infeasible
solutions by increasing their fitness values proportionally to their level of constraint viola-
tion. Penalty functions require the use of a positive penalty parameter that aims to balance
function and constraint violation values. However, setting the initial value for the penalty
parameter and tuning its values throughout the iterative process are problematic issues since
the performance of the algorithm is greatly affected by their values. In some cases, the opti-
mal solution of the problem is attained only when the penalty parameter approaches infinity.
Augmented Lagrangian functions are penalty functions for which a finite penalty parame-
ter value is in general sufficient to guarantee convergence to the solution of the constrained
problem [8]. An augmented Lagrangian technique has also been extended to global opti-
mization where a hybrid genetic algorithm has been implemented to globally solve the sub-
problems [15]. Convergence to a global minimizer has been proved. Other augmented La-
grangians for CGO problems have been implemented and their convergence properties have
been derived. For example, in [10] a global optimization method based on the augmented
Lagrangian function of Powell-Hestenes-Rockafellar (PHR), where the exact α branch-and-
bound (BB) method is used to find the approximate global solutions to the subproblems. The
usage of the PHR function has been extended to stochastic population-based methods like
the electromagnetism-like mechanism of optimization [48] and the artificial fish swarm algo-
rithm [51]. Recently, in [11], global convergence to a minimum is guaranteed using the PHR
Lagrangian with a nonmonotone penalty parameter tuning and gradient-based approaches
for solving the box constrained subproblems. Other proposals concerning augmented La-
grangian functions for global optimization can be found in [17,26,32,40,53,66].

Other strategies aiming to handle the constraints of the problem are available in the lit-
erature. Techniques based on multi-objective concepts, where both constraint violation and
objective function are goals to be minimized separately when progressing towards an opti-
mal solution are presented in [1,3]. A gradient-based approach to repair feasibility is pro-
posed in [12]. Arbitrary bounding operations are used to formulate a geometric BB for CGO
problems [52]. The use of the filter method to guarantee sufficient progress towards feasible
and optimal solutions of nonlinear constrained optimization has its origin in [21]. A variety
of filter-based algorithms have been proposed ever since for nonlinear programming [22,
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35,47], in direct search methods [6,18], bundle methods [36], interior point barrier meth-
ods [59], primal-dual interior point methods [56], in reduction methods for semi-infinite
programming [45], in methods for nonlinear complementarity problems [43], constrained
mixed variable programming [29], systems of nonlinear equations [23,34,44,60], nonlinear
semidefinite programming [25], and to define criteria of iterate acceptance in unconstrained
problems [62]. Even nonmonotone versions of filter methods have been implemented with
success in the nonlinear programming area [16,24,54,63,65]. The use of filter methods has
been indeed spread to all areas of computational mathematics.

Previous work applying the filter set methodology to handle the constraints within stochas-
tic algorithms shows that the idea is promising when compared with other methods existing
in the literature [29,30,49]. This paper aims to explore further this research area including
a theoretical convergence analysis of a stochastic population-based filter algorithm.

Different types of methods have been proposed to solve global optimization problems.
A list of interesting and efficient stochastic algorithms includes the artificial fish swarm
(AFS), artificial bee colony (ABC), differential evolution (DE), harmony search, genetic al-
gorithm (GA), evolution strategy, particle swarm optimization (PSO), Cuckoo-search (CK),
simulated annealing [2,4,41,57,58,61,64]. A recent conceptual comparison of CK, PSO,
DE and ABC algorithms is presented in [13]. The AFS algorithm is a recent and easy to im-
plement artificial life computing algorithm that simulates fish swarm behavior inside water.
The algorithm uses a population of points to identify promising regions looking for a global
solution [33,50,61]. Recently, a state of art concerned with hybridizations and applications
of the AFS algorithm appeared in [42].

In this paper, we aim to integrate the filter methodology into the AFS algorithm for
solving CGO problems. This study comes in the sequence of a previous preliminary prac-
tical study concerning the AFS and filter methods [49]. In the herein presented algorithm,
convergence to an ε-global minimizer is guaranteed. Further, the population-based filter al-
gorithm is conceptually different since a sequence of subproblems with increasing accuracy
is required to be solved. At each iteration k, a (ρ(k),ε(k))-global minimizer of a bound con-
strained bi-objective subproblem, where ρ(k) → 0 gives the constraint violation tolerance
and ε(k) → ε is the error bound defining the accuracy required for the solution, as k→ ∞,
is required. Each subproblem is solved by a filter-based AFS algorithm with guaranteed
convergence to a (ρ(k),ε(k))-global minimizer, with probability one.

Another previous study concerned with the convergence of the AFS algorithm shows
that convergence in mean square to a certain position in the search space has been guaranteed
in [51]. Convergence here means stochastic convergence that relies on a probability measure
and is different from the convergence concept of classical analysis. Convergence of random
variables can be defined in various ways [37]. For example, convergence with probability
one (or almost sure convergence), convergence in probability, convergence in mean square,
and convergence in distribution. Each one is qualitatively different. Almost sure convergence
is the probabilistic version of point-wise convergence known from elementary real analysis.
In this study we are particularly interested in convergence with probability one.

To the best of our knowledge, this is the first attempt to analyze the performance and the
convergence properties of a population-based stochastic method using a filter methodology
to handle the equality and inequality constraints, aiming to globally solve an optimization
problem.

The paper is organized as follows. In Section 2, the population-based filter paradigm
is presented and its convergence properties are derived. Section 3 describes the filter-based
AFS algorithm and discusses its asymptotic convergence properties. Section 4 shows some
numerical results and we conclude the paper in Section 5.
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2 Population-based filter paradigm

We aim to analyze the behavior of a stochastic global optimization method based on the
filter methodology to guarantee convergence to a feasible and optimal global solution of
problem (1). Based on a population of points, the herein presented stochastic method gener-
ates, at each iteration, an approximate global minimizer. A list of notation follows.

Notation 1 ‖ · ‖ represents the Euclidean norm, the component i of a vector x is repre-
sented by (x)i and the component i of the vector v+ ∈ Rp is defined by max{0,(v)i} where
v = ((v)1, . . . ,(v)p)

T . We use ρ(k) ↓ 0 to indicate that the sequence {ρ(k)} of non-negative
decreasing numbers tends to zero. The position of a point in the space is represented by
x j ∈ Rn (the jth point of a population) and m is the number of points in the population. Let
X ≡ [x1x2 · · ·xm] ∈ Rn×m be the matrix that contains the m points of the population, where
m < ∞. Let LB denote the smallest function value considering all algorithms that found a
feasible solution.

Given an approximation to the solution of the CGO problem (1), x(k), at iteration k,
equality and inequality infeasibility is measured by the non-negative constraint violation
function θ : Rn→ R+

θ(x(k)) = ‖h(x(k))‖2 +‖g(x(k))+‖2. (2)

Definition 1 (ε-global solution to the CGO problem) When finding the global minimum of
the continuous optimization problem (1), where Ω ⊂Rn is a bounded space, the point x̄∈Ω

is an ε-global minimizer of problem (1) if

θ(x̄) = 0 and f (x̄)≤ min
z∈Λ⊆Ω

f (z)+ ε, (3)

where ε > 0 is the error bound which reflects the accuracy required for the solution.

The proposed population-based filter paradigm uses the filter set concept [21] that is
able to explore both feasible and infeasible regions. This technique incorporates the concept
of non-dominance, present in the field of multi-objective optimization, to build a filter that
is able to accept a trial approximation if it improves either the objective function or the
constraint violation, relative to the current approximation. Algorithms based on the filter
methodology treat the optimization problem as a bi-objective problem aiming to minimize
both the objective function f (x) and the constraint violation function θ(x).

The herein presented paradigm randomly generates a population of solutions/points and
computes an approximate global solution, x(k), denoted by (ρ(k),ε(k))-global minimizer, to
the bound constrained bi-objective optimization subproblem

min
x∈Ω

(θ(x), f (x)) , (4)

then randomly generates another population of points, and continues to solve the next sub-
problem always using the approximate solution of the previous one. Thus, a sequence of
bi-objective optimization subproblems with increasingly better accuracy is solved. Accord-
ing to the definition of the subproblem (4), at each iteration k, where k denotes the iteration
counter of this outer cycle, the method to compute a (ρ(k),ε(k))-global minimizer will en-
sure that the bound constraints are always satisfied and an approximate global minimum
is obtained. Each time a new subproblem (4) is solved, a set of m− 1 points is randomly
generated in the search space, since the approximate solution of the previous subproblem is
retained. This is equivalent to the resetting of the population, a well-known strategy aiming
to explore the search space for promising regions.
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Definition 2 (Approximate global minimizer) For ρ(k),ε(k) > 0, an iterate x(k) is said to be
a (ρ(k),ε(k))-global minimizer of subproblem (4) if the two following conditions hold:

θ(x(k))≤ ρ(k)

f (x(k))≤ f (x)+ ε(k), for all x ∈Λ ⊆Ω .
(5)

When the optimization problem is nonconvex, a global optimization method is required
to solve the subproblem (4), so that the algorithm has some guarantee to converge to a global
solution instead of being trapped in a local one.

Our proposal for computing a (ρ(k),ε(k))-global minimizer of subproblem (4), at itera-
tion k, is based on a stochastic population-based algorithm, known as AFS algorithm, and
on the filter method that provides selection criteria aiming to accept a sequence of non-
dominated trial points. The non-dominated best points of the population will generate the
sequence of approximations to the required solution x(k). The algorithm consists of two
nested cycles. Each iteration of the outer cycle provides a (ρ(k),ε(k))-global minimizer of
subproblem (4) and updates the error tolerances ρ(k) and ε(k). Each iteration of the inner
cycle generates a population of trial points, checks their acceptability to the filter and selects
a non-dominated best point. Iterations of the inner cycle are performed until an acceptable
best point satisfies conditions (5).

2.1 Population-based filter algorithm

A formal description of the population-based filter (P-BF) algorithm for solving the original
problem (1), based on a filter-based AFS algorithm to solve the sequence of subproblems (4),
is presented in Algorithm 1.

Algorithm 1 (P-BF algorithm)
Require: 0 < γρ < 1, 0 < γε < 1, 0 < ρtol � 1, 0 < ε � 1, ρ(1) > ρtol , ε(1) > ε , LB;
1: set k = 1;
2: randomly generate a point x(0) in Ω ;
3: while θ(x(k−1))> ρtol ∨ f (x(k−1))> LB+ ε do
4: find a (ρ(k),ε(k))-global minimizer x(k) of subproblem (4) using the filter-based AFS algorithm (Al-

gorithm 5) so that
θ(x(k))≤ ρ(k)

f (x(k))≤ f (x)+ ε(k), for all x ∈Λ ⊆Ω ;

5: update ρ(k+1) = max
{

ρtol ,γρ ρ(k)
}

;

6: update ε(k+1) = max
{

ε,γε ε(k)
}

;
7: set k = k+1;
8: end while

The stopping criterion of the algorithm relies on both the constraint violation and ob-
jective function values. Thus, the algorithm is stopped when an approximate solution x(k)

satisfying
θ(x(k))≤ ρtol and f (x(k))≤ LB+ ε

is found, for a sufficiently small tolerance ρtol > 0 and an accuracy error bound on the
function value ε > 0. This criterion is applicable when solving test problems. For other
problems where the best-known solution LB is not used, the absolute difference between the
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objective function values of two consecutive iterations can be compared with ε to decide
termination. At each iteration k, an approximate solution to the subproblem (4) is required
to satisfy the conditions (5), before the algorithm continues finding the solution of the next
subproblem.

To be able to converge to an optimal solution of problem (1), the algorithm requires that
{ρ(k)} defines a monotone decreasing sequence of positive values converging to zero (see
Step 5 in Algorithm 1), and the decreasing sequence of positive values {ε(k)} converges to
ε , the user required accuracy for the solution, as k→ ∞ (see Step 6 in Algorithm 1).

2.2 Convergence to an ε-global minimizer

Here we aim to prove that every limit point of a sequence of iterates generated by the P-BF
algorithm is feasible and an ε-global minimizer of problem (1). This convergence anal-
ysis follows the reasoning used in the convergence of the global augmented Lagrangian
method [10]. We now state the assumptions that are needed to show convergence of the P-
BF algorithm (Algorithm 1) to an ε-global minimum. Let {x(k)} be the sequence generated
by the algorithm.

Assumption A 1 A global minimizer z of the problem (1) exists.

Assumption A 2 The sequence {x(k)} generated by the Algorithm 1 is well defined and
there exists a set of indices N ⊆ N so that limk∈N x(k) = x∗.

Assumption A 3 The functions f : Rn→ R, h : Rn→ Rq and g : Rn→ Rp are continuous
in Ω .

Since the set Ω is compact and θ(x) and f (x) are continuous, a (ρ(k),ε(k))-global min-
imizer of subproblem (4), x(k), necessarily exists.

Assumption A 4 {ρ(k)} is a decreasing sequence of non-negative real numbers that tends
to zero.

Assumption A 5 {ε(k)} is a decreasing sequence of non-negative real numbers that tends
to ε .

We now investigate the properties of the limit points of the sequence {x(k)}.

Theorem 1 Assume that the Assumptions A 1 through A 4 hold. Then every limit point x∗ of
the sequence {x(k)} generated by the Algorithm 1 is feasible.

Proof Since x(k) ∈ Ω and Ω is closed then x∗ ∈ Ω . Since ρ(k) ↓ 0 then limk θ(x(k)) = 0.
This implies that ‖h(x(k))‖ → 0 and ‖g(x(k))+‖ → 0. So, h j(x(k))→ 0 for all j = 1, . . . ,q
and gi(x(k))+→ 0 for all i = 1, . . . , p, and we conclude that the limit point is feasible. ut

We now prove that a sequence of iterates generated by the algorithm converges to an
ε-global minimizer of the problem (1).

Theorem 2 Assume that the Assumptions A 1 through A 5 hold. Then every limit point x∗

of a sequence {x(k)} generated by Algorithm 1 is an ε-global minimizer of the problem (1).
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Proof Let N ⊂ N be the set of indices such that limk∈N x(k) = x∗. By Theorem 1, x∗ is
feasible which means that limk∈N θ(x(k)) = θ(x∗) = 0. Let z ∈Ω be a global minimizer of
problem (1). By the definition of x(k) in the Algorithm 1 we have:

f (x(k))≤ f (z)+ ε
(k).

Taking limits for k ∈N and using limk∈N ε(k) = ε , we obtain:

lim
k∈N

f (x(k)) = f (x∗)≤ f (z)+ ε

which proves the claim that x∗ is an ε-global minimizer, since z is a global minimizer. ut

3 Filter-based AFS algorithm for solving the subproblems

Our proposal for solving the subproblem (4) is the AFS algorithm [50,51]. This is a stochas-
tic population-based global optimization algorithm for nonlinear optimization. It relies on a
swarm intelligence based paradigm to construct fish/point movements over the search space.
The purpose is to find an approximate global solution x(k) of subproblem (4) satisfying (5).
To minimize θ and f , a filter method is used. This is an efficient methodology that is applied
to nonlinear constrained optimization (NCO) problems aiming to build a region of prohib-
ited points when minimizing infeasibility and objective function values [6,18,21,59]. In a
filter method, both θ and f are required to be reduced. This technique has been used as an
alternative to merit functions to enforce progress towards the solution of NCO problems.
The underlying concept is that trial points are accepted as possible solutions if they improve
the constraint violation or the objective function value.

A filter F is a finite set of points x j, corresponding to pairs (θ(x j), f (x j)), none of which
is dominated by any of the others. The concept of dominance arises from the multi-objective
optimization area. According to [21], the used definition is the following.

Definition 3 (Dominance) A point x, or the corresponding pair (θ(x), f (x)), is said to dom-
inate y, or the corresponding pair (θ(y), f (y)), denoted by x≺ y, if and only if

θ(x)≤ θ(y) and f (x)≤ f (y).

In the context of the filter set, a point y is said to be filtered if x ≺ y for some x ∈F ,
or if θ(y)≥ θmax, for some positive upper bound θmax; otherwise it is unfiltered. The set of
filtered points F is denoted as:

F =
⋃

x∈F
{y : x≺ y}∪{y : θ(y)≥ θmax}.

Based on a set (population) of points, at a current iteration, the filter-based AFS algo-
rithm generates a set of trial points that would be selected if they improve over the corre-
sponding current points. Then, the best point of the population is selected and would be
rejected by the filter if it is a filtered point; otherwise, the best point is not dominated by
any other point in the filter and is accepted and added to F . Cumulatively, all trial points
that are non-dominated are added to the filter. We note that when adding a point to the filter,
all the dominated points are removed from the filter. Thus, at each moment, the filter in the
AFS algorithm contains a set of non-dominated points, including the best point, that have
been selected from the population along the iterative process.
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To avoid the acceptance of a point, or the corresponding pair (θ , f ), that is arbitrary
close to the boundary of F , acceptability of y to the filter requires that

θ(y)≤ θ(x)−α1 or f (y)≤ f (x)−α2, for all x ∈F

for sufficiently small fixed positive parameters α1,α2.
As required by the theory, we will prove that the sequence of best points generated

by the filter-based AFS algorithm and accepted by the filter will converge to a (ρ(k),ε(k))-
global solution of subproblem (4). Since the solution of each subproblem (4) is obtained by
a stochastic method that generates a population of points at each iteration, the position of
a point in the population is considered a stochastic vector. Thus, the convergence analysis
of the properties of the algorithm relies on the stochastic convergence from the probability
theory.

We will now describe the filter-based AFS algorithm and state the conditions for the
selection of a non-dominated best point from a population of points. When two points of the
population are compared to see which one improves over the other, the below definition is
used.

Definition 4 (Point y improves over point x) Let x and y be two points in Ω . The point y
improves over point x if one of the following conditions holds:

θ(y)≤ θ(x)−α1 or ( f (y)≤ f (x)−α2 if |θ(y)−θ(x)| ≤ αtol) , (6)

for a small positive parameter αtol .

Restricting the conditions to cases where improvement in θ or in f of more than α1 and
α2 respectively occurs should not be considered a limitation. These error bounds may be
kept as small as one requires1.

In the context of solving subproblem (4), let fbest denote the function value and θbest the
constraint violation value of the best point, denoted by xbest, of a population of m points, X ,
at iteration t, where t is the iteration counter of the inner cycle. The best point of a population
is selected as follows.

Definition 5 (Best point of a population) The best point of a population X ∈ Ω m, is the
point xbest that satisfies one of the two following conditions:

1. if there are some feasible points in X , xbest is the point with least objective function value
among the feasible points that is not dominated by the filter:

θbest = 0 and fbest < f (x) for all x ∈ X such that θ(x) = 0 and xbest /∈F ; (7)

2. otherwise, xbest is the non-dominated point with least constraint violation among the
infeasible points:

0 < θbest < θ(x) and xbest /∈F . (8)

1 We note that Theorem 3 in Section 3.6 is invalid for α1 = α2 = 0 because the probability of a stochastic
algorithm exactly hitting the global is zero.
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3.1 Generating trial points

At each iteration t of the inner cycle, a population of m solutions, herein denoted by X =
[x1 . . .xm] is used to generate a set of trial points Y = [y1 . . .ym]. When t = 0, a set of
points is randomly generated in the entire search space Ω using the equation: (x j)i =
(l)i +ξ ((u)i− (l)i) for each component i = 1, . . . ,n of the point x j, where ξ is a uniformly
distributed random variable in [0,1]. Each fish/point x j movement is defined according to
the number of points inside its ‘visual scope’. The ‘visual scope’ is defined as the closed
neighborhood centered at x j with a positive radius δ . In this study, the radius varies with the
point progress and we set as a fraction of the maximum distance between x j and the other
points xl , l 6= j, δ j = maxl

∥∥x j− xl
∥∥. Three possible situations may occur:

i) the ‘visual scope’ is empty;
ii) the ‘visual scope’ is crowded;

iii) the ‘visual scope’ is not crowded.

When the ‘visual scope’ is empty, a Random Behavior is performed, in which the trial y j
is randomly generated inside the ‘visual scope’ of x j. The pseudo-code for the procedure
Random Behavior is presented in Algorithm 2.

Algorithm 2 (Random Behavior algorithm)
Require: x j , δ j , 0 < γδ < 1;
1: set ∆ = γδ δ j;
2: for all (x j)i, i = 1, . . . ,n do
3: set ξ1,ξ2 uniformly distributed variables in (0,1];
4: if ξ1 > 0.5 then
5: set (y j)i = (x j)i +ξ2∆ ;
6: else
7: set (y j)i = (x j)i−ξ2∆ ;
8: end if
9: end for

10: return y j;

When the ‘visual scope’ is crowded, with more than 80% of the population inside the
‘visual scope’ of x j, a point is randomly selected from the visual, xrand. Then, if it improves
over x j according to the Definition 4, the Searching Behavior is implemented, i.e., y j is
randomly generated along the direction from x j to xrand. Otherwise, the Random Behavior
is performed. The procedure Searching Behavior can be represented by the Algorithm 3.

Algorithm 3 (Searching Behavior algorithm)
Require: xrand, x j;
1: for all (x j)i, i = 1, . . . ,n do
2: set ξ uniformly distributed variable in (0,1];
3: set (y j)i = (x j)i +ξ ((xrand)i− (x j)i);
4: end for
5: return y j;

When the ‘visual scope’ is not crowded, and the best point inside the ‘visual scope’,
xmin, improves over x j (Definition 4), the Chasing Behavior is performed. This means that
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y j is randomly generated along the direction from x j to xmin. However, if xmin does not
improve over x j, the Swarming Behavior could be tried instead. The central point of the
‘visual scope’, x̄, is computed and if it improves over x j, y j is computed randomly along the
direction from x j to x̄; otherwise, a point xrand is randomly selected from the ‘visual scope’.
Then, if this random point improves over x j the Searching Behavior is implemented, other-
wise a Random Behavior is performed. Both Chasing Behavior and Swarming Behavior can
be also represented by Algorithm 3, replacing xrand by xmin, in the Chasing Behavior case,
and by x̄, in the other case. The reader is referred to [50,51] for details concerning the AFS
algorithm.

We note that each point x j will produce a trial point defined component by component
by

(y j)i = (x j)i +ξ (v j)i , i = 1, . . . ,n (9)

where ξ is a uniformly distributed random variable in (0,1] and v j is a search direction.
When a trial point y j does not satisfy the bound constraints, a projection onto the set Ω is
implemented: (y j)i = max

{
(l)i, min{(y j)i,(u)i}

}
for each i = 1, . . . ,n.

3.2 ‘Selection Procedure’

To choose which point between the current x j and the trial y j will be the point of the popula-
tion for the next iteration, a ‘Selection Procedure’ is carried out. The ‘Selection Procedure’
in this filter-based AFS algorithm is a deterministic process. The current and the trial points
are compared with each other and if the trial improves over the current point, decreasing
the measure of infeasibility by more than α1, or the objective function f by more than α2
without changing θ more than αtol (see Definition 4), the trial point is passed to the next
iteration as a current point; otherwise, the current point is preserved to the next iteration.

Since the best point of the current iteration, as well as all the points previously added to
the filter that remain in the population, play an essential role in the convergence proof, they
are treated separately. The goal is to prevent moving them to positions in the set F . All non-
dominated points that remain in the population will only be moved to unfiltered improved
positions. Hence, each of the corresponding trial point y is passed to the next iteration only
if it improves over the current point, according to Definition 4, and cumulatively if it is not
dominated by the current filter. Otherwise, the current point is preserved to the next iteration.
Algorithm 4 presents the pseudo-code of the ‘Selection Procedure’.

Algorithm 4 (‘Selection Procedure’ algorithm)
Require: x j , y j;
1: if x j is the best point ∨ x j /∈F then
2: if y j improves over x j ∧ y j /∈F then
3: set x j = y j;
4: end if
5: else
6: if y j improves over x j then
7: set x j = y j;
8: end if
9: end if

10: return x j;
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3.3 Best point

After a set of points has been selected to define the population for the next iteration, the
best point is required. At each iteration, xbest is the best point among all the points of the
population that is non-dominated by the current filter, in the sense of Definition 5. This best
point is accepted and added to the current filter. The sequence of best points thus found will
converge to the (ρ(k),ε(k))-global minimizer x(k) of subproblem (4).

However, when a non-dominated best point is not found and before declaring the itera-
tion unsuccessful, it is required that a restoration phase with a local search about a reference
point in the filter be carried out to see if a non-dominated point that improves θ or f relative
to the reference point is found. Only after this local search has failed can an iteration be
declared unsuccessful.

3.4 Restoration phase: local search

When it is not possible to find a non-dominated best point, a restoration phase is invoked.
Here, the most nearly feasible point in the filter, xinf

F , i.e., the point xinf
F ∈ F such that

θ(xinf
F ) ≤ θ(x) holds for each x ∈ F , is recuperated and a local coordinate search is car-

ried out about it. We note that xinf
F may be feasible. θ and f are calculated at a set of points

along the coordinate axes with a random step size ξ σ where ξ is a uniformly distributed
variable in (0,1] and σ > 0, expressed in the form

yr = xinf
F +ξ σdr, r = 1, . . . ,2n (10)

where dr,r = 1, . . . ,2n are the columns of the matrix D = [e1 · · ·en−e1 · · ·−en], being ei the
ith unit coordinate vector. We note that this search sets θ(yr) = ∞ if yr /∈Ω , to maintain the
search inside the bounds. To adapt the local search to each problem, we set similarly to [30]

σ = max
{

10−5,min
{

σmin,0.05
∑

n
i=1(u)i− (l)i

n

}}
,

where σmin is reduced 10% at every iteration of the outer cycle to suit the progress of the
algorithm.

Let y′ be the best of these 2n points yr, in the sense of Definition 5. If it is possible to
find a non-dominated best point y′ among these 2n points, then sufficient progress in θ or in
f is verified, relative to the point xinf

F :

θ(y′)≤ θ(xinf
F )−α1 or f (y′)≤ f (xinf

F )−α2, (11)

the point y′ is added to the filter and replaces the best point of the population at the current
iteration. We note that when it is not possible to find a non-dominated best point y′, the
iteration is declared unsuccessful.

3.5 The filter-based AFS algorithm

In this filter-based AFS algorithm with the incorporated filter method, each iteration is
declared either successful or unsuccessful. A successful iteration is the one where a non-
dominated best point is found, or the one where a non-dominated best point is not found,
but the restoration phase produces a point y′ that is accepted to the filter, thus satisfying
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conditions (11). When an unfiltered best point is not found and, in the restoration phase, the
local coordinate search about xinf

F could not find a point y′ that is acceptable to the filter, the
iteration is declared unsuccessful. Here the best point of the previous iteration is preserved
to the next one.

At the beginning of the algorithm, the set of filtered points is initialized to

F 0 = {x : xbest ≺ x}∪{x : θ(x)≥ θmax}

meaning that the approximation xbest of the previous iteration in the outer cycle is added to
the filter F , which implies that this point is a filtered point at the current iteration, and the
filter will never accept points that have a constraint violation larger than θmax. In the initial-
ization of F 0, θmax is a large multiple of the infeasibility measure of the best point targeting
the exploration of the whole search space for a global solution: θmax = 104 max{1,θbest}.
Furthermore, whenever a point y is accepted to the filter F , the set of filtered points is
updated as follows:

F t+1 = F t ∪{x : y≺ x} ,

where we note that all accepted points, even the feasible ones, are included in the filter.
When a point y is included in the filter, all points that are dominated by y are removed from
the filter.

The pseudo-code for the filter-based AFS algorithm is presented below in Algorithm 5.
The output point, xbest, returned by this algorithm is the required (ρ(k),ε(k))-global mini-
mizer x(k) of the Algorithm 1. We note that if a point that satisfies the stopping conditions is
not found within tmax iterations, Algorithm 5 is stopped and the best point in the filter will
be the initial approximation for the next subproblem.

3.6 Convergence study of the filter-based AFS algorithm

In the previous section, convergence to an ε-global minimizer of problem (1) has been guar-
anteed, provided that the subproblems are (ρ(k),ε(k))-globally solved, where ρ(k)→ 0 and
ε(k)→ ε . Thus, the issue here is to guarantee that a (ρ(k),ε(k))-global minimizer x(k) of sub-
problem (4) is found by the Algorithm 5 so that conditions (5) are satisfied for all x∈Λ ⊆Ω .
Since the set Ω is compact and both f (x) and θ(x) are continuous, a (ρ(k),ε(k))-global
minimizer of subproblem (4) does exist. Hence, conditions for which the filter-based AFS
algorithm converges to a (ρ(k),ε(k))-global optimizer are herein discussed.

Assuming that the objective function f (x) of subproblem (4) is bounded below for all
x ∈Ω , the main convergence results of the filter-based AFS algorithm are the following. To
simplify the notation, the dependence on k will be dropped from ρ(k) and ε(k) during the
remaining part of this section. The below provided convergence analysis is an extension of
that established in [27] for a particular class of evolution strategies when solving uncon-
strained problems, and it is adapted to a filter set method in which the concept of unfiltered
points is crucial. The analysis makes use of the probability theory from the measure theo-
retic point of view. The reader is referred to the recent textbook [20] for details. We remark
that in the AFS algorithm, all points of the population are potentially modified by one of the
fish behavior, in contrast to some evolutionary algorithms which often select only a subset
of points to apply the evolutionary operators. On the other hand, the application of fish be-
havior to all points increases diversity. The ‘Selection Procedure’, the concept of best point
of a population and the restoration phase, all aiming to identify unfiltered points, are crucial
to promote convergence.
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Algorithm 5 (filter-based AFS algorithm)
Require: ρ(k), ε(k), x1 (x(k−1) from Algorithm 1), LB;
1: set t = 0;
2: initialize F ;
3: randomly generate m−1 points in Ω : x j, j = 2, . . . ,m;
4: select xbest using Definition 5;
5: while θbest > ρ(k) ∨ fbest > LB+ ε(k) do
6: for all x j , j = 1, . . . ,m do
7: compute ‘visual scope’;
8: if ‘visual scope’ is empty then
9: Random Behavior;

10: else if ‘visual scope’ is crowded then
11: if xrand improves over x j then
12: Searching Behavior;
13: else
14: Random Behavior;
15: end if
16: else if xmin improves over x j then
17: Chasing Behavior;
18: else if x̄ improves over x j then
19: Swarming Behavior;
20: else if xrand improves over x j then
21: Searching Behavior;
22: else
23: Random Behavior;
24: end if
25: ‘Selection Procedure’;
26: update F when appropriate;
27: end for
28: if a new best point is found based on Definition 5 then
29: update xbest;
30: else if a non-dominated point y′ satisfying (11) is found then
31: xbest← y′;
32: else
33: preserve xbest;
34: end if
35: set t = t +1;
36: end while
37: return xbest;

We consider the problem of finding a (ρ,ε)-global minimizer of the bi-objective opti-
mization problem (4). We assume that the following conditions hold:

Assumption A 6 Assume that:
i) the search space Ω is Lebesgue measurable;

ii) the functions f : Ω → R and θ : Ω → R+ are measurable functions;
iii) a global minimizer of f (x) that satisfies h(x) = 0 and g(x)≤ 0 exists in Ω ;
iv) if m(S) denotes the Lebesgue measure of a set S, then for any pair of positive parameters

(ρ,ε),

m

({
x : θ(x)≤ ρ, f (x)≤ min

z∈Λ⊆Ω
f (z)+ ε

})
> 0. (12)

Conditions i) – iv) are satisfied as long as Ω is a bounded region and f and θ are contin-
uous. It seems natural that a stochastic search algorithm works only if the probability of the
points generated by the algorithm intersecting the set {x : θ(x)≤ ρ, f (x)≤ min

z∈Λ⊆Ω
f (z)+ε}
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is greater than zero, for any positive parameters ρ and ε . Thus, the concept of size or mea-
sure with respect to a set is required. The Lebesgue measure is a natural framework for the
study of the convergence properties of the filter-based AFS algorithm that follows [20].

The convergence of the filter-based AFS algorithm is expressed in the following theo-
rem.

Theorem 3 Let θ and f be two objective functions defined over a search space Ω . If the
pair (θ , f ) and Ω satisfy Assumption A 6, then for ρ,ε > 0 the filter-based AFS algorithm,
as defined by Algorithm 5, will converge to a (ρ,ε)-global minimizer of problem (4) with
probability one, in the sense that conditions (5) are satisfied for a best point of the population
that is acceptable to the filter.

Proof We first assume that the population has just one point (m = 1), x ≡ xbest ∈ Ω . The
definition of best point of a population and the ‘Selection Procedure’ play here important
roles, since the trial point y that is generated by equation (9) is passed to the next iteration
as a current point if it is not dominated by the filter2 and a decrease in constraint violation
by more than α1, or in objective function value by more than α2 without changing θ more
than αtol , is verified. Furthermore, y will the best point because it is not dominated by the
current filter and Definition 5 then applies.

However, when the trial y is not accepted, the current x could not be xbest since x has been
added to the filter in a previous iteration. The filter methodology in Algorithm 5 invokes the
restoration phase. The local search procedure finds the best point y′ that is acceptable and
added to the current filter, satisfying (11), thus replacing the current xbest. Consequently,
each successful iteration improves either the infeasibility measure (decreases θ ) by more
than α1 or the objective function value (decreases f ) by more than α2, and cumulatively
a non-dominated point is generated following Definition 5. Hence, an approximate global
minimizer can always be reached from any initial point after a finite number of successful
iterations.

We note that if the local search does not find a point y′ that is acceptable to the current
filter, the current xbest is preserved to the next iteration and an unsuccessful iteration occurs.

Let the set S be defined as

S = {y ∈Ω\F : θ(y)≤ ρ, f (y)≤ f (x)+ ε, for all x ∈Λ ⊆Ω} ⊂Ω\F

and p denote the probability that an unfiltered point y satisfies the conditions (5), i.e., p ≡
Prob[y ∈ S]. Then, by item iv) in Assumption A 6, m(S) > 0. We note that the uniform
distribution of ξ , when generating a trial point y, as described in (9), or y′, as described in
(10), together with m(S)> 0, imply p > 03.

We show that if x is not an approximate global minimizer, then with probability one a
successful iteration occurs within a finite number of iterations. The proof is by contradiction,
assuming that an unsuccessful iteration occurs infinitely many times. The probability that an

2 Recall that the current point has been surely added to the filter in a previous iteration.
3 Any other distribution with density function that is nowhere zero over the set Ω satisfies this requirement.
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unsuccessful iteration occurs at iteration t is given by4

qt = Prob
[

‘y does not improve over xbest’ or y ∈F
]

Prob
[
y′ ∈F

]
= Prob

[
y ∈F

]
Prob

[
y′ ∈F

]
=
(
1−Prob

[
y ∈Ω\F

])(
1−Prob

[
y′ ∈Ω\F

])
< (1−Prob[y ∈ S])2 = (1− p)2

< 1.

When we assume that x is preserved, p remains unchanged during the iterative process.
Since each iteration is independent, the probability of an unsuccessful iteration occurring
during r consecutive iterations is given by

q1q2 · · ·qr =
r

∏
t=1

qt ≤ (1− p)2r

and the probability of occurring infinitely many times is

lim
r→∞

r

∏
t=1

qt = 0.

Thus, we may conclude that if x is not an approximate global minimizer, then within a finite
number of iterations a non-dominated point is guaranteed to be generated. Thus, after a finite
number of non-dominated points, an approximate global solution is reached.

Now, we address the case of a population with m > 1 points. We remark that when
a method based on a population of size m, X , is used, the search space is Ω m. For the
convergence analysis of Algorithm 5, we are interested in the sequence of points, xbest ∈ X ,
that are non-dominated following Definition 5.

In this context, we re-define the set S as follows:

S = {Y ∈Ω
m\F̃ : θbest ≤ ρ, fbest ≤ f (x)+ ε, for all x ∈Λ ⊆Ω} ⊂Ω

m\F̃

where
F̃ =

⋃
x∈F
{X : x≺ xbest}∪{X : θbest ≥ θmax}

represents the set of populations in which xbest is a point that is dominated by the filter and
p̃ ≡ Prob[Y ∈ S] is the probability of a non-dominated best point of a population Y with m
points be an approximate global minimizer.

We note that when the trial point generated from the best point of the current iteration is
passed to the next iteration, as described in Section 3.2, no guarantee exists that this will be
the best point of the next iteration. Some other point of the new population could be better

4 When m = 1, an unsuccessful iteration occurs when the events A and B both occur, where

A: the trial point y is not accepted, either because it does not improve over the current x≡ xbest or y ∈F ;
B: in the restoration phase, a non-dominated best point is not found among the 2n points generated by (10).

Hence Prob [unsuccessful iteration] =Prob [A∩B] =Prob [A]Prob [B|A] =Prob [A]Prob [B] since A and B are
independent. We further note that the event ‘y does not improve over xbest’ implies ‘y ∈F ’. This means that
if the events A1 and A2 are

A1: y does not improve over xbest;
A2: y ∈F ;

then Prob [A1 ∪A2] = Prob [A2] since A1 ⊂ A2.
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in θ or in f than the trial of the current best point, according to the Definition 5. Either way,
a new non-dominated best point is found and the iteration is successful.

However, if the trial point, obtained from the current best point, is not accepted, meaning
that it does not improve over the best point or it is dominated by a point in the current filter,
then some other point in the next population should satisfy Definition 5 so that the iteration
could be declared successful. If no other point in the next population satisfies Definition 5,
the restoration phase is invoked and the procedure is similar to the one described in the case
of a population with m = 1. We may conclude that each successful iteration generates a non-
dominated best point that improves either θ or f , as stated in Definition 5. Thus, after a finite
number of successful iterations, an approximate global minimizer can always be reached.

We will now show that if xbest of the current population is not an approximate global
minimizer, then with probability one a successful iteration occurs within a finite number
of iterations. Again, by contradiction assume that an unsuccessful iteration occurs infinitely
many times. Let qt be the probability that an unsuccessful iteration occurs at iteration t.
Then5

qt = Prob
[
ybest ∈F

]
Prob

[
y′ ∈F

]
=
(
1−Prob

[
ybest ∈Ω\F

])(
1−Prob

[
y′ ∈Ω\F

])
=
(

1−Prob
[
Y ∈Ω m\F̃

])2

< (1−Prob [Y ∈ S])2 = (1− p̃)2

< 1,

where Prob[Y ∈ S]> 0. From here now, the same reasoning applies to this case to conclude
that if the best point of the population, at the current iteration, is not an approximate global
minimizer, then within a finite number of iterations a new population with a non-dominated
best point is guaranteed to be generated. Therefore, after a finite number of iterations where
the best point of the population is not dominated by the filter, an approximate global mini-
mizer is reached. ut

Remark 1 These convergence results would apply to any stochastic population-based algo-
rithm, provided that each point x, of the current population, generates a trial point y 6= x,
and the trial replaces the current point for the next population if at least it improves over the
current according to Definition 4. Furthermore, the best point of each population should be
identified as described in Definition 5. All the remaining properties are concerned with the
developed filter methodology.

4 Numerical experiments

For a preliminary validation of the proposed population-based filter algorithm two sets of
benchmark constrained global optimization problems are used. First, we compare the results
of this study with those in [19], that were obtained by a non-differentiable exact penalty
function framework using the deterministic DIRECT algorithm for globally solving the
bound constrained subproblems. For this comparison, a set of 20 small problems (fully
described in the report [9], also available in http://www.ime.usp.br/~egbirgin/) is

5 When m > 1, an unsuccessful iteration occurs when the events A and B both occur, where

A: a non-dominated best point ybest is not found in the next population;
B: the local search, in the restoration phase, does not find a point y′ that is acceptable to the filter;

and again, these two events are independent.

http://www.ime.usp.br/~egbirgin/
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used. These problems are identified by Problem 1, 2(a), 2(b), 2(c), 2(d), 3(a), 3(b), 4, 5, 6,
. . ., 15, 16 in [9,10,19]. Second, we compare the performance of the proposed method with
another filter based technique [30], therein denoted by ‘FSA’. In this last paper, the heuris-
tic simulated annealing algorithm is coupled with a multistart diversification strategy, and
an intensification scheme to accelerate convergence is also used. We further extend our nu-
merical testing to compare with a population-based stochastic electromagnetism-like (EM)
method, therein called ‘CEM’. The extension of the EM concepts to constrained global
optimization problems relies on computing the charge of each point in the population by
combining two charge components [3]. The first component is due to the objective function
value and the second is due to the constraint violation. The idea of using the function value
and constraint violation separately is present but the method itself is not a filter method.
For these last comparisons, a set of 13 benchmark test problems with dimensions ranging
from 2 to 20, identified as g01, g02, g03, g04, . . ., g12, g13 (fully described in [30]) is used.
Although there are maximization problems in this set, they were formulated and solved as
minimization problems. The characteristics of the problems are summarized in Table 1 that
lists the number of variables, ‘n’; the type of objective function, ‘type of f ’; the number of
linear inequalities, ‘l. ineq.’; the number of nonlinear inequalities, ‘nl. ineq.’; the number of
linear equalities, ‘l. eq.’; and nonlinear equalities, ‘nl. eq.’. Columns under ‘P’ identify the
problem. The C++ programming language is used in this real-coded algorithm. The compu-

Table 1 Test problems

P n type of f l. ineq. nl. ineq. l. eq. nl. eq. P n type of f l. ineq. nl. ineq. l. eq. nl. eq.

1 5 polynomial 0 0 0 3 14 4 nonlinear 2 0 1 0
2(a) 9 linear 0 2 3 1 15 3 constant 0 0 1 2
2(b) 9 linear 0 2 3 1 16 5 linear 0 0 1 2
2(c) 9 linear 0 2 3 1 g01 13 quadratic 9 0 0 0
2(d) 10 linear 0 2 4 1 g02 20 nonlinear 0 2 0 0
3(a) 6 linear 0 1 0 4 g03 10 polynomial 0 0 0 1
3(b) 2 nonlinear 0 1 0 0 g04 5 quadratic 0 6 0 0
4 2 linear 0 1 0 0 g05 4 cubic 2 0 0 3
5 3 linear 0 0 0 3 g06 2 cubic 0 2 0 0
6 2 linear 0 1 0 0 g07 10 quadratic 3 5 0 0
7 2 linear 2 2 0 0 g08 2 nonlinear 0 2 0 0
8 2 polynomial 1 1 0 0 g09 7 polynomial 0 4 0 0
9 6 nonlinear 3 0 3 0 g10 8 linear 3 3 0 0
10 2 linear 0 2 0 0 g11 2 quadratic 0 0 0 1
11 2 quadratic 0 1 0 0 g12 3 quadratic 0 1 0 0
12 2 quadratic 0 0 0 1 g13 5 nonlinear 0 0 0 3
13 3 nonlinear 0 0 1 1

tational tests were performed on a PC with a 2.8 GHz Core Duo Processor P9700 and 6 Gb
of memory. Since the algorithm relies on some random parameters and variables, we solve
each problem 30 times. The parameters have been set as follows after an empirical study:
γρ = 0.1, γε = 0.1, ρ(1) = 1, ε(1) = 10, ε = 10−4, ρtol = 10−8, γδ = 0.8, α1 = α2 = 10−8

and αtol = 0.001. The initial value for σmin is set to 10.

Table 2 aims to compare the results obtained by our P-BF AFS-based algorithm and
those reported in [19]. For this comparison, the size of the population is defined as m =
min{50,5n}, tmax = 20 and Algorithm 1 is allowed to run for a maximum of 10 iterations.
The table identifies the problem in the first column under ‘P’, and reports the best solution
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obtained during the 30 runs6, ‘ fbest’; the median of the 30 solutions7, ‘ fmedian’; the solution
found by the algorithm in [19], ‘ f ∗’; and the best known solution available in the literature,
‘LB’ [10]. Furthermore, the measure of the constraint violation, ‘C.V.’8, the number of func-
tion evaluations, ‘n.f.e.’, and the CPU time in seconds, ‘time’, (reported in the table) are
from the best solutions obtained by the algorithms, i.e., correspond to fbest in P-BF AFS-
based algorithm, f ∗ in [19] and LB in [10]. We note that all the results used for comparison
are taken from their original references [3,10,19,30].

For the Problems 2(a), 2(b) and 2(c), some algebraic manipulation aiming to reduce the
number of variables and equality constraints is used to reformulate them [19]. The new for-
mulation has five variables and 10 inequality constraints. A similar strategy is used to obtain
a new formulation of Problem 2(d) with five variables and 12 inequality constraints [19].
We further extended this idea to other difficult to solve problems in the set. Considering the
new formulations, Problem 5 has now two variables, two equality constraints and two in-
equality constraints; Problem 9 has three variables and nine inequality constraints; Problem
12 has one variable and two inequality constraints; Problem 14 has three variables and four
inequality constraints and Problem 16 has two variables and six inequality constraints. As a
consequence, the computational effort to solve these problems has drastically been reduced.

From the results we may conclude that the proposed P-BF AFS-based algorithm is able
to reach the target solution with high accuracy, except in Problem 1 and Problems 2(a), 2(b)
and 2(c). We conclude that the P-BF AFS-based algorithm reached the ‘LB’ solution in 16
problems out of 20, while the algorithm in [19] only reached the best known solution in 10
problems. The consistency of our results is very good with fbest very near fmedian, with the
exceptions of Problems 1, 2(a), 2(b), 2(c) and 13. The algorithm is able to reach feasible
solutions. Only in two of the 20 problems (Problem 1 and Problem 3(a)) the C.V. of our
reported solution is larger than that obtained in [19]. Although different computational plat-
forms have been used to solve the selected problems, the reported values of ‘time’ required
by P-BF AFS-based algorithm are very competitive when compared with those in [19]. The
computational effort measured by ‘n.f.e.’ are encouraging for a population-based stochastic
method, when compared with the values listed in [19].

We now compare the results obtained by P-BF AFS-based algorithm with those in [30].
The results summarized in Table 3 show, for each problem, the best, ‘ fbest’, and the average,
‘ favg’, solutions obtained in 30 independent runs, as well as the standard deviation, ‘St.D.’,
and the ‘C.V.’ of the best solution. Moreover, the average number of function evaluations
(over the 30 runs), ‘n.f.e.avg’, and the average number of constraint evaluations, ‘n.c.e.avg’,
are also reported for comparison. We remark that n.c.e.avg = n.f.e.avg in P-BF AFS-based
algorithm. A population of 50 points is used. FSA also uses 50 points in the set from which
points may be chosen to generate other solutions, within the multistart diversification strat-
egy. Each algorithm is terminated by using its own specific stopping conditions. Values of
ε = 10−4 and ρtol = 10−8 are maintained in the stopping conditions of Algorithm 1 which
is allowed to run for a maximum of 10 iterations. To allow good solutions to be found, we
set during these experiments tmax = 200. All the other parameters are set as previously de-
scribed. The best known objective function values available in the literature for the set of
test problems g01 – g13, ‘LB’, are listed in Table 4. From the comparison with FSA, we

6 For P-BF AFS-based algorithm, the reported solution is the best solution obtained during the 30 runs.
During selection, priority is given to the constraint violation. Among all feasible solutions, the best is the one
with smallest objective function value. Among infeasible solutions, the best is the one with smallest constraint
violation.

7 This is a measure of central tendency of the distribution of the 30 obtained solutions.
8 For comparative purposes, the measure of C.V. used in the table is max{‖h(x)‖∞,‖g(x)+‖∞} [19].
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Table 2 Comparison between P-BF AFS-based algorithm and the non-differentiable exact penalty in [19]

P-BF AFS-based algorithm results in [19] in [10]

P fbest fmedian C.V. n.f.e. time f ∗ C.V. n.f.e. time LB time

1 0.0956 1.4665 7.84e-07 6 945 0.031 0.0625 2.35e-07 39 575 0.328 0.0293 18.86
2(a) -358.650 -308.664 0.00e00 7 068 0.046 -134.113 8.43e-04 115 107 2.078 -400.000 0.13
2(b) -378.317 -274.472 0.00e00 6 963 0.046 -768.457 5.30e-04 120 057 3.828 -600.000 0.76
2(c) -697.452 -657.349 0.00e00 7 189 0.046 -82.977 8.43e-04 102 015 0.953 -750.000 0.16
2(d) -399.118 -394.563 0.00e00 6 526 0.031 -385.170 0.00e00 229 773 2.328 -400.000 0.23
3(a) -0.3888 -0.3842 5.22e-04 7 495 0.046 -0.3861 1.02e-06 48 647 1.234 -0.3888 12.07
3(b) -0.3888 -0.3888 0.00e00 1 041 0.000 -0.3888 0.00e00 3 449 0.031 -0.3888 2.90
4 -6.6667 -6.6665 0.00e00 493 0.000 -6.6666 0.00e00 3 547 0.031 -6.6666 0.00
5 201.159 201.159 8.11e-07 2 999 0.015 201.159 1.66e-04 14 087 0.078 201.16 0.04
6 376.293 376.304 0.00e00 1 335 0.000 0.4701 2.05e-05 1 523 0.000 376.29 0.01
7 -2.8284 -2.8283 0.00e00 920 0.000 -2.8058 0.00e00 13 187 0.125 -2.8284 0.02
8 -118.704 -118.698 0.00e00 1 521 0.000 -118.704 0.00e00 7 621 0.046 -118.70 0.15
9 -13.4018 -13.4007 0.00e00 1 839 0.015 -13.4026 1.35e-04 68 177 2.171 -13.402 0.00
10 0.7418 0.7418 0.00e00 2 126 0.015 0.7420 0.00e00 6 739 0.078 0.74178 0.01
11 -0.5000 -0.5000 0.00e00 782 0.000 -0.5000 0.00e00 3 579 0.031 -0.5000 0.01
12 -16.7389 -16.7389 0.00e00 35 0.000 -16.7389 5.36e-06 3 499 0.015 -16.739 0.01
13 189.345 253.937 0.00e00 4 031 0.015 195.955 9.21e-04 8 085 0.078 189.35 0.47
14 -4.5142 -4.5139 0.00e00 2 028 0.015 -4.3460 9.22e-05 19 685 0.250 -4.5142 0.00
15 0.0000 0.0000 9.11e-07 3 593 0.015 0.0000 4.94e-05 1 645 0.000 0.0000 0.06
16 0.7049 0.7049 0.00e00 447 0.015 0.7181 2.00e-04 22 593 0.312 0.70492 0.15

may conclude that the average solutions found by the P-BF AFS-based algorithm are better
than those of FSA in 6 out of 13 problems, g01, g02, g03, g04, g10 and g13 (see ‘ favg’ and
‘St.D.’). However, the computational effort measured by ‘n.f.e.avg+n.c.e.avg’ is lower with
our algorithm than with FSA in 8 out of the 13 problems. It is noteworthy that the P-BF
AFS-based algorithm reaches the best known solution of problem g01, with the chosen tol-
erance of ε = 10−4, in all 30 runs, reaches the ‘LB’ of problem g08 in 18 out of 30 runs,
and the ‘LB’ of problem g12 in 6 out of 30 runs. For the other problems of the set, the so-
lutions obtained in all 30 runs have absolute errors larger than ε , since 10 outer iterations
were exceeded.

Table 3 Comparison between P-BF AFS-based algorithm and FSA in [30]

P-BF AFS-based algorithm results of FSA in [30]

P fbest favg St.D. C.V. n.f.e.avg fbest favg St.D. n.f.e.avg n.c.e.avg

g01 -14.99999 -14.99992 2.3e-05 0.00e00 48929 -14.99911 -14.99332 4.8e-03 205748 87701
g02 -0.764816 -0.730774 1.8e-02 0.00e00 104312 -0.754913 -0.371708 9.8e-02 227832 101903
g03 -1.000008 -0.999575 4.7e-04 8.32e-06 51994 -1.000000 -0.999187 1.7e-03 314938 118404
g04 -30665.538 -30665.524 1.0e-02 9.84e-05 102188 -30665.538 -30665.467 1.7e-01 86154 37000
g05 5126.4983 5128.4768 1.5e+00 1.15e-05 112853 5126.4981 5126.4981 0.0e00 47661 17757
g06 -6961.8138 -6961.8127 6.2e-04 0.00e00 106718 -6961.8139 -6961.8139 0.0e00 44538 15817
g07 24.63254 25.43844 3.6e-01 0.00e00 117449 24.31057 24.37953 7.1e-02 404501 171299
g08 -0.095825 -0.095824 3.4e-07 0.00e00 8967 -0.095825 -0.095825 0.0e00 56476 23219
g09 680.64912 680.66745 8.6e-03 0.00e00 106406 680.63008 680.63642 1.5e-02 324569 147035
g10 7077.5240 7198.3822 5.1e+01 0.00e00 125880 7059.8635 7509.3210 5.4e+02 243520 93667
g11 0.749900 0.749901 8.1e-07 1.00e-04 75997 0.749999 0.749999 0.0e00 23722 8485
g12 -1.000000 -0.999998 6.5e-07 0.00e00 11494 -1.000000 -1.000000 0.0e00 59355 25818
g13 0.056265 0.289244 1.3e-01 1.52e-03 95508 0.053950 0.297720 1.9e-01 120268 42268
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Finally, we compare the results obtained by P-BF AFS-based algorithm with those of
CEM proposed in [3]. To match the conditions for the experiments we set a population of
10 points and the algorithms terminate after 350000 function evaluations. Consequently,
the number of iterations in the outer cycle of our algorithm, averaged over 30 runs, is over
one hundred mostly, except in problems g01, g02, g07 and g10. The results are reported
in Table 4 that shows ‘ fbest’, ‘ favg’ and the objective function value of the worst solution
obtained during the 30 runs, ‘ fworst’. The value of ‘C.V.’ for the best solution is also shown
for our algorithm. As noted in the original reference, the results in [3] that are lower than the
best known value ‘LB’ occur due to the parameter β = 10−3 that is used to convert equality
constraints h(x) = 0 into inequalities |h(x)|−β ≤ 0. The results of the table show that the
best reached solution, as well as the average of the 30 solutions, found by the P-BF AFS-
based algorithm are better than the corresponding solutions found by CEM in 8 out of the
13 problems. Both algorithms behave similarly with the problems g01, g08 and g12. During
these experiments, the P-BF AFS-based algorithm is able to reach the ‘LB’ of problems g01,
g06, g08, g11 and g12, within a tolerance of ε = 10−4, in all 30 runs. Further, it reaches the
‘LB’ of problem g03 in 24 out of 30 runs, and the ‘LB’ of problem g04 in 5 out of 30 runs.
For the other problems, the difference between the obtained solution and the best known
solution is larger than ε , in all runs. We note here that the algorithm stops when the number
of function evaluations exceeds 350000. We further extended these experiments and run the
algorithm to report the runs (among the 30) where the solution reaches the target ‘LB’ with
a relative precision of 10−4. This condition was verified in all the 30 runs of problems g01,
g04, g06, g08, g09, g11 and g12, in 24 runs of problem g03 and in 8 runs of problem g05.

Overall we may conclude that the results obtained by the P-BF AFS-based algorithm
are competitive with the ones reported in [3,30].

Table 4 Comparison between P-BF AFS-based algorithm and CEM in [3]

P-BF AFS-based algorithm results of CEM in [3]

P fbest favg fworst C.V. fbest favg fworst LB

g01 -15.000000 -15.000000 -15.000000 0.00e00 -15.000 -15.000 -15.000 -15.00000
g02 -0.776103 -0.748956 -0.725272 0.00e00 -0.623711 -0.517221 -0.452235 -0.803619
g03 -1.000000 -0.999943 -0.999674 4.79e-09 -1.00151 -1.00167 -1.00176 -1.000000
g04 -30665.539 -30665.538 -30665.537 0.00e00 -30665.513 -30660.649 -30654.500 -30665.539
g05 5126.4117 5128.3672 5131.5444 6.60e-06 5126.4842 5128.6958 5136.6618 5126.4981
g06 -6961.8139 -6961.8139 -6961.8139 0.00e00 -6961.813 -6961.813 -6961.813 -6961.8139
g07 24.62939 25.06516 25.43367 9.98e-06 25.11276 27.75496 29.93511 24.306209
g08 -0.095825 -0.095825 -0.095825 0.00e00 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.63610 680.65222 680.66051 0.00e00 680.8968 681.3511 681.7680 680.63006
g10 7061.6484 7131.2982 7177.8494 0.00e00 7049.758 7154.671 7292.724 7049.3307
g11 0.749990 0.749990 0.749990 9.99e-06 0.7499 0.7499 0.7499 0.750000
g12 -1.000000 -1.000000 -1.000000 0.00e00 -1.0000 -1.0000 -1.0000 -1.000000
g13 0.055416 0.158980 0.276735 4.17e-07 0.053827 0.056314 0.059852 0.0539498

5 Conclusions

We have demonstrated that it is possible to derive a population-based filter algorithm with
guaranteed convergence to an ε-global minimum of a CGO problem. The algorithm solves
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a sequence of bi-objective subproblems with increasing accuracy, namely with error toler-
ances of ρ(k) in feasibility and ε(k) in objective function value, where ρ(k)→ 0 and ε(k)→ ε ,
as iterations proceed (k→ ∞). For each subproblem, the approximate solution of the previ-
ous subproblem together with a randomly generated population of points aim to explore the
search space for a global minimum instead of being trapped in a local one.

In the proposed population-based filter framework, the subproblems are globally solved
by an artificial fish swarm stochastic algorithm that makes use of the filter set method to
provide selection criteria to accept a sequence of non-dominated best points of the popula-
tion. The filter-based AFS algorithm convergence to a (ρ(k),ε(k))-global minimizer of the
bi-objective subproblem (4) has been guaranteed using probability theory, where ρ(k)→ 0
and ε(k)→ ε .

The reported preliminary numerical results show its competitive practical performance
when compared with a penalty function framework based on the deterministic DIRECT
algorithm and with two stochastic heuristic methods, targeting global solutions. Extensive
numerical experiments with larger dimensional problems remain to be done and will be
reported in a future paper.

Acknowledgements The authors wish to thank the anonymous referees for their fruitful comments and sug-
gestions. This work was financed by FEDER funds through COMPETE (Operational Programme Thematic
Factors of Competitiveness) and by portuguese funds through FCT (Foundation for Science and Technology)
within the projects FCOMP-01-0124-FEDER-022674 and PEst-C/MAT/UI0013/2011.

References

1. Aguirre, A.H., Rionda, S.B., Coello Coello, C.A., Lizrraga, G.L., Montes, E.M.: Handling constraints
using multiobjective optimization concepts. International Journal for Numerical Methods in Engineering
59, 1989-2017 (2004).

2. Akay, B., Karaboga, D.: Artificial bee colony algorithm for large-scale problems and engineering design
optimization, Journal of Intelligence Manufacturing, 23(4), 1001–1014 (2012).

3. Ali M.M., Golalikhani M.: An electromagnetism-like method for nonlinearly constrained global opti-
mization. Computers and Mathematics with Applications, 60, 2279–2285 (2010).

4. Ali, M.M., Kajee-Bagdadi, Z.: A local exploration-based differential evolution algorithm for constrained
global optimization, Applied Mathematics and Computation, 208(1), 31–48 (2009).

5. Ali, M.M., Zhu, W.X.: A penalty function-based differential evolution algorithm for constrained global
optimization. Computational Optimization and Applications, DOI 10.1007/s10589-012-9498-3 (2012).

6. Audet, C., Dennis, Jr., J.E.: A pattern search filter method for nonlinear programming without derivatives,
SIAM Journal on Optimization, 14(4), 980–1010 (2004).

7. Barbosa, H.J.C., Lemonge, A.C.C.: An adaptive penalty method for genetic algorithms in constrained
optimization problems, in Frontiers in Evolutionary Robotics, H. Iba (ed.) 34 pages, (ISBN: 978-3-
902613-19-6) I-Tech Education Publ., Austria (2008).

8. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999).
9. Birgin, E.G., Floudas, C.A., Martı́nez, J.M.: Global minimization using an Augmented Lagrangian

method with variable lower-level constraints, Technical Report MCDO121206, January 22, 2007.
10. Birgin, E.G., Floudas, C.A., Martı́nez, J.M.: Global minimization using an Augmented Lagrangian

method with variable lower-level constraints, Mathematical Programming, Ser. A, 125(1), 139–162
(2010).

11. Birgin, E.G., Martı́nez, J.M.: Augmented Lagrangian method with nonmonotone penalty parameters for
constrained optimization, Computational Optimization and Applications, 51(3), 941–965 (2012).

12. Chootinan, P., Chen, A.: Constrained handling in genetic algorithms using a gradient-based repair
method. Computers and Operations Research 33, 2263–2281 (2006).

13. Civicioglu, P., Besdok, E.: A conceptual comparison of the Cuckoo-search, particle swarm optimiza-
tion, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review DOI
10.1007/s10462-011-9276-0 (2012).



22 A.M.A.C. Rocha et al.

14. Coello Coello C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary
algorithms: a survey of the state of the art, Computer Methods in Applied Mechanics and Engineering,
191(11), 1245–1287 (2002).

15. Costa, L., Espı́rito Santo, I.A.C.P., Fernandes, E.M.G.P.: A hybrid genetic pattern search augmented La-
grangian method for constrained global optimization, Applied Mathematics and Computation, 218(18),
9415–9426 (2012).

16. Costa, M.F.P., Fernandes, E.M.G.P.: Assessing the potential of interior point barrier filter line search
methods: nonmonotone versus monotone approach, Optimization, 60(10-11), 1251–1268 (2011).

17. Deb, K., Srivastava, S.: A genetic algorithm based augmented Lagrangian method for constrained opti-
mization. Computational Optimization and Applications, 53(3), 869–902 (2012).

18. Dennis Jr., J.E., Price, C.J., Coope, I.D.: Direct search methods for nonlinear constrained optimization
using filters and frames, Optimization and Engineering, 5, 123–144 (2004).

19. Di Pillo, G., Lucidi, S., Rinaldi, F.: An approach to constrained global optimization based on exact
penalty functions, Journal of Global Optimization, 54, 251–260 (2012).

20. Durrett, R.: Probability: Theory and Examples, Vol. 3, 4th. edn., Cambridge University Press (2010).
21. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function, Mathematical Program-

ming, 91, 239–269 (2002).
22. Fletcher, R., Leyffer, S., Toint, Ph.L.: A brief history of filter methods, SIAG/Optimization Views-and-

News, 18(1), 2–12 (2007).
23. Gould, N.I.M., Leyffer, S., Toint, Ph.L.: A multidimensional filter algorithm for nonlinear equations and

nonlinear least squares, SIAM Journal on Optimization, 15, 17–38 (2004).
24. Gould, N.I.M., Toint Ph.L.: Global convergence of a non-monotone trust-region filter algorithm for non-

linear programming. in Hager, W.W., Huang, S.-J., Pardalos, P.M., Prokopyev, O.A. (eds.), Multiscale
Optimization Methods and Applications, Springer 2006.
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